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CORRELATION OF PREDICTED AND MEASURED THERMAL STRESSES

ON A TRUSS-TYPE AIRCRAFT STRUCTURE

Jerald M. Jenkins, Lawrence S. Schuster, and Alan L. Carter
Dryden Flight Research Center

INTRODUCTION

Several operational aircraft have accumulated significant flight time at speeds
sufficient to produce severe aerodynamic heating (refs. 1 to 3). Even with this
experience, there exists a lack of understanding of how accurately thermal stresses
can be predicted on a complex aircraft structure. The ability to predict thermal
stresses accurately has great impact on both the safe magnitude of stresses and the
long-term effect of thermal cycling on the structure. This paper addresses this
deficiency by examining how measured thermal stresses on a laboratory test speci-
men compare with thermal stresses predicted using a NASA structural analysis
(NASTRAN) computer model.

A test structure representing a portion of a hypersonic vehicle (ref. 4) was
instrumented with strain gages and thermocouples. This test structure was then
subjected to laboratory heating representative of supersonic and hypersonic flight
conditions. A finite element computer model of this structure was developed using
several types of elements with the NASTRAN program (ref. 5). Temperature inputs
from the test were used to predict model thermal stresses, and these were correlated
with the test measurements.

DESCRIPTION OF TEST SPECIMEN AND INSTRUMENTATION

A test specimen resulted from work directed toward studying the feasibility
of a hypersonic research airplane (ref. 4). One structural concept resulting from
this study was a heat sink type of structure. The basic philosophy was to use a
variable-thickness, load-carrying skin to absorb heat as required to maintain a
certain skin temperature. The skin was supported by a truss-type substructure as
shown in figure 1. A beryllium-aluminum composite metal (ref. 6) was selected as



the skin because of the light weight and large thermal capacity of beryllium. The
substructure frames were a titanium, truss-type configuration with Ti-6A1-4V being
used as the truss material. A photograph of the substructure frames is shown in
figure 2. A photograph of the complete specimen is shown in figure 3 where the
skins are attached to the substructure.

The location of the temperature and strain instrumentation is shown in figure 4.
Eighteen thermocouples and eighteen strain gages were used for analysis purposes
in this paper. Eight thermocouples and strain gages were located on the skins,
while the remaining ten were located at strategic points on the substructure.
Thermocouples and foil-type strain gages were used in the test temperature environ-
ment, which ranged from 241° K (-30° F) to 594° K (600° F).

TEST PROCEDURE

The general test setup is shown in the schematic in figure 5. The specimen is
completely encased but is supported so that it is unrestrained—in other words, the
edges are free to rotate and translate in the plane of the skin. A rack of radiant
heaters (ref. 7) is located such that skins can be heated on the side away from the
frames. A blower system is situated such that a mixture of air and gaseous nitrogen
can be blown over the specimen if cooling is desired.

Two different heating conditions were considered so that a simulation of the
heating for both a hypersonic mission and a supersonic mission could be examined.
A flight profile for a supersonic cruise airplane is shown in figure 6. This profile is
of a 50-minute flight in which more than 30 minutes are spent at a Mach 3 cruise
condition. Skin temperatues were calculated based on the computer program identi-
fied in reference 8. A flight profile for a hypersonic mission is shown in figure 7.
This profile is of a 6-minute rocket-powered mission (ref. 4) with a 1-minute cruise
at Mach 6. Skin temperatures were also calculated for this flight profile.

Time histories of skin temperatures for the two profiles were used to perform the
test. In the case of the supersonic profile, the test began at room temperature with
radiant heating of the skins to the prescribed flight profile. At the end of the thirty-
plus minutes at the Mach 3 temperatures, cold gaseous nitrogen and air were blown
over the specimen to simulate the cooling effect which occurs during descent. In the
case of the hypersonic profile, the test specimen is cooled prior to heating to simulate
the cold soak condition that occurs when rocket-powered aircraft are air launched at
high altitude. After the specimen is cooled, the heating is started by controlling
the skin temperatues with radiant heaters according to the prescribed temperature
time history.

