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ABSTRACT

A

This report describes simplified mathematical models of the Space

Shuttle's Orbital	 Maneuvering System (OMS), Reaction Control 	 System (US),

and on-orbit Digital Autopilot (DAP) that have been incorporated in the High-

Fidelity Relative Motion Program (HFRMP) for the HP-9825A desk-top calculator.

! Comparisons are made between data generated by the HFRMP and by the Space

Shuttle Functional	 Simulator (SSFS), which models the cited Shuttle systems

in much greater detail.	 These data include propellant requirements for

' representative translational maneuvers, rotational maneuvers, and attitude

maintenanceoptions. 	 Also included are data relating to on-orbit trajectory

deviations induced by RCS translational	 cross coupling. 	 Potential close--

range stationkeeping problems that are suggested by HFRMP simulations of 80 ;s

millisecond (as opposed to 40 millisecond) 	 DAP cycle effects are described.

The principal	 function of the HFRMP is to serve as a flight design tool 	 in

the area of proximity operations.	 However, the simplified models it uses may

be of value in other applications, for instance in ground-based orbit deter-

f.

mination	 (navigational)	 calculations.
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1. INTRODUCTION

The HP-9825A High Fidelity Relative Motion Program (HFRMP) is a 12

degrees-of-freedom trajectory integ rator (6 degrees of freedom for each of

two vehicles) which generates digital and graphical data to describe the rel-

ative motion of the Space Shuttle Orbiter and a free-flying payload. These

data are obtained by differencing the geocentric states of the individual

vehicles, computed to a numerical precision of 12 decimal digits, with respect

to an oblate earth whose gravitational model includes the second harmonic co-

efficient (J 2 ). The state of the two-vehicle system is computed as a function

of time by means of a fourth-order Runge-Kutta numerical integration scheme

which uses quaternions to define both the rotational and the translational

states of each vehicle (Reference 1).

The payload is modeled geometrically as a cylinder whose length and diam-

eter are specified by program input. The Orbiter and the payload are treated

as rigid bodies whose individual mass properties (gross weight, moments and

products of inertia, and center of gravity location) are specified by program

input and are assumed to remain constant during the HFRMP run. Gravity 'gra-

dient torque is included in the rotational equations of motion for both vehicles.

At the user's option, aerodynamic torque and drag can also be included for

either or both vehicles. 	 Aerodynamic_ forces normal to the relative wind vec-

tor are ignored.

The atmosphere is assumed to rotate with the earth, and is modeled as

a function of geodetic altitude by a curve fit of the 1962 Standard density

profile (Reference 2)	 The density profile can be modified by a program input

factor to account for the major effects of solar activity. Aerodynamic drag

and moment coefficients for the Orbiter ;ire computed as curve-fit functions of

its attitude with respect to the relative wind vector (References 3-5).

1

tAn exception is made when integrating the trajectory of an upper 'stage during
a-major translational maneuver such as an IUS solid rocket motor burn.' In
such a case, the payload gross weight is decremented during the burn to re-
flect the consumption of propellant.



/	 Aerodynamically, the payload is modeled as a flat plate whose size and

shape are determined	 .by 	its cylindrical outline Onto d pldD/^ normal
|	 ~ 

to the relative wind vector. The payload drag coefficient i5 assumed to be
^	 2.0, based OD its projected frontal area. Aerodynamic effects on the Orbiter

^
^ and the payload can be modified (or cancelled entirely) by means of input fac-'
^	 tors which ^r^ applied uniformly to all aerodynamic forces and torques that are
|	 '	 -^	 --

! computed for the specified Vehicle.

|

'
'̂

U^

Several options are provided for defining the initial state of the two-

vehicle System, The translational state Of the Orbiter can be described either
—
	_

! in terms of osculating Orbit elements referenced to th8 Mean Of 1950.0 /N50 \ geo-

centric equatorial frame, or in terms of invariant orbit elements (Reference b\

^ measured in the Mean Of Launch Date ( MLO) equatorial frame. The initial atti-

tude 	 is defined by pitch, yaw, and roll dOol8S (taken in that

/ order) referenced to the rotating Shuttle-centered local-vertical (3LV) roor-

^	 divatS system. The Orbjter / S angular V8locitv, measured in terms of rate

|	 CO0p0DeDtS about its body axes, can be defined relative to either tile M5 0
'

