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I. INTRODUCTION



BACKGROUND AND STUDY GOALS



This report will present the results of a study, "Assess­


ment Study of Infrared Detector Arrays for Low-Background



Astronomical Research," performed by Analytic Decisions In­


corporated, Arlington, Virginia, for the NASA-Ames Research
 


Center under Contract NAS 2-9858. The basic purpose of this



report was to survey and assess the current state-of-the-art



of infrared detector arrays employing CCD or CID readout and



determine the applicability, limitations and potentials of



such arrays under the low-background astronomical observing



conditions of interest for SIRTF.



Cryogenically cooled shuttle-borne telescopes, such as



the Shuttle Infrared Telescope Facility (SIRTF) will provide a



unique opportunity for high sensitivity and high resolution
 


observations of faint astronomical objects. A preliminary de­


sign study has been completed for SI4TF (I ) and the Focal Plane



Instruments and Requirements Science Team (FIRST) has been en­


gaged in the definition and conceptual design of the photomet­


ric and spectroscopic instruments for SIRTF. (2)



Many of the instruments currently being defined by the



FIRST group will require arrays of detectors rather than dis­


crete detectors. Historically, past probe and spaceborne in­


struments for long wavelength infrared (LWIR) celestial survey



and background measurements have employed discrete detectors in



staggered linear or linear arrays. The infrared survey arrays,



currently under development for IRAS, are examples of this



approach. Arrays of this type, which incorporate extrinsic doped
 


germanium and silicon detectors, have provided excellent per­


formance at low background. The cost of these arrays, however,



on a per detector channel basis has been high, reflecting the



I 



low yields associated with detector fabrication, number of



associated parts, and the critical hand wiring involved. Addi­


tionally, as the requirement for the number of detectors in­


creases, this approach is ultimately limited in performance by



the relatively large size of discrete detectors, interconnect



complexity, and power dissipation. One approach to overcome



this limitation has been to adapt the microelectronic batch



processing techniques to fabricate integrated arrays of detec­


tors, load resistors, and MOSFET preamplifiers. The general



characteristics of a Si:As integrated array based upon this



approach were recently reported. (3)



A second and more powerful and versatile approach to inte­


grate the detector and signal processing functions on-chip has



evolved in recent years. This approach, based upon the charge



transfer concept, has made possible for the first time the real­


ization of practical high density self-scanned infrared arrays



with integral low noise readout. The use of charge transfer de­


vices allow signals from a large number of detectors to be



multiplexed on-chip and read out through a single output ampli­


fier, thereby reducing the parts count and interconnect com­


plexity and making possible detector arrays with many thousands



of individual detectors. This study will review the state of



the art of such detector arrays.



Four general classes of infrared CCD detector arrays will



be reviewed in this report. Section II will review the state



of the art of monolithic extrinsic arrays. In monolithic ex­


trinsic arrays, an extrinsic substrate provides the infrared



sensitivity. The resultant signal charge is injected into a



lightly doped epitaxial layer for charge transfer multiplexing



and readout.



Section III will review the state of the art of monolithic



intrinsic arrays. A monolithic intrinsic array is the IR ana­


log of the visible imager CCD. IR detection occurs in a narrow
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bandgap semiconductor such as InSb. Charge transfer and read­


out occurs either in the same material or signal charge is



transferred to a wider bandgap layer for CCD readout.



Section IV will review charge injection devices (CID).
 


Charge injection devices are monolithic intrinsic arrays which



employ surface charge transfer to achieve X-Y address capabil­


ity for area arrays. Signal readout occurs by a sequential



injection of the stored charge into the substrate and detec­


tion of the resulting substrate current.



Section V will review hybrid arrays. Hybrid arrays em­


ploy separate sensing and charge transfer media. The detector



array, fabricated in the photosensitive medium, is electrically



and mechanically coupled to a silicon CCD multiplexer.



Section VI will compare the relative suitability and po­


tentials of the various approaches for the low-background



astronomical conditions of interest and summarizes the con­


clusions of this study.
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II. MONOLITHIC EXTRINSIC FOCAL PLANE ARRAYS



The state of the art of infrared focal planes prior to the



advent of charge transfer devices was based upon discrete de­


tector arrays with individual load resistors and preamplifiers.



The introduction of the charge coupling principle in 1970 led



quickly to the investigation of the feasibility of extrinsic



focal plane arrays.



A number of test chips, such as the CCD 2063, (4 ) were de­


veloped to test and validate the basic detector/CCD structure



in monolithic form. This chip incorporated 8, 16, and 32 detec­


tor element linear arrays with integral CCD readout registers.



CCD readout of extrinsic gallium doped silicon (Si:Ga) detectors



was successfully demonstrated with this chip. Tests on this chip



and other chips showed that reasonable charge transfer efficien­


cies could be obtained at operating temperatures as low as B°K



in the conventional inversion mode of operation. Inversion or



depletion mode of operation was made possible by the deposition



of lightly doped epitaxial layer on the extrinsic substrate.



The simpler accumulation mode of operation, in which signal



charge is transferred as majority carriers in the photoconduc­


tive substrate, was also tried in the CCD 2063 and other test



devices, but abandoned in favor of the inversion mode of opera­


tion due to poor charge transfer efficiency at the low tempera­


tures of interest.



A number of extrinsic detector coupling schemes and fea­


tures such as bucket overload protection (BOP) on each detector



input and bucket background subtraction (BBS) circuit were also



tested on the CCD 2063.



Experience gained in the design, fabrication, and evalua­


tion of chips such as the CCD 2063 led to the development of a



second generation extrinsic silicon test chip, the CCD 2096. 
(5 )
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The CCD 2096 provided a test vehicle for testing and



evaluating a number of direct and indirect injection CCD read­


out structures. Additionally, the CCD 2096 incorporated mono­


lithic 4x4 and 2x32 arrays with CCD readout and demonstrated



for the first time the feasibility of two dimensional mosaic



staring arrays.
 


Development of the CCD 2096 chip was sponsored by the



Defense Advanced Research Project Agency (DARPA), the Air



Force, and the Army. Extensive development and evaluation of



the test structures of the CCD 2096 were conducted for these



sponsors. The most extensive of these efforts was the DARPA



CCD2 program.



Specific applicable devices on the CCD 2096 were also


(6 ) 
 tested under an Air Force program. The objective of this



program was to investigate monolithic Si:Ga detector arrays



for 8 to 14 pm infrared imaging with on-chip signal processing.



The results were used to design a Si:Ga time delay and inte­


gration (TDI) chip. Si:In TDI arrays on the CCD 2096 chip



were also evaluated in the direct injection mode under the



Army's MOSIS program. Finally, the CCD 2096 has been evalu­


ated at low backgrounds for LWIR staring applications under



Army sponsorship. A CCD 2096 process compatible with a Si:As



substrate was developed and evaluated.



In parallel with the development of the CCD 2096, a



Si:Ga monolithic array for low background applications was



developed under DARPA/Air Force sponsorship. The design of



the chip was very simple for high yield and incorporated a



unique injection scheme for efficient detector/CCD coupling



at low backgrounds.



The successful fabrication and demonstration of extrinsic



silicon focal plane chips would not have been possible without
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the advances made in the growth and fabrication of quality ex­


trinsic silicon materials. Extensive materials development



work to dope and grow high quality silicon crystals during this



period brought extrinsic detector materials such as Si:In and



Si:Ga to the stringent quality levels required for focal plane



arrays.



DOD development efforts continue to advance the state of



the art of extrinsic focal plane chips and materials technology.



New generations of test chips and arrays incorporating larger



numbers of detectors and on-chip functions involving more sophis­


ticated fabrication processes are currently in development.



Several significant milestones which reflect the relative matu­


rity of this technology have been recently achieved. Under



DARPA sponsorship, a 12 chip mosaic focal plane, complete with



drive and readout electronics and an integral dewar, was de­


livered to a contractor for integration into a flight sensor.



This represents the first transition of this technology into



practical hardware.



2.1 	 DOPANT CONSIDERATIONS FOR MONOLITHIC EXTRINSIC FOCAL PLANE



ARRAYS



Monolithic extrinsic arrays use an extrinsic substrate as



the infrared detector. The substrate is biased such that the



detectors operate in the photoconductive mode. Although intrin­


sic photoconductivity in silicon is limited to 1.1 pm, infrared



response can be obtained by extrinsic photoconductivity. Ex­


trinsic photoconductivity occurs when specific impurities occupy



localized energy levels within the bandgap. Extrinsic photo­


conductivity is associated with transitions from these levels



to the band continuums. Measured impurity ionization energies



in silicon range from 0.033 eV (Li donor level) to 0.55 eV (Zn



acceptor level). (7) The corresponding cutoff wavelengths range



from 	 2 pm (Si:Zn) to 38 jim (Si:Li). Longer wavelength cutoffs



can be obtained with germanium where impurity ionization ener­


gies 	 as low as 0.01 eV (Ge:Ga, Ge:B) have been observed. The
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Lechnology of germanium doped extrinsic discrete detectors was



developed during the past 20 years to a high level of maturity



and remains the highest performance approach for long infrared



(50-120 Mm) applications. Detailed information on impurity



photoconduction in germanium and silicon can be found in the



recent comprehensive review paper by Bratt. (8)



Monolithic extrinsic focal plane array development, how­


ever, has concentrated on impurity doped silicon because of its



important advantages over germanium as a host crystal. The



major practical reason has been the availability of a well de­


veloped CCD and LSI device technology in silicon. High inter­


face state densities and the lack of a suitable passivation



process are the major obstacles which prevent viable CCD opera­


tion in germanium. Secondary advantages of silicon are the



higher practical doping concentrations resulting in thinner



substrates and a lower dielectric constant which results in



shorter detector time constants. Table I is a summary of the
 


available properties of extrinsic silicon detectors.i
9



Figure 2.1 summarizes the ionization energies and cutoff wave­


lengths X for these dopants. Detailed performance data on
C 

some of the detectors in Table I can be found in References 12



and 	 13.