DESCRIPTION OF THE NASTRAN MODEL

A 237-element NASTRAN model of the test component was developed for one of
the symmetrical quarters of the structure as shown in figure 8. The model, which



had a surface area of 0.34 square meter (3.68 square feet) and a nominal depth of
0.10 meter (4 inches), was identified as TITRUS and composed of bar, rod, and shear
panel elements. There were 96 grid points with 131 bars, 40 rods, and 66 shear
panels. The skins were modeled with bar elements and shear panels (fig. 9). The
truss frames were modeled as bar elements, rod elements, and shear panels.
Twenty-one single-point constraints were utilized to appropriately control the dis-
placements and rotations at the edges of the model. Thirty-eight multiple-point
constraints were utilized with respect to the rods to prevent them from collapsing.
The model had 475 degrees of freedom, and 592 bulk data cards were used. The
correlation of the instrumentation locations to structural model elements is shown
in figure 10. The grid point numbering system for the NASTRAN model is shown
in figure 11. )

RESULTS

The results of the supersonic and hypersonic heating simulations are presented
in figures 12 and 13, respectively. Time histories of temperatures and thermal
stresses resulting from the tests are represented by the solid lines. Thermal stresses
calculated using the NASTRAN model are represented by the circular symbols.

Temperatures for the supersonic heating simulation begin near room temperature
for the entire structure. The skins reach a maximum temperature near 515° K (460° F)
while the substructure remains significantly cooler. These temperature changes and
variations induce the measured thermal stresses that are presented. It can be seen
that the skin thermal stresses (F, G, H, I, J, K, L, and M) are relatively small and
may be either in tension or compression. The very large thermal stresses occur in
the upper caps (E and N) where large tensile values occur. The lower cap thermal
stresses (A, B, C, P, Q, and R) were generally small as were the truss link stresses
(D and O). Strain gages C and D exhibited erratic behavior, which was assumed to
indicate a sensor failure.

Temperatures for the hypersonic heating simulation begin near 241° K (-30° F)
for the entire structure. Since previous hypersonic research aircraft are rocket
powered, they are usually air launched from another aircraft to gain an altitude
advantage. This very cold initial temperature soak represents the cold soak occurring
at high altitude prior to air launching. The skins reach a maximum temperature near
594° K (600° F) while the substructure remains considerably cooler. The thermal
stresses, in general, follow the same pattern as was observed for the supersonic
case. The very large stresses again occurred in the upper caps (E and N). The
stresses, in general, were larger for the hypersonic case, as would be expected for
larger thermal gradients. Strain gage D exhibited erratic behavior, so it was
assumed to have failed.

Thermal stresses calculated using the NASTRAN model with temperature inputs
from the heating simulation are presented as the circular symbols. Most of the
NASTRAN elements correspond to a strain gage location and therefore the thermal
stresses can be compared directly. There are several cases, such as element
number 2083, which should correspond more closely to the average of strain gages
A and B because the model was not broken up into more elements at that particular
location. The same comment is applicable for elements 2078, 2033, and 2038.



DISCUSSION

The primary purpose of this paper is to determine how well thermal stress can
be predicted using a NASTRAN computer model. The basic comparison is made by
examining the content of figures 12 and 13. The experimentally measured thermal
stresses are directly compared to thermal stresses calculated using the previously
described NASTRAN model. It is logical to discuss the comparisons in four distinct
areas of the structural component: the lower cap area, the truss links, the upper
cap area, and the skins. The upper cap is the area closest to the skins, while the
lower cap area is the farthest from the skins.

Strain gages A, B, C, P, Q, and R are located in the lower cap area (fig. 10).
Elements 2033, 2038, 2078, and 2083 are associated with the foregoing strain sensors.
The following strain gages/elements are directly comparable: A/2083, C/2078,
P/2033, and R/2038. The average of elements 2078 and 2083 would come the closest
for comparison to strain gage Q.

The hypersonic heating simulation was conducted prior to the supersonic
heating simulation. Strain gage C failed before the supersonic heating test could be
completed; hence, there are no data for strain gage C. In general, the skin thermal
stresses were predicted quite well (for both the supersonic and hypersonic simula-
tions). Strain gages A, C, and P (figs. 12 and 13) correlated very well with the
thermal stresses calculated from the NASTRAN model. Strain gages B and Q could
not be directly compared to one specific NASTRAN element; however, the measured
thermal stresses appeared to be in the expected range when they were compared to
the elements in close proximity (B/2078 and 2083, Q/2033 and 2038). Strain gage R
(fig. 13(d)) did not agree with the NASTRAN predictions at all for the hypersonic
test. The measured thermal stresses were several times larger than those predicted
by the NASTRAN model. The data for strain gage R correlated much better for the
supersonic case (fig. 12(c)).

