NASA TECHNICAL MEMORANDUM

NASA TM 78138

FISCAL YEAR 1977 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS (NASA) 80 p HC A05/MF A01

Compiled by O. L. White
Management Services Office

October 1977

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 77. It also includes papers of MSFC contractors.

After being announced in STAR or L STAR, all of the NASA series reports may be obtained from the Scientific and Technical Information Facility, P.O. Box 8757, Baltimore/Washington International Airport, Baltimore, MD 21240.

The information in this report will be of value to the scientific and engineering community in determining what information has been published and what is available.
FOREWORD

In accordance with the NASA Space Act of 1958 the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed are assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. The N number should be cited when requesting a document.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 1977 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL NOTES</td>
<td>22</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>27</td>
</tr>
<tr>
<td>NASA TECHNICAL REPORTS</td>
<td>28</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>29</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>61</td>
</tr>
<tr>
<td>NASA REFERENCE PUBLICATION</td>
<td>75</td>
</tr>
</tbody>
</table>
This document contains about 7600 references on the metric system and conversion to the metric system. These references include all known documents on the metric system as of December 1975, the month of enactment of the Metric Conversion Act of 1975. This bibliography includes books, reports, articles, presentations, periodicals, legislation, motion pictures, TV series, film strips, slides, posters, wall charts, education and training courses, addresses for information, and sources for metric materials and services. The bibliography is comprehensively indexed for quick retrieval.

This report defines a procedure for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Fundamentally, this procedure involves the use of classical climatological regimes for the long-range analysis that can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. However, as the statistical data matrix is developed, these synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.

This document summarizes the experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1975. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Solidification of Pb-Sb Eutectic, Feasibility of Producing Closed-Cell Metal Foams, Characterization of Rocket Vibration Environment by Measurement of Mixing of Two Liquids, Uniform Dispersions of Crystallization Processing, Direct Observation of Solidification as a Function of Gravity Levels, Casting Thoria Dispersion-Strengthened Interfaces, Contained Polycrystalline Solidification, and Preparation of a Special Alloy for Manufacturing of Magnetic Hard Superconductor Under Zero-g Environment.

This report establishes a theoretical background for the compilation process by dividing it into five phases and explaining the concepts and algorithms that underpin each. The five selected phases are lexical...
analysis, syntax analysis, semantic analysis, optimization, and code generation. Several methods for both top-down and bottom-up syntax analysis are illustrated via examples. Graph theoretical optimization techniques are likewise presented, and approaches to code generation are described for both one-pass and multipass compilation environments. Following the initial tutorial sections, more than 20 tools that have been developed to aid in the process of writing compilers are surveyed. Care is taken to categorize each according to the theoretical framework just established. A uniform notation is used throughout this portion rather than resorting to that notation used by each individual system. Eight of the more recent compiler development aids are selected for special attention – SIMCMP/STAGE2, LANG-PAK, COGENT, XPL, AED, CWIC, LIS, and JOCIT. The concluding sections assess the impact of compiler development aids, describe some of their shortcomings, and inspect some of the areas of research currently in progress.

TM X-3509 March 1977
Solar Absorption Characteristics of Several Coatings and Surface Finishes. James R. Lowery. N77-20567

The results of a study conducted to determine the solar absorption characteristics of several films potentially favorable for use as receiving surfaces in solar energy collectors are presented. Included in the investigation were chemically produced black films, black electrodeposits, and anodized coatings.

The results of this study showed that black nickel exhibited the best combination of selective optical properties of any of the coatings studied. A serious drawback to black nickel was its high susceptibility to degradation in the presence of high moisture environments. Electroplated black chrome generally exhibited high solar absorptivities, but the emissivity varied considerably and was also relatively high under some conditions. The black chrome had the greatest moisture resistance of any of the coatings tested. Black oxide coatings on copper and steel substrates showed the best combination of selective optical properties of any of the chemical conversion films studied.

TM X-73342 July 1976
Computer Simulation Results of Attitude Estimation of Earth Orbiting Satellites. Shanying R. Kou. Systems Dynamics Laboratory. N76-32213

Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented in this report. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in BASIC language and were executed in computers HP 9830A and HP 9866A. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over Kalman filter.

TM X-73343 September 1976

The major coordinate systems as well as the transformations and transformation angles between them for the Space Telescope are defined in this report. The
coordinate systems were primarily developed for use in pointing and control system analysis and simulation. Additional useful information (on nomenclature, symbols, quaternion operations, etc.) is contained in the appendices.

TM X-73344 November 15, 1976

A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear Satellite Power Systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System and, therefore, deserve additional study. Many key issues exist but appear resolvable with the anticipated technological advances of the next decades.

TM X-73345 September 1976

Since the earlier days of the patent by the Israeli scientists (Nebenzahl and Leven, 1973), a virtual explosion of information on Laser Isotope Separation (LIS) has occurred. Research is apparently going on in several European countries and particularly in Russia. References vary from German patents to the Soviet Journal of Quantum Electronics, the American Science Journal, and then finally to the Science Fiction magazine, Analog.

An overview of the various categories of the LIS methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process.

Applications have been proposed for the LIS system which, in addition to the use to enrich uranium, could in themselves develop into programs of tremendous scope and breadth. Such applications as treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs.

Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

TM X-73346 September 1976

During the manned operation of the Skylab Apollo Telescope Mount, the Marshall Space Flight Center/The Aerospace Corporation solar X-ray telescope (S-056) observed many solar flares and transient solar phenomena. This report correlates those X-ray observations with events reported by H-alpha observers and those
recorded by integrating X-ray satellite detectors. Data included for individual events are:

1. Type of H-alpha activity
2. H-alpha begin, maximum, and end times
3. SOLRAD 9 or VELA X-ray (1 to 8 Å) peak flux and time of peak flux
4. Begin time of S-056 observations
5. Approximate heliographic location

Minor X-ray transients and structural changes are not included in this report.

The main tool for comparing remote sensing classification results with ground truth information is a contingency table derived from overlaying digital classification and ground truth maps. The purpose of this report is to explore methods of deriving a maximum amount of information from the contingency table and of modifying the contingency table to provide more information. This report contains 15 different statistical criteria derived from a contingency table that can be used to evaluate tabular classification results, which unfortunately provide little information on the visual characteristics of a classification map. Tabular results provide information relating mainly to how much rather than where, which is the purpose of a map. Therefore modifications are proposed to the contingency table which contain information on the spatial complexity of the test site, on the relative location of classification errors, on how well the classification maps agree with the ground truth maps, and which reduce back to the original information normally contained in a contingency table.

The objectives of this work are to identify effects that are observed in Landsat image data when the image data are geographically corrected using the nearest neighbor, bilinear interpolation and bicubic interpolation registration techniques, and to identify potential impacts of registration on image compression and classification.

The purpose of this study was to provide a quantitative cost for various Spacelab flight hardware configurations, along with varied software development options. The three major conclusions reached as a result of this study are as follows:

1. Spacelab program cost for software development and maintenance is independent of experimental hardware and software options.
2. Distributed standard computer concept simplifies software integration without a significant increase in cost.

3. Decision on flight computer hardware configuration should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.

This report is published in five volumes: Volume I contains the Executive Summary (Presentation); Volume II, Study Elements and Approach; Volume III, Spacelab Cost Data; Volume IV, Spacelab User Cost Data (Central Experiment Computer); and Volume V, Spacelab User Cost Data (Distributed Computer).

This is Volume I: Executive Summary (Presentation).

TM X-73349 April 1976
Spacelab Experiment Computer Study
Volume I. Executive Summary (Presentation). James L. Lewis, Bobby C. Hodges, and James O. Christy. N77-13098

The purpose of this study was to provide a quantitative cost for various Spacelab flight hardware configurations, along with varied software development options. The three major conclusions reached as a result of this study are as follows:

1. Spacelab program cost for software development and maintenance is independent of experimental hardware and software options.

2. Distributed standard computer concept simplifies software integration without a significant increase in cost.

3. Decision on flight computer hardware configuration should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.

This report is published in five volumes: Volume I contains the Executive Summary (Presentation); Volume II, Study Elements and Approach; Volume III, Spacelab Cost Data; Volume IV, Spacelab User Cost Data (Central Experiment Computer); and Volume V, Spacelab User Cost Data (Distributed Computer).

This is Volume II: Study Elements and Approach.

TM X-73349 April 1976
Spacelab Experiment Computer Study

The purpose of this study was to provide a quantitative cost for various Spacelab flight hardware configurations, along with varied software development options. The three major conclusions reached as a result of this study are as follows:

1. Spacelab program cost for software development and maintenance is independent of experimental hardware and software options.

2. Distributed standard computer concept simplifies software integration without a significant increase in cost.

3. Decision on flight computer hardware configuration should not be made until payload selection for a given mission and a
detailed analysis of the mission requirements are completed.

This report is published in five volumes: Volume I contains the Executive Summary (Presentation); Volume II, Study Elements and Approach; Volume III, Spacelab Cost Data; Volume IV, Spacelab User Cost Data (Central Experiment Computer); and Volume V, Spacelab User Cost Data (Distributed Computer).

This is Volume III: Spacelab Cost Data, which provides the detailed costing methods and cost data.

TM X73349
April 1976

The purpose of this study was to provide a quantitative cost for various Spacelab flight hardware configurations, along with varied software development options. The three major conclusions reached as a result of this study are as follows:

1. Spacelab program cost for software development and maintenance is independent of experimental hardware and software options.

2. Distributed standard computer concept simplifies software integration without a significant increase in cost.

3. Decision on flight computer hardware configuration should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.

This report is published in five volumes: Volume I contains the Executive Summary (Presentation); Volume II, Study Elements and Approach; Volume III, Spacelab Cost Data; Volume IV, Spacelab User Cost Data (Central Experiment Computer); and Volume V, Spacelab User Cost Data (Distributed Computer).

This is Volume IV: Spacelab User Cost Data (Central Experiment Computer).

TM X73349
April 1976
Spacelab Experiment Computer Study Vol. V: Spacelab User Cost Data (Distributed Computer).

The purpose of this study was to provide a quantitative cost for various Spacelab flight hardware configurations, along with varied software development options. The three major conclusions reached as a result of this study are as follows:

1. Spacelab program cost for software development and maintenance is independent of experimental hardware and software options.

2. Distributed standard computer concept simplifies software integration without a significant increase in cost.

3. Decision on flight computer hardware configuration should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.
Cost Data (Central Experiment Computer); and Volume V, Spacelab User Cost Data (Distributed Computer).

This is Volume V: Spacelab User Cost Data (Distributed Computer).

A high voltage electrostatic field enhances the rate of normal convective cooling. This cooling rate is a function of starting temperature and voltage applied, and an inverse function of atmospheric pressure or the heat capacity of the surrounding media. It appears that the cooling rate is also a function of current flow; however, additional work is needed to separate other variables from the effect of current flow.

The maximum increase in heat loss over the normal convective cooling was approximately 0.167°C/sec (0.3°F/sec) at 316°C (600°F) and 20000 V. From the data taken it is assumed that the added rate of cooling would be increased with higher temperatures and higher voltages.

It appears that a high voltage field disrupts the molecular layer of air surrounding a hot body and increases the rate of convective cooling.

Future tests are planned to further characterize this phenomenon and to determine applications for electrostatic cooling.

The Saturn launch vehicle's guidance and control system is so complex that the reliability of a simplex system is not adequate to fulfill mission requirements. Thus, to achieve the desired reliability, redundancy encompassing a wide range of types and levels was employed. At one extreme, the lowest level, basic components (resistors, capacitors, relays, etc.) are employed in series, parallel, or quadruplex arrangements to insure continued system operation in the presence of possible failure conditions. At the other extreme, the highest level, complete subsystem duplication is provided so that a backup subsystem can be employed in case the primary system malfunctions. In between these two extremes, many other redundancy schemes and techniques are employed at various levels. Basic redundancy concepts are covered to gain insight into the advantages obtained with various techniques. Points and methods of application of these techniques are included. The theoretical gain in reliability resulting from redundancy is assessed and compared to a simplex system. Problems and limitations encountered in the practical application of redundancy are discussed as well as techniques verifying proper operation of the redundant channels. As background for the redundancy application discussion, a basic description of the guidance and control system is included.

The white light solar coronagraph was one of the scientific telescopes flown on Skylab as determined from the Solar Coronagraph Data. James P. McGuire. Space Sciences Laboratory. N77-13138
Skylab to study the Sun. It studied the Sun's atmosphere located from 0.5 to 5.0 solar radii above the Sun's limb. Such a telescope is so sensitive to contamination around the spacecraft that it caused a major contamination abatement program to be initiated at the conception of Skylab. This report analyzes the coronagraph's data, showing the successfullness of that abatement program.