Of the detector materials listed in Table I, only a few



have been developed into monolithic focal plane arrays. The



number of applicable dopants for viable focal planes in a mono­


lithic structure is limited because of a number of important



requirements which it must satisfy simultaneously:



1. 	 The dopant must be electrically active from a single



dominant impurity level in the temperature range of



interest. Many dopants can exist in more than one



level because of multiple charge states or the forma­


tion of complexes with other types of impurities in



the host lattice. Compensation of such multiple level
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dopants is difficult and resultant excess free carrier



generation can reduce the operating temperature for



background limited performance.



2. 	 The solid solubility and photoionization cross sec­


tion must be high and its segregation coefficient and



other growth parameters must be favorable so that the



dopant can be incorporated in the host crystal in con­


centrations near the solubility limit for high quantum



efficiency in layers of minimum thickness. Detector



substrates for focal plane arrays must as a rule be



thinner than discrete detectors to minimize crosstalk



between detectors. Additionally, for some dopants,



the maximum impurity concentration is limited to values



lower than the solubility limit due to impurity band



conduction. A case in point is Ga, where the impurity



conduction limit is about 5xl016/cm 3 compared to a


19 3.
maximum solid solubility of 4xl019/cm 3
 

3. The dopant must be compatible with the CCD device pro­


cessing. CCD processing involves a number of high



temperature processing steps. These steps tend to de­


plete the dopant from the silicon substrate. This



makes it necessary to choose a dopant that is a slow



diffuser.



To date, In, Ga, and As have been found to reasonably satis­


fy the criteria listed above and have been utilized in,mono­


lithic focal plane arrays. Other dopants have been tried but



with less success. The search continues for alternate focal



plane compatible dopants. The prime goal has been to find new



deep level dopants that will operate at temperatures above 50K



for 	greater flexibility in operating temperature and wavelength



selection.
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2.2 SPECTRAL RANGE AND QUANTUM EFFICIENCY



The spectral response characteristics of an impurity doped



detector is determined primarily by the photoionization cross



section a0 , the detector thickness k in the direction of inci­


dent radiation, and N the density of absorbing impurity atoms.



The quantum efficiency of an extrinsic detector can be calcu­


lated from these parameters by the familiar expression,



(l-R) (l-e-No ) (2.1) 

(1-Re-N 0 


where R is the reflection coefficient of the front surface 

(R n,.3 for Si), a = a (NA - ND) is the absorption coefficient.



and NA - ND is the net density of the majority dopant. This re­


lation is applicable to both transverse detectors (bias applied



perpendicular to the incident flux) and longitudinal detectors



(bias parallel to the incident flux) for Na0. < 1. The longi­


tudinal bias case is the one encountered in monolithic arrays.



For large absorptances (Nao >> 1), the quantum yield nE differs



for the two modes due to differences in the photocarrier gen­


eration profiles. The quantum yield for longitudinal detectors



is given by
(9)



F (aL)2 (1-R1)e-aL(R2 1 2 
E LI_1 2 ) [tan(R 2) e2.2)2tanlR 

where R1 and R2 are the reflectivity of the front and rear sur­


faces of the detector. This equation takes into account the



situation where reflections from the rear surface can increase



the apparent absorption length. The quantum yield is shown for



the longitudinal bias case for a number of R1 and R2 values in


Figure 2.2. Note that the maximum value is obtained for afdl.5.



Because extrinsic photoconductivity is associated with



weak transitions, absorption coefficients for extrinsic detec­

-i



tors are low. Typically a ranges from 10 to 50 cm compared to
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V 104 cm- I for intrinsic semiconductors such as silicon in


the'visible and InSb in the 3-5 jim range. Long detector absorp­


tion lengths must therefore be utilized for reasonable quantum



efficiency operation. Figure 2.3 shows the dependence of the



quantum efficiency flon detector thickness and doping density



N specifically for Si:In detectors.



While an absorptance value near 1.5 is desirable for maxi­

mum quantum efficiency, the choice of a detector thickness for



monolithic focal planes is a complex trade involving the maximum



solubility of the dopant, onset of impurity conduction, optical


crosstalk, radiation susceptibility, and the thermal equilibrium



density of carriers. The maximum solubility of In, for example,



in silicon is about Ixl0 1 8/cm3 , with an In concentration of



about 5xl017/cm 3 being the current practical limit for crystals



grown by the Czochralski and float zone methods. A detector



thickness of 0.05 cm has been found to be a reasonable compro­


mise between quantum efficiency and optical crosstalk and is



currently the preferred thickness for Si:In focal plane arrays.



This corresponds to a NaZ value of .33 and r .25.



The spectral response of an extrinsic detector is deter­


mined by the wavelength dependence of the asorption coeffi­


cient a. Theoretical photoionization cross sections have been



derived for deep impurity levels based upon a delta function


(10)
potential by Lucovsky. The theoretical expression for the



spectral shapeof a0 given by this model is,



1611e2 eff 2 FE (l.24/X - AE3/2 (2.3) 

o 3nm*0c o ) L (1.24/X) 3 

where n is the refractive index, m* is the scalar for the effec­


tive mass in the valence or conduction band, and eff/eo is a



factor by which the electric field differs from the average



value in the semiconductor. The spectral shape of a0 depends upon
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whether the dopant is a shallow or deep level. Dopants with



shallow levels have spectral responses with the peak absorption



located near the absorption edge, X .. On the other hand,



dopants with deep levels have their peaks at X .c/2. This is



illustrated in Figure 2.4 where the theoretical photoionization



cross section is fitted to experimental spectral response data



for Si:In (Xc = 8 pm) and Si:Ga(Xc = 17 pm).



Extensive spectral response data has been obtained on



these two dopants in the course of the development of these



materials for focal plane arrays. Figure 2.5 shows a detailed



photoconductive spectrum of a Si:In detector at 200K.(11) These



measurements have revealed the presence of a second accepter



level at 0.111 eV which extends the response out to 11.2 gm.
 


Additionally, photoconductivity beyond 11 pm is observed due



to excited state photoconductivity from the In centers. Al­


though not significant from a spectral response standpoint since



these contributions are small (< 1% of the peak In response),



the presence of the .111 eV level is of importance for the



operation of Si:In detectors since it can significantly reduce



the maximum temperature at which background limited performance



is obtained.



Figure 2.6 shows the spectral response of a Si:Ga monolithic



detector. (6) Monolithic detectors are individual test detectors



incorporated in CCD test chips which permit on-chip evaluation



of detector performance without the complexities of CCD readout.



The peak response is at about 14 pm. The dip at 3 pm is prob­


ably due to H20 absorption. Spectral response data on a number



of other dopants can be found in the reviews by Bratt(8) and



Sclar. (12,13)



2.3 RESPONSIVITY



The responsivity of an infrared detector is given by



I s (2.4)R = 
Ad1
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where 	 H RMS irradiance



is =RMS 	 signal current



A = detector active area. 

At low frequencies, the responsivity of an extrinsic detector
 


can be expressed as



qp2.

R (No)Go = h .804XnG (2.5)
hc a 	 oc



and



G VIIT 

0G (2.6) 

where 	 k = detector thickness



Go = DC photoconductive gain



* = majority carrier lifetime



*R = hole transit time
 


V = bias 	 voltage



= majority carrier mobility. 


Figure 2.7 shows the responsivity and noise of a Si:In de­


tector as a function of temperature. (14) Note that the respon­


sivity is a strong function of temperature with a peak value of



20 A/W at 60K. This rapid increase is due to a highly tempera­


ture dependent hole lifetime since n is independent of tempera­


ture and p increases only slightly with temperature. More re­


cent data has shown that the responsivity becomes less tempera­


ture dependent at higher bias. (15)



The responsivity of Si:Ga, on the other hand, as seen in



Figure 2.8 is relatively constant in its operating temperature



range. Figure 2.8 shows the responsivity versus temperature and



background photon flux for three different concentrations of



compensating phosphorous. (1 6) A strong bias voltage dependence
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and a relatively weak temperature dependence can be seen.



The responsivity of a p type extrinsic detector material



such as Si:In and Si:Ga is primarily limited by the residual



boron which is present as an impurity in all silicon. Boron



introduces shallow acceptor levels from which holes can be



easily thermally excited. In order to inactivate the boron



levels, it is necessary to compensate them with a n type im­


purity such as phosphorous or antimony. Compensation, however,
 


negatively charges the boron atoms and some of the desired



dopant atoms. These sites become centers for recombination and



reduce the lifetime and responsivity. The lifetime for an ex­


trinsic detector can be approximated by the expression,



(2.7)

T = (BN )-lTp



where B = recombination coefficient, cm 3/sec 

N = number of negatively ionized trapping centers 
P per cm- 3 (- compensating phosphorous density)



Typical observed values of T for Si:In and Si:Ga detectors 

range from 10 to 100 nanoseconds, corresponding to N values 

in the 5x102 to 1014 range. Precise and repeatable com­

pensation to the 1013 cm-3 or lower range for maximum respon­

sivity has been difficult to achieve. Additionally, for the 

focal plane arrays, temperature variations in the crystal 

growth process and the high temperature processing utilized in 

chip fabrication is thought to induce spatial non-uniformities 

in the compensation. This appears to be the major source of 

the responsivity non-uniformity observed in focal plane arrays. 