There were only two strain gages on the truss links, and one (strain gage D)
failed during the test. Only strain gage O was operative on the truss links. The
truss link thermal stresses were measured as very small quantities, and this was
substantiated by the NASTRAN model (figs. 12(f) and 13(g)).

Large thermal stresses occurred throughout both the supersonic and hypersonic
heating tests for strain gages E and N (figs. 12(g), 12(h), 13(h), and 13(i)).
It can be seen that the NASTRAN calculated thermal stresses exceeded the measured
stresses significantly for the supersonic case. Particularly, the thermal stress
calculated at location N was 30 to 40 percent above the measured thermal stresses.
The other cases showed better agreement with the thermal stresses calculated at
location N, being quite comparable to the measured data for the hypersonic heating.

Locations F, G, H, I, J, K, L, and M are skin sensors which are presented in
figures 12(f) to 12(p) and 13(g) to 13(j). The thermal stresses calculated at
locations K, L, J, I, and G compared closely to measured thermal stresses for the
supersonic heating test (fig. 12). The thermal stresses measured at locations M, H,



and F did not compare closely to the NASTRAN calculations. Strain gages M and N
are both located in the center of the panel; hence, their locations are geometrically
similar. The time histories are also very similar in that the NASTRAN model indicates
a small compressive stress at these locations while the test data show a small tensile
stress throughout the majority of the time history. The calculated thermal stresses

at location F are considerably larger than the measurements.

The skin thermal stresses for the hypersonic heating simulation yielded similar
results. The calculated thermal stresses at locations K, L., M, J, I, and G compared
closely to measured thermal stresses (fig. 13). The thermal stresses at H and F did
not compare closely to the NASTRAN calculations. The calculated thermal stresses
at location H were fairly large compressive stresses while the measured thermal
stresses were close to zero. The NASTRAN model indicated some very large tensile
stresses at location F which were not substantiated by test measurements.

The data presented in figures 12 and 13 can be examined in a more informative
manner. The distribution of temperature for an instant in time (time = 12 minutes)
for the supersonic case is presented in figure 14. The temperature distribution
on the left is for the left spar, and the distribution to the right is for the right spar.
The temperature distribution at the bottom is for the skin. Thermal stress distribu-
tions corresponding to the figure 14 temperature distributions are shown in figure 15
for the 12-minute time segment. It can be seen that the distribution predicted using
the NASTRAN model correlates closely with the thermal stresses measured during
the test.

The temperature distribution shown in figure 16 is at the 4-minute time segment
of the hypersonic heating profile. Thermal stress distributions corresponding to
the figure 16 temperature distributions are shown in figure 17. The distribution of
thermal stress resulting from the NASTRAN model correlates closely with the thermal
stresses measured during the hypersonic heating test.

CONCLUDING REMARKS

There are two very important issues that have been addressed in this paper.
The first is to assess how well a NASTRAN model can predict thermal stress distri-
butions and time histories of thermal stress in a complex structure. The second is
to provide a level of experience from which estimates of required model complexities
can be obtained with respect to temperature input requirements, resulting thermal
stresses, and type of structural elements.

The NASTRAN model, in general, predicted the thermal stresses measured
during laboratory simulated supersonic and hypersonic heating conditions very
well for approximately 70 percent of the structural elements which were examined.
There were significant, although not necessarily unexpected, discrepancies for
approximately 30 percent of the structural elements considered.

The NASTRAN model was developed with 237 bar, rod, and shear panel elements.
The model contained approximately 700 elements per square meter (65 elements



per square foot) of surface area. This element density was considered adequate to
predict the distribution of thermal stress and the time histories of thermal stress
reliably. Approximately 280 temperature inputs per square meter (26 per square
foot) of surface area were required to develop predicted thermal stresses.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., October 19, 1978
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Figure 1. Location of test specimen on hypothetical hypersonic airplane.
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(a) Location A.

Figure 13. Measured temperatures and comparison of measured and NASTRAN-
calculated thermal stresses for hypersonic heating simulation.
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Figure 13. Continued.
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Figure 13. Continued.
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Figure 13. Continued.
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Figure 13. Continued.
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Figure 13. Continued.
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