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" FLOW-FIELD IN A VORTEX WITH

BREAKDOWN ABOVE SHARP EDGED DELTA WINGSl

Yoshio Hayashi and Teruomi Nakaya,
Second Division of Aerodynamics, the
Japanese National Aerospace Laboratory

ABSTRACT

This paper describes the behavior of vortex-flow, accompan=-
ied with breakdown, formed above sharp-edged delta wings, which
has been investigated experimentally as well as theoretically at
NAL. Emphasis is placed particularly on the criterion for the
breakdown ~at sufficiently large Reynolds numbers.
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First shown are the mean velocity components Ux’ Uy, Ur’ and
the total head Hc along the vortex axis measured in the vortex-
flow field over three flat-plate delta wing models with apex
angles of 40°, 50°

non-dimensionalized in terms of the maximum velocity U0 and the

and 60°. Fxperimental data are conveniently

distance L, at which the velocity along the vortex axis becomes
half of Uo' These results show that the pronounced effect of the
vortex breakdown presents itself on the mean axial-velocity dis-
tribution across the vortex and the total head change along the
vortex central axis. The breakdown boint can therefore be deter-
mined from the criterion dH_/dX=0 or ( 3°U,/ IR%) _ =0. The
_spiral form of the vortex and'the velocity fluctuation in the
vortex breakdown flow field are illustrated as results of the

precession of the vortex core section, analogous to the preces-

-
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lThe manuscript was received on May 8, 1975.
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sion of the vortex core section, analogous to the precession of
a solid body with a fixed point. The frequency of the velocity
fluctuation is demonstrated experimentally and theoretically to
be proportional to Uy,/L.

Secondly, a modification, accounting for turbulence, of
Hall's method of numerical calculation is described. The concept
of eddy viscosity is introduced, and the fundamental sysﬁem of
the theoxy consists of a set of qguasi-two dimensional eguations
which are to be solved numerically. Calculation is actually car-
ried out in the case of a flat-plate delta wing model with an
apex angle of 50° and an attack angle of 170, with initial and
boundary conditions specified in accordance with the measured
values. Comparison is made betwéen the numerical and experimen-
tal results, showing good agreement between them, when chosen
value of eddy viscosity is 4 to 5 times larger than the kinematic
viscosity. .

1. Imtroduction

Owing to the recent progresses in researches and technolo-
gies concerning high-speed aircraft, supersonic passenger air= -
ctaft have been realized for practical use. Inspired by the
development of the SS8T's, energetic studies have been made on
wings which are economically efficient as well as able to ensure
high standard of safety.rl]”Iz]’[lz}’]lg] These studies have
mostly been converged Uliﬂmacondiusion that sharp-edged delta
wings are most advantageous for supersonic passenger aircraft
for the following reasons: The fipw in . the wings' neighborhood
is stable, sufficient strdcturél?strength may be provided and
their low resistance makes thgmiegoﬁqmical;y feasible.

The flow-field .around these.wings, however, tends to be ex-
tremely sensitive to three-dimensional influences since their as-

pect ratio is small and their front edges are very sharp. The



most characteristic phenomenon may be described as follows: When
the angle of attack becomes larger than a certain limit, the flow
cannot make a sharp turn at the leading edge of such a wing and
separates from' the wing, thus generating a three-dimensional flow.
Generally, a wing with a large aspect ratio is designed so as to
prevent sSuch a separation on the wing surface as much as possible
and to obtain as ideal 1ift asg possible.

on the contrary, a delta wing utilizes this separation
rather in a positive way. The fiow separated at the leading edge
of the wing concentrates on the wing gﬁrféce and induces strong
vorteces. Since the leading edge is sharp, the separation point
is fixed and the genefaﬁeahyor£é¢e$ ﬁré_very stable. Thus, the
flow separated at the leading adge forms a stable three-dimen-
sional separated flow, includin§ a-pdiﬁ of concentrated vorteces,
each of which is located above each tail side of the wing. Such
a vortex above the wing is accompanied by very low static pres-
sure and, hence, the 1lift of Ehe'%ing portion above which-the
vortex exists is hi?he: than the 1ift obtained according to the

potential theory. 3 Theflifp-inéréages nonlinearly as -the angle of
attack increases. Thus, the aercdynamic characteristics of a -
sharp edged delta wing are highly dependent on the behawvior of

the:vdrﬁiceSIWhich are separated at the leading edge.

Concerning the aerodynamic characteristics of a delta wing

genérating.vdrticesd many results have been already reported,

[4]

vortex is treated as a linear vortex applying fine-body theory:

such as: a theory by Brown and Michael in which a separated

a theory by Mangler and Smith > in which a separated vortex is

analyzed after it is decomposed into a linear vortex and a vortex

[61

layer; a theory by Smith in which the vortex layer is approxi=-

mated by a piecewise linear function; a theory by Levinsky and

Wei[7] in which Smith's theory is expanded with the fuselage

81, o]

being taken into account; a theory by Polhamus in which a

separated vortex i1s assumed to act similarly to the suction force



generated by a sharp edged wing; a numerical method by OChmura and
Takaoka 1 in which the vortex lattice method ud] as a conven-—
tional three-dimensional wing surface theory is extended for
application to a delta wing with separated vortices. Thus,
aerodynamic characteristics of delta wings with flow separation

have been theoretically established,
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Fig. 1. Vorteces Separated at
Front Edge of a Delta
Wing and Breakdown.

Concerning overall aerodynamics of a delta wing, it suf-
fices to convert each separated vortex into a linear vortex and
a vortex layer and to calculate a field induced byzthe‘vorti¢es. The
vortex separated at the front edge, however;'induces a phencmenon
which is called "breakdown® or "burst" at a location down the
rear edges of the wing, as shown in Fig. 1, as the angle of
attack increases. As the angle of attack is increased further,
this phenomenon begins to take place above the wing surface.
When this phenomenon appears above the wing surface, the velocity
fluctuation becomes furious as well. as pressure fluctuation on
the wing surface, and the aircraft is consequently shaken badly.
When the breakdown is generated above the wing surface, no lift
increase can be expected by the contribution of the vortices and
the head-up moment of the aircraft is increased, thereby deteri-
orating the lateral static stability. The vortex separated at
the front is sensitive to cross winds. Namely, even when the
angle of attack is small, if the aircraft is at an angle to the

wind, one vortex on the windward side breaks down.[l3 ! hj]



deteriorating the traverse static stability.{l] Furthermore,
the relative location of the vortex separated at the leading
edge changes with respect to the wing according to the angle of
attack and to the deviation angle, The location changes in re-
sponse to these angles with a certain phase delay, thus influ-’
encing also the dynamic stability. ﬁA] ﬁ5 h6 In summary,
the phenomenon of the vortex separation at the leading edge and
iof ‘the breakdown has'@a signifieant influence over both static
and dynamic characteristics of an alrcraft and, therefore, in
order to establish a complete fllght safety, thorough studies
must be made on the properties of the;vong}ggsdseparated at the
leading edge. In additidn%'the phenbmenon of the breakdown can
not be rationally explained by a .wing, theory in which the vorti-.
ces separated at the ieading‘edéé are collections of linear vor-
teces and vortex layers. ThlS 1ndlcates that a study must be

dcone for exploring the propertles of the vortex itself.

. - . T - .- A P wa

At the early stage, there 'were Only a few experimental re-
searches for studying the structure of the vortex itself. They
were mainly qualitative’ studies in which -smoke or dye is fed
into the center of a vortex in a wind'tunnél or a water popl and-
visualized generation and development of the vortex are phthH.
graphed. Although such photographs provide valuable information
on the vortex location, the vortex development and the location
of the breakdown, they are not enough for studying the structure
inside the vortex. Werle[ig] put various shapes of objectsﬁ in-
cluding simple delta wings, in a water pool and photographed be-
haviors Of,vortiées at low speeds_using several kinds of dyes
fed into the water pool. Elletzd] photographed vortex genera-
tion at a high subsonic speed by the, schlieren method. In such
a case, although the vortex is interferred with the shock-and
shows a complicated formation, it was clearly shown that the
vortex is actually generated at a high speed as well as a low
speed and dominates the flow-field around the wing. Lambourne

and Bryerléi} put delta wings in a water pool and studied the



development and the breakdown phenomenon of the v@rpices_ They
concluded from their experiments that the breakdown phenomeéna
can be classified into two types: (1) axisymmetric type and

(2)spiral typgyﬁand’tﬁat the axiéymmetric type of vortex is un~

stable and is gradually transformed to the gspiral type. The
central . velocity . of an axisymmetric type vortex decreases
until the vortex center does not move and a tapered reglon of
counter-flow is’ generated. On the other hand, the central axis
of a spiral type vortex makes a turn at a certain point and is
transformed into a turbulént flow behind that point forming sev-
eral spirals. fItfshould“be noted that the rotation direction of
the spiral of a spirai vortex?is reversed to the original direc-
tion of the vortex core Fotation in the process of the vortex

Ly

transformation.

The movement of the dye'photographed by a cinematograph

1

camera for measuring the movements of fluid portions indicates 1"

that the axial speed of the vortex center is more than twice as
high as that of a uniform flow before the breakdown occurs but
becomes less than the uniform-flow speed once the breakdown oc-
curs. Furthermore, it was experimentally clarified! 22 that, at
the breakdown of a spiral type vortex, the fluid in the vortex
core portion does not move along the spiral but moves downstream
along generatrices of a cone including the spiral surface and
that, when the spiral is viewed as a whole, the fluid of the vor-
tex .coré portion appears as if it were moving along the spiral.

Hummeltlﬂ

measured the total pressure distribution of the flow-
field generated by a vortex and its velocity vector and showed
that the total pressure of the vortex center is lower than that
of the peripheral portion while the circumferential velocity is
significantly high. However, in his experiment, the velocity
distribution within the vortex core was not measured. Therefore,
his observation is not sufficient for clarifying the structure of
the vortex., It was Earnshaw[.23'1 who measured the velocity dis-

tribution within the vortex core as well as the pressure

/3



distribution. He used a five-hole Pitot tube for measuring the
flow-field generated by the vortex, and showed that the spiral is
concentrated in an extremely narrow space along the center and
that the axial velocity reaches 2 to 3 times as high as that of a
uniform f£low while the maximum circumferential velocity is almost

the same as that of a uniform flow.

In addition, besides-the_yorticee:on the delta wing surface,

[531 have studied swirl flow in a cylindrical

many researchers
tube which shows a phenomenon similar to the vortex breakdown.
Harvey 24 showed that an egg-shaped counter-flow region is gen-
erated in the central portion of the spiral-flow vortex core in a
cylindrical tube éné that a flow~field with an abruptly changing
tail is formed on the downstream. He further concluded that the
breakdown phenomenon is generated by such stagnation in the vor-
tex core center. Lambourne 2 succeeded, by increasing the
spiral flow in a cylindrical tube, in photographing the transient
states in which an initially generated axisymmetric types of
breakdown is transformed into a spiral type of breakdown. He also
meaeured the fluctuations of velocity and pressure due to the
spiral type of breakdown. Cassidy and Falvey 25 reported their
experimental discovery of the faet that a precession with a con-~ . _
stant period, such as that of a gyroscope, appears in a vortex
after a spiral form of breakdown. According to a recent experi-
mental result by Sarpkaya, the breakdown can be classified into
(1) axisymmetric form, (2) spiral form, ahd {(3) double-helix
form. It was reported as a quantitative experimental result that
which form of breakdown appears depends oﬁ Reynolds number, size
of the circulation and pressure _grédignﬁ,and the breakdown loca-
tion changes also in respeonse to those parameters. The report
also dealt with transient states of the breakdown. According to
Sarpkayva, the spiral rotation of a spiral vortex has the same
direction as that of the vortex initially generated, but the
spiral transformation appearing in the downstream of an axisym-

metric form breakdown has reversed direction, coinciding with the



conclusion by Lambourne about the spiral transformation. As seen
from the above description, besides spiral flow in cylindrical
tubes, there have been no available quantitative experimental re-
sults concerning theé structure of.fgiﬁiq@g)separated at the
leading edge of delta wings, except for Earnshaw's experiment in
which the flow-field before breakdown was studied. According to
the authors' knowledge, theré have been reported no quantitative
experimental'résult descriﬁing an entire process in which a vor-
tex is genéfated and.'is followed by a breakdown.

Basedﬁon %hélabo%eifecoqnition'oﬁ‘the current research stage
of the vortex separated at the leading edge of delta wings., the
authors planned a qﬁantitﬁtive experiment for studying the flow-
field of the vortex éeparéted at the leading edge of delta wings.
Three kinds of flat-plate delta-wing models with different‘
apex angles were builf and the total pressure in the center of
the vorteces generated by those models were measured, together
with the distribution of average velocity vector of the vortex-
generating flow-field ahead of and behind the breakdown. The
results obtained by this experiment showed the same‘ﬁelocity dis—
tribution of the vortices before the breakdown as those reported
by Earnshow. However, the distribution of the axial velocity in
the vortex after the breakdown has occurred is completely differ-
ent from the velocity distribution before the breakdewn. The
distribution after the breakdown has the minimum at the vortex
center and the maximum at a location remote from the center. At
the same time, it was discovered that the total pressure of the
vortex center has its minimal value at the location of the break-
down. Furthermore, the authors reached a conclusion that the
location of the breakdown can be determined by the condition in
which the 2nd-order derivatives of the axial velocity along the
radial direction is zero at the center, ( 22UX/ aRg)R;OQO, oy in
another expression, the derivative of the total pressure in the
vortex center along the direction of the vortex axis is zero,

dHc/dx=O. Thus, one of the main objectives of this paper is to



describe such conditions for determining the vortex breakdown.

In Chapter 2, experimental results of the flow-field gener-

ated by vortioes'witﬁ breakdown on delta wings are described!

lin_ connection with the aboqqtgggtloned experimental results, The
first half of Chaptgr 3 is used for analyvzing the current stage
of theoretical researches and, expl&iting our experimental re-
sults, for demonstrating the‘fact that if the Reynolds number is
relatively high the iécatién'oﬁ the breakdown may be determined
by numerically solving ;pe Navia~Stokes equation by a different
~method under*the quééi;EWo;dimension assumption similar to the
boundary laver approx1mat10n., Our numerical method is based on
that proposed by H 11129] Bd]. .waever, he made a calculation
in the case of a lamlnartﬁlow vortex. Considering the fact that
the wortex in our study'is in turbulent flow, we will state a
calculation method using h vortex~viscosity model in order to
take that effect into account in the process of the numerical
analysis. In the rest of Chapter 3, using the experimental re—
sults obtained from a 650ﬁ apex angle and 17°%-attack angle
model and a numerical calculation with given initial and boun-
dary conditions, it is shown that calculated distribution of
average velocity vector and calculated breakdown location coin=-
cide well with the experimental results if the vortex viscosity
coefficient is set to be 4 to 5 times as much as the dynamic vis-
cosity coefficient. In the iast chapter, Chapter 4, the experi-
‘mental results are compared with calculated theoretical results,
and it is conc¢luded that a turbﬁlenée‘model, including the "uw ' /4
turbulence’ structure of the flow-field, instead of a simple
viscosity model, is necessary for further advanced studies of the

numerical computationjwith Improved accuracy.