Precise compensation is also required to minimize the re­


sponsivity rolloff with frequency. The basic frequency response
 


limitation associated with the detector responsivity results



from the dielectric relaxation time and is given by,
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Tp = =oSP=ad (2.8)p 0 q1T BT 

where o = dielectric constant of free space 

= relative dielectric constant (t 12 for silicon) 

p = resistivity 

T= hole lifetime



d = detector length in the direction of the incident 
flux.



The corresponding frequency rolloff due to the dielectric re­


laxation is given by



F(w) = 1 (2.9) 
[1 + p )2] 

Figure 2.9(14) shows the responsivity rolloff due to dielectric



relaxation for a Si:In discrete detector for a background 4B of
 

14 2B
1.lxlO p/cm sec. Note that Figure 2.9 and Equation (2.8) sug­


gests that discrete detector frequency response should be limited



to less than 100 Hz at low backgrounds ( B < 1010p/cm2sec). This



behavior may, however, be slightly altered at higher biases by



the apparent decrease in detector time constants due to possible



space charge injection effects.



2.4 DETECTIVITY AND NEP



The detectivity of a detector is given by



D* (2.10) 
n 

where R is the responsivity, Ad is the detector area, and In


is the total noise current (A/Hzf). D* is the signal to noise



ratio per unit radiant flux and is customarily expressed in



unit of cm Hz1 /watt.
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The noise equivalent power, NEP, is related to the D* by



NEP = D (2.11)



The NEP is the radiant flux necessary to give an output equal


to the detector noise and is given in units of w/Hz2 . Note



that both D* and NEP are functions of wavelength since D* is


defined in terms of signal to noise ratio per watt rather than



per unit photon flux.



For extrinsic detectors, the dominant noise source is the



generation-recombination noise current, which for low frequen­

cies is given in terms of the carrier concentrations by



g = (pr) (2.12) 

where p = p + P 
Po = concentration of thermally generated carriers 

=thTd



Pe= concentration of background generated carriers


=B BT/d



E = applied field 


d = detector thickness



w = detector width



£ = detector length



Po the concentration of thermally generated carriers is



given by 
[NA - ND]NV -(AE/kT) (2.13) 

gND 

where NA is the density of acceptors, ND is the density of



donors, g is the degeneracy of the level, and NV is the effec­


tive density of states in the valence band (for a p type photo­

conductor) given by
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T3/2
N= 2 rrnkT 3 /2 (M*3/2=4.S296xlo l5(m 3) (2.14) 

where m*/m ° is the effective mass ratio in the valence band.



Equations (2.12) through (2.14) can be utilized to express the


detectivity D* with its explicit temperature dependence as



2hc B gN 2.



At temperatures or backgrounds where B>> th Equation



(15) reduces to the familiar background limited D*,



D* 2hch (XQB (2.16)
 

Typical data for Si:In detectors as a function of tempera­

ture are shown in Figure 2.10. (14) Theoretical D* curves are


also plotted. Figure 2.10 shows that the D* rolloff occurs at a


lower temperature than one anticipates on the basis of the In


level alone. This has been attributed to the presence of the


additional acceptor level at .111 eV observed in the spectral


response measurements. Free carrier concentrations determined



by Hall measurements have confirmed the existence of this "X"


level in Si:In crystals and suggest that its concentration is


correlated with the In concentration. (11) Recent improvement in


the growth techniques of Si:In crystals, however, have reduced


the "X" level concentration to the point where performance



dominated by the In ionization energy have been achieved.



Figure 2.11 shows the D* as a function of temperature for


Si:Ga detectors for three different phosphorous compensating



densities and at three background levels. (6)
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2.5 Si:X CHIP DESIGN AND OPERATION



The design and layout of Si:X chips are very similar to the



interline transfer visible CCD imagers with a set of parallel in­


puts along the channel and a serial output multiplexer. The de­


sign and configuration of the 2 x 32 array circuit of the 2096



chip is shown in Figure 2.12. Also shown is a cross section of



the unit cell. Each unit cell contains an input circuit, storage



gate, bucket overload protection circuit, transfer gate and four



bits (analog) of CCD readout. Four bits of CCD register are



utilized in each unit cell to minimize the gate length in the



direction of charge flow for high transfer efficiency. Signal



charge is loaded into alternate bits to provide isolation between



signal charges to minimize electrical crosstalk. Both rows of



32 detectors are read out by conventional on-chip resettable



floating diffusion MOS amplifiers.
 


The CCD register, which provides the charge storage, over­


load protection, and charge transfer, is fabricated in the lightly



doped epitaxial layer. Detector bias is applied between the com­


mon p+ contact and a direct or indirect contact on the epi side.



The detector contact area and the field lines delineate the active



detector volume. The optical input can be introduced through the



CCD structure side (front illumination) or from the substrate



(back illumination). Because of the low absorptance of extrinsic



substrates and the bias field delineation of the detector volume,



both modes yield comparable responsivities.



Another chip design involving less complex unit cell archi­


tecture is shown in Figure 2.13. Simpler design features and an



operational implementation of isolation between cells permit a



smaller unit cell and potentials for high yield and producibility



for this chip. A novel injection mode minimizes the input time



constant at low backgrounds. Si:In and Si:Ga chips incorporating



these design features are currently under development.
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2.6 Si:X CHIP PERFORMANCE



The performance characteristics of a Si:X chip are deter­


mined by the CCD register and the associated input circuits in



the epitaxial layer and the detector properties of the substrate.



Performance characteristics determined by the CCD register, such



as charge storage capacity, signal linearity, electrical cross­


talk, charge transfer efficiency and noise are similar to vis­


ible CCD imagers since the fabrication and design of Si:X chip



is based upon the same CCD technology.



Charge Storage Capacity and Dynamic Range



The dynamic range is the ratio of the CCD charge storage



capacity and the CCD noise level. The maximum charge which can



be stored is given by



n C AAV

c ox g


nmax q 	 (2.17)



where 	 nc = number of gates used for storage (1) 

A = gate area (1.5 mil 2 ) 

= oxide capacitance (2xl0 F/cmCox 

AV = storage gate voltage (5 V)
g 
q = Electronic charge.



Using the numbers listed in the parentheses, N = 9x10 6 elec­
max 

trons. For a noise level of 1000 electrons, the dynamic range


3


is 9x103. The dynamic range can be increased over this value



by using more than one gate for signal storage in the unit cell.



Maximum Integration Time



For astronomical applications, long integration times are



desirable for maximum detectivity. The maximum integration time



is limited by the charge storage capacity of the storage gate
 


and the thermally and background generated charge carriers. The



maximum integration time can be approximated by
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c AV


T ox gmax q (JB + JT ) (2.18) 

2


where J = background generated charge flux (carriers/cm sec)


2


JT = thermally generated charge flux (carriers/cm sea)



a = fraction of the unit cell used for charge storage 
( z 10%) 

Using JT derived from dark Hall measurements of the carrier 

concentration versus temperature, Equation 2.18 predicts large 

T for low backgrounds. For example, for T = 20K and J = 
mgx 2


10 carriers/cm sea, T is about 625 seconds. Current Si:In
max 
chips, however, exhibit charging times which are about an order



of magnitude lower, due to extraneous currents in the Si:In chip



structure that are not suppressed by cooling. Process improve­


ments and improvements in the quality of the extrinsic substrate



are expected to substantially reduce these sources.



Linearity



The linearity of response to an increasing optical input



has been tested on the CCD 2096. The input signal to the CCD
 


was varied by changing the integration time. The response



for the CCD 2096 remained linear as the signal was increased from



1 percent of bucket capacity to about 60 percent of bucket



capacity. Above 60 percent of bucket capacity, the signal re­


sponse became non-linear due to the onset of saturation. Linear­


ity over similar ranges have been verified for other similar



chips. Although difficult to verify except under narrow bandwidth



conditions, linearity can be expected to be maintained below



1 percent down to the CCD noise level.



Crosstalk



Crosstalk between elements can arise from two sources in



an extrinsic MFPA. The first source is the optical crosstalk
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due to the geometry of the chip. Optical crosstalk was ori­


ginally considered to be a significant drawback of the extrinsic



approach due to the low absorption cross section and thick sub­


sbtates. However, the incoming optical cone coverage in the



silicon substrate because of the large change in the refractive



index. Additionally, it was found that detector bias effects
 


play an important role in the delineation of the collection area,



independent of the unit cell size. Both factors minimize the



optical crosstalk. The second source of crosstalk is electrical



and is due to charge spillover resulting from charge transfer
 


inefficiency. A typical measured charge transfer efficiency



for the Si:X chip is .99975. The corresponding electical



crosstalk is about 0.2 percent which for all practical purposes



is negligible.



Spot scan measurements at various detector locations have



been conducted on the CCD 2096 and other chips. These measure­


ments have shown that the optical crosstalk can be kept to less



than 10 percent at typical f/numbers of f/3 and greater. The



spot scan measurements also indicate that independent of the



size and specific geometry of the detector contact, an effective



detector area that is about 80 percent of the detector element



area can be achieved.



D* and NEP
 


The D* and NEP of Si:X chip are limited by the noise



characteristics of the CCD readout multiplexer. The noise in



CCD has been modeled quite extensively. (1 7' 18 ) Based upon



these models, basic performance equation for Si:X chips can be



derived. Table II lists the basic equations for D* and NEP



and noise sources as derived from such a model. (19)



The noise sources listed in Table II basically fall into



three categories: 1) detector shot noise associated with the



3
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background; 2) channel noise associated with the input MOS



channel; and 3) CCD readout noise. Note that the photon and



channel noise are sample time (integration time) dependent,



whereas the CCD noise sources are independent of sample time.