^	 /^D8rtidl\ frame or the 3LV (rotating) f^^^^-	 ]
|	 '	 '	 `	 ' 

The initial translational state Of the payload is defined by rectangular

! position and Y2/oc1tv components which are measured relative to tile Uybiter'S

center of gravity (CG ) . At the user's option, these components can be measured

i	 ^ L^ C0On^jDat8	 0r ^nt^^^ Shuttle ^«^v / 3BY) ^onrU^Dot^ ^v^t^m	 ^" ^	 	̂ ^xq^o/,,	 ---^ `	 '	 system.

| `	 The payload's initial pitch, yaw, and roll angles can be referenced either to

the payload-centered local-vertical (P[V) system, or to the SRY ` 5yStem. The	
`	

[^
payload's angular ` rate components about its body DXe3 can be defined relative`

to the M50, the PLV, Or the S8Y frame.

T_ initial - ^td^^ of t^^ SyGt^^ ^8n '^^ ^^V^D^^d't^r^Ug^ U^ to 40 flight^'	 ^	 '
prV 'ile segments, each Of arbitrary length, which are defined by the user at

f^	 '	 ~'	 '	 ` 	 ` ^	 '
the `beginning of the HFRMP run. ' At the beginning of any segment the user may

All input data, including the flight profile definition, are saved in disk
files whence they can be recalled (and edited, if necessary ) for use in
subsequent runs.

^

,` '



command the application of an impulsive (i.e., instantaneous) increment to the 	 s^

angular rate of _either or both venicles. 	 In this regard, the user may specify
1

a particular rate increment (INCR), a desired rate with respect to inertial

space (IR), or a desired rate with respect to the local -verti cal frame of the

vehicle in question (LVR). In all cases, the components of the desired rate

or rate increment are measured about the body axes of the vehicle in question.

After applying the specified angular velocity increment (if any) at the

beginning of the flight segment, the HFRMP then (for each vehicle independently

of the other)

1. a ll ows the attitude to drift (D) under the i nfluence of inertia and
natural torques, or

2. performs inertial rate hold (IRH) control (i.e`., maintains a constant
angular velocity relative to inertial space), or

3. performs local-vertical rate hold (LVRH) control (i.e., maintains a
constant angular velocity relative to the rotating local-vertical
frame of the vehicle being controlled)

for the duration of the segment, depending on the user's specifications for

that segment.

When the IRH or the LVRH attitude-maintenance option is specified for the

Orbiter, a simplified RCS/DAP model is used to compute average values for the

propellant consumption rates and translational cross-coupling accelerations that

result from the intermittent thruster firings which are required to apply the

necessary control torques. The model takes into account the mass properties

of the Orbiter, the electrical width (an integer multiple of the DAPcycle time)

and the effective width (the duration of steady-state acceleration) of the RCS

thruster pulses, and the width of the attitude deadband about each of the Orbiter's

tCommanded angular velocity impulses, and the linear velocity impulses which
they may induce as a result of RCS translational' cross coupling, are the only
types of state variable discontinuity that are permitted by the HFRMP. These
are allowed only at the beginning of a flight profile segment.

3
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1
a
a

body axes. Deadbands can be changed from segment to segment in the flight

profile, as can the selection of primary or vernier thrusters and the mode

of cross-coupling compensation. Translational cross-coupling accelerations

are integrated along with those produced by gravity, aerodynamics, and com-

manded translational thrust. They are reflected in the output data by the

flight path deviations they produce. Propellant consumption rates are also

integrated (but not subtracted from the Orbiter gross weight), and the accum-

ulated expenditures are tabulated, along with other data, a user-specified

- time intervals. Propellant consumption is broken down according to source

(forward, aft left, or aft right tank) and function (translational or-rota-

tional control)

When the 1RH or the LVRH attitude-maintenance option is specified for the

payload, the magnitudes of the necessary control torques are integrated and the

accumulated rotational impulse (measured in pound-foot-seconds) in the positive

and negative direction about each body axis is printed along with the other

digital output data. Since no specific method of implementation is modeled, it

is not possible to compute propellant consumption rates or cross-coupling effects

that may result from payload attitude control.

Translational thrust acceleration of either or both vehicles can be

commanded at the beginning of any flight profile segment. Payload translational

thrust is always applied in the direction of the payload's +X body axis and

is assumed to be directed through, the CG. Once initiated, payload thrust ac-

celeration continues until all of the rocket motor propellant is consumed, as

determined by a table of flow rates versus burn time.

