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. FLOW-FIELD IN'A VORTEX WITH
 
BREAKDOWN ABOVE SHARP EDGED DELTA WINGS1
 

Yoshio Hayashi and Teruomi Nakaya,
 
Second Division of Aerodynamics, the
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ABSTRACT
 

This paper describes the behavior of vortex-flow, accompan­

ied with breakdown, formed above sharp-edged delta wings, which
 

has been investigated experimentally as well as theoretically at
 

NAL. Emphasis is placed particularly on the criterion for the
 

breakdown--at sufficiently large Reynolds numbers.
 

First shown are the mean velocity components Ux , Uy, Ur , and 

the total head He along the vortex axis measured in the vortex­

flow field over three flat-plate delta wing models with apex 

angles of 400, 500 and 600. Experimental data are conveniently 

non-dimensionalized in terms of the maximum velocity U and the0
 

distance L, at which the velocity along the vortex axis becomes 

half of U . These results show that the pronounced effect of the 

vortex breakdown presents itself on the mean axial-velocity dis­

tribution across the vortex and the total head change along the 

vortex central axis. The breakdown point can therefore be deter­

mined from the criterion dH /dX=O or ( 2/ R2) =0. The 

spiral form of the vortex andthe velocity fluctuation in the 

vortex breakdown flow field are illustrated as results of the 

precession of the vortex core section, analogous to the preces­

iThe manuscript was received on May 8, 1975.
 

Numbers in the margin indicate pagination in the foreign

text.
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sion of the vortex core section, analogous to the precession of
 
a solid body with a fixed point. The frequency of the velocity
 

fluctuation is demonstrated experimentally and theoretically to
 

be proportional to Uo/L.
 

Secondly, a modification, accounting for turbulence, of
 

Hall's method of numerical calculation is described. The concept
 

of eddy viscosity is introduced, and the fundamental system of
 

the theory consists of a set of quasi-two dimensional equations
 

which are to be solved numerically. Calculation is actually car­

ried out in the case of a flat-plate delta wing model with an
 

apex angle of 500 and an attack angle of 170, with initial and
 

boundary conditions specified in accordance with the measured
 

values. Comparison is made between,the numerical and experimen­

tal results, showing good agreement between them, when chosen
 

value of eddy viscosity is 4 to 5 times larger than the kinematic
 

viscosity.
 

1. introduction
 

Owing to the recent progresses in researches and technolo­
gies concerning high-speed aircraft, supersonic passenger air
 

craft have been realized for practical use. Inspired by the
 

development of the SST's, energetic studies have been made on
 

wings which are economically efficient as well as able to ensure
 

high standard of safety.fl],I2], [12] ,[l These studies have
i] 

mostly been converged to, the conclusion that sharp-edged delta
 

wings are most advantageous for supersonic passenger aircraft
 

for the following reasons: The flow inthe wingst neighborhood
 

is stable, sufficient struictural strength may be provided and
 

their low resistance makes themecohdmically feasible.
 

The flow-field .around these.wings, however, tends to be ex­

tremely sensitive to three-dimensional influences since their aS- /2
 

pect ratio is small and their front edges are very sharp. The
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most characteristic phenomenon may be described as follows: When
 

the angle of attack becomes larger than a certain limit, the flow
 

cannot make a sharp turn at the leading edge of such a wing and
 

separates fromrthe wing, thus generating a three-dimensional flow.
 

Generally, a wing with a large aspect ratio is designed so as to
 

prevent such a separation on the wing surface as much as possible
 

and to obtain as ideal lift as possible.
 

On the contrary, a delta wing utilizes this separation
 

rather in a positive way. The flow separated at the leading edge
 

of the wing concentrates on'the wing surface and induces strong
 

vorteces. Since the leading edge is sharp, the separation point
 

is fixed and the generatedivort eces, are very stable. Thus, the
 

flow separated at the leading edge forms a stable three-dimen­

sional separated flow, including a,pair of concentrated vorteces,
 

each of which is located above each tail side of the wing. Such
 

a vortex above the wing is- accompanied by very low static pres­

sure and, hence, the lift of the ;wing portion above which the
 

vortex exists is higher than the lift obtained according to the
 

potential theory. The- lift-increases nonlinearly as -the ang!l@of
 

attack increases. Thus, the aerodynamic characteristics of a­

sharp edged delta wing are highly dependent on the behavior of
 

the vorticesi which are separated at the leading edge.
 

Concerning the aerodynamic characteristics of a delta wing
 

generating vo0rtices, many results have been already reported,
 
]
such as: a theory by Brown and Michael in which a separated
 

vortex is treated as a linear vortex applying fine-body theory;
 

a theory by Mangler and Smith 5 in which a separated vortex is
 

analyzed after it is decomposed into a linear vortex and a vortex
 

layer; a theory by Smith'[61 in which the vortex layer is approxi­

mated by a piecewise linear function; a theory by Levinsky and
 

Wei7r in which, Smith's theory is expanded with the fuselage
 

being taken into account; a theory [9] by Polhamus in which a
 

separated vortex is assumed to act similarly to the suction force
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generated by a sharp edged wing; a numerical method by Ohmura and
 

Takaokalill in which the vortex lattice method [10] as a conven­

tional three-dimensional wing surface theory is extended for
 

application to a delta wing with separated vortices. Thus,
 

aerodynamic characteristics of delta wings with flow separation
 

have been theoretically established.
 

I° 	 DRIGINAL PAGE I 
-2) 	 POOR QUALITY, 

Fig. 1. 	Vorteces Separated .at
 
Front Edge of a Delta
 
Wing and Breakdown.
 

Concerning overall aerodynamics of a delta wing, it suf­

fices to convert each separated vortex into a linear vortex and
 

a vortex layer and to calculate a field induced by the vortices. The
 

vortex separated at the front edge, howeve,'induces a phenomenon
 

which is called "breakdown" or "burst" at a location down the
 

rear edges of the wing, as shown in Fig. 1, as the angle of
 

attack increases. As the angle of attack is increased further,
 

this phenomenon begins to take place above the wing surface.
 

When this phenomenon appears above the wing surface, the velocity
 

fluctuation becomes furious as well, as pressure fluctuation on
 

the wing 	surface, and the aircraft is consequently shaken badly.
 

When the 	breakdown is generated above the wing surface, no lift
 

increase 	can be expected by the contribution of the vortices and
 

the head-up moment of the aircraft is increased, thereby deteri­

orating the lateral static stability. The vortex separated at
 

the front is sensitive to cross winds. Namely, even when the
 

angle of 	attack is small, if the aircraft is at an an le to the
 

wind, one vortex on the windward side breaks down. [13, [17
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deteriorating the traverse static stability.'1711 Furthermore, 

the relative location of the vortex separated at the leading 

edge changes with respect to the wing according to the angle of 

attack and to the deviation angle., The location changes in re­

sponse to these angles with a certain phase delay, thus influ-' 

encing also the dynamic stability. [14, [151 [16 In summaryi 

the phenomenon of the vortex separation at the leading edge and 

of :the breakdown _has :a significant influence over both static 

and dynamic characteristics of.an aircraft, and, therefore, in
 

order to establish a complete flight safety, thorough studies
 

must be made on the properties of thevortices.separated at the
 

leading edge. In additionK the phenomenon of the breakdown can
 

not be rationally explained by a.wing thebry in which the rorti­

ces separated at the leading edge are collections of linear vor­

teces and vortex layers. This indicates that a study must be
 

done for exploring -the properties of the vortex itself.
 

At the early stage, there were only,a few experimental re­

searches for studying the structure of the vortex itself. They
 

were mainly qualitative studies -in which-smoke or dye is fed
 

into the center of a vortex in a wind tunnel or a water popl and­

visualized generation and development of the vortex are photo-­

graphed. Although such photographs provide valuable information
 

on the vortex location, the vortex development and the location
 

of the breakdown, they are not enough for studying the structure
 

inside the vortex. Werll 9 put various shapes of objects, in­

cluding simple delta wings, in a water pool and photographed be­

haviors of vortices at low speeds using several kinds of dyes
 

fed into the water pool. Elle 2 photographed vortex genera­

tion at a high subsonic speed by the, schlieren method. In such
 

a case, although the vortex is interferred with the'shock-and
 

shows a complicated formation, it was clearly shown that the
 

vortex is actually generated at a high speed as well as a low
 

speed and dominates the flow-field around the wing. Lambourne
 

and Bryer 2 put delta wings in a water pool and studied the
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development and the breakdown phenomenon of the vortices They
, 


concluded from their experiments that the breakdown phenomena
 

can be classified into two types: (1) axisymmetric type and
 

(2)spiral type4, and'that the akisymmetric type of vortex is un­

stable and is gradually transformed to the spiral type. The
 

central -velocity. __ _ of an axisymmetric type vortex decreases
 
until the vortex center does not 'move and a tapered region of
 

counter-flow is'generated. On the other hand, the central axis
 

of a spiral type voittex makes a turn at a certain point and is
 

transformed into a turbulent flow behind that point forming sev­

eral spirals. ?Itshould be noted that the rotation direction of
 

the spiral of a spiral vortex is reversed to the original direc­

tion of the vortex core rotation in the process of the vortex
 

transformation.
 

The movement of the dye photographed by a cinematograph /3
 

camera for measuting the movements of fluid portions indicates
 

that the axial speed of the vortex center is more than twice as
 

high as that of a uniform flow before the breakdown occurs but
 

becomes less than the uniform-flow speed once the breakdown oc­

curs. Furthermore, it was experimentally clarified that, at
 

the breakdown of a spiral type vortex, the fluid in the vortex
 

core portion does not move along the spiral but moves downstream
 

along generatrices of a cone including the spiral surface and
 

that, when the spiral is viewed as a whole, the fluid of the vor­

tex ,core portion appears as if it were moving along the spiral.
 

Hummel 113 measured the total pressure distribution of the flow­

field generated by a vortex and its velocity vector and showed
 

that the total pressure of the vortex center is lower than that
 

of the peripheral portion while the circumferential velocity is
 

significantly high. However, in his experiment, the velocity
 

distribution within the vortex core was not measured. Therefore,
 

his observation is not sufficient for clarifying the structure of
 

the vortex. It was Earnshaw [23 who measured the velocity dis­

tribution within the vortex core as well as the pressure
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distribution. He used a five-hole Pitot tube for measuring the
 

flow-field generated by the vortex, and showed that the spiral is
 

concentrated in an extremely narrow space along the center and
 

that the axial velocity reaches 2 to 3 times as high as that of a
 

uniform flow while the maximum circumferential velocity is almost
 

the same as that o a uniform flow.
 

In addition, besides the vortices on the delta wing surface,
 
'
 many researchers [ , have studied swirl flow in a cylindrical
 

tube which shows a phenomenon similar to the vortex breakdown.
 
[241Harvey showed that an egg-shaped counter-flow region is gen­

erated in the central portion of the spiral-flow vortex core in a
 

cylindrical tube and that a flow-field with an abruptly changing
 

tail is formed on thedownstream. He further concluded that the
 

breakdown phenomenon is generated by such stagnation in the vor­

tex core center. Lambourne 2 succeeded, by increasing the
 

spiral flow in a cylindrical tube, in photographing the transient
 

states in which an initially generated axisymmetric types of
 

breakdown is transformed into a spiral type of breakdown. He also
 

measured the fluctuations of velocity and pressure due to the
 

spiral type of breakdown. Cassidy and Falvey 5 reported their
 

experimental discovery of the fact that a precession with a con-_
 

stant period, such as that of a gyroscope, appears in a vortex
 

after a spiral form of breakdown. According to a recent experi­

mental result by Sarpkaya, the breakdown can be classified into
 

(1) axisymmetric form, (2) spiral form, and (3) double-helix
 

form. It was reported as a quantitative experimental result that
 

which form of breakdown appears depends on Reyniolds number,, size
 

of the circulation and pressure gradient' and the breakdown loca­

tion changes also in response to those parameters. The report
 

also dealt with transient states of the breakdown. According to
 

Sarpkaya, the spiral rotation of a spiral vortex has the same
 

direction as that of the vortex initially generated, but the
 

spiral transformation appearing in the downstream of an axisym'­

metric form breakdown has reversed direction, coinciding with the
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conclusion by Lambourne about the spiral transformation. As seen
 

from the above description, besides spiral flow in cylindrical
 

tubes, there have been no available quantitative experimental re­

sults concernii the structure of vortices separated at the
 

leading edge of delta wings, except for Earnshaw's experiment in
 

which the flow-fiel-d before breakdown was studied. According to
 

the authors' krowlIedge,, there have been reported no quantitative
 

experimental-result describing an entire process in which a vor­

tex is generated and.'is followed by a breakdown.
 

Based on th.6above recognition-of the current research stage
 

of the vortex separated at the leading edge of delta wings, the
 

authors planned a quantitative experiment for studying the flow­

field of the vortex separated at the leading edge of delta wings.
 

Three kinds of flat-plate delta-wing models with different
 

apex angles were built and the total pressure in the center of
 

the vorteces generated by those models were measured, together
 

with the distribution of average velocity vector of the vortex­

generating flow-field Ahead of and beh-ind the breakdown. The
 

results obtained by this experiment showed the same velocity dis­

tribution of the'vortices before the breakdown as those reported
 

by Earnshow. fowever, the distribution of the axial velocity in
 

the vortex after the breakdown has occurred is completely differ­

ent from the velocity distribution before the breakdown. The
 

distribution after the breakdown has the minimum at the vortex
 

center and the maximum at a location remote from the center. At
 

the same time, it was discovered that the total pressure of the
 

vortex center has its miinimal value at the location of the break­

down. Furthermore, the authors reached a conclusion that the
 

location of the breakdown can be determined by the condition in
 

which the 2nd-order derivatives of the axial velocity along the
 

radial direction is zero at the center, ( ? 2Ux/ R2) R=0=, or in
 

another expression, the derivative of the total pressure in the
 

vortex center along the direction of the vortex axis is zero,
 

dHc/dx=O. Thus, one of the main objectives of this paper is to
 



describe such conditions for determining the vortex breakdown.
 

In Chapter 2,, experimental results of the flow-field gener­

ated by vort-icea with breakdown on delta wings are described;
 

Lintonnctionwiththe above-mentioned experimental results. The
 

first half of Chaptier 3 is used for analyzing the current stage
 

of theoretical'researches and, exploiting our experimental re­

sults, for demonstrating the fact that if the Reynolds number is
 

relatively high the location'of the breakdown may be determined
 

by numeridally solving :he Navia-Stokes equation by a different
 

method under the quaEi two'dimension assumption similar to the
 

boundary layer approximation. -our-numerical method is based on
 
["
29',f130]*


that proposed by Hall' However, hemade a calculation
 

in the case of a laminar flow vortex. Considering the fact that
 

the vortex in our study~is in turbulent flow, we will state a
 

calculation method using -avortex-viscosity model in order to
 

take that effect into account in the process of the numerical
 

analysis. In the rest of Chapter 3, using the experimental re--­
-
sults obtained from a 650 apex angle and 17°-attack angle
 

model and a numerical calculation with given initial and boun­

dary conditions, it is shown that calculated distribution of
 

average velocity vector and calculated breakdown location coin­

cide well with the experimental results if the vortex viscosity
 

coefficient is set to be 4 to 5 times as much as the dynamic vis­

cosity coefficient. In the last chapter, Chapter 4, the experi­
"mental results are compared with calculated theoretical results,
 

and it is concluded that a turbulence model, including the ". /4
 

-turbuflenc structure of the flow-field, instead of a simple
 

viscosity model, is necessary for further advanced studies of the
 

numerical computation wiffiImproved ""accuracy.
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!NAM PGE IS 
2. Experiment 

rz.oOR QUAlIlT% 
2.1 Measurement Method
 

Delta Wing Models
 

The delta wing models employed in the present study are
 

flat-plate winc.models with three different apex angles, 600
 

650 and 700, as shown in Fig. 2. In order to fix the separation
 

point, the leading and tail edges of the models are tapered. The
 
0 0models with 650 and 70, apex angles have a center chord length of
'O 

400 mm while that of 60 -apex ahgle models is reduced to 350 mm
 

in order for the wing width at the tail not to be too large. Each
 

model has a width of 3 mm andis made of duralumin. In the ex­

periments, each,model was vertically supported by a 10-mm diame­

ter cylinder at the location of 2/3 chord length from the wing
 

tip within a wind tunnel.' If a model has a small size, the vor­

tex core of leading edge vortex is small, making the flow-field
 

measurement difficult. Therefore, the model size had to be
 

selected to be largeenough compared with the measurement cross­

section of the wind tunnel. Thus, the effect of the wind-tunnel
 

walls was not taken into account at all.
 