GE 1S
pm(}‘[NA"E PAGE
DE EOOR QUALITY,

2. Experiment

2.1 Measurement ‘Method

Delta Wing Models

The delta wing mddels‘employed in the present study are
flat-plate wing.mddels with three different apex angles, 600,
65° and 700, as shown in ¥Fig. 2. In brder to fix the separation
point, the leading and‘taii edges of the models are tapered. The
models with 65° @nd‘TOQ apex angles have a center chord length of
400 mm while that’ of 60b:apex ahglé models is reduced to 350 mm
in order for the wing width at the tail not to be too large. Each
model has a width‘of 3 mm and is made of duralumin. In the ex-
periments, each model was vertically supported by a 10~mm diame-
ter cylinder at the lodatioq of 2/3 chord length from the wing
tip within a wind tunnel. If a model has a small size, the vor-
tex core of leading edge vortex is small, making the flow-field
measurement difficult. Therefore, the model size had to be
selected to be large enough compared with the measurement cross-
section of the wind tunnel. Thus, the effect of the wind-tunnel

walls was not taken into account at all.

i Adeg Cs e
9, g g 350
! R B 65 150 .
: - f e R
R c X3 100 /"“"f?“““""“’
) , @
; - T
i - F[{u
; - e o i
Fig. 2. Shape of Models.
Key: a: Models
b: Upper Surface
c: Lower Surface
d: Unit = mm
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Wind Tunnel and Traverse Means

The wind tunnel used in the present experiment is a slender
circulation-tﬁﬁe‘low%speéd'ﬁiﬂd tunnel with a cross section of
650 x 550 mm, as shown in Fig. 3. The wind tunnel is capable of
creating a wind speed upv£0'ab0ut 40 m/s. Due to the strength
of the models and the model supporting means, the wind speed in
the measurement was limited to low speeds: 15 m/s and 6 m/s.
The Reynolds numbef standardized by the center chord length of
400 mm is 4 x-lq4 when thé uniform-flow wind speed is 15 m/s and
is 1.6 x los\étiéfmysf{‘The turbulénce of the flow at the mea-

surement point was about 0.3% when'thé wind speed was 15 m/s.
k . »

b4
¢ -

+ faee
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Fig. 3. Wind Tunnel and
Traverse Means.

Key: a: Crossg Section of

Measurement Point.

Air Flow

Model

Hot-Wire Probe Rotating Means
Traverse Means

Unit = nmm

Fhp QO

4w

In order to measure the velocity-field and the pressure-
field of the gaffigégicreated‘above the delta wing upper surface,
the measurement probe must be 3-dimensionally moved,%}?éjsfiaieréli§’
traversely and vertically. PFor this purpose, a traverse means

(See Fig. 3) is located on the downstream of the measurement

11
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point. By this traverse means, the models are moved manually in
the horizontal 'direction and eiéctrically in the wvertical direc-

tion. The resolution of the position reading is 0.1 mm.

Measurement. of Average Velocity Vector and Total Pressure

The flow-field of the:vortices created at the leading edge
of a delta wing is ﬁwdimenéional. .Therefore, if the flow-~field
is measured by a usual method in which a static-pressure tube is
used with a fixed direction, a large difference between the flow
direction and tge tube direction results in inaccurate readings
of the static pressure. It is for this reason that only the
relatively easy total-pressure and average-velocity vector mea-
surement was performed in the present experiment.

The total pressure. in the center of.vqrﬁicqg was measured by
a keel tube (see Fig.5) which has a double-pipe construction and
an outer diameter of 1.2 mm. The tube is designed so as to have
a high sensitivity in the flow direction. The directional char-
acteristics of this keel tube are shown in Fig.5. It is seen in
Fig.5 that the accurate total pressure may be measured by this
keel tube if the angle between the keel tube axis and the flow di-
pection ig within the range of about i;DO. When considering the
case where the angle between the flow direction and the central
axis of -the vortex is extremely large, e.g., in the flow-field
within a vortex, it 1is easy to see that a measurement limit of
30° is not sufficient for measuring the total pressure if the ~
keel tube direction is fixed. Therefore, when measuring the
total pressure in the center of a vortex, the positions at which
the keel tube pressure reading is minimal are measured beforehand
by a trial-and-error method; the trace of the vortex center is
obtained by connecting these points, and finally, the total pres-
sure is measured with the axis of the keel tube being approxi-

mately aligned to the vortex central axis thus obtained.
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Average Veloéityivector is,meagured usually by a yaw meter
with a tube or a Pitot tubersd . However, when the velocity _
gg@dignt. is extremely large and the direction of the velocity
vector varies %érgely depending on the location, such as in
case of the leading edge vorteces created by a delta wing, it

becomes very difficﬁlﬁ to measure the vector by a yaw meter or the
like. 1In the p{esent experiment, the average vector was measured
by a methoﬁ in Whicn ;he hot wire ié rotated along the axis of
its probe El]. According to this method, while the hot wire is
rotated one turn albng the axis of its probe, the rotation angle
is stopped several times for measuring the angle of the hot-wire
probe and the output signal from the hot wire, and then, the
three components of thé average velocity vector are obtained by
solving a 3-variable simultaneous quadratic equation using a com-
puter. Furthermore, according to this method, if the fluctuation
signal is measured by an RMS metér when the hot wire is operated
for the average~velocity vector measurement, the Reynolds stress
can also be measured. In the present -experiment, however, the
average velocity vector was measured but the Reynolds stress was
not measured. As shown in Fig.4, a tungsten wire ﬁith a diameter
of about 5 micron was used as a hot wire and both ends of the
wire were coppef—plated and soldered to two needles with an
angle. The space between the needles is about 3 mm, and the
tungsten wires functioning as hot wires which are not copper-
plated‘are about 0.7 mm long. In measuring the velocity vector,
"as shown in Fig. 6, the hot wire probe is attached to a hot-wire
probe rotating means which is fixed to the traverse means. A
total-pressure tube for measuring the vortex-center position is
located at a position adjacent to the hot-wire probe. The
velocity in the vortex center is measured after the hot-wire
probe is moved to the vortex center which is determined by the
total-pressure measuring tube. The velocity vector in the cross
section perpendicular to the vortex central axis is obtained by
manipulating the traverse means laterally, traversely and ver-
tically to the vortex central axis which is determined by the

14



total-pressure measuring tube fixed on the side of the hot-wire
probe. A view of a measurement procedure in the wind tunnel is

shown in Fig. 7.

.

4

-

:

¥
A el

Fig. 6. Hot-Wire Probe Rotating
Means and Total-Pressure
Measuring Tube.

Fig. 7. View of Measurement System.
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2.2. Characteristics of Vortex Center

2.2.1. Location of Vorteces

Figs. 8 to 10 show time-average locations at which vorteces
are generated on the delta wing shrﬁacgn The abscissae of these
figures designate a variable whiéﬁfrep}esents the distance X
along the wind tunnel axis from the:o;igin}‘the wing tip, and is

normalized by the center chord length of.the'wing.
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% denotes the distance along the vertical axis of the wind tun~ 1°
nel. A% in the ordinates designates the distance from the wing
surface to the vortex center along the Z-axis. Y designates the
distance from the wing center line to the vortex center along
the horizontal direction. These variables, ¥ and 47, are nox-
malized +o be dimensionless by D, one-half of the wing width at
the tail edge.

As seen from these figures, although the location of the
vortex center is almost along a straight line on the upstream
side in both horizoﬁtal and vertical directions; as the location
becomes more downgtream, it begins to curve toward the uniform
flow. In each kind of model, the loéation at which the curve
begins to be formed is more upstream with larger angle of attack.
Furthermore, as the angle of attack becomes larger, the location
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09«161“;* et
of the vortex center @%parates from the wing surface and moves
upward while it moves toward the wing central axis horizontally.
The data shown in these figures were obtained in steady-state
[56) .
that there is a

hysteresig in the location change of the vortex in non-steady

conditions. However, it was reported

states and that hysteresis has a significant effect on the
damping of the pitching movement. In any case, the center of a
vortex separated at the leading edge of a delta wing is located
approximately along a straight line in steady-state conditions.
Therefore, it is conceivable that linear vortex approximation is

reasonable in such conditions when being treated theoretically.

2.2.2. Veloeity in the Vortex Center.

Fig. 11 shows the average velocity in the vortex center when
the apex angle is 60° and the angle of attack is varied from 13°
to 16°. The abscissa designates the distance (measured by mm)
from the wing tip along the central axis of the vortex, while
the ordinate designates the central axis velocity Uc non-dimen-
sionalized by the uniform-£flow velocity U, . ’
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Fig. 11. Velocity in Vortex Center ( /L = 60°)
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Due to the positioning limitation of the traverse means, the /9
measurement was made from the wing tip. When the attack angle is
constant, the vortex core is formed at the wing tip and, grows'
rapidly. Therefore, the velocity on the central axis is larger
than uniform-flow velocity U,,. However, downstream beyond that
point, the speed of the flow is rapidly decreased and.finally
falls beneath the level of the uniform flow.. When the attack
angle is large, the maximum velocity U, on the central axis is
larger and the reducing rate'of the speed greater than when the
dattack angie is smal%. Using a 600~apex angle model, measure-
ments with an attack angle of 12° were doﬁe,‘%ut a rapid speed
reduction such as one observed in the measurement with an attack
angle of 13° or more was not observed and the veiocity is held
almost constant in the @ownstream fégion. In this case, the
fluctuation of the hot-wire du?put signal is. almost the same as
the signal fluctuation on the upstream and any rapid change in
the velocity is not obsgyved}uqlike_the region in which the cen-
tral axis velocity is reduced. This indicaies that the break-
down does not occur on the wing when the attack angle is 12° or
less. On the other hand, a rapid reduction of the velocity on
the central axis suggests the éccgfeﬁaéﬁof the breakdown. As
seen in Fig. 11, even when the"velocity is reduced rapidly, it
is not conceivable that stagnation is formed within the flow and
the counter-flow region is spread toward the downstream side. By
using a hot-wire, the direction, head or fair, cannot be differ-
entiated. Theréfore, it cannot be concluded that there is no
counter-flow region, on the basis of the fact that the velocity
in Fig. 11 does not become negative. In order to certify the /10
existence of the counter-flow region, the hot-wire probe was -..
dismounted from its rotating means and an object with a shape
similar to the probe and with a piece of woolen varn attached to
its tip is placed for observing the flow direction. According
to this observation, there was no proof of the éxistence of the
counter flow. Thus, it was concluded that the average velocity

had been appropriately measured in the experiments.



It is very convenient if these velocity characteristics may
be non-dimensionalized by an appropriate parameter and may be
represented by a single curve, In this paper, the maximum velo-
city UO on the central axis i1s used as a reference for the velo-
city, and the distance I between the wing tip and the location
at which the velocity on.the central axis becomes UO/Z is used
as a reference of the distance. The value L does not indicate
the position of the breakdown, but has a certain relationship
with the breakdown position. Figs. 12 to 14 show the changes of
the velocity on the central axis with variables being non-
dimensionalized by Uo and L. In each model, as the atta?k angle -
X gets larger, the value of L becomes smaller. In addition,
the velocity changes are dependent on the apex angle A. | i.e.,
the velocity reduction is more rapid when the apex angle of the
model is larger. The data shown in these figures indicate that
the average velocity on the central axis can be represented by a
single curve using dimensionless variables Uc/Ub and S/L:igdepen—
dent of the attack angle.
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2.2.3. Total Pressure {Total Head) of Vortex Center

The position of the vortex center was obtained from the
measurement results of the total pressure using the device at-
tached parallel to the hot-wire probe, as seen in Fig. 6. How=
ever, since the hot-wire probe rotating means has a diameter
which is larger than the vortex core diameter, the breakdown
position judged from the total pressure measurement by this
device is more downstream than the breakdown position determined
by the central axis velocity measurement by the hot-wire. This
factl can be explained as follows: When the velocity on the
central axis is measured by the hot-wire, a blockage, i.e., the
hot-wire probe rotating means, is located at the vortex center.
Consequently, the reverse pressure divergence on the vortex cen-
tral axis gets greater and the breakdown is pushed forward. On
the other hand, when the vortex center is measured by the total-
pressure éube, the hot-wire probe rotating means 1s separated
from the vortex center and the reverse pressure divergence does
not get acute as before. Namely, when the total pressure is
measured by the total-pressure measuring tube attached to a side
of the hot-wire probe rotating means, the total-pressure measur-
ing tube is measuring the total pressure in a flow-field which
is different from that when being measured by the hot wire.
Hence, the total pressure and the velocity on the vortex central
axis measured by one of these methods is not consistent with

those measured by the other.

For this reason, in a course of the experiment with the 17°-

apex angle model, the hot-wire probe was dismounted and replaced

lAccording to the'experimental results in Ibil, the break-
down position predicted from Fig. 5 in [SQ is different from the
discontinuous point of the total pressure shown in Fig. 6 in I54
This is due to the fact "that the total préssure was not measured
by a keel tube but by a total-pressure measuring tube attached
to a side of the hot-wire probe.
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by a probe with the same shape and with a keel tube (shown in
Fig. 4) at its tip, for measuring the total pressure. As a re-
sult, it is confirmed that the breakdown position judged from
this arrangement is substantially well consistent with that
determined by the velocity distribution. However, it should be
noted that, since the diameter of the used keel tube is too large
compared with the vortex core ‘diameter, the data measured on the
upstream where the absolute value of the total pressure is small
as well as the vortex core diametér are;not necessarily reliable.
It should be further noted that,‘sinpe instantanecus flow direc-
tions changed very rapidly behind thé'breékdbﬁn, the measured
data may include large error terms. As]mentioned alove, the
flow-field we measured 1is the Vorte#lflow—field in the condition
under which the reverse pressure gradient . gets large due to a
blockage of the hot-wire probe rotating means so that the break-
down is pushed forward and ishloéaéed-én the wing suxrface. This
situation is similar to that in which Hummel put an_ obstacle in
the downstream of a flow-field so that the breakdown position is

pushed forward and examined for its effects.

Fig. 15 shows the measurement results of the total pressure
on the vortex central axis, with a keel tube being used for a
650—apex angle model at 17O—apex angle. In the ordinate, PO
designates the static pressure at the location where the velocity
on the central axis rgaches its maximum U, ,and Qohdeg;gnatéé'the
dynamic pressure pUO/Z at the same position. The value of Po
was determined by the difference between the total pressure and
the dynamic pressure obtained by the velocity. As seen from Fig.
15, the total pressure decreases toward the downstream, attains
its minimal at the 8/1. value of about 0.9 and increases rapidly
beyond that point. In the region where the total pressure in-
creases, the fluctuation both in the total pressure and the
velocity becomes very large, in particular, the hot-wire output
signal for measuring the wvelocity fluctuates so furiously that

it is difficult to read the average value. This fact indicates



that the flow-field after the breakdown occurs is in the region
where the total pressure is wvery high. It should be pointed cut
in Fig. 15 that the total pressure on the vortex central axis
chancges discontinuouély. On the upstream of the breakdown, since
the time—averageucentral axis of the vortex coincides with the
instantaneous vortex center, the egact average of the total pres-
sure can be measured -1if the vortex diameter is large enough com-
pared with the keel tube dlameter when the keel tube is aligned
with the time-~average central ax1s of'the vortex. However, as
mentioned in Section 2.4. i, on the downstream of the breakdown,
the vortex is subject—to§the sPLral‘t;ansfqrmatlon showing a
precession movement, and, thereforé, the time—average central
axis of the vortex does not\coincideﬂwith the instantaneous - /11
vortex center. Thus, even if the keel tube is aligned to the
time-average central axis of the Qortex,ﬁthe instantaneous flow
direction may be greatly dlfferent from-the direction of the
probe, and the time-average of the total pressure cannot be
neasured accurately:‘ However,  at the locatien further downstream,
~the spiral transformation begins to éisappear and to be replaced
by a mild turbulent flow, and the time-average total pressure
may be measured accurately. The discontinuous change in the
total pressure, as seen in Fig. 15, may probably well be ex-

plained by the above description.

