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ANALYTICAL MODELS AND SYSTEM TOPOLOGIES FOR REMOTE
MULTISPECTRAL DATA ACQUISITION AND CLASSIFICATION

Friedrich 0. Huck, Stephen K. Park, Ernest E. Burcher,
and W. Lane Kelly, IV
Langley Research Center

SUMMARY

This paper presents simple analytical models of the radicmetric and
statistical processes that are involved in multispectral data acquisition and
classification. These models represent a preliminary but systematic step
towards the use of computer simulations to gain a better understanding of the
effect of major error sources on classification. This paper presents also
some basic system topologies which combine remote sensing with data
classification. Simulations of these topologies are intended to aid in the
analysis of techniques for reducing classification errors and computations.
However, before these models and topologies can be relied upon to yield
useful results, they must be expanded to account more rigorously for
target properties, atmospheric effects, and system component characteristics.

INTRODUCTION

There is a rapidly increasing demand for world-wide resource and
environmental monitoring. This demand is currently met with several space-
craft multispectral imaging systems (such as Landsat) that transmit all
acquired data (together with calibration data) to earth for processing in
computer laboratories. Supporting studies tend te concentrate on specific
aspects of remote sensing and data classification such as reflectance
properties of objects, effects of the atmosphere, instrument technology, and
data processing algorithms. Systematic analysis that acccunt for all phases
of the multispectral data acquisition and classification process and its
error sources appear to be lacking, except for a recent study by
Kondrat'yeyv et al. (ref. 1) in which remote sensing is analyzed from the
viewpoint of information theory.

As the number of remote sensors and their spatial and spectral
resolutions increase, the associated multispectral data transmission,
storage, and processing requirements become excessively cumbersome and
expensive to satisfy. Hence, it should become increasingly desirable to
process multispectral data onboard the spacecraft itself. The onboard
processing may initially be limited to editing; that is, for example, to the
rejection of all data from clouds, or to the selection of all data containing
inturmation about veanetation.




This approach suggests a two-level decision process in which a simple
level-1 decision process acts as a filter to reduce data loads for a more
sophisticated level-2 decision process that classifies data, for example,
as types of vegetation and soil. In fact, a two-level decision process may
reduce the required number of computations in many applications as it has
been demonstrated already for the classification of military targets (ref. 2).

As the reliance on remote sensing and data classification increases,
it becomes also more important to better understand error sources in
classification, and, if possible, to devise techniques for reducing their
effect. Errors are introduced by variations of the spectral reflectance of
various classes of objects, by variations in imaging conditions (such as
atmospheric effects and lighting and viewing geometry) and imaging system
response (such as calibration and noise), and by the models or training data
used as reference patterns.

Limitations imposed on remote sensing by the atmosphere are particularly
severe (ref. 3), and the compensation for atmospheric conditions has been
strongly advocated (ref. 4). Initial investigations (refs. 5 to 9)
indicate that compensation for atmospheric effects can indeed effectively
reduce classification errors when signal patterns are acquired under
atmospheric conditions that differ from those conditions that prevailed
when training data were obtained,

In this paper we present simple analytical models of the complex
radiometric and statistical processes that are involved in multispectral
data acquisition and classification, and basic spacecraft system topologies
which integrate these two functions. These models and topologies provide a
preliminary but systematic approach for using computer simulations to gain a
better understanding of the effect of major error sources on classification,
and to aid in the analysis of techniques for reducing classification errors
and computations.

SYMBOLS
aC(A) selective absorption coefficient of carbon dioxide (C02), cm']
aH(A) selective absorption coefficient of water vapor (HZO)’ cm']
ao(k) selective absorption coefficient of ozone (03), cm-]
CC cquivalent cencentration of carbon dioxide (COZ), cm
Cy equivalent concentration of water vapor (H20), cm
C0 equivalent concentration of ozone (03). cm

CN(A. A') covariance of spectral radiance



CD(A. i1 covariance of spectral reflectance

c sensitivity, v-W"'-cml-ster

c(r, €) illunination scattering function, see equation (4)

D dark current offset, V

Ho. Hl hypothesis

l number of picture elements per line

I() imaging conditions, see equations (22) and (31)

J number of spectral channels, or dimensionality

L number of classes of objects

M number of broad categories of objects

MSD mean-square distance, Vz. see equation (36)

