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INVESTIGATION OF THE CROSS-SHIP COMPARISON
 

"
 MONITORING METHOD OF FAILURE DETECTION
 

IN THE HiMAT RPRV
 

James A. Wolf
 

INTRODUCTION
 

The highly maneuverable aircraft technology (HiMAT)
 

program will provide researchers in the military, industry,
 

and the National Aeronautics and Space Administration (NASA)
 

a developmental tool with which to test new concepts for the
 

next generation fighter aircraft. The HiMAT remotely piloted
 

research vehicle (RPRV) is a subscale prototype which will
 

have enhanced maneuverability (sustained 8G turn, 0.9 M, at
 

7,900 m) using state-of-the-art technology (ref. 1).
 

The HiMAT RPRV has a basic design requirement that no
 

single failure shall result in the loss of the vehicle (ref.
 

2). The method by which this requirement is met, with re­

spect to failure detection in the canard, aileron, and eleva­

tor servosystems, is of some concern. The on-board primary
 

microcomputer compares the surface position of corresponding
 

right and left surfaces. This cross-ship comparison monitor­

ing (CSCM) should detect a servosystem failure in time for
 

a safe recovery. However, a failure indication for any other
 

reason other than a failed servosystem (nuisance trip) would
 

greatly hamper the research mission. By using a computer
 

model of the HiMAT CSCM technique, the sensitivity to servo­

system differences was evaluated. It is important that the
 



CSCM be evaluated to improve confidence in the performance
 

and to define potential problems. This report gives a brief
 

background of the HiMAT RPRV, describes the modeling of the
 

servosystems and failure detection scheme, and discusses the
 

possible effects of variations between servosystems.
 

SYMBOLS 

ACT actuator 

A/D analog-to-digital converter 

AGE auxiliary ground equipment 

AMP command amplifier 

C hydraulic control pressure, psi 

CMDS commands 

COMP computer 

CSCM cross-ship comparison monitoring 

cm centimeters 

DEMOD demodulator 

DISCR discrete 

dB decibel 

deg degree 

EHSV electrohydraulic servovalve 

FB feedback amplifier 

FDBKS feedbacks 

F.S. full stroke 

f frequency, Hz 

G acceleration of gravity, m/sec
2 

GA actuator gain, in 

G4 command gain, mA/Vdc 

2 



G5 ram LVDT gain Vac/in 

G6 ram demodulator gain, Vdc/Vac 

G7 feedback gain, mA/Vdc 

G11 linkage gain, deg/in 

GV servovalve gain, in3/sec-mA 

HiMAT highly maneuverable airc'raft 

technology 

Hz hertz 

IL current limit, mA 

I/O input-output 

IPCS integrated propulsion control system 

IT current threshold, mA 

k kth iteration 

LOOP 1 first servosystem model 

LOOP 2 second servosystem model 

LT left 

LVDT linear variable-differential-transformer 

M Mach number 

m meter 

mA millampere 

ms millisecond 

N noise source 

n number of bits 

P 1 hydraulic source pressure, psi 

POS position 

PROP propulsion 

*1 hydraulic return pressure, psi 

RL rate limit, in/sec 

3 



RPRV remotely piloted research vehicle
 

RPV remotely piloted vehicle
 

Rs sample rate, samples/sec
 

RT right
 

SOL solenoid
 

s Laplace variable 

sps samples/sec 

T iteration period 

t time, sec 

tt transfer time delay 

Vac volts, ac 

Vc command voltage 

Vdc volts, dc 

VDL left demodulator output signal 

VDR right demodulator output signal
 

Vm demodulator monitor signal
 

V0 dc component of demodulator output
 

VR amplitude of demodulator ripple signal
 

XL ram stroke limit, in
 

6s surface deflection, deg
 

Oerror rate, deg/sec
 

c commanded surface rate, deg/sec
 

6d transfer delay error, deg
 

Of failed surface rate, deg/sec
 

0fs full stroke deflection range, deg
 

q quantization error, deg
 

initiation point of lock-up, deg
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os safe limit 

Ost sample rate error, deg 

6t computer threshold limit 

Subscripts: 

i input 

0 output 

k-i previous iteration 
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HiMAT RPRV
 

A brief description of the HiMAT RPRV is given in the
 

first section. The focus of the following sections is on the
 

method of failure detection for the simplex servosystems which
 

actuate the canard, aileron, and elevator control surfaces.
 

Pertinent background information is given and some of the pot­

ential problems discussed.
 

Description
 

The HiMAT RPRV is a scaled version (.44) of an advanced
 

technology fighter aircraft. There are numerous state-of­

the-art concepts implemented in the design, such as the com­

posite structure, close-coupled canards, and wingtip fins.
 

Figure 1 illustrates the dimensions of the vehicle and the
 

five types of control surfaces. The following subsections
 

give an overview of the HiMAT RPRV and program, and because
 

the subject of this report is the failure detection in the
 

simplex servosystems, these systems are discussed in depth.
 

Overview. - In the primary flight mode the vehicle is
 

controlled by the ground-based pilot in the cockpit of the
 

Remotely Piloted Vehicle (RPV) facility (see figure 2). This
 

facility provides the pilot with conventional displays using
 

downlinked data from the HiMAT RPRV. Pilot commands are pro­

cessed in the ground-based computer, then uplinked to the on­

board microcomputer which outputs the command signals to the
 

respective control surface actuators.
 

There are two on-board microcomputers in operation during
 

the primary flight mode. This is the normal mode for maneuver
 

and cruise research. The major functions are distributed be­

, 6
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Figure 1.- Three-view drawing of HiMAT RPRV. Dimensions are in meters-.
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tween the two computers. One computer is termed the primary
 

computer and one is termed the back-up computer. Although
 

the back-up computer has a major function in the primary flight
 

mode, the term "back-up" arises because, should a failure oc­

cur, there would be a transfer of some functions from the pri­

mary computer to the back-up computer. Functions that are not
 

taken over by the back-up computer are halted. Table 1 shows
 

the division of tasks between computers. Figure 3 is a block
 

diagram of the on-board computer system (ref. 1).
 

If a function or element has an importance'to the RPRV
 

such that its failure would result in loss of the vehicle, it
 

is defined to be a flight critical function or element. Flight
 

critical functions or elements are dual redundant (i.e., on­

board microcomputers, electrical power system, and rudder and
 

elevon hydraulic systems).
 

Mission critical functions or elements are not essential
 

to keeping the vehicle in flight (i.e., canards, ailerons, and
 

elevators). However, a failure of one of these functions or
 

elements, would constitute an immediate end to the research
 

mission and a return to base. Effective failure detection of
 

the mission critical functions or elements should prevent loss
 

of the vehicle. As an example, take the case of a failure in
 

a canard servosystem, the failure detection routine would:
 

1. Detect the failure
 

2. Begin the actuator locking sequence
 

3. Transfer control to the back-up computer
 

The backup system would provide emergency return home
 

capability using an on-board autopilot. The flight critical
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PRIMARY COMPUTER BACK-UP COMPUTER
 
MODE PROCESSING TASKS PROCESSING TASKS
 

- primary flight sensor data - integrated propulsion
 
Primary - control surfaces control system
 
Flight - uplink information
 
Mode - downlink information
 

- failure detection
 

Back-up 
Flight - back-up control surfaces 
Mode - back-up autopilot 

- reduced IPCS 
- sensor data 

TABLE 1
 

MAJOR FUNCTIONS OF THE PRIMARY
 

AND BACK-UP COMPUTERS IN THE PRIMARY AND BACK-UP CONTROL MODES
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Figure 3.- Functional block diagram of the on-board computer system.
 



control surfaces (elevons and rudders) would be used to con­

trol the HiMAT RPRV back to a lakebed landing. The pilot can
 

control the altitude variations, directions, and speed using
 

discrete commands. The canards, ailerons, and elevators are
 

hydraulically locked at a predetermined position.
 

Simplex servosystems. - The ten control surfaces of the
 

HiMAT RPRV are positioned using hydraulic servoactuators. The
 

mission critical surfaces (canards, ailerons, and elevators)
 

have a single hydraulic supply and input. This is defined to
 

be a simplex servosystem. Except for the elevator, which has
 

a higher force output requirement (tandem actuator), they have
 

a single actuator. This is shown in figure 4 which is a sche­

matic of the simplex servoactuator. The control surface char­

acteristics are shown in table 2. Notice that the canards
 

can move symmetrically or antisymmetrically, but not combined.
 

Uplinked pilot commands are converted from a digital sig­

nal to an analog signal and fed to the commanded surfaces.
 