At low sampling rates, the noise spectral density shapes



are not important because CCD noise is folded back into the



detector bandwidth (noise aliasing) by the CCD readout process.



For this reason, at frequencies above the 1/f corner frequency,



the noise spectral density can be assumed to be flat and the



NEP can be calculated by summing the noise variances.



Detailed test data on Si:In chips have shown that the



dominant noise source for backgrounds less than 1012/mcm2sec is



the fast interface state (FIS) noise. PIS noise arises from the



fluctuations associated with the filling and emptying of the



interface states Nss as the signal charge is transferred along



a CCD register. N is the number of interface states per unit
ss


area per unit of energy in the bandgap and considered constant



across the gap. Typical PIS noise values for current Si:In



chips are in the 800 to 2000 noise carriers (RMS) range imply­


ing N values of about 1011 states/cm -eV. This N value


is an order of magnitude higher than for comparable surface



channel CCD devices on bulk substrates. MOS/CCD process re­


finements are being made currently to reduce the Nss for Si:X



chips.



The NEP given in Table II can be expressed in the more



curtomary units of W/Hz1 / 2 as



NEP/ 2 he VarNT\-\NEr XqGT Af (2.19)-
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TABLE II. Si:X Chip Noise Variance and Performance


Equations and Symbols Listing



Photon Noise Sy nbol Parameter 

VarN = AJ T 1 exp (-T 5 A) Vat N 
Var N h 

Photon Noise Variance 
Channel Noise Variance 

Channel Noise 

Var N = 3 
ch (1 41rll4 

4kTgmn
lez 

v 

47 T -k/T) 
T II 

- ep(-r,/T,) 

T - ex* 
1cp(T/~ 

(T 5 
j 

Var NFZ 

Var NFJS 

Var N 1FI 7 

Var NOUt 

Var Nt t 
gm 

Fat Yoro Noise Variance 

Past Interface State Noise Variance 

Reset Noise Variance 

Output Noise Variance 

Total N.is. Variance 
Input Circuit Transconductance 

M% 

Fat Zero Noise 

VaN z TnN 
3e z 

ast Interface State Noise 

Var N 69'TA N 
a FIS CCD SS 

Reset Noise 
ZkTCo i 

Vat NRST - 3ez 

Ad 

ACCD 

Rd 

T 

T 

T 
C 

Input Circuit Time Constant 

Quantum Efficiency 

Detector Area 

Area of CCD Register 

Detector Resistance 

Sanple Tin, of Detector 

Clock P. u*d 

I empc raturc 
Photoconductive Gain 

Output Device 

\ai No 

Noise 

a \ "-'/ 1 hi 

NSS 

Cin 

Cout
Cd 

Surface State Desit 

Capacitance of Input Device 

Capacitance of Output Device 
Detector Capacitance C ' 

Input Transconductance 

dkI 

(weak inversion) K 
V 1 

Wavelength 

Noise at I Hz (output des ce I/) 

Background Photon flux at MFPA 0 

0 

Input Thme Constant p 
iNdax 

photon Current 
Maximum Number
MFPA 

of Transfers in 

Noise Equivalent Power 

NEP (Vi- NTOT) /Z Th. 

Bolt man Constant 

Flectronic Charge 

Detectivity 

D (AdD TsNP 2 sitc (efTl - (1f7 z /2 



which for Af = 1/2Ts becomes 

NEP(H-4) )LT1G k (2.20) 

At high backgrounds or where high photoconductive gains are



obtained, the shot noise of the background will dominate over



the fixed CCD noise and the Si:X chip performance will be



BLIP limited. Under these conditions D* is independent of the



integration time since Var NT will be directly proportional
 


to T and the explicit T dependence will cancel out. On the

s s 

other hand, at low backgrounds Var NT will be constant (FIS



noise limited) and the NEP and D* will be inversely and directly



proportional to T51/2, respectively. Figure 2.14 shows the



NEP limits as a function of T at low backgrounds. A gain, G,



of unity was assumed. Responsivity data on Si:In and Si:Ga



discrete detectors show that gains in excess of 10 can be



obtained. (15,16) Gains greater than unity, however, are dif­


ficult to realize in Si:X chips due to operating bias



limitations.
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III. MONOLITHIC INTRINSIC FOCAL PLANE ARRAYS



Since the development of high performance silicon CCD and



CID imagers, a number of approaches have been investigated to



fabricate high density monolithic arrays in materials other than



intrinsic or extrinsic silicon. One such approach is to fabri­


cate CCD or CID structures on a narrow bandgap semiconductor to



extend the spectral response into the infrared region.



A monolithic intrinsic infrared focal plane array fabricated



in the appropriate narrow-band semiconductor represents in many



ways the ultimate solution for realizing an infrared focal plane



array. The absorption coefficient of an intrinsic narrow-band



semiconductor is high. Therefore, high quantum efficiency can be



realized in thin detector layers. The high absorption coefficient



minimizes crosstalk effects. The higher permissable operating



temperatures of an intrinsic material can also be a significant



advantage in many space applications where cooling to low temper­


atures may be impractical.



A number of narrow bandgap semiconductor materials have 
- (20,21been investigated for CCD array feasibility. 1)The lack



of a mature MIS (metal insulator semiconductor) technology, similar



to that which exists for silicon, and the low minority carrier



lifetimes and breakdown voltages compared to silicon, however,



have limited the choice for development to only a few promising



candidates, namely, InSb and some of the III-V and II-VI tenary



alloy systems.



During the past several years, significant progress has been


made on InSb MIS technology. Both CCD (22) and CID (23 ) operation



have been demonstrated at 77K. Significant progress has also
 


been made in the MIS technology of the III-V tenary alloy sys­


tem. (24 ) 
 Additionally, monolithic (Hg,Cd)Te CCD arrays are being



39





3.1 

developed under the tri-service MIDAS program. CCD operation in



(Hg,Cd)Te was recently demonstrated for the first time. A charge



transfer efficiency of 0.999 was measured for a 16 bit CCD regis­


ter.



Another approach currently under development is based upon



epitaxially grown layers of III-V ternary alloys in a multilayer



structure in which detection and CCD readout occur in separate



layers. The technology required to fabricate such structures is



being developed under the DARPA HALO Program.



InSb CCD



The development of InSb CCDs has proceeded for a number of



years under NASA sponsorship.(25) Under this effort, a number of



InSb test chips were designed, fabricated, and evaluated. Sig­


nificant progress was made both in performance and device pro­


cessing parameters for an InSb CCD. Progress on this effort led



to the design of a 9-bit CCD mask set (8580) complete with other



test structures for process control. The important milestone of



charge transfer with proper time delay was achieved. A charge



transfer efficiency (CTE) of 0.90, which was low due to the long



gate lengths of the 8580 design, was measured.



A new mask set, the 8582 was designed. This design incor­


porated a 2-bit structure and a 9-bit CCD imager with gate



lengths of 25 pm (1 mil), reduced from the 50 pm (2 mil) value



of the 8580 test chip. The 2-bit structure was successfully



operated and an improved CTE value of 0.97 was demonstrated.



Design flaws in the 8580 mask set and metal clock lines step



coverage problems precluded a similar demonstration of the 9-bit



coverage.



Experience gained with the 8582 identified a number of de­


sign and processing problems limiting device yields and led to



the design of a completely new design, the 8585. Fabrication of



the 8585 is based upon a total etch technology, which potentially
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should overcome the problems of the 8582 design. This new chip



is currently under NASA sponsored development and incorporates


1) a 20-element linear imager with 12.5 pm gate lengths; 2) a



4-bit element 4-phase TDI array and a 4-element 2-phase linear


imager with 12.5 pm gate lengths; 3) a 2-element 4-phase linear


imager with 10 pm gate lengths; 4) a monolithic gated charge



integrator circuit for on-chip signal processing; and 5) an assort­


ment of test devices.



The 20-element linear image is shown in Figure 3.1. Figure


3.2 shows schematically the design of this 20-element imager. The



20 detectors are MIS capacitors with thin ( 0.0075 pm) titanium


serving as the transparent metal gates. The imager is a 4-phase



surface channel overlapping gate design with 12.5 pm gates.



A "fill and spill" input circuit consisting of: 1) input (ID)


diode, 2) signal (B) gate, 3) surface control (SC) gate, and 4) a
 


storage gate, which is also the first phase-2 well, is incorporated



into this design. This input structure allows the introduction of



a low noise "fat zero" bias charge for efficient charge transfer.



A number of 8585 chips have been fabricated-and evaluated.



A CTE of 0.995 was measured for the 2-element test device. The


20-element linear imager was also operated and is currently in



evaluation.



Significant improvements have been made in the MIS properties



and the process technology necessary for InSb CCDs. Planar p-n



diodes have recently been fabricated on InSb using ion-implantation


of beryllium ions. The requisite gate insulator technology has



also shown rapid improvement with insulators possessing flat-band



voltages of approximately -0.5 volt (n-type InSb substrates),



interface state densities of 2xl011/cm -eV at mid-gap, and negli­

gible hysteresis. Progress has also been made toward developing



a fully planar channel stop structure. The approach chosen for


development utilizes ion-implantation to form a heavily doped n+



layer overlying the n-type InSb substrate.
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G= qni p + dND S) (3.2)
d 


where the first term is the dark current due to minority carriers



generated in the neutral bulk which diffuse to the depletion re­


gion, the second due to carriers generated in the depletion region



of width Wd, and the third due to generation at the surface with



surface recombination velocity S. n. is the intrinsic carrier 

concentration, ND is the impurity concentration, Lp = (D'rp)1/2 

(p.rpkT/q) 1 2 is the diffusion length and Tp the minority carrier



lifetime.