N number of classes of objects contained within a broad category

Na number density of aerosol integrated over height, km

NR number density of air molecules integrated over height, m'2

N(2) spectral radiance, N-cm'z-pm']-sr'

PDF probability density function, see equation (38)

R reference component, V, see equations (8), (17), and (18)

R' reference component normalized for imaging condition, V,
see equation (29)

S error-free calibrated signal component, V, see equation (7)

s uncalibrated signal component, V, see equation (6)

S" calibrated signal component, V, see equation (42)

S(a) solar spectral irradiance above earth atmosphere, w-cm'z-um']

T()) normalized responsivity, see equation (5)

VN(\) standard deviation of spectral radiance

VC(R) standard deviation of spectral reflectance
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Subscripts:
i

J

difference component between signal and reference, V, see
equations (35) and (46)

extinction optical thickness of atmosphere, see equation (2)
attenuation coefficient of aerosol, k)

correlation element of reference signal, see equation (14)
delta or unit impulse function

emittance angle, degre2 or radian

sensitivity calibration error, V, sce equation (44)

dark current offset calibration error, V, see equation (45)
radiometric calibration error, V, see equation (43)

slant path angle, degree or radian

incidence angle, degree or radian

spectral width of photosensor channel

wavelength, um

spectral reflectance, see equation (3)

standard deviation element of reference pattern

covariance element of reference pattern

2

Rayleigh cross-section of air molecules, m

spectral transmittance of atmosphere, equation (1)

picture element
spectral channel
class of objects
broad category of objects

class of objects within a specified broad category



A bar () over a symbol indicates a pattern or vector.
The bracket < > around a parameter denotes expected mean value.
The bracket [ ] around a parameter denotes matrix.

The bars | | around a parameter denote determinants.

RADIOMETRIC MODEL

In this first section we present a simple radiometric model (see fig. 1)
of solar irradiance, atmospheric transmittance, surface reflectance, and
spacecraft imaging system re.,  )nse. The spectral region of interest is
0.3 to 3.0 um. While this model cannot be relied upon to yield quantitatively
accurate results, it can nevertheless be easily used to gain some insight
into the dependence of classification errors on differences between
(simulated) actuai and predicted imaging conditions.

Solar Irradiance

The absolute solar spectral irradiance S()) above the atmosphere is
well known and changes slightly (less than 6 percent) with variations in the
distance from sun to earth. We neglect tnese variations because their
effect on a multispectral signal pattern is small. For examples, see
references 10 and 11.

Atmospheric Transmittance

The atmospheric spectral transmittance t(A, ) changes in time and
locality with variations in scattering and absorption by various particles
and molecules. Atmospheric transmittance severely distorts the signal
pattern, and hence limits the accuracy of its classification. We neglect
the diffuse sky radiation of the scene and the atmospheric path radiance.
Their effects are generally less significant for the lighting and viewing
conditions that are desirable for multispectral imaging, but must eventually
be accounted for to obtain more accurate quantitative results.

The slant-path transmittance of the atmosphere is (ref, 9)

t(x, 6) = e a(A) seco (1a)

where o)) is the extinction optical thickness along the vertical path
from space to the earth surface, and sect is the ratio of the length
of the vertical nath to the length of the slant path. The




slant angle © = 1 for the incidence path, and © = ¢ for the emittance
path. Fur slzant angles larger than 62°, corrections must be made for
atmospheric refraction (ref. 7). To simplify notation, it is convenient to
define t(A. 1, €) as

(ke 15 €) ® T(h, V)1(A, €) = @ 0(MI(s€CH ¢ sece) (1b)

For the spectral region of interest, the atmospheric transmittance is
primarily affected by Rayleigh scattering of air molecules (N, and 02),
Mie scattering of aerosols (water droplets and dust), and absorption by
ozone (03), water vapor (H20), and carbon dioxide (CO2) (refs. 7 and 9).
We neg!ecg the height profile of particle density and molecular concentration,
and account for the total optical thickness as

ald) = Np op(A) + Ny Ba(X) + Dy ag(x) + Dy a,(x) + Dc ac(r), (2)

where N is column density, D is concentration, op(A) is the Rayleigh
cross-section of air molecules, fBp(A) is the attenuation coefficient of
aerosol, and ap(A), ay(r), and ac(A) are selective absorption
coefficients, respectively, due to 03, H20, and other uniformly mixed
gases of which COp has the dominant effect (ref. 10).