The simplex servosystem is illustrated in figure 5 with a
 

block diagram (ref. 3). Table 3 gives the corresponding gain
 

values. The servoamplifier sums the command and feedback in­

puts and supplies a proportional output current to the electro­

hydraulic servovalve (EHSV). The EHSV controls the fluid flow
 

rate to the actuator (ref. 4). The actuator provides the
 

force output to move the control surface to the commanded
 

position. The surface deflection rate is determined by the
 

characteristics of the EHSV and actuator. Position feedback
 

is derived from the output of the linear variable-differential
 

transformer (LVDT) (ref. 5). The iron core of the transformer
 

is attached to the actuator ram (see figure 4). The LVDT pri­
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AILERONS 


Servo- single input 

Actuator single actuator 

type
 

Surface antisymmetric 

deflection 


Maximum 90 /sec 

surface
 
rate
 

Location on outboard 

the vehicle wing 


surface 


CANARDS ELEVATORS
 

single input single input
 
single actuator tandem actuator
 

antisymmetric symmetric
 
or
 

symmetric
 

90°/sec 90°/sec
 

forward inboard
 
control wing
 
surface surface
 

TABLE 2
 

CONTROL SURFACE CHARACTERISTICS
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Symbol Canard Aileron Elevator Units 

Gv 0.636 0.636 1.503 in 3/sec-mA 

GA 0.909 0.909 0.455 in - 2 

G 4 6.969 6.969 8.621 mA/VDC 

G 5 2.919 2.919 2.919 VAC/in 

G6 3.824 3.824 3.824 VDc/VAc 

G 7 12.346 12.346 10.471 mA/VDc 

Gil 39.72 39.72 34.13 Deg/in 

IL +4.0 +4.0 +4.0 mA 

+0.870 
XL +0.503 +0.503 -0.595 in 

RL 2.312 2.312 2.733 in/sec 

VC +10 +10 +10 VDC 

+30 

6s +20 +20 -20 Deg 

Vm +5.60 +5.60 +8.176 VDC 

GV - EHSV Gain G11 - Linkage Gain 
GA - Actuator Gain IL - Command Current Limit 

- Command Gain XL - Ram Stroke Limit 
G5 
G6 

- Ram LVDT Gain 
- Ram Demond Gain 

RL 
Vc 

- Ram Rate Limit 
- Actuator Command G2 = G 

G7 - Feedback Gain ss - Surface-Position ass. -TED 
Vm - Ram LVDT Monitor --­*TEU 

TABLE 3
 

SIMPLEX SERVOSYSTEM GAINS AND SPECIFICATIONS
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mary winding is excited by an oscillator as the actuator
 

ram changes position (causing an accompanying change in the
 

surface deflection). The iron core movement causes a change
 

in the amplitude of the induced voltage in the secondary wind­

ings. This signal is demodulated and fed back to the servo­

amplifier. The demodulated signal is also picked off-and con­

verted to a digital signal for use in the CSCM failure detec­

tion scheme. Command signals sent from the primary micro­

computer and monitoring of the LVDT output occur at a rate of
 

53.33 hertz (18.75 millisecond cycle time). The command in­

put will be a series of steps. The output of the LVDT demod­

ulator will also appear to the computer as a series of steps,
 

due to the sampling effect.
 

The simplex servosystem frequency response should be
 

flat out to about 13 hertz under no-load conditions for move­

ments up to thirty percent of full actuator ram stroke. The
 

load frequency response specifications for displacements of up
 

to ten percent full-stroke and thirty percent of maximum rate
 

are listed below (ref. 3)
 

Attenuation - Less than +2 or -3 dB out to 3 hertz
 
Phase Shift - Less than 30 degrees out to 3 hertz
 

The servosystems will be operating under loaded condi­

tions a majority of the time. The potential for a problem in
 

the CSCM exists during flight due to aerodynamic loading of
 

the control surfaces. This is because there are conditions
 

in the flight envelope where the loading on one surface may
 

be different from the loading on the opposite surface. This
 

would mean a difference in response characteristics and thus,
 

a chance for an error between corresponding surface position
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indications. The failure detection system design must take
 

this into account.
 

Failure Detection
 

The following subsections describe the design approach
 

for the CSCM failure detection scheme. A general description
 

of how it works, design constraints, and possible sources.of
 

error are given.
 

Design approach. - With the requirement that a single
 

failure shall not result in loss of the vehicle, flight crit­

ical elements or functions must have a failure detection tech­

nique and back-up system. Mission critical elements or func­

tions must have a failure detection technique that not only
 

detects the failure but provides a return to stable flight
 

(ref. 2). This is why the canards, elevators and ailerons
 

are designed to move to a locked position after a first fail­

ure.
 

The failure detection and corrective action must be de­

signed to respond quickly because of the fast response of the
 

actuators and the vehicle. The actuators can move the con­

trol surfaces at a maximum rate of 90 degrees per second.
 

Likewise, a failed servosystem could move the control surface
 

at the maximum rate. It is possible, however, that a control
 

surface could fail at the maximum rate while the surfaces are
 

responding to a command signal. The resulting error rate be­

tween corresponding surface positions would exceed 90 degrees
 

per second.
 

Functional description of the cross-ship comparison mon­

itoring. - The failure detection method for the canards, ail­

erons, and elevators uses the fact that these surfaces move
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either symmetrically or antisymmetrically. A comparison is
 

made between respective right and left surface deflections.
 

The on-board microcomputer monitors the comparison to deter­

mine the integrity of the aileron, canard, and elevator con­

trol surfaces.
 

The dc voltage output, from the actuator ram LVDT demod­

ulator, proportional to the control surface position,is con­

verted to a digital value (ref. 6). The microcomputer sums
 

the values of each side, as in the case of the ailerons, to
 

determine an error value. Because the canards move either
 

antisymmetrically or symmetrically, depending on which mode
 

they are in, the difference or sum of the surface positions is
 

used. The error value is compared to the predetermined thres­

hold value stored as a constant in the computer. Should the
 

error value exceed the computer limit, a failure would be de­

clared and an immediate switch to the back-up mode initiated.
 

The on-board microprocessor samples and processes the
 

surface position information of the ailerons, elevators, and
 

canards 53.33 times a second. The LVDT demodulator output
 

voltage is converted to a 12 bit digital word. Since the de­

modulator voltage range is plus or minus 5.62 volts and the
 

A/D converter is a plus or minus 10 volt type, the full A/D
 

converter is not used (ref. 4).
 

A digital word representing a control surface position on
 

one side is updated by the computer. Twenty-five microseconds
 

later the opposite side is updated. This is done just prior
 

to the output of a command signal so that any servosystem
 

transients from the previous cycle will have died down. The
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two double precision words 	representing corresponding surfaces
 

are added or subtracted. The resulting quantity represents
 

the error value between surfaces. The most significant eight
 

bits are compared to the threshold constant stored in the com­

puter. If the error value 	exceeds the threshold value, the
 

resulting switch to back-up is initiated and the control sur­

face lock-up sequence begins. The lock-up sequence and res­

pective time delays are as 	follows:
 

1. Switch relay to de-energize solenoid - 15ms 
2. 	 De-energize locking solenoid - 20 ms
 
3. 	 Hydraulic lag before check valves seat and ram
 

begins to move to the lock-up position - 15ms
 

Thus, the total transfer delay before a failed actuator be­

gins moving to the lock-up position is 50 milliseconds. For
 

the case where one surface is fixed and the other is failing
 

at the maximum rate of 90 degrees per second, the total trans­

fer delay translates into an error between surfaces of 4.5
 

degrees. Therefore, the threshold value should be selected
 

such that an additional error of 4.5 degrees would not ex­

ceed the safe limit.
 

Design Constraints on the cross-ship comparison monitor­

ing technique. - The error between ailerons, canards, or ele­

vators allowed before an unrecoverable flight condition occurs
 

is seven degrees, ten degrees, and seven degrees, respectively.
 

These values were determined based on simulation studies and
 

on analysis of the effects for the case of one control surface
 

fixed and the other failing hardover (90 degrees per second).
 

However, it is possible for a failure to occur during posi­

tioning of the surfaces. This could result in an error rate
 

of 	greater than 90 degrees per second.
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There is a design compromise between the allowance of
 

false failure indications, and the risk of losing the vehicle
 

in the event a failure goes undetected. False failure indica­

tions, termed "nuisance trips", are very detrimental to the
 

research mission because of considerable overhead involved in
 

a single mission and the delays involved in troubleshooting
 

the cause of the nuisance trip. Determination of a computer
 

threshold value involves design trade-offs.
 

Two cases will be considered and the computer threshold
 

values that are appropriate determined. The first case as­

sumes the good control surface is fixed at some position when
 

the opposite surface fails. The maximum error allowed before
 

initiation of the lock-up sequence (e ) is the difference be­

tween the safe limit allowance (as) and the error accumulated
 

due to the total transfer delay (0d).
 

@d = tt x e 

at = adas -


To assure that the lock-up sequence begins some time before
 

the error reaches 6k, the worst case should be assumed. This
 

means that the quantization error due to the analog-to-digital
 

conversion is at the maximum and the sampling instant is the
 

one least desirable. The quantization error is equal to the
 

amount of control surface deflection represented by the least
 

significant bit. For the CSCM technique, the comparison error
 

value is represented by an eight bit digital word. The quan­

tization error in degrees is therefore,
 

oq = ofs /2n
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where, efs = full surface deflection range 

n = number of bits used in the comparison 
to the threshold value 

The least desirable sampling instant is at a point immediately
 

before the error value reaches the computer threshold limit.
 

The computer will not detect a failure until the next sample
 

period. Therefore, the error accumulation in one sample per­

iod (1/Rs where Rs is the sample rate) at the specified error
 

rate (0) is
 

6
sr = 6/Rs
 

Thus, the computer threshold limit (at ) together with the
 

quantization (0q) and sample rate error (Ssr) should be less
 

than the maximum error allowed before initiation of the lock­

up sequence (6) or:
 

8 0
= , - esr - q
t 


Figure 6 illustrates the error rate between surfaces, the
 

worst-case quantization and sample rate error, and the re­

quired threshold limit.
 