TM X73354 November 1976

This report is concerned with the estimation of the loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction. The current status in the physics of low-energy laser propagation through turbulent atmosphere is presented, as well as the analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric turbulence. The losses due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests, and theoretical and experimental signal to noise values are compared. In addition, the maximum and minimum values of the atmospheric attenuation over a two-way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

TM X-73355 September 1976

The energy crisis and a national concern for conserving energy resources have caused Congress to establish the Energy Research and Development Administration (ERDA). The ERDA has enlisted the Marshall Space Flight Center to perform certain aspects of a research and development program directed toward demonstrating the practical use of solar heating within 3 years and combined solar heating and cooling within 5 years. In conjunction with this solar research and development effort, it became apparent that a method of testing and evaluating solar panel coatings and designs and solar collector subsystems was necessary to quickly and easily make comparisons between representative candidate samples of each. An experimental apparatus was constructed and utilized in conjunction with both a solar simulator and actual sunlight to test and evaluate various solar panel coatings, panel designs, and scaled-down collector subsystems. Data were taken by an automatic digital data acquisition system and reduced and printed by a computer system. The solar collector test setup, data acquisition system, and data reduction and printout systems were considered to have operated very satisfactorily. Test data indicated that there is a practical or useful limit in scaling down beyond which scaled-down testing cannot produce results comparable to results of larger scale tests. Test data are presented herein as are schematics and pictures of test equipment and test hardware.

TM X-73357 December 1976

An overview of the data analysis results reported in the literature, to date, of the 15
June 1973 1B/M3 flare is presented. Some 30 papers have been published relative to this event. This work was performed to assist the participants of the Skylab Solar Workshop Series B on Solar Flares to become familiar with one of the best observed flares during the Skylab mission.

The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing strength with decreasing temperature to -320°F (-196.0°C). Below liquid nitrogen temperature the smooth tensile and notched tensile strengths decreased slightly while the elongation and reduction of area decreased drastically. The Charpy V-notched impact energy decreased steadily with decreasing test temperature.

Stress corrosion tests were performed on longitudinal tensile specimens and transverse “C”-ring specimens exposed to: alternate immersion in a 3.5% NaCl bath; humidity cabinet; and a 5% salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack. Approximately 3/4 of the transverse “C”-rings exposed to alternate immersion and to salt spray experienced a pitting attack on the top and bottom ends. The “C”-rings exposed to the humidity cabinet indicated only mild rusting.

Additional stress corrosion tests were performed on transverse tensile specimens which were machined from an annealed, straightened, and centerless ground 2.50-inch (6.35 cm) diameter bar. No failures occurred in the 90% stressed specimens exposed for 90 days in the alternate immersion and salt spray environments.
An attempt is made to understand the structure and decay of a trailing vortex through the numerical solutions of the full Navier-Stokes equations. Unsteady forms of the governing equations are recast in terms of circulation, vorticity, and stream function as dependent variables, and a second upwind finite difference scheme is used to integrate them with prescribed initial and boundary conditions. A discussion of the boundary conditions at the outer edge and at the outflow section of the trailing vortex is included. Different models of the flow are postulated, and solutions are obtained describing the development of the flow as integration proceeds in time. A parametric study is undertaken with a view to understand the various phenomena that may possibly occur in the trailing vortex. Using the Hoffman and Joubert law of circulation at the inflow section, the results of the present investigation are compared with the experimental data of Chigier and Corsiglia on a Convair 990 wing model and a rectangular wing. With an exponentially decaying law of circulation at the inflow section and an adverse pressure gradient at the outer edge of the trailing vortex, solutions depict vortex bursting through the sudden expansion of the core and/or through the stagnation and consequent reversal of the flow on the axis. It is found that this bursting takes place at lower values of the swirl ratio as the Reynolds number increases.
A large, long-lived, soft X-ray emitting arch system was observed during the last Skylab mission. This arcade of arches stayed in the same approximate position for several solar rotations. This report suggests that these long-lived arches owe their stability to the stable coronal magnetic-field configuration. A global constant a force-free magnetic field analysis, as developed by Nakagawa et al., is used to describe the arches, and a marked resemblance is noted between the theoretical magnetic-field configuration and the observed X-ray emitting feature.

TM X-73363
January 1977
Robert M. Wilson. Space Sciences Laboratory. N77-17988

An event compilation is presented which correlates ATM/S-056 X-ray event analyzer solar observations with solar flare activity. Approximately 1070 h of pulse-height analyzed X-ray proportional counter data were obtained with the X-ray event analyzer during Skylab. During its operation, 449 flares (including 343 flare peaks) were observed. Seventy events of peak X-ray emission \geq Cl were simultaneously observed by ground-based telescopes, SOLRAD 9 and/or Vela, and the X-ray event analyzer. These events were observed from preflare through flare rise to peak and through flare decline. This work was performed, in part, as a contribution to the Skylab Solar Workshop Series B on Solar Flares.

TM X-73364
December 1976

The equipment and procedure used to measure the test plane uniformity produced by the MSFC 405 lamp solar simulator array are presented along with details on the computer program used to analyze the measurement data. The results of the first measurement are given which showed the uniformity not to be as good as expected. The best uniformity obtained had a standard deviation of 4 percent with peak-to-peak values of ±11 percent.

TM X-73365
December 1976

Tethers have been proposed for many space applications such as retrieving stranded astronauts, stationkeeping two orbiting vehicles, and suspending scientific payloads into the upper reaches of the atmosphere from a main orbiting vehicle. Subsequent to these proposals, a new ingredient has been added. Namely, a closed-loop control system has been added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system can be used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from a Space Shuttle Orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.

TM X-73366
December 1976
In July 1976, a Team of MSFC Science and Engineering personnel was formed to assess the technical adequacy of the High Energy Astronomy Observatory-B (HEAO-B) Attitude Control and Determination Subsystem (ACDS). As a result of their analysis of the ACDS, the Team found no reason why the ACDS will not perform its specified activities adequately. The Team's activities culminated in their participation in the HEAO-B Critical Design Review.

The dissipation of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

The ATM/S-056 X-Ray Experiment operated successfully on Skylab from May 1973 to February 1974. The S-056 observations consist of 27,000 photographs (heliograms) obtained by the X-ray telescope and 1100 h of proportional counter data obtained by the X-ray event analyzer in the soft X-ray region of the solar spectrum. This report contains a description of the S-056 data together with additional relevant information that may be needed by users of the data. Although the report is intended primarily to describe the data that were sent to the National Space Science Data Center, it should also be useful to other users.

Data for NASA's AVE V Experiment: 25-mb Sounding Data and Synoptic Charts. Mark E. Humbert and Kelly Hill. Space Sciences Laboratory. N77-20698

This report describes the AVE V Experiment and presents tabulated rawinsonde data at 25-mb intervals from the surface to 25 mb for the 23 stations...
participating in the experiment. Soundings were taken between 0000 GMT, June 11, and 1200 GMT, June 12, 1976. The methods of data processing and accuracy are briefly discussed. An example of contact data is also included.

TM X-73371 December 1976

With special reference to design of fuel tanks in space vehicles, the principles of fracture mechanics are reviewed. An approximate but extremely simple relationship among (1) the operating stress level, (2) the length of crack, and (3) the number of cycles of failure is derived, from which any one of the variables can be computed—approximately from the knowledge of the other two, if the loading schedule (mission of the tank) is not greatly altered.

Two sample examples illustrating the procedures of determining the allowable safe operating stress corresponding to a set of assumed loading schedule is included in this report. The selection of sample examples is limited by the relatively meager available data on the candidate material for various stress ratios in the cycling.

TM X-73372 December 1976

A systems model reflecting the current "in-house" design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: transportation to and between orbits; assembly of the SPS; and maintenance of the SPS.

The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a "figure of merit" from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations can be studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

TM X-73373 February 1977
Manufacturing Complexity Analysis. Dr. Leon M. Delionback. Systems Analysis and Integration Laboratory. N77-20440

This report explains the principle of complexity analysis and its special relationship with learning/cost improvement curve theory.

A "bottoms up" approach for the analysis of the complexity of a typical system is presented. Starting with the subsystems of an example system, the step-by-step procedure for analysis of the complexity of an overall system is given. The learning curves for the various subsystems are determined as well as the concurrent numbers of relevant design parameters. Then trend curves are plotted for the learning curve slopes versus the various design-oriented parameters, e.g.
Representative cuts are taken from each trend curve, and a figure-of-merit analysis is made for each of the subsystems. Based on these values, a characteristic curve is plotted which is indicative of the complexity of the particular subsystem (Figure-of-merit versus learning curve slope). Each such characteristic curve is based on a universe of trend curve data taken from data points observed for the subsystem in question. Thus, a characteristic curve is developed for each of the subsystems in the overall system.

A composite complexity analysis is performed to determine the manufacturing complexity for the overall system. A procedure is outlined to define the steps in computation for this value (along with an illustrative example).

In the discussion a narrative description is given for the limitations in scope of the manufacturing complexity analysis with examples of some of the cost elements that are not included.

TM X-73374
November 1976

Analytical analysis and computer simulation results of the Miniaturized Pointing Mount as an instrument pointing system are presented. Miniaturized Pointing Mount performance results include inertial pointing, slewing, tracking, and rastering. Typical instrument characteristics are used as well as some parameter variations of instrument and Miniaturized Pointing Mount characteristics.

TM X-73375
April 1977

This report presents the ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of hot rolled and centerless ground Nitronic 32 stainless steel bar material.

The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing smooth tensile strength with decreasing temperature to liquid hydrogen temperature. However, below -200°F (-129.0°C) the notched tensile strength decreased slightly and below -320°F (-196.0°C) the decrease was significant. The elongation and reduction of area decreased drastically at temperatures below -200°F (-129.0°C). The Charpy V-notched impact energy decreased steadily with decreasing test temperature.

Stress corrosion tests were performed on longitudinal tensile specimens stressed to 0, 75, and 90% of the 0.2% yield strength and on transverse "C"-ring specimens stressed to 75 and 90% of the yield strength and exposed to: alternate immersion in a 3.5% NaCl bath, humidity cabinet environment, and a 5% salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack; however, the "C"-rings exposed to the alternate immersion and to the salt spray experienced some shallow etching and pitting, respectively. Small cracks appeared in two of the "C"-rings after one month.
exposure to the salt spray. Metallographic
examination did not reveal the branching
phenomenon associated with stress corrosion
cracking.

TM X-73376 February 1977
Observation of the X-Ray Source Sco
Space Sciences Laboratory. N77-22021

An attempt was made to observe the
discrete X-ray source Sco X-1 with ATM
instrumentation on 20 September 1973
between 0856 and 0920 UT. This report
presents the results of analysis of the X-ray
data obtained with the ATM/S-056 X-ray
event analyzer, in particular the flux
observed with the 1.71 to 4.96 keV counter.
No photographic image of the source was
obtained because Sco X-1 was outside the
field of view of the X-ray telescope.

TM X-73377 January 1977
The Contribution of Interstellar
Particles to the Interplanetary Dust
Complex. Gilmer Allen Gary. Space
Sciences Laboratory. N77-24038

The Poynting-Robertson effect acting
on interstellar particles passing by the Sun
was shown to have the potential to capture
and possibly to contribute some of these
particles to the interplanetary dust complex.
When the probability of encounter of the
Sun with interstellar clouds is considered,
the quasi-equilibrium mass rate of accretion
by this mechanism is comparable to the
mass loss rate of the interplanetary complex.
The mechanism then produces a quasi-
equilibrium condition to maintain the inter-
planetary particle complex. This requires
that the interstellar particles have a repulsive
force due to radiation pressure less than the
attractive gravitational force. If this assump-
tion is correct for a significant fraction of
the particles, then at intervals an interstellar
cloud may pass sufficiently close to the Sun
to allow the Poynting-Robertson effect to
replenish the interplanetary complex.

The previously proposed mechanisms of
gravitational encounters and the solar grav-
tational lens as a method of capture of
interstellar particles are shown to be
insufficient. Corrections to the formulations
of these two methods are given, and a closed
form formula of the Poynting-Robertson
effect on hyperbolic orbits about a star is
derived.