It should alsoc be pointed out that, as a consequence of the
above arguments, the accurate time-average of the total pressure
was not obtained in the range where S/I. is greater than about
0.9 or is less than about 0.5, in Fig. 15. 1Regardless of the_ékpla_
mation, it can be clearly pointed out that the total pressure de-,
creases before the breakdown while increasing beyond the break-
down, as a matter of fact. Even when the measurement is done
using the total-pressure measuring tube attached to a side of the-
hot~wire probe, not using a keel tube, the shape of the resulting
data is similar to that shown in Fig. 15. However, in such a

case, the discontinuity point of the total pressure is moved
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toward the direction in which 8/1, increases, i.e., the downstream
direction. Besides this fact, the overall pattern of the change
in the total pressure and the relative values are almost identi-

cal to those shown in Fig. 15.
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Fig. 15. Total Pressure at Vortex Center ( A =659

As seen from Fig. 15, as in the case of the wvelocity at the
vortex center, the variation of the total pressure on the vortex
central axis is independent of the attack angle and can be repre-
sented by a single curve using the dimensionless variables, S/L

and (HC—PO)/QO if the apex angle is constant.

2.2.4. Effects of Reynolds Number

Reynolds' number has a significant effect on the separation
phenomenon in which the boundary layver is separated fxrom the
object surface, and in particular, the separation point and the
phenomena caused by the separation are highly dependent on the
Reynolds number. However, it is said that the effect of the
Reynolds number is relatively little.bﬁ the breakdown of the
vortices created on the surface of a delta wing with an acute



leading edge which fixes the separation point at the leading edge.

21

It is shown by the experiments by Lambourne et al, in which

the Reynolds numbexr is between 0.01 x 106 and 4.6 x 106 and the
delta wings have very sharp leading edges, that the breakdown
position does not grég&ly_change in response to the change in
the Reynolds number. On the other hand, with regard to experi-

[26] of swirl flow within a éylinder, it was reported that

ments
the breakdown position of the vortex changes accoxrding to the
Reynolds number and moves forward towaqg the upstream side when
the Reynolds number becomes greatér,:anh that 27 the breakdown
position is also influenced by the boundary layer which
developes along the wall of the?cyiindef;;'ln the experiments by
Lambourne et al, the water or the air was used as a fluid medium
and dye or smoke was injected for determining the breakdown posi-
tion, but this has the following disadvantages: Namely, accord-
ing to their method, the breakdown pésition cannot be obtained
with a quantitative accuracy aﬂdaa systematic procedure of ex-
periments is impossible since different Reynolds numbexrs require
different measurement methods. . Therefore, it is not appropriate
to conclude that the experimental results by Lambourne et al.
imply the independence of the breakdown position from the Rey-

nolds number.

In order to investigate such effects of the Reynolds number,
we measured the velocity change on the central axis of the vortex
and the value of L with a 650—apex angle model fixed at an 18°-
attack angle and with the uniform flow of wind speeds changed
from about 5 m/s %o 15 m/s. The result of that experiment
is shown in Fig. 16. Due to the model which is lacking in
strength, the speed of the uniform flow cannot be changed over a
wide range. BAccordingly, the change in the Reynolds number was /12
relatively small; i.e., the Reynolds numbers Umfco/u normalized
by the central chord length of the wing and by the uniform flow
were 1.6 x 103 and 4 x 103. In this range of the Reynolds number,
the results of our experimenté; L/CO=O.603 and 0.605, did not
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indicate any significant change due to the change in Reynolds
number and it is conceivable that fhe bbtained change is within

[2]

the range of ithe measurement error. .This fact seems to indicate
that the value eof L 15 not determlned by a viscous flow but by a

non-viscous flow created by the model fixed at an attack angle.
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Fig. 1l6. Effect of Reynolds Number.

Although the value of L is related to the breakdown posi-
tion, it cannot be concluded only by the result of this experi-
ment that the breakdown position is independent of the Reynolds
number since the value of L is not a quantity which directly in-
dicates the position of the breakdown. In order to obtain more
accurate conclusions with respect to this matter, a number of
additional experiments are necessary, in which the breakdown posi-

tions are directly measured with many different Reynolds numbers.

2The central chord length Cy of the 'model is 400 mm. The
difference of L/C, values, 0. 605 and 0.603, corresponds to a
very small dlfference, 0.8 mm, when 1t has been converted to
the actual size. Since the position of L is determined on the’
graph by seeklng the point where U,/2 is obtained, the diffexr-

ence, 0.8 mm, is included entirely w1th1n the range of errors.



2.3. Characteristics of Vortex Cross Section

2.3.1. 2Axial Symmetry of Vortex

If the structure of the vortex is a%ially symmetric, theo-
retical analysis becomes relatively easy. Figs. 17 and 18 show
the distribution of the average'axial‘velocity .component U and
that of the circumferential velocity U?- component, which were
measured by a hot-wire probe moved horlzontally and vertically
within a cross-section perpendicular to the central axis of the
left vortex created on the surface of the wing having a 650—apex
angle and fixed at a 17O-atta;k angie. Since the radial compo-
nent of the velocity 1is relatively very small compared with the
other variables, the axial velocity component and the circumfer-
ential velocity component and, hence, the figure showing the
radial velocity component are omitted. Fig. 17 shows the mea-
surement results on the upstream of the breakdown position while
Fig. 18 shows the measurement results at the locations which are
far downstream of the breakdown point. As seen from these two
figures, the time-average velocity distribution exhibits a sub-
‘stantial axial symmetry despite the existence of the breakdown.
The results of the measurements in which the device is traversed
horizontally indicate an aspect which is considerably different
from that when traversing vertically. Thig difference is due to
the vortex layer which is involved from the leading edge on the
left side, i.e., in the neighborhood of the leading edge. How-
ever, when considering a narrow portion near the vortex center,
e.g., the vortex core, it will be relatively reasonable that the
axial symmetry may be assumed. Since this experiment thus in-
sures the axial symmetry of the vortex to some extent, the velo-~
city distribution measurements described from now on were done
only for the horizontal direction which is the easiest direction
for the measurements.
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Fig. 19 shows the characteristics of .the velocity distribu-
tion before and after the breakdown. The experiment was done
with respect to the right vortex on the model having a 65o—apex
angle and fixed at an 18°-attack angle, while traversing hori-
zontally. In the figure, the ordinate vy designates the hori-
zontal distance from the origin at the central axis toward the
right direction perpendicular to the central axis, U, the
velocity component in the direction of the vortex central axis,
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the absolute value of Uz,the circumferential velocity, and U_,
the radial velocity. The location where S/L = 0.766 1s on the
upstream of the breakdown while the location where S/L = 1.01
or 1.22 is on the downstream of the breakdown. This figure
indicates three characteristic features of the development and
the breakdown of the vortex. First, the distribution of the
axial velocity component has completely different shapes after
and before the breakdown. Second, there is no substantial
change in the distribution of the circumferential wvelocity.
Third, the radial velocity component is relatively small com-
pared with the other two velocity components, despite the break-
down, and the velocity vector is-directed away from the center. In

the measurement in which a hot-wire is rotated, the measurement

accuracy is about 2% of the full scale and the measurement error

is about 1 m/s. When considering this fact, it seems to be rea-
sonable to use an approximate quasi 2-dimensional model for the-
oretical analysis, assuming that the radial Veloqity component is
small encough to be ignored coméared with the other two velocity

components.
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Key: a: Bxial Velocity

b: Circumferential Velocity
c: Radial Velocity
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2.3.2. Distribution of Velocity

Figs. 20 and 21 show the results of the average velocity
distribution which was measured with respect to the left vortex
created on a 65°-apex angle model while varying the angle of
attack from 17° to 18° and traversing horizontally. In this

experiment, the maximum axial velocity UO and the 1 were as
follows:

UO/UM | L/C'o
18° 2.73 0.607
.17° 2.48 0.716

In these figures, the abscissae are represented by the
parameter R/I, which is non-diménsionalized from the radial dis-
tanee R in terms of the reference length L, and the parameters,
UX/UO and U?f /UO in the ordinates are non-dimensionalized from
the axial velocity UX and the_ circumferential velocity Uﬂ’ in
terms of the maximum axial velocity UO.

Distribution of Axial Vélocity

On the upstream side where the value of S/L is small, the
average axial velocity.attains-its maximum value in the vortex
center and decreases rapidly in‘response~§0"the increase of the
radial distance. Although the mégimqﬁ values vary depending on
the attack angle, they reach 2 éo 3 times as great as those of
the uniform flow. Thus, theé axial velocity distribution on the
upstream side where S/L is small may‘be characterized by the
fact that the velocity is very high in a narrow region, including
the vortex center and by the distribution's shape which is§ convex
upwardly in the neighborhood «©of the central axis of the wvortex.
On the downstream where the value of S/%L, is larger, the value on

the vortex central axis decreases rapidly and the region of high

/34



axial velocity extends outwardly, indicating the increase of the
vortex core diameter, When S/L reaches 0.263, the shape of the
distribution is completely different from that on the upstream
and the value on the vortex central axis becomes less than that
on the peripheries. Namely, in this distribution, the wvalue in- /15
creases from a low value in the_center:és‘moving radially away
from the center and attains & maximum value, decreasing slowly
after it attains its maximum. This @istribution has the minimal
point on the vortex central axis and the maximal points outside
the central axis. Such a tendency, i.e., a rapid decrease of the
velocity on the vortex -central axis, becomes stronger as it moves
toward the downstream, and the axial velocity on the vortex cen-
tral axis goes down to values which are less than the level of
the uniform flow. Such distribution oﬁ the downstream where S/L
is large is characterizéd by the distribution's shape which 1is
convex downward in the neighborhood\of the vortex central axis.
When the distribution with such a shape was observed, the read-
ings of the velocity and the total pressure fluctuated to a large
extent and it became difficult to read average values of the out-
put signals from the hot wire and the pressure probe, indicating
the non-staticonarity of the flow-field and the existence of the
breakdown. Thus, the shape of the distribution changes entirely
from "ypward convex" to "downward convex," at the point of the
breakdown when moving downstream. Fig. 20 shows that the break-
down occurs at hhe position where S/L is approximately 0.9 under
the experimental conditions with an apex angle of 65° and an
attack angle of 17° to 18°.
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Distribution of Circumferential Velocity

Oon the upstream side Wheré'fhé value of §/1, is small, the
velocity ' gradient ‘is large within a narrow region in a neigh-
borhood of the central axis' and becomes llnear as it moves
radially. After attaining a max1mum point, the velocity distri-~
bution has an apprQXLmately hyperbollc shape like the distribu-~
tion without vortex.‘ Thus, it may be concluded that, on. the up-
stream side, there exists a vortex core where the fluid is
rotating at a constant angular velocity as if it were a solid
body and the vortex core has a very small diameter. As S/L

becomes larger, i.e., moving downstream, the angular velocity of
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Fig. 21.

The change of the circumferential velocity distribution can
be characterized by the fact that the angular velccity of the
vortex rotation decreases as it moves downstream and becomes
zero at last. As mentioned previously, the distribution of the
average axial velocity changes its shape completely at the posi-
tion of the breakdown. Contrasting this fact, the distribution

of the circumferential velocity does not change its shape
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drastically at the point of the breakdown. It is only observed
that the angular velocity of the vortex core rotation changes

at the breakdown point.

Thus, it may be concluded that, in a case of a vortex with
a high axial velocity in its vortex core with a very small
diameter, such as the vortex separated at the leading edge of a
delta wing, the most outstanding change in the average velocity
components due to the breakdown is that of the shape of the
axial velocity—component distribution. Hence, it is quite under-
standable that our experimental results show the possibility of
determining the breakdown position by observing the point at
which the axial velocity distribution in the neighborhood of thei
central axis changes its shape from "upwardly convex" to "down-

wardly convex".

2.3.3. bistribution of Swirl

For investigating the structure of the time-average flow-
field created by a vortex separated at the leading edge of a
delta wing, it is convenient to analyze the swirl distribution.
The components of the swirl vector‘in a time-average flow-~-field
can be calcualted from the average velocity vector using the

cylindrical coordinate represéntation according to the following

equation. o
- _ Lg’_uky__ 1
|
|
1 (r ue ) !
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* v or ORIGINAL PAGE 1§
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In (1), {© designates the radial component of the swirl
vector and is igngred in this section since the rotational direc-
tion of the vortex line is only a matter.of concern in this
section. In calculating the circumferential component LU? ; the
term BUr/ © x is much less than the other term BUX/ ® r and
is therefore ignored. The swirl distribution was obtained by
numerically differentiating the measurement results of the flow-
field created by a model having a 65°—apex angle and being fixed
at a 17%-attack angle. Since the measured average velocity dis-
tribution is not completely axisymmetric about the vortex cen-
tral axis, the average valugs Qf both sides were used.