The second case is that in which the good control surface
 

is not fixed, but moving in such a way so as to produce a
 

greater error rate than 90 degrees per second. The error rate
 

(6) is now equal to the sum of the failed surface rate (Of)
 

and the commanded surface rate (0c),
 

a = Of = ec
 

The computer threshold limit is calculated as described in the
 

first case. Table 4 gives the computer threshold limit values
 

for the canards, ailerons, and elevators for the 90 degrees
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CANARDS ELEVATORS AILERONS 

ERROR RATE 
(DEGREES/SEC) 90 95 90 95 90 95 

a 

INITIATION 
POINT OF 5.5 5.25 2.5 2.25 2.5 2.25 
LOCK-UP 

TRANSFER 
DELAY ERROR 4.50 4.75 4.50 4.75 4.50 4.75 
(DEGREES) 

8d 

SAMPLEERROR RATE 
(DEGREES) 1.69 1.78 1.69 1.78 1.69 1.78 

sr 

QUANTIZAT IONERROR 
(DEGREES) .16 .16 .20 .20 .16 .16 

aq 

SAFE LIMIT 
(DEGREES) 10 10 7 7 7 7 

a8s 

COMPUTER 
THRESHOLD 3.65 3.31 0.69 0.35 0.65 0.31 
LIMIT 
(DEGREES) 

at 
TABLE 4
 

SUMMARY OF PARAMETERS USED IN
 

DETERMINING COMPUTER THRESHOLD LIMITS
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per second error rate case and for a 95 degrees per second
 

error rate, illustrating the second case. It is evident that
 

the calculated computer threshold limit for the elevators and
 

ailerons is cause for. concern. The total transfer delay ac­

counts for a considerable amount of error. A reduction in
 

this delay would allow the computer threshold limit to be in­

creased. This might be accomplished by using a different
 

switching relay to de-energize the locking solenoid. A re­

duction in the 20 millisecond de-energizing time to 4 milli­

seconds may be possible with a resulting increase in the nec­

essary computer threshold limit (et) of 1.44 degrees. The
 

availablity of the faster switching relay is not likely to be
 

a problem.
 

The sample rate error (Osr) is fixed because of con­

straints on the on-board computer loading. Since the compu­

tati6nal load is near the maximum, any additional increase
 

in sampling is not feasible. The quantization error (eq)
 

could be reduced if the full range of the analog-to-digital
 

converter were used and the full 12 bits instead of the most
 

significant 8 bits were used. This would increase the
 

computational loading to some degree, however, and the
 

elimination of this error may not justify the additional load
 

ing. The advantage of increasing the threshold limit is the
 

buffering effect created. Errors due to nonidentical unfailed
 

servosystems are less likely to be a source of nuisance trips
 

if there is a sufficient buffer band.
 

Possible sources of comparison errors in unfailed servo­

systems. - Any characteristic which is not identical between
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corresponding servosystems is a source of comparison error.
 

For example, the gains of each component in one servosystem
 

may differ from those of the other servosystem due to manu­

facturing tolerances. In flight, the servosystem differences
 

might be caused by aerodynamic loading. Electrical properties
 

in corresponding components will be different. These types
 

of differences give rise to error sources such as ERVS thres­

hold error, servosystem hysteresis error and rate limit error.
 

LVDT demodulator ripple error. - Each servosystem LVDT
 

demodulator has a ripple signal superimposed on it. These
 

signals are from a single 1800 hertz oscillator and therefore,
 

,they will be in phase. As described earlier, the demodulator
 

output sampling for corresponding surfaces occurs twenty-five
 

microseconds apart.
 

Each right and left demodulator output is equal to the
 

sum of the dc voltage, Vo, and the approximately sinusoidal
 

ripple voltage, Vrsin(360ft). The frequency, f, is the oscil­

lator frequency and the ripple amplitude, VR, is equal to
 

0.0711Vo (ref. 3). The sampling time difference, with re­

spect to the error between demodulator outputs, can be thought
 

of as a phase difference between corresponding right and left
 

demodulator output signals, VDR and VDL. Therefore, the right
 

and left demodulator outputs are,
 

VDL = Vo + VRsin(360ft) (1)
 

-
VDR = Vo + VRsin(360f(t + 2.5 x 10
5 ) (2a)
 

or,
 

VDR = Vo + VRsin(360ft + 16.2) (2b)
 

Two types of errors due to the ripple signal could occur.
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One type would be characteristic of the symmetrically moving
 

surfaces and the other would be characteristic of the antisym­

metrically moving surfaces.
 

Taking the case of the symmetrically moving surfaces, the
 

difference of the right and left demodulator outputs would be
 

determined in the on-board microcomputer. All other things
 

being equal (neglecting the analog-to-digital conversion ef­

fects), the error value determined would be the difference in
 

the two ripple signal equations,l and 2b.
 

ripple error = VRsin(360ft) - sin(360ft + 16.2
 

(3)
 

Figure 7a illustrates the error value for a plus 10 de­

gree surface deflection.
 

For the case of the antisymmetrically moving surfaces,
 

the right and left outputs have opposite polarity and so they
 

would be added to produce an error signal. The error value
 

would be the sum of equations 1 and 2b.
 

ripple error = vR sin(360ft) + sin(360ft + 16.2 (4)
 

Figure 7b illustrates the error value for a plus and minus 10
 

degree surface deflection.
 

The worst-case ripple error for symmetrically deflected
 

surfaces, deflected 20 degrees, would be significant. The
 

worst-case sampling instant would occur at a point in time
 

when the argument of the sine wave is at minus 8.1 degrees.
 

After a 25 microsecond delay, when the argument of the sine
 

wave is plus 8.1 degrees, the opposite position output would be
 

sampled. According to equation 3, the ripple error magnitude
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would be approximately 0.11 volts which corresponds to a false
 

error between surface positions of approximately 0.4 degrees.
 

This would be a potential source of nuisance trips because of
 

the comparable value to the computer threshold limit for sym­

metrically moving surfaces. A possible solution to this con­

dition would be to filter the LVDT demodulator output with a
 

low-pass filter to attenuate the ripple signal.
 

The worst-case ripple error for antisymmetrically moving
 

surfaces, deflected 20 degrees, would be more severe. The
 

worst-case sampling is at a point.in time when the first sam­

ple is taken just before the ripple signal reaches a peak val­

ue. The first position output would be sampled when the sine
 

wave argument is 81.8 degrees. After the cycle delay, the
 

opposite position output would be sampled, and again the
 

argument would be 81.8 degrees. Using equation 4 the ripple
 

error magnitude would be'approximately 0.78 volts. This cor­

responds to a false indication of approximately 2.8 degrees,
 

an excessive error. Again, a possible solution might be to
 

filter the LVDT demodulator with a low-pass filter to attenu­

ate the ripple signal, and thus, the error. Filtering, how­

ever, would involve additional hardware and analysis. This
 

presents a problem because of an already compacted hardware
 

arrangement.
 

For small surface deflections (less than one degree) the
 

quantization error masks the ripple error for both symmetric
 

and antisymmetric surfaces. Increasing deflections cause the
 

ripple error for antisymmetric surfaces to dominate. The rip­

ple error for symmetric surfaces is not a factor for a deflec­
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tion under 8.0 degrees, due to the quantization error.
 

The effect of the ripple error in both cases would be to
 

increase the probability of nuisance trips. For large sur­

face deflections and computer threshold values as calculated,
 

it is almost certain that a nuisance trip would occur. Filter­

ing the demodulator output appears to be the most effective
 

solution to this problem.
 

COMPUTER MODEL
 

The advantages of using a computer program to model the
 

CSCM technique are listed below:
 

o 	 Straightforward implementation of nonlinear as
 

well as linear characteristics
 

o 	 Amount of error that each component variation con­

tributes is readily identified
 

o 	 Servosystem changes can be made quickly and easily
 

o Data can be easily formated for automatic plotting
 

The formulation of the FORTRAN program used for evaluat­

ing the CSCM technique is discussed. The initial linear mod­

el is described after which the non-linear affects are added
 

and the resulting model described.
 

Linear Model
 

A linear model was formulated to which other elements
 

were included to more closely represent the actual servosystem.
 

Once the servosystem was modeled the CSCM technique was repre­

sented 	using two servosystem models. Ease of including non­

linear 	blocks was a design goal for the linear model. A
 

brief description of the servosystem and the characteristics
 

of the components are given. Simplifying assumptions and
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verification of the model performance is described.
 

Description. - The objective, when modeling the servo­

system and subsequently the CSCM technique for failure de­

tection, was to match the model behavior as closely as pos­

sible to the physical system behavior, within the anticipated
 

operating range. For the physical system with command signal
 

frequencies of up to 13 hertz, the unloaded servosystem re­

sponse was very near that of an ideal low-pass filter (ref. 3).
 

The servosystem actuator dynamics contribute a closed-loop
 

pole at 13 hertz. The other servosystem elements have dynamic
 

response characteristics as follows (ref. 3):
 

Servoamplifier G ( 628 
(for signals up to 4 s + 628/
 
20% of rated output
 
current)
 

EHiSV _GV( 580 (__4 06 
s+ 580/ + 5406/
 

LVDT Demodulator G (628)
 

The model of the servosystem was structured such that
 

each mathematical expression in the code corresponded to a
 

component of the actual servosystem. Initially the inputs and
 

outputs were zero. One iteration of the code corresponded to
 

one time increment and generated one set of output values. A
 

flowchart of the model is shown in figure 8. For the first
 

iteration the feedback value was assumed to be zero. The in­

put to the EHSV block was then equal to just the command am­

plifier output. As outputs were calculated, the input to the
 

next block was set equal to the output of the preceding block.
 

The loop was closed after the first iterati6r because the
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computer model and CSCM
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error signal value (the input to the EHSV for the next itera­

tion) was the difference between the command amplifier output
 

and the feedback amplifier output (see figure 5). In the
 

physical system the LVDT demodulator is reverse polarity with
 

respect to the command signal. The FORTRAN model of the.LVDT
 

demodulator output had the same polarity as the command sig­

nal for convenient analysis.
 

The modeling of the CSCM technique was made up of two
 

servosystem models to represent the canard control surfaces.
 