Surface Reflectance

The spectral reflectance p(A, 1, ¢) of a surface is generally a
complex function of lighting and viewing geometry as well as wavelength. We
neglect this complex dependence, and assume that the wavelength dependence
of the spectral reflectance is independent of the incidence (1) and
emittance (c) angle and that scattering is Lambertian. Hence,

plA, 1, €) = c{)) cosr cose, (3)

where p()) 1is commonly referred to as spectral signature. Again, as
for atmospheric effects, the surface reflectance must also be more
realistically modeled to obtain useful quantitative results.



The classification of surface targets from multispectral image data relies
on the observation that all physical and biological substances exhibit a
uniquely characteristic spectral signature. Differences between spectral
signatures may be easy to distinguish for diverse substances such as water,
ice, dry sand, soil, and green vegetation. Hovever, these differences
tend to be very subtle and in practice often difficult to distinguish for
related substances such as different :ypes of crops, Moreover, the spectral
signature of vegetation, for example, varies with such factors as moisture,
season, soil, and growth density. Furthermore, various backgrounds can change
the effective target radiance by a significant amount. For example, see
references 10 and 14 to 21.

Spectral Radiance
Combining the solar irradiance, atmospheric transmittances, and surface

reflectance, we formulate the radiance N(), 1, ¢) sensed by a multispectral
imaging system as

N(As 1, €) = S(A)t(r, 1y €)p(A) clry €)y (4)

where

1
c(1, €) = — cos1 cose.
m

Imaging System Response

We assume that the response T;()) of the j'th spectral channel of a
J-channel multispectral imaging sys{em is represented by the function

1 Ay ¢ ’
PGS e b s i) S T P 190 (5)
' y M of
0 , Otherwise
shown in figure 2. The center wavelength of Ta( is j and the effective
so that

width is “j' This function has been normalize



d,. TJ(A) d =1,

Photosensor Signal

The imaging system generates a photosensor signal for the spectral
radiance N(A,1,e) that we represent as the J-dimensional vector
(i.e., column matrix) S' with components

Sj - c‘j'o/- N(A, 1, e)Tj(A) d) + Dj' (6)

where c¢; and Dj represent photosensor sensitivity and dark current offset,
respectiéel If sensitivity and offset variations are ac.ounted for without
error, then the components of tn: (calibrated) signal pattern S become

S

$: - D, A
i® .J;:_.Jl . {!. N(A, 1, c)Tj(A) dA (7)

J

STATISTICAL MODELS

In this second section we present two statistical models (see figure 3)
for reference patterns and covariance matrices: a common model in which
imaging conditions are not accounted for, and a model in which they are
accounted for to reduce classification errors,

Definitions

We regard for our two statistical models either the spectral radiance
N(%, 1, €) or the spectral signature p(A) as a random process which for
each A has a Gaussian probability density distribution. It follows that the
photosensor signal in each spectral channel has also a Gaussian probability
density distribution since equations (6) and (7) relate it to these functions
by a linear process.

We can define, therefore, the reference pattern for a class of objects
(e.g., vegetation or wheat) as the J-dimensional vector R with components
that are the expected (mean) signal value in each spectral channel as given by



nj . {SJ} - <sj>. (8)

These components are the features of R that (hopefully) distinguish
between signal patterns of various classes of objects. The associated
covariance is given by the symmetric J-dimensional matrix [°JJ'] with
elements

OJJ. = £ {(SJ - <SJ>)(SJ| = (SJO>)} (9)
The covariance matrix can also be written as the product
[OJJ'] - [UJ][YJJ-][OJ-]- (10)

In this equation [o.] is the diagonal matrix of the standard deviation
J

Ol F i B
0 99 0

[Uj] = (1)
0 0 0,

with elements

T \4":1 (12)



And [YJJ.] is the symmetric correlation matrix

- -

Vv ey i
2 ! Y2)
[ij«] . _ ) (13)
Yy vee |
N Y2 1
with elements
Tse
Yeis ® —di—, (18)
JJ 0j le

Vaiues of the non-diagonal correlation elements yi4.y J # ', vary from
0 to 1, and may in practice sometimes be negative iref. 22).