A 

'4
 

b d 

C 

Fig. 2. Shape of Models.
 

Key: a: Models
 

b: Upper Surface
 
C: Lower Surface
 
d: Unit = mm
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Wind Tunnel and Traverse Means
 

The wind tunnel used in the present experiment is a slender
 

circnlation-tyre 'low'speedI:ifd tunnel with a cross section of
 

6:50 x 550 mm, as' shown in Fig. 3. The wind tunnel is capable of
 

creating a wind speed up to'about 40 m/s. Due to the strength
 

of the models and the model supporting means, the windzspeed in
 

the measurement was limited to low speeds-- 15 m/s and 6 m/s.
 

The Reynolds number standafdized by the center chord length of
 

400 ,mmis-4 x-104 when the uniform-flow wind speed is 15 m/s and
 

is 1.6 x 20 ,at,6 m/s.' The turbulence of the flow at the mea­

surement point was about 0.3% when the wind speed was 15 m/s.
 

-i300 .-
MeaureentPont
ae
 

Fig. 3. Wind-Tunnel and
 
Traverse Means.
 

Key: a: Cross Section of
 
Measurement Point.
 

b: Air Flow
 
c: Model
 
d: Hot-Wire Probe Rotating Means,
 
e: Traverse Means
 
f: Unit =mm
 

In order to measure the velocity-field and the pressure­

field of the vortices'created above the delta wing upper surface,
 

the measurement probe must be 3-dimensionally moved,,i.e., laterally,
 

traversely and vertically. For this purpose, a traverse means
 

(See Fig. 3) is located on the downstream of the measurement
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point. By this traverse means, the models are moved manually in
 

the horizontal 'direction and electrically in the vertical direc­

tion. The resolution of the position reading is 0.1 mm. 


Measurement.of Average Velocity Vector and Total Pressure
 

The flow-field of the-vortices created at the leading edge
 

of a delta wing is 3-dimensional. Therefore, if the flow-field
 

is measured by a usual method in which a static-pressure tube is
 

used with a fixd direction, a large difference between the flow
 

direction and the tube direction results in inaccurate readings
 

of the static pressure. It its for this reason that only the
 

relatively easy total-pressure and average-velocity vector mea­

surement was performed in the present experiment.
 

The total pressure in the center of vortices was measured by
 

a keel tube (see Fig.5) which has a double-pipe construction and
 

an outer diameter of 1.2 mm. The tube is designed so as to have
 

a high sensitivity in the flow direction. The ,directional char­

acteristics of this keel tube are shown in Fig.5. It is seen in
 

Fig.5 that the accurate total pressure may be measured by this
 

keel tube if the angle between the keel tube axis and the flow di­

rection is within the range of about +300. When considering the
 

case where the angle between the flow direction and the central
 

axis of the vortex is extremely large, e.g., in the flow-field
 

within a vortex, it is easy to see that a measurement limit of
 

300 is not sufficient for measuring the total pressure if the
 

keel tube direction is fixed. Therefore, when measuring the
 

total pressure in the center of a vortex, the positions at which
 

the keel tube pressure reading is minimal are measured beforehand
 

by a trial-and-error method; the trace of the vortex center is
 

obtained by connecting these points, and finally, the total pres­

sure is measured with the axis of the keel tube being approxi­

mately aligned to the vortex central axis thus obtained.
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__ a 1.-,tt-:/--' 9-50-,o 60o .LAt'b 

:b .ORIGINAL PAGE IS 
02 POOR QUALITy 

SFig,. 4. 	 Measuring Probe& 

Key: a: 	 Hot Wire Probe
 
b: 	 Air Flow
 
c: 	 4 Holes on the Circumference
 

Keel Tube
 
e: 	 unit = m
 

I a (WO-40 	 -20 1) 20 40"(egree, 

F~20 

Sa
 
Ip P.; -N-.-v V ixh 
C 1t1=0rO,4 P :f )|I~is 

b
 

Fig. 5. 	Directional Characteristics
 
of Keel Tube
 

Key: a: 	 Pressure Measured by
 
Keel Tube
 

b: True Total Pressure
 
,c: Air Flow
 
d: 	 Keel Tube
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Average velocity vector ismeasired usually by a yaw meter
 

with a tube or a Pitot tuber 0l. However, when the velocity
 

gradient, is extremely large and the direction of the velocity
 

vector varies largely depending on the location, such as in
 

case of the leading edge vorteces created by a delta wing, it
 

becomes very difficult to nieasure the vector by a yaw meter or the
 

like. In the present experiment, the average vector was measured
 

by a method in which one hot wire is rotated along the axis of
 

its probe 1 According to this method, while the hot wire is
 

rotated one turn along the axis of its probe, the rotation angle
 

is stopped several times for measuring the angle of the hot-wire
 

probe and the output signal from the hot wire, and then, the
 

three components of the average velocity vector are obtained by
 

solving a 3-variable simultaneous quadratic equation using a com­

puter. Furthermore, according to this method, if the-fluctuation
 

signal is measured by an RMS meter when the hot wire is operated
 

for the average-velocity vector measurement, the Reynolds stress
 

can also be measured. In the present experiment, however, the
 

average velocity vector was measured but the Reynolds stress was
 

not measured. As shown in Fig.4, a tungsten wire with a diameter
 

of about 5 micron was used as a hot wire and both ends of the
 

wire were copper-plated and soldered to two needles with an
 

angle. The space between the needles is about 3 mm, and the
 

tungsten wires functioning as hot wires which are not copper­

plated are about 0.7 mm long. In measuring the velocity vector,
 

as shown in Fig. 6, the hot wire probe is attached to a hot-wire
 

probe rotating means which is fixed to the traverse means. A
 

total-pressure tube for measuring the vortex-center position is
 

located at a position adjacent to the hot-wire probe. The
 

velocity in the vortex center is measured after the hot-wire
 

probe is moved to the vortex center which is determined by the
 

total-pressure measuring tube. The velocity vector in the cross
 

section perpendicular to the vortex central axis is obtained by
 

manipulating the traverse means laterally, traversely and ver­

tically to the vortex central axis which is determined by the
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total-pressure measuring tube fixed on the side of the hot-wire
 

probe. A view of a measurement procedure in the wind tunnel is
 

shown in Fig. 7.
 

Fig. 6. Hot-Wire Probe Rotating 
Means and Total-Pressure 
Measuring Tube. 

Fig. 7. View of Measurement System. 
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2.2. Characteristics of Vortex Center
 

2.2.1. Location of Vorteces
 

Figs. 8 to 10 show time-average locations at which vortdces
 
are generated on the delta wing surfac.. The abscissae of these
 
figures designate a variable which: represents the distance X
 
along the wind tunnel axis from, the originr the wing tip, and is
 

normalized by the center chord length of.the wing.
 

• °­

0.4 ­ 1 

U.=- 1 5 1 

, t xo1 

0 0.5 1.0 C 
!AZ0.15 ' Z 

05 

0.10
 

x 
-Q00 

Fig. S. Vortex Location (A 60) 
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0.1 // 
Az~z 

D9 

0 0.5 1.0 C. 

Fig. 9. Vortex Location (A = 650) 
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0.2 a 

0 0.5 1.0
 

0.4
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D 
0.2
 

4. 

o 0.5 1.0 C0 

Fig. 10. Vortex Location ( 70 ) 
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Z denotes the distance along the vertical axis of the wind tun- T
 

nel. AZ in the ordinates designates the distance from the wing
 

surface to the vortex center along the Z-axis. Y designates the
 

distance from the wing center line to the vortex center along
 

the horizontal direction. These variables, Y and &Z, are nor­

malized to be dimensionless by D, one-half of the wing width at
 

the tail edge.
 

As seen from these figures, although the location of the
 

vortex center is almost along a straight line on the upstream
 

side in both horizontal and vertical directions; as the location
 

becomes more downstream, it begins to curve toward the uniform
 

flow. In each kind of model, the location at which the curve
 

begins to be formed is more upstream with larger angle of attack.
 

Furthermore, as the angle of attack becomes larger, the location
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of the vortex center Qearates from the wing surface and moves
 

upward while it moves toward the wing central axis horizontally.
 

The data shown in these figures were obtained in steady-state
 

conditions. However, it was reported 156] that there is a
 

hysteresis in the location change of the vortex in non-steady
 

states and that hysteresis has a significant effect on the
 

damping of the pitching movement. In any case, the center of a
 

vortex separated at the leading edge of a delta wing is located
 

approximately along a straight line in steady-state conditions.
 

Therefore, it is conceivable that linear vortex approximation is
 

reasonable in such conditions when being treated theoretically.
 

2.2.2. Velocity in the Vortex Center.
 

Fig. 11 shows the average velocity in the vortex center when
 

the apex angle is 600 and the angle of attack is varied from 13e
 

to 160. The abscissa designates the distance .(measured by mm)
 

from the wing tip along the central axis of the vortex, while
 

the ordinate designates the dentral axis velocity U non-dimen­
c

sionalized by the uniform-flow velocity U%
 

2.0 F >Lf.A c L/t. 
S 16 Q2O217 
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0 L20 301 
 4009 
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 Fig, 11. Velocity in Vortex Center A 60 )
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Due to the positioning limitation of the traverse means, the /9
 

measurement was made from the wing tip. When the attack angle is
 

constant, the vortex core is formed at the wing tip and, grows'
 

rapidly. Therefore, the velocity on the central axis is larger
 

than uniform-flow velocity U.. However, downstream beyond that
 

point, the speed of the flow is rapidly decreased and.finally
 

falls beneath the level of the uniform flow., When the attack
 

angle is large, the maximum velocity U on the central axis is
 

larger and the reducing rate ,of the speed greater than when the
 

attack angie is small. Using a 60-apex angle model, measure­

ments with an attack angle of 120 were done, but a rapid speed
 

reduction such as one observed in the measurement with an attack
 

angle of 130 or more was not Observed and the velocity is held
 

almost constant in the downstream region. In this case, the
 

fluctuation of the hot-wire output signal is almost the same as
 

the signal fluctuation on the upstream and any rapid change in
 

the velocity is not observedkunlike the region in which the cen­

tral axis velocity is reduced. This indicates that the break­

down does not occur on the wing when the attack angle is 120 or
 

less. On the other hand, a rapid reduction of the velocity on
 

the central axis suggests the ocCurence'of the breakdown. As
 

seen in Fig. 11, even when the velocity is reduced rapidly, it
 

is not conceivable that stagnation is formed within the flow and
 

the counter-flow region is spread toward the downstream side. By
 

using a hot-wire, the direction, head or fair, cannot be differ­

entiated. Therefore, it cannot be concluded that there is no
 

counter-flow region, on the basis of the fact that the velocity
 

in Fig. 11 does not become negative. In order to certify the /10
 

existence of the counter-flow region, the hot-wire probe was
 

dismounted from its rotating means and an object with a shape
 

similar to the probe and with a piece of woolen yarn attached to
 

its tip is placed for observing the flow direction. According.
 

to this observation, there was no proof of the existence of the
 

counter flow. Thus, it was concluded that the average velocity
 

had been appropriately measured in the experiments.
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It is very convenient if these velocity characteristics may
 
be non-dimensionalized by an appropriate parameter and may be
 

represented by a single curve. In this paper, the maximum velo­

city U0 on the central axis is used as a reference for the velo­

city, and the distance L between the wing tip and the location 
at which the velocity on.the central axis becomes U /2 is used 

as a reference of the distance. The value L does not indicate
 

the position of the breakdown, but has a certain relationship
 

with the breakdown position. Figs. 12 to 14 show the changes of
 

the velocity on the central axis with variables being non­

dimensionalized by U and L. In each model, as the attack angle
 

CX gets larger, the value of L becomes smaller. In addition.,
 

the velocity changes are dependent on the apex angle A. , i.e.,
 

the velocity reduction is more rapid when the apex angle of the
 

model is larger. The data shown in these figures indicate that
 

the average velocity on the central axis can be represented by a
 

single curve using dimensionless variables U /U and S/L-indepen­

dent of the attack angle.
 

UC 
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Fig. 12. Velocity in Vortex Center ( A = 600) 

21 



AtDCt is
 

OF P 

, . 

-00.5 

1.0
Fig. 13. 

1.5 

Velocity 
203 L 

in Vor-t 
gx -CenterA 

.... J =65 o
I 

.. 
1 8 

..... 

0. 


1.5 ' 
20 
 .
 

Fig. 

14. 


Velocity 


in 
Vortex 

Center 


( i 
= 700) 

22 



2.2.3. Total Pressure (Total Head) of Vortex Center
 

The position of the vortex center was obtained from the
 

measurement results of the total pressure using the device at­

tached parallel to the hot-wire probe, as seen in Fig. 6. How­

ever, since the hot-wire probe rotating means has a diameter
 

which is larger than the vortex core diameter, the breakdown
 

position judged from the total pressure measurement by this
 

device is more downstream than the breakdown position determined
 

by the central axis velocity measurement by the hot-wire. This
 

fact can be explained as follows: When the velocity on the
 

central axis is measured by the hot-wire, a blockage, i.e., the
 

hot-wire probe rotating means, is located at the vortex center.
 

Consequently, the reverse pressure divergence on the vortex cen­

tral axis gets greater and the breakdown is pushed forward. On
 

the other hand, when the vortex center is measured by the total­

pressure tube, the hot-wire probe rotating means is separated
 

from the vortex center and the reverse pressure divergence does
 

not get acute as before. Namely, when the total pressure is
 

measured by the total-pressure measuring tube attached to a side
 

of the hot-wire probe rotating means, the total-pressure measur­

ing tube is measuring the total pressure in a flow-field which
 

is different from that when being measured by the hot wire.
 

Hence, the total pressure and the velocity on the vortex central
 

axis measured by one of these methods is not consistent with
 

those measured by the other.
 

For this reason, in a course of the experiment with the 17°­

apex angle model, the hot-wire probe was dismounted and replaced
 

1According to the experimental results in [541 , the break­
down position predicted from Fig. 5 in [543 is different from the
 
discontinuous point 6f the total pressure shown in Fig. 6 in 154
 
This is due to the fact "that the total pressure was not measured
 
by a keel tube but by a total-pressure measuring tube attached
 
to a side of the hot-wire probe.
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by a probe with the same shape and with a keel tube (shown in
 

Fig. 4) at its tip, for measuring the total pressure. As a re­

sult, it is confirmed that the breakdown position judged from
 

this arrangement is substantially well consistent with that
 

determined by the velocity distribution. However, it should be
 

noted that, since the diameter of the used keel tube is too large
 

compared with the vortex core diameter, the data measured on the
 

upstream where the absolute value of the total pressure is small
 

as well as the vortex core diameter are-not necessarily reliable.
 

It should be further noted that, since instantaneous flow direc­

tions changed very rapidly behind the breakdown, the measured
 

data may include large error terms. As mentioned above, the
 

flow-field we measured is the vortex flow-field in the condition
 

under which the reverse pressure gradient gets large'due to a
 

blockage of the hot-wire probe rotating means so that the break­

down is pushed forward and is'locaeed-on the wing surface. This
 

situation is similar to that in which Hummel put an obstacle in
 

the downstream of a flow-field So that the breakdown position is
 

pushed forward and examined for its effects.
 

Fig. 15 shows the measurement results of the total pressure 

on the vortex central axis, with a keel tube being used for a 

650-apex angle model at 170-apex angle. In the ordinate, Po 
designates the static pressure at the location where the velocity 

on the central axis reaches its maximum U and Q designates'the 

dynamic pressure Lou/2 at the same position. The value of P
 
0 -o
 was determined by the difference between the total pressure and
 

the dynamic pressure obtained by the velocity. As seen from Fig.
 