Fig. 22 shows the distribution of the axial component of
the swirl wvector which was calculated according to the eguation
(1). On the upstream side where S/L is small, the swirl is
concéntrated in a very narrow region, including the wvortex cen~
ter and forms a so-called vortex core. As it moves toward the
downstream side where S/L is larger, however, the swirl vector
becomes smaller in size and the diameter of the vortex core is
extended instead. As it moves further downstream, the swirl in
the center becomes smaller than that in the periphery and the
swirl axial component UOX exhibits its maximum point at a
location apart from the center. This fact indicates that the
breakdown phenomenon does not simply mean a relative dissipation
of the swirl distribution but corresponds to a drastic trans-
formation of the flow-field where the swirl distribution changes

its shape completely.
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Fig. 22. Distribution of Swirl
( X—-Component)

Fig. 23 shows the distribution of the circumferential com-
ponent of the swirl vector. The.circumferential component Lﬁg
is one-order smaller in size than the axial component(ﬁ How-—
ever, it is one important element which determines the rotation-
al direction of the swirl vector. Oh’'the upstream side where

&/L is small, the value of ﬁg -increasee rapidly from zero to the
maximum value in the radial alrecthn and decreases gradually
afterwards approaching the Zero level agaln. The maximum point
moves outward as the location moves to the downstream. On the
further downstream where the value of S/L reaches 0.953, the
value of ﬁ?. decreases rapldly from zero to a negative minimum
value, increases gradually beyond this p01nt attains a positive
maximum value, and then decreases again approaching the zero

level, as the point moves outward. -The location at which this

negative minimum value is attained moves outward as S/L increas- .

es, and its absolute value increases initially and decreases

afterwards. The fact that the value ofﬂO? is negative means

/19



that the axial velocity U, is low in the center and high around
it, showing a distribution curve which is convex downward. It

also characterizes the condition éfter the breakdown occurs.
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Fig. 23. Distribution of Swirl
( wg, —Component}

Fig. 24 shows the direction of the swirl which is calcu-
lated based upon the following equation:

6 = tan'l(.§$ﬁ) (2)

®

When S/, is less than 0.823 (upstream), ® is positive indepen-
dent of the radial distance. However, as it moves downstream
and S/L reaches 0.953 where the flow-field enters the region
after the breakdown, a region where 8 1is negative appears in
the neighborhood of the center. The region where @ is negative
is widened as S/L increases and the absolute value of the nega-
tive minimum value of € is similarly increased. Fig. 24 ghows
the condition in which the directiom ¢of the swirl vector is
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reversed due to the breakdown, and the reversed region extends
outward from the center. PRIGINAL p&3p L
LE POOR QUALF¥

| ~ deg ' ' o ’
L 40 :
| ar !
5 9 jo:g_i‘:_o_:oz-}"ga
| NS e :
O'. T T l
20 Rmm g
i s '
0 G5Y ‘
40 Fa) 523 U_:’] Hms |
; O L9533 4 =1 7° l
o P o2t A_—_65° o
! Vi I, 087 i
o 1,153

f

Fig. 24. Direction of Swirl Vector

Fig. 25 shows a model of the right wvortex separated at the
leading edge of a delta wing. Thé_model is depicted based on
the deformation of the swirl véctor,(ﬁigs. 22 to 24) which has
been described above. In the figure, itwo .swirl tubes are drawn,
one close to the central axis and the bfhér away from it. Each
direction of the swirl vector existing on the surface of each
swirl tube is representéd'5§ goiid an&’bfbkeﬁ lines. The swirl
vector initially rotates épirally around the central axis with
the same rotational direction as:thakjof the vortex core. As
moving downstream, the value of € becomes less, and the number
of turns of the spiral per_pnié lenéth in the direction of the
central axis becomes less. Moving furﬁher downstream, & e
becomes zero at last, and the swirl vector has the same direc-
tion as the central axis and stops rotatinag around the central
axis. = &~ Further downstream, the swirl wvector has a rota-

tion direction which is opposite to the initial rotation



direction and rotates again spirally‘around the central axis.

Then, both the value of € and the nﬁmber of turns per unit

length increase moving downstream. It

3 ¥
observe that the region where the swirl’
opposite direction expands outwardly as-

downstream, as shown by the broken line

Breakdown

is an important fact te
vector rotates in the
it moves toward the

in Fig. 25.

\ “+— AHOUTLEDOHR &
i . w—HEOAREORR b 5

Fig. 25. Transformation of Vortex Lines
Key: a. Vortex Line on an Outer ) KBﬂCﬁV
. Vortex Tube. O AL P4
b. Vortex Line on an Inner \-@MQQR Qu £ 1s
Vortex Tube. ALY
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phenomenon and made a simple calculation

Das

gave the following explanation of

the breakdown

: "Vortex string is

separated from the leading edge of a delta wing, concentrates

on the wing surface and forms a vortex core.

the vortex string is either
edge, or separated from the
if such.a separation occurs
string which is washéd away

the downgtream. However,

the rotational direction of the vor-

The other end of
washed away downstream from the tail
wing surface at a separation point
on the wing surface. Such vortex

is involved into a vortex core on

tex separated at the leading edge is different from that of the

vortex which is washed away

from the talil edge or separated on

the wing surface, and, moving downstream, the vortex with nega-

tive rotational direction becomes stronger, thus inducing the

velocity directed from the downstream to the upstream in the

neighborhocod of the central

axis and creating the breakdown.”
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However, according to this explanaticn, the region where the

vortex string rotates in a reverse direction must expand from
the outside of the vortex axis toward the central axis. There-
fore, the explanation is not consistent with our experiment
which indicates that the reverse rotation region expands outward-
ly, as shown in Fig. 25. On the contrary, the result .shown in
Fig. 25 is one of the experimental proofs for the observational
results by Lambourne et al.[zg which say that the center of the
vortex core is subject to a reverse-rotation spiral transforma-
tion and will lead to a breakdown. In Fig. 25, however, -the,
structure of the time-average flow-field created by the vortex
is explained by the transformation of the vortex lines, but the
instantaneous direction of the swirl vector is not shown. There-
fore, it should be noted that the condition depicted in Fig. 25
is different from the instantaneous condition c¢f the vortex
observed by Lambourne et al. The relationship between instan-
taneous and time-average flow-fields will be described later in
Section 2.4.1.

2.3.4. Distribution of Turbulence

Fig. 26 shows‘the turublence distribution which was mea-
sured with respect to the right vortex generated by a 650—apex
angle model fixed at an 18%-attack angle while the hot wire was
fixed horizontally and traversed‘¢n the right and left direc-
tions. In the measurement,‘a‘lineariéer*wés used, and the dc
and ac components of the hot-wire output were read by a dc volt-
meter and an RMS-meter, respect£€ély. nThe turbulence is repre-
sented by the ratio of the ac components to the dc component by.
percentage. It should be noted that the hot wire was fixed at
a fixed angle in the wind tunnel and was not necessarily perpen-

dicular to the average wvelocity vector. -
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Fig. 26. Distribution of Turbulence.

On the upstream where 8/L is 0,766, the tiurbulence has the
maximum value, 16%, on the vortex central axis and decreases in
radial directions. It is thought that the turbulence is greater
on the right side since the‘existence of the leading edge causes

vortex layers to. be wound up.

When S/L is 1.01, although the distribution has the same
shape, the maximum walue reaches 61%. On the further downstream
where S/L is 1.13, the distribution has a completely different
shape which is convex downwardly, in the neighborhood of the
center. Further downstream, where S/L is 1.22, the value on
the central axis is increased and the distribution has a shape
similar to that on the upstream. As seen in Section 2.4.1, the
phenomenon in which the turbulence becomes large and the dis-
tribution comes to have a downward convex shape can be ekplained
by the fact that the instantaneéus vortex center moveé outward
due to the spiral transformation according to the breakdown and
that the precession motion of the vortex causes the wvelocity
fluctuation. In the region downstream of the fegion ﬁhere the

spiral transformation can be clearly observed, the spiral
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transformation is not clearly formed with less swirl concentra-
tion, and the velocity fluctuation is averaged by the resulting
turbulence flow, thereby making the distribution have the same
shape as that at the position ahead of the breakdown, where the
shape is upwardly convex in the neighborhood of the central
axis. However, although the shape is the same, the maximum
value of the distribution is much greater than that ahead of the
breakdown and the region of the turbulence grows outwardly as
the vortex diameter increases.

The fregquencies of the wvelocity are around several Hz and
the high frequencies are dominant when S/L is 0.766. At that /21
point, the low frequency components are hardly observable. When
S/L becdomes 1.0l, however, the freguencies are around fifteen Hz
and the low frequency components prévail. The appearance of
those low frequency components is related to the spiral trans—
formation of the vortex, as described later in Section 2.4.1.
Further downstream, where S/L reaches 1.22, the low fregquency
components begin to decrease. This corresponds té the fact that
the spiral transformation .of the vortex decays and becomes a mild
turbulent flow.-

Fig. 27 sshows a vidi-corder record of the output waveform
of the hot wire which is placed on the central axis at the loca-
tion where S/, is 0.567, when therapeg angle is 65° and the
attack angle is 18°. since this location is ahead of the break-
down position, low ﬁréquency flugtuation‘With a large amplitude
is not observed. Instead, high'frequency components are ob-
served in a random wgveform and are likely to be due to ‘the
rotational rangular velocity of the vortex core. Fig. 28 shows
a waveform of the hot-wire output at the location immediately
after the breakdown, Whére S/L is 0:935. As seen from this
figure, the hot-wire output véltage fluctuates largely from OV
(zero wind speed) to 1V (which corresponds. to the wind speed of

about 50 m/s if the air stream is assumed as flowing along the



probe axis of the hot wire). The measurement poiﬁt was not
exactly on the central axis. ?Iﬁsteadg the hot wire was located
at the position where the vortex aftér the breakdown should
exhibit the spiral transformatlon and the vortex center should
pass through.. As seen from the Waveform,'unllke that observed
on the upstream of the breakdown, low, freqq@ncy components
around flfteen Hz are observable.? Flg. 29:shows a result
obtained at the location which is a little further downstream,
where S/L is 1.13. Also, in this- case, the hot wire was set
aside from the central axis and.the output~waé.filtered by a
500-Hz low pass filter so as to reject the-high frequency compo-
nents which are supposed.to Ee.génerated by the rotational angu-
lar velocity of the vortex core. Flg._30 shows the result of the
hot-wire output 51gnal ‘after belng flltered by a 10-Hz low pass
filter. This was done for the purpose of investigating the low
frequency components which appear after the breakdown, and was
performed after having observed the prevailing low frequency com-
ponents by an oscilloscope sc as to determine the necessary low
pass filter. According to this figure, the existence of a low

frequency of about 13 Hz is observed.
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2.4. Vortex Breakdown

2.4.1. Precession Motion and Spiral Transformation of the Vortex

Since the vortex separated at the leading edge of a delta
wing is approximately axisymmetric, the total sum of the swirl
penetrating a circle with a radius of R can be expressed as the
circulation r'= 2 ug,R: When the vortex is located in a
potential filow, a flow portion encircling a vortex tube always
encircles the same one, and hence, thé circulation along this
cloged loop does not change temporally and the vortex tube en-
circling the circulation I’ coincides with the flow tube.
Therefore, even in viscous regiois, in order to examine the
expansion of the swirl, it is convenient to assume approximately
that the circulation [ is constant while the radius R of the

vortex tube changes along the direction of the flow.

Fig. 31 shows the change (along the flow direction) of the
non—-dimensionalized radius R/L at which the non-dimensionalized

circulation I’* becomes constant, where ['* is the non-

dimensionalization of the circulation r‘=2'ﬂ.u¢f R by the

standard value 2Tt'uoL. The results shown in this figure wére
obtained from the measurement results of the velocity distribu-
tion where the models have the apex angle of 65° and are fixed
at the attack angles of 170, 18ﬁ.aﬁd‘l90. The figure suggests
that the expansion of the swirl doés not depend greatly on the
attack angle, at least within the range of the experiment. In
the neighborhood of the céntral axis, in moving downstream, the
swirl is gradually diffused radially, and it begins to diffuse
abruptly. On the other hand, at‘fhé location away from the cen-
tral axis, the swirl initially decreases slightly as S/L in~
creases, but it increases'graduaily afterwards and rapidly after
the location where S/I is, about 0.9, indicatiné that the diffu-

sion is outstanding. This may be explained as follows: In case

of a delta wing, the vortex iayer separated at the leading edge
is concentrated along tpe central axis and forms an intense



vortex core, thus being able, to some extent, to confine the
swirl within a narrow region in the neighborhood of ‘the central
axis. However, in moving downstreém, the confinément becomes
impossible due to the reverse préssﬁie gradient, and finally,
breakdown takes place at the location where S/1L is about 0.9.
Then the vortex core which has beern firmly concentrated disap-

pears and diffuses rapidly in radial digeétions.
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Fig. 31. Diffusion of Swirl.

Sarpkayaléé} concluded, based on his observation of a
swirl flow, that the spiral transformation appearing after an
axisymmetric breakdown is cansed by the gyration of the vortex.
ring confined in an approximately axisymmetric bubble. On the
other hand,Lambourne 21 concluded, based on his Obse;vation of
the vortex separated at the leading edge of a delta wing, that
the center of the vortex core is curved and the spiral transfor-
mation takes place after the breakdown, as shown in Fig. 32,
but £luid portions do not move along the spiral. Acc¢ording to
his observation by cinecamera, the fluid portion arriving at the
O point at a certain time moves along the direction gi and,
immediately afterwards, along the direction EE'. In case of a
swirl flow, the swirl is not concentrated around the central
axis so intensely as in the case of the vortex separated at the
leading edge of a delta wing. The vortex core is thus somewhat

loose, suggesting the appearance of a large bubble at breakdown.

. ¥
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In case of the vortex gseparated at the leading edge, however,

‘almost-all the swirls are concentrated within the region where

the radius is less than 1.5 mm (approximately) and the vortex
core is intense. Therefore, the generated bubble is probably
very small and 'may not be observed as a bubble. Thus, in case
of a spiral-~form breakdown (by which, in this paper, is denoted
the spiral transfo;mation.appearing after an axisymmetric break-
down, if said with regar&'to a swirl flow), we may conclude that
the spiral'transformetion is caused by the vortex precession of
the vortex core cross-section at the location of the breakdown,
whether it is a szrl flow or a vortex separated at the leading
edge of a delta wing. " (In the case of a swirl flow, the vortex
cross—-section at -the breakdown has a greater radius and a bubble

“is formed.)

. ’m! wrtel 0./ \

g /&wn“ mg | Qﬁ ¥

/ Leereleration E

Fig. 32. Vortex Spiral Transformation.
{Cited from Ref. [Zﬂ.)

In the rest of this section, an attempt will be made to
explain the relationship between the spiral transformation after
the breakdown and the period of the velocity fluctuation, based
on an analogy to the phenomenon in which a rigid body exhibits
a precession motion. Consider a vortex core portion wihth a
small radius of AR and a length of Ax, as shown in Fig. 33.
Take into account only the force caused by the pressure gradient
along the direction of the flow and ignore all other influences
to the vortex core portion. Under these assumptions, when the

vortex core portion is placed in a reverse pressure gradient at



a small angle € to the direction 8% of the pressure gradient
a moment around the fixed point O appears so as to turn down
the vortex core portion. Let the moment of inertia around the
axis ©OA be C . Then, when the vortex core portion rotates
around the axis ‘OB being at an angle © , the rotational
angular velocity £2 is the same as the angular velocity of the

rigid body exhibiting a precession motion and is expressed as,

- T -
L2 = TR - A (3)
where
=+ . 4dP | 1 2 A
F == h ’dx,ITE'A,E" A , and
1 54 .
C =5 -PT&ARA'X..
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Fig. 33. Vortex Precession -~ An
Analogy from Rigid Body Movement.

( Ax: Vortex Core Length,
AR: Vortex Core Radius)

On the other hand, assuming the one-dimensional non-viscosity

and incompressibility, the following equation holds true:

= ™™ - P ax (4)
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Letting the angular freguency of the precession motion be
and substituting equ. (4) into egu. (3), the following equation

is obtained. /23
= m—%ﬁ = — q..-l—-t ( .—?Ax ) * 1 du2
2T 4 AR ' dx , (5)

Non-dimensionalize the velocity .and the distance in terms of

UO and L, as follows:

*
u = u/UO, x* = x/L, AR* = &R/L,

* b — * «rk
vk ve/UO and r AR vE.

Rewriting equ. (5) by the above éimensionless variable, the

following equation is obtained.

% 2% » Ve T

fz_ﬁ;{{: rf* dgx (_ L« | (6)
As shown in Fig. 13, if the apex angle lS constant, the axial
component of the ve1001ty on the central ax1s remains the same,
being independent of the attack angle. Also, as shown in Fig.
31, the dimensiocnless variable O may be considered to be
constant, independent of the. attack angle. Ax* designated the
length of the rigid body Wthh is supposed to model the vortex
core portion under consmderatlon. If the dimensionléss variable
A x* is held constant, 1ndependent of the change in the attack
angle, the equation. (6) may be rewritten as follows, using a
constant K:

£ =K (—>) * (7)

This equation indicates that the low frequency £, appearing after
the breakdown, is proportional to the value of UO/L. Namely, the
frequency is higher when the velocity of the uniform flow in-
creases or when L decreases due to the increase of the attack
angle. For the next step, a deduction will be made in oxder to
explain the vortex transformation when the vortex core cross-
section begins the precession motion described above.