This was designed to allow one servosystem model to have nom­

inal gains according to table 3 and the other to be varied,
 

for sensitivity test purposes. The resulting error between
 

the two models was of interest in determining the effects of
 

disproportionate servosystems. The same command value was ap­

plied to each servosystem. The output values of each LVDT de­

modulator block were converted to the equivalent control sur­

face deflection. The first servosystem model corresponded to
 

the right control surface. The error value between surfaces
 

was the difference of the left surface from the right surface,
 

where the left surface corresponded to the second model. The
 

appendix contains a computer listing of the FORTRAN program.
 

Figure 5 shows a block diagram of the servosystem and CSCM
 

method.
 

Simplifying assumptions. - A reasonable assumption con­

cerning the frequency of the command input signal was that it
 

would not be higher than 15 hertz. It follows that the EHSV,
 

the LVDT and LVDT demodulator, and servoamplifier dynamics
 

would cause negligible attenuation and phase shift. These
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elements were modeled as pure gain elements. The actuator was
 

conveniently modeled as an integrator and implemented in the
 

digital program using the bilinear transformation expression
 

(ref. 7,8). For the Kth iteration,
 

outputK = outputK_1 + T/2 (inputK t input K-l)
 

where T is the sample period, that is, the time between itera­

tions and was nominally 0.2 milliseconds, 5000 hertz itera­

tion rate. To obtain sufficient accuracy using the bilinear
 

transformation expression for the integrator, the sample fre­

quency was set much higher than the first-order pole of the
 

model (greater by a factor of ten or more). The past input
 

and output values were updated with each iteration:
 

Verification. - The CONTROL digital computer program
 

(ref. 9), a program for analyzing linear continuous systems,
 

was used to verify that the discrete model was an accurate
 

representation of the linear first-order model of the simplex
 

servosystem. Time history responses, of the control model and
 

the discrete model, were compared. There was no detectable
 

difference. The CSCM model was also verified by using two
 

servosystem models in each program to simulate the CSCM. In
 

both programs the difference of one servosystem monitor output
 

from the other was computed to give an error value. The mod­

els corresponding to the right servosystem in each program had
 

equal gains and the models corresponding to the left servo­

systems had equal gains but the right and left sides were un­

equal. As can be seen in figures 9a and 9b, for a step input
 

and a sine wave input, the discrete model compares very close­
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ly to the linear continuous model.
 

Non-linear Model
 

The following subsection describes the non-linearities
 

that were added to the linear model. T The origin of these non­

linearities and the likelihood of any contribution to the
 

error between unfailed actuators is discussed. The assump­

tions that were made in implementing these characteristics
 

and the verification procedures are given.
 

Description. - The non-linearities that were added to the
 

model are among the more common ones associated with servo­

systems. The non-linear characteristics added were:
 

o EHSV current limiting
 

o EHSV threshold current
 

o Actuator ram position limit
 

o Total servosystem hysteresis
 

The EHSV provides the electrical-to-hydraulic interface
 

which controls the source of fluid power to the hydraulic act­

uator. The EHSV rated current range changes the fluid flow,
 

to the actuator, from maximum extension control flow to maxi­

mum retraction control flow. The servoamplifier supplies cur­

rent to the EHSV within the specified range, plus or minus 4
 

milliampheres (ref. 3)
 

The EHSV threshold current non-linearity is essentially
 

a characteristic produced by the static friction of the slid­

ing valve. The specified threshold value was determined by
 

the manufacturer during quality assurance tests. The current
 

increment required to reverse the EHSV from a condition of in­

creasing output was measured. The current was changed at a
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a rate below that at which dynamic effects were important.
 

The actuator ram position limit is the maximum extension
 

or retraction distance from the null position. For the CSCM
 

model the full stroke (F.S.) of the actuator ram was approxi­

mately 2.56 cm (ref. 3). The position limits were plus and
 

minus one half of this amount.
 

The actuator ram rate limit is the rate at which the ram
 

can extend or retract under no-load conditions with maximum
 

control flow from the EHSV. The rate limit is dependent on
 

the properties of the other components in the loop. A change
 

in loop gain may affect the rate limit as will a change in the
 

maximum control flow from the EHSV. The current limit imple­

mentation was in effect a rate limit since a decrease in the
 

current maximum output would decrease the control flow maxi­

mum output. The actuator ram rate limit used was 5.87 cm per
 

second (ref. 3).
 

The total servosystem hysteresis is defined as the maxi­

mum difference in command voltages required to produce the
 

same actuator ram position during a single cycling of the com­

mand voltage. This cycling is done below the rate at which
 

dynamic effects are important. The hysteresis non-linear
 

characteristicis produced by the combined effects of the EHSV
 

threshold and electromagnetic characteristics, and the static
 

friction of the actuator ram.
 

Simplifying assumptions. - There were some general as­

sumptions made to simplify the implementation of the non
 

linear discrete model. Although a non-linearity in the phy­

sical system may be a function of several variables, in the
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discrete model each non-linearity was assumed to .be only a
 

function of the input to that non-linear block. The linear
 

representation of each servosystem element was retained. For
 

example, in implementing the EHSV current limit characteristic,
 

the EHSV input value was tested to determine if it was great­

er than or less than the limit values. If so, it was set
 

equal to the appropriate limit value. The expression for
 

EHSV behavior was not affected, it remained a pure gain ele­

ment.
 

It was assumed that the non-linearities would be closely
 

approximated as ideal non-linearities. For example, the
 

total hysteresis value, as measured, might not be uniform for
 

the full stroke of the actuator ram in the physical system.
 

It was assumed to be uniform for the non-linear implementation
 

in the discrete model.
 

It was also assumed, for the discrete model, that because
 

the EHSV threshold produces a hysteresis non-linearity in the
 

closed-loop response, the total hysteresis could be modeled
 

by adjusting the threshold value. The position limits were
 

included in the model. A difference in the position limits
 

would produce an error between surfaces only at the maximum
 

deflections. This effect was not investigated. A difference
 

in the current limits of the EHSV would amount to a difference
 

in the rate limit, which was investigated.
 

Verification. - The current limiter, and position and
 

rate limiters are shown in figures 10a and 10b, respectively.
 

The 10 degree command sine wave is shown in figure 10a along
 

with the resulting input current waveform of the EHSV which
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was limited to plus or minus 4 milliamperes. Figure 10b
 

shows the ram position and the maximum positive ram extension
 

of 1.28 centimeters and also the maximum extension rate of
 

5.87 centimeters per second for a 25 degree step command. The
 

threshold non-linearity is shown in figure 11 and hysteresis
 

non-linearity,resulting from the closed loop response,is shown
 

in figure 12. The horizontal axis is the input and the ver­

tical axis is the output of the non-linear block. The non
 

linear block diagram is shown in figure 13. The inputs label­

ed N1 and N2 are points where noise was introduced into the
 

model.
 

COMPUTER ANALYSIS
 

The objectives and procedures for the parameter sensitiv­

ity test of the CSCM technique are given. This test uses the
 

nonlinear digital model described in the preceding section.
 

Objectives
 

There were five main objectives in testing the sensitiv­

ity of various parameters in the CSCM technique
 

1. Determine the sensitivity of the error between
 

servosystem LVDT demodulator outputs to variations in the
 

values of the threshold and rate limit non-linearities.
 

2. Determine the effect of loop gain differences on
 

the error between servosystems.
 

3. Investigate the effect typical system noise may
 

have on the error between servosystems.
 

4. Investigate the demodulator ripple, sampling time
 

difference, and digital-to-analog and analog-to-digital con­

version errors.
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5. Determine the total effect on the error value for
 

two servosystems with reasonable differences in characteris­

tics.
 

Using the data from the tests a judgement was made as to
 

the impact of nonidentical servosystems on the performance of
 

the CSCM failure detection technique. Potential solutions to
 

problems that were evident were then formulated.
 

Test Procedure
 

The test objectives were met by varying the parameters of
 

interest and collecting data on the response of the CSCM error­

value. The input command for each case was a six degree step
 

command, a somewhat severe command but appropriate for the
 

test.
 

Loop gain variations. - In order to study the effect of
 

loop gain differences the gains of the left servosystem ele­

ments were set to the nominal values (see table 3). The right
 

servosystem loop gain was theh changed for each case by chang­

ing the dc gain of the actuator. The difference between the
 

two servosystem gains would most likely be less than six per­

cent. This is because the design specifications cite an over­

all system gain accuracy of plus or minus three precent for
 

the test. The right servosystem loop gain was varied from
 

80 percent to 120 percent of the nominal value in five percent
 

increments. The error magnitude, in degrees, for a step input
 

is shown in figure 14. Notice that for the higher than nomin­

al loop gains the error was zero for a time. This is due to
 

the fact that the rate limiter was holding both actuator rates
 

equal. Only when the actuators came off the rate limit was
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an error seen. For cases where the loop gain of the right
 

servosystem is less.than the nominal value, the rate limit is
 

less than.nominal. Therefore, the error varies according to
 

the difference between rate limits.
 

Rate limit variations. - The rate limit of the left
 

servosystem model was held at the nominal specification while
 

the right servosystem model had a rate limit variation from
 

90 percent to 110 percent in two percent increments. For one
 

case, the left servosystem was set at 110 percent while the
 

right servosystem was set at 90 percent of the nominal spec­

ifications. The eleven cases are shown in figure 15a. The
 

current limiter was excluded to allow excursions of the rate
 

limit beyond that fixed by the current limiter. When the cur­

rent limiter was included there was no error. The right
 

servosystem rate limit was set higher because the EHSV cur­

rent limit was already limiting the rate to the nominal value
 

in both servosystems. Figure 15b illustrates the result of
 

the same test cases with the current limits included.
 