15, the total pressure decreases toward the downstream, attains
 

its minimal at the S/L value of about 0.9 and increases rapidly
 

beyond that*point. In the region where the total pressure in­

creases, the fluctuation both in the total pressure and the
 

velocity becomes very large, in particular, the hot-wire output
 

signal for measuring the velocity fluctuates so furiously that
 

it is difficult to read the average value. This fact indicates
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that the flow-field after the breakdown occurs is in the region
 

where the total pressure is very high. It should be pointed out
 

in Fig. 15 that the total pressure on the vortex central axis
 

changes discontinuously. On the upstream of the breakdown, since
 

the time-average central axis of the vortex coincides with the
 

instantaneous vortex center, the exact average of the total pres­

sure can be measured -if the vortex-diameter is large enough com­

pared with the keel tube diameter when the keel tube is aligned
 

with the time-average central axis 6_fthe.vortex. However, as
 

mentioned in Section 2.4.1, on the downstream of the breakdown,
 

the vortex is subject tb~the spiral transformation showing a
 

precession movement, and, therefore, the time-average central
 

axis of the vortex does not coincide with the instantaneous /11
 

vortex center. Thus, even if the keel tube is aligned to the
 

time-average central axis of the vortex,,the instantaneous flow
 

direction may be greatly different fromwthe direction of the
 

probe, and the time-average of the total pressure cannot be
 

measured accurately. However, at the location further downstream,
 

the spiral transformation begins to disappear and to be replaced
 

by a mild turbulent flow, and the time-average total pressure
 

may-be measured accurately. The discontinuous change in the
 

total pressure, as seen in Fig. 15, may probably well be ex­

plained by the above description.
 

It should also be pointed out that, as a consequence of the
 

above arguments, the accurate time-average of the total pressure
 

was-not obtained in the range where S/L is greater than about
 

0.9 or is less than about 0.5, in Fig. 15. Reardiess'of the expla­

nition, 	it can be clearly pointed out that the total pressure de-,
 

creases before the breakdown while increasing beyond the break­

down, as a matter of fact. Even when the measurement is done
 

using the total-pressure measuring tube attached to a side of the­

hot-wire probe, not using a keel tube, the shape of the resulting
 

data is similar to that shown in Fig. 15. However, in such a
 

case, the discontinuity point of the total pressure is moved
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toward the direction in which S/L increases, i.e., the downstream
 

direction. Besides this fact, the overall pattern of the change
 

in the total pressure and the relative values are almost identi­

cal to those shown in Fig. 15.
 

Hco ORIGXNAb ?kG ' B 
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Fig. 15. Total Pressure at Vortex Center C A = 650) 

As seen from Fig. 15, as in the case of the velocity at the
 

vortex center, the variation of the total pressure on the vortex
 

central axis is independent of the attack angle and can be repre­

sented by a single curve using the dimensionless variables, S/L
 

and (Hc-P )/00 if the apex angle is constant.
 

2.2.4. Effects of Reynolds Number
 

Reynolds'number has a significant effect on the separation
 

phenomenon in which the boundary layer is separated from the
 

object surface, and in particular, the separation point and the
 

phenomena caused by the separation are highly dependent on the
 

Reynolds number. However, it is said that the effect of the
 

Reynolds number is relatively little on the breakdown of the
 

vortices created on the surface of a delta wing with an acute
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leading edge which fixes the separation point at the leading edge.
 

It is shown by the experiments by Lambourne et al, 21 in which
 

the Reynolds number is between 0.01 x 106 and 4.6 x 106 and the
 

delta wings have very sharp leading edges, that the breakdown
 

position does not Area.tly change in response to the change in
 

the Reynolds number. On the other hand, with regard to experi­

ments of swirl flow within a cylinder, it was reported that
 
the breakdown position of the vortex changes according to the
 

Reynolds number and moves forward toward the upstream side when
 
the Reynolds number becomes greater, and that27 the breakdown
 

position is also influenced by the boundary layer which
 

developes along the wall of the lcyiinde.X', In the experiments by
 

Lambourne et al, the water or the air was used as a fluid medium
 

and dye or smoke was injected for determining the breakdown posi­

tion, but this is the following disadvantages: Namely, accord­

ing to their method, the breakdown position cannot be obtained
 

with a quantitative accuracy and a systematic procedure of ex­

periments is impossible since different Reynolds numbers require
 
different measurement mithods. .Therefore, it is not appropriate
 

to conclude that the experimental results by Lambourne et al.
 

imply the independence of the breakdown position from the Rey­

nolds number.
 

In order to investigate such effects of the Reynolds number,
 

we measured the velocity change on the central axis of the vortex
 

and the value of L with a 650-apex angle model fixed at an 18° ­

attack angle and with the uniform flow of wind speeds changed
 

from about 5 m/s to 15 m/s. The result of that experiment
 

is shown in Fig. 16. Due to the model which is lacking in
 

strength, the speed of the uniform flow cannot be changed over a
 
wide range. Accordingly, the change in the Reynolds number was /12
 

relatively small; i.e., the Reynolds numbers UC o/v normalized
 

by the central chord length of the wing and by the uniform flow
 

were 1.6 x 103 and 4 x l03. In this range of the Reynolds number,
 
the results of our experiments, L/Co=0.603 and 0.605, did not
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indicate any significantchange due to the change in Reynolds
 

number and it is conceivable that the Obtaihed change is within
£23
 

the range of the measurement error 2 ,This fact seems to indicate
 

that the value of L is not determined by a viscous flow but by a
 

non'viscous,flow created bythe model fixed at an attack angle.
 

UC c(=18"- I= 65 ° . A 

Lo CC=400.mmR 

15.97 I.6031 2.52 I:6'xio 
LO 114.99 .605 2.5814 X105 

0.5k 

0 - *.0 15 2. 
L 

Fig. 16,. Effect of Reynolds Number.
 

Although the value of L is related to the breakdown posi­

tion, it cannot be concluded only by the result of this experi­

ment that the breakdown position is independent of the Reynolds
 

number since the value of L is not a quantity which directly in­

dicates the position of the breakdown. In order to obtain more
 

accurate conclusions with respect to this matter, a number of
 

additional experiments are necessary, in which the breakdown posi­

tions are directly measured with many different Reynolds numbers.
 

2The central chord length Co of the model is 400 mm. The
 
difference of L/CO values, 0.605 and 0.603, corresponds to a
 
very small difference, 0.8 mm, when it'has been converted to 
the actual size. Since the position of L is determined on the
 
graph by seeking the point where Uo/2 is obtained, the differ­
ence, 0.8 mm, is included entirely within the range of errors.
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2.3. Characteristics of Vortex Cross Section
 

2.3.1. Axial Symmetry of Vortex
 

If the structure of the vortex is axially symmetric, theo­

retical analysis becomes relatively'easy. Figs. 17 and 18 show
 

the distribution of the average axial velocity component U and
S 

that of the circumferential velocity fU component, which were
 

measured by a hot-wire probe moved horizontally and vertically
 

within a cross-section perpendicular to the central axis of the
 

left vortex created on the surface of the wing having a 650-apex
 

angle and fixed at a 17°-attack angle. Since the radial compo­

nent of the velocity is relatively very small compared with the
 

other variables, the axial velocity component and the circumfer­

ential velocity component and, hence, the figure showing the
 

radial velocity component are omitted. Fig. 17 shows the mea­

surement results on the upstream of the breakdown position while
 

Fig.. 18 shows the measurement results at the locations which are
 

far downstream of the breakdown point. As seen from these two
 

figures, the time-average velocity distribution exhibits a sub­

stantial axial symmetry despite the existence of the breakdown.
 

The results of the measurements in which the device is traversed
 

horizontally indicate an aspect which is considerably different
 

from that when traversing vertically. This difference is due to
 

the vortex layer which is involved from the leading edge on the
 

left side, i.e., in the neighborhood of the leading edge. How­

ever, when considering a narrow portion near the vortex center,
 

e.g., the vortex core, it will be relatively reasonable that the
 

axial symmetry may be assumed. Since this experiment thus in­

sures the axial symmetry of the vortex to some extent, the velo­

city distribution measurements described from now on were done
 

only for the horizontal direction which is the easiest direction
 

for the measurements.
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Fig. 19 shows the characteristics of the velocity distribu­

tion before and after the breakdown. The experiment was done
 

with respect to the right vortex on the model having a 650-apex
 

angle and fixed at an 18°-attack angle, while traversing hori­

zontally. In the figure, the ordinate y designates the hori­

zontal distance from the origin at the central axis toward the
 

right direction perpendicular to the central axis, Ux, the
 

velocity component in the direction of the vortex central axis,
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the absolute value of U z the circumferential velocity, and Uy, 

the radial velocity. The location where S/L = 0.766 is on the 

upstream of the breakdown while the location where S/L = 1.01 /13 

or 1.22 is on the downstream of the breakdown. This figure 

indicates three characteristic features of the development and 

the breakdown of the vortex. First, the distribution of the 

axial velocity component has completely different shapes after 

and before the breakdown. Second, there is no substantial 

change in the distribution of the circumferential velocity. 

Third, the radial velocity component is relatively small com­

pared with the other two velocity components, despite the break­

down,and the velocity vector is-directed away from the center. In 

the measurement in which a hot-wire is rotated, the measurement 

accuracy is about 2% of the full scale and the measurement error 

is about 1 m/s. When considering this fact, it seems to be rea­

sonable to use an approximate quasi 2-dimensional model for the­

oretical analysis, assuming that the radial velocity component is 

small enough to be ignored compared with the other two velocity 

components. 
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2.3.2. Distribution of Velocity
 

Figs. 20 and 21 show the results of the average velocity
 

distribution which was measured with respect to the left vortex
 

created on a 650-apex angle model while varying the angle'of
 

attack from 170 to 180 and traversing horizontally. In this
 

experiment, the maximum axial velocity U and the L were as
o 

follows:
 

/14
Uo/U L/Cs 


180 .2.73 0.607
 

17° 
 2.48 0.716
 

In these figures, the abscissae are represented by the
 

parameter R/L which is non-dimensipnalized from the radial dis­

tance R in terms of the reference length L, and the parameters,
 

Ux/U and UV /U° in the ordinates are non-dimensionalized from
 

the axial velocity U and the circumferential velocity U, in
 

terms of the maximum axial velocity U0.
 

Distribution of Axial Velocity
 

On the upstream side where the value of S/L is small, the
 

average axial velocity .attains its maximum value in the vortex
 

center and decreases rapidly in response to-the increase of the
 

radial distance. Although the maximum values vary depending on
 

the attack angle, they reach 2 to 3 times as great as those of
 

the uniform flow. Thus, th6 axial Velocity distribution on the
 

upstream side where S/L is small may be characterized by the
 

fact that the velocity is very high in a narrow region, including
 

the vortex center and by the distribution's shape which i§ convex
 

upwardly in the neighborhood of the central axis of the vortex.
 

On the downstream where the value of S/L is larger, the value on
 

the vortex central axis decreases rapidly and the region of high
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axial velocity extends outwardly, indicating the increase of the
 

vortex core diameter. When S/L reaches 0.963, the shape of the
 

distribution is completely different from that on the upstream
 

and the value on the vortex central axis becomes less than that
 

on the peripheries. Namely, in this distribution, the value in- /15
 

creases from a low value in the center.A'moving radially away
 

from the center and attains a maximum value, decreasing slowly
 

after it attains its maximum. This distribution has the minimal
 

point on the vortex central axis and the maximal points outside
 

the central axis. Such a tendency, i.e., a rapid decrease of the
 

velocity on the vortex -central axis, becomes stronger as it moves
 

toward the downstream, and the axial Velocity on the vortex cen­

tral axis goes down to values which are less than the level of
 

the uniform flow. Such distribution on the downstream where S/L
 

is large is characterized by the diIstribution's shape which is
 

convex downward in the neighborhood of the vortex central axis.
 

When the distribution with such a shape was observed, the read­

ings of the velocity and the total pressure fluctuated to a large
 

extent and it became difficult to read average values of the out­

put signals from the hot wire and the pressure probe, indicating
 

the non-stationarity of the flow-field and the existence of the
 

breakdown. Thus, the shape of the distribution changes entirely
 

from,"upward cQnvex" to "downward -onyex,! at the point of the
 

breakdown when moving downstream. Fig. 20 shows that the break­

down occurs at the position where S/L is approximately 0.9 under
 

the experimental conditions with an apex angle of 65 and an
 

attack angle of 170 to 180.
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Distribution of Circumferential Velocity
 

On the upstream side where the value of S/L is small, the
 

'is large within a narrow region in a neigh­velocity' gradient 

it Iiroves
borhood of the central axis and becomes linear as 


radially. After attaining a maximum point, the velocity distri­

bution has an approximately hyperbolic shape like the distribu­

tion without vortex. Thus, it may be conciuded that, on the up­

stream side, there exists a vortex core where the fluid is
 

rotating at a constant angular velocity as if it were a solid
 

body and the vortex core has a very small diameter. As S/L
 

becomes larger, i.e., moving downstream, the angular velocity of
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the vortex core rotation decreases-as well as the maximum value 
of the circumferential velocity. However,, the diameter of the 

vortex core increases on the contrary. When the value of S/L
 

reaches 0.963 on the further downstream,side, the distribution
 

no longerlhas a portion which resembles a hyperbole in the neigh­

borhood of the-vortex,core and is dissipated outward. When S/L
 

is 1.213, there appears a region in the neighborhood of the vor­

tex central axis where the _gradient! of the circumferential
 

velocity is zero, i.e., the angular velocity of the rotation is
 

zero. This region where the circumferential velocity is zero is
 

radially expanded as it-moves further downstream.
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Fig. 21. 	 Distribution of Circum­
ferential Velocity.-

The change of the circumferential velocity distribution can
 
be characterized by the fact that the angular velocity of the
 

vortex rotation decreases as it moves downstream and :becomes
 

zero at last. As mentioned previously, the distribution of the
 

average axial velocity changes its shape completely at the posi­

tion of the breakdown. Contrasting this fact, the distribution
 

of the circumferential velocity does not change its shape
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drastically at the point of the breakdown. It is only observed
 

that the angular velocity of the vortex core rotation changes
 

at the breakdown point.
 

Thus, it may be concluded that, in a case of a vortex with
 

a high axial velocity in its vortex core with a very small
 

diameter, such as the vortex separated at the leading edge of a
 

delta wing, the most outstanding change in the average velocity
 

components due to the breakdown is that of the shape of the :
 

axial velocity-component distribution. Hence, it is quite under­

standable that our experimental results show the possibility of
 

determining the breakdown position by observing the point at
 

which the axial velocity distribution in the neighborhood of the
 

central axis changes its shape from "upwardly convex" to "down­

wardly convex".
 

2.3.3. Distribution of Swirl
 

For investigating the structure of the time-average flow­

field created by a vortex separated at the leading edge of a
 

delta wing, it is convenient to analyze the swirl distribution.
 

The components of the swirl vector in a time-average flow-field
 

can be caicualted from the average velocity vector using the
 

cylindrical coordinate representation according to the following
 

equation.
 

S1 (r uc) 
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In (W), 10 designates the radial component of the swirl
 
r 

vector and is ignored in this section since the rotational direc­

tion of the vortex line is only a matter of concern in this
 

section. In calculating the circumferential component tO9 , the
 

term bU/ x is much less than the other term BUx/ r and
 

is therefore ignored. The swirl distribution was obtained by
 

numerically differentiating the measurement results of the flow­

field created by a model having a 65°-apex angle and being fixed
 

at a 170-attack angle. Since the measured average velocity dis­

tribution is not completely axisymmetric about the vortex cen­

tral axis, the average values of both sides were used.
 