When a vortex core portion exhibits a precession motion ™
when pivoted at the breakdown position, the fluid portion around
the vortex core portion is forced away in directions which are
perpendicular to the vortex cross-section. As shown in Fig. 34,
when the vortex core cross-section confined in the position O
of the breakdown, rotates with the  angular velocity ;fZ in the

same direction as that of the angular velocity @ of the vortex

core which is at an angle €@ to the axis 00', the fluid portion

discharged from the point O moves along generatrices of a cone
surface, i.,e., O =>» A, O —» B, O ~—> C and so on. There~
fore, the curve plotting the core centers at time t is the curve
passing through A, B, C, D,..... and 0, exhibiting a spiral with
a rotational direction which is opposite to that of W. After
time At has passed, the fluid porﬁions discharged from the
point O move along generatrices of the cone surface, i.e.,

A -3 A', B —3 B', C ——%- C' and so forth. Now, the curve
plotting the vortex centers is a curve A' B', C'yennen ,
is perturbed in the dlrectlon of 00'. Thus, the fluid portions
of the wvortex core do noédt move along - the splral passing through
the vortex centers, such as O =% .... =% D =% C =3 B - A,
but move along generatrices of the cone surface as 0 -—» A,

0 —» B, 0 —» C and so forth, while the vortex centers at any
moment exhibit a spiral form in a reverse direction. This ob-
gservation, shown in Pig. 3.4, is quite consistent with the ob-
servational results obtained by Lambourne.

%

According to the above explanation, the low freguency of
the velocity fluctuation which is observed by a hot wire located
in the flow field after the breakdown must be the same as the
freqguency determined by the time period of a spiral passing the
- observation point, and hence, is identical with the ffequency
of the precession motion of the vortex core cross-section con-
fined at the breakdown position. Fig. 35 shows the low frequen-
¢y components of the velocity fluctuation when a 659—apex angle
model was used with varying the attack angle and the magnitude
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of the uniform flow. The low freguency components were obtained
from the oscilloscope observation of the output~signal frequency
of the hot wire which is located in the flow field after the
breakdown. The waveform of the hot-wire output is very random,
as shown in Fig. 28, and hence, the separation of the low fre-
gquence components is very difficult. Therefore, the obtained
frequencies have a great variation and every result must be
shown with a certain interval. Two different wind speeds., 6 m/s
and 15 m/s, and three different attack angles were used in the
experiment. Although the experiment does not cover a wide range,
it may be concluded that the equation (7), i.e., the fact that
the frequency £ is proportional to UO/L, is proved experimentally,

at least for the range in which- the experiment was done,

Fig. 34. Spixal Transformation Caused
by Precession Motion of
Vortex Core Cross—Section.
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Fig. 35. Frequency of Velocity
Fluctuation After Breakdown.

By calculating the constant XK from Fig. 35, the value of /26
9.3 x 10”2 was obtained. From this result, the length of the
vortex core portion when it is supposed to be a rigid body was
calculated as AX/ AR 22 0.1. This small value of AX
indicates that the vortex core portion confined at the break-~
down position is not long and that only a thin vortex core cross-
section exhibits the precession motion. This means that a
bubble can be hardly recognized. It may be concluded from the
above discussions that the breakdown may be explained as a vor-
tex spiral transformation which is caused by the precession
motion of the vortex cross-section.

Fig. 36 shows the radius designating the maximum of the
axial velocity distribution. That maximum value can be thought
to be the spiral radius after the breakdown. The figure indi-
cates that the spiral transformation begins at the location
where 8/L is approximately 0.9%, being independent of the attack
angle, and that the surface where the spiral passes is a cone.
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Fig. 36. Spiral Radius After Breakdown.

2.4.2. Position of Breakdown

In the previous section, the breakdown and the spiral
transformation thereafter have been clearly depicted. 1In this
section, discussion is focused on the following guestions:

When such a spiral transformation occurs, what kinds of changes
will appear in the velocity along the central axis, the velocity
within the cross-section perpendicular to the central axis, the
total pressure (head) and the turbulence?

When the breakdown occurs and the vortex is subject to the
spiral transformation, the spiral rotates in a direction which
is different from the initial rotational direction of the vortex
core. On the other hand, even when the spiral transformation
occurs, the vortex core rotates around the spiral curve as a
central axis with the same direction as the initial rotational
direction before the breakdown. Conseguently, when the spiral
transformation occurs, such rotational movements of the vortex
core induce a flow which is directed from the outside of the
spiral toward the central axis 00'. As indicated by the experi-
mental results by Earnshawléi] and the numerical results by
others, the total pressure is lower in the vortex center than in

the periphery before the breakdown occurs. When the spiral
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transformation takes place and the peripheral f£fluid flows into
the neighborhood of the central axis with high enerqgy, the total
pressure on the central axis is increased after the breakdown.
As mentioned in Sec. 2.2.3, the model discussed previously can
explain the mechanism whereby the total pressure on the central
axis is increased rapidly according to the. outbreak of the
-breakdown. In additioh, this mechanism suggeéts that the
numerical analysis be done after the structure of the turbulence

is made clear.

Other characteristics of the flow field generated by the
spiral direction opposite the vortex core rotational direction
may be clearly seen in the distribution of the average axial
velocity. As seen in Sec. 2.3.2, the distribution exhibits its
' maximum on the central axis and decreases radially, at the loca-’
tion ahead of the breakdown. When the breakdown occurs and the
vortex is subject to the reverse spiraliﬁransformation, a flow
from downstream to upstream is dinduced inside the spiral, as
indicated by Biot~Savart's law. On the contréry, a flow from
upstream to downstream is.induced 6ﬁt§ide_thé spiral. Such
induction in the flow field varies with the period of the preces-
sion motion of the vortex core cross-section. However, when ..
time-averaged, the axial -velocity inside the spiral is decreased
while the axial velocity outside the spiral 'is increased. Thus,
the distribution exhibits an overall_éhapé which is convex down-
ward in the neighborhood of the central axis. The location at
which the axial velocftj distribution féacﬁes a maximum corres-—
ponds to the location through which the spiral passes.

As stated in Section 2.3.4, the location where the velocity
fluctuation is the greatest is located at a position away from
the central axis, immediately after the breakdown. Moving away
from the breakdown, poipnt downstream, the fluctuation decreases
and the maximum distribution is attained on the central axis.

This fact can also be explained by the spiral transformation
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after the breakdown. The velocity in the vortex core is very
high as it is before the breakdown. Therefore, when the loca-
tion of the vortex core changes temporally, the fluctuation at
the time-average position of the vortex core becomes intensive,
After the breakdown occurs and the spiral transformation takes
place, the vortex core exhibits a spiral curve, and, hence, the
fluctuation at the location through which the spiral curve

passes is the maximum. Thus, the maximum point of the turbu-
lence distribution is away from the central axis, after the
breakdown. Moving further towards the downstream side where the
spiral transformation becomes unclear and the vértex core becomes
less intensively concentrated, the flow becomes a mild turbulence
and the characteristics seen in the spiral transformation region

become invisible, so that the fluctuation is spacially averaged.

In accordance with the abeve discussion, it can be concluded
that the breakdown of the vortex separateq at the leading edge of
a delta wing is the spiral-form breakdown as defined by Lambourne,
when the Reynolds number -is high. In addition, the following
fact was experimentally broved: ‘the positibn of the breakdown
is identical with the position where the axial velocity distribu-
tion changes its shape, or the ﬁosition where the total pressure
on the central axis increases. Based on these results, the
criteria for determining the breakdown position from numerical

calculations will be sought in the following paragraphs.

Assume an axisymmetric and laminar flow-field. Define the
Reynolds number by R, = UOL/L> , with respect to a standard
length I and a standard velocity Uo. As seen in the experimen-
tal results, the radial velocity a,. is very small compared with
the axial velocity component. Therefore, it may be nen—-dimen-
sionalized by multiplying ,fﬁ; by the radius r and in terms’
of L. Other velocity components, U, and u , are non-dimension-
alized by Uo’ and the axial distance by L. The pressure is non-

dimensionalized by (DUg. These variables which have been non-



dimensionalized are denoted by UX, Ur, P, R and X. The equation
of motion in the x-direction, using the cylindrical coordination

system, can be written as follows using the Reynolds number Re:

2
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(8)

As an approximation for the case when the Reynolds Re is high,
the last term in equ. (8) is omitted. When the relationship on
the central axis is taken into accodnt, since the vortex is

¢

assumed to be axisymmetric,
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are obtained on the central axis. Using a subscript C indicating

the central axis and letting the 'non-dimensionalized total

pressure be H, the equation (8) can be approximated by,

a 1 af Beu
— (-U,+Py) = —£ = (=55
ax 2 dx AR 'R=0

(9)

The equation (9) is the one which indicates that the change in

the total pressure on the central axis in the direction of the
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flow is equal to the second derivative of the axial velocity
distribution. In the region where the total pressure decreases,

te., dHc/dX < 0, the second derivative of the axial velocity
( 32UX/ aRz)R=6 ig negative, indicating that the axial velocity

distribution has a shape which is convex upward in the neighboxr-
hood of the central axis. ©On the contrary, in the region where
the total pressure increases, i.e., dHc/dx > 0, the second

- . . 2 2
derivative ( & UX/ R )R=O

indicating that the axial velocity distribution has a shape which

of the axial velocity is positive,
is convex downward in the neighborhood of the central axis.

The experimental results described in Sections 2.2.3 and /28
2.3.2 indicate that,Awhen the Reynolds number is high, the break-
down position of the vortex separated at the leading edge of a
delta wing is identical to the position where the total pressure
on the central axis is minimum, or eguivalently, identical to
the position where the axial velocity distribution changes its
shape from "upward convéx" to "downward convex". In this sec-
tion, it has been demonstrated that a conclusion eguivalent to
the above statement is also-theoreticéll? obtained from the

equation of the motion.

Therefore, the breakdown position may be theoretically
determined as the position where the following condition (10) is
satisfied. Although a laminar flow has been assumed in the above
discussion, even in the case of a turbulent flow, if a vortex-—
viscosity model can be appiied with (Reynolds stress) -

u.u, = 2:%%%#— and if the vortex viscosity coefficient is
used instead of the dynamic wviscosity coéfficient, the eguations
(8) and (9) still hold true. Thus, in each case, a criterion

for determining the breakdown position may be given as follows:

c _ 2 2
T = O or (3 Ux/ aR )R==O = 0 (10)
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3. Theory

3.1. Theoretical Methodologies

Among the monographs theoretically treating the flow-field
generated by the vortex separated at the leading edge of a delta
wing, one can fixst cite the analytic solution by Hall Bgl;and
Brown's_theory’32 which was developéed based on Hall's theory
where compressibility is taken into account. According to Hall,
the vortex is separated into: two portions: +the central portion
where the viscosity effect prevails and the outside portion '
which may be treated by the non-viscosity theory. A eonical
flow-field is assumed for the outside portion so that the coni-
cal flow calculation is possible. This calculation is then con-
nected with the solution for the inside involving viscosity,
thereby giving an overall flow—field of the vortex. However,
according to this method, the connection between the inside-
region and outside-region solutions may not be smoothly made.

In order to alleviate this disadvantage, Stewartson and Hez.lll:.?’l—1
proposed another expanded method in ﬁhich _the solutions are
given in terms of series and the overall‘flow—fleld is given in
a more integrated way. They compared thelr computatlonal re-
sults with the experimental results’ by Earnshaw. "Except for the
fact that the theory gives too large a velocity in the vortex
center and too low a static pressure‘in the vortex center, both
results can be said to be relatively consistent. Judging froem
this observation, at least in the_present-sfaée, it ean be said
that there is only a slight problem in analytically selving the
flow~field of the vortex on the upstreamhof the breakdown.

As for the theoretical study on solving the development of-
the vortex, Hall 23 pro?osed a method in which the flow-field
is treated as a guasi 2-dimensional field and the solution may
be obtained by a step-by-step way downstream, using a different
method, with given initial and boundary conditions. In the

-example which he studied, a downward convex shape of the axial
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veloédty distribution was observed at a certain position down-
stream, manifesting consistency with our experimental results.
However, Hall concluded that there is no stagnation in the flow
and he did not treat the breakdown. In ancother monograph 33 '
Hall insists that the breakdown position be determined as a

point where the quasi 2-dimensional assumption cannot be valid
any more. Although it is true that the. axial velocity changes
rapidly and the guasi 2-dimensional approximation becomes worse
at a location near the breakdown, the discussion by Hall is
highly dependent on his experimental result, which shows that he
failed to obtain the velocity distribution of the flow-field
after the breakdown. However, ours exéerimental results indi-
cate that a breakdown occurs without stagnaticon. Based on this
observation, we may conclude that the quasi 2~dimensional differ-
ence method for numerical calculation, proposed by Hall, is.still
an efflclent method for solving the development of the vortex
separated at the leading edge of*a delta wing and the phenomenon
of the breakdown.

Bosselléél proposed e'ﬁuﬁericel methed for solving a circu-
lar flow in a cyllnder,nalthough it is, not for -a vortex géner-
ated by a delta wing. He separated the flow field into the
following four regions: (1). the outermost region where the
guasi 2-dimensional assumptlon 1s valld and a hyperbolic equa-=
 tion is satisfied, (2). the breakdown reglon ‘where a non-viscosity
elliptic eguation is valld (g)uthe non—v130051ty region arcund
the vortex center where the ellfptic'equation is valid, and (4)
the region around the stagnatlon p01nt whene bubble created by -
he breakdown exists. After having defined the above four re-
gions, he gave a solution under an appropriate boundary condi-
tion. He showed that .an egg-shaped bubble, including a counter-
flow, appears in the neighborhood of the vortex center. The same
result can be seen in the experimental result by Harvey. However,
the bubble . is closed and the direction of the circumferential
velocity inside the bubble is reversed, according to his result.
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As for the breakdown, the existing theories are as follows:

Ludwelg s theory [35] ’ [3 6]

the conjugate vortex flow
theory {39] EIO] advocated by Benjamin, Fraenkel, Sheer and
others, the weakly nonlinear wave theory [41] [42] E?’]

advocated by Leibovich, Randal and others, Lambourne's theory [ ]

and Mager's theory.

Iudwieg analyzed the stability of the circular flow in a
narrow region between two coaxial cylinders and gave the stable
region by considering spiral small perturbation and by solving
a non-viscosity axisymmetric equation. He furthexr expanded his
result to concentrated vortices. waever,:his theory originated
for solving the field of a narrow region\between two coaxial
cylinders and cannot be applied to 'd general concentrated vortex.
Nevertheless, when our experlmental results are plotted on the
stability region obtained by Ludwieg, we see that the plotted
data representing the region after the breakdown fall into the
instability region. Mé} The experlment by ;'E>ete1:soh:n.4.7 shows a
similar consistency with Ehe result by’Luéwiég. However, in
order to predict the breakdown based on‘LudWieg's theory, the
distributionsof the circ¢umferential and axial velocities must be
known for each stage of the vortex deveiopmént. Hence, it is

impractical to use Ludwieg's theoxy foxr predicting the breakdown.