Model 1

General.- We define the expected (mean) value of the spectral racdiance
{2, 1, €) for a normal incidence and emittance angle (i.e., 1 = ¢ = 0) as

E{N()A)} = <N(p)>, (15)

and the (auto-) covariance as

E{IN(A) - <N(A)>]IN(X') = <N(X')>]} = Cy(, 2'). (16)

10



The components of the reference pattern R become then

n

Ry = [{!N(x)rj(x) a - [ NPT (1) dh, (17)

0

and the elements of the covariance matrix [°jj'] become

0yq0 ® “bf [N = <N(1)>]7, (1) &) _of[nu') - NPT () )

o

» % f f [N(A) = <N(X)>][N(A') - <N(A')>]TJ(J\)TJ-.(A)dAdA'}

J 0

o

- f [cN(\. ) T TJ..(A') dr dr'. (18)

J

Special case.- [f N(A), N(A') are uncorrelated and VN(A) is the
standard deviation of N(1), so that

Calar') ® vz(\) §(A = 1'), (19)
N N
then the covariance elements become

= 2
14 _!VN(X) (0 T30(0) da, (20)

1



1f, furthermore, the responses TJ(A). TJ.(A') do not overlap, then

2(yy 12 .
6[ V() Tid, =

Ojjl (2])
0, ¢ ¥

and the correlation matrix [ij'] reduces to an identity matrix.

Model 2

General.- We assume now that the imaging conditions which we denote
as

1{x, 1, €) = T(Xs 1,4 ) ¢y €) (22)

can be accounted for, and hence that the uncertainties associated with the
spectral radiance N(XA, 1, €) are caused only by the random process which

generates the spectral signature p(A). The spectral radiance has then
the expected (mean) value

E(N(A, 1, €)} = <N(X, *, €)> = S(A) I(X, 1, €) <p(r)>, (23)
and (auto-) covariance
ECIN(A, 1, €) = <N(A, 1, €)>][N(X', 1y €) - <N(A', 1, £)>]}
= S(\)S(h')I(\.I.E)I(A'.l.u)Cp(l,X'). (24)

12



Substituting equations (23) and (24) into equations (17) and (18) yields
the reference pattern components

R, = 0fsm [ 1 €) 60T @, (25)

and covariance elements

o4 * 1!. J S(ISO) TG L) T 1 1,e)C ()T ()T (A7) drdA . (26)

Approximation.- To reduce the number of computations required for
atmospheric compensation, it might generally be desirable to approximate
equations (25) and (26), respectively, as

Rj = [j(n. £) Rj (27)
and
ijl " Ij(ln C)Ijl(hi)f:]-jn (28)
where
Rj = 1{.5(1) <p(r)> Tj(A) di, (29)
o;j. = f fsms(x')C;(x.\')Tj(l)Tj-(\')d‘\d‘*-" (30)
[4] 0 i

13



and

Ij(l. g£) = ¢li, ¢t) 1!. tlXs 14 8) TJ(A) di. (31)

That is, R' and [ojj'] are the reference pattern and covariance matrix,
respectively, that represent the multispectral features of a class of objects,
and Ij(l. e£) 1is the factor by which these functions are corrected to account
for imaging conditions.

Special case.- If p(A), p(A') are uncorrelated and V ()) is the
standard deviation of p(A), so that P

Co(0 A1) =V 20) 600 - A1), (12)

then the covariance elements become

N [ 2 2
33 ofS (2) vp(x) TJ(A)TJ.(A) da, (33)

[f, furthermore, the responses Tj(x). Tj.(h') do not overlap, then

J 20 o) e, = 5
0, TER

14



CLASSIFICATION MODELS

Classification is essentially a process that assigns a large number of
signal patterns S to a small number of reference patterns R. In this
third section we present two types of classification decisions: one decision
uses the minimum mean-square distance between the signal and reference
pattern, and the other decision uses the maximum-1ikelihood ratio. The
latter is the optimum target detection process in many applications, and is
most commonly used in the classification of multispectral data.

Mean-Square Distance
We let Sj be the signal pattern of pixel i, Ry be the reference

pattern of a class of objects 2, and Y;. be the J-dimensional difference
vector between these two patterns with components

Y (35)

eij = Sij - Rej -

The mean-square distance (MSD) between a signal and reference pattern is then
given by

J
= 2
MSDgs = Yoi Yui Z:Vzij' (36)
J=1

The classification decision is to select the reference pattern for which
the mean-square distance is smallest, that is, for which

where £=1,2, ..., L but 2#4%', and L is the tutal number of
classes.