EHSV threshold and total hysteresis. - The design spec­

ifications for the simplex servosystems give an EHSV thres­

hold value and a total servosystem hysteresis value, 0.7 per­

cent and 0.15 percent of full stroke (F.S.), respectively. In
 

the servosystem model, the EHSV threshold non-linearity im­

plementation gives the hysteresis characteristic in the
 

closed-loop response. One set of cases was run using the
 

EHSV threshold specification for the left servosystem and vary­

ing the threshold value of the right servosystem in integral
 

amounts up to ten times the nominal value. This set of cases
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is shown in figure 16a. Again, there was no error until both
 

servosystem models came off the rate limiters.
 

In order to model the total hysteresis, the threshold
 

value of the EHSV was set to give the nominal hysteresis value
 

for the left servosystem while the right servosystem was
 

varied in integral amounts up to ten times the nominal value.
 

Figure 16b shows the test results for a six degree step input,
 

Servosystem noise. - The effect of various types of noise
 

on the error between servosystem models was investigated using
 

a software pseudo-random noise generator. The noise signal
 

was introduced at the EHSV input and at the demodulator out­

put. Two cases using a different level of noise in each case
 

were run for both noise input points. For the EHSV input, the
 

noise level in each case was 0.1 percent of the maximum signal
 

input (4.0 mA) and 3.0 percent of the maximum signal input.
 

This is shown in figure 17a and 17b, respectively. For the
 

demodulator output, the noise level in each case was 0.1 per­

cent and 3.0 percent of the maximum demodulator output (5.61
 

Vdc) as shown in figure 17c, and 17d, respectively. The sam­

pled values of the output were shown in these cases illustrat­

ing the values the on-board computer would be operating on.
 

Combined effects. - The combined effects of the previous
 

sources of differences between servosystems were investigated.
 

The left servosystem was set to the nominal specifications and
 

the right servosystem characteristics were as shown in table
 

5. The resulting test plots are shown in Figure 18a-d.
 

Ripple error and sampling time differences. - For these
 

test cases the demodulator ripple is added to the do voltage
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Figure 17.- Surface responses and monitor error
 

for a 	step command.
 

54
 



0.04 

0 
LuJ 
90.00 

Lu 
-0.04 

20.00 

rIbLJ 

10.00 

Cr 
m: 

0.00 

8.00 

LuI 
94.00 
I­

0.00 

8.00 

Lu94.00 

F­

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
TIME HISTORY.SEC 

(b) Noise signals of 3.0% introduced at the EHSV input.
 

Figure 17..- Continued.
 

55 



0.12 

a 0.02 

LIU 
-0.08 

20.00 

C!) 
L.J 

C; 

ED 
0.00 

r
 
8.00 

M4.00 
F-­

0.00 
LuI 

8.00 
Fr­

0.00,,,,
 
o 4.00
 

0.00 0.02 0.04 0'.06 0.08 0'.10 0.12 0'.14 
TIME HISTORY.SEC
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Figure 17.- Continued.
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RIGHT SERVOSYSTEM
 

CASE 1 CASE 2 CASE 3 CASE 4
 

Loop gain 97% 99% 97% 99%
 

Rate limit 95% 99% 95% 99%
 

Threshold 95% 99% 95% 99%
 

Hysteresis 95% 99% 95% 99% 

EHSV input noise 2% 1% - ­

demodulator 

Output noise 2% 1% - -

LEFT SERVOSYSTEM
 
CASE 1-4
 

Loop gain 80
 

Rate limit 5.87 cm/sec
 

Threshold 0.7% of F.S.
 

Hysteresis 0.04% of F.S.
 

EHSV input noise
 

Demodulator output noise
 

TABLE 5
 

SUMMARY OF SERVOSYSTEM CONDITIONS FOR
 

INVESTIGATION OF COMBINED SERVOSYSTEM DIFFERENCES
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(a) Servosystem conditions as specified in case 1 of table 5.
 

Figure 18.- Surface responses and monitor error for
 

a step command.
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Figure 18.- Continued.
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output according to equations 1. To simulate this sampling
 

time difference in the CSCM model, the ripple signals for each
 

side are set out of phase by 16.2 degrees. The input command
 

signal is a series of step inputs held to the command input
 

rate limit of 100 degrees per second and with a final value of
 

six degrees. The demodulator output samples are shown along
 

with the actual waveform. The symmetric case is shown in fig­

ure 19a and the antisymmetric case is shown in figure 19b.
 

The ripple waveform shown has a much lower frequency (ninth
 

harmonic) because of the iteration rate (1000 sps). It serves
 

to illustrate the amplitude, however.
 

COMPUTER ANALYSIS RESULTS AND DISCUSSION
 

The computer analysis provided information as to the rela­

tive contribution of the possible error sources (loop gain,
 

rate limit, threshold and hysteresis, system noise, and demod­

ulator ripple) to the amount of detected error between servo­

system position monitors. The error magnitudes, for test cases
 

with varying differences between right and left servosystems
 

(as shown in table 5), provides an estimate of the integrity of
 

the CSCM failure detection method. That is, the likelihood of
 

nuisance trips, for the computer threshold limits of table 4,
 

may be hypothesized.
 

The loop gain variations shown in figure 14 indicate that
 

the worst-case difference of six percent would contribute a
 

peak value of approximately 0.3 degrees to the error. For the
 

canard threshold limit of 3.65 degrees (assuming a maximum of
 

90 degrees per second error rate), this error would not contri­

bute significantly to the likelihood of a nuisance trip. For
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Figure 19.- Concluded.
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the aileron and elevator threshold limits of 0.65 and 0.69 de­

grees., respectively, a 0.3 degree contribution to the error
 

value would increase the likelihood of a nuisance trip consid­

erably. The loop gains should be matched as closely as possible
 

to minimize this error contribution.
 

A difference between servosystem rate limits has the same
 

effect, on the error value, as does differences in loop gains.
 

Figure 15a and 15b illustrate the type of error response for a
 

six degree step command. The maximum rate is dependent on the
 

loading of the hydraulic actuator, in the physical system. For
 

asymmetric aerodynamic loading on the control surfaces, the
 

computer analysis indicates that the error rate varies accord­

ing to the difference between right and left surface deflection
 

rates. Thus, for a difference in surface rates of twenty-five
 

percent and a six degree step command, the maximum error would
 

be approximately 1.25 degrees. This would cause a nuisance
 

trip in the aileron or elevator servosystems. Such an
 

asymmetric load would be likely only for antisymmetrically mov­

ing surfaces.
 

The loop gain and rate limit analysis results may be summar­

ized as follows. For each percent difference in loop gain (re­

presenting a static error) or rate limit (representing an error
 

due to asymmetric loading), an error of approximately 0.9 de­

grees will be contributed with each second the surfaces are
 

commanded at the maximum rate. Whichever factor is larger
 

should determine the error contribution.
 

The error contribution due to differences in the threshold
 

non-linearity (shown in figure 16a) is insignificant for dif­
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ferences of as much as 500 percent. Hysteresis differences of
 

as much as 300 percent were also shown to have a negligible con­

tribution to the error (shown in figure l6b).
 

The effect of noise in the system due to the EHSV is shown
 

in figures 17a and 17b. This noise could be from the environ­

ment or it could be thought of as state noise resulting from
 

the unmodeled characteristics of the servovalve. The effects
 

were attentuated by the actuator. The curve resembles the
 

curves for differences in rate limit because in the model the
 

noise was added to the EHSV input. This resulted in a larger
 

than 4 milliampere input current and thu4 a larger control flow.
 

Looking at just the amplitude of the error curve gives a more
 

realistic view of the effect of noise sources in the EHSV. The
 

effect on the error for a three percent addition of random
 

white noise appears to be negligible.
 

The error contribution from noise introduced at the demodu­

lator output is shown in figures 18a and 18b. This is a signi­

ficant problem for the CSCM method because any nonidentical
 

signals introduced at this point directly affects the error
 

magnitude. This has already been illustrated by the problem
 

associated with the demodulator ripple. An average difference
 

in the demodulator outputs of 3.0 percent due to system noise
 

results in an error that approaches 2.0 degrees. Filtering of
 

the demodulator output will attenuate the high frequency noise
 

but a compromise would have to be made in choosing the cut-off
 

frequency. The actual position information could not be atten­

uated which would result in selection of a filter cut-off fre­

quency that would not attenuate low frequencies. The extent
 

of the noise problem would most effectively be determined by
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actual measurements on the vehicle servosystems.
 

The combined effects are shown in figures 18a-18d. The de­

modulator noise overshadowed the error contributions from other
 

sources. The error contributions in the physical system will
 

not always be additive as was the case in these tests. This
 

set of tests was a worst-case situation which used a range of
 

differences that could be expected in the servosystems. The
 

elevator and aileron servosystems with nominal computer thres­

hold limits of 0.69 and 0.65 degrees, respectively, would be
 

likely to cause a nuisance trip under the conditions of test
 

case 1 or 2. The two canard servosystems could be very unlike­

ly to cause a nuisance trip in any of the cases because of the
 

wide buffer band created by a computer threshold limit of ap­

proximately 3.65 degrees.
 

The effect of the demodulator ripple voltage was analyzed
 

pieviously for the symmetrically and antisymmetrically deflect­

ed surfaces. The two test cases are shown in figures 19a and
 

19b, respectively, for a sampled, rate-limited command of six
 

degrees. The sampled command input does not appear to have a
 

significant effect on the servosystem or the error value. The
 

error magnitude for symmetrically moving surfaces, approximate­

ly 0.1 degrees, would be of some concern in the case of the
 

elevators because of the small threshold limit and the result­

ing small buffer band. In the case of the antisymmetrically
 

moving surfaces, the error magnitude of approximately 1.0 de­

grees would be critical for the ailerons since it exceeds the
 

computer threshold limit. The nearly 25 percent decrease
 

in the width of the canard buffer band would be undesirable
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although it would be unlikely to cause a nuisance trip in itself.
 