Translational acceleration of the Orbiter is initiated by commanding

ignition of either or both of the OMS engines (L, R, or L+R) and/or by firing

primary RCS thrusters to produce thrust nominally in the positive or negative

directions of the Orbiter body axes (+X, -X,- +Y, -Y, +Z, or -Z). Once initiated,

Orbiter translational acceleration is applied continuously at the nominal steady-

state level, throughout the duration of the flight profile segment. -Detailed

descriptions of the OMS and RCS ` models are contained in Sections 2 and 3-.

4
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2. OMS MODEL

R '

	

	 The thrust vectors of the OMS engines are assumed always to pass through

their respective gimbal centers (STA 1518, BL + 88, WL 492) as defined by Ref-

erence 7 in terms of Orbiter station coordinates. When a single-engine OMS

burn is commanded, thespecified engine is gimbaled to direct its thrust vector

through the Orbiter CG. When both engines are commanded to fire, they are

gimbaled such that their two thrust vectors will be parallel and have moment

arms about the CG of equal magnitude and opposite direction. Thus, in all cases,

the OMS engines produce zero net torque.

Throughout the total duration of any flight profile segment in which it

is commanded to fire, each OMS engine is assumed to deliver its nominal steady-

state thrust magnitude of 6000 pounds, and to consume propellant at its nominal

rate of 19.16 pounds/second (Reference 7). Flow rates are inti2grated and the

accumulated propellant expenditure is listed separately for each engine in the
c'

HFRMP output data. However, the propellant expenditure is not subtracted from

the Orbiter's gross weight. Therefore, this simplified model will not generate

accurate data for a very large OMS burn where the propellant expenditure repre-

sents a significant fraction of the Orbiter gross weight.

N

i;
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3. RCS MODEL

Table l contains the basic data which are used to compute forces and

torques produced by individual RCS jets. Each row in the table contains data

for a particular jet. The first column on the left contains index numbers

which are used internally by the hFRMP. The second column contains the jet

identification mnemonics which are defined in Reference 7. The next three

columns contain steady-state thrust components parallel to the Orbiter body

axes. These are followed by three columns which contain the station coordi-

nates of a thrust application point (i.e., a point on the jet's line of action).

These coordinates are used, in conjunction with the quantity i'n the last col-

umn, to calculate torque about the Orbiter CG.

The data in Table l were derived from those shown in Tables 2 and 3,

which are reproduced from References 7 and 8. The thrust components in Table l

represent a summation of the basic thrust components from Table 2 and the in-

cremental thrust components (due to plume impingement on Orbiter sui~faces)

from Table 3. For each jet listed in Table 3, the thrust application point

coordinates in Table 1 were obtained by the following procedure;

1. Using the force componentsand application, points from Table2, a
basic force moment vector was calculated about the reference CG
location (STA 1076.7, BL 0, A 374.1) which is associated with
Table 3.

F

2. The torque increment due to impingement (from Table 3) was added to	 ti,
the torque calculated in step 1.

_i

3. The resultant torque vector was resolved into two components one
parallel to the total force vector (columns 3-5 of Table 1), and
the other normal to the total force vector.

4. The parallel torque component was divided by the magnitude of the total
force vector. The result, which has the dimensions of feet, appears 	 1
-in the rightmost column of Table 1

w

5. A litre of faction (effective thrust line) was calculated for the total
force vector such that its moment about the reference CG was equal to
the normal component, of the total torque vector. The station coordi-
nates of the new thrust application point (columns b-S of Table 1)
represent the ,point on the calculated thrust line that is closest to
the thrust application point originally designated in Table 2..

6



THRUSTER
NO.