Benjamin assumed a guasi 2-dimensional non-viscous axisym-
metric flow and derived an equation which the flow function must
satisfy, baeed on the equation of motion. Assuming a uniform
axial velocity and a combined forced-and~free vortex, he showed
that there is a plurality of flow functions which satisfy the
boundary condition and that the breakdown is a finite transition
between supercritical and subcritical flows which are conjugate
to each other. He also concluded that the critical condition
can be represented by V/U = 1.2, where V/U is the ratio of the
circumferential and axial velocities at the end of the vortex

core. This conclusion is consistent with a result of a special

/29
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case when Lambourne's theory is applied.

Like Benjamin, Lambourne assumed a combined forced-and-
free vortex. He considered the change in the axial velocity
outside the vortex core, i.e., the pressure gradient. After
giving a relationship between the parameter K representing the
radius of the vortex core and the ratio V/Ul of the axial
velocity at the end of the vortex core on the upstream of the
breakdown, he showed that there exists a critical condition
for the relation of V/U to the ratlo of axial velocities at
the ends of the vortex on upstream and downstream of the break-
down, and that there exists no’ solut%on under such critical con-
dition. He also showed that the axial velocity in the vortex
center decreases and a coﬁntgr—flow region appears in the
neighborhood of the voftek, under such a condition. However, the
following points in this theory are questionable: According to
the theory, the condition under which a stagnation point appears
and a counter-flow region is generated is different from the
condition under which there is no solution. However, the theory
cannot state clearly what kind of phenomenon in the flow-field
corresponds to these conditions. PFurthermore, it should be
pointed out that the direction of the circumferential velocity is
reversed in the counter-flow region. MNevertheless, unlike '
Ludwieg's theory, Lambourne's theory can provide a critical con-
dition based on the reverse pressure gradient, and hence, it may

give a practical prediction of the breakdown to some-extent.

By ‘applying the non-~linear wave theory by Leibovich and
Randall, a swirl flow in a cylinder was calculated. This theory
can be characterized as follows:

1} Like Benjamin's theory, this theory tells that there

exists a supercritical flow on the upstream of the break-

down and a subcritical flow on the downstream of the break-
down, and that nonlinear waves propagate in the subcritical
flow but they do not exist in the supercritical flow.



2) Stationary waves are generated only when the tubes are
expanded in the direction of the flow, i.e., when there
exists a reverse pressure gradient.
3) The flow lines determining the boundary of the trapped
waves form a bubble which was observed in the experiments by
Harvey, Sarpkaya and others.
4) The changes of the wall pressuré in the axial direction
are very similar to those shown by the experimental results
provided by Sarpkava oxr Kirkpatrick.tﬁﬂ
5) The response of the breakdgﬁh position to the change in
the Reynolds number is almost idehéical to that observed in
the experiment by Sarpkaya. . o
6) The nonlinear transient movement is,consistent with the
observation by Sarpkaya. o . c
Thus, as a whole, the theory provides the results which are con-
sistent with the results which Sarpkaya obtained in his experi-
ments in a cylinder. Therefore, it‘proﬁides a very effective
method for analyzing tﬂe transient mechanism of -the bubble
generation. However, the theory does provide’sbme unreasonable
consequences, such as, the reverse direction of £he circumferen-
tial velocity in the solitary waves or the 1mp11cat10n that the
critical condition appears only in the sw1r1 “flow with a constant

circulation.

Mager used a representation in which the axial velocity dis-
tribution is a 4~th order algebraic function while the circumfer-
ential velocity distribution is a cubic algebraic function. Using
these representations, and under the gquasi 2-dimensional assump-
tion, he derived an integral egquation relating the momentum, the
circulation and others, and showed that there exists a continu-
ous solution under a certain condition when the vortex core
diameter increases moving downstream, but that,. beyond a certain
boundary, there is no continuous solution and a finite transition
appears in the flow-field, exactly the way Benjamin described.

He further concliuded that such conditions are the conditions
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which may determine the breakdown position. Sarpkaya made a
numerical calculation according to Mager's method based on his
own experimental results, and showed that the breakdown position,
obtained with the Reynolds number and the circulation as param-—

eters, is very consistent with the experimental results.

The assumption which Mager made about the form of the axial
velocity distribution does not allow a shape which has;the maxima
at the loeations away from the vortex centér,‘whibhiig the - case
of the results which our experiméhts‘show inr the after—-breakdown
flow-field of the vortex separated:at the leading edge of a delta
wing. Therefore, it is still questionable if there exists a
continuous solution or not when Such’a’ shape of the distribution
is allowed, despite Mager's conclusioﬁ that there is no cantinu—
ous solution under.hig-asshmptiohé&fiThpg;fMagsr has left an open
problem. . o

.
3

The present status of the~theqfetical studies on the wvortex
structure and the breakdown‘phénomenon has been surveyed up to
this point. It is natural tp'iéquiig any theory to give a suffi-
cient explanation for all the experimental results described in
Chapter 2, in order for that theory to:be- capable of determining
the development of the léadiﬁg—edge vorteg bf a delta wing and
its breakdown position. When the Reynolds number is high, the .
breakdown of the vortex generated on a delta wing is not of the
axisymmetric type in which the flow is stopped on the vortex
central axis but of the spiral type in which the vortex center is
bent at a certain location. Therefore, Ludwieg's theory on the
circular flow in a cylinder, the conjugaté vortex flow theory by
Benjamin et al., or the weakly nonlinear wave theory by Leibowich,
Randall et al. cannot be applied to our case. Furthermore,
Mager's theory is aiso inapplicable since it cannot represent the

velocity distribution after the breakdown adequately.



The experimental results in Chapter 2 reveal that, when the

Reynolds number is high, the vortex generated on a delta wing
model may be characterized as follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The time-average cantral axis of the vortex is almost a
straight line and, hence, can be used as one of the coordi-
nates in a theoretical calculation.
The diameter of the vorte# core which moves as if it were a
rigid body is very small. The time-average flow-field is
almost axially symmefric despite the breakdown, except for
the winding-up portion of the vortex layer near the leading
edge and fhe close neighbo;hooé ofi the wing surface. Hence,
the axial symmetry may be assuméd in a numerical calculation.
The radial velocity component U 1s mery small compared with
the axial velocity component U or the circumferential velo-
city component U ¢ ..
The radial change of the Flow-field is gneater than the
change along the vortex axis,and, hence, the quasi 2-dimen-
sional treatment is possible;‘as it is for a boundary layer.
The turbulence is concentrated in a narrow region around the
vortex core center on the upstream of éhe breakdown. As ‘
seen from the analytic solution by Héll and our experimental
results, the v150051ty effect is .very small at a location
which is far enough from the vortex corée and, hence, a
potential f£low may be assumed in the region outside the
vortex.
Even though the vortex is a turbulent flow, its vortex core
rotates as if it were a rigid body and there is only a lit-
tle momentum transportation or dissipation due to the tur-
bulénces~. The vortex growth, the vortex development and the
breakdown are mostly subject to the potential, i.e., the
pressure gradient.
The velocity fluctuation of the flow-field on the downstream
of the breakdown is large, creating a significant turbulence
effect. In order to determine the breakdown position, a dis-
cussion using an equation describing the time-average flow-field

is enough.

. /30
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The above observations suggest that, when the Reynolds
number is high enough, the development of the leading-edge vortex
of a delta wing and the breakdown position may be determined by
Hall's method{zdl, in which an axisymmetric Navier-Stokes equa-
tion describing the average flow-field under the assumption of
quasi 2~dimensionality is solved by a difference equation with a
certain boundary condition. Since the actual flow is a turbulent
flow, in order to solve its development, the dynamic viscosity
coefficient 3 in Hall's calculation of the laminar flow should
be replaced by the vortex viscosity coefficient ¢ , with the
turbulence effect taken into agéoﬁnt: Then, the breakdown
pogition can be determined by numerical calculation using the
criterion represented by equ. (10), since the validity of this
criterion has been experimentally proved. In the following
section, a numerical method based on Hall S. methed and the cor-

responding computational results‘w1ll be descrlbed.

3.2. Numerical Computation

3.2.1. Nomenclature __

X X . Cylindrical coordinate system;
axial and radial directions.

X, R Cyliﬁdxiééi‘dEQ;EEﬁééibh system
{non~dimensionalized) . .. . .
Axialq-ciréumferential and radial velocity.

u,v, W o Hxiai, circumferential -and radial veiecity"
- (non-dimensiopalized) .

U= u /U, -V =ug /U and W = r w_/U_.

p: P Statis pressure, its non-dimensionalization.
UO Maxinmum axial velocity (see Fig. 11).

L Reference distance (see Fig. 11).

1= Vortex viscosity coefficient.

¥

Dynamic viscosity coefficient.



A X, A%
a,b,c,d

a¥,b*,c*,4%

?A

o

o

SR

Subscripts

Reynolds number,

R
e

R
=]

il

UOL /e or

H

U L/v

Radius, 4= R/A .

Circulation, k = A-€* V.

Radial wvelocity, h = W/ A

Difference division in the x~ and % -directions.
Coefficients in the ecuation of k.
Coefficients in the equation of u.
Parameter representing the vortek radius,
A = (x)/r (x)

Dyhamic.pressu#e,’ G%_=xu—— ‘e U
Attack angle.

Apex angle.

Circulation guantity.

Initial conditions for the cross—section.
Vortex central axis.
Vortex outside boundary.

Lattice position, the x~direction.

Lattice position, the ®& -direction.
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3.2.2. Basic Equations

In order to describe the equation of motion in terms of
dimensionless guantities, the L defined in Section 2.2.2 is used
for the reference of the distance, and the maximum wvelocity UO
on the vortex central axis is used as the reference of the

velocity.

In order to make a matching among the scales of the varia-
bles, a common practice in the boundary layer approxiﬁation, the
radial distance r and the radial velocity u,. are expanded by the
factor I—;. The Reynolds number R, used here is not that of the
laminar flow, used by Hall with the dynamic viscosity coefficient,
but it is defined by using the vortex viscosity coefficient g
i.e., Re = UOL/S . The non-dimensionalization of the coordi-

nates and the veloéity components is determined as follows:

¢

X o J__ T
X = = N R = R - R
L €L
u u ' u
v=~%, v=-rt, andw=[R L (11)
UO UO UO
where
UL p—PO

R = — and P =
e E PU

Taking into account the fact that the flow-field is a turbulence,
a simplest viscosity madel is assumed and a scalor vortex coeffi-
ciency of Boussinesqg 27 is used instead of the dynamic viscosity
coefficient. Under. the assumption of the guasi 2-dimensionality
and with the above non-dimensionalization, the axisymmetric
Navier~Stokes equation of motion and the equation of continuity

may be written in terms of the dimensionless quantities as follows:
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In the equation (12), each term including l/Re can be omitted
under the assumption that the Reynolds number is high anough.

Under that assumption, the basic equations can be simplified as,

73



74

2
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2
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(13)
2
M. , and
R OR
aU W W
— e a— = 0
39X AR R

The equations (13) have been derived under the guasi 2Z2-dimensional
The flow-field is axisymmetric and the Reynolds
So that the change in the R-direction is

assumptions:
number is high enough.
much greater than that in the X-direction. Therefore, the
equations (13) cannot be applied to the case where stagnation
exists in the flow or where there exists a counter-flow region.

However, as mentioned in Chapter 2, if there is no stagnation in



the flow and the change in the X-direction is greater than that
in the R-direction, but only to some extent near the breakdown
or on its upstream, the flow-field including the breakdown nay

probably be solved by equation (13).

The equations (13) have complicated terms involving the
velocity components U, V, W and the pressure P -and cannot be
separated easily. However, if the axial velocity component U is
assumed, the radial velocity W can be determined by the equation
of continuity. Then, the circumferential component V can be ob-
tained from the first eguation and the pressure P can be deter-~
mined by substituting V in the third equation. Finally, by sub~
stituting W and P in the second equation, U is obtained. The
value of U thus obtained can be used for correcting the initially
assumed value of U. By repeating this procedure until a conver-
gence is obtained for each variable, the variables on the next
cross—section may be obtained with a given initial condition.
Thus, the egquations (13) constitute a hyperbolic equation which
can be solved in a step~by-step method.

The boundary condition treatment is the next problem: The
boundary outside the vortex changes its form according to the
development of the vortex. Therefore, the problem would be very
complicated if the boundary condition is given on the deformed
surface. In order to make the boundary condition assignment easy,
a parameter representing the expansion of the vortex,

A =.fe(g) /v (x;)is introduced so that the computational
region may be rectangular. The subscript e designates the end of
the vortex and signifies the external boundary. Xy is the first
cross-section in the vortex computation and corresponds to the
initial condition. If the variables R, V and W are converted to
£ , Xk and h in terms of A , i.e.,

L=R/A, X =AGV, and h = W/A . (14)
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and if the axial velocity component U is denoted by the lower
case u and the axial distance X by the lower case x, the basic

equations become,

¥

3k ¥k

ok I 3k _ A 1\ 9k _
Y3 TR «92»:er (h - 5-Bu+ ) 53 0
)| 1w X 1.
TR T w
_ A K2 3P '
AR dx
aP k2‘ ) (15)
3 A2
) Qu 2,28
£ (Zhn) = -f£20 4+ & ogeod
14 5h) 43:; A ¢ Y4



ra
In equation (15), A denotes 4@ A /dx. The physical region,
0 = r = r, and X, & X is transformed to the computational

region, 0 £ € = G, = ?e.'\"L/L’-'-'Rc

and Xg % %, which is a rectangular region with one open end, by

using the coordinate transformation (14).

The initial condition consists of the axial velocity dis-
tribution u, at the cross-section x = X, and of the circulation

distribution ki, i.e.,

n=u, (6 ) and k =k, (5 ) at x = x;. (16)

The boundary condition on the central axis is determined by
the condition that the circulation k and the radial velocity h
are both zero and by the condition that the axial velocity u is
axially symmetric, and hence, it is given as,

oW Z

k =0, h=0 and ——— = t = 0. 17
’ C 94 o a { )

For the external boundary condition, we have,

k =k (x), u=u,(x) and P=P_(x) at £= %, (18

If several assumptions are added to the external boundary condi-

tion, the expressicn (18) may be further simplified.

In the external boundary is a flow tube, the relatiocnship
between the geometrical expansion‘of the flow tube and the
velocity vector may be written as,

ho/ug =L (A7A) . | (19)

and hence the assignment of all the conditions in equation (18)
is impossible. Furthermore, if the external boundary of the /32
vortex is assumed to be non-viscous énd there is no swirl dissi-
pation through the boundary, the first equation in (15) implies
dke/dx=o and we have,

ke(x) = ke(xi) = constant (20}

17
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and the second equation in (15) implies,

‘2
P
U, e 2% E% - e (21)
dx A ée ax

When such assumptions can be made, all the conditions in (18)
cannot be assigned at one time as the external boundary condi-

tion; only one —- Pe’ u or A ~-- is allowed to be assigned while

the rest of the conditiins are substituted by equations (19},

(20) and (21). In the case of the delta-wing leading-edge vortex
where the Reynolds number is sufficiently high, the assumptions
(19}, (20) and (21) can be made approximately, as mentioned in
Section 3.1, and hence, it suffices to assign one among P u

e
and A as the external boundary conditiomn.