15



Maximum-Likelihood Ratio

General.- The J-dimensional Gaussian probability density function (PDF)
for computing the likelihood that the signal pattern 5; belongs to the class
of objects & 1is given by

-J/2 l-l/Z

PDin = (2n)

1
Ioljj' expy- E(?Ii [oljj']-] vﬁi)t' (38)

where |o jj'l is the determinant of the covariance matrix. The PDFg;

is maximuﬁ when the signal pattern S; and reference pattern Ry coincide
(i.e., when Ygij = 0 for all j), and smootnly decreases with increasing
separation between these two patterns at a rate that is controlled by the
covariance.

The logarithm of the PDng given by

l — - —
n POF,, = - E{J in 2m + ln!ozjj.l + Yli [Ogjj'] L U (39)

is comionly used to avoid the computation of an exponential. The classifica-
tion jecision is then to select the reference pattern for which

where 2=1,2, ..., L but 2 #¢'. The term J gn 2n can be neglected
if J 1is constant for all decisions, as is usually the case.

Special case.- If the components of the reference pattern R; are
uncorreiated, and hence the covariance matrix [o,ii'] reduces to a
diagonal matrix with eiements given by equations %%4) and (34) for the two
statistical models, then the computation of equation (39) reduces to

2
L1k I (41)
%43

I -<

J

1
an PDFEi 3"‘"( E n Gﬂjj+ Z
j=1

16



ERROR MODELS

'n this fourth section we show how the radiometric and statistical
~odels can be used to simulate the effect of errors in radiometric calibration
ing atmospheric compensation on classification. Variations of the spectral
signatures of a class of targets are already accounted for by the covariance

matrix [:ijj']'

Types of Errors

Consider the following hypothesis and its alternative:

There are two types of associated errors: the type I error which is to reject
Ho when in fact Hg 1is true (i.e., when pji(A) Z (X)), and the type Il
error which ;§ to accept Hp when in fact Hy is true (i.e., when

;i\ﬂ) ! SL(A .

Radiometric Calibration
We let cj; and Djj be the actual values of photosensor sensitivity
and dark current offset, respectively, and <ci> and <D;> be their

expected values (i.e., the calibration data). "The componénts of the
calibrated signal pattern S; are then given by

= S ¢l €22 o PRSI
§,. = 5~ R KA il X1 _iJ_____l__ (42)
i <cj> <Cj> i <cj>

17



where Sj jj are the components of the photosensor signal given by equation (6),
and Sjj “are the components of the error-free calibrated signal given by
equation (7). The components of the radiometric calibration error pattern

tri are then given by

15 " Si5 " €cij S4g * Caiye (43)

where

<C.>

= f_ﬁ_-_.L (44)

“cij cp

and

. (45)

(3
dij <cj>

Hence, we can account for the effect of errors in radiometric calibration on
data classification by reformulating the components of the difference vector
Yoi given by equation (35) as

Y LB

0§ * Epig e (46)

Atmospheric Transmittance
If we do not attempt to compensate for atmospheric transmittance, then

the components of the vector distance between signal and reference pattern
become

18



SL1 - jo = 1!.[N1(A. 1, €£) - <N1(A. 1, €)>] TJ(X) di (47)

If, however, we could compensate for imaging conditions without any error,
then

iJ

In practice, we can expect to introduce some error into the atmospheric
compensation process by errors involved in estimating the concentration of
?tmospheric constituents and in simplifying computations by an approximation.

n this case,

S;¢=R,; =S

B e N S e By

= S(AI. (A, 1, €)p,(M)T.(N)dr - <I. (1, €) S(2) <p,(2)>T.(2)dr, (49
1!. i 1y €)py j ) jlie e > 1!. 0y j( ) )

where the estimated imaging conditions are given by

<Ij(1. e)> =¢c(r, E)>ﬁ!. <t(r, 1, €)> Tj(x)dx.

19




SYSTEM TOPOLOGIES

In this fifth section we present three system topologies (see figure 4)
for classification: one topology represents the usual single-level decision
process, and the other two topologies represent two-level decision processes
for reducing the number of computations required for classification,

Decision Levels

Single-level.- The single-level decision process shown in figure 4(a)
classifies each signal pattern S; as one of L reference patterns Rj.
The selected pattern is denoted R;’j. This process generates a spatia
distribution of reference patterns that are generally highly redundant. The
clustering process removes this redundancy by establishing regional boundaries
for different reference patterns.