Fig. 22 shows the distribution of the axial component of
 

the swirl vector which was calculated according to the equation
 

(1). On the upstream side where S/L is small, the swirl is
 

concentrated in a very narrow region, including the vortex cen­

ter and forms a so-called vortex core. As it moves toward the
 

downstream side where S/L is larger, however, the swirl vector
 

becomes smaller in size and the diameter of the vortex core is
 

extended instead. As it moves further downstream, the swirl in
 

the center becomes smaller than that in the periphery and the
 

swirl axial component W1x exhibits its maximum point at a
 

location apart from the center. This fact indicates that the
 

breakdown phenomenon does not simply mean a relative dissipation
 

of the swirl distribution but corresponds to a drastic trans­

formation of the flow-field where the swirl distribution changes
 

its shape completely.
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Fig. 23 shows the distribution of the circumferential com­

ponent of the swirl vector. Thecircumferential component L rf 
is one-order smaller in size tha n Ehe axial component x. How­

ever, it is one important element which determines the rotation- /18 

al direction of the swirl vector: Oh'.the upstream side where 

$/L is small, the value of 'IT increases rapidly from zero to the
 

maximum value in the radialjdirectioi,and-decreases gradually
 

afterwards approaching the zero level again. The maximum point
 

moves outward as the location moves to the downstream. On the
 

further downstream where the value of S/L reaches 0.953, the /19
 

value of 0% decreases rapidly -fromzero to a negative minimum
 

value, increases gradually beyond this point, attains a positive
 

maximum value, and then decreases again approaching the zero
 

level, as the point moves outward. The location at which this
 

negative minimum value is attained moves outward as S/L increas­

es, and its absolute value increases initially and decreases
 

afterwards. The fact that the value of Wp is negative means
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that the axial velocity U is low in the center and high around
 
it, showing a distribution curve which is convex downward. It
 

also characterizes the condition after the breakdown occurs.
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Fig. 23. Distribution of Swirl
 
( Uh -Component) 

Fig. 24 shows the direction of the swirl which is calcu­

lated based upon the following equation:
 

e = tan-'(_1 _) (2) 

When S/L is less than 0.823 (upstream), 9 is positive indepen­

dent of the radial distance. However, as it moves downstream
 

and S/L reaches 0.953 where the flow-field enters the region
 

after the breakdown, a region where 0 is negative appears in 

the neighborhood of the center. The region where e is negative 

is widened as S/L increases and the absolute value of the nega­

tive minimum value of e is similarly increased. Fig. 24 shows 

the condition in which the direction of the swirl vector is
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reversed due to the breakdown,and the reversed region extends
 

outward from the center. 0PJGTNAL Pf, 
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Fig. 24. Direction of Swirl Vector
 

Fig. 25 shows a model of the right vortex separated at the
 

leading edge of a delta wing. The model is depicted based on
 

the deformation of the swirl vector (Figs. 22 to 24) which has
 

been described above. in the figure, two,.swirl tubes are drawn,
 

one close to the central axis and the other away from it. Each
 

direction of the swirl vector existing on the surface of each
 

swirl tube is represente&d by solid and-boken lines. The swirl
 

vector initially rotates spirally around the central axis with
 

the same rotational direction as: that of the vortex core. As
 

moving downstream, the value of 0 becomes less, and the number
 

of turns of the spiral per unit length in the direction of the
 

central axis becomes less. Moving further downstream, 


becomes zero at last, and the swirl vector has the same direc­

tion as the central axis and stops rotating around the central 

axis. % - Further downstream, the swirl vector has a rota­

tion direction which is opposite to the initial rotation 

6 
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direction and rotates again spirally around the central axis.
 

Then, both the value of S and the number of turns per unit
 

length increase moving downstream' it is an important fact to
 

observe that the region where the swirli'vector rotates in the"
 

opposite direction ekpands outwardly as-it moves toward the
 

downstream, as shown by thb broken line {n Fig..125.
 

0=0
 
*1\
 

Fig. 25. 	 Transformation of Vortex Lines
 

Key,: a. 	Vortex Line on an Outer
 
Vortex Tube. 
 P 

b. 	Vortex Line on an Inner
 
Vortex Tube.
 

Das gave the following explanation of the breakdown
 

phenomenon and made a simple calculation. "Vortex string is
 

separated from the leading edge of a delta wing, concentrates
 

on the wing surface and forms a vortex core. The other end of
 

the vortex string is either washed away downstream from the tail
 

edge, or separated from the wing .surface at a separation point
 

if such.a separation occurs on the wing surface. Such vortex
 

string which is washed away is involved into a vortex core on
 

the downstream. However, the rotational direction of the vor- /20
 

tex separated at the leading edge is different from that of the
 

vortex which is washed away from the tail edge or separated on
 

the wing surface, and, moving downstream, the vortex with nega­

tive rotational direction becomes stronger, thus inducing the
 

velocity directed from the downstream to the upstream in the
 

neighborhood of the central axis and creating the breakdown."
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However, according to this explanation, the region where the
 

vortex string rotates in a reverse direction must expand from
 

the outside of the vortex axis toward the central axis. There­

fore, the explanation is not consistent with our experiment
 

which indicates that the reverse rotation m4ion expands outward­

ly, as shown in Fig. 25. On the contrary, the result shown in
 

Fig. 25 is one of the experimental proofs for the observational
 

results by Lambourne et al. [21 which say that the center of the
 

vortex core is subject to a reverse-rotation spiral transforma­

tion and will lead to a breakdown. In Fig. 25, however,-the,
 

structure of the time-average flow-field created by the vortex
 

is explained by the transformation of the vortex lines, but the
 

instantaneous direction of the swirl vector is not shown. There­

fore, it should be noted that the condition depicted in Fig. 25
 

is different from the instantaneous condition of the vortex
 

observed by Lambourne et al. The relationship between instan­

taneous and time-average flow-fields will be described later in
 

Section 2.4-.1.
 

2.3.4. Distribution of Turbulence
 

Fig. 26 shows the turublence distribution which was mea­

sured with respect to the right vortex generated by a 65 -apex
 

angle model fixed at an 18 -attack angle while the hot wire was
 

fixed horizontally and traversed in the right and left direc­

tions. In the measurement, a'linearizer was used, and the dc
 

and ac components of the hot-wire output were read by a dc volt­

meter and an RMS-meter, respecttvely. The turbulence is repre­

sented by the ratio of the ac components to the dc component by.
 

percentage. It should be noted that the hot wire was fixed at
 

a fixed angle in the wind tunnel and was not necessarily perpen­

dicular to the average velocity vector.
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Fig. 26. Distribution of Turbulence.
 

On the upstream where S/L is 0.766, the turbulence has the
 

maximum value, 16%, on the vortex central axis and decreases in
 

radial directions. It is thought that the turbulence is greater
 

on the right side since the existence of the leading edge causes
 

vortex layers to-be wound up.
 

When S/L is 1.01, although the distribution has the same
 

shape, the maximum value reaches 61%. On the further downstream
 

where S/L is 1.13, the distribution has a completely different
 

shape which is convex downwardly,'in the neighborhood of the
 

center. Further downstream, where S/L is 1.22, the value on
 

the central axis is increased and the distribution has a shape
 

similar to that on the upstream. As seen in Section 2.4.1, the
 

phenomenon in which the turbulence becomes large and the dis­

tribution comes to have a downward convex shape can be explained
 

by the fact that the instantaneous vortex center moves outward
 

due to the spiral transformation according to the breakdown and
 

that the precession motion of the vortex causes the velocity
 

fluctuation. In the region downstream of the region where the
 

spiral transformation can be clearly observed, the spiral
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transformation is not clearly formed with less swirl concentra­

tion, and the velocity fluctuation is averaged by the resulting
 

turbulence flow, thereby making the distribution have the same
 

shape as that at the position ahead of the breakdown, where the
 

shape is upwardly convex in the neighborhood of the central
 

axis. However, although the shape is the same, the maximum
 

value of the distribution is much greater than that ahead of the
 

breakdown and the region of the turbulence grows outwardly as
 

the vortex diameter increases.
 

The frequencies of the velocity are around several Hz and
 

the high frequencies are dominant when S/L is 0.766. At that /21
 

point, the low frequency components are hardly observable. When
 

S/L bedomes 1.01, however, the frequencies are around fifteen Hz
 

and the low frequency components prevail. The appearance of
 

those low frequency components is related to the spiral trans­

formation of the vortex, as described later in Section 2.4.1.
 

Further downstream, where S/L reaches 1.22, the low frequency
 

components begin to decrease. This corresponds to the fact that
 

the spiral transformation of 1he vortex decays and becomes a mild
 

turbulent flow.
 

Fig. 27 shows a vidi-corder record of the output waveform
 

of the hot wire which is placed On the central axis at the loca­

tion where S/L is 0.567, when the apex angle is 650 and the
 

attack angle is 180. Since this location is ahead of the break­

down position, low frequency fluctu&tion with a large amplitude
 

is not observed. Instead, high frequency components are ob­

served in a random waveform and are likely to be due to the
 

rotational'angular velocity of the vortex core. Fig. 28 shows
 

a waveform of the hot-wire output ae the location immediately
 

after the breakdown, where S/L is 01935. As seen from this
 

figure, the hot-wire output voltage fluctuates largely from 0V
 

(zero wind speed) to lV (which correspons,to the wind speed of
 

about 50 m/s if the air stream is assumed as flowing along the
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probe axis of the hot wire). The measurement point was Pot
 

exactly on the central axis. jInsteat the hot wire was located
 

at the position where the vortex after the breakdown should
 

exhibit the spiral transformation and the vortex center should
 

pass through.. As seen frim the wavefbrm,, unlike that observed
 

on the upstream of the ,breakdown, low freq.ency components
 

around fifteen Hz are obserable. Fig,.'29 shows a result
 

obtained at the location which is a little further downstream,
 

where S/L is 1.13. Also, in this-case, the hot wire was set
 

aside from the central axis and.the outputwas.filtered by a
 

500"Hz low pass filter so as to reject the-high frequency compo­

nents which are supposed .to be-gbnerated by the rotational angu­

lar velocity of the vortex core. Fig. 30 shows the result of the
 

hot-wire output signal after being filte 4d~by a 10-Hz low pass
 

filter. This was done for the purpose of investigating the low
 

frequency components which appear after the breakdown, and- was
 

performed after having observed the prevailing low frequency com­

ponents by an oscilloscope so as to determine the necessary low
 

pass filter. According to this figure, the existence of a low
 

frequency of about 13 Hz is observed.
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2.4. Vortex Breakdown
 

2.4.1. Precession Motion and Spiral Transformation of the Vortex
 

Since the vortex separated at the leading edge of a delta
 

wing is approximately axisymmetiic, the total sum of the swirl
 

penetrating a circle with a radius of R can be expressed as the
 

circulation F = 21 T R. When the vortex is located in a
 

potential flow, a flow portion encircling a vortex tube always
 

encircles the same one, and hence, the circulation along this
 

closed loop does not change temporally and the vortex tube en­

circling the circulation P coincides with the flow tube.
 

Therefore, even in viscous regions, in order to examine the
 

expansion of the swirl, it is convenient to assume approximately
 

that the circulation P is constant while the radius R of the
 

vortex tube changes along the direction of the flow.
 

Fig. 31 shows the change (along the flow direction) of the 

non-dimensionalized radius R/L at which the non-dimensionalized 

circulation ]* becomes constant, where r*is the non­

dimensionalization of the circulation T =2 u & R by the 

standard value 2 t u 0L. The results shown in this figure wereo 
obtained from the measurement results of the velocity distribu­

tion where the models have the apex angle of 650 and are fixed
 
.
at the attack angles of 170, 18 and.190 The figure suggests
 

that the expansion of the swirl doe not depend greatly on the
 

attack angle, at least within the range of the experiment. In
 

the neighborhood of the central axis, in moving downstream, the
 

swirl is gradually diffused radially, and it begins to diffuse
 

abruptly. On the other hand, at the locatidn away from the cen­

tral axis, the swirl initially decreases slightly as S/L in­

creases, but it increases gradually afterwards and rapidly after
 

the location where S/L is about 0.9, indicating that the diffu­

sion is outstanding. this may be explained as follows: In case
 

of a delta wing, the vortex layer s6parated at the leading edge
 

is concentrated along the central axis and forms an intense
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vortex bore, thus being able, to some extent, to confine the
 

swirl within a narrow region in the neighborhood of the central
 

axis. However, in moving downstream, the confinement becomes
 

impossible due to the reverse pressure gradient, and finally,
 

breakdown takes place at the location where S/L is about 0.9.
 

Then the vortex core which'has been firml-j concentrated disap­

pears and diffuses rapidly in radial directions.
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Fig. 31. Diffusion of Swirl.
 

Sarpkaya 26 concluded, based on his observation of a
 

swirl flow, that the spiral transformation appearing after an
 

axisymmetric breakdown is caused by the gyration of the -vorte
 

ring confined in an approximately axisymmetric bubble. On the
 

other handLambourne 21 concluded, based on his Observation of
 

the vortex separated at the leading edge of a delta wing, that
 

the center of the vortex core is curved and the spiral transfor­

mation takes place after the breakdown, as shown in Fig,. 32,
 

but fluid portions do not move along the spiral. Acdording to
 

his observation by cinecamera, the fluid portion arriving at the
 

O point at a certain time moves along the direction OA and,
 

immediately afterwards, along the direction AA'. In case of a
 

swirl flow, the swirl is not concentrated around the central
 

axis so intensely as in the case of the vortex separated at the
 

leading edge of a delta wing. The vortex core is thus somewhat
 

loose, suggesting the appearance of a lirge bubble at breakdown.
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In case of the vortex separated at the leading edge, however,
 

almostall the swirls are concentrated.within the region where
 
the radius is less than 1.5 mm (approximately) and the vortex
 

core is intense. Therefore, the generated bubble is probably
 

very small and'may not be observed as a bubble. Thus, in case
 

of a spiral-form breakdown (by which, in this paper, is denoted
 

the spiral transformation appearing after an axisymmetric break­

down, if said with regard to a swirl flow), we may conclude that
 

the spiral'transformation is caused by the vortex precession of
 

the vortex core cross-section at the location of the breakdown,
 

whether it is a swirl flow or a vortex separated at the leading
 

edge of a delta wing. (In the case of a swirl flow, the vortex
 

cross-section at-the breakdown has a greater radius and a bubble
 

-is formed.)
 

Fig. 32. Vortex Spiral Transformation­

(Cited from Ref. 211,)
 

In the rest of this section, an attempt will be made to
 

explain the relationship between the spiral transformation after
 

the breakdown and the period of the velocity fluctuation, based
 

on an analogy to the phenomenon in which a rigid body exhibits
 

a precession motion. Consider a vortex core portion with a
 

small radius of AR and a length of Ax, as shown in Fig. 33.
 

Take into account only the force caused by the pressure gradient
 

along the direction of the flow and ignore all other influences
 

to the vortex core portion. Under these assumptions, when the
 

vortex core portion is placed in a reverse pressure gradient at
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a small angle e to the direction 0 of the pressure gradient
 

a moment around the fixed point 0 appears so as to turn down
 

the vortex core portion. Let the moment of inertia around the
 

axis OA be C Then, when the vortex core portion rotates
 

around the axis OB being at an angle 6 , the rotational
 

angular velocity S2 is the same as the angular velocity of the
 

rigid body exhibiting a precession motion and is expressed as,
 

= T 	 (3) 

where
 "
T- 1 dp -r and
 
2 dx. 	 and
C =1-" &x 

B. 

24' dpxr 
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Fig. 33. 	 Vortex Precession -- An 
Analogy from Rigid Body Movement. 

A Vortex Core Length,
Ax: 

AR: Vortex Core Radius)
 

On the other hand, assuming the one-dimensional non-viscosity
 

and incompressibility, the following equation holds true:
 

du2
1 1 dp (4) 
2 dx - dx 
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Letting the angular frequency of the precession motion be
 

and substituting equ. (4) into equ. (3), the following equation
 

is obtained. /25
 

AX I du 2 
-f= -) -(5) 

2 M 4HC AR 1 dx 

Non-dimensionalize the velocity and the distance in terms of
 

U and L, as follows:
0 

U = u/Uo , x* = x/L, AR* = AR/L,
 
V* = v/U and r* = AR* v*.
 

Rewriting equ. (5) by the above dimensionless variable, the
 

following equation is obtained.
 

a du2* (JQ)
 

As shown in Fig. 13, if the apex angle is constant, the axial
 

component of the velocity on the central axis remains the same,
 

being independent of the attack angle. Also, as shown in Fig.
 