Representative values for state of the art InSb CCDs at 77



are (22)



101 5/cm
2



= 
ND 


n. = 2.7x10 9/cm
3 

T = .1 usec 

Pp 9x103 cm2/Vsec 

L = 25 im2m 

C = 1.5 pF/cm2 

Cs = 3xl08F/cm
2



Ats = 2.5 volts.



Using these values, the estimated dark current components at 77K



are: 

J (bulk diffusion)
JG (g-r current from depletion 

0.02 nA/cm 2 

300 nA/cm2 

G region) 

JG (surface) (0.2)S nA/cm2 

Assuming "low S" surfaces, it can be seen that the dominant source



of dark current will be the bulk generation from the depletion



region. Note that the dark current for InSb at 77K is large in



comparison to silicon devices even at room temperature where dark
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currents in the 5-10 nA/cm 2 range are typical. This is due to



the longer lifetimes in silicon ( -100 psec) and the substantially



higher intrinsic carrier concentrations at a given temperature for



low bandgap materials such as InSb.



From Equation (3.1) and the estimated dark currents, the ex­


pected bulk-limited storage time is on the order of .25 sec. Ex­


perimentally, InSb MIS storage times up to .5 seconds have been



measured at 77K. C-T measurements by Kim (23) have also shown



that the storage time is of the order of .3 sec at 77K for InSb



MIS capacitors.



The measured dark currents and storage times for InSb at 77K



are not favorable for low background astronomical applications



where long integration times are desirable for maximum detectivity.



In order to increase the storage time capability, it will be nec­


essary to operate InSb at temperatures substantially lower than



77K to reduce the dark current.



The temperature dependence of the dark current will be domi­


nated by the temperature dependence of ni and is given by the



expression,



JG = UT3/2 e-(/2kT) (3.3)



where Eg is the energy gap. The T3/ 2 reflects the density of



states effect and the activation energy is E /2 since the states


that contribute to thermal generation are near mid bandgap. A



normalized plot of this equation is given in Figure 3.3. A re­


duction of about 2x104 is predicted between 77K and 50K. Dark



current reductions of this magnitude, however, may not be achiev­


able in actual InSb CCDs since substrate leakage and other fixed



leakage currents may dominate the thermal generation at low



temperatures.



The spectral response of InSb MIS detectors and CID arrays
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have been measured and have been found to show a spectral response



identical to that of a photovoltaic InSb discrete detector. 'The



spectral response of an InSb CCD should also be similar with the



characteristic bandgap defined cutoff of about 5.4 pm.



D*, NEP and other CCD performance data do not as yet exist



due to the developmental nature of the existing devices. At low



backgrounds (S5 10 p/cm2sec) and low temperatures, D* can be ex­


pected to be limited by the CCD noise. CCD noise of existing



InSb arrays is dominated by the fast interface state noise because



of the high interface state densities. As the processing tech­


nology matures, the interface state densities can be expected to



improve to the point where the CCD noise characteristics can be



expected to be similar to a silicon surface channel CCD with a



comparable number of elements.



3.3 MULTILAYER MONOLITHIC INTRINSIC ARRAYS



Another fully monolithic approach which is currently under



development is the representative monolithic intrinsic structure



shown schematically in Figure 3.4. The structure is fabricated



utilizing the liquid-phase-epitaxy method similar to that developed



for high performance backside illuminated photodiodes in


. (2 6 27) 
 InAsl-xSbx ' The basic structure consists of a number of



InASl1 xSbxepitaxial layers of different composition and thicknesses



grown successively on a transparent substrate. The detector layer



is selectively doped to form a p-n junction contact or alternative­


ly, interlayer contacts are made to delineate the individual photo­


diodes and interconnects to the CCD register. A separate CCD



layer is epitaxially grown on top of the detector layer to form



the composite structure. Buffer layers are compositionally step



graded between the substrate and detector layers to relieve the



lattice strain caused by lattice mismatch.



This approach has several attractive features. Since the



detector layer is back illuminated and not obscured by the CCD



structure, detector fill factors approaching unity can be obtained.
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The spectral response of the detector layer is tunable since the



bandgap of the InAslxSbx ternary alloy system is a function of



the alloy composition. The long wavelength response of InAs1 xSbx



has been tuned compositionally from 3.1 pm (xz0.0) to 7.0 pm



(x z0.4) and is potentially capable of operation out to 9.0 Pm



(xc0.6) at 77K.



Another attractive feature is the separation of the detector



and CCD readout function into two distant layers. The CCD can be



fabricated in a wider bandgap alloy material such as GaInSb. A



storage time of about 6 seconds at 77K has been observed for



p-Ga 8 5 In .15Sb MIS devices, (24 ) making it an attractive material



for the CCD layer.



While this approach offers many attractive features, it is



the least developed of the focal plane approaches. Formidable



materials technology problems must be overcome to make this a



viable approach. The DARPA sponsored HALO monolithic intrinsic



detector array program has directly addressed these problems and



is developing the base technology necessary to establish device



viability.



A liquid phase epitaxy growth process which yields alloy



layers possessing the morphology, donor levels, and dislocation



density necessary for multilayer lattice matched structures has



been demonstrated for structures similar to that shown in Figure



3.4. An extensive effort is in progress to improve basic MIS


properties of the CCD layer. Significant MIS milestones which



have been achieved are: 1) the development of a SiO 2 gate oxide



growth technique which yields exceptionally low fast interface



state densities, 2) successful growth of liquid phase epitaxy InSb



layers with MIS properties superior to existing bulk InSb, and



3) a successful demonstration of CCD operation in GaInSb.



Several ion implantation approaches to form efficient detector



contacts and planar diodes required in the CCD input/output cir­


cuits have been developed. The ion implantation diodes were found
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to have leakage currents sufficiently low to meet the device re­


quirements and were found to be superior to the planar diffused
 


diodes.



While many components of the base technology have been es­


tablished, considerable development will be required before the



viability of this approach can be established. This approach



certainly has long term potential since the limitations at this



time appear more technological than fundamental. A key mile­


stone for this technology will be the fabrication and demonstra­


tion of the first test array.
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IV. CHARGE INJECTION DEVICE (CID)



The charge injection principle is an alternate approach to



solid state imaging which has received considerable development



attention in the past few years. Charge in3ection devices (CIDs)



are self-scanned focal plane arrays that employ surface charge



transfer between two closely spaced MOS capacitors per element



to achieve a full X-Y address capability for area arrays. CIDs



are capable of both conventional sequential raster scan and ran­


dom address. Additionally, CIDs can be operated in a unique



nondestructive readout mode. -This readout mode appears to



provide a very powerful approach for increasing the signal to



random noise level through repeated readouts which 
are summed. (28)



Visible imager CID array technology has progressed considerably



and 244x248 arrays are commercially available.



During the past few years the CID approach has also been



applied to InSb. The pioneering work of Kim (2 3'29) in InSb MIS



technology led to the successful development of CID arrays.



Under DoD sponsorship, a 32-element linear array was successfully



fabricated and evaluated. The key to the successful fabrication



of these arrays was the development of a metal-SiON-InSb MIS



multilevel overlapping gate process.



A charge injection device is conceptually simple. It is



basically an array of MOS capacitors which are sequentially



scanned by silicon MOS shift registers. Each unit cell consists



of two closely coupled MOS capacitors so that charge can be



readily transferred between the two storage sites. Figure 4.1



shows the layout of an CID area array and illustrates the prin­


ciples of operation. During the integration period, photogen­


erated charge is stored in both the row and column gates at each



sensing site. When the vertical scan generator selects a row



line, the signal charge at every gate in that line is transferred
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to the corresponding column gate by setting its voltage to the
 


low state. Charge at the selected site is injected into the



substrate by applying an injection pluse through the selected



column line. At the same time, any charge in the unselected



elements of that column must be transferred into the corres­


ponding row gates to avoid injection. For the selected element,



charge injected into the substrate and the resultant displace­


ment current is sensed as the signal. The charge in the un­


selected lines must simultaneously be transferred to avoid



injection. This mode of readout is called the sequential in3ec­


tion technique. Readout may also be accomplished by a parallel



injection technique, the charge is not injected until all of



the elements of the selected row have been read out. All of



the charge in the selected line can be injected simultaneously



by driving all column voltages to zero. The parallel injection



approach is useful where high speed readout is required.



Since charge must be transferred back and forth between row



and column gates in each resolution element, close copuling be­


tween gates is necessary in an area array. Under Navy sponsor­


ship, a number of gate structures were investigated-for area



array applications. Several of the gate structures were found



to provide good coupling with potentials for reasonable yields.



Several 16x24 arrays were subsequently fabricated utilizing



several of the alternate gate structures. The size of the reso­


lution elements was 2x2 mils spaced on 3 mil centers in one



direction. Row and column silicon shift registers were mounted
 


on the same substrate as the array and wire bonded to the row



and columns of the array. CV characteristics of these 16x24



InSb arrays were evaluated at 77K as a screening procedure and



a check on array uniformity. These results indicated uniform



CV characteristics for all the rows and columns after array pro­


cessing. Raw video displays of single-element response and image



displays of "word" test patterns were also obtained demonstrating
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for the first time raster scanned operation of an InSb area



array in the staring mode.(30)



Very little quantitative performance data, however, has



been reported for these arrays. Projection of area array per­

formance for astronomical applications must therefore be based
 


upon the more extensive data available from the evaluation of



the linear arrays and the theoretical analysis of InSb CID array



performance. InSb linear array performance has been measured



in the temperature range from 77K to 4.2K. (31) It was found



that the dark current and noise decreased several orders of



magnitude as the array temperature was lowered from 75K down to



about 30K, below which no measurable decrease was observed.