As mentioned earlier, filtering the demodulator output will re­

duce the ripple voltage error.
 

The modeling of the CSCM method might have been more precise
 

had the higher-order dynamics and other possible non-linearities
 

been included. The most probable servosystem variations in
 

characteristics were not known which resulted in somewhat
 

arbitrary choices for the ranges used in the computer analysis.
 

The trends of the sensitivities to various differences, how-.
 

ever, were clear. The probable effect of system noise was dem­

onstrated but the choice of the magnitude was arbitrary. The
 

amount of noise in the servosystems would best be determined by
 

measurement of the physical system. The computer analysis re­

sults could then be used to approximate the error magnitude.
 

The expected error contribution from each-error source is sum­

marized in table 6.
 

CONCLUDING REMARKS
 

The investiagtionof the cross-ship comparison monitoring
 

(CSCM) method of failure detection revealed several problems
 

associated with the technique. The selection of the appropriate
 

computer threshold limit involves a trade-off between the pos­

sibility of a nuisance trip and the assurance that an actual
 

failure will be detected in time.
 

There are several error sources which, if decreased or elim­

inated, would lessen the likelihood of a nuisance trip. These
 

possible errors, due to differences between corresponding right
 

and left servosystems for the canardr aileron, and elevator con­

trol surfaces, are as listed:
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ERROR SOURCES 


Loop gain or 

rate limit 


Threshold 


Hysteresis 


EHSV input 

noise 


Ripple voltage
 
for symmetrically 

deflected 

surfaces
 

Ripple voltage
 
for anti­
symmetrically 

deflected 

surfaces
 

APPROXIMATE ERROR 

CONTRIBUTION 


0.9 deg/second at 

maximum surface
 
rate
 

7 x 10-5 deg 


2.6 x 10-4 deg 


-3
 
2 x 10 deg 


0.02 deg/ deg of 

deflection
 

0.14 deg/deg of 

deflection
 

TABLE 6
 

AMOUNTS OF
 
DIFFERENCE BETWEEN
 
SERVOSYSTEMS
 

1%
 

1%
 

1%
 

1%
 

0%
 

0%
 

SUMMARY OF ERROR SOURCES AND THE RELATIVE CONTRIBUTIONS FOR
 

A 1% DIFFERENCE BETWEEN SERVOSYSTEMS
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O 	 Ripple voltage on the demodulator output.
 

o 	 Electrical noise on the demodulator output.
 

o 	 Asymmetric loading of the antisymmetrically moving
 

control surfaces.
 

o 	 Nonidentical loop gains.
 

The ripple voltage and electrical noise on the demodulator
 

output signal could be attenuated by filtering the demodulator
 

output. The low-frequency noise would still be present, how­

ever.
 

The problem due to asymmetric loading of the antisymmetrical­

ly moving surfaces could be a severe problem and should be ana­

lyzed further.
 

Nonidentical loop gains may be adjusted by changing the gain
 

of the feedback amplifiers. Sufficient differences in the hy­

draulic components may require replacing the EHSV and servoactu­

ator in one servosystem.
 

The likelihood of a nuisance trip may also be decreased by
 

increasing the computer threshold limit. Decreasing the trans­

fer delay time by using a faster switching relay for the lock
 

up solenoid would allow a larger computer threshold limit to
 

be selected. The selection of the computer threshold limit de­

pends on the anticipated error rate. The error rate could be
 

greater than or less than the maximum surface rate. The error
 

rate, to some extent, depends on the commanded surface rate at
 

the time of the failure. Therefore, the threshold limit should
 

be chosen with the recognition that the error rate is dependent
 

on the flight condition at the time of failure.
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C 

C­
1 C 

C THIS IS THE INITIALIZATION FVPTION. THE GAIN 
C VALUES WILL BE FEAD, INITIAL CONDITIONS SET 
C AND HFACINGS PRINTED. 

C 
PROGRAM JXCCIINPUTOUTPUTTAPFI=INPUTTAPE3SDUTPUTTAPE4,TAPE6I 

C 
REAL LVOT 
REAL LVDOUT2),LVOTIN(2),AGTl()0 

DIMENSION AMP(2) .EHSVI),ACT(Z),LVDT2IDEIODIZI FF.En(l 
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C IS A NHITF NOISE SINAL OF ZFPO MEAN AND 
C STANIOARC DEVIATTON OF 10 O!GREE. 

45 C 
C 
c 
C FIRST DATA CARD GIVES THE NO. OF CAFES (15) 
C 

PFAD(jI9INCASES 
9 FORHAT(I5) 

C 
IRITE(3.99)NCASES 

99 FORMAT(//1OXT.HE NO. CF CA5F IS' GI// 
55 C 

00 1IZ K=INCASES 
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60 WRITC(~,2f)K 
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C 


65 C
 
FEAO($1,11SSRATE.NPT


1t FOFAT(F5.Z,2XI5)
 
G 

WRITE(3,24)SSRATE.NPTS
 
70 24 FORAT(/IOX,*THE SAHPLE 

*ES EOUALSI,4//) 
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o 
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75 C 
0o 100 I=i,2 
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IeI
 

*,r2,//)
 

THP S6HPLE RAT-

AND ALSC THE 10. 
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QC THE SFRYVOYSTEM IS READ 
IF DATA POINTS. 

OF SAMPL 
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23'FORHAT(1OX,6IF8,4,1tX)// 
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95 C OEADOAtO, PATE LImIt, AND HYqTERESIS VALUES 
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FEAD(I,710)TSPEO(I),RLSPECII,HYSPEC(I)

710 FORMA1(3(FI.7l) 

THSPE(I) = HYSP5C(I) / t.'6.9g9'20. 
105 WRITL( 0,13) 

713 FORAT(t0XWHYSTERESIS AND OCACOANO ARE GIVEN 
'STROKE. PATE LIOIT IS GIVEN AS PE'CENT OF 90 

C 
C 

110 WRITE{3,71lITIISPEC(IRLSPrCIIHysPFCcI)
 

AS PFPCENT OF FULL 
DEG/SFC. ///)
 

Tit FCPtA(1CX,LOOPIIXI1./fl%0,T4PESNOLO VALUE z-,m>FIO.7./UX w 
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LO CONTINUE
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115 C 
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LID -Lq AFr CHOS'N T) 2FSCRI"IF IHE VARIAOLF. 
INITIAL IATION CF VARIA4LES AND INI'IAL 

C CONOITTON APF ZET-JP. 
C 

120 
FFRIOO = i.0/SSRITE 
ERROR = C.0 
ICNT = 0 

C 

YYIN =q.0 
TIME = 0.0 

125 00 101 1=1,2 
APPIN(Il =0.0 
AMPOUT(r)=o.0 
E SVIN(I)=G.B 
E"SOU1(1)=0.U 

i30 ACTI(JI =a.0 
ACTOUTIl=C.O 
LVOTIN(T)=0.O 
LVOOUT(II=0.0
FEEOIN(I)=0.0 

135 FOCUT(I) =0.0 
OEMODI(I)=0.0 

•C 

DEHODOI)=0.0 
YYOUT(I) =0.0 

10 C ACTINF IS THE PREVI3US ACTUATOR INPUT AND 
C ACTI IS THE PREVIOUS ACTUATOP OUTPUT. THIS 
C SET OF VA41ABLES IS FOP THE nILINFAR TRANS-
C FORM OF THE INTEGRAtOR. 
C 

145 ACTINPII)=O.O 
ACTIJ) 0. 

1 CONTINUE 

ISO 
C 
c 

THERE Apr TWO SERVOSYSTEM LOCFS IN THIS 
MODEL. LOOP I rEORESENITS A FIGHT AILERON 

C 09 CANAFO, LCOP 2 REPRESFNTT THE LEFT. ALL 
C CHANGES IN THF FFRV)SYSTEM CHARACTEFISTICS 
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C 
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C IS INVERTEO AT THE LVT OCMOtLLAICR THE 
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25 
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170 F 
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175 C 
C
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C 
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C CLO .EO LOOP RESPOSE DEADPA'O GIVES THE 
o HYSTEaR 1IS NO'LTN.ARITY. 
C 

CALL THRFSH(IF.HSVIN) 
210 C 

a THES TWO L1N5'- LINIT THF FHV INPUT CUPRENT 
C 

IF{EH9VI(I().LE.-4.OEHSVI;(T) = -410 
IF(EHSkIt(I).GE.4.OEHSVIN(I) 4.0 

215 C 
EHSOUTII) = EHSV (Il EHSVIN(I) 

ACTINI) =FHSOUT(I) 0 
o 
o ACTUATOc IS MOOrLEO AS A' T-I ,GPATOF 

220 e0 
ACTOUT(IT = ACTIflI * ACTII - CTlI) * PrPIPD / 2.0 

C 
SA.TINr{I) I ACT(I I PCPIOD / 2.0 

C THE VTC LIHIT tUgROUTIHF LTfI'S THE PH 
225 C M)V-MEIT TO P.312 IN./SfC. A SPECIFIED. 

CALC RLIHIT( ,ACTOUTACT1,f'rlCD) 



5 'ROGRAM JXCC 


230 	 C 

C 

C 

235 

C 
240 	 C 


o 

C 

C 

C 

245 	 C
 

C
 

C
 

C 

260 	 C
 

C
 

265 

C 

C 
270 	 C 

C 

C 

275 

C 

C
 
2R§ 


285 
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THE:E TWC LINES ARE THE POSITIOK LIMITS FOO 
THE ACTUATOR. 