31, the dimensionless variable V* may be considered to be
 

constant, independent of the.attack angle. Ax* designated the
 

length of the rigid body ihich is suppose to model the vortex
 

core portion under consideration. If the dimensionless variable
 

Ax* is held constant, independent of the change in the attack
 

angle, the equation (6) may be rewritten as follows, using a
 

constant K:
 
U 

0) (7) 

This equation indicates that the low frequency f, appearing after
 

the breakdown, is proportional to the value of U /L. Namely, the
 

frequency is higher when the velocity of the uniform flow in­

creases or when L decreases due to the increase of the attack
 

angle. For the next step, a deduction will be made in order to
 

explain the vortex transformation when the vortex core cross­

section begins the precession motion described above.
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When a vortex core portion exhibits a precession motion *'t
 

when pivoted at the breakdown position, the fluid portion around
 

the vortex core portion is forced away in directions which are
 

perpendicular to the vortex cross-section. As shown in Fig. 34,
 

when the vortex core cross-section confined in the position 
0
 

of the breakdown, rotates with the angular velocity C2 in the 

same direction as that of the angular velocity 0 of the vortex 

core which is at an angle S to the axis O', the fluid portion 

discharged from the point 0 moves along generatrices of a cone 

surface, ile., 0 - A, 0 - B, 0 C and so on. There­

fore, the curve plotting the core centers at time t is the curve 
passing through A, B, C, D
...... and 0, exhibiting a spiral with
 

a rotational direction which is opposite to that of 14. After
 

time ht has passed, the fluid portions discharged from the
 

point 0 move along generatrices of the cone surface, i.e.,
 

A --> A', B - B', C C Now, the curveC' and so-forth. 

plotting the vortex centers is a curve A', ', C'. ...... , 0 which 

is perturbed in the direction of 00'. Thus, the fluid portions 

of the vortex core do not move'along- he spiral passing through 

the vortex centers, such as 0 - .... -b- D -4 C -- B --- A, 

but move along generatrices of the cone surface as 0 - A, 

0 -'- B, 0 - C and so forth, while the vortex centers at any 

moment exhibit a spiral form in a reverse direction. This ob­

servation, shown in Fig. 3.4, is quite consistent with the ob­

servational results obtained by Lambourne. 

According to the above explanation, the low frequency of
 

the velocity fluctuation which is observed by a hot wire located
 

in the flow field after the breakdown must be the same as the
 

frequency determined by the time period of a spiral passing the
 

.observation point, and hence, is identical with the frequency
 

of the precession motion of the vortex core cross-section con­

fined at the breakdown position. Fig. 35 shows the low frequen­

cy components of the velocity fluctuation when a 65°-apex angle
 

model was used with varying the attack angle and the magnitude
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of the uniform flow. The low frequency components were obtained
 

from the oscilloscope observation of the output-signal frequency
 

of the hot wire which is located in the flow field after the
 

breakdown. The waveform of the hot-wire output is very random,
 

as shown in Fig. 28, and hence, the separation of the low fre­

quence components is very difficult. Therefore, the obtained
 

frequencies have a great variation and every result must be
 

shown with a certain interval. Two different wind speeds., 6 m/s
 

and 15 m/s, and three different attack angles were used in the
 

experiment. Although the experiment does not cover a wide range,
 

it may be concluded that the equation (7), i.e., the fact that
 

the frequency f is proportional to U /L, is proved experimentally,
 

at least for the range in which-the experiment was done.
 

A 

N D 

Fig.. 34. 	 Spiral Transformation Caused
 
by recession Motion of
 
Vortex Core Cros's-Section.
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Fig. 35. 	 Frequency of Velocity
 
Fluctuation After Breakdown.
 

By calculating the constant K from Fig. 35, the value of /26
 
2
9.3 x 10- was obtained. From this result, the length of the
 

vortex core portion when it is supposed to be a rigid body was
 

calculated as AX/ AR t 0.1. This small value of A X
 

indicates that the vortex core portion confined at the break­

down position is not long and that only a thin vortex core cross­

section exhibits the precession motion. This means that a
 

bubble can be hardly recognized. It may be concluded from the
 

above discussions that the breakdown may be explained as a vor­

tex spiral transformation which is caused by the precession
 

motion of the vortex cross-section.
 

Fig. 36 shows the radius designating the maximum of the
 

axial velocity distribution. That maximum value can be thought
 

to be the spiral radius after the breakdown. The figure indi­

cates that the spiral transformation begins at the location
 

where S/L is approximately 0.9, being independent of the attack
 

angle, and that the surface where the spiral passes is a cone.
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Fig. 36. Spiral Radius After Breakdown.
 

2.4.2. Position of Breakdown
 

In the previous section, the breakdown and the spiral
 

transformation thereafter have been clearly depicted. In this
 

section, discussion is focused on the following questions: /27
 

When such a spiral transformation occurs, what kinds of changes
 

will appear in the velocity along the central axis, the velocity
 

within the cross-section perpendicular to the central axis, the
 

total pressure (head) and the turbulence?
 

When the breakdown occurs and the vortex is subject to the
 

spiral transformation, the spiral rotates in a direction which
 

is different from the initial rotational direction of the vortex
 

core. On the other hand, even when the spiral transformation
 

occurs, the vortex core rotates around the spiral curve as a
 

central axis with the same direction as the initial rotational
 

direction before the breakdown. Consequently, when the spiral
 

transformation occurs, such rotational movements of the vortex
 

core induce a flow which is directed from the outside of the
 

spiral toward the central axis 00'. As indicated by the experi­

mental results by Earnshaw 3 and the numerical results by
 

others, the total pressure is lower in the vortex center than in
 

the periphery before the breakdown occurs. When the spiral
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transformation takes place and the peripheral fluid flows into
 

the neighborhood of the central axis with high energy, the total
 

pressure on the central axis is increased after the breakdown.
 

As mentioned in Sec. 2.2.3, the model discussed previously can
 

explain the mechanism whereby the total pressure on the central
 

axis is increased rapidly according to the.outbreak of the
 

-breakdown. In addition, this mechanism suggests that the
 

numerical analysis be done after the structure of the turbulence
 

is made clear.
 

Other characteristics of the flow field generated by the
 

spiral direction opposite the vortex core rotational direction
 

may be clearly seen in the distribution of the average axial
 

velocity. As seen in Sec. 2.3.2, the distribution exhibits its
 
"
maximum on the central axis and decreases radially, at the loca­

tion ahead of the -breakdown. When the breakdown occurs and the
 

vortex is subject to the reverse spiral transformation, a flow
 

from downstream to upstream is induced inside the spiral, as
 

indicated by Biot-Savart's law. On the contrary, a flow from
 

upstream to downstream is-induced outside the spiral. Such
 

induction in the flow field varies with the period of the preces­

sion motion of the vortex core Crossrsection. However, when 21
 

time-averaged, the axial-velocity inside the spiral is decreased
 

while the axial velocity outside the spital is increased. Thus,
 

the distribution exhibits an overall shape which is convex down­

ward in the neighborhood of the central axis. The location at
 

Which the axial velocity distribution reaches a maximum corres­

-pondsto the location through which the spiral passes.
 

As stated in Section 2.3.4, the location where the velocity
 

fluctuation is the greatest is located at a position away from
 

the central axis, immediately after the breakdown. Moving away
 

from the breakdown, point downstream, the fluctuation decreases
 

and the maximum distribution is attained on the central axis.
 

This fact can also be explained by the spiral transformation
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after the breakdown. The velocity in the vortex core is very
 

high as it is before the breakdown. Therefore, when the loca­

tion of the vortex core changes temporally, the fluctuation at
 

the time-average position of the vortex core becomes intensive.
 

After the breakdown occurs and the spiral transformation takes
 

place, the vortex core exhibits a spiral curve, and, hence, the
 

fluctuation at the location through which the spiral curve
 

passes is the maximum. Thus, the maximum point of the turbu­

lence distribution is away from the central axis, after the
 

breakdown. Moving further towards the downstream side where the
 

spiral transformation becomes unclear and the vortex core becomes
 

less intensively concentrated, the flow becomes a mild turbulence
 

and the characteristics seen in the spiral transformation region
 

become invisible, so that the fluctuation is spacially averaged.
 

In accordance with the above discussion, it can be concluded
 

that the breakdown of the vortex separated at the leading edge of
 

a delta wing is the spiral-form breakdown as defined by Lambourne,
 

when the Reynolds number-is high. in addition, the following
 

fact was experimentally proved: the position of the breakdown
 

is identical with the position where the axial velocity distribu­

tion changes its shape, or the position where the total pressure
 

on the central axis increases. Based on these results, the
 

criteria for determining the breakdown position from numerical
 

calculations will be sought fn the following paragraphs.
 

Assmne an axisymmetric and laminar flow-field. Define the
 

Reynolds number by Re = U L/x) , with respect to a standard
 

length L and a standard velocity U . As seen in the experimen­

tal results, the radial velocity ur is very small compared with
 

the axial velocity component. Therefore it may be non-dimen­r 

sionlized by multiplying ,fWe by the radius r and in terms 

of L. Other velocity components, u and u , are non-dimension­

alized by Uo, and the axial distance by L. The pressure is non­

dimnensionalized by eU0 These variables which 'have been non 
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dimension~lized are denoted by UX , Ur , P, R and X. The equation
 

of motion in the x-directionr using the cylindrical coordination
 

system, can be written as follows using the Reynolds number Re
 

+U+ -V. -+-- + - ­
2
X +uR X )R R bR 

+ )2U x 

Re X2 

(8)
 

As an approximation for the case when the Reynolds Re is high,
 

the last term in equ. (8) is omitted. When the relationship on
 

the central axis is taken into account, since the vortex is
 

assumed to be axisymmetric,
 

( U/ B) =0 and (U) = 0 
x R=0 r R=0 

are obtained on the central axis. Using a subscript C indicating.
 

the central axis and letting the'non-dimensionalized total
 

pressure be H, the equation (8) can be approximated by,
 

2 

a 1 2 2H- (- u +PP) = . = C­
dx 2 0 C dx R0
 

(9)
 

The equation (9) is the one which indicates that the change in
 

the total pressure on the central axis in the direction of the
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flow is equal to the second derivative of the axial velocity
 

distribution. In the region where the total pressure decreases,
 

ie., dHc/dx < 0, the second derivative of the axial velocity
 

( a2Ux/ a R2)R=O is negative, indicating that the axial velocity
 

distribution has a shape which is convex upward in the neighbor­

hood of the central axis. On the contrary, in the region where
 

the total pressure increases, i.e., dHc/dx > 0, the second
 

2 2derivative( Ux/ ' R )R=O of the axial velocity is positive,
 
indicating that the axial velocity distribution has a shape which
 

is convex downward in the neighborhood of the central axis.
 

The experimental results described in Sections 2.2.3 and /28
 

2.3.2 indicate that, when the Reynolds number is high, the break­

down position of the vortex separated at the leading edge of a
 

delta wing is identical to the position where the total pressure
 

on the central axis is minimum, Or equivalently, identical to
 

the position where the axial velocity distribution changes its
 

shape from "upward convex" to "downwar6 convex". In this sec­

tion, it has been demonstrated that a conclusion equivalent to
 

the above statement is also theoretically'obtained from the
 

equation of the motion.
 

Therefore, the breakdown position may be theoretically
 

determined as the position where the following condition (10) is
 

satisfied. Although a laminar flow has been assumed in the above
 

discussion, even in-the case of a turbulent flow, if a vortex­

viscosity model can be applied with (Reynolds stress) ­

ur Ux = D--- and if the vortex viscosity coefficient is 

used instead of the dynamic viscosity coefficient, the equations
 

(8) and (9) still hold true. Thus, in each case, a criterion
 

for determining the breakdown position may be given as follows:
 

de- = or (c2u/bR) =0 (10) 

dx (i0) 
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3. Theory
 

3.1. Theoretical Methodologies
 

Among the monographs theoretically treating the flow-field
 

generated by the vortex separated at the leading edge of a delta
 

wing, one can first cite the analytic solution by Hall 1 1.-nd
 

Brown's .theory'3 which was developed based on Hall's theory 

where compressibility is taken into account. According to Hall, 

the vortex is separated intotwo portions: the central portion 

where the viscosity effect prevails and the outside portion 

which may be treated by the non-viscosity theory. A conical 

-flow-field is assumed for the outside portion so that the coni­

cal flow calculation is possible. This calculation is then con­

nected with the solution for the inside involving viscosity, 

thereby giving an overall flow-field of the vortex. However, 

according to this method, the connection between the inside­

region and outside-region solutions nay not be smoothly made. 

In order to alleviate this disadvantage, Stewartson and Hall [ 
proposed another expanded method, in which the solutions are 

given in terms of series and the overal flow-field is given in 

a more integrated way. They compared their computational re­

sults with the experimental reslts by Earnshaw. -Except for the 

fact that the theory gives top large a velocity in the vortex 

center and too low a static pressure in the vortex center, both 

results can be said to be relatively consistent. Judging from 

this observation, at least in the present stage, it can be said 

that there is only a slight problem in analytically solving the 

flow-field of the vortex on the Vpstream of the breakdown. 

As for the theoretical study on solving the development of
 

the vortex, Hall [29 proposed a method in which the flow-field
 

is treated as a quasi 2-dimensional field and the solution may
 

be obtained by a step-by-step way downstream, using a different
 

method, with given initial and boundary conditions. In the
 

'example which he studied, a downward convex shape of the axial
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velocdItydistribution was observed at a certain position down­

stream, manifesting consistency with our experimental results.
 

However, Hall concluded that there is no stagnation in the flow
 

and he did not treat the breakdown. In another monograph [33,
 

Hall insists that the breakdown position be determined as a
 

point where the quasi 2-dimensional assumption cannot be valid
 

any more. Although it is true that the- axial velocity changes
 

rapidly and the quasi 2-dimensional approximation becomes worse
 

at a location near the breakdown, the discussion by Hall is
 

highly dependent on his experimental result, which shows that he
 

failed to obtain the velocity distribution of the flow*field
 

after the breakdown. However, our experimental results indi­

cate that a breakdown occurs without stagnation-. Based on this
 

observation, we may conclude that the quasi 2-dimensional differ­

ence method for numerical calculation, proposed by Hall, is-still
 

an efficient method for solvinq the development of the vortex
 

separated at the leading edge of fa delta wing and the phenomenon
 

of the breakdown.
 

Bossel [ proposed a numerical method for solving a circu­

lar flow in a cylinder.,. although It. is not for -a vortex gener­

ated by a delta wing. He separated the flow field into the 

following four regions-: (1). the butermost region where the 

quasi 2-dimensional assumption is valid and a hyperbolic equa­

tion is satisfied, (2), the; breakdow region-where a non-viscosity 

elliptic equation is valid; (3) the hon-viscosity region around 

the vortex center where the elliptic equation is valid, and' (4) 

the region around the stagnation point where bubble created by­

he breakdown exists. After having defined the above four re­

gions, he gave a solution under an appropriate boundary condi­

tion. He showed that an egg-shaped bubble, including a counter­

flow, appears in the neighborhood of the vortex center. The same 

result can be seen in the experimental result by Harvey. However, 

the bubble is closed and the direction of the circumferential 

velocity inside the bubble is reversed, according to his result. 
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As for the breakdown, the existing theories are as follows:
 

Ludweig's theory [6 '13 , the conjugate vortex flow
 

theory 3 139] [o advocated by Benjamin, Fraenkel, Sheer and
 
, ,
others, the weakly nonlinear wave theory [43 421 53 ' 

advocated by Leibovich, Randal and others, Lambourne's theory E 
and Mager's theory. 

Ludwieg analyzed the stability of the circular flow in a
 

narrow region between two coaxial cylinders and gave the stable
 

region by considering spiral small perturbation and by solving
 

a non-viscosity axisymmetric equation. He further expanded his
 

result to concentrated vortices. However, his theory originated
 

for solving the field of a narrow region between two coaxial
 

cylinders and cannot be applied to'a geeral,concentrated vortex.
 

Nevertheless, when our experimental results are plotted on the
 

stability region obtained by Ludwieg, we.see that the plotted
 

data representing the region after the breakdown Ifall into the
 
instability region. 4 The experient by Petersohn [41 shows a
 

similar consistency with the result by Ludwidg. However, in
 

order to predict the breakdown based on Ludwieg's theory, the
 

distributions of the circumferential and axial velocities must be
 

known for each stage of the vortex development. Hence, it is
 

impractical to use Ludwieg's theory for predicting the breakdown.
 

Benjamin assumed a quasi 2-dimensional non-viscous axisym- /29
 

metric flow and derived an equation which the flow function must
 

satisfy, based on the equation of motion. Assuming a uniform
 

axial velocity and a combined forced-and-free vortex, he showed
 

that there is a plurality of flow functions which satisfy the
 

boundary condition and that the breakdown is a finite transition
 

between supercritical and subcritical flows which are conjugate
 

to each other. He also concluded that the critical condition
 

can be represented by V/U = 1.2, where V/U is the ratio of the
 

circumferential and axial velocities at the end of the vortex
 

core. This conclusion is consistent with a result of a special
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case when Lambourne's theory is applied.
 