Theoretical analysis of InSb arrays to assess their ultimate


32)


performance have been performed by a number of investigators. 
(30 ,



These analyses have identified the major noise sources and



combined with existing linear array data, can provide performance



projections for InSb area arrays.



Figure 4.2 is the noise equivalent circuit of the CID.



The noise sources are: 1) the kTC noise associated with the



setting of the reference voltage across the total input shunt



capacitance; 2) Johnson noise of the column selection switch



and distributed resistance of the array column; 3) amplifier



noise; 4) dark current shot noise, and 5) the shot noise asso­


ciated with the background. Table III is a summary of these
 


noise sources with appropriate expressions to calculate their



magnitudes.



CIDs employ integrator reset switches (DC restore) which
 


act to reset frequencies less than the clock frequency, and the



high frequency signals are attenuated by the sampling effect to



provide a bandpass filter for the noise. The effective low cut­


off is the sampling rate f and the upper cutoff frequency is


s 

determined by the minimum bandwidth required Af = 2 f s The
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TABLE III. NOISE SOURCES FOR A CID ARRAY
(3 3 )
 


KTC Noise N eqc = RT/q 

Selection Switch N = c kTRsoAf/q 
Thermal Noise egR aol 

N = C V(8 kTAf/3gm) + 10-" Zn3
Amplifier Noise 

eqA T q



Dark Current Shot NeqD = 8x10"AdTI 
Noise eDd 

Background Shot NeqB = 
 I
=V/BAd 

Noisee



C/­
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expression in Table II was derived by integrating the noise
 


power spectral density between these two limits.



Figures 4.1 and 4.2 illustrate one of the major limitations



of the CID approach. Note that the sensing of an individual



element, the shunt capacitance loading of the output amplifier



includes the line capacitances of the selected row and column,



if all others are assumed to be floating, the input capacitance



of the MOS input device, and the injection coupling capacitance.
 


For the 12 x 16 array, the total shunt capacitance CT is estimated



to be about 15 pf. The responsivity of the output amplifier



is given by



R = S x 106 pV/election (4.1)
CT



For CT of 15 pf, R = .011 pV/e, i.e., a signal charge of 106 

electrons results in an output of 11 mV. As the number of array



elements increase, the responsivity will further decrease due



to the increase of CT. On the other hand, the output capacitance
 


of a CCD array is the capacitance of a reverse biased diode and



is of the order of .1 pf, independent of the size of the array.



Table IV summarizes the calculated number of noise carriers



for the noise sources listed in Table III for an integration time



of 5x10 3 sec. 
 As seen from Table IV, the kTC noise is the
 

dominant noise. Fortunately, this source of noise can be com­


pletely eliminated by AC coupling followed by DC restoration as



shown in Figure 4.2, i.e., by the double correlated clamping



technique. Note that even for an integration time of 5x10 
3



sec, the shot noise due to the dark current dominates.
 


Figure 4.3 is a plot of the total CID noise at 77K for an



integration time of 1.5 msec, as a function of the background



photon flux. As expected, at high background flux, the noise



is dominated by the shot noise in the background with background



limited performance at about 1013photons/cm sec. At lower back­


grounds, shot noise due to the integrated dark current predominates.



The number of noise carriers in this region is about 320.
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TABLE IV. Calculated Noise Levels for the 16x24


InSb CID



KTC Noise (Neqc) 800 carriers (removed by
double correlated sampling)



Selection Switch Termal 180 carriers 
Noise (NeqR) 

Amplifier Noise (NeqA) 144 carriers 

Dark Current Shot 320 carriers 
Noise (NeqD) 

Background Shot 
Noise (NeqB) 

25 carriers for B= 1010p/cm2sec 

tint = 5x10- 3sec 

T = 77°K 
2



Ad = 2.58xlO- 5cm 

CT = 15 pf 

CcoI = 7 pf 

Af = 4 MHz 
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Figure 4.4 shows a comparison of the noise model with mea­


sured data for a 32 element line array. The solid line is a



plot of the calculated noise of all noise sources based upon the



array noise model for the 32-element line array. It can be seen



that the array performance model compares faborably with the



experimental data.



For low background astronomical applications, the shot



noise due to the dark current can be made negligible by simply
 


operating at temperatures below the nominal 770K operating tem­


perature. The dark current reduction due to the exponential



decrease in the intrinsic carrier concentration with tempera­


ture is given by Equation 2.3. Dark current reductions com­


parable to the values in Figure 2.3 should be possible for InSb
 


CID arrays. Operation at low temperatures will also increase
 


the maximum permissible integration time. Dark charge, during



the integration period, is collected under both gates of a CID



element, and charge saturation occurs when each gate is half



filled, i.e., NS f ) Foro 
 InSb CID, NSA
11 SAT i/2(C0u V^ef/q). I ID
 A T
 
2x10 carriers/cm2 . Utilizing this typical value and including



the exponential temperature dependence of the intrinsic carrier



concentration ni, the maximum integration time can be calculated.



The results are show in Figure 4.5.



Note that integration times limited only by the background



flux should be realizable by cooling to 500Y or less. Under



these conditions, array performance should become amplifier
 


noise limited. However, with present state of the art InSb



CIDs, ultimate detectivity at low backgrounds is not limited



in practice by amplifier noise, but rather by the degree to which



the fixed pattern noise can be rejected. Fixed pattern noise



effects, in general, are more dominant at low backgrounds for



CIDs than for CCDs due to the variations introduced by the line
 


column, and switch capacitances, and the lower signal responsivity



of the output amplifier. Considerable development will be
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required in the device processing to obtain amplifier noise



limited performance at low backgrounds.
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V. HYBRID FOCAL PLANE ARRAYS



Hybrid focal planes represent a pragmatic approach to a



high density focal plane in which a photodetector array is elec­

trically and mechanically coupled to a silicon readout multi­


plexer. This approach combines the best of a mature detector



technology with the well-developed silicon CCD technology.



The hybrid approach is the most versatile and flexible of



the focal plane approaches currently under development. The



versatility and advantages of the hybrid approach arise princi­

pally from the ability to select and optimize independently the



photodetector array and readout multiplexer. A single "universal"



CCD multiplexer, for example, can be designed, fabricated and



used for a variety of detector arrays.



The separation of the sensing and readout media allows the


benefits of CCD readout to be realized in a number of intrinsic



detector materials whose MIS properties make it difficult to



achieve viable CCD operation. The benefits of intrinsic detectors,


i.e., high operating temperatures, high quantum efficiency, and



low crosstalk are also realized. The hybrid approach can also be



used to fabricate focal planes of extrinsic detectors incorpora­

ting dopants that are not compatible with the high temperature



processing requirements of silicon, since the silicon and detector



media can be processed separately.



Another significant advantage is the increased silicon chip



area due to the separation of the detector and multiplexing



functions. This makes possible greater flexibility in the CCD


design and potentials for the incorporation of more sophisticated



on-chip signal processing functions than a fully monolithic design.



The hybrid approach, however, does have its disadvantages and



introduces a number of critical issues. Of critical importance


from the standpoint of yield, reliability, and performance is the
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mechanical and electrical interface which a hybrid structure re­


quires to couple the detector array and the silicon multiplexer.



The number of interconnects required can be large since a detec­


tor/multiplexer interconnect is required for each element. Dif­


ference in the thermal expansion coefficient between the detector



array material and the silicon multiplexer can result in signifi­


cant mechanical stress and poor reliability after temperature



cycling of the arrays. The thermal expansion mismatch between



the detector substrate and the silicon multiplexer thus may place a



limitation on hybrid array size.



An efficient input circuit is also needed to inject the de­


tector signal into the CCD multiplexer. Direct injection circuits
 


are simple, but are sensitive to gate threshold non-uniformities.



Input circuits have been proposed and demonstrated which reduce the



effects of gate threshold non-uniformity but at the expense of in­


creased circuit complexity and power dissipation. Resolution of



the gate threshold non-uniformity problem remains one of the
 


critical issues for hybrid focal planes.



5.1 HYBRID FOCAL PLANE CONFIGURATION



A number of hybrid focal plane configurations are currently



under development. The critical problem for a hybrid is the thermo­


mechanical compatibility of the detector material and the silicon



CCD. Since the detector materials of interest will in general con­


tract more than the silicon, cracking and delamination of the de­


tector material can occur with temperature cycling. The magnitude



of the contraction can be calculated from the known thermal expan­


sion coefficients and the results are shown in Figure 5.1. The



III-V semiconductors and (Hg,Cd)Te have reasonable expansion mi­


matches to silicon. On the other hand, the large mismatch for



PbSnTe is a deterrent to fabricating large PbSnTe hybrid arrays.



Two of the most widely employed hybrid focal plane structures



are shown in Figures 5.2 and 5.3. In the structure of Figure 5.2,



the detector layer is directly epoxied onto a silicon CCD multi­
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plexer. The thermal expansion coefficient of the detector



material must closely match that of silicon. The insulating



epoxy must also remain ductile during the temperature cycling



to relieve the mechanical stress due to the differential con­


traction during temperature cycling. This structure is not a



high density structure because of the space that the detector/



CCD metallization requires. Additionally, optical fill factors



of greater than 50 percent are difficult to achieve for the



same reason.