THRUSTER
ID

FX
LB

FY
LB

FZ
LB

STA
(IN)

BL
(IN)

WL
(IN)

C
(FT)

1 F2F -879.4 -26.2 119.9 306.72 14.65 392.96 O.u000
2 F3F -879.5 0.0 122.7 306.72 0.00 394.45 0.0000
3 F1F -879.4 26.2 119.9 306.72 -14.65 392.96 0.000u
4 F1L -26.3 873.6 18.2 362.67 -69.50 373.73 0.00Uu
5 F3L -21.0 870.3 0.5 364.71 -71.65! 359.25 O.000O
6 F2R -26.3 -873.6 18.2 362.67 b9.50 373.73 O.000U
7 F4  -21.0 -87U.3 0.5 364.71 71.65! 359.25 U.000u
8 Flu -32.3 -11.7 874.4 35U.93 14.39 413.46 O.000O
9 F3U -31.9 0.0 873.5 350.92 0.00 414.53 u.U0uu

_10 r'lu -32.3 11.7 874.4 350.93 -14.39 413.4b 0.UODU
it F21) -28.0 -b16.4 -639.5 333.84 61.42 35b.95 O.u00u
12 FiL) -2d.-0 61b.4 -639.5 333.84 -61.42 350.95 u.Ouuu
13 V4  -24.8 -612.6 -639.4 348.44; 66.23 358.44 O.OuOu
14 F3U -24.8 b12.6 -639.4 348.44 -66.23 358.44 O.Uuuu
15 R3A 856.8 0.0 151.1 1555.29' 137.00" 473.06 O.Ouuu
16 R1A 856.8 O.0 151.1 1555.29! 124.'00 473.06 O.Uuuu
17 L3A 856.8 U.0 151.1 1555.29 -137;00 473.06 0.0u0u
18 L1A 856.8 -	 0.0 151.1 1555.29 -124:00' 473.06 O.OuOu
19 L4L 0.0 870.5 -8.4 1516.06 -1491;83 455.21 -0.5887
20 L2L 0.0 870.5 -8.4 1529.07 -149.83 455.21 -0.6061-
21 L3L 0.0 870.5 -8.4 1542.07 -149.;83 455.21 -0.6235
22 L1L -0.0 870.5 -8.4 1555.07 -149.183 455.21 -0.6410
23 R4R 0.0 -870.5 -8.4 1516.06 149.83 455.21 0.5887
24 R2R 0.0 -870.5 -8.4 1529.07' 149.83 455.21 0.6061
25 R3R 0.0 -870.5 -8.4 1542.07` 149.83 455.21 0.6235
26 R1R 0.0 -870.5 -8.4 1555.07 149.83 455.21 0.6410
27 L4U 29.0 72.0 870.0 1520;04 -116.51 481.65 -0.4615
28 L2U 29.0 72.0 870.0 1532:96' -116.54 481.65 -0.3725
29 L1U 29.0 72.2 870.0 1545187'- -116.58 481.65 -U.2636
30 R4U 29.0 -72.0 87U.01 1520.04! 116.51 481.65 0.4615

-31- R2U 29.0 -72.0 87u.0, 1532.96' 116.54 481.65 U.3725
32 R1U 29.0 -72.0 870. U, 1545.87 116.58 481.65 0.283b
33 L41)	 - 312.4 346.8 -545.7 1498.11 -1U1.47 420.49 1.7413
34 1,2U 312.4 346`.8 -54b.7' 1513.68 -1U0.61 414.63 1.1807
35 Lill 312.4 346.8 -545.7 1529.23 -99.79 428.76 1.21ub
36 R4U 312.4 -346.8 -545.7 149b.11 101.47 4'20.49 -1.7413
37 R2U 312.4 -346.8 -545.7 1513.68 100.61 424.63 -1.48u7
38 R3U 312.4 -346.8 -545.7 1529.23 99.79 42b.76 -1.22u8-
39 F5R -u.8 -17.0 -17.6 _ 324.35 59.70 350.12 0.UUou
40 F5L_ -0.8 17.0 -17.6 324.35! -59.70 35.0.12 0.uuUu
41 R5R- 0.0 -24.0 -0.6 1565.00 149.87 459.0 ,u O.Ouuu
42 L5L U.0 24.0 -0.6 1565.00 -149.87 459.00 10. OUuu
43 R5D 0.0 0.0 -24.0 1565.00 118.00 455.44 O.Ouuu
44 L5D, 0.0 0.0 -24.0 15b5.00 -118.Ou 455.44 0.UUuu

i
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Table 2. Basic RCS Thrust Data
(Without Plume Impingement)