IFtACTOUT(I)GE..503)ACTOUT(I) .503
 
IF(ACICUT{h).LE.-.SO)ACTOUTUI-,
 

LVOTIN(I) = ACTOUT(I) 
LVOOUT(Il = LV)T(Il - LVOTIN (1) 

OEVOnI (I) = LVOOJT (I) 
DEMOCC(II)= oS (! - r) (t) 

tHE SUPFACE P3SITION ACCORDING TO THE DENOD-
ULATOR CUTPUT IS GIVEN IN OLCPEES FOR PLOT 
CLAPITY BUT ALSO TO SIMULATE HAT THE ON­
hOARO CCHPUTSR MIZHr 3E SEEIING WITH RESPECT 
TO NOIRE. 

YYOUTIT) = 	IDEMOnOII) * 39.T?)l()E4OD(I) LVOT(I)) 

FEEDIN(I) - DEHOnO(1) 
FCOUT(I) = FEE(I) FEEn(II) 

ACTINP(I) - ACTIN(I)
 
ACTI(I) = ACTOUTEIO
 

I 2' 
AHFIN(I) = YYIN/2. 

AHPOUT(X) = AMP(I) - AMPTNfI) 

EHSVIN(IX = AMPOUT(I) - FDOUT(I) 
CALL TPRESI I,EHSVIN) 

IF(ESVII(I).LE.-4.O)EHSVIN(T -4.0
 
IF(EHSVI?(I)GE.4.OFHSVINII) 4.0
 

EHSOUT(I) = EqSV(I) - qHSVIN (I)
 
ACTIM(I) = FHSOUTIl)
 

ACTHATO'P IS MbDELED AS AN INTEGRATOR 

ACTOUT(I) ACTOUT(I) 4 ACTTNCI) * ACT(I) - PERIOD / 2.0 
ACTINF() * ACT() * PFRIOr / 2.0 

CALL RLIMIT(IACTOUTACTI ,PFPT(P)
 

IF(ACTOIJT(IlGE..50)ACTOUT() = .03 
IF(ACTUT(I).LE.-.50)ACTOIJTI!) -. 503 

LVOTINII) = ACTOUT(!)
 
LVOOUT(II = LVOT(I) - LV.TTN(II

OFODI(II = LVDOIT(!) 
CEMODC(I) = DE'IOD(1) - DEHCI(T) 

YYOUT(I) = 	 (I)FmO111) " 3q.7 )/IDE0(Il * LVOT(I)) 

http:12.11.00


OROGRAX JXCC 73/74 'CPr-t FTI 4. P#75060 05111/18 12.11.00. PAGE 6 

FEFDIN(II OEHO'o(r) 
FOCUT I = FFE')(EI FEFnItlH 

C 
290 

ACTI(I 
ACTINP(I) . 
= ACTOUT(I) 

ACTIIC(T) 

C 
C THE DTFFFRENCr T4 TIE TWOl M,?NITOR OUTPUTS 
C IS CALrLLATEG A'O 0 I1TC- A "ERPOR.­

-4 
to C 

ERROR = YYCUT(1) - VYOUT(2) 

GO TO tit 
0 

300 C CALL TO PLOT 'OUTINE 
C 

112 CCNTINUE 
REWINC 4 
DO 723 KV = i.NCASES 

U5 CALL SCP;BL(KH) 
723 CONTINUE 

PEIINO 4 
CALL FLO1(0.,Oqq9) 
REWIND 6 

310 STOP 
END 

00 



0 
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SUBROUTINE TPRESH(JVALUFI
 
OIMENSION VALUE(2)

COMHON TIENFTS;THSPEC(IRLSFEC(2 WHYSIEC(21NCASVs
 

5 CSTOPE 	 TFE SIGN
 

IF(VALLE(JI.LT.O.O.! = -$.B
 
IF(VALUF(J).GE.O.O)Z = +t.G
 
DEAD = ABSIVALUE(Jl)
 

C EIGHT 1IA IS THE FUL. STQOF FWING OF THE 
C EHSV INPUT.
C 

SPECS 4. 4 THSPEC(J)
 
15 	 C 

C THE OEACPAND IS ADDED OR SUnTFACTEO FROM 
c THE EHSV INPU T. 

C 
IF(DEAD.GE.SPECSIVALUE(JI = VALUE(J) -(Z - SIECq)


20 IF(DEAC.LT.SPECS)VALUE(J) = 0.0
 

RETURN
 
END
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SU8ROUTI E RLIMZItOUT,0UlI,-FR)
 

DIMENSION CUT(22.OUTI(2
 
COMMON TIVE,NF1STHS0EC(2) ,LSFEC(2)


C 
5 	 O BY COMPARING THE SPECIFIED RATE LIMIT OF
 

O 2.312 IN./SEC. TO THE DELTA FOSITION IN ONE
 
C PEqIOO A LAOGER VALUE IS nFC EASEO TO THE
 
C 	 SPECIFIED
 
C 

10 	 SPECS = 2.312 * LSPECtI) 
G0 = (OUT(I) - OJTI(I))/PEP 

ZZ = 1. 
IFtGG.LT.O.O)ZZ = -1.0

C 
15 IFI(AES(GG)).GT.SPECS)OUT () = SPECS'ZZ*PE +OUTt(I) 

RETURN 
ENO
 

00 
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SU3ROU1INE INPLT(VALUE) 
C 
C THI3 13 THF SUB0OUTINF FOR 'P1 COMMANO INPUT 
C
 

5CCHHON TIrENPTS
 

C 
to C RANOCH ISE Z7ERO MEAN AND STANDARD DEV! A-

C TION CF 1.0. 
C
 

.IF(HPTS.LT.400V&LUE GPANO(0) 
C 

I5 IFNOPTS.EO.4laTGO TO 2 
C 

GO TO 3
 
C 
C SINE hAVE OF 5.0 DESREES , 5,0 HZ.
 

-20 C
 
2 THETA = TIME * 6.213S1 * .2q
 

VALUE = SIN(TPETA) 1 .06'
 

tGO CONTINUE
 
25 RETURN
 

END
 

http:IF(HPTS.LT
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SUBROUTINE ANOISE 73/74 OPT= . F 4N 0/11i7R PAGE 

SUBROUTINE ANOISE(OP,N,(,MbH)
 
PEAL MX
 
DIMENSION BP(2)aVALU(2l
 
COMMCN TIHE,NFTSTHSPEC(2),RLSFE,(t2 HYS'ES(2),HCASFC
 

C 
c GRAHO I A WHITE NOISE GENEFATO CF ZERO 
G HEAH A LNITY STANOARD DEVIATION 
C 

VALUE(N$=GRANn(ID
 
io 0
 

£ THE NCISE LEVEL IS ;IVEN AS A PERCENT OF
 
C MAXIHU SIGNAL LEqE. AT THE PCINT OF INTER­
o EST. THIS MUST RE PROVIDED fY THE USER.
 
C
 

15 BP(N) = VALUE(N) .001. MX + RP(NI
 
RETURN
 
END
 

o 

'C 

,j.
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C 
FUNCTION GRAND(N 

C.... WRITTEN 0/22/75 A MYERS. NASA/FRC
G.... ADAPTED BY J OROWNLOW FROM 

5 C 
C COMM OF<THE ACM ALGOQITFM 48R 
C 0ECtPR.R 1'974 
C -VOL i7 NO. 12 
C -cA(E 704 

la C -, 

C ROUTINE'REIURNS -SEUIO RANDOM NUMBER WITH 
C A GAUSSIAN DISTRIBUTION WI'H ZERO MEAN A 
C STANOARD DEVIATION OF UNITY 
C 

i5 C NOTE: USES RANF TO SUPPLY UNIFORM PSEUDO 
C RANOCH NUMBER WITH 1NIFOFH DISTRIBUTION 
C OVER THE RANGE 0 TO 1.0 
C 

20 
C 
C 

NOTE: REQUIRES ONE INITIALIZAT104 CALL 

C NOTE: N IS A OUNIY ARGUMENT 
o 

DIMENSION C(491 
co 
.:6 25 

COMMON /GRANDS/ U 
DATA.D, *E74489750, .475RA5630, .383771164, .32q61t323, 

'.2912127 
Ei1634166, 

.263644!22, .?42508452, .225667444,
19q2426?, .1A99t0758, *iAt2?sis8, 

* .173601400, .j6f4jqfl0 .160707??, *15E34qf17, 
.t504q384, .14590277, .14t770033, .137963174, 

30 .134441762, .131172150, .128125q65, .125279090, 
.122610583. 1201O%, .1177470?, 11-51j1t9Z
113402349, .i1402720, 109503R52, .10 76B7617, 
*i05976772, .104334941, LO2766012, .101269052,
*C99827234, Oqi448282, .097124309, .095S177t, 

35 .094627461, .093448407, ,0923i19Q, .091215482, 

A=O,0 
.090155838, *089133t67, .088144619, .087187293/ 

I = 0 
I CONTINUE 

40 U=U+U 
IF(U.LT. i.9)GO TO 2 
U=0-10 
1=1 U 

45 
A=A-D(I) 
GO TO I 

2 CCNTINUE 
W=D(I+)#U 
V=W (0.5H-A) 

3 CONTINUE 
50 U=PAtF(O) 

IF(V.LE.U)6O TO 4 
V:RANF(0) 

55 

IF(IJ.GT.V)GO TO 3 
U=(V-U/(t.0-U) 
GO TO 2 

4 CONTINUE 
U=(Ui-Vl/ (I*-V) 

05/11/7? 