The second design, shown schematically in Figure 5.3 is



the flip-chip solder bump cold weld approach. Indium is the pre­


ferred material for the solder bumps due to its low-yield stress



even at cryogenic temperatures, This approach has a number of



significant advantages with respect to yield, performance and



detector compatibility. As shown in Figure 5.3, this approach is



ideally suited for transparent backside illuminated detector
 


arrays. Because the metallization is on the bump side of the



array, no obscuration of the active detector array occurs and



high fill factors can be achieved. The utilization of a thick



transparent substrate also adds mechanical rigidity to the



structure. Since the CCD and detector array can be screened and



tested prior to bump interconnection, the potential for high



yields exist. Finally, the use of In as the bump material with



its favorable deformation properties and adjustable aspect ratio



can accommodate larger thermal expansion mismatches than the



epoxied structure shown in Figure 5.2.



Significant progress in flip-chip In bump bonding technology
 


has been made in the last few years. A InAsSb detector array with



elements on 4 mil centers was successfully mated to a FET switch



array. (34,35) An interconnect yield of 98 percent was obtained



and maintained through 12 temperature cycles down to 77K. A mated



PbSnTe/FET multiplexer has also been demonstrated. Thermal cycling



experiments with this structure showed that only limited size



arrays were possible because of large thermal expansion
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coefficient mismatch between PbSnTe and silicon. (35) Photo­


voltaic InSb detectors have also been successfully flip-chip



bonded to silicon test substrates having metallized lead



patterns. (36 ) A process was developed in which InSb diode
 


arrays could be In bump connected to silicon CCD multiplexers



and the resulting structure thinned to the required thickness.



Significant progress continues to be made in the design and



fabrication of CCD multiplexers for hybrid application. Several



new direct injection CCD multiplexer designs have evolved and



are in the early stages of fabrication. These CCD multiplexer



chips can be utilized for hybrid readout or can be processed on



extrinsic substrates to yield monolithic extrinsic arrays.



Similar progress has been reported on the hybrid approach



employing direct epoxying of the detector material to the CCD



substrate. (37 ) Two slabs of (Hg,Cd)Te on which 32-detector
 

elements were fabricated were epoxied to a CCD signal processor.



This array was repeatedly cycled from 300K to 110K with no



failures. An electrical evaluation of the 32 element array



demonstrated minimal loss of signal to noise ratio due to the



CCD readout of the PV detectors.



52. DETECTOR TYPES FOR HYBRID ARRAYS



Hybrid focal plane arrays can, in principle, be fabricated



in all extrinsic semiconductors. The hybrid approach can also



be extended to include both extrinsic silicon and germanium



detector arrays. Thermal expansion mismatch problems, would,



of course, be absent for these materials.



Hybrid technology, however, has concentrated on only a



few of the most developed and promising of the compounds from



the III-V, IV-VI, and II-VI material systems. An excellent com­


pilation of the properties of these materials can be found in



the review article by Longo, et al.(35)
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Theoretically, both photoconductive and photovoltaic in­


trinsic detectors are suitable for hybrid arrays. The develop­


ment efforts in recent years, however, have focused on photo­


diodes operated at near zero bias. Photodiodes are preferable for



focal plane arrays because their impedances are comparable to the



input impedance of a CCD so that direct coupling into the CCD is



possible. Low impedance photoconductors such as (Hg,Cd)Te require
 


a buffer state to provide current gain to couple into a CCD. The



higher impedance of photodiodes also minimizes on-chip power dis­


sipation, and important consideration of large high density mosaic



focal planes operating in the staring mode.



Two of the most promising of the detector materials for hy­


brids are the III-V semiconductors InSb, and the ternary alloy


1
InASlxSbx. InSb is an attractive candidate for hybrids because



of the maturity of InSb photodiode technology and the availability



of large, high quality InSb bulk substrates. InSb photodiode



arrays are currently under development for both staring and TDI



scanning systems. The D* and responsivity of InSb photodiode



arrays have been shown to be comparable to discrete InSb de­


tectors. This point is illustrated in Figure 5.4 for a back il­


luminated InSb array. (36) In addition, a significant advance for



InSb arrays was the development of a low S (surface recombination



velocity) back surface passivation process which yields repeatedly,



detectors with the response shown in Figure 5.5. The high quantum



efficiency at the short wavelengths demonstrates the success of



the passivation process for the low S input surface.



The InAslxSbx alloy system offers greater flexibility than



InSb in a number of respects. First of all, the spectral band­


width and the long wavelength cutoff of the alloy can be tailored



to fit the desired spectral range. Response out to 9 pm is,



in principle, possible. Secondly, the thick transparent sub­


strate provides mechanical strength to the structure, an important



feature during the hybrid bump mating process. Finally, thinning
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is not required after mating since the substrate is transparent.



On the other hand, advanced growth technique involving liquid



phase epitaxy are required for fabrication.



Figure 5.6 shows the basic structure for a backside illumi­


nated InAs i-xSbx photodiode.(27) This multilayer detector is



produced by a liquid epitaxy growth method. The device consists
 


of four different regions: 1) active layer; 2) filter layer;
 


3) buffer layers; and 4) transparent substrate. The incident



radiation enters at the bottom of the structure through a sub­


strate that is transparent in the region of interest. Further



filtering is provided by the filter layer, while the desired



radiation is absorbed in the active layer. The buffer layers



serve to relieve the lattice mismatch between the InAs substrate



and the InAsl_xSbx detector layer.



The measured spectral response of three typical InAslxSbx


photodiodes with different Sb composition in the active and



filter layers are shown in Figure 5.7.(27) Internal quantum



efficiency of 90% and a R0A product of 2x107 ohm-cm2 have been
0


obtained at 77K for these detectors.



Another detector material which shows potential for appli­


cation to hybrids where longer wavelength cutoffs are desired is



the PblxSnxTe alloy system. Backside illuminated Pb xSnxTe



heterojunction alloy photodiodes, similar in structure to the



InAs1 -xSbx photodiodes have been fabricated. (3 8 ,39) Figure 5.8



shows the spectral response at 85K for two compositions. The



sharp cutoff below 6 pm is due to the PbTe substrate. The long



wavelength cutoff is determined by the Sn content of the active



layer and the operating temperature. The Pb SnTe alloy systems



exhibit large Burnstein-Moss shifts in the bandgap with tempera­


ture due to the extremely low values of effective mass. The 50%



cutoff of the Pb0.8Sn0.2Te/PbTe, for example, shifts from 11.5 pm



at 85°K to 14.5 pm at 15K.
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Figure 5.6 Backside-Illuminated Device Design
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Performance parameters and figure of merits typically quoted



for these photodiodes are their D* and R A products. D* for a
o 

photodiode is determined by the thermal noise source of the de­


tector resistance and the background photon noise. Photodiodes



provide near maximum signal to noise ratio at zero bias. The D*
 


for the zero bias condition is given by the familiar expression,
 


D*= T L oKAqnq[4kT + 2qn4B] 5l
(5.1)



where R A is the zero-bias resistance-area product,
o



T is the detector temperature,



n is the internal quantum efficiency.



Equation 5.1 is plotted in Figure 5.9 as a function of background



photon flux and RoA product at 77°K.



At low backgrounds, D* is limited by the thermal noise of the
 


detector which is directly related to the R A product, and reduces
0 

to


D* =LTq R0oA 1.0X1 ii XTRoA) 

D-a RA l.OSxlo (5.2 
hc 4-kT = (5.2) 

where R A is the unit of ohm-cm2 and A is in pm



The R A of a photodiode is defined as
o 

R0 AV= (5.3)



where J is the total thermal current density and is the sum of the
 


diffusion current, depletion layer generation-recombination cur­


rent, surface leakage (shunt) currents, and tunnel currents. Dif­


fusion current is due to the diffusion of thermally generated
 


minority carriers from the n and p sides of the semiconductor to



the depletion layer at the junction interface and is only signifi­


cant at high temperatures. Generation-recombination (g-r) current



is due to the thermal generation and recombination of carriers in



the depletion layer.
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Equation 5.3 can be rewritten as



RA [ + GR + JT + Js)I1=0]o 3 
 (5.4) 

+
[[ + R A + A 

where RoAD, RoAGR, RoAT and RoA s are the R A products due to



diffusion, generation-recombination, bulk tunneling, and surface



leakage respectively. Expressions for R AD, R AG R and RoA T have


+ D o G-R oT

been derived for abrupt p n junction.(40? The expressions are



listed in Table V. The R A product is dominated at high tempera­

02



tures by diffusion current since RoAD(/n ).As the temperature



is decreased, the photodiode will become dominated by the g-r



noise since RoAG_R(l/ni). At some lower temperature, the shunt


leakage and tunnel currents will dominate and the R A product will
o 

become independent of temperature.



R A products have been measured for the InAs lxSbx and



Pbl xSnxTe alloys as a function of temperature and are in general



agreement with theory. Figure 5.10 shows the experimental deter­


mined R A products for representative InAslxSbx diodes sampled


(41 )
 from a 32x32 diode array. Also shown is the theoretical



value for RoA GR calculated for T = 0.5 psec. Note that at tempera­


tures above 120 K, the curves fit the g-r model. At lower tempera­


ture; the RoA is dominated by leakage currents. At low tempera­


tures, considerable variation in the R A products are found since
o 
the surface leakage is highly processing dependent. R A products
o 
have also been measured for Pb xSn xTe diodes (x = .27) sampled



from a 12x16 array. The average R A product was found to be


2 0a
2.2 ohm-cm at 92 K with the leakage being diffusion dominated at



this temperature. The value increases to about 16 ohm-cm2 at 770K.