Our experimental data are the axial velocity and circumfer-— .
ential velocity distributions in the cross-sections at the break-
down and on its upstream and downstream, and the velocity on the
central axis. Therefore, it is meaningless to assign P, as the
external boundary condition. The measurement ¢ross—-section is
too small for u, or A to be assigned as the external boundary
condition. Since the change of the wvelocity on the central axis
has been most accurately measured in detailed experiments, its
data are most suitable for use in numerical computation. Thus,
the change of the velocity u- on the central axis is used as the
boundary condition. At first, assuming the pressure Pe on the
external boundary, the flow-field is solved and the velocity uc
on the central axis is computed. Then, the value of Pe is cox-

. may be equal to that

c
initially given. By repeating the procedure until the value of

rected so that the computed value of u

U~ converges, the computation of a cross-section is finished and
the next cross-section is computed in a similar way.



3.2.3. Difference Approximation

In order to numerically solve the partial differential
equations (defined in the previous section) with a given boundary
condition, they are approximated by a set of difference equations.
A lattice with M points in the x-direction and N points in the
& - direction was used. The subscript m denotes the lattice
position in the x-direction and the subscript n denotes the
lattice position in the - & ~direction. In order to obtain the
values of the functions at (m+l, n), the evaluations are made at
(m+?, n), (m+%, n), (m+l, n+%) and (m+%, n-%). The difference
form is a {st-order central difference using the central point.
The partial differential equations involve the lst-order deriva-
tive with respect to x and up to the 2nd-order derivative with

respect to L . For example, the difference form for k is given
by,

c¥mtagon T (120 ey o Ry ),

(ak) ! (
—_— - K ok
8x m+l/2,n azx m+l,n m,n’
(22)
ok 1

08 mi1/2,n yaf  mrl,n+l m+l,n-1 m,n+l

-k )
m,n-1">
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2 . .
(a 1{) =-—gl (

iy = k ‘
362 m+1/2,n 248 mrl,ntl

B 21{m+1,1r1 * km+1,n—~l

*Kponel T 2kpon * Kp,n-17 .

b e e e e e i = e}

The equations (15) include several nonlinear terms such as
22U

] v
ax .
These nonlinear terms are simplified by Newton's approximation,

for example,

_
u (au) = il )
~ IR +
mtl/2,n dx m+1/2,n Ax mHl,n {
: (23)
2 i
_  mil.m  m,n
24x 2Ax



In the above equation, the value in ( ) on the right hand
side is an unknown variable while other terms without ( )
" have known values which are obtained from the previous iteration
of the computation. Rewriting the differential equations (15)
by using the difference forms such as (22) and (23), the follow-
ing simultaneous equations for k and u and the following alge-

braic equations for P and h are obtained.

a k k + k = d

nm+1,n+17 Pnfmti,n t nfmi1,n-1 n )
(N=1,2,3500en... JN-1) (242a)
hm+l/2,n rl(;\in-l-l “Rh)
a = - (um+1 N + um n)
n I AC me(km{l_ +A) ’
1 -2n
= 2
nat (Am+l i Ahg
1 . 4
b = — + u. )+

u
n mtl,n m,n 2 )2
2Ax Ag (Am+l.+An1
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b
= _a* -
n 2 2
&t (X +A)
B
ul n-
=_(u12n'+ln ﬁxznn)" 2', - 5
24x > ’ at (A‘m+1 +Am)
. st’(1(‘)\m+1 -)\m)
B a; (um ntl - “m,n-1’ ~
? ? 4&x(Am+l +2m)
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1
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83



+ k )2
km+1,n+1 mtl,n (2hc)
' = - 2432
Pnti,n T Frelnen b(n+1/2) X
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- o)
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The equation (24b) is meaningless on the central axis where
Z =0 and a speclal form is necessary for handling ‘the boun-
dary condition (17) on the central axis. Thus, the coefficients

in equation {(24) must have special forms such as,

8
a* [ J—_— -
0 2 2
+
aG QA tA)
um+1.,0
b* = ————— — a
0
0 T AxX
%' 0 (25)
] CO B
i
i 2 2 .
at > (um+1,0 um,O) ao(um,l Un.o)
1
=13 (aei,0 = Fny0)
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The equation (24a) gives an (N-1)~variable simultaneous equation
while egu. (24b) gives an N-variable simultaneous equation. - In
each case, the coefficient matrix is a triple diagonal matrix

which has a non-zero element only at each diagonal position and
its adjacent positions, and, hence, the two systems of equations

‘can be solved without any difficulty.

A flow chart showing a computation program for solving

this problem is shown in Fig.-37.
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Fig. 37. Plow Chart of Computation Program.

Key: ar Read the initial -condition, u and k .
O.,n o,n

b: Read the boundary condition, Worl o°

¢c: Assume P
um m+l, n



d: Assume ?¥m+l using {(19}.

e: Determine um+l,n by (21).

f: Extrapolate um+1,n‘

g: Compute hm+% n by (244).

r

h: Compute km+1,n by (24a).

with km+1,N = km’N and km+l,0 = 0.
i: Compute um+l,n by (24b}.
Does um+l,n converge?
k: Is the computed value of um+l,0
consistent with the given boundary

condition?

l: Is the computation finished?

First, the distribution u and k ig given as the
o,n o,n

initial condition. Next, the boundary condition u, on the

central axis in the next ¢ross-section is read in. Then, assum—

ing the values of P and can be determined

+1,N aﬁﬁl' Ynt+l, N
according to equ. (21). By obtaining the axial velocity distri-
bution um+1,n by extrapoclation, hm%%,n can be determined accord-

ing to equ. (24d4) and every coefficient in equ. (24a) is thus

determined. Then, k
m+1,n

variable simultaneous equations with the boundary condition,

may be obtained by solving the (N-1)-

kmél,N= m, N and km+1,0 = 0. Since the wvalue of um+1,N has

already been determined and every coefficient in equ. (24b) is

hence given, the axial velocity distribution u, may be ob-

+1l,n
tained by solving the N-variable simultaneous equations. If
all the values of u
mtl,n

of A‘m+1 and repeat the same procedure. When um+l,n

within a permissible range, the computed value of Uit o is com-
I

do not converge, assume another value

converges

pared with the u., value which has been given as the boundary

+1,0
condition. If they do not coincide with each other, correct

the value of Pm+l N and repeat the computation until consistency
. r
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is obtained. When the computation at this stage is finished,

the same process moves to the next cross-section m+2. Thus,

the computation procedure is continued by a step-by-step method

for each cross-section while moving in the x-direction until

the whole flow-field is computed. /34

4. Comparison of Experimental andComputational Results

As actual numerical computation was done with the data of
the experiment using a 650—apex angle model fixed at a 17°-
attack angle, in which the total pressure on the central axis
was measured. This case was selected based on the volume and
the accuracy of the data. Since the velocity distribution was
not measured at the location where the velocity on the central
axis is maximum, the cross-section position selected for the
computation was at the location S/L = 0.55, which is slightly
on the downstream of the location where the velocity on the
central axis attains its maximum. Fig. 38 shows the velocity
in the vortex center used as the boundary condition, while Fig.

39 shows the velocity distribution used as the initial condition.

1.0 %Tm‘%om-cnﬁ

o [
e
hoe-
!
(2]
o,

Fig. 38. Vortex Center Velocity
Used as Boundary Condition.
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1

When a difference approximation is-used to solve a differen-
tial equation and the computational region is divided in a lattice;
the size of the lattiqé has a large influence on computational
stability and accuracy. Flgs. 40 and 41 show the influence of
the gize Ax of the g-direction division and the size &% of
the ¢ -direction divwision to the velocity: distribution: Both
figures show the computed values of the axial velocity component
U, and the circumferential velocity component U@ ; both corres-

ponding to the development of the vortex.
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2.19 x 105 was used.

i

In the computation, the Reynolds number Re
This was given by calculating the vortex viscosity coefficient
according to %= 4 ¥ , where ¥ 1is the dynamic viscosity
coefficient under the experiment's condition. Fig. 40 indicates
that, when &A% = 0.3 is$ held constant and AX is varied from
0.025 to 0.1,1no siénificant influénce on the computation of the
velocity distribution can be cbserved. However, when Ax=0.025
is held constant and Af is varied from 0.15 to 0.6, a sig-
nificant influence by the division on the computation can be
observed ;Only when AY is less than or equal to 0.3, is the
influence not observable. This fact indicates that the wvortex
of a delta wing has a greater change in the radial directioen
than that in the ax1a1 direction. 'The computational time was
about 6 minutes Wlth FACOM 230-60" when 19 steps are used in the
x—~direction with Ax = 0.025, and 36 points are used in the

£ -direction with éﬂ§= 0.3 'After reélizing that the divi-
sion of Ax = 0.025 and at= 0.3 is sufficient, all the com-—
putations were done with this condition.

Tn the numerical computation, a potential f£low is approxi-
mately assumed outside the external boundary of the wvortéx since
there is little influence by . v1sc051ty of other factors. However,
due to this assumption, it is conceivable that the way of defin-
ing the:?ééﬂireqtiogﬁﬁboundary may affect the computational
result to a large extent. Fig. 42 shows the computational re-
sults of the velocity distribution on the downstream of the loca-
tion, S/L = 0.55, where the initial condition is given (see Fig.

39), with the vortex radius R ol being 10.5 mm or 13.5 mm. As

seen .in Fig. 42, the computational results in_ both cases are_con—,'

gistent with each other, indicating that the non-diffusion
condition can be approximately assumed outside the external
boundary if R.i is 10.5 mm or greater. If R.i is greater than
13.5 mm, the computational results are deteriorated since the
axial symmetry of the velocity distribution Ux or Uep as the
initial condition at S/L = 0.55 includes the region where the
counter—flow is wound up. Hence, Rei cannot be too large. Thus,

%1



the following computations use the computational region
determined by Rei = 10.5 mm.
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Fig. 42. Influence of Vortex External
Boundary. to Velocity Distribution.

Fig.: lé shows the breakdown bOsifiéﬁ (S/LiB which is deter-
mined by the criterion dHc/dx = 0 mentioned in Section 2.4.2 and
based on the numerical calculation with the 17°-attack angle and
the initial condition at S/I. = 0.55, with the Reynolds numbexr
being given as a parameter. Although the available data are less,
in order to investigate the influence of the attack angle, i.e.,
the initial condition, a computation was done with the attack
angle of 18° and the initial condition at S/L = 0.675. Since
the boundary condition is the wvelocity change (see Fig. 38) on
the central axis, it remains the same despite the change of the
attack angle. Hence, when the attack angle ¢ is varied from .
17° to 180, the difference in the numerical computation is made
only by the initial condition. The Reynolds number experimen-
tally determined from the dynamic viscosity coefficient is 8.77

% 10° at o = 17° and 7.78 x 10° at o = 18°. The breakdown



position (S/L)B obtained by the numerical computation is 0.893
and 0.878 with C&==l7o and 180r respectively. When the
Reynolds number is 105 or greater, the breakdown position does
not change much and (S/L)B = 0.9 with o= 17°. as the Reynolds
number becomes small, (S/L)B also becomes small. For example,
when o = 170, the breakdown position with the experimental
Reynolds number being 8.77 x 105 is different from that with the
one-tenth Reynolds number 8.77 x 104 by 27 mm which is about 7%
of the central chord length of the model, when L is assumed to
remain the same. As mentioned in Section 2.2.4, the value ¢of L
does not change much in response to the Reynolds number, as
shown by the experimentS*wiﬁh two different Reynolds numbers.
When the Reynolds number is defined as UOL/S , the Reynolds
numbers in those experiments are 1.3 x 105 and 3.2 x 105 which
are in the region of Fig. 43 where ES/L)B changes. Taking into
account these experimental results, the change in which <
becomes larger so that the Reynolds number and (S/L)B becomes
less, means the change in which the wvalue of S becomes smaller
since I is almost constant, indicating that the breakdown posi-

tion moves forward with such a change.
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‘ 1.0 -
! .e:ziﬁz 2
08 2
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| . T
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m— i T e e e e s ————

Fig. 43. Breakdown Position Determined
by the criterion dHc/dx = O.
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Taking into account the experimeﬁtal results shown in Pig. 16,

it may be said that the numerical computation -indicates the
change of the breakdown position in response to the vortex
viscosity coefficiency € . The breakdown position moves forward
as the vortex viscosity coefficient € becomes larger. It should
be pointed out that the. change of the breakdown position in re-
sponse to & , i.e., to-the'Réynolds number, is opppsitehto that
in the case of a swirl flow in a cylinder. 1In the case of the
swirl flow} the breakdown position moves upstream when the
Reynolds number becomes larger. The swirl flow has a specific
relationship with the boundary layer developed on the wall sur-
face, and the effective radius of the cross-section changes,
thereby causing the change in the pressure gradient in the

axial direction.
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Fig. 44. Divergence(of Swirl

Fig. 44 shows the change of the flow direction of the vortex
tube radius. The figure shows a curve tracing the radius R which
gives the same circulation I at each cross-section, 3/4 [
1/2 I and 1/4 I , Where " denotes the constant circulation
at the end of the vortex. Although several compuﬁations were
done with different Reynolds numbers, the figure shows only three