Two-level.- It may be advantageous in some applications to edit the
incoming signa) patterns; that is, to reject, for example, all data from
clouds, or to accept all data from vegetation. In the two-level decision
process shown in figure 4(b), a filter reduces data processing loads for a
level-2 classifier by applying a simple decision rule to eliminate obvious
cases from further consideration. Since the level-2 classifier needs to
process only admissible classes, every time a signal pattern fails to be
admissible, the level-2 data processing load is decreased (ref. 2).

A further sophistication is introduced by the system topology shown in
figure 4(c). We assume that L reference patterns can be qrouped into M
broad categories (e.g., clouds, water,soil, and vegetation) with each
category containing up to N reference patterns (e.q., types of soil and
vegetation) so that MN > L. Reference patterns that represent broad
categories are denoted R, and reference patterns that belong to a selected
category are denoted Rpy’p.

The supervisory (or level-1) classifier correlates all signal patterns
with the reference patterns Ry, and informs the reference pattern library
of each selection Rp. The library, in turn, sends the corresponding
reference patterns E;'n to the level-2 classifier for further correlation
with the signal pattern. It might in some cases be efficient to separate
the signal pattern S; into two patterns, 511 and 521. with different
spectral channels,

Computational Requirements
Table I summarizes the number of computations required to classify a
signal pattern with the single and two-level decision process of figures 4(a)
and (c), respectively, using either the mean-square distance (MSD) or

maximum-1ikelihood ratio (MLR) decision process. For comparison, let us
assume that L = MN and J.| = JZ = J. The number of computations with the
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single-level topology is then proportional to the product MN, and with the
two-level topology is proportional to the sum M + N. Clearly,

!N >1 for M>2, N>2., For example, if M=4 and N = 10, "
the Single-level topology requires about three times as many computation: as
the two-level topology.

The two-level topology with a supervisory classifier provides still
further opportunities for reducing the number of computations if only a
limited number of broad categories are of interest so that the level-2
processing load is decreased each time a broad category is rejected, or if
the classification of broad categories requires fewer spectral channels
(so that J7 > J2) and/or a simpler decision process. Potential reductions
in computational requirements must, of course, be carefully traded against
increases in classification errors.

SYSTEM PERFORMANCE AND DESIGN MODELS

In this sixth and final section, we present an analytical model for
the computer simulation of multispectral data acquisition and classification
based on the foregoing models and topologies. We describe also some general
spacecraft system design approaches and alternatives that are suggested by
these models and topologies.

Analytical Model

Figure 5 shows an analytical model for simulating various system
configurations for multispectral data acquisition and classification. The
model provides the following options:

(1) Single-level classification, using either the minimum mean-
square distance or maximum-likelihood decision process.

(2) Two-level classification, using the minimum mean-square distance
decision process for supervisory classification and the maximum-1ikelihood
decision process for level 2 classification.

(3) Either one of the above topologies with or without compensation
for imaging conditions.

To simulate clustering, we use the simple process of run-length encoding.
The run-length encoder compares each selected reference pattern Ry'j
(or Rm'n'i? with the preceding pattern Ryti.1 (or Ryip'i.y). It passes
each new pattern Ryii # Ry'i-1, and counts each repetitive plttern
Rm'i = Rm'i-1. Two-dimensional clustering algorithms that have been
developed zrefs. 24 to 28) are beyond the scope of our model.
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Design Censiderations

Figure 6 shows a typical spacecraft imaging geometry, and figure 7
shows a compatible signal processing flow diagram. The system uses the two-
level decision topology with a single supervisory classifier and several
level 2 classifiers. This topology offers not only some opportunities for
reducing computational requirements and rates, but also a wide range of
alternatives for the application of various technologies. Several level 2
classifiers versus only a single supervisory classifier might be desirable
since the level 2 classifiers must generally distinguish between more
subtle differences in signal patterns.

In addition to classification, the diagram accounts for a buffer memory,
radiometric calibration, spatial registration of multispectral data,
compensation for imaging conditions, and clustering of classified data.

Data processing might be performed either with analog samples, digital data,
or a hybrid system in which, for example, the supervisory classifier may
use integrated optics technology and the level 2 classifiers may use digital
or charge-coupled devices technology. Compensation for imaging conditions
on the reference patterns rather than on the signal patterns promises fewer
computations simply because there are fewer reference patterns than signal
patterns.

The system topology is compatible with various imaging techniques.
We assume that the imaging system provides an im=21e sampling lattice of |
pixels normal to the spacecraft flight path, and J spectral channels along
the flight path (see figure 6).