GRAND 
GRAI'
 
S ANO
 
r'
GRAND
 
GRAND
 
GRAND
 
GRAND
 
GRANO 
GRA O
 
GRAND
 
GRA
 
GPAND
 
GRANO
 
GRAND
 
GRAND 
GRAND
 
CR AND 
GRAND
 
GRANO 
GRAM) 
GRANO 
GRAND 
GRAND 
GRAND 
GRAND 
GRAND 
GRAND
 
GRAND
 
GRANO
 
GRA C
 
GRAND
 
GRAND
 
GRAtD
 
GPAND
 
GRANO
 
GRANO
 
GRA,0
 
GRAND
 
GRAND
 
GRAND
 
GRAND
 
GRAhC
 
GRAMO
 
GRAND
 
GRAND
 
GRAND
 
GRAND
 
GPAND 
GRANO
 
GRAND
 
GRANO
 
GRAND
 
GRAbO
 
GRANO
 
GRAND
 
GRAND
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U=U*U GRAND 

60 
IF(U.LT. I.O)GO T3 
U:U-t.O 
G AN= $-A 
RETURN 

5 CONTINUE 
GRANO=A-

5 GRAND 
GRANn 
GPAhg 
GRANO 
GRAND 
GR AND 

65 END 

03 

00 
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SUAD
t 
)UTIkF CPIBL(K) 

CCHIOI TIFENFTSTHSDECC?) ,L rE. (?),HYSPEZ(2) ,NCA F 
REAL DUF 2049),TtiflnOO) tDATA(1000 1,YI1OOl ),LPIf(IOL) ,LP2(ti000 

5 C 
DIMENSION NITLE(),STORE(5(i,S IRO)3S(600), SSS60r,)TT(600) 

CALL PLOTS (BLF20 % 6) 
CALL FACTOF(2.0/?.54) 
CALL PLOT(2.,2..r31 
DATA N7ITLE/lHTIME HISTOIOHY,FrC ,IOH CAFE NCiOH 

C 

C THIS rIJEFCUTINE P-OTS THE COMMAND INPUT, 
C THE LEFT AND RIGHT SURFACP HCVFMENTS AND 
C THE ERROQ BETWEEN TiE TWO VtPSUS TIME. 

ENCOOE(i0,i,NIILE(4))K 
I FOPliAT(2X,12,6X" 

C 
C SET VARIABLES FOR ILLUSTRATING THE SAMPLED 

*20 C 
C 

DATA EFFECT 

Cl II I 
5(rJ) = 0. 

25 SS(IJ) = 0. 
SSSlIJI = 0. 
TT(IJ) = 0. 
00 777 J = 1,NPTS 

30 C 
REAO(4)T(J),Y(J).DDATA(JIhLPI(J)hLP2(J) 

C A SAMPLE AROUND THE A-PROFRIATE SAMPLE TINE 
C IS TAKrN AND HELD TILL THE NEXT SAMPLE TINE 
C 

IFCT(J),LT.((i./53.3)I))GO TO 777 
35 II= 11*1 

IJ - IJ f 2 

S(IJ) DDATAIJ) 
S(IJ-I) = S(iJ-21 
SS(IJ) LFI(J) 

40 SS(1J-1) SS(IJ-2) 
SSS(IJ) LP2(J 
SSS(IJ-k) 5SS(IJ-2) 
TT(IJ) = T(J) 

TT(IJ-I) = T(J-t) 
45 777 CONTINUE 

C 
C THE DATA IS SCALED. SINCE A SCALE FACTOR OF 
C EIGHT IS UN3ESICAILE IF IT ?ICULC APPEAR 
C THE EIGHT SUBROUTINE CHANGFS THE SCALE 

50 C FACTCP 10 TEN. 
C 

CALL SCALE(DDATA,2.flNPTSi) 
CALL EIGT(DODATANPTS) 
CALL SCALE(T.7.0.NPTSI) 

55 CALL EIGIT(TNFT3) 
CALL SCALE(Y,2. ,NPTS.1) 
CALL EIGHT(Y,NPTSI) 

http:t2.11.20
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60 
C 

CALL SCALE(L01,2.0,NPTS,1) 
CALL SCALE(LP2,2.0,N0TS,1) 
CALL EIGHTLP2,NPTS) 

65 

C 
C 
C 
C 

THE SCALE FACTO;S AID STARTING VALUES FOR 
THE SAMPLED POINTS ARE TPANFE&RED TO THE 
RESPECTIVE ARRAYS. 

70 

75 
C 
C 

TT(IJ#I) = T(UPTS1) 
TT(I)42) = T(NPTS42 
S(IJ+l) = CDATA(IPT4I) 
SIJ#22 = CDATA('NPTS2) 
SS(IJ+i) = LP±(N'TS41) 
SSIJ2) = LPI(NPTS+2) 
SSS(IJ+I) = LPPPIPTS*I) 
SSS(IJ+2) 2 LP2(NPTS+2) 

TIME AXIS 

00 
1385 

80 

C 

C 
C 
C 
C 

C 

CALL AXIS (O.,O.,NITLE,-40,7.0,0.,T(NPTS*LitT(NPTZ2) 
CALL PLOT(O..7.5-3 

ERROR AXIS 

CALL AX9o (O.,0.,-ER0OPDEG "+12, 2.,9.,OCATA(IPS),OATA(NP 
*TSI2) I 

ERROP PLOT 

't 

0 
go 

C 
c 

CALL LINE(T,DOATANPTSiflO) 
CALL LINETTSIJ,i.0.O) 
CALL PLOT (O.,-2.5,-3) 

COMMAND 

SAMPLE RATE EFFFCT 

AXIS 

95 
C 

CALL AX9O (0.,0v"COMANO.DEG 
COFMANlO 

"013..3,90.,Y(NPTS+JlY(NPTSf2II 
PLOT 

CALL LINE (T,'Y,4PTSt,0,0) 
CALL PLOT(O,-2., -3) 

* iOC 
C 

RIGHT SURFACE AXIS 

105 
C 
C 

CALL AX9O(O.,O.,'RTDOEG",46,2.CqO.0LPI[(PrS*1),LPI(NPTS2) 

RIGHT SLRFACE PLOT 

110 

C 

C 
C 

CALL LINE(TLPi,'4PTSIflD 
CALL LINE(TT,SStIJ,1,0,0 
CALL PLOTO .,-2.5,-3) 

LE-FT 

SAMPLE RATE EFFCT 

FIIFFACE AXIS 
C 

CALL AXqO t0.,v0.,"L.TDEG", +6, 2. 0,0 ,L"2(4PTS4i1) ,LP21('JPTS*2) 
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11.5 	 C L'tSIlFGF -LOT 
*C
 

CALL LWNE ITL]P2,'IPTS t .D,0)
 
C CALL LINFIITSSSIJ, ,oO) S8HPLF RATE EFFECT
 

CALL SCA LE(DOATA.2.0,NTSI0
 
120 	 C 

C COOF TO ARRANSE SCALE FACTO;,S FOR A CUHULA-
C TIVE FLCT Or THE ERROR DATA Of ALL CASES
 

STORE0 = DOVATAINPT+1c. 
125 CALL SCAE(DDAIA,2.0,NPTS,'I) 

STOREF2) =DDArA(NPTSCi)
 
IF(K, E.NCASES)GO 10 5
 
CALL SCA IE (STORE,9.5 NCASES2, 1)

CALL EIr-FT(STORE,(NCASES'2))
 

130 	 ODATA .PTS4I) = STOR5(NCASCS-2*2) 
ODATA(NPIS#2) = STORF(NCASFSV'2) 
CALL PLOT(1 .,O.,-3)

CALL AXqOIO.,0.,'SECONS",-7,7.,. ,INPTSL).T (NPTS 2) )

CALL tXqflC.,O.,"ERRlR OUTPUT ALL CASES,DES,+26,oq.5,90.,DDATA(NP
 

135 	 TS+1) 0nOATA (NPTS 2)) 
REWINC 4 

00 	 ALL CASES PLOT 

L40 DO 7 L = INCASES 
D0 6 N = tNPTS 
READ()T (N),Y(N) ODATA(N LPI(tl.LP2(N) 

6 CONTINUE 
CALL LIIM4ElDDATANPTS ,0) 

14s 7 CbHTINUE 
S CALL FLO1(12,-2,-30 
RETURN
 
END
 

http:12.11.20


SUBROUTINE EIGHT 

10 

C 

C 
C 
o 
c 
C 

15 
C 

C 

OENO 
to 

20 

0 

-I 
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SUOROUTIKE SIGPT(QATNPT;)
 
DIHENSION CAT(io00)
 

THE SCALE FACTOR OF OAT ARPAY DIMENSIONED 
NPTS COINTS I CHEC(E3 TO SEE IF IT IS A 
FACTCP OF EIGHT(NIGHT BE 8 ,0, OR 800 ETC.)
THEN CHANGE IT TO 10, M00, .1 , ETC. 

Z= 1.
 
IF(OTUfPTS 2).LT.O.)Z=-l.
 
o = 4LOGIO(AlSfDAT(NPTS42))I

£ = ALOGiO(8. 
CC = 0-INT(0) 

IF(A9S(CC-E).GT..0Ot.AND.Ai$S(rC-(E-I.)).GT..011 RTURN 

IF(CC.LT.O.)O= INT(f)+0.
 

IF(CC.GT.0,)O= IrT(O)+t.
 
DAT(NPTS42) =(iO )! 
RETURN
 

http:IF(A9S(CC-E).GT..0Ot.AND.Ai$S(rC-(E-I.)).GT
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CONVERSION FACTORS TO SI UNITS
 

To correct from- To- Multiply by 

psi N/m2 6894.76 

in m 0.0254 

in 2 1550.15 

Vac/in Vac/m 39.37 

deg/in deg/m 39.37 

in3/sec-mA m3/sec-mA 1.639xi0- 5 

in/sec m/sec 0.0254 

90
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