TM X-73378 February 1977
Techniques of Global Analysis Applied
to Gravitation Theories: A Cosmologi-
cal Black Hole. George Debney. Space
Sciences Laboratory. N77-22029

An elementary model of freely falling
observers and emitters within a black hole's
radius is examined to determine the redshift
spectrum reaching a typical observer. The
model is independent of scale, the funda-
mental unit being the radius (mass) of the
black hole. The observers/emitters all follow
the same kinds of trajectories: radially
inward and starting from rest at spatial
infinity. The "test-particle" role is assumed
throughout; i.e., the observers/emitters do
not themselves contribute to the gravita-
tional field of the system. By means of
redshift formulas and luminosity distance to
the emitters, a picture of actual redshifts
and blueshifts, with their intensities, emerges
for an observer within the black hole's
radius. No luminosity distances greater than
approximately one-half the radius are
considered in this particular study; neverthe-
less, redshifts and blueshifts up to approxi-
mately 0.6 are seen in portions of the
observer's celestial sphere (i.e., his sky). An
exotic application can be made, as a
The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. Some of the basic hardware and software components of the Image Data Processing System are presented as deemed necessary for the understanding of the text. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.

Bulk and thin films of FeTe have been studied Mössbauer spectroscopically. It was found that FeTe has one noncubic Fe$^{2+}$ site which is $3d^2 4s 4p^3$ hybridized. The presence of dangling bands is indicated in spectra of FeTe thin films. The films show a tendency of texture formation. The substrate is observed to influence the film structure and nature of bonds in films.
The High Energy Astronomy Observatory-A (HEAO-A) observatory, scheduled for launch in late June 1977, will spend most of its orbital lifetime in a scanning mode, spinning from 0.03 to 0.1 rpm about an axis aligned with the Sun. The dates of availability in the scan band are given for a list of 248 X-ray sources. Celestial maps of source locations and scan planes, and examples of the nighttime elevation of available sources are presented. This document is intended to aid ground-based observers in planning coordinated observations with HEAO-A.

TM X-73392 April 1977

Line-focusing acrylic Fresnel lenses with application potential in the 200° to 370°C range are being analytically and experimentally evaluated. Investigations previously conducted with a 56 cm wide lens have been extended by the present study to experiment/analyses with a 1.8 by 3.7 m lens. A measured peak concentration ratio of 64 with 90 percent of the transmitted energy focused into a 5.0 cm width was achieved. A peak concentration of 61 and a 90 percent target width of 4.5 cm were analytically computed. The experimental and analytical lens transmittance was 81 percent and 86 percent, respectively. Thus, the analytical/experimental lens performance correlation is considered good. The lens also was interfaced with a receiver assembly and operated in the collection mode. The collection efficiency ranged from 42 percent at 100°C to 26 percent at 300°C, whereas an efficiency of 40 percent at 300°C was anticipated. Apparently, the reflective cavity surrounding the absorber tube did not perform as expected. Therefore, future receiver assemblies will decrease or eliminate reliance on reflective surfaces; i.e., the energy focused directly on the absorber tube surfaces will be increased. Efficiency improvements to the 40 to 50 percent range are anticipated.

TM X-73393 May 1977

This report supplements NASA TM X-73300, April 15, 1976. These reports are compilations of bibliographies from the principal investigator groups of the Apollo Telescope Mount (Skylab solar observatory facility) that gathered data from May 28, 1973, to February 8, 1974. The analysis of these data is presently under way and is expected to continue for several years.

The publications listed in this report are divided into the following categories: (1) Journal Publications, (2) Journal Publications Submitted, (3) Other Publications, (4) Presentations – National and International Meetings; and (5) Other Presentations. An author index is included together with errata for the first report.

TM X-73394 April 1977

The problems of orbit transportation have been addressed significantly during the past 5 years. An Interim Upper Stage (IUS)
and a Spinning Solid Upper Stage (SSUS) are being developed for operation in the early 1980’s. Current long-range planning efforts indicate a need for extended space operations capabilities which are greater than that provided by IUS and SSUS.

This is a system study for a transportation system which will follow the IUS and SSUS. Included are concepts, concept comparisons, trends, parametric data, etc. associated with the future system. Relevant technical and programmatic information is developed. This information is intended to focus future activity to identify attractive options and to summarize the major issues associated with the future development of the system. A comprehensive summary of the study is included in the body of the report in section XVI.

It is primarily the developing need for Earth synchronous orbit capabilities which gives cause for further consideration of orbital transportation systems at this time. Transportation needs for manned and unmanned synchronous orbit systems are foreseen. Total recoverability and reusability with minimum refurbishment are goals for future orbit transport systems.

To establish a common basis for identifying current transportation concepts, an Orbit Transfer Vehicle (OTV) is defined as a propulsive (velocity producing) rocket or stage. When used with a crew transfer module, a manned sortie module or other payloads, the combination becomes an Orbit Transfer System (OTS). Standardization of OTV's and OTS's is required.

The electrophoresis of six columns was accomplished on the Apollo-Soyuz Test Project (ASTP). After separation, these columns were frozen in orbit and were returned for ground-based analyses. One major goal of the MA-011 experiment was the assessment of the separation achieved in orbit by slicing these frozen columns. The slicing of the frozen columns required a new device, and this report describes the development of that device.

This report presents an abbreviated description of the High Energy Astronomy Observatory (HEAO-A) Program, including spacecraft subsystems, scientific instrumentation, and the mission operations concept. Also, scientific participants such as Principal Investigators and Co-investigators are presented. This report is prepared as an aid to HEAO Guest Observers. Most of the material relating to the scientific instruments has been supplied by the investigators.

This handbook seeks to fulfill the need for a book or collection of aids to assist in estimating cost. It contains a description of a work breakdown structure and briefly treats the necessity of analyzing the requirements for a cost element. A part of the handbook is devoted to standards for
specific production type standards and to an assemblage of "factors" which can be applied to manufacturing or production cost for determining associated costs.

TM X-73398 July 1977

This document consists of listings of technical briefs, reports, and papers pertaining to research being performed by MSFC personnel and contractors in the field of solar energy.

TM 78120 September 1977

This report presents a new type of modular dc power supply power sharing technique that was developed for the Apollo Telescope Mount (ATM) electrical power system on the Skylab. The advantages and disadvantages of various techniques used in the past are reviewed and compared to the new method. The new technique design is discussed, and results of its implementation in the ATM power system are reviewed.

TM-78121 July 1977

In early 1973 the Marshall Space Flight Center (MSFC) initiated an effort to develop and establish an automatic data processing system to be used primarily for the preparation of industrial-engineering-type manhour-and-material cost estimates. This computer system, termed PACE (Pricing and Cost Estimating), was established and has evolved over the past several years through the PACE I and PACE II systems into a highly versatile and highly flexible tool which significantly reduces computation time, eliminates computational errors, and reduces typing and reproduction time for estimators and pricers. Because this system makes all mathematical and clerical functions automatic once basic inputs are derived, the time of estimators, estimate managers, secretarial personnel, and engineers involved in the estimating and cost analysis process can be devoted to publication of ground rules, and collection, analysis, and adjustment of inputs and rationale. This system also reduces the manhours required for manual computations and documentation.

This handbook has been prepared to facilitate use by those not familiar with the PACE II system or with detailed automatic data processing techniques; therefore, an attempt has been made to be explanatory and specific in all areas where actions are required to implement and activate the system. (The PACE I system is described in detail in TM X-73325.)

TM-78122 July 1977

The sensitometry and film calibration effort for the NASA-MSFC/The Aerospace Corporation Skylab/ATM S-056 X-Ray Telescope is summarized. The apparatus and procedures used by Sperry/MSFC and by Aerospace Corporation are described
together with the two types of flight film used, Kodak SO-212 and SO-242. The sensitometry and processing of the flight film are discussed, and the results are presented in the form of the characteristic curves and related data. The use of copy films is also discussed.

TM-78123 April 1977

A Preliminary Investigation of the Environmental Control and Life Support Subsystem (EC/LSS) for the Space Construction Base Manufacturing Modules. Hubert B. Wells. Preliminary Design Office. N77-29788

This report presents the preliminary Prephase A data of the Environmental Control and Life Support Subsystem (EC/LSS) for a typical Space Construction Base manufacturing module. A space processing module, which is capable of performing production biological experiments, was chosen as a baseline configuration.

The module would be manned approximately 12 h/day by a crew of two (an engineer and technician). By assuming a three-man maximum capacity, consideration can be given to the use of existing EC/LSS assemblies such as Spacelab, Orbiter, or Regenerative Life Support Evaluation (RLSE). Spacelab assemblies were given preference because of their later production schedule. The primary Spacelab assemblies and components considered for use are humidity and temperature control, ventilation fan, cabin fan, water separator, condensate storage, overboard dumping, distribution system, contaminant monitoring, cabin sensors, and fire and smoke detection. Carbon dioxide removal, atmospheric supply, and pressure control are furnished by the Habitability Module/Subsystems Module.

Contaminant control is accomplished by the RLSE contaminant control assembly.

TM-78124 June 1977

Multipurpose Interactive NASA Information System (MINIS). Data Systems Laboratory. N77-28987

The Multipurpose Interactive NASA Information System (MINIS) was developed to provide remote, interactive information retrieval capability for various types of data bases to be processed on different types of small and medium size computers.

This report presents to the layman user an explanation of how to use the system for three different data bases: (1) Landsat Photo Look-Up, (2) Land-Use, and (3) Census/Socio-Economic. Each of the data base elements is shown together with other detailed information that a user would require to contact the system remotely, to transmit inquiries on commands, and to receive the results of the queries or commands.

TM-78127 August 1977

A concept is provided for a Geophysical Fluid Flow Cell (GFFC). Sufficient detail is given to allow the start of a GFFC design effort. A brief background of the scientific studies to be conducted with the GFFC and the theoretical basis for GFFC operation are also included.

TM 78128 July 1977

Some Basic Mathematical Methods of Diffusion Theory. A.C. Giere. Space Sciences Laboratory.
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.

The vacuum environment in the wake region of presently planned large space vehicles is calculated using simplified models of the particle fluxes from the various sources. The fluxes, which are calculated from ambient particles backscattered from spacecraft emissions, and are due to self-scattering of spacecraft emissions, are used to calculate the flux density in the vacuum environment behind a large unmanned craft at 550 km altitude. For an experiment involving rapid physical deposition of vaporized material, this may result in contamination levels of < 1 part in 10⁹ occurring in the bulk material. Calculations indicate that the flux density on a wake vacuum experiment conducted in the vicinity of the Shuttle will be substantially greater than that behind unmanned craft. However, it is possible that, under appropriate circumstances, meaningful wake vacuum experiments still could be conducted using the Shuttle facilities.
A theoretical model of the 6300 Å OI airglow emission has been developed based on the assumptions that both the charged and neutral portions of the Earth's upper atmosphere are in steady state conditions of diffusive equilibrium. Intensities of the 6300 Å OI emission line have been calculated using electron density-true height profiles from a standard C-4 ionosonde and exospheric temperatures derived from Fabry-Perot interferometer measurements of the Doppler-broadened 6300 Å emission line shape as inputs to the model. Reaction rate coefficient values, production mechanism efficiencies, solar radiation fluxes, absorption cross sections, and models of the neutral atmosphere have been varied parametrically to establish a set of acceptable inputs which will consistently predict 6300 Å emission intensities that closely agree with intensities observed during the post-sunset twilight period by an airglow observatory consisting of a Fabry-Perot interferometer and a turret photometer.

Emission intensities that can only result from the dissociative recombination of molecular oxygen ions were observed during the latter portion of the observational period. They were used with limiting values, taken from the literature, of the quenching coefficients and the production mechanism efficiencies to establish a representative model of the atmosphere. Based on current knowledge of the nearby hydroxyl bands and the configuration of the equipment used to obtain the observational data, theoretical calculations indicate that contamination of the 6300 Å OI emission should be on the order of or less than 3 percent; however, these results are very sensitive to the wavelengths of the individual lines and their intensities relative to the 6300 Å OI intensity.

The combination of a model atmosphere, production mechanism efficiencies, and quenching coefficient values was used during the earlier portion of the period when the dissociative photoexcitation and direct impact excitation processes were contributing to the intensity to establish best estimates of solar radiation fluxes in the Schumann-Runge continuum and associated absorption cross sections.