In an optical-mechanical scanner, J photosensors, each covered by a
spectral filter, would be located along the flight path direction, and a
servo-controlled mirror would scan an image of the scene past these
photosensors in a direction that is normal to the flight path. The analog
signals that are generated along the line-scan direction would be electronical-
ly sampled.

In a pushbroom scanner, J linear photosensor arrays, each covered by a
spectral filter and connected to a transport array, would be oriented normal
to the flight path direction. The siagnals from the 1 photosensors of each
array would be periodically transferred in parallel to an associated transport
array, and nearly continuously readout in series from each transport array.

The sequence of the spectral channels should be ordered according to their
use in the classification process. The first J1 channels are intended for
the supervisory classifier, and the J2(<J) channels for the level 2
classifiers.

Other image-sampling lattices could also be advantageous. For example, a
spatial separation between the first J) channels and the remaining J-Jy
channels could provide an increased delay between the two levels of
classifications. Or even two separate photodetection mechanisms could
be envisioned: one mechanism for the supervisory classifier that would be,
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for example, optimized for speed [perhaps at the cost of spectral and/or
spatial resolution), and the other for level 2 classifiers that would be
optimized for spectral resolution. This arrangement could conceivably

lead to a change in the basic topnlogy to permit the supervisory classifier to
s:lect different spectral channels and resolutions for the level 2
classifiers.

A buffer memory may be required to match a high data acquisition rate
to a slower data processing rate and/or to change a discontinuous data
acquisition rate to a constant rate for continuous data processing. Typically,
the buffer might accept (or read) data during the active cycle of each line
scan and transmit (or write) the same data at a slightly reduced rate during
the complete (active olus passive) line-scan period. In general, it appears
to be desirable to match a continuous data processing rate to the average
data acquisition rate so that the required storage capacity does not become
excessively large.

Calibration requirements of the multispectral signal will depend on the
performance characteristics of the photosensors, But two typical processes
can be anticipated: one is subtraction of dark current offsets, and the
other is multiplication by calibration constants.

The image-sampling lattice requires that the data from all but the last
spectral channel must be delayed for proper spatial registration. Data
from the first J, spectral channels must be synchronized for the supervisory
classifier, and must also be synchronized together with data from the remaining
channels for the level 2 classifiers. (It might be desirable to include
these delays into the buffer memory.)

These delays could also provide corrections for geometric distortions
called path skewing that are introduced if the spatial coverage normal to
the flight path is obtained time sequentially (e.g., by an optical-
mechanical scanner) rather than simultaneously (e.g., by a pushbroom
scanner).

Conceptually, the simplest approach is to let the supervisory classifier
wait until all data from the Jy spectral channels have been synchronized
before starting its classification task, and similarly to let the selected
level 2 classifier wait until the data from all J; channels have been
synchronized. However, a classifier might also start its task as soon as
data from two or more spectral channels have been synchronized, and use
data from the following channels as they become available. The latter
approach might offer some saving in time and in delay requirements.

The supervisory and each level 2 classifier is anticipated to perform
parallel correlations of the signal and reference patterns, and to identify
the reference patterns that correlate most closely to the signal patterns.
The result of the supervisory classification, which occurs first, is used to
select the reference patterns for the level 2 classification, and the result
of this classification is passed to a sequencing buffer.
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The buffer sequences the selected reference codes into proper order.
Correct sequencing could be obtained either by sending the selected patterns
in proper order to the buffer or by using synchronizing signals that allow
the buffer to arrange these patterns in proper order, The first approach
appears conceptually easier. [t could be implemented by multiplexing the
incoming data to K level 2 classifiers together with the selected set of
level 2 reference patterns. This scheme would assure that each level 2
classifier would continuously process data at a rate that is a factor of K
slower than the basic data rate, and that the proper spatial sequence of the
selected level 2 reference patterns could be easily maintained. To assure
synchronization at the beginning of each scan line, it might be advantageous
to let the ratio [/K be an integer so that the first pixel in each line is
always processed by the first level 2 classifier.

It is the function of the clustering process to remove the data redundancy
that results from classifying a large number of multispectral signal patterns
into a few reference patterns. The simplest type of clustering is presented
by the run-length encoder which reduces redundancy only along the line-scan
direction (i.e., normal to the flight path). [Its output consists of a
succession of different pattern codes, eacn followed by the number of pixels
for which the code was selected. A substantially more significant redundancy
reduction could be accomplished with two-dimensional clustering algorithms,
such as described and formulated in references 20 to 24.