Like Benjamin, Lambourne assumed a combined forced-and­

free vortex. He considered the change in the axial velocity
 

outside the vortex core, i.e., the pressure gradient. After
 

giving a relationship between the parameter K representing the
 

radius of the vortex core and the ratio V/U1 of the axial
 

velocity at the end of the vortex core on the upstream of the
 

breakdown, he showed that there exists a critical condition
 

for the relation of V/U1 to the ratio of axial velocities at
 

the ends of the vortex on upstream and downstream of the break­

down, and that there exists no solution under such critical con­

dition. He also showed that the axial velocity in the vortex
 

center decreases and a counter-flow reqion appears in the
 

neighborhood of the vortex, under such a condition. However, the
 

following points in this theory are questionable: According to
 

the theory, the condition under which a stagnation point appears
 

and a counter-flow region is generated is different from the
 

condition under which there is no solution. However, the theory
 

cannot state clearly what kind of phenomenon in the flow-field
 

corresponds to these conditions. Furthermore, it should be
 

pointed out that the direction of the circumferential velocity is
 

reversed in the counter-flow region. Nevertheless, unlike
 

Ludwieg's theory, Lambourne's theory can provide a critical con­

dition based on the reverse pressure gradient, and hence, it may
 

give a practical prediction of the breakdown to some'-extent.
 

Byapplying the non-linear wave theory by Leibovich and
 

Randall, a swirl flow in a cylinder was calculated. This theory
 

can be characterized as follows:
 

1) Like Benjamin's theory, this theory tells that there
 

exists a supercritical flow on the upstream of the break­

down and a subcritical flow on the downstream of the break­

down, and that nonlinear waves propagate in the subcritical
 

flow but they do not exist in the supercritical flow.
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2) Stationary waves are generated only when the tubes are
 

expanded in the direction of the flow, i.e., when there
 

exists a reverse pressure gradient.
 

3) The flow lines determining the boundary of the trapped
 

waves form a bubble which was observed in the experiments by
 

Harvey, Sarpkaya and others.
 

4) The changes of the wall pressure in the axial direction
 

are very similar to those shown by the experimental results
 

provided by Sarpkaya or Kirkpatrick.'4
 

5) The response of the breakdown position to the change in
 

the Reynolds number is almost identical to that observed in
 

the experiment by Sarpkaya.,
 

6) The nonlinear transient movement is,,honsistent with the
 

observation by Sarpkaya.
 

Thus, as a whole, the theory provides the results which are con­

sistent with the results which Sarpkaya obtained in his experi­

ments in a cylinder. Therefore, it provides a very effective
 

method for analyzing the transient mechanism of-the bubble
 

generation. However, the theory does provide,some unreasonable
 

consequences, such as, the reversedirecticon of the circumferen­

tial velocity in the solitary waves or the implication that the
 

critical condition appears only in'the swirl fiow with a constant
 

circulation.
 

Mager used a representation in which the axial velocity dis­

tribution is a 4-th order algebraic function while the circumfer­

ential velocity distribution is a cubic algebraic function. Using
 

these representations, and under the quasi 2-dimensional assump­

tion, he derived an integral equation relating the momentum, the
 

circulation and others, and showed that there exists a continu­

ous solution under a certain condition when the vortex core
 

diameter increases moving downstream, but that,.beyond a certain
 

boundary, there is no continuous solution and a finite transition
 

appears in the flow-field, exactly the way Benjamin described.
 

He further concluded that such conditions are the conditions
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which may determine the breakdown position. Sarpkaya made a
 

numerical calculation according to Mager's method based on his
 

own experimental results, and showed' that the breakdown position,
 

obtained with the Reynolds number and the circulation as param­

eters, is very consistent with the experimental results.
 

The assumption which Mager made about the form of the axial
 

velocity distribution does not allow a shape which has.the maxima
 

at the locations away from the vortex center, whibh'is the-case
 

of the results which our experiments show in the after-breakdown
 

flow-field of the vortex separated: at the leading edge of a delta
 

wing. Therefore, it is still questionable if there exists a
 

continuous solution or not when sucha shape of the distribution
 

is allowed, despite Mager's conclusion that there is no continu­

ous solution under-his. assirmptLons;-,'Thuis,iager has left an open
 

problem.
 

The present status of the-theoretical studies on the vortex
 

structure and the breakdown phenomenon has been surveyed up to
 

this point. It is natural to requite any theory to give a suffi­

cient explanation for all the experimental results described in
 

Chapter 2, in order 'fbr that theory'to~be-capable of determining
 

the development of the leading-edge vortex of a delta wing and
 

'its breakdown position. When the Reynolds number is high, the
 

breakdown of the vortex generated on a delta wing is not of the
 

axisymmetric type in which the flow is stopped on the vortex
 

central axis but of the spiral type in which the vortex center is
 

bent at a certain location. Therefore, Ludwieg's theory on the
 

circular flow in a cylinder, the conjugate vortex flow theory by
 

Benjamin et al., or the weakly nonlinear wave theory by Leibovich,
 

Randall et al. cannot be applied to our case. Furthermore,
 

Mager's theory is also inapplicable since it cannot represent the
 

velocity distribution after the breakdown adequately.
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The experimental results in Chapter 2 reveal that, when the
 

Reynolds number is high, the vortex generated on a delta wing
 

model may be characterized as follows:
 

(1) The time-average central axis of the vortex is almost a 

straight line and, hence, can be used as one of the coordi­

nates in a theoretical calculation. 

(2) The diameter of the vortex core which moves as if it were a /30 

rigid body is very small. The time-average flow-field is 

almost axially symmetric despite the breakdown, except for 

the winding-up portion of the vortex layer near the leading 

edge and the close neighborhood ofthe wing surface. Hence, 

the axial symmetry may be assumed in a numerical calculation. 

(3) The radial velocity component Ur lsv.ry small compared with 

the axial velocity component Ox br the circumferential velo­
city component UrT e 

(4) The radial change of the f10w-field is gi-eater than the 

change along the vortex axisand''hence, the quasi 2-dimen­

sional treatment is possible, 'as it is for a boundary layer. 

(5) The turbulence is concentrated in a narrow region around the 

vortex core center on the upstream of the breakdown. As 

seen from the analytic solution by Hall and our experimental 

results, the viscosity effect is .very small at a location 

which is far enough from the vortex core and, hence, a 

potential flow may be assumed in the region outside the 

vortex. 

(6) Even though the vortex is a turbulent flow, its vortex core 

rotates as if it were a rigid body and there is only a lit­

tle momentum transportation or dissipation due to the tur­

bulbnce-. The vortex growth, the vortex development and the 

breakdown are mostly subject to the potential, i.e., the 

pressure gradient. 

(7) 	The velocity fluctuation of the flow-field on the downstream
 

of the breakdown is large, creating a significant turbulence
 

effect. In order to determine the breakdown position, a dis­

cussion using an equation describing the time-average flow-field
 

is enough.
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The above observations suggest that, when the Reynolds
 

number is high enough, the development of the leading-edge vortex
 
of a delta wing and the breakdown position may be determined by
 

Hall's method P9, in which an axisymmetric Navier-Stokes equa­
tion describing the average flow-field under the assumption of 

quasi 2-dimensionality is solved by a difference equation with a 
certain boundary condition. Since the actual flow is a turbulent 

flow, in order to solve its development, the dynamic viscosity 

coefficient V in Hall's calculation of the laminar flow should 

be replaced by the vortex viscosity coefficient g with the 

turbulence effect taken into account. Then, the breakdown 

position can be determined by numerical calculation using the 

criterion represented by equ. (10) the validity of this,since 


criterion has been experimentally proved. In the following
 
section, a numerical method based on Hall's.method and the cor­

responding computational results will be'described.
 

3.2. Numerical Computation
 

3.2.1. Nomenclature
 

x-, r 	 Cylindrical coordinate systemi
 
axial and radial directions.
 

X, R Cylindrical coordination system
 
(n6n-dimensiongiited)..,
 

ux , ur 	 Axial, circumferential and radial velocity.
 

U, V, W' Axial, cirqumferentlal hd radial ve-ecity-

Qnon-dimensionalized).
 

U = U/U.0_V 	= U /U and W = e o 

p, P Statis pressure, its non-dimensionalization.
 
U° Maximum axial velocity (see Fig. 11).
 

L 	 Reference distance (see Fig. 11).
 

Vortex viscosity coefficient.
 

Dynamic viscosity coefficient.
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Re Reynolds number, 

R UoL/9 or 

R = UL/) 

Radius, 4= R/t 

k Circulation, k = 2 4' V. 

h Radial velocity, h = W/X 

Ax,A Difference division in the x- and 4-directions. 

a,b,c,d Coefficients in the equation of k. 

a*,b*,c*,d* Coefficients in the equation of u. 

Parameter representing the vortex radius, 

= re (x)/re (xi) , 1 U2 

eo Dynamic pressure,, :'o - 2 

0( Attack angle. 

A Apex angle. 

El Circulation quantity. 

Subscripts 

i Initial conditions for the cross-section. 

C Vortex central axis. 

e Vortex outside boundary. 

m Lattice position, the x-direction. 

n Lattice position, the 4 -direction. 
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3.2.2. Basic Equations
 

In order to describe the equation of motion in terms of
 

dimensionless quantities, the L defined in Section 2.2.2 is used
 

for the reference of the distance, and the maximum velocity UO
 

on the vortex central axis is used as the reference of the
 

velocity.
 

In order to make a matching among the scales of the varia­

bles, a common practice in the boundary layer approximation, the 

radial distance r- and the radial velocity ur are expanded by the 

factor AR.e The Reynolds number Re used here is not that of the 

laminar flow, used by Hall with the dynamic viscosity coefficient, 

but it is defined by using the vortex viscosity coefficient S. 
i.e., Re = UoL/S. . The non-dimensionalization of the coordi­

nates and the velocity components is determined as follows: 

x rx = - . R = - , 

U --x V = W = 
j.and (li)
 

U0 U0
 

where
 

U0 L P-P 0
 

R =-L and P - U
 
e SP2 

Taking into account the fact that the flow-field is a turbulence,
 

a simplest viscosity model is assumed and a scalor vortex coeffi­

ciency of Boussinesq is used instead of the dynamic viscosity
 

coefficient. Under the assumption of the quasi 2-dimensionality
 

and with the above non-dirmensionalization, the axisymmetric
 

Navier-Stokes equation of motion and the equation of continuity
 

may be written in terms of the dimensionless quantities as follows:
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'~RV (R) 2 2U(RV) "(RV) (RV) 1 (RV) 1 K(RV)

U - + W ++ 

e 

U + WR = - + + - -+­bn2x R X RbR R X2 , 
e 

v2u)w w w P 1 2w 1w1 
aR2R e X Re r R R R R R (12) 

W
 
2eReU e an2 X-2 

- R and 

bu w w 
- +- + - = 0x bri B 

In the equation (12), each term including 1/Re can be omitted
 

under the assumption that the Reynolds number is high enough.
 

Under that assumption, the basic equations can be simplified as,
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uL-RV) + W=(RV) 2(RV) I a(RV) 
R2
X lR R R. 

U + W ;p + 2 u +1u
 
SX R2 R 1
 

(13)
 

V2 ; pA-= - , and 
R R
 

U W W 
+ +- = 0 

X R1 Rk
 

The equations (13) have been derived under the quasi 2-dimensional
 

assumptions: The flow-field is axisymmetric and the Reynolds
 

number is high enough. So that the change in the R-direction is
 

much greater than that in the X-direction. Therefore, the
 

equations (13) cannot be applied to the case where stagnation
 

exists in the flow or where there exists a counter-flow region.
 

However, as mentioned in Chapter 2, if there is no stagnation in
 

74 



the flow and the change in the X-direction is greater than that
 

in the R-direction, but only to some extent near the breakdown
 

or on its upstream, the flow-field including the breakdown may
 

probably be solved by equation (13).
 

The equations (13) have complicated terms involving the
 

velocity components U, V, W and the pressure P and cannot be
 

separated easily. However, if the axial velocity component U is
 

assumed, the radial velocity W can be determined by the equation
 

of continuity. Then, the circumferential component V can be ob­

tained from the first equation and the pressure P can be deter­

mined by substituting V in the third equation. Finally, by sub­

stituting W and P in the second equation, U is obtained. The
 

value of U thus obtained can be used for correcting the initially
 

assumed value of U. By repeating this procedure until a conver­

gence is obtained for each variable, the variables on the next
 

cross-section may be obtained with a given initial condition.
 

Thus, the equations (13) constitute a hyperbolic equation which
 

can be solved in a step-by-step method.
 

The boundary condition treatment is the next problem: The
 

boundary outside the vortex changes its form according to the
 

development of the vortex. Therefore, the problem would be very
 

complicated if the boundary condition is given on the deformed
 

surface. In order to make the boundary condition assignment easy,
 

a parameter representing the expansion of the vortex,
 

= re(i) /'re (x)is introduced so that the computational 

region may be rectangular. The subscript e designates the end of 

the vortex and signifies the external boundary. xi is the first 

cross-section in the vortex computation and corresponds to the 

initial condition. If the variables R, V and W are converted to 

, k and h in terms of X ,i.e., 

= R/ , k = -V, and h = W/A. . (14) 
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and if the axial velocity component U is denoted by the lower
 

case u and the axial distance X by 'the lower case x, the basic
 

equations become,
 

u 

u 

..Ux .X .a2 

+ 

+ 

(u- A + 

(h - A-CU -

Axk2 4p 

1 

)-

Lu 

-=0 

kk2 

A243 

(15) 
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In equation (15), Z 
o g r g r and x. 

region, o -

denotes d I /ax. The physical region, 

x, is transformed to the computational 

- / = R 

and xi < x, which is a rectangular region with one open end, by 

using the coordinate transformation (14). 

The initial condition consists of the axial velocity dis­
tribution u. at the cross-section x = x. and of the circulation 

1 1 
distribution ki, i.e., 

u = ui( 4 ) and k = k ) at x = x.. (16) 

The boundary condition on the central axis is determined by 

the condition that the circulation k and the radial velocity h 

are both zero and by the condition that the axial velocity u is 

axially symmetric, and hence, it is given as, 

k = o, h m o and Z = o at 0=o. (17) 

For the external boundary condition, we have, 

k = k (x), u = ue(x) and P = Pe (x) at 4= 4e (18) 

If several assumptions are added to the external boundary condi­

tion, the expression (18) may be further simplified.' 

In the external boundary is a flow tube, the relationship 

between the geometrical expansion of the flow tube and the 

velocity vector may be written as, 

h/ue = (19) 

and hence the assignment of all the conditions in equation (18) 

is impossible. Furthermore, if the external boundary of the 

vortex is assumed to be non-viscous and there is no swirl dissi­

pation through the boundary, the first equation in (15) implies 

dke/dx=o and we have, 

ke (x) = k (xi constant (20) 

/32 
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and the second equation in (15) implies, 

du 
Ued 

dx 
-

k2 

2 
-

dPe 
edx---

dx 
(21) 

When such assumptions can be made, all the conditions in (18) 

cannot be assigned at one time as the external boundary condi­

tion; only one -- Pe' Ue or A. -- is allowed to be assigned while 

the rest of the conditions are substituted by equations (19), 

(20) and (21). In the case of the delta-wing leading-edge vortex
 

where the Reynolds number is sufficiently high, the assumptions
 

(19), (20) and (21) can be made approximately, as mentioned in 

Section 3.1, and hence, it suffices to assign one among Pe' ue 

and A1 as the external boundary condition. 

Our experimental data are the axial velocity and circumfer­

ential velocity distributions in the cross-sections at the break­

down and on its upstream and downstream, and the velocity on the
 

central axis. Therefore, it is meaningless to assign P as the
e 
external boundary condition. The measurement cross-section is 

too small for ue or 2. to be assigned as the external boundary 

condition. Since the change of the velocity on the central axis 

has been most accurately measured in detailed experiments, its 

data are most suitable for use in numerical computation. Thus, 

the change of the velocity uC on the central axis is used as the 

boundary condition. At first, assuming the pressure P on thee 
external boundary, the flow-field is solved and the velocity uC 

on the central axis is computed. Then, the value of Pe is cor­

rected so that the computed value of uC may be equal to that 

initially given. By repeating the procedure until the value of 

uC converges, the computation of a cross-section is finished and 

the next cross-section is computed in a similar way.
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3.2.3. Difference Approximation
 

In order to numerically solve the partial differential
 

equations (defined in the previous section) with a given boundary
 

condition, they are approximated by a set of difference equations.
 