5.3 DETECTOR/CCD COUPLING



In an intrinsic CCD imager, such as the InSb CCD and silicon



visible imager CCDs, detection and collection of the signal current



occurs in the same medium. The photo-generated minority carriers
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TABLE V. R A PRODUCTS



0 

+RoA= [A)+ 
D \ O )GR \ o T 

Ro \q li\e/ qn i2 
"RA = (l(e) NA 

R A0OG_=R2-£ ---.EkT n 4NAND%) qniTo 

1 

h Tm* 6s8-ff[ 2 

RoA h kT exp 3h NDS)Eg]oTm*q2Ep



R A is temperature independent

O s 
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are directly collected by the depletion regions underneath the



charge storage gates with high efficiency. Input time constants



are also short since the injection collection process is only



limited by the drift and diffusion times of the carriers.



In the case of a hybrid focal plane, a detector/CCD coupling
 


circuit is required since the photo-current from the detector



must be transferred to the silicon multiplexer. The key perform­


ance requirement for such a circuit is to convert the detector



current to an equivalent CCD current with high efficiency and



minimal added noise such that the signal to nwise ratio is limited



only by the detectivity of the detector. The complexity of the



detector/CCD circuit is severely limited by the available area



at each pixel site and to date only the simplest coupling cir­


cuits have been investigated for hybrids. These coupling cir­


cuits can be divided into direct and indirect injection.



The two basic injection schemes are shown in Figure 5.11



and 5.12. The direct injection scheme shown in Figure 5.11 and



related variants on this scheme are most often employed because
 


of their inherent simplicity and compatibility with the dimen­


sions of the unit cell. In Figure 5.11, referred to a direct



injection or source modulation, the signal current from the
 


detector is used to modulate the source of the MOSFET input. The



MOSFET gate is G1 , and is biased at DC while the source is float­


ing. The potential well under G2 acts as an induced drain into



which the current from the detector is injected and integrated



before transferring to the CCD multiplexing channel and i" In



Figure 5.12, referred to as gate modulation or indirect injection,



the signal current from the detector converted to a voltage signal



via a load resistor or buffer amplifier. The resultant voltage
 


swing is directly applied to the gate and modulates the channel



current.



The AC equivalent circuit for the direct injection scheme



is shown in Figure 5.13. The injection efficiency, i.e., the
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sTT 

Figure 5.13 	 AC-Equivalent Circuit of the Direct Injection


Input. (IS is the detector signal current, V


is the signal current injected into the input,


IB, ID and IN are the noise current sources


corresponding to background shot current, de­

tector thermal noise, and input MOSFET noise


including channel thermal noise and 1/f noise.)
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fraction of signal current injected into the CCD channel is


43 44 35 )


easily derived and is given by (42 , , ,



g 
 
-CDo)C5.5]
 J
INJ I l+gm + 1 R



where R is the detector resistance and CD is the detector junc­


tion capacitance. At low frequencies, 1INJ is reduced to gm/



(l+gmRD). The injection efficiency I;/I s increases monotonically



as the gmR product increases until it is very nearly unity for



S >> 1. The injection efficiency rolls off at high frequen­


cies with a time constant given by



RC- DDD (5.6)

l+g HD



Note that the condition for high injection efficiency and wide



bandwidths is gm >> 1, i.e., the detector resistance RD and gm,



the transconductance of the CCD channel, must be high. The detec­


tor resistance R depends on the type of detector used, the



operating temperature and the bias point of a photodiode. For



most applications, these parameters are relatively fixed. The in­


jection efficiency therefore depends primarily on the transconduc­


tance of the CCD input MOSFET. The transconductance of a MOSFET



is given by



Z ~tk\F4 + 21A q2% 1 
-gm L q ox J1C (5.7) 

where Z/L is the CCD input gate aspect ratio, p the minority car­

rier, C is the oxide capacitance per unit area and I' is the



channel current. The small current limit such that 


it << Z1Cox (kT) 2 (58 
s ox (5.8) 
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is known as the subthreshold region and gm reduces to



qI'I



kT (5.9)
gm 
 

CCDs, except at the highest backgrounds, operate in the sub­


threshold region, where the detector current due to background



and thermally generated reverse bias currents provide the channel



bias current. A plot of the injection efficiency as a function



of channel bias current and gm is shown in Figure 5.14 for two de­


tector resistances. At low backgrounds, the detector background


=

currents will be small (;1013Amp for 4 B = 101p/cm2sec, AD 
 

10-4 cm), and insufficient for high in3ection efficiency and wide



bandwidths. The injection efficiency can be improved, of course,



at low backgrounds by injecting a DC bias current to increase the



gm of the CCD input stage. However, the added bias current will



introduce additional shot-noise and background limited performance



can never be achieved by this technique. Increasing the Z/L ratio



of the CCD input stage to increase gm is also not effective since



g is essentially independent of device geometry in the subthresh­


old region.



Another problem associated with the simple direct in3ection



scheme is the detector to detector responsivity non-uniformity



arising from the spatial variation of the gate threshold voltage.



In the direct injection input shown in Figure 5.11, the bias



across the photodiode is applied through gate GI. The bias across



the photodiode for a fixed gate bias VG1 and back-bias VB is



Vdet = V S - V VG1 - (VT AVT ) - VB (5.10) 

where + AVT is the gate threshold variation for the input gate. 

The gate threshold variation AVT will result in the bias on de­


tectors on the focal plane to vary over a range of about 2AVT.



The resultant variation in bias current between detectors will



cause the injection efficiency to vary from element to element.



85





10 

Bias Current, ID (amps) 
6.7x10-14 6.7xi0-13 6.7x10-12 6.7x10-11  6.7x10­1 0 

1 0 7x0 1. 16 xlxII Il .J1JO1 1 i l l 

100 
H 

b 1 

o
l - -10 

9
Q 

~50 

0 

-P 

- 10 10 10 0! 

gm (mhos) 


Figure 5.14 Injection Efficiency as a Function of 

g for RD = 108 and 109 ohms 


86 




Current state of the art gate threshold uniformity for commercial



MOS devices is of the order of + 150 mV. Since photodiodes are



operated at or near zero bias to minimize 1/f noise, spatial varia­


tions in the gate threshold of this magnitude represent a signi­


ficant problem for arrays with large numbers of photodiodes. A



number of approaches to minimize the gate threshold variation



problem are currently being investigated. These approaches fall



into three catagories: 1) improved MOS/CCD processing for low 

AVT; 2) improved detector reverse bias characteristics; and 3) 

active on-chip compensation circuits. Progress has been reported 

utilizing approaches 1) and 3). AVT of + 15 mV have been reported 

for CCD inputs fabricated utilizing special processing techniques.



Several operational implementations that reduce the AVTs to the



+ 5 mV range have been demonstrated, making direct injection 

coupling in hybrids practical. Further work, however, will be 

necessary to reduce the complexity of the circuits and in the 

long term,improved MOS/CCD processing will be the key to a satis­

factory solution. 

The detector signal can also be coupled to the multiplexer



by modulating the channel current as shown in Figure 5.11. The



CCD input MOSFET is then basically in the grounded source con­


figuration. Because a photodiode is a high impedance current



source, in order to maximize the output signal voltage, a bias



resistor or a buffer amplifier with a load resistor is required



for each element. Both bipolar devices, with their low gate



threshold (+ 5 mV) and high current gains, and process compat­


ible MOSFETs have been employed as buffer amplifiers. Response



non-uniformity is,in general,more severe for this circuit because



in addition to the inherent gate threshold variations, additional



non-uniformities are added by the monolithic resistors and buffer



amplifiers. For this reason, and because of the additional com­


plexity of gate modulation, direct injection is more widely used



for hybrid multiplexers.
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VI. CONCLUSIONS



Focal plane array technology has progressed rapidly in the



past few years, due in large part to the sizable DoD development



efforts in this area.



At the present time, the monolithic extrinsic approach is



the most advanced of the focal plane approaches and is the best



candidate for near-term astronomical applications. As shown in



Section II, considerable device maturity has been achieved, in



particular for Si:In and Si:Ga arrays. Si:In and Si:Ga arrays
 


are currently being produced and utilized on a number of DoD



IR measurement programs. These arrays should become available



for astronomical applications in the near future. As shown in



Section 2.6, these arrays should be capable of long integration



times when cooled to sufficiently low temperature



Hybrid CCD arrays represent an attractive alternative approach.
 


Significant advances have been made both in the development of



intrinsic photovoltaic detector arrays of InSb, InAsSb, PbSnTe,



HgCdTe and the requisite interconnect technology. A new generation



of high density CCD multiplexers, to which these arrays will be



coupled, will be available in the near future. For astronomical



applications where a variety of detector materials may be necessary



to cover an extended spectral region, the hybrid may be the optimum,



and lowest cost approach.



The monolithic intrinsic approach remains a technology with



long-term potential, but limited by the lack of a mature materials



technology and remains the least developed of the approaches. The



current NASA sponsored development effort to fabricate and develop



InSb CCD technology is addressing a number of the critical materials



problems. Progress, however, is expected to be slow reflecting
 


the formidable materials and processing issues. Small two-dimen­


sional InSb TDI arrays with a few hundred elements may become
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available in a few years. Unless N values can be significantly
ss


reduced from present values, it remains doubtful whether these



arrays will be useful for astronomical applications where high



detectivities are desired.



Small two-dimensional CIDs remain a competitive candidate for



astronomical applications. Significant performance improvements



should be realizable with cooling since the dominant noise source



at 77K is the integrated dark shot noise. The CID approach, how­


ever, has limited potential for arrays larger than 32x32 because



of the output capacitance limitations.
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