Compensation for atmospheric conditions might increase the accuracy
of multispectral data classification more than any other advances in processing
techniques for remote sensors. Two efforts have been advocated to achieve
this (ref. 4): development of improved atmospheric models for computing
atmospheric attenuation, and development of instruments for measuring atmos-
pheric optical quantities simultaneously with remote sensing observations.

Probably the simplest approach for estimating atmospheric effects would
be to measure atmospheric conditions directly from pericdically monitored
targets concurrent with remote sensing observations (see, for example, ref. 5).
Our approach to compensate for atmospheric transmittance suggests optical
instruments that measure atmospheric attenuation in the same spectral bands as
used by the spacecraft imaging system The spacecraft could trigger any
ground-based instrument within its viewing range to make an atmospheric
measurement and transmit the result to the spacecraft. An obvious disadvantage
of this approach would be the requirement for a large number of optical
instruments with a signal reception and transmission capability. This
disadvantage would be further compounded by platform requirements for oceans.

It would, therevore, probably be more desirable to augment the
spacecraft imaging system itself witn an electro-optical device for
measuring optical properties of the atmosphere even if the measurement and
signal processing technique is substantially more complex. The most important
effects of atmospheric transmittance on the spectral radiance sensed by an
earth-viewing imaging system couid be distinguisned from surface
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reflectance properties by their relatively narrow absorption features

(mostly due to Hp0 and COp) at well-defined wavelengths. Atmospheric transmit-
tance due to scattering varies relatively slowly with wavelength and can,
therefore, not be so easily distinguished, but its distorting effect on the
multispectral signal features is fortunately for the same reason less
significant. Furthermore, it is the concentration of water vapor, and hence
absorption, that varies most rapidly with time and locality, whereas scattering
due to particles and molecules (and, incidentally, absorption due to CO2)

are more constant. All this suggests that major deformations due

to the atmosphere could be estimated with an atmospheric mode! and measure-
ments of the depth of a single absorption band for each constituent that is to
be accounted for. Atmospheric modeling has the added advantage that it

can account for atmospheric conditions that cannot be readily measured from

the spacecraft but that can be obtained from other observations.

CONCLUDING REMARKS

Computer simulatiors of the analytical models and system topologies
presented in this paper are intended to provide a beiteir understanding of
the effect of major error sources on multispectral data classification, and to
aid in the selection of spectral bands and the evaluation of various system
tonologies and special remote sensing techniques such as atmospheric compensation.
However, the analytical models must be expanded to account more rigorously
for atmospheric effects, target properties, and system component characteristics
before their simulations can be relied upon tou yield definitive results.

Atmospheric effects must include sky radiation and path radiance as
well as transmittance; target properties must include statistics about tne
reflectances of various classes of objects and the dependence of these
statistics on lighting and viewing geomatry; and system characteristics must
include reaiistic assessments of photosensor sensitivity and noise and of the
transfer functions of analog and digital electronics and of such new
technologies as integrated optics if and when they become available. This
requires not only the consolidation of existing data about atmospheric
effects and object reflectances, but also more extensive measurements and
modeling of these properties. Such a systematic and comprehensive approach
can be expected to lead to more efficient system designs for earth resource
and environmental monitoring.
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TABLE I.- COMPUTATIONAL REQUIREMENTS FOR THE CLASSIFICATION
OF EACH SIGNAL PATTERN

—— i il —— -—

———— -

Decision : Number of Mu1t1plic?§1ons
Topology Decision Process and of Additions()
Single-level MSD(Z) 2L) < 2MNJ
mr(3) Lo? + 30) < W% + )
Two-level with MSD for both 2MJl + ZNJ2
supervisory levels
classifier

MLR for both M2 N, . 2
levels 7(J] + 3J1) + §(J2 + 3J2)

MSD for first
level, and MLR
for second
Tevel

N, 2
¢MI, + ?(Jz + 3J2)

(])The number of multiplications and additions are equal to each other for
both decision processes. (From ref. 23 for single-level topology.)

(Z)Mean-square distance.

(3)Maximum-like1ihood ratio.
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The topology represents two-level classification

with (optional) spectral channel selection and compensation for

imaging conditions.

The model can also simulate single-level classi-

fication with mean-square distance or maximum-1ikelihood decision.
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