STATION COORDINATES OF
THRUST COMPONENTS, LBTHRUSTER RESULTANT THRUST APPLICATION POINT 	 IN

ID THRUST, LB
Fx F  Fz STA	 - BL WL

F2F -879.4 -26.2 119.9 887.9 306.72 14.65 392.96
F3F -879.5 0.0 122.7 888.0 306.72 0.0 394.45
F1F -879.4 26.2 119.9- 887.9 306.72 -14.65 392.96
F1L -26.3 873.6 18.2 874.2 362.67 -69.50 373.73
F3L -21.0 870.3 0.5 870.6 364.71 -71.65 359.25
F2R -26.3 -873.6 18.2 874.2 362.67 69.50 373.73
F4R -21.0 -870.3 0.5 870.6 364.71 71.65 359.25

F2U -32.3 -11.7 874.4 875.1 350.93 14.39 413.46
F3U -31.9 0.0 873.5 874.1 350.92 0.0 434.53
Flu -32.3 11.7 874.4 875.1 350.93- -14.39 413.46
F2D -28.0 -616.4 -639.5 888.6 333.84 61.42 356.95
F1D -28.0 616.4 -639.5 888.6 333.84 -61.42 356.95
F4D -24.8 -612.6- -639.4 885.9 348_44 66-.23 358.44
F3D -24.8 612.6 -639.4 885.9 348.44 -66.23 358.44
F5F. -0.8 -17.0 -17.6 24.5 324.35 59.70 350.12

F5L -0.8 17.0 -17.6 24.5 324.35 -59.70 350.12

R3A 856.8 0.0 151.1 870.0 1555.29 137.00 473.06
K1 856.8 0.0 151.1 870.0 1;555.29 124.00 473.06
L3A 856.8 0.0 151.1 870.0 1:555:.29 -137.00 473.06
L1A- 856.8 0.0 151.1 870.0 1555';. 29 -124.00 ' 473.06

L4L 0.0 870.5 -22.4 670.8 1516'1.00 -149.67 459_00

L2L 0.0 870.5 -22.4 870.8 1529.00 -149.87 459.00
L3L 0.0 870.5 -22.4 870.8 1542;.00 =149.87 459.00

L1L 0.0 870.5 -22.4 870.8 1555j.00 -149.87 459.00
R4 0.0 -870.5 -22.4 870.E 1516.00 149.87 459.00
Fi2R 0.0 -870.5 -22.4 870.8 1529.00 149.87 459.00

F3R 0.0 -870.5 -22.4 870.8 1542.00 149.87 459.00

K1R 0.0 -870.5 -22. -4 870.8 1555.00 149.87 459.00
L4V 0.0 0.0 870.0 870.0 1516;00 -132.00 480.50

L2U 0.0 0.0 870.0 870.0 1529:00 -132.00 480.50

L1U 0.0 0.0 870.0 870.0 1542.00 -132.00 480.50
R4U 0.0	 - -	 0.0 870.0 870.0 1516:00 132.00_ 480.50_

R2U 0.0 0.0 870.0 870.0 1529.00 132.00 480.50

Rlu 0.0 0.0 670.0 870.0 1542.00 132.00 480.50

LLD 170.4 291.8 -801.7 870.0 1516.00 -,111.95 437.40

L2n 170.4-- 291.8 -801.7' 870.0' 1529.00 -111.00 440.00

131) 170.4 291.8 -801.7 870.0 3542.00 -110.06 442-.60

i

F4D 170.4 -291.8 -801.1 870.0 1,	 0.00 111.95 43J.40

R2D - 190.4 --291.8 -801.7 870.0 1529.00 111.00 440.00

R3D 170.4 -291_E -801.7 870.0 1542.00' 110.06- 442.60

L5D 0.0 0.0_ -24-.-0 24.0 1555.00 -118.00 ' 455.44

FSU 0.0' 0.0 -24.0 24.0 1565.00 118.00 455.44

L5L 0.0 24.0 -0.6 24.0 1565.00 -149.67 459.00

F.5R 0.0 -24.0 -0.6 24.0 1565.00 149.67 459.00

(Reproduced from Reference 7)
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THRUSTER
ID

A FORCE	 (LB) MOMENT (LB-FT)