A lattice with M points in the x-direction and N points in the
 

4 - direction was used. The subscript m denotes the lattice 

position in the x-direction and the subscript n denotes the 

lattice position in the- 4 -direction. In order to obtain the 

values of the functions at (m+l, n), the evaluations are made at 

(m+k, n), (mx+ , n), (m+l, n+ ) and (m+ , n- ). The difference 

form is a ist-order central difference using the central point. 

The partial differential equations involve the 1st-order deriva­

tive with respect to x and up to the 2nd-order derivative with 

respect to . For example, the difference form for k is given 

by,
 

km+lZ2,n (1/2) ( m+l,n + 
km,n
 

(-) =- (k- k
 
m,n >
x m+l/2,n 4x m-1,n 


(22)
 
ak 1 
()m /2 = - (Ic- -­

Sml/2,n #44 m+l,n+l m+ln-1 m,n+l 
-k 

m,n-l
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2
 
1 

i 2 -2(km+l n+l 2km+lin + km+ln-I
 
S2m+1/2,n 214
 

+ kmn_l)
+ km,n+1 2km,n 


The equations (15) include several nonlinear terms such as
 
'au
 
U.­ax
 

These nonlinear terms are simplified by Newton's approximation,
 

for example,
 

U 

1 m+ 1/ m2,nm +ln(min
 

x m+1/2,n AX (Um n
 

(23)
u2 U2 

m+l,m mn
 

2Ax 24x
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In the above equation, the value in ( ) on the right hand
 
side is an unknown variable while other terms without (
 
have known values which are obtained from the previous iteration
 
of the computation. Rewriting the differential equations (15)
 
by using the difference forms such as 
(22) and (23), the follow­
ing simultaneous equations for k and u and the following alge­
braic equations for P and h are obtained.
 

a k +bk - + ckd
 
n m+l,n+l+ bn m+l,n n m+l,n-l n
 

(n=1,2,3......... N-1) (24a)
 

h n(X -X )
a m+l/2,n m+1 m= ..-- (Um~~
 

4Ax M+ + ) m+l,n m,n
 

1 -2n
 
+ 2 

1 4
 
b 2Ax (Um+ln + M' n 
 2 2 

n ( A M 41
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4 
C a - 2 

k 2 

dm = m,h (um+l .n + Um n) + 2 
24x 5 on1(A +~r 

m+1 m
 

x (km,n+i - 2kmn + kmnI)
 

2 
(an +mn+A2(Am+l Xm )2 ~­+ ,,+ mn 

aUm+ln+I + num+l n CnUm+ln-i 

a*= 
n 

bn 

hhm+I/2,n 

+m-
4 

- m+) 
- x + 

(n=0,1,2 ...... ,N-1) 

n ( X -2 )M m 

(u
4Ax(+ I ++Lm) 

1 + 2n 

nAf 2 ((Xm+I + XmY2 

42 2~~2( m~ + >vQ 2 4s~x(A 

+ Umn) 

+l +rm) 

(24b) 

x (um+l,n+1 - m+l,n-1 nM,n+1 - m,n-1) 
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4 
The equation (24b) is meaningless on the central axis where
 

= 0 and a special form is necessary for handling the boun­

dary condition (17) on the central axis. Thus, the coefficients
 

in equation (24) must have special forms such as,
 

a* 
8 

2 
UA l Om 

* 
* 

0 

m+L-,O 

4x 
a*__ 

0 

(25) 

z 2. 

d* 
* 

-
2Ax 

(Um+l,0 + Um0,) - a(uml
0, i~ 

um 0 ) 

-

Ax 
(Pm+1,0 - 0 
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The equation (24a) gives an (N-1)-variable,simultaneous equation 

while equ. (24b) gives an N-variable simultaneous equation. -. In 

each -case, the coefficient matrix is a triple diagonal matrix 

which has a non-zero element only at each diagonal position and 

its adjacent positions, and, hence, the two systems of equations 

,can be solved without any difficulty. 

A flow chart showing a computation program for solving
 

this problem is shown in Fig. ,37.
 

b, 
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r__--- _________tF , 

5(Uo .... 

k 

INo IE- -- 1 

Fig. 37'. Flow Chart of Computation Program.
 

Key: a:, Read the initial condition, uo.,n and ko, n .
 

b: Read the boundary condition, um+1 o" 

e: Assume Pm+l, n"
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d: 	 Assume %M+l using (19).
 

e: 	 Determine um+ln by (21).
 

f: 	 Extrapolate um~1 
n .
 

g: 	 Compute hm+,n by (24d).
 

h: 	 Compute km+l, n by (24a). 

with kin+l, N = km, N and kin+l,0 = 0. 

i: 	 Compute um+l,n by (24b).
 

j: 	 Does um+l,n converge?
 

k: 	 Is the computed value of um+lo,
 

consistent with the given boundary
 
condition?
 

1: Is the computation finished?
 

First, the distribution uo..n and k is given as the
o,n 
initial condition. Next, the boundary condition um+l,0 on the
 

central axis in the next Cross-section is read in. Then, assum­

ing the values of Pm+I,N and 'm+l' Um+1,N can be determined
 

according to equ. (21). By obtaining the axial velocity distri­

bution Um+l,n by extrapolation, hm+ ,n can be determined accord­

ing to equ. (24d) and every coefficient in equ. (24a) is thus
 

determined. Then, km+l,n may be obtained by solving the (N-I)­

variable simultaneous equations with the boundary condition,
 

kmlq= km,N and km+l,0 = 0. Since the value of um+lN has
 

already been determined and every coefficient in equ. (24b) is
 

hence given, the axial velocity distribution um+ln may be ob­

tained by solving the N-variable simultaneous equations. If
 

all the values of um+ln do not converge, assume another value
 

of tm+l and repeat the same procedure. When um+l,n converges
 

within a permissible range, the computed value of um+lO is com­

pared with the um+1 ,0 value which has been given as the boundary
 

condition. If they do not coincide with each other, correct
 

the 	value of Pm+l,N and repeat the computation until consistency
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is obtained. When the computation at this stage is finished,
 

the same process moves to the next cross-section m+2. Thus,
 

the computation procedure is continued by a step-by-step method
 

for each cross-section while moving in the x-direction until
 

the whole flow-field is computed. 


4. 	 Comparison of Experimental and tmputational Results
 

As actual numerical computation was done with the data of
 
-
the experiment using a 65-apex angle model fixed at a 17O


attack angle, in which the total pressure on the central axis
 

was measured. This case was selected based on the volume and
 

the accuracy of the data. Since the velocity distribution was
 

not measured at the location where the velocity on the central
 

axis is maximum, the cross-section position selected for the
 

computation was at the location S/L = 0.55, which is slightly
 

on the downstream of the location where the velocity on the
 

central axis attains its maximum. Fig. 38 shows the velocity
 

in the vortex center used as the boundary condition, while Fig.
 

39 shows the velocity distribution used as the initial condition.
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Fig. 38. 	 Vortex Center Velocity
 
Used as Boundary Condition.
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Fig,. 39. 	 Velocity Distributlon
 
Used as Initial Condition.
 

When a difference approxiinati.on is used to solve a differen­

tial equation and the computational region is divided in a lattice;
 

the size of 'thelattice has' a large influence on computational
 

Figs. 40 and 41 show the influence of
stability and accuracy. 
i4 ofthe size Ax of the x-direction division and the size 

4 -direction division to the velocity-distribution; Boththe 

figures show the computed values of the axial velocity component 

, both corres-Ux and the circumferential velocity component 
UI 


ponding to the development of the vortex.
 

89 

http:approxiinati.on


1.0 	 /35 

UU 	 0 =170R, = 2.19 x10 

0.8 	 = 0.3-A 

Q6 -	 0.2.
 '.5 

-. 855 

.95.0.4F % 

Q-0 25 	 L 

-0.05
 
o 0.1S0.1 

o 5 10 0 5 10 

Fig. 40. 	 Influence of x-Direction
 
Division Size
 

1.0 " 
U' °,7 ORIGIhAX PAGE IS 
0.8-
 ,Re==29 10 BAPOOR QUALITYAx 0.025 

. ut/uo 
0.6 - 05.5- 7 

0.5
 

-0.15
 
o 0.3 
o 0.6 

0.2 0.i1 

0 5 Rmm 10 0 5 Rmm 10 

Fig. 41. 	 Influence of "Direction
 
Division Size
 

90
 



In the computation, the Reynolds number R = 2'.19 x 105 was used.
e 
This was given by calculating the vortex viscosity coefficient
 

according to £= 4 V , where V is the dynamic viscosity
 

coefficient under the experiment's condition. Fig. 40 indicates
 

that, when A.4 = 0.3 is held constant and. A x is varied from
 

0.025 to 0.1, no significant influbnce on the computation of the
 

velocity distribution can be observed'. However, when Ax =-0.025
 

is held constant and A,4 is varied from 0.15 to 0.6, a sig­

nificant influence by the division on the computation can be
 

observed.jOnly when A4 is less than or equal to 0.3, is the
 

influence not observable. This fact indicates that the vortex
 

of a delta wing has a greater change in the radial direction /3-6
 

than that it the axial direction. The computational time was
 

about 6 minutes with FACOM 230-6D when 19 steps are used in the
 

x-direction with Ax = 0.025, and 36 points are used in the
 

-direction with &4= 0,3.. After realizing that the divi­

sion of Ax = 0,.,025 and .4= 0.3 is sufficient, all the com­

putations were done with this condition.
 

In the numerical computation, a potential flow is approxi­

mately assumed outside the external boundary of the vortex since
 

there is little influence byviscosity ot other factors. However,
 

due to this assumption, it is conceivable that the way of defin­

ing the::4 directiQn oundary may affect the computational
 

result to a large extent. Fig. 42 showS the computational re­

sults of the velocity distribution on the downstream of the loca­

tion, S/L = 0.55, where the initial condition is given (see Fig.
 

39), with the vortex radius Rei being 10.5 mm or 13.5 mm. As
 

seen in Fig. 42, the computational results in.bth casesanecon­

sistent with each other, indicating that the non-diffusion
 

condition can be approximately assumed outside the external
 

boundary if Re! is 10.5 mm or greater. If Rei is greater than
 

13.5 mm, the computational results are deteriorated since the
 

axial symmetry of the velocity distribution Ux or UIf as the
 

initial condition at S/L = 0.55 includes the region where the
 

counter-.flowis wound up. Hence, Re! cannot be too large. Thus,
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the following computations use the computational region 

determined by Rei = 10.5 mm. 

1o.-0 	 - ' 

p0=8.77Mo1 

0.8 Ucc 17' 

0.625 

o. 10.5 0.959 . Q2. -5 

.- -13.5 	 L 

0 5 R, 15 0 	 I0 R0, 

Fig. 42. 	 Influence of Vortex External
 
Boundary to Velocity Distribution.
 

Fig: 43 shows the breakdown position (S/Lit which is deter­

mined by the criterion dHc/dx = 0 mentioned in Section 2.4.2 and
 

based on the numerical calculation with the 17°-attack angle and
 

the initial condition at S/L = 0.55, with the Reynolds number
 

being given as a parameter. Although the available data are less,
 

in order to investigate the influence of the attack angle, i.e.,
 

the initial condition, a computation was done with the attack
 

angle of 180 and the initial condition at S/L = 0.675. Since
 

the boundary condition is the velocity change (see Fig. 38) on
 

the central axis, it remains the same despite the change of the
 

attack angle. Hence, when the attack angle a is varied from
 

170 to 180, the difference in the numerical computation is made
 

only by the initial condition. The Reynolds number experimen­

tally determined from the dynamic viscosity coefficient is 8.77
 
55 	 0° x 105 at 0( = 170 and 7.78 x 10 at N = 18 . The breakdown
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position 	(S/L)B obtained by the numerical computation is 0.893
 

and 0.878 	with 0t= 170 and 180, respectively. When the
 

Reynolds number is 105 or greater, the breakdown position does
 

not change much and (S/L)B = 0.9 with 0(-= 170. As the Reynolds
 

number becomes small, (S/L)B also becomes small. For example,
 

when O = 170, the breakdown position with the experimental
 

Reynolds number being 8.77 x 105 is different from that with the
 

one-tenth Reynolds number 8.77 x 104 by 27 mm which is about 7%
 

of the central chord length of the model, when L is assumed to
 

remain the same. As mentioned in Section 2.2.4, the value of L
 

does not change much in response to the Reynolds number, as
 

shown by the experiments with two different Reynolds numbers.
 

When the Reynolds number is defined as U L/5 , the Reynolds

0 5 

numbers in those experiments are 1.3 x 10 and 3.2 x 105 which
 

are in the region of Fig. 43 where (S/L)B changes. Taking into
 

account these experimental results, the change in which
 

becomes larger so that the Reynolds number and (S/L)B becomes
 

less, means the change in which the value of S becomes smaller
 

since L is almost constant,, indicating that the breakdown posi­

tion moves forward with such a change.
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Fig. 43. 	 Breakdown Position Determined
 
by the criterion dHc/dx = 0.
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Taking into account the experimental results shown in Fig. 16, /38 

it may be said that the numerical computation-indicates the 

change of the breakdown position in response to the vortex 

viscosity coefficiency £ The breakdown position moves forward 

as the vortex viscosity coefficient 6 becomes larger. It: should 

be pointed out that the.change of the breakdown position in re­

sponse to S , i.e., to the Reynolds number, is opposite to that 

in the case of a swirl flow in a cylinder. In the case of the 

swirl flow, the breakdown position moves upstream when the 

Reynolds number becomes larger. The swirl flow-has a specific 

relationship with the boundary layer developed on the wall sur­

face, and the effective radius of the cross-section changes,
 

thereby causing the change in the pressure gradient in the
 

axial direction.
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Fig. 44. Divergence of Swirl
 

Fig. 44 shows the change of the flow direction of the vortex 

tube radius. The figure shows a curve tracing the radius R which 

gives the same circulation P at each cross-section, 3/4 r' , 

1/2 F and 1/4 F , where P denotes the constant circulation 

at the end of the vortex. Although several computations were 

done with different Reynolds numbers, the figure shows only three 
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representative results. Since the flow is not a potential flow,
 

the change of R is not equal to that of the flow tube in a strict
 

sense. However, since they are approximately identical to each
 

other in our case, it may be said that Fig. 44 shows the change
 

of the flow direction of the flow tube radius. The curve at 1/4
 

E" near the central axis increases monotomically while moving
 

downstream. However, the curve at r which is the end of the
 

vortex decreases initially and increases afterward while moving
 

downstream. Such a divergence of the vortex tube was observed
 

clearly in the experimental results. The computational and
 

experimental values of the 1/2 f - and 1/4 " - curves are
 

most consistent to each other when the Reynolds number is 2.19 x
 

105. However, they are most consistent when the Reynolds number
 

is 8.77 x 104 in the case of the f-curve. This indicates
 

that the effect of the turbulence in the vortex center is differ­

ent from that outside the vortex. Furthermore, it is observed
 

that the experimental data agreed with the computational data,
 

when the Reynolds number is large in the region near the central
 

axis and the Reynolds number is small outside that region. This
 

indicates that the spiral transformation after the breakdown
 

causes an intense turbulence mixture in outside regions, and the
 

vortex viscosity coefficient is high there. In addition, the
 

fact that the experimental and computational results are not con­

sistent in the region near the vortex center or near the vortex
 

end unless the Reynolds number is changed may be explained as
 

follows: In the computations, the turbulence effect is repre­

sented by the vortex viscosity coefficient and is assumed to be
 

a constant scalor in the flow-field. The difference may be due
 

to the violation of this assumption. However, the experimental
 

and computational results exhibit consistency within a range of
 

about 3/4 of the vortex radius up to the location slightly down­

stream of the breakdown,if the vortex viscosity coefficient is
 

about four times as great as the dynamic viscosity coefficient.
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Fig. 45. Velocity Distribution
( 9 = 1 ) 