/38



representative results. 8Since the flow is not a potential flow,
the change of R is not equal to that of the flow tube in a strict
sense. However, since they are apbroximately identical to each
other in our case, it mav be said that Fig. 44 shows the change
of the flow direction of the flow tube radiﬁs. The curve at 1/4
r near the central axis increases monotomically while moving
downstream. However, the curve at I" which is the end of the
vortex decreases initially and increases aftérward while moving
downstream. Such a divergence of the vortex tube was observed
clearly in the experimental results. The computational and
experimental values of the 1/2 I - and 1/4 " - curves are
most consistent to each other when the Reynolds number is 2.19 x
105: However, they are most consistent when the Reynolds number
is 8.77 = 104 in the case of the Tﬂ—curve. This indicates
that the effect of the turbulence in the vortex center is diffexr-
ent from that outside the vortex. Furthermore, it is observed
that the experimental data agreed with the computational data,
when the Reynolds number is large in the region near the central
axis and the Reynolds number is small outside that region. This
indicates that the spiral transformation after the breakdown
causes an intense turbulence mixture in outside regions, and the
vortex viscosity coefficient is high there. In addition, the
fact that the experimental and computational results are not con-
sistent in the region near the vortex center or near the vortex
end unless the Reynolds number is changed may be explained as
follows: In the computations, the turbulence effect is repre-
sented by the vortex viscosity coefficient and is assumed to be
a constant scalor in the flow—~field. The difference may be due
to the viclation of this assumption. However, the experimental
and computational results exhibit consistency within a range of
about 3/4 of the vortex radius up to the location slightly down-
stream of the breakdown,if the vortex viscosity coefficient is
about four times as great as the dynamic viscosity coefficient,
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Fig. 45. Velocity Distribution
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Fig. 45 shows a comparison of the computational and the
experimental valuesg of the axial and the circumferential velocity
distributions. The computations were done with the Reynolds
number, 8,77 % 105, which had been experimentally determined by
the dynamic viscosity coefficient. The experimental values are
given for seven cross-sections, i.e., for seven different values
of S5/L. Although the values of S/L for the experiments data are
different from those for the computed data, two kinds of data
can be compared if the computational data are extrapolated. As
for the axial velocity component, the computed values are gener-
ally smaller and the consistency deteriorates more in the outside
region where R is large, or while moving downstream where S/L is
large. The same tendency is observed in the circumferential
velocity distribution. Thisgs indicates that the structure of the

turbulence has a large influence on the velocity distribution.
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Fig. 46 shows the computational result with the Reynolds
number, 2.19 x 103, which gives the greatest consistency of
experimental and computational data appearing in Fig. 44, which
shows the divergence of the vortex. The consistency is much
greater than in the case where the Reynolds number is 8.77 x 10
Particularly, excellent consistency can be observed on the
upstream of the breakdown, where S8/L is 0.82 or less. Although
the data are not shown in the figure due to the lack of the data
number, in the case of o = 18°, the computational results are

most consistent with the experimental results when the vortex

5

viscosity coefficient is 5 times as great as the dynamic viscos-
ity coefficient. Owenf30 reported that he had evaluated the
vortex viscosity coetfficient based on the velocity distribution
measurement results of the leading-edge vortex of a delta wing
before the breakdown, provided by Earnshaw, and that he obtained
the vortex viscosity coefficient which was about five times as
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great as the dynamic viscosity coefficient. Our computational
results for the region near the breakdown give almost the same
value to the vortex viscosity coefficient. The reason that the
experimental and the computational data of the velocity distribu-
tion are not very consistent at the location after the breakdown
may be explained as follows: First, the quasi 2-dimensional
assumption which is :essential to—thé‘eémputation cannot be well
preserved at that regionl Secondly, the spiral transformation
after the breakdown cduses an intense velocity fluctuation and
creates a turbulence structure which is different from the
initial one. Consequently, the spiral t;ansformation creates a
non-stationary flow-field and its effect cannot be represented

by a simple eddy (yortex)‘yiscgéity any longer. Figs. 45 and 46
indicate that, even if a viscosity model is employed, the vortex
(eddy) viscosity € must be varied spacially and must have a
greater value outside the vortex. Thus, a vortex viscosity model
cannot provide great accuracy if the turbulence term is given by
a simple scalor value. However, in -a wake flow-field, the vortex
viscosity coefficient is 10~ 100 times as great as that of the
flow-field of the leading-edge vortex of a delta Wihg and about
100 times as great as that of jets. The majority of the
phenomena in the flow-field creatéd‘by a delta-wing leading-edge

- vortex is dominated by potential-flow effects, i.e., the pressure
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gradient. Furthermore, our model is sufficient for the purpose

of'determininé the breakdown position.

Fig. 47 shows a comparison of the experimental and the com-
putational results of the total pressure. The figure shows the
numerical-computation using the Reynolds number, 2.19 x 105,
which giﬁes the greatest consistency of the experimental and the
computational results. It is readily understood that the
numerically computed breakdown pesition is very close to the
experimentally determined breakdown point, i.e., the location

where /L = 0.864 and the criterion dHc/dx = O helds.
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Fig. 47. Total Pressure in
Vortex Center

However, a significant difference between the computational and
the experimental values of the total pressure itself is observa-
ble. The experimental data exhibit a discontinuous change of the
total pressure and an upward convex change in the neighborhood

of the breakdown point. However, the computational result shows
a continuous change and the shape is always convex downward.
First, such inconsistency may be explained by the problems in-
volved in the experiment, as mentioned in Sec. 2.2.3. Namely,
since the keel tube diameter is large compared with the vortex
diameter on the upstream where the vortex diameter is relatively
small, the measured total pressure indicates the average value
near the center, giving higher measurement values. Furthermore,
after the breakdown, the spiral transformation of the vortex
causes the axial direction of the measurement probe to be differ-
ent from the instantaneous direction of the flow, also giving
higher measurement values. Secondly, the computational results
of the circumferential velocity distribution are higher than

the corresponding experimental results. As seen from the third
equation of (13), the static pressure P is determined only by the
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distribution of the circumferential velocity V. Thus, in the
computational procedure, the velocity on the vortex central

axis is first given and the static pressure at the outer end of
the vortex is determined accordingly. Therefore, P is substan-
tially given as an external condition and the static pressure on
the central axis is determined only by the radial distribution
of V. It will be understood even by a simple calculation that
the static pressure on the central axis decreases as the radial
change of the circumferential velocity in the neighborhood of
the vortex center increases. Since the dynamic pressure on the
central axis is given, the computational values of the total
pressure are éarticularly less after the breakdown point. Third,
the change in the computational results of the axial velocity
distribution near the central axis after the breakdown is much
more moderate than the change in the corresponding experimental
results. As seen from the equ. (9), dHc/dx is equal to the 2nd
order derivative of the axial velocity in the center. The drop
in the increasing rate of the total pressure after the breakdown
is caused by the fact that the computed axial velocity distribu-
tion has less change in the radial direction and by the fact
that the computed value of BZUX/ BR? is too small. Fourth,
after the breakdown, the spiral transformation causes an intense
turbulence mixture and the turbulence structure becomes very
different from that before the breakdown, as was shown in Fig,
26. In particular, in the neighborhood of a point through which
the spiral passes, a non-stationary flow from outside toward the
vortex center is induced and the turbulence mixture becomes very
intense. These effects cannot be represented by a scalar vortex
viscosity model. Fifth, the velocity or the pressure varied
rapidly after the breakdown and the quasi 2-dimensional assump-
tion essential to the numerical computation cannot be preserved
very well. However, as seen in Fig. 38, immediately after the
breakdown, the change in the axial velocity direction is not

very large and the guasi 2-dimensional assumption may be thought

to be well preserved. Further downstream, however, this



assumption cannot be assured anymore, thus causing the radial

change of the circumferential velocity to be computed as having

-excessively high values.

Therefore, when the experimental and the computed results
are compared in Fig. 47, the comparison should be concentrated
in a narrow region near the breakdown, taking into account the
above facts. PFurthermore, the above arguments suggest that, if
the turbulence structure is taken into account more thoroughly
in the computation procedure and if the experimental method is
improved, both experimental and computed data of the total
pressure may exhibit an improved consistency. In any case, the
location at which the total pressure on the central axis attains
its minimum will not be greatly affected. Thus, whenever the
initial and the boundary condition can be given, the numerical
computation described in Sec. 3.2 can give the predicted break-
down point as a location where the condition dHc/dx=O is

satisfied.

Fig. 48 shows the breakdown points which are determined by
another criterion, i.e., ( BZUX/ aRZ)R=O=O. In the figure,
the abscissa R.maX denotes the radius R at which the axial velo-
city distribution at a given cross-section attains the maximum
value. Before the breakdown, the maximum point is always on the

central axis, i.e., Rmax=0. However, after the breakdown, the

maximal point moves outside of the central axis and Rmax

increases moving ‘downstream. The O in the figure denotes R ax
which is determined by the experimental data. The solid line
curves in the figure denote the results of the numerical
computation with three different Reynolds numbers. When the
Reynolds number is 8.77 X 105 which is calculated by setting

% = V¥ , the computed breakdown point is too far behind.
When the Reynolds number is determined by o= 4y and is
2.19 x 105, the computed result is consistent with the experimen-

tal one. Thus, it has been shown that the breakdown point can be
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determined by numerical computation as the point where the
condition { 32UX/ aIRz)R=O=O holds.
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Fig. 48. Breakdown Point
Determined by

( EZUX/ 3R2)R20=o.

o ~ORIGINAL PAGE IS
OE POOR QUALITY.

As indicated by the above computational results, the break-
down point can be predicted by the numerical computation method
described in Sec. 3.2 if the initial and the boundary conditions
are given.

Fig. 49 shows the computational results of the flow-direc-
tional changes of the velocity components on the central axis
and the end of the vortex and of the static and the total pres-
sure. The total pressure He at the end of the vortex is constant
since the viscous diffusion can be ignored there, while the total
pressure HC on the central axis exhibits a change. Although the
change of H, is small, it is a very important gquantity since the
location at which the minimum value is attained indicates the
breakdown point. The vortex diameter decreases initially
slightly but it increases rapidly after the breakdown. Since
the circulation quantity is assumed to be constant, when the vor-

tex radius Re decreases, the circumferential velocity U P e

increases, and when Re increases, Elg,e decreases. The velocity
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UC/UO on the central axis is given as the boundary condition.

The axial velocity UXe at the end of the vortex exhibits a change

which is similar to that of the circumferential-velocity Utg o
but it does not change so rapidly as the velocity on the central
axis. The static pressure Pe at the end of the vortex decreases
slightly initially but increases afterward. The static pressure
Fc on the central axis increases at a rate which is much greatei
than that of the static pressure Pe at the vortex end. In order
to facilitate the comparison with the experimental data, the
velocity U, on the central axis is given as the boundary condi-i
tion in the presently proposed numerical computation. As a re-
sult, the procedure is equivalent to the calculaticn of the
flow~field when a vortex with a certain initial condition is
placed a potential flow with a pressure gradient of_Pe. This
indicates the mechanism in which, despite the slight increase of
the pressure outside the wvortex, a sharp pressure gradient is
created in the vortex central axis, and the axial velocity near

the central axis consequently decreases more rapidly than the

axial velocity of the outside, thereby creating an axial velocity

distributien which is convex downward in the neighborhood of the
central axis.
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Fig., 50 shows a'compﬁﬁed radial velocity distributioen.
The flow is always directed outward near the central axis. Near
the end of the vortex, however, the flow is directed inward on /42
the upstream while it is directed outward on the downstream.
Tt should be noted in particular that the gradient of the radial
velocity is large near the céntral axis. This indicates that
the vortex is more expanded neér the central axis than it is
around the end of the vortex and that the decay of the vortex

begins in its inside due to the external pressure gradient.
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Fig. 51 shows a computed distribution of the total pressure.
The total pressure has a considerably low value on the central
axis. Although the total pfessure on the central axis increases
after the breakdown, the total amount of the total pressure,
integrated over the entire range of the vortex, decreases

monotonically while moving downstream.
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Fig. 52 shows a computed distribution of the static pressure.

It has a low value on the central axis and increases while moving

downstream, just like the total pressure.

The figure shows

further that the increase rate near the central axis is greater

than that around the end of the vortex.
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5. .Conclusion

In the process where the flow is separated at the leading
edge of a delta wing, an intense vortex is formed and developed
downstream, and a breakdown of the vortex occurs, followed by a
turbulent flow; the total pressure (head) and the velocity on the
vortex central axis were measured together with the distribution
of the average velocity vector. The experimental results were
followed by a conclusion that the breakdown point can be deter-
mined by the criterion dHc/dx=O or ( szx/ aRz)R=O=O.

We have also shown that, if the initial and the boundary condi- /43
tions are given, the breakdown point. can be theoretically deter-
mined by representing the turbulence effect by a scalar vortex

(eddy) viscosity coefficient and by numerically computing
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difference eguations under the quasi 2-dimensional assumption.
Unlike the conditions considered by other researchers, such as
the condition in which there exists a stagnation in the flow or
that in which a finite transition occurs between two conjugate
states, the conditions considered by us can be said to be much
more appropriate for application to an acute vortexiwith a small
core and an axial velocity on its central axis which is much

greater than that on its periphery, such as the vortex generafed
at the leading edge of a delta wing.

We have also shown that, in the numerical computation, the
computed velocity distribution is most consistent with the
experimental results when the vortex viscosity coefficient &
is 4 o 5 times as great as the dynamic viscosity coefficient.
However, it was also pointed out that, in order to obtain the
velocity distribution of the flow-field within the vortex with
more accuracy, the computational procedure must include
evaluation of the turbulence structure, i.e., each Reynolds

stress component, rather than simply using a viscosity model

with a simple scalar vortex viscosity coefficient. In particular,

in the flow-field after the breakdown, the occurrence of the
spiral transformation causes a turbulence structure which is
completely different from that before the breakdown. Thus, a
model representing the turbulence structure of the flow-field
with more accuracy is essential for the exact numerical calcula-
tion of -the flow-field after the breakdown. -

Our computational results show that the breakdown point
does not change in response to ¢ within the range R, = 106
but it is influenced by € and moves upstream as & increases
if it is in the range Re < 106. This result is different from
a common conclusion that the breakdown point is not largely
influenced by the turbulence, Similarly, our conclusion is also
different from the result which says that the breakdown point

moves upstream as the Reynolds numbexr increases.
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In the case of the delta-wing leading-edge vortex, even if
the Reynolds number is sufficiently high, the breakdown is
followed by a spiral transformation which Lambourne et al
showed. The_éécurrence'of the spiral transformation gave suffi-
cient explanations to our experimental results: The axial
velocity distribution changes its shape, at the breakdown posi-
tion, from "upward convex" to "downward convex". The total
pressure on the central axis increases rapidly at the breakdown
point. These results are well understood when considering the
following explanations: The reverse-directional spiral trans-
formation of the vortex center induces a velocity directed
toward the central axis. At the same time, the outside flow i
with a high total pressure flows into the region around the
central axis in a non-~stationary mode. (This process is
modelled by the term of the turbulence mixture in the equation

representing the time-average behavior.}

We have given our explanation to the following behaviors:
The rotational direction of the spiral which appears behind the
breakdown is different from that of the vortex core. The fluid
of the vortex center does not move along the spiral but moves
along the generatrices of a cone-like surface. Our explanaticn,
using an analogy of rigid-body precession motion, is as follows:
The vortex core cross—-section exhibits a precession motion at
the breakdown point as if it were a rigid body, due to the
‘reverse pressure gradient in the axial direction. We also
showed that the period of this precession motion is the same as
that of the velocity fiuctuation in the flow which appears behind
the breakdown, and the corrésponding frequency is proportional
to UO/L. There is a commercially produced flow meter utilizing
the vortex breakdown. This flow meter measures the flow passing
through a tube by creating a concentrated vortex in the tube and
by measuring the'fréquency of the velocity fluctuation which
appears after the breakdown. This device utilizes the fact that

the frequency of the velocity fluctuation appearing after the
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breakdown is proportional to the flow velocity U. Thus, there
seems to exist sufficient support for our conclusion that the
non-stationary phenomena appearing behind the breakdown may be
well explained by using an analogy to the rigid-body precession
motion.

In 6ur experiments, the velocity, the total pressure and
the turbulence were measured with three different models and
different attack angles in order to investigate the structure of
the delta-wing leading-edge vortex and the breakdown phenomenon.
We have shown that, by the non-dimensionalization in terxrms of
the referenqe velocity UO and the reference distance L, the
flow-field may be treated integrally and similarly, even when
the attack angle changes, if the same model is used.

The main objective of this study is to establish a criter-
ion for determining the breakdown point when the Reynolds number
is relatively high, and to prove its validity by experiments.

We have established the two criteria by which the numerical
computation can predict the breakdown point. Another objective
is to give an explanation, even a gqualitative one, to the struc-
ture of the flow-field behind the breakdown. Our experimental
results and those of the numerical analysis prove that the above
objectives have been accomplished.

The authors gratefully acknowledge Mr. Shigemi, division
director, and Mr. Endo, laboratory chief, who gave us much
useful advice in the course of this study.
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