Results of this analysis show that the Jacchia 1971 model of the upper atmosphere combined with the Ackerman (1970) recommended solar radiation fluxes and associated absorption cross sections produces theoretically calculated intensities that more closely agree with the observed intensities than all the other combinations when the following set of reaction rate coefficients and efficiencies is used:

\[
\begin{align*}
O^+ + O_2 & \rightarrow O_2^+ + O \quad 2 \times 10^{-11} \text{ cm}^3 \text{s}^{-1} \\
O_2^+ + e & \rightarrow O^+ + O \quad 1.95 \times 10^{-7} \quad (300/T)^{0.7} \text{ cm}^3 \text{s}^{-1} \text{ with an efficiency of producing an } O(^1D) \text{ atom of } 0.50 \pm 0.32 \pm 0.12 \\
O^+ + N_2 & \rightarrow NO^+ + N \quad 1 \times 10^{-12} \text{ cm}^3 \text{s}^{-1} \\
NO^+ + e & \rightarrow N + O \quad 4.5 \times 10^{-7} \quad (300/T) \text{ cm}^3 \text{s}^{-1} \text{ with no } O(^1D) \text{ atoms being produced} \\
O(^1D) + O_2 & \rightarrow O(3P) + O_2^* \quad 5 \times 10^{-11} \text{ cm}^3 \text{s}^{-1}
\end{align*}
\]

Problems dealing with corrosion and corrosion protection of solar heating and cooling systems are discussed. A test program was conducted to find suitable and effective corrosion inhibitors for systems employing either water or antifreeze solutions for heat transfer and storage. Aluminum-mild steel-copper-stainless steel assemblies in electrical contact were used to simulate a multimetallic system which is the type most likely to be employed. Several inhibitors show promise for this application.

A land use map of a five county area in North Alabama was generated from Landsat data using a supervised classification algorithm. There was good overall agreement between the land use designated and known conditions, but there were also obvious discrepancies. In ground checking the map, two types of errors were encountered — shift and misclassification — and a method was developed to eliminate or greatly reduce the errors. A random selected study areas containing 2525 pixels were analyzed. Overall, 76.3 percent of the pixels were correctly classified. A contingency coefficient of correlation was calculated to be 0.7 which is significant at the \(\alpha = 0.01 \) level. The study showed that land use maps generated by computers from Landsat data are useful for overall land use by regional
TN D-8429 February 1977

A Scanning Laser Doppler Velocimeter (SLDV) system was employed at a test site on the Gila River Indian Reservation south of Phoenix, Arizona, for the purpose of detecting, tracking, and measuring the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. Approximately 80 dust devils were observed with the system during the test period from August 10 through August 16, 1975. This report provides a review and general description of the dust devil phenomenon and outlines the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in some detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors; consequently, recommendations are given for a comprehensive test program using a variety of sensors for obtaining a more complete description of the dust devil phenomenon.

TN D-8435 February 1977
Evaluation of Quasi-Square Wave Inverter as a Power Source for Induction Motors. Buddy V. Guynes, Roger L. Haggard, and John R. Lanier, Jr. Electronics and Control Laboratory. N77-18559

This study investigates the relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of this study. This study concludes that, within the limitations presented in this report, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.

TN D-8445 March 1977

The purpose of this investigation was to assess the effectiveness of mesoscale models in explaining perturbations observed in vertical detailed wind profile measurements in the troposphere and lower stratosphere. The structure and persistence of the data were analyzed and interpreted in terms of several physical models with the goal of establishing explanations for the observed persistent features of the mesoscale flow patterns.

The experimental data used in the investigation were obtained by a unique detailed wind profile measurement system.
This system is capable of providing resolution of 50 to 100 m wavelengths for the altitude region from approximately 200 m to 18 km. The system consists of a high-resolution tracking radar and special super-pressure balloon configuration known as a Jimsphere.

These results show that a battery reconditioned with this circuit returns to greater than 90 percent of its original capacity (greater than nameplate capacity) and follows a typical new battery degradation curve even after over 20,000 simulated orbital cycles for a 4 year period.

This report addresses applications of the circuit and makes recommendations relative to its use. Its application in low voltage (22 to 36 Vdc) power systems and in high voltage (100 to 150 Vdc) power systems is discussed. The implications are that the high voltage systems have a greater need for battery reconditioning than its low voltage counterpart, and that using these circuit techniques, the expected life of a battery in low Earth orbit can be up to 5 years.

The Space Shuttle will provide a low cost delivery system for Earth orbital payloads by amortizing launch costs through system reusability. The Shuttle flight system is composed of the Orbiter, an External Tank (ET) that contains the ascent propellant to be used by the Space Shuttle Main Engines (SSME), and two Solid Rocket Boosters (SRB). The ET is expended on each launch; the Orbiter and SRB's are reusable. It is the requirement for reuse which poses the exciting new materials and processes challenges in the development of the Space Shuttle. This report deals with the materials and processes for the SSME, the ET, and the SRB. A brief description of the Space Shuttle and the mission profile is
given. The Shuttle configuration is then described with emphasis on the SSME, ET, and SRB. The materials selection, tracking, and control system used to assure reliability and to minimize cost are described, and salient features and challenges in materials and processes associated with the SSME, ET, and SRB are subsequently discussed.

Line-focusing acrylic Fresnel lenses with application potential in the 200° to 370°C range are being analytically and experimentally evaluated. Investigations previously conducted with a 56 cm wide lens have been extended by the present study to experimentation/analyses with a 1.8 by 3.7 m lens. A measured peak concentration ratio of 64 with 90 percent of the transmitted energy focused into a 5.0 cm width was achieved. A peak concentration of 61 and a 90 percent target width of 4.5 cm were analytically computed. The experimental and analytical lens transmittance was 81 percent and 86 percent, respectively. Thus, the analytical/experimental lens performance correlation is considered good. The lens also was interfaced with a receiver assembly and operated in the collection mode. The collection efficiency ranged from 42 percent at 100°C to 26 percent at 300°C, whereas an efficiency of 40 percent at 300°C was anticipated. Apparently, the reflective cavity surrounding the absorber tube did not perform as expected. Therefore, future receiver assemblies will decrease or eliminate reliance on reflective surfaces, i.e., the energy focused directly on the absorber tube surfaces will be increased. Efficiency improvements to the 40 to 50 percent range are anticipated.
TR R-465 July 1976
High and Low Threshold P-Channel Metal Oxide Semiconductor Process and Description of Microelectronics Facility.
David L. Bouldin, William R. Feltner, Ben R. Hollis, and Donald E. Routh. Electronics and Control Laboratory.
N76-27480
The fabrication techniques and detail procedures for creating P-channel Metal-Oxide-Semiconductor (P-MOS) integrated circuits at George C. Marshall Space Flight Center (MSFC) are described. Examples of P-MOS integrated circuits fabricated at MSFC together with functional descriptions of each are given. Typical electrical characteristics of high and low threshold P-MOS discrete devices under given conditions are provided. A general description of MSFC design, mask making, packaging, and testing procedures is included.

The capabilities described in this report are being utilized in: (1) research and development of new technology, (2) education of individuals in the various disciplines and technologies of the field of microelectronics, and (3) fabrication of many types of specially designed integrated circuits which are not commercially feasible in small quantities for in-house research and development programs.

TR R-469 October 1976
The Eigenvalue Spectrum of the Orr-Sommerfeld Problem. Basil N. Antar. Space Sciences Laboratory.
N77-11344
A numerical investigation of the temporal eigenvalue spectrum of the Orr-Sommerfeld equation is presented. Two flow profiles are studied, the plane Poiseuille flow profile and the Blasius boundary layer (parallel) flow profile. In both cases a portion of the complex c-plane bounded by $0 \leq c_r \leq 1$ and $-1 \leq c_i \leq 0$ is searched and the eigenvalues within it are identified. The spectra for the plane Poiseuille flow at $\alpha = 1.0$ and $R = 10^2, 10^3, 6 \times 10^3$, and 10^4 are determined and compared with existing results where possible. The spectrum for the Blasius boundary layer flow at $\alpha = 0.308$ and $R = 998$ was found to be infinite and discrete. Other spectra for the Blasius boundary layer at various Reynolds numbers seem to confirm this result. The eigenmodes belonging to these spectra were located and discussed.

TR R-473 June 1977
Rocket Exhaust Effluent Modeling for Tropospheric Air Quality and Environmental Assessments. J. Briscoe Stephens and Roger B. Stewart. Space Sciences Laboratory.
N77-25456
The various techniques for diffusion predictions to support air quality predictions and environmental assessments for aerospace applications are discussed in terms of limitations imposed by atmospheric data. This affords an introduction to the rationale behind the selection of the National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) Rocket Exhaust Effluent Diffusion (REED) program. The models utilized in the NASA/MSFC REED program are explained. This program is then evaluated in terms of some results from a joint MSFC/Langley Research Center/Kennedy Space Center Titan Exhaust Effluent Prediction and Monitoring Program.
CR-2727 August 1976

CR-2728 August 1976

CR-2749 October 1976

CR-2750 October 1976

CR-2751 October 1976

CR-2752 October 1976

CR-2753 October 1976

CR-2755 October 1976

CR-2756 October 1976

CR-2757 October 1976

CR-2758 October 1976
Effects of Fog Droplets on Wake Vortex Decay Rate. T. H. Moulden and Walter Frost. NAS8-29584. The University of Tennessee Space Institute. N76-33166

CR-2759 October 1976
CR-2761 December 1976

CR-2762 December 1976

CR-2765 December 1976
Environmental Dynamics at Orbital Altitudes. Gerald R. Karr. NAS8-28248. The University of Alabama in Huntsville. N77-16480

CR-2768 November 1976

CR-2775 December 1976

CR-2790 October 1976

CR-2794 February 1977

CR-2795 February 1977

CR-2796 February 1977

CR-2797 March 1977

CR-2798 March 1977

CR-2799 March 1977
NASA CONTRACTOR REPORTS

CR-2804 March 1977
A Field Study of Wind Over a Simulated Block Building. Walter Frost and Alireza M. Shahabi. NAS8-29584. The University of Tennessee Space Institute. N77-18657

CR-2805 March 1977

CR-2806 March 1977

CR-2817 March 1977
The Moisture Budget in Relation to Convection. Robert W. Scott and James R. Scoggins. NAS8-31773. Texas A&M University. N77-19713

CR-2818 March 1977

CR-2819 March 1977

CR-2826 March 1977
Atmospheric Energetics in Regions of Intense Convective Activity. Henry E. Fuelberg. NAS8-31773. Texas A&M University. N77-21802

CR-2845 May 1977

CR-2889 August 1977

CR-2890 August 1977
Solar Concentration by Curved-Base Fresnel Lenses. Ronald M. Cosby. NCA8-00127, Mod 4. Ball State University. N77-29946

CR-144053 1976

CR-144154 September 13, 1976
Frustrum Location Aid, Final Report. NAS8-31846. Teledyne Lewisburg. N77-73959

CR-149997 May 20, 1977

CR-149998 September 1976
Digital Computer Processing of Peach Orchard Multispectral Aerial Photography. NAS8-21805. Computer Sciences Corp. N76-3464
CR-149999 August 1976

CR-150000 June 1972
Backflow of Outgas Contamination on to Orbiting Spacecraft as a Result of Intermolecular Collisions. NAS8-26554. Lockheed Missiles and Space Co. N76-78505

CR-150001 October 1975

CR-150002 June 30, 1976

CR-150003 March 31, 1975

CR-150004 August 1976

CR-150005 September 1976
Study of SEM Induced Current Voltage Contrast Modes to Assess Semiconductor Reliability, Final Report. NAS8-31567. Martin Marietta Corp. N76-32464

CR-150006 June 1976

CR-150007 May 1976

CR-150008
Backflow of Outgas Contamination on to Orbiting Spacecraft as a Result of Intermolecular Collisions. NAS8-26554. Lockheed Missiles and Space Co. N76-78505

CR-150009 September 30, 1976

CR-150010 September 30, 1976

CR-150011 August 31, 1976

CR-150012 September 1976

CR-150013 August 1976
CR-150014 August 1976
X-76-11877

CR-150015 August 1976
X-76-11878

CR-150016 August 1976
X-76-11879

CR-150017 September 23, 1976
N76-33273

CR-150018 September 10, 1976
N77-18349

CR-150019 June 1972
X76-11672

CR-150020 May 1971
N77-70098

CR-150021 October 1971
N76-79037

CR-150022* June 17, 1976
N77-10808

CR-150023 November 13, 1973
N76-79059

CR-150024
N77-10610

CR-150025 September 1976
N76-33281

CR-150026 September 1976
N76-33282

CR-150027 April 30, 1975
Electronic Communications, Inc. N76-79537

CR-150028 June 1976

CR-150029 June 1976
Shuttle Base Heating Instrumentation, Final Report. NAS8-31439. Acruex Corporation. X76-11594