Fig. 45 shows a comparison of the computational and the
 
experimental values of the axial and the circumferential velocity
 

distributions. The computations were done with the Reynolds
 

number, 8.77 x 105, which had been experimentally determined by
 
the dynamic viscosity coefficient. The experimental values are
 
given for seven cross-sections, i.e., for seven different values
 

of S/L. Although the values of S/L for the experiments data are
 
different from those for the computed data, two kinds of data
 
can be compared if the computational data are extrapolated. As
 
for the axial velocity component, the computed values are gener­
ally smaller and the consistency deteriorates more in the outside
 
region where R is large, or while moving downstream where S/L is /39
 

large. The same tendency is observed in the circumferential
 

velocity distribution. This indicates that the structure of the
 

turbulence has a large influence on the velocity distribution.
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Fig. 46 shows the computational result with the Reynolds t 
number, 2.19 x 103, which gives the greatest consistency of 

experimental and computational data appearing in Fig. 44, which 

shows the divergence of the vortex. The consistency is much 

greater than in the case where the Reynolds number is 8.77 x 10 
Particularly, excellent consistency can be observed on the 

upstream of the breakdown, where S/L is 0.82 or less. Although 

the data are not shown in the figure due to the lack of the data 

number, in the case of ( = 18', the computational results are 
most consistent with the experimental results when the vortex 

viscosity coefficient is 5 times as great as the dynamic viscos­

ity coefficient. Owen [30] reported that he had evaluated the 

vortex viscosity coefficient based on the velocity distribution 

measurement results of the leading-edge vortex of a delta wing 

before the breakdown, provided by Earnshaw, and that he obtained 

the vortex viscosity coefficient which was about five times as 
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great as the dynamic viscosity coefficient. Our computational
 

results for the region near the breakdown give almost the same
 

value to the vortex viscosity coefficient. The reason that the
 

experimental and the computational data of the velocity distribu­

tion are not very consistent at the location after the breakdown
 

may be explained as follows: First, the quasi 2-dimensional
 

assumption which is..essential to -the computation cannot be well
 

preserved at that region. Secondly, the spiral transformation
 

after the breakdown causes an intense velocity fluctuation and
 

creates a turbulence structure which is different from the
 

initial one. Consequently, the spiral transformation creates a
 

non-stationary flow-field and its effect cannot be represented
 

by a simple eddy (yortex),viscosity any longer. Figs. 45 and 46
 

indicate that, even if a viscosity model is employed, the vortex
 

(eddy) viscosity F must be varied spacially and must have a
 

greater value outside the vortex. Thus, a vortex viscosity model
 

cannot provide great accuracy if the turbulence term is given by
 

a simple scalor value. However, in a wake flow-field, the vortex
 

viscosity coefficient is !0ou.100 times as great as that of the
 

flow-field of the leading-edge vortex of a delta wing and about
 

100 times as great as that of jets. The majority of the
 

phenomena in the flow-field created by a delta-wing, leading-edge
 

vortex is dominated by potential-flow effects, i.e., the pressure
 

gradient. Furthermore, our model is sufficient for the purpose
 

of determining the breakdown position.
 

Fig. 47 shows a comparison of the experimental and the com­

putational results of the total pressure. The figure shows the
 

numerical computation using the Reynolds number, 2.19 x 105,
 

which gives the greatest consistency of the experimental and the
 

computational results. It is readily understood that the
 

numerically computed breakdown position is very close to the
 

experimentally determined breakdown point, i.e., the location
 

where S/L = 0.864 and the criterion dHc/dx = 0 holds.
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Fig. 47. 	 Total Pressure in
 
Vortex Center
 

However, a significant difference between the computational and
 

the experimental values of the total pressure itself is observa­

ble. The experimental data exhibit a discontinuous change of the
 

total pressure and an upward convex change in the neighborhood
 

of the breakdown point. However, the computational result shows
 

a continuous change and the shape is always convex downward.
 

First, such inconsistency may be explained by the problems in­

volved in the experiment, as mentioned in Sec. 2.2.3. Namely,
 

since the keel tube diameter is large compared with the vortex
 

diameter on the upstream where the vortex diameter is relatively
 

small, the measured total pressure indicates the average value
 

near the center, giving higher measurement values. Furthermore,
 

after the breakdown, the spiral transformation of the vortex
 

causes the axial direction of the measurement probe to be differ­

ent from the instantaneous direction of the flow, also giving
 

higher measurement values. Secondly, the computational results
 

of the circumferential velocity distribution are higher than
 

the corresponding experimental results. As seen from the third
 

equation of (13), the static pressure P is determined only by the
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distribution of the circumferential velocity V. Thus, in the
 

computational procedure, the velocity on the vortex central
 

axis is first given and the static pressure at the outer end of
 

the vortex is determined accordingly. Therefore, P is substan­

tially given as an external condition and the static pressure on
 

the central axis is determined only by the radial distribution
 

of V. It will be understood even by a simple calculation that
 

the static pressure on the central axis decreases as the radial
 

change of the circumferential velocity in the neighborhood of
 

the vortex center increases. Since the dynamic pressure on the
 

central axis is given, the computational values of the total
 

pressure are particularly less after the breakdown point. Third,
 

the change in the computational results of the axial velocity
 

distribution near the central axis after the breakdown is much
 

more moderate than the change in the corresponding experimental
 

results. As seen from the equ. (9), dHc/dx is equal to the 2nd
 

order derivative of the axial velocity in the center. The drop
 

in the increasing rate of the total pressure after the breakdown
 

is caused by the fact that the computed axialvelocity distribu­

tion has less change in the radial direction and by the fact
 

that the computed value of 'Ux R is too small. Fourth,
 

after the breakdown, the spiral transformation causes an intense
 

turbulence mixture and the turbulence structure becomes very
 

different from that before the breakdown, as was shown in Fig.
 

26. In particular, in the neighborhood of a point through which
 

the spiral passes, a non-stationary flow from outside toward the
 

vortex center is induced and the turbulence mixture becomes very
 

intense. These effects cannot be represented by a scalar vortex
 

viscosity model. Fifth, the velocity or the pressure varied
 

rapidly after the breakdown and the quasi 2-dimensional assump­

tion essential to the numerical computation cannot be preserved
 

very well. However, as seen in Fig. 38, immediately after the
 

breakdown, the change in the axial velocity direction is not
 

very large and the quasi 2-dimensional assumption may be thought
 

to be well preserved. Further downstream, however, this
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assumption cannot be assured anymore, thus causing the radial
 

change of the circumferential velocity to be computed as having
 

excessively high values.
 

Therefore, when the experimental and the computed results
 

are compared in Fig. 47, the comparison should be concentrated
 

in a narrow region near the breakdown, taking into account the
 

above facts. Furthermore, the above arguments suggest that, if
 

the turbulence structure is taken into account more thoroughly /41
 

in the computation procedure and if the experimental method is
 

improved, both experimental and computed data of the total
 

pressure may exhibit an improved consistency. In any case, the
 

location at which the total pressure on the central axis attains
 

its minimum will not be greatly affected. Thus, whenever the
 

initial and the boundary condition can be given, the numerical
 

computation described in Sec. 3.2 can give the predicted break­

down point as a location where the condition dHc/dx=O is
 

satisfied.
 

Fig. 48 shows the breakdown points which are determined by
 

another criterion, i.e., ( a2Ux/ RR2)R=o=0. In the figure,
 

the abscissa R denotes the radius R at which the axial velo­
max
 

city distribution at a given cross-secti6n attains the maximum
 

value. Before the breakdown, the maximum point is always on the
 

central axis, i.e., R =0. However, after the breakdown, the
max 

maximal point moves outside of the central axis and R
 max 
increases moving downstream. The 0 in the figure denotes Rmax 
which is determined by the experimental data. The solid line 

curves in the figure denote the results of the numerical 

computation with three different Reynolds numbers. When the 

Reynolds number is 8.77 x 105 which is calculated by setting 

= V , the computed breakdown point is too far behind. 

When the Reynolds number is determined by f = 4 V and is 

2.19 x 105, the computed result is consistent with the experimen­

tal one. Thus, it has been shown that the breakdown point can be
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determined by numerical computation as the point where the
 

condition ( holds.
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Fig. 48. 	 Breakdown Point _ r QUALITY 
Determined by

2Ux / 21 =O. 

As indicated by the above computational results, the break­

down point can be predicted by the numerical computation method
 

described in Sec. 3.2 if the initial and the boundary conditions
 

are given.
 

Fig. 49 shows the computational results of the flow-direc­

tional changes of the velocity components on the central axis
 

and the end of the vortex and of the static and the total pres­

sure. The total pressure H at the end of the vortex is constant
e 

since the viscous diffusion can be ignored there, while the total
 

pressure H on the central axis exhibits a change. Although the
c 

change of Hc is small, it is a very important quantity since the
 
location at which the minimum value is attained indicates the
 

breakdown 	point. The vortex diameter decreases initially
 

slightly but it increases rapidly after the breakdown. Since
 

the circulation quantity is assumed to be constant, when the vor­

tex radius Re decreases, the circumferential velocity U T e
 

increases, and when Re increases, U e decreases. The velocity
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Uc/U on the central axis is given as the boundary condition.
 
The axial velocity U at the end of the vortex exhibits a change
 

which is similar to that of the circumferential velocity U C e' 

but it does not change so rapidly as the velocity on the central 

axis. The static pressure Pe at the end of the vortex decreases 

slightly initially but increases afterward. The static pressure 

Vc on the central axis increases at a rate which is much greater 
than that of the static pressure P at the vortex end. In ordere 
to facilitate the comparison with the experimental data, the
 

velocity Uc on the central axis is given as the boundary condi-.1
 

tion in the presently 	proposed numerical computation. As a re­

sult, the procedure is equivalent to the calculation of the
 

flow-field when a vortex with a certain initial dondition is
 

placed a potential flow with a pressure gradient of.Pe. This
 

indicates the mechanism in which, despite the slight increase of
 

the pressure outside the vortex1 a sharp pressure gradient is
 

created in the vortex central axis, and the axial velocity near
 

the central axis consequently decreases more rapidly than the
 

axial velocity of the outside, thereby creating an axial velocity
 

distribution which is convex downward in the neighborhood of the
 

central axis.
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Fig. 50 shows a compuEed radial velocity distribution.
 

The flow is always directed outward near the central axis. Near
 

the end of the vortex, however, the flow is directed inward on /42
 

the upstream while it is directed outward on the downstream.
 

It should be noted in particular that the gradient of the radial
 

velocity is large near the central axis. This indicates that
 

the vortex is more expanded near the central axis: than it is
 

around the end of the vortex and that the decay of the vortex
 

begins in its inside due to the external pressure gradient.
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Fig. 50. 	 Distribution of
 
Radial Velocity Component.
 

Fig. 51 shows a computed distribution of the total pressure.
 

The total pressure has a considerably low value on the central
 

axis.. Although the total pressure on the central axis increases
 

after the breakdown, the total amount of the total pressure,
 

integrated over the entire-range of the vortex, decreases
 

monotonically while moving downstream.
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Fig. 52 shows a computed distribution of the static pressure.
 

It has a low value on the central axis and increases while moving
 

downstream, just like the total pressure. The figure shows
 

further that the increase rate near the central axis is greater
 

than that around the end of the vortex.
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5. Conclusion
 

In the process where the flow is separated at the leading
 

edge of a delta wing, an intense vortex is formed and developed
 

downstream, and a breakdown of the vortex occurs, followed by a
 

turbulent flow; the total pressure (head) and the velocity on the
 

vortex central axis were measured together with the distribution
 

of the average velocity vector. The experimental results were
 

followed by a conclusion that the breakdown point can be deter­

mined by the criterion dHc/dX=O or ( -2Ux/ "R 2 )Ro=0.
 

We have also shown that, if the initial and the boundary condi- /43
 

tions are given, the breakdown point can be theoretically deter­

mined by representing the turbulence effect by a scalar vortex
 

(eddy) viscosity coefficient and by numerically computing
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difference equations under the quasi 2-dimensional assumption.
 

Unlike the conditions considered by other researchers, such as
 

the condition in which there exists a stagnation in the flow or
 

that in which a finite transition occurs between two conjugate
 

states, the conditions considered by us can be said to be much
 

more appropriate for application to an acute vortex with a small
 

core and an axial velocity on its central axis which is much
 

greater than that on its periphery, such as the vortex generated
 

at the leading edge of a delta wing.
 

We have also shown that, in the numerical computation, the
 

computed velocity distribution is most consistent with the
 

experimental results when the vortex viscosity coefficient E
 

is 4 to 5 times as great as the dynamic viscosity coefficient.
 

However, it was also pointed out that, in order to obtain the
 

velocity distribution of the flow-field within the vortex with
 

more accuracy, the computational procedure must include
 

evaluation of the turbulence structure, i.e., each Reynolds
 

stress component, rather than simply using a viscosity model
 

with a simple scalar vortex viscosity coefficient. In particular,
 

in the flow-field after the breakdown, the occurrence of the
 

spiral transformation causes a turbulence structure which is
 

completely different from that before the breakdown. Thus, a
 

model representing the turbulence structure of the flow-field
 

with more accuracy is essential for the exact numerical calcula­

tion of the flow-field after the breakdown.
 

Our computational results show that the breakdown point 

does not change in response to 1 within the range Re 106 

but it is influenced by and moves upstream as S increases 

if it is in the range R < '106. This result is different-frome 
a common conclusion that the breakdown point is not largely
 

influenced by the turbulence, Similarly, our conclusion is also
 

different from the result which says that the breakdown point
 

moves upstream as the Reynolds number increases.
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In the case of the delta-wing leading-edge vortex, even if
 

the Reynolds number is sufficiently high, the breakdown is
 

followed by a spiral transformation which Lambourne et al
 

showed. The occurrence of the spiral transformation gave suffi­

cient explanations to our experimental results: The axial
 

velocity distribution changes its shape, at the breakdown posi­

tion, from "upward convex" to "downward convex". The total
 

pressure on the central axis increases rapidly at the breakdown
 

point. These results are well understood when considering the
 

following explanations: The reverse-directional spiral trans­

formation of the vortex center induces a velocity directed
 

toward the central axis. At the same time, the outside flow I
 

with a high total pressure flows into the region around the
 

central axis in a non-stationary mode. (This process is
 

modelled by the term of the turbulence mixture in the equation
 

representing the time-average behavior.)
 

We have given our explanation to the following behaviors:
 

The rotational direction of the spiral which appears behind the
 

breakdown is different from that of the vortex core. The fluid
 

of the vortex center does not move along the spiral but moves
 

along the generatrices of a cone-like surface. Our explanation,
 

using an analogy of rigid-body precession motion, is as follows:
 

The vortex core cross-section exhibits a precession motion at
 

the breakdown point as if it were a rigid body, due to the
 

reverse pressure gradient in the axial direction. We also
 

showed that the period of this precession motion is the same as
 

that of the velocity fluctuation in the flow which appears behind
 

the breakdown, and the corresponding frequency is proportional
 

to Uo/L. There is a commercially produced flow meter utilizing
 

the vortex breakdown. This flow meter measures the flow passing
 

through a tube by creating a concentrated vortex in the tube and
 

by measuring the frequency of the velocity fluctuation which
 

appears after the breakdown. This device utilizes the fact that
 

the frequency of the velocity fluctuation appearing after the
 

108
 



breakdown is proportional to the flow velocity U. Thus, there
 

seems to exist sufficient support for our conclusion that the
 

non-stationary phenomena appearing behind the breakdown may be
 

well explained by using an analogy to the rigid-body precession /44
 

motion.
 

In our experiments, the velocity, the total pressure and
 

the turbulence were measured with three different models and
 

different attack angles in order to investigate the structure of
 

the delta-wing leading-edge vortex and the breakdown phenomenon.
 

We have shown that, by the non-dimensionalization in terms of
 

the reference velocity U0 and the reference distance L, the
 

flow-field may be treated integrally and similarly, even when
 

the attack angle changes, if the same model is used.
 

The main objective of this study is to establish a criter­

ion for determining the breakdown point when the Reynolds number
 

is relatively high, and to prove its validity by experiments.
 

We have established the two criteria by which the numerical
 

computation can predict the breakdown point. Another objective
 

is to give an explanation, even a qualitative one, to the struc­

ture of the flow-field behind the breakdown. Our experimental
 

results and those of the numerical analysis prove that the above
 

objectives have been accomplished.
 

The authors gratefully acknowledge Mr. Shigemi, division
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useful advice in the course of this study.
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