CR-150030 February 3, 1976

CR-150031 February 15, 1976

CR-150032 October 1976

CR-150033 July 1976

CR-150034 June 30, 1976

CR-150035 May 1976
Convection Sensitivity and Thermal Analyses for Indium and Indium-Lead Mixing Experiment (74-18). NAS8-31671. Lockheed Missiles and Space Co., Inc. N77-10466

CR-150036 August 1976
Dynamic Response of Cavitation Turbomachines. NAS8-29313. California Institute of Technology. N77-10540

CR-150037 September 1972

CR-150038 January 1972
The Inverse, Optimal Linear Regulator Problem. NAS8-26832. University of Florida. N77-70824

CR-150039 April 1972
A Pole Placement Design Program. NAS8-26832. University of Florida. N77-70825

CR-150040 June 1972
Analysis of Sampled-Data Systems. NAS8-26832. University of Florida. N77-70115

CR-150041 October 1976

CR-150042 October 12, 1976
Optical Data Processing Study, Final
Technical Report. NAS8-31223. Auburn University. N77-10615

CR-150043 September 30, 1974
Teleoperator Equations of Motion. NAS8-29632. University of Tennessee. N77-70537

CR-150044 1976
Effect of Interfacial Oxide Layers on Current-Voltage Characteristics of Al-Si Contacts. NAS8-26379. Texas A&M University. N77-10928

CR-150045 1977

CR-150046 September 1975

CR-150047 April 1976
Earth Orbital Teleoperator Systems Concepts and Analysis, Final Review. NAS8-31290. Martin Marietta Corp. X76-11880

CR-150048 March 1974

CR-150049 September 1976

CR-150050 1976

CR-150051 August 1976

CR-150052 August 30, 1976

CR-150053 August 10, 1976

CR-150054 October 1976
Space Shuttle Contamination Due to Backflow from Control Motor Exhaust, Final Report. NAS8-31440. Lockheed Missiles and Space Co. N77-11092

CR-150055 September 15, 1976

CR-150056 September 1975
Prediction of the Drag Coefficient of a 20-Degree Conical Ribbon Parachute. NAS8-21810. Northrop Services, Inc. N77-11003

CR-150057 July 1, 1975
Response Prediction for Preliminary
CR-150058 June 1976
Vibration of a Flexible Spacecraft with
Momentum Exchange Controllers.
NAS8-28358. University of California.
N77-11096

CR-150059 March 1976
Control by Model Error Estimation.
NAS8-28358. University of California.
N77-11755

CR-150060 September 20, 1976
Low Cost ERTS DCP, Final Report.
NAS8-32017. SCI Systems, Inc.
X77-90061

CR-150061 October 1976
Investigation of the Medical Applications
of the Unique Biocarbons
Developed by NASA, Final Report.
NAS8-30631. Rancho Los Amigos
Hospital. N77-11916

CR-150062 October 19, 1976
Program to Design, Fabricate, Test, and
Deliver a Thermal Control-Mixing
Control Device, Final Report. NAS8-
31289. AiResearch Manufacturing Co.
X76-11824

CR-150063 May 21, 1973
NAS8-14000. IBM Corporation.
X77-73556

CR-150064 July 1976
Listing of Solar Radiation Measuring
Equipment and Glossary. NAS8-31293.
University of Alabama in Huntsville.
N77-12507

CR-150065 October 29, 1976
Analyses of ACPL Thermal/Fluid Con­
ditioning System, Final Report. NAS8-
32016. Sperry Support Services.
N77-12333

CR-150066 October 1976
Review, Study and Evaluation of
Possible Flight Experiments Relating to
Cloud Physics Experiments in Space,
University of Alabama in Huntsville.
N77-12638

CR-150067 March 31, 1976
Manufacturing Unique Glasses in Space,
Second Interim Report. NAS8-28991.
Rockwell International Corp.
N77-12083

CR-150068 October 16, 1976
Processing FeBO$_3$ Glass-Ceramics in
Space, Annual Report. NAS8-31381.
Owens-Illinois, Inc. N77-12084

CR-150069* September 16, 1976
Implementation of Large Scale
Integrated (LSI) Circuit Design Soft­
Computing. N77-13697

CR-150070 July 1976
Space Processing Payload Equipment
Study, Final Report, Volume I, Execu­
tive Summary. NAS8-31494. TRW
Defense and Space Systems Group.
X76-11674

CR-150071 May 1976
Space Processing Payload Equipment
Study, Final Report, Volume IIA,
Technical Summary. NAS8-31494.
TRW Defense and Space Systems Group.

CR-150072 May 1976

CR-150073 May 1976

CR-150074 May 1976

CR-150075 May 1976

CR-150076 May 1976

CR-150077 May 1976

CR-150078 May 1976

CR-150079 May 1976

CR-150080 May 1976

CR-150081 July 31, 1976

CR-150082 July 31, 1976

CR-150083 July 31, 1976
NASA CONTRACTOR REPORTS

CR-150084 July 31, 1976

CR-150085 February 29, 1976

CR-150086 February 29, 1976

CR-150087 February 1976

CR-150088 February 29, 1976

CR-150089 February 29, 1976

CR-150090 February 29, 1976

CR-150091 February 29, 1976

CR-150092 July 31, 1976

CR-150093 July 31, 1976

CR-150094 July 31, 1976

CR-150095 July 31, 1976

CR-150096 July 31, 1976

CR-150097 July 31, 1976
Space Processing Payload Equipment
NASA CONTRACTOR REPORTS

X76-11587

CR-150098 July 31, 1976

CR-150099 June 1, 1976
Interim Report on Space Processing Payload Equipment for Experiments on Chemical and Fluid Phenomena. NAS8-31495. General Electric. X76-11589

CR-150100 June 1, 1976

CR-150101 June 1, 1976

CR-150102 May 1975

CR-150103 April 1975

CR-150104 April 1975

CR-150105 July 1975

CR-150106 November 1976

CR-150107 April 1976

CR-150108 July 1976
Aero-Acoustic Environments Associated with the SRB Forward Separation Motors, Final Report. NAS8-32065. Wyle Laboratories. X77-70852

CR-150109 November 1976
Analysis of Skylab Follow-On Orbital Neutron Environmental Data, Final Report. NAS8-32014. Martin Marietta Corp. N77-12368

CR-150110 October 1976
A Three-Dimensional, Time-Dependent Model of Mobile Bay, Final Report. NAS8-30380. Louisiana State University. N77-13625

CR-150111 June 21, 1973
Biogrowth Process Feasibility Study. NAS8-28411. Massachusetts Institute of Technology. X77-71853
CR-150112
December 1, 1972
X77-71852

CR-150113
September 1976
Comparison of the Nonlinear Dynamic Characteristics of Barber S-2 and ASF Ride Control Freight Trucks. NAS8-29882. Martin Marietta Corp.
N77-13655

CR-150114*
February 1977
N77-17259

CR-150115
December 31, 1974
N77-71277

CR-150116
October 1976
N77-12113

CR-150117
April 1, 1976
N77-14843

CR-150118
April 1, 1976
Space Telescope Optical Telescope Assembly/Scientific Instruments, Phase B, Preliminary Design and Program

CR-150119
April 1, 1976
N77-14844

CR-150120*
October 1976
Arthur D. Little, Inc. N77-14252

CR-150121
October 1976
X77-10103

CR-150122
October 1976
N77-13392

CR-150123
October 15, 1976

CR-150124
January 1972
N77-13336
CR-150125 March 1974

CR-150126 March 1974

CR-150127 March 1974

CR-150128 March 1974

CR-150129 December 3, 1976

CR-150130 November 1976
Payload Specialist Station Study, Final Study Report, Volume I, Executive Summary. NAS8-31789. Martin Marietta Corp. N77-15071

CR-150131 November 1976

CR-150132 November 1976

CR-150133 November 1976
Payload Specialist Station Study, Final Study Report, Volume II, Part III, Program Analysis and Planning for Phase C/d. NAS8-31789. Martin Marietta Corp. N77-15074

CR-150134 November 1976

CR-150135 November 1976

CR-150136 December 7, 1976
Phase B - Final Definition and Preliminary Design Study for the Initial Atmospheric Cloud Physics Laboratory (ACPL) - A Spacelab Mission Payload - Final Review. NAS8-31844. TRW Defense and Space Systems Group. N77-14184

CR-150137 February 1977
NASA CONTRACTOR REPORTS

CR-150138 November 1976

CR-150139 November 17, 1976

CR-150140 November 1976

CR-150141 November 1976

CR-150142 May 1976

CR-150143 April 1976

CR-150144 April 1976

CR-150145 May 1976

CR-150146 June 30, 1976

CR-150147 June 30, 1976

CR-150148 June 30, 1976

CR-150149 December 1976

CR-150150 1976
CR-150151 October 13, 1976

CR-150152 November 1976

CR-150153 August 1976

CR-150154 April 10, 1976
Booster Separation Motor Aging Surveillance Program Plan. NAS8-31672. United Technologies, Chemical Systems Div. X77-10077

CR-150155 July 12, 1976
Multipurpose Display Panel, Final Report. NAS8-31286. The Bendix Corp. N77-17355

CR-150156 January 1977
Analytical Study of Space Processing of Immiscible Materials for Superconductors and Electrical Contacts, Interim Report. NAS8-31445. N77-16075

CR-150157 September 30, 1976

CR-150158 November 5, 1976
Booster Separation Motor Fracture Control Plan. NAS8-31672. United Technologies, Chemical Systems Division. X77-10068

CR-150159 October 1976

CR-150160* July 1975

CR-150161* August 1976

CR-150162* April 1976
Ignition Transients of Large Segmented Solid Rocket Boosters, Final Report. NAS8-31666. Princeton University (Leonard H. Caveny) and Penn State Univ. (Kenneth K. Kuo). N77-17257

CR-150163 August 28, 1975

CR-150164 November 19, 1975

CR-150165 October 1976
Investigation of Selected Disk Systems. NAS8-31488. Teledyne Brown Engineering. N77-15669

43
CR-150166 September 1976
Interface Standards for Computer Equipment. NAS8-31488. Teledyne Brown Engineering. N77-15670

CR-150167 May 1976

CR-150168 December 24, 1976

CR-150169 October 22, 1976

CR-150170 October 1976

CR-150171 May 26, 1977

CR-150172 January 18, 1977
Software Operating System, Final Report. NAS8-30604. IBM Corp. X77-10118

CR-150173 September 15, 1976
Development of Alabama Resources Information System (ARIS), Final Report. NAS8-30654. Auburn University. N77-16420

CR-150174 1977
Evaluation of Alternate Bearing Designs for the Skylab CMG, Final Report. NAS8-30565. Charles Stark Draper Laboratory, Inc. X77-10090

CR-150175 January 3, 1977
Man-Machine Design and Integration Requirements for Control of Freeflying Payloads, Final Report. NAS8-31836. Essex Corp. X77-10053

CR-150176 December 1976

CR-150177 November 1976
Solar Radiation Observation Stations with Complete Listing of Data Archived by the National Climatic Center, Asheville, North Carolina and Initial Listing of Data not Currently Archived. NAS8-31293. University of Alabama in Huntsville. N77-17987

CR-150178 December 20, 1976

CR-150179 July 1976
CR-150180 September 19, 1976
N77-17181

CR-150181 January 1977
N77-10094

CR-150182 November 29, 1976
N77-17427

CR-150183 January 1977
N77-10070

CR-150184 December 23, 1976
N77-10100

CR-150185* December 1976
N77-18183

CR-150186 August 1976
N77-17989

CR-150187 January 31, 1977
N77-17826

CR-150188 January 18, 1977
Solar Array Technology Development for SEP (Solar Electric Propulsion), Mid-term Report. NAS8-31352. Lockheed Missiles and Space Co., Inc.
N77-10071

CR-150189 January 1977
N77-18350

CR-150190 June 1971
Analysis of Skylab Digital Computer Integrated Circuit Eutectic Particle Contamination Failures. NAS8-20899. IBM Corp.
N77-74763

CR-150191 January 18, 1977
N77-18205

CR-150192 January 1977
Reliability Program Plan for the Electronic Assembly for the HRUV Spectrometer/Polarimeter Intended for the Solar Maximum Mission. NAS8-32035. SCI Systems, Inc.
N77-18206

CR-150193 December 1976
Quality Assurance Plan for Solar Maximum Mission (SMM) Instruments
Electronic Assembly – HRUV Spectrometer/Polarimeter (Revised). NAS8-32035. SCI Systems, Inc. N77-18207

CR-150194 February 1977

CR-150195 January 1977
Extended Applications Study of AMOOS and AMRS, Final Report. NAS8-31997. Lockheed Missiles and Space Co., Inc. N77-18200

CR-150196 June 1976

CR-150197 June 1976

CR-150198 December 1976
Improved Testing Techniques for Microcircuit Wafers, Final Report. NAS8-31382. Martin Marietta Corp. X77-10081

CR-150199 January 27, 1977

CR-150200 February 1977

CR-150201 January 15, 1977
Development of a Computer Program for Spacelab Contaminant Control Analysis. NAS8-31551. Lockheed Missiles and Space Co., Inc. X77-10064

CR-150202 December 15, 1976
Space Fabrication Techniques, Final Report. NAS8-31876. Grumman Aerospace Corporation. X77-10033

CR-150203 February 15, 1977
Systems Concepts for STS-Derived Heavy-Lift Launch Vehicles Study, Executive Summary. NAS8-32169. Boeing Aerospace Co. X77-10045

CR-150204 February 1977

CR-150205 August 1976

CR-150206 September 1976

CR-150207 August 1973
An Evaluation of the Usefulness of Remote Sensing Techniques in Making
Environmental Quality Determinations. NAS8-28216. University of Denver. N77-74880

CR-150208 August 1976
N77-20047

CR-150209 1977

CR-150210 January 20, 1977
X77-10075

CR-150211 November 22, 1976
HASP-11 Operations and Installation Procedures. NAS8-31804. M&S Computing, Inc. X77-10111

CR-150212 January 15, 1977

CR-150213* August 1976

CR-150214 July 1976

CR-150215 January 1977

CR-150216 February 1977
Results of the NASA/MSFC FA-23 Plume Technology Test Program Performed in the NASA/Ames Unitary Wind Tunnels. NAS8-31636. Calspan Corporation. N77-20145

CR-150217* March 1977

CR-150218*

CR-150219*

CR-150220* March 1977
Wind Shear and Wet and Dry Thermodynamic Indices as Predictors of Thunderstorm Motion and Severity and Application to the AVE IV Experimental Data. James R. Connell and Lillian Ey. NAS8-31718. University of Tennessee Space Institute. N77-21801
NASA CONTRACTOR REPORTS

CR-150221* December 1976
CMOS Array Design Automation
N77-78784

CR-150222 December 1975
N77-20155

CR-150223 December 1976
Investigation of Lightweight Designs and Materials for LO2 and LH2 Propellant Tanks for Space Vehicles, Final Report for Phase II (Design) and Phase III (Manufacturing). NAS8-31370. General Dynamics Convair Div.
N77-20156

CR-150224 June 1970
N77-76324

CR-150225 July 1976
Vol. 2. X77-10035
Vol. 3. X77-10037

CR-150226 December 27, 1976
X77-10066

CR-150227* January 1977

CR-150228 December 1976
N77-21317

CR-150229 December 8, 1976
X77-10058

CR-150230 September 5, 1977

CR-150231 March 31, 1977
N77-21179

CR-150232 March 31, 1977
N77-21180

CR-150233 March 31, 1977
Mission Operations. NAS8-31146.
McDonnell Douglas Astronautics Co.
N77-21181

CR-150234 March 31, 1977
McDonnell Douglas Astronautics Co.
N77-21182

CR-150235 February 28, 1977
Ecosystems International, Inc.
N77-21522

CR-150236 February 28, 1977
Ecosystems International, Inc.
N77-21523

CR-150237* April 1977
Proton-Induced Radioactivity in NAI(Tl) Scintillation Detectors. G. J. Fishman. NAS8-26342.
Teledyne Brown Engr.
N77-23906

CR-150238 April 14, 1977
Analysis of Vector Wind Change with Respect to Time for Cape Kennedy Florida, Final Report, Phase I. NAS8-32226.
Science Applications, Inc.
N77-22764

CR-150239 January 31, 1977
Rice University.
N77-22156

CR-150240 January 9, 1977
Georgia Institute of Technology.
N77-22169

CR-150241 July 1, 1971
Project Serv Final Review, Phase A Space Shuttle Study. NAS8-26341.
Chrysler Corp.
N77-76945

CR-150242 December 1976
Colorado State University.
N77-22739

CR-150243 May 1973
Dynamics of a Flexible Bulkhead and Contained Fluid, Final Report. NAS8-27012.
Lockheed Missiles and Space Co., Inc.
N77-77064

CR-150244 February 15, 1977
Raytheon Co.
N77-22465

CR-150245 March 1977
Northrop Services, Inc.
N77-22159

CR-150246 December 25, 1976
Boeing Co.
N77-22528

CR-150247 February 1977
Texas A&M University.
N77-27763
CR-150248 April 1, 1977

CR-150249 April 18, 1977
Program on State Agency Remote Sensing Data Management, Type II Quarterly Status and Technical Progress Report. NAS8-32354. Center for Development Technology. X77-74893

CR-150250 September 5, 1963
Spectral Emissivity of Metals After Damage by Particle Impact, Final Report. NAS8-1642. Avco Corp. N77-22952

CR-150251 February 10, 1977

CR-150252 September 1976

CR-150253 September 1976

CR-150254 September 1976

CR-150255 September 1976

CR-150256 November 1975

CR-150257 April 25, 1977
Data Management System Flight Experiment Development Plan, Volume I, Executive Summary, Interim Final Report. NAS8-30773. IBM Corp. X77-10113

CR-150258 April 25, 1977
Data Management System Flight Experiment Development Plan, Volume II, Interim Final Report. NAS8-30773. IBM Corp. X77-10114

CR-150259 November 17, 1976

CR-150260 March 10, 1977

CR-150261 December 5, 1976
NASA CONTRACTOR REPORTS

CR-150262 January 1, 1977
User Assistance Applications in East Mississippi, Semi-Annual Report. NASA-31785. Mississippi State University. X77-10119

CR-150263 March 18, 1977

CR-150264 February 1977
The SRB Thermal Environment Data Book, Volume I. NASA-31360. Remtech, Inc. X77-10051

CR-150265 September 1976

CR-150266 July 1966
Description of the Method of Analysis and Equations Used in the Lockheed Huntsville Decomposition In-Depth Ablative Analysis Computer Program. NASA-20082. Lockheed Missiles and Space Co. X77-10083

CR-150267 December 31, 1976

CR-150268 1977

CR-150269 July 1976

CR-150270 April 1975

CR-150271 April 1977

CR-150272 March 16, 1977

CR-150273 May 1977

CR-150274 April 29, 1977

CR-150275 April 1, 1977

CR-150285: January, 28, 1977

CR-150286: January-28, 1977

CR-150287: January 28, 1977

CR-150288: November 30, 1975

CR-150289: November 30, 1975

CR-150290: November 30, 1975

CR-150291 November 30, 1975

CR-150292 November 30, 1975

CR-150293 November 30, 1975

CR-150294 March 31, 1977

CR-150295 March 1977

CR-150296 March 1, 1977

CR-150297 March 29, 1977

CR-150298 March 31, 1977

CR-150299 April 22, 1977

CR-150300 May 1977

CR-150301 June 1977

CR-150302 May 1, 1977

CR-150303 March 1977
An Evaluation of Reaction Wheel

CR-150304* May 16, 1977

CR-150305 May 1977

CR-150306 May 31, 1977

CR-150307 April 1, 1977
Space Transportation System Payload Utilization Model, Volume I, Final Requirements Specification Document. NAS8-31843. IBM Corp. X77-75990

CR-150308 April 1, 1977
Space Transportation System Payload Utilization Model, Volume II, User's Manual. NAS8-31843. IBM Corp. X77-75990

CR-150309 April 1, 1977
Space Transportation System Utilization Program, Volume III, Interactive Ground Operations Program. NAS8-31843. IBM Corp. X77-75992

CR-150310 April 1, 1977
Space Transportation System Utilization Program, Volume IV, Interactive Manifest Analysis and Fast Program. NAS8-31843. IBM Corp. X77-75993

CR-150311 March 30, 1977

CR-150312 June 15, 1977

CR-150313 October 15, 1976

CR-150314 February 1977

CR-150315 September 1975
Effects of Gravity Reduction on Phase Equilibria, Part 1, Unary and Binary Isostructural Solids. NAS8-28728. Grumman Aerospace Corp. N77-27212

CR-150316 July 1976
Effects of Gravity Reduction on Phase Equilibria, Part 2, Binary Two-Phase Solids. NAS8-28728. Grumman Aerospace Corp. N77-27213

CR-150317 June 1977
Model Verification of Large Structural

CR-150318* March 1977

CR-150319* March 1977
Silicon-Gate CMOS/SOS Processing. P. Ramondetta. NAS8-31325. Advanced Technology Laboratories, RCA.

CR-150320* March 1977
Design Rules for RCA Self-Aligned Silicon-Gate CMOS/SOS Process. NAS8-31325. Advanced Technology Laboratories, RCA.

CR-150321* March 1977
Device Model for Fetsim Circuit Simulation Program. P. Ramondetta. NAS8-31325. Advanced Technology Laboratories, RCA.

CR-150322 June 1977

CR-150323 June 22, 1977

CR-150324* September 1976

CR-150325 August 1970
Development of a Source Flow Program to Predict the Flow Field of a High Altitude Plume. NAS8-24437. Lockheed Missiles and Space Co. N77-80603

CR-150326 June 30, 1977

CR-150327 May 1977
Shuttle Growth Study (Booster and External Tank Options), Final Report, Volume I, Executive Summary. NAS8-32015. Rockwell International.

CR-150328 May 1977

CR-150329 May 1977
Shuttle Growth Study (Booster and External Tank Options), Final Report, Volume III, Concept Definition. NAS8-32015. Rockwell International.

CR-150330 May 1977

CR-150331 May 1977
CR-150332 May 1977
Shuttle Growth Study (Booster and External Tank Options), Final Report, Volume VI, Supporting Research and Technology. NAS8-32015. Rockwell International.

CR-250333 July 5, 1977

CR-150334 June 24, 1977

CR-150335 September 7, 1974
Solid Rocket Booster Performance Evaluation Model, Volume I, Engineering Description. NAS8-29643. Boeing Aerospace Co. N77-27181

CR-150336 September 7, 1974

CR-150337 September 7, 1974

CR-150338 September 1974

CR-150339 September 1971

CR-150340 January 15, 1977

CR-150341 January 1977

CR-150342 June 30, 1977

CR-150343 August 19, 1976

CR-150344 April 20, 1977
SRB Heat Shield Model Fluctuating Pressure Test and Full Scale Design Requirements, Final Report. NAS8-31770. Mississippi State University.

CR-150345 May 1974
Test Data Report for Solid Propellant Plume Aerodynamics Test Program in MSFC 14 X 14 Inch Trisonic Wind Tunnel (TWT-586, MA11F), Volume 1, Explanatory Test and Sample Data. NAS8-29751. Remtech, Inc. N77-81094
| CR-150347 | November 1975 | Test Data from Separation Motor Plume Simulation Test in the MSFC Trisonic Wind Tunnel (Shuttle Test FA13, MSFC Test TWT-612). NAS8-29751. Remtech, Inc. |
CR-150361 June 26, 1977

CR-150362 August 1, 1977

CR-150363* August 1977
Probabilities of Good, Marginal and Poor Flying Conditions for Space Shuttle Ferry Flights. GO H-95560A. National Climatic Center.

CR-150364 November 3, 1973

CR-150365 November 9, 1973

CR-150366 November 5, 1976

CR-150367 November 5, 1976

CR-150368 November 5, 1976

CR-150369 December 1976

CR-150370 December 31, 1976
Candidate Space Processing Techniques for Biomaterials Other Than Preparative Electrophoresis, Final Report. NAS8-31899. University of Oregon Health Sciences Center.

CR-150371 June 1977

CR-150372 October 27, 1971
Modular Space Station Computer Study. NAS8-25140. IBM Corp.

CR-150373 July 1977

CR-150374* September 1977
CR-150375 August 1977
Analysis and Design of a Proto-Type
Triple-Axis-Common-Pivot-Arm-Wrist,

CR-150376 July 1977
Space Stable Thermal Control Coatings,
Tri-Annual Report. NAS8-31906. IIT
Research Institute.

CR-150377 August 1977
Improved Catalysts by Low-g Process­
ing. NAS8-32352. Lockheed Missiles
and Space Co.

CR-150378 June 1977
Landsat Information for State Planning,

CR-150379 June 23, 1977
Satellite Power System Concept Defini­
tion Study, First Quarterly Review.
NAS8-32475. Rockwell International.

CR-150380 February 1977
Gravitationally Stabilized Satellite Solar
Power Station (GSS²PS). NAS8-31842.
Aerospace Corp.

CR-150381 July 1977
Accelerated Life Testing Effects on
CMOS Microcircuit Characteristics,
Phase II, Interim Report for Jan.-July
1977. NAS8-31905. RCA, Solid State
Division.

CR-150382 August 1977
Moldable Cork Ablation Material, Final
Report. NAS8-32317. Dodge Cork Co.

CR-150383 January 1977
M551 Metals Melting Experiment, Final
Report. NAS8-28728, Mod. 6. Grumman Aerospace Corp.

CR-150384 July 1977
Programmable Data Communications
Controller Requirements, Final Report.
NAS8-31488. Teledyne Brown
Engineering.

CR-150385 July 1977
MXSA Packaging, Interim Report for
NAS8-32210. Aerotherm.

CR-150386 January 31, 1964
Analytic Solutions for Non-Linear
Differential Equations with the Help of
a Digital Computer. NAS8-2558.
University of Tennessee.

CR-150387 September 1, 1977
A Generalized Computer Program for
Trace Contaminant Control. NAS8-
32400. Lockheed Missiles and Space
Co., Inc.

CR-150388 September 1977
SEP Applications and Systems Design
Update, Plus (Payload Utilization of
SEPS), Study Extension (Final Report).
NAS8-31444. Boeing Aerospace Co.

CR-150389 August 1977
Analytical Support for SPAR Experi­
ment 76-36, Final Report. NAS8-
32401. Lockheed Missiles and Space
Co.

CR-150390 July 15, 1977
Final Report for Contract NAS8-31983.

CR-150391 July 1977
Shuttle System Dynamic Loads
Analysis, Final Report. NAS8-30635.
Martin Marietta Corp.

*White cover reports — published by MSFC.
ADAMS, WILLIAM R.
Experimental Capabilities on Shuttle.
April 20-21, 1977. Presentation at the
Applications Of Space Flight In
Materials Science and Technology Con-
ference to be held at Gaithersburg,
Maryland.

ANDERSON, B. J.
Influence of Strain and Electric Field
on the Epitaxial Growth Rate of Ice
Crystals from the Vapor. July 17-22,
1977. Submitted to the Journal of
Crystal Growth. Presentation at the
Fifth International Conference on
Crystal Growth, ICCG-5 to be held at
Cambridge, Maryland.

ANG, C. Y.
LACY, L. L.
Gravitational Influences on the Liquid-
State Homogenization and Solidifica-
tion of Aluminum Antimonide.
Submitted to the Journal of Applied
Physics.

ARTHUR, CARLENE W.
Geomagnetic Field Fluctuations at
Synchronous Orbit, 1. Power Spectra.
Submitted to the Journal of Geophysical
Research.

ARTHUR, CARLENE W.
NRC Research Associate (ES53)
Preliminary Results of a Statistical Study
of Pc4 Magnetic Pulsations at Synchro-
nous Orbit. Submitted to EOS, Trans-
actions of the American Geophysical Union.

Arthur, CARLENE W.
NRC Resident Research Associate (ES53)
Power Spectra of Geomagnetic Field
Variations at Synchronous Orbit.
Published in EOS, Transactions of the
American Geophysical Union.

ARTHUR, CARLENE W.
NRC Resident Research Associate (ES53)
McPHERRON, R. L. Univ. of California
The Interplanetary Magnetic Field
Associated with Synchronous Orbit
Observations of PC 3 Magnetic Pulsa-
tions. Published in the Journal of
Geophysical Research.

ASKINS, BARBARA S.
Autoradiographic Image Intensification:
Application for Medical Radiography.
Published in Science.

ASKINS, BARBARA S.
O'DELL, C. R.
Autoradiographic Intensification of
Photographic Images. February 20-25,
1977. Presentation at the AAAS
Annual Meeting to be held at Denver,
Colorado, Presentation at the 150th
Meeting of the American Astronomical
Society to be held at Atlanta, Georgia

AUSTIN, ROBERT E.
PS04
Concentrated Solar Electric Propulsion:
Today's Technology for Tomorrow's
Missions. October 18-20, 1977. Presentation at the Industrialization of
Space Conference to be held at San
Francisco, California.

AUSTIN, R. E.
PS04
Solar Electric Propulsion for the
Halley's Comet Rendezvous Mission.
January 16, 1978. Presentation at the
AIAA 16th Aerospace Sciences Con-
ference to be held at Huntsville,
Alabama.
BAUGHER, CHARLES ES53

BEALL, JAMES R. Martin Marietta Aerospace

HAMITER, LEON EC43

BILBRO, JAMES W. EC32

BILBRO, JAMES W. CO2 Laser Doppler Velocimeter. September 27-29, 1977. Presentation at the "Effective Utilization of Optics in Radar Systems" to be held at Huntsville, Alabama.

BRAAM, FRED W. EP24

BRANTLEY, LOTT W. PD14
Pressure Stabilized Solar Collector (PSSC). September 26, 1977. Presentation at the ERDA Concentrating Collector Conference to be held at Atlanta, Georgia.

BRANTLEY, LOTT W., Jr. PD14

BURNS, ROWLAND E. EL23

BURROWS, ROGER R. EL23

CAMP, DENNIS W. ES43
GREEN, JAMES T. American Airlines
FROST, WALTER Univ. of Tennessee Space Inst.

CASH, MITCHELL FA32

CHANDLER, KEITH B. EP24
The Push that Makes the Shuttle Go. January 1977. Presentation at the
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are clearance dates.)

AIAA, Alabama Section “The Explorer” to be held at Huntsville, Alabama.

CHAPPELL, C. R. ES53
Presentation at the Twelfth International Symposium on Space Technology and Science to be held at Tokyo, Japan.

CHAPPELL, CHARLES R. ES53

CHASSAY, ROGER P. FA21

CHASSAY, ROGER P. FA21

CLIFTON, KENNETH STUART ES64
OWENS, JERRY K. ES64
Monitoring of Particulate Contamination and Background Brightness from IECM-Based Instrumentation. March 7-9, 1978. Presentation at the International Spacecraft Contamination Conference to be held at Colorado Springs, Colorado.

COMFORT, R. H. ES52
HAGYARD, M. J. ES52

CRAFT, HARRY G. JA11
LESTER, ROY C. JA11

CROWELL, C. S. EC13
DORESWAMY, C. V. Tuskegee Institute
PADIYAR, K. R. Tuskegee Institute
Energy Spectrum of Corona Impulses Generated from Insulated Wires Under High ac Voltages. April 10-12, 1978. Presentation at the IEEE 1978 Region 3 Conference to be held at Atlanta, Georgia.

DAILEY, CARROLL C. HA01

DALINS, ILMARS ES71

DALINS, ILMARS ES71
Surface Science and Ultra-High Vacuum

DERRICKSON, J. H. ES62
PARNELL, T. A. ES62
GREGORY, J. C. ES62

DeSANCTIS, CARMINE E. NA01

DOWN, SANFORD W., JR. EF02
Use of Four Band Multispectral Photography to Identify Forest Cover Types. March 29-31, 1977. Presentation at the Sixth Annual Remote Sensing of Earth Resources Conference to be held at the University of Tennessee Space Institute in Tullahoma, Tennessee.

EDWARDS, T. R. ES64
A Modified Efroymson's Step Wise Multiple Linear Regression. October 18, 1977. Presentation at the MSFC/UAH Data Management Conference to be held at MSFC.

ENGLER, E. E. EP.13
Automated Space Fabrication of Basic Structural Elements. October 18-20, 1977. Presentation at the Industrialization of Space Conference to be held at San Francisco, California.

ESCUE, W. T. EC23
Transducer and Signal Conditioning Philosophy for Large Programs. April 26-28, 1977. Presentation at the Ninth Transducer Workshop to be held at Fort Walton Beach, Florida.

ESPY, PATRICK N. ES64
Fixed Concentrating Flat-Plat Collectors for Heating and Hot Water Application. September 26-28, 1977. Presentation at the Concentrating Solar Collector Conference to be held at Atlanta, Georgia.

ESPY, PATRICK N. ES64

ESPY, PATRICK N. ES64
Analysis of Reflector Augmented Flat Plat Collector Performance. February 28-March 2, 1977. Presentation at the Flat Plate Solar Collector Conference Exhibit Workshop to be held at Orlando, Florida.

FALLS, LEE W. ES84
CRUTCHER, HAROLD L. ES84

FAY, THEODORE ES64(NAS/NRC)
WISNIEWSKI, W. University of Arizona
The Light Curve of the Nucleus of Comet d'Arrest. Published in Icarus.
FICHTL, GEORGE H. ES82
PERLMUTTER, M.
U.S. EDRA, Pittsburgh Energy Res. Center
FROST, W.
Univ. of Tennessee Space Institute

FIELDS, S. A. ES53
BURCH, J. L. ES53
ORAN, W. A. ES53

FISHMAN, GERALD J. ES62

FISHMAN, G. J. ES22
AUSTIN, R. W. ES22
Large-Area Multi-Crystal NaI(T1) Detectors for X-Ray and Gamma-Ray Astronomy. Published in Nuclear Instruments and Methods.

FISHMAN, G. J. ES62
MEEGAN, CHARLES A. ES62 (NAS/NRC)

FOUNTAIN, JAMES A. ES64
WEST, EDWARD A. ES52

GAFFIN, ROBERT D. EP25

GREGORY, J. ES62
SEelig, W. ES62
AUSTIN, R. ES62
DERRICKSON, J. ES62
PARNELL, T. ES62

GREENWOOD, TERRY F. ED33
SEYMOUR, DAVID C. ED33
Base Heating Prediction Methodology Used for the Space Shuttle. September 13-15, 1977. Presentation at the JANNAF 10th Plume Technology Meeting to be held at San Diego, California.

HAGYARD, M. J. ES52
TEUBER, D. ES51
Comparison of Measured Transverse...

HAGYARD, M. J. ES13
WEST, E. A. ES13
CUMINGS, N. P. ES13

HAGYARD, M. J. ES13
WEST, E. A. ES13
CUMINGS, N. P. ES13
Polarized Intensity Patterns of a Sunspot. Published in Solar Physics.

HALL, R. R. JA01
RIVES, J. M. JA01

HALL, STEPHEN BOYD PD24
Large Space Structure Assembly Simulation. October 18-20, 1977. Presentation at the "Industrialization and Habitation of Space: The High Frontier" Conference to be held at San Francisco, California.

HAMITER, LEON EC43
VILLELLA, FELMINIO EC43

HANKINS, JAMES D. FA32
HARADA, Y. IIT Research Institute
GILLIGAN, J. E. IIT Research Institute
WILKES, D. R. ES33
Effect of Zn/Ti Ratio on Properties of Zn$_2$TiO$_4$ Thermal Control Pigment. November 2, 1976. Presentation at the 29th Pacific Coast Regional Meeting of the American Ceramic Society to be held at San Francisco, California.

HASTINGS, L. J. EP43
ALLUMS, S. L. EP43
Performance Characteristics of a 1.8 by 3.7 Meter Fresnel Lens Solar Concentrator. September 26-28, 1977. Presentation at the ERDA Concentrating Collector Conference to be held at Atlanta, Georgia.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are clearance dates.)

HASTINGS, L. J. EP43
JENSEN, W. S. EP43
ALLUMS, S. L. EP43

HILL, KELLY ES44
TURNER, ROBERT E. ES44

HORWITZ, JAMES L. ES53
Auroral Zone Electric Fields and Ground Magnetic Perturbations, and Their Response to Variations in the Interplanetary Magnetic Field. Published in EOS — Transactions of the American Geophysical Union.

HORWITZ, JAMES L. ES53
Chatanika Electric Field Observations Related to the Visual Aurora. Published in EOS — Transactions of the American Geophysical Union.

HORWITZ, JAMES L. ES53
The Response of the Dayside Aurora to Sharp Northward and Southward Transitions of the Interplanetary Magnetic Field and to Magnetospheric Substorms. Published in EOS — Transactions of the American Geophysical Union.

HOWELL, JOE T., JR. PD12
Dynamic Analysis of an Instrument Pointing System. April 4-6, 1977. Presentation at the 1977 IEEE Region 3 Conference and Exhibit to be held at Williamsburg, Virginia.

HUMPHRIES, WILLIAM R. EP45

JEAN, OTHA C. JA01
LESTER, ROY JA01
Integration of Shuttle Payloads. Published in Astronautics and Aeronautics.
JOHNSON, C. W. PF03
LUNDQUIST, C. A. ES01
ZURASKY, J. L. EC32

The Lageos Satellite. October 10-16, 1976. Presentation at the XXVIIth International Astronautical Congress to be held at Anaheim, California.

JOHNSTON, MARY HELEN EH22

Dendrite Remelting and Macrosegregation Experiment. April 20-21, 1977. Presentation at the Applications of Space Flight in Materials Science and Technology Conference to be held at Gaithersburg, Maryland.

JONES, CHARLES O. EC32

JONES, LEE W. EP24

KENNEDY, R. NASA Headquarters
PACE, R. NASA/MSFC
COLLET, J. ESA Headquarters, Paris France

SANFOURCHE, J. P. ESA/SPICE, Porz-Wahn FRG

The First Spacelab Payload – A Joint NASA/ESA Venture. September 26-October 1, 1977. Presentation at the XXVIIIth Congress of the International Astronautical Federation to be held at Prague, Czechoslovakia.

KIEFLING, LARRY ED23

SPAR October 18-20, 1977. Presentation at the 48th Shock and Vibration Symposium to be held at Huntsville, Alabama.

KRALL, K. R. ES52
REICHHMANN, E. J. ES52
WILSON, R. M. ES52
HENZE, W. ES52
SMITH, J. B. ES52

KURTZ, ROBERT L. ES83
LIU, H. K. University of Alabama

A Practical Method for Holographic Interference Fringe Assessment. Published in Optical Engineering.

KROES, ROGER L. ES74

LANIER, JOHN R. EC13

A Circuit for Reconditioning Ni-Cd Batteries in Space. June 14-16, 1977. Presentation at the Institute of Electrical and Electronics Engineers Conference to be held at Palo Alto, California.

LENNARTSSON, WALTER ES53
REASONER, DAVID L. ES53

LOGAN, EARL, JR. ES82
CAMP, DENNIS W. ES82

LUCAS, W. R. DA01

LUNDQUIST, CHARLES A. ES01
COLOMBO, GIUSEPPE
Univ. of Padova, Padova, Italy
Advanced Technologies in Space and Opportunities for Gravity Experiments. August 24-September 4, 1977. Presentation at the International School of Relativistic Astrophysics meeting to be held at Erice, Trapani, Sicily.

LUNDQUIST, CHARLES A. ES01
SIEBEL, M. P. L. ES01
COLEMAN, PAUL J.
Univ. of California at Los Angeles
McLEOD, M. G.
Tethered Satellites for Magnetic Field Measurements. Published in the Proceedings of the NASA Workshop on Application of Space Techniques to Geodynamics.

McKANNAN, EUGENE C. PF11
Experimental Capabilities: Skylab/Apollo Soyuz/Rocket. April 20-21, 1977. Presentation at the Applications of Space Flight in Materials Science and Technology Conference to be held at Gaithersburg, Maryland.

McKANNAN, EUGENE C. PF11
Space Processing Influences Materials Advances. May 9-12, 1977. Presentation at the International Engineering Conference and Tool and Manufacturing Exposition to be held at Detroit, Michigan.

MAYNARD, O. E. Raytheon
KATZ, A. H. Raytheon
WHITACRE, W. E. MSFC
Spaceborne Power Conversion Into a Microwave Beam and Its Impact on the Environment of the Upper Atmosphere. August 1977. Presentation at the IECEC Conference to be held at Washington, D.C.

MIDDLETON, ROBERT L. FA33
Commercial Solar Demonstration Program – Some Early Results. April 25-29, 1977. Presentation at the Civil Engineering in 21st Century Conference to be held at Dallas, Texas.

MILLER, RONALD I. Boeing Aerospace Co.
JOHNSTON, MARY HELEN EH12

MOORE, W. WALDING, JR. ES83
KURTZ, ROBERT L. ES83

NAUMANN, ROBERT J. ES71
Separation Processes in Low-Gravity: A Basis for Space Industrialization?
October 18-20, 1977. Presentation at the American Astronautical Society Conference to be held at San Francisco, California.

NEIGHBORS, ALICE K. EE71
REDDY, J. N.

COST, T. L.

NICHOLS, R. L. EH34

O’DELL, C. R. DS30
SWAMY, K. S. KRISHNA
Tata Institute of Fundamental Research Statistical Equilibrium in Cometary C. I. Published in the Astrophysical Journal.

ORAN, W. A. ES72
NAUMANN, R. J. ES71

Utilization of the Vacuum Developed in the Wake Zone of Space Vehicle of the LDEF Class. February 9-11, 1977. Presentation at the “Use of the Space Shuttle for Science and Engineering” Conference to be held at Ames Research Center, Mountain View, California.

ORAN, W. A. ES72
NAUMANN, R. J. ES71

PACE, ROBERT E. JA11
CRAFT, HARRY G., JR. JA11
Planning for Early Spacelab Missions. April 27-29, 1977. Presentation at the 14th Space Congress to be held at Kennedy Space Center, Florida.

PARR, R. A. EH22
McCLURE, J. C. EH22
JOHNSON, M. H. EH22

PERKINS, J. H. EH32
RHEIL, W. A. EH31

PRIEST, CLAUDE C. PS04

RAO, GOPALA ES52
ASKINS, BARBARA S. ES52

RATHZ, THOMAS J. ES74
The Application of Digital Techniques to the Analysis of Metallurgical
Presentation at the Symposium on Applications of Computer Methods in Engineering to be held at Los Angeles, California.

RAY, C. D. EP35

REICHMANN, E. J. ES52
HENZE, W., JR. ES52
WU, S. T. ES52
Discussion of Soft X-Ray and Ground Based Observations of NOAA 212 and 215. June 12-15, 1977. Presentation at the 150th Meeting of the AAS to be held at Atlanta, Georgia.

ROBERTS, MARION L. EH43

ROWE, D. W. General Electric HOOPER, J. W. EF24

SCHLAGHECK, RONALD A. EL12
An Interactive Computer Approach to Performing Resource Analysis for a Multi-Resource/Multi-Project Problem. December 5-7, 1977. Presentation at the Winter Simulation Conference to be held at Gaithersburg, Maryland.

SCHWINGHAMER, ROBERT J. EH01

SCISSUM, JEANETTE A. ES83

SCISSUM, JEANETTE A. ES83
Climatic Changes and Solar Activity. Published in NTA Journal.

SCHAFER, CHARLES F. ES12
SPAR I Liquid Mixing Experiment. January 24-26, 1977. Presentation at the AIAA 15th Aerospace Sciences Meeting (AIAA Technical Committee for Space Processing) to be held at Los Angeles, California.

SCHAFER, CHARLES F. ES12
SPAR I Liquid Mixing Experiment. January 24-26, 1977. Presentation at the AIAA 15th Aerospace Sciences Meeting (AIAA Technical Committee for Space Processing) to be held at Los Angeles, California.

SCHLAGHECK, RONALD A. EL12
An Interactive Computer Approach to Performing Resource Analysis for a Multi-Resource/Multi-Project Problem. December 5-7, 1977. Presentation at the Winter Simulation Conference to be held at Gaithersburg, Maryland.

SCHWINGHAMER, ROBERT J. EH01

SCISSUM, JEANETTE A. ES83

SCISSUM, JEANETTE A. ES83
Climatic Changes and Solar Activity. Published in NTA Journal.

SCHLAGHECK, RONALD A. EL12
An Interactive Computer Approach to Performing Resource Analysis for a Multi-Resource/Multi-Project Problem. December 5-7, 1977. Presentation at the Winter Simulation Conference to be held at Gaithersburg, Maryland.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are clearance dates.)

SHURNEY, ROBERT E.

SIMS, JOSEPH L.
BLACKWELL, KENNETH L.
Base Pressure Correlation Parameters. June 7-8, 1977. Presentation at the Workshop on Missile and Plume Interaction Flow Fields to be held at Redstone Arsenal.

SMITH, AUBREY D.
Engineering and Productivity Gains from Space Technology. Submitted to NSPE Magazine.

SMITH, JESSE B.

SMITH, J. B., Jr.
SPEICH, D. M.
WILSON, R. M.
TANDBERG-HANSSEN, E.
WU, S. T.

SMITH, J. B., JR.
SPEICH, D. M.
TANDBERG-HANSSEN, E.
WILSON, R. M.
REICHMANN, E. J.
Soft X-Ray Manifestation of Coronal Transient-Related Events. June 7-17, 1977. Presentation at the COSPAR, XXth Plenary Meeting to be held at Tel Aviv, Israel.

SMITH, R. E.
HUNG, RU J.

SMITH, R. E.
HUNG, R. J.

SPEER, F. A.
DAILEY, C. C.

SPENCER, ROBERT L.

STEINOLFSON, R. S.
TANDBERG-HANSSEN, E.

STONE, N.
SAMIR, U.
WRIGHT, K.
Considerations of Plasma Disturbances Created by Probes in the Ionosphere

STONE, NOBIE H. ES23

TANDBERG-HANSSEN, E. ES51
SHEELEY, N. ES51
SMITH, J. B. ES51

TANNER, E. RAY EL32
BURGER, J. J. ESA

TEUBER, D. L. ES52
WILSON, R. M. ES52
HENZE, W., JR. ES52

TEUBER, D. ES51
REICHMAN, E. J. ES52
WILSON, R. M. ES52

THOMPSON, JAMES R., JR. SA51
Space Shuttle Main Engine. April 27-29, 1977. Presentation at the 14th Space Congress to be held at Cocoa Beach, Florida.

TRAHAN, J. F. ES74
LACY, L. L. ES74

URBAN, EUGENE W. ES63

VAUGHAN, WILLIAM W. ES81
Experiments on Atmospheric Processes. May 12, 1977. Presentation at the Symposium on Engineering and Productivity Gains from Space Technology to be held at MSFC, Alabama.

WAITES, HENRY B. ED12

WATKINS, JIMMY R. ES52
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are clearance dates.)

WEAVER, EDWIN A. EC35

WEST, E. A. ES52
HAGYARD, M. J. ES52
CUMINGS, N. P. ES52

WILSON, R. M. ES52
REICHMANN, E. J. ES52
SMITH, J. B., JR. ES52
SPEICH, D. M. ES52
Long Lived Soft X-Ray Transients Observed During Skylab. June 12-15, 1977. Presentation at the 150th Meeting of the AAS to be held at Atlanta, Georgia.

WINDER, S. ED01
GLAES, J. ED01
VALLEY, P. ED01
JEWELL, R. ED01

WINKLER, CARL E. ES61
KORSCH, DIETRICH ES61
Primary Aberrations for Grazing Incidence. Published in Applied Optics.

WOJTALIK, FRED S. EE71
High Energy Astronomy Observatory Program (HEAO). June 12-16, 1977. Presentation at the Seventh IFAC World Congress to be held at Helsinki, Finland.

YOUNG, L. E. EC12
ELMS, R. V., JR. LMSC
Upper air soundings taken every 3 hours are used to examine a cold front of average intensity over a period of 24 hours. Vertical cross sections of potential temperature and wind and horizontal analyses are compared and adjusted until they are consistent with one another. These analyses are then used to study the evolution of the front, which is found to consist of a complex system of fronts occurring at all levels of the troposphere. Low-level fronts are strongest at the surface and rapidly weaken with height. Fronts in the middle and upper troposphere are much more intense. The warm air ahead of the fronts is nearly barotropic, while the cold air behind the fronts is baroclinic through deep layers. A deep mixed layer is observed to grow in this cold air.

Examination of cross sections of potential temperature and potential vorticity indicates that the air in at least the upper portions of the upper level fronts originates in the stratosphere. No evidence is found, however, of an extrusion of stratospheric air to very low levels. The structure of the upper level fronts is complex. These fronts are observed to split apart, recombine, and descend to low elevations due to the incorporation of pre-existing stable/baroclinic layers.

An equation for parcel-following frontogenesis in isentropic coordinates is developed and applied. No single process was found to be dominant in changing frontal intensity. Frontogenesis occurs on the leading edge of the fronts and frontolysis on the trailing edge. The magnitudes of the computed frontogenesis decrease downstream from the axis of the upper level trough.

Isentropic trajectories are constructed to verify the computed values of parcel-following frontogenesis. Poor correlations found between the computed and trajectory-following values of frontogenesis are believed to be due to nonlinearities in the field of frontogenesis and to errors in the trajectories.

Vertical velocities are computed using a kinematic technique. Reasonable fields of vertical velocity are obtained in the vicinity of the fronts and jet streaks. Good correlations are found between the vertical displacement between endpoints of the trajectories and the value of computed vertical velocity integrated over the path of the trajectory. The field of vertical velocity is also found to be highly nonlinear.
The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

J. T. SHEPHERD
Director, Administration and Program Support