F F F L L Lx y Z X y Z_

L4L 14 -450
L2L 14	 ` -450
LK 14 -450
L1 L 14 --450

L4U 29 72 1755 -2780
L2U 29 72 1755 -2780
L1U 29 72 1755 -2780

L4D 142 55 256 -2520 10,480 -1395
L2D 142 55 256 -2520 10,480 -13965
L3D 142 55 255 -2520 10,480 -1396

R4R 14 450
R2R 14 450
R3R 14 450
R1R 14 450

R4U 29 -72 -1755 2780
R2U 29 -72 -1755 2780
R1U 29 -72 -1755 2780

R4D 142 -55 256 2520 10,480 1395
R2D 142 -55 256 2520 10,480 1395
R3D 142 -55 256 2520 1-0,480-' 1395

1
3

1

Table 3. Force and Moment Increments Due to Plume Impingement
(CG @ STA 1076.7, BL 0, WL 374.1)



ii

For a CG location defined by arbitrary station coordinates (STA cg , BL cg,

WLcg ), the torque produced by a particular jet	 j	 is computed from the equation

Lj = Rj	 x Fj + C j Fj	 9 (l )

where

Fxj

Fj Fyj
(2)

FzJ

-(STAj - STAcg)/12

(BL
J

.	 -	 BL
^ g 

)/l2 (3)
J

i,

-(WLj - Aug)/12-

k
and where the values	 of F.,	 F	 .,

xJ
F	 ., STA.,	 BL., WL.,	 and C.	 are obtained from

,	 zJ` yJ J	 J	 J	 J
r	 columns 3-9 of Table 1.

1

r

j
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4. DAP MODEL

4.1	 JET SELECT TABLES

For each flight profile segment, the NFRMP user must specify which one

of three basic combinations of thrusters is to be used for attitude and/or

RCS translational control of the Orbiter , . The available options are designated

V (vernier jets), P (primary jets), and PZI (primary jets with +Z thrusters

inhibited). Corresponding to each of those options is a jet-select table

(Tables 4-6) which identifies -the particular jet or combination of jets that is

to be fired in response to each of the six possible translational acceleration

commands (+X, -X, +Y, -Y, +"Z, -Z) and the six possible rotational acceleration

commands (+ROL, -ROL, +PCH, -PCH, +YAW, -YAW)	 Jets are identified by the

mnemonics listed in the second column of Table 1. The jet select tables are

not routinely available for modification by the user. However, an editing rou-

tine is available in -the NFRMP software system, and changes can be made (or

additional options can be provided) with little difficulty.

As indicated in Table 4 by the absence of any jet designations for-tile

execution of translational acceleration commands, the V option (vernier jets)

can be used only for attitude control. The P option (Table 5) and the PZI	 a

option ,(Table G), can be used for translational and/or rotational control
r

In the PZI option, no jets are fired that would expel propellant directly

upward with respect to the Orbiter body. Translational acceleration in the down-

ward direction, if commanded, is achieved (at a comparatively high propellant

cost) by firing the +X and -X thrusters simultaneously'. The cant angles of

the !-X jet and -X jet thrust lines produce a small net acceleration in the +L
e

(downward) direction. This option normally is used only when 
.the 

Orbiter is

maneuvering in -the near vicinity of a payload that Must be protected from jet

plume impingement.

4.2	 RESPONSE MATRICES

During NFRMP trajectory integration, steady-state accelerations and

propellant consumption rates that result from RCS translational and rotational

control commands are obtained from a pre-calculated "response matrix". As

11



CMD
THRUSTERS TO BE FIRED

1 2 3 4 5
6 7

8

_h

+Y
—Y
+

+Ru L P L

'+YLri r'SK r':iL
j -YCIi. L J J l ^l^
+_Y A vV t^ 51i
-YA4 L5 L,

r

Table 4. Vernier (V) Jet Select Table



CMD
THRUSTERS TO BE FIRED

1 Z 3 4_
5

6
7

8

+X RiA L1A

-X
+Y r'1L L4L
-Y r'lLt R4L.=
+Z r'3u L4U ivAu
-Z r'ili v'2ij u41) 1.,21) R4i) K2u

+ROL Lou R4 
-ROL L4u R4,)
+PCII r'lU _r'ZL) 1.,4U i:4U
-PCH r"3u 1,4u R4L
+YAW k, 1.L R4R
-YAW e2 L41,

3

ORIGINAL PAGE IS
EopR QUA,IATY

Table 5. Primary (P) Jet Select Table

a

;i

a

{

F

r 13
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r

Table 6. Primary with +Z Thrusters Inhibited (PZI)
Jet Select Table

CMD
THRUSTERS TO BE FIRED

1 2 3 4 5 6 7 8

+A xiA LiA
- X r' L r' r' l r`
+Y r`iI, L4 L

-Y r:_Lih K411
+G I? 2 v , 1" 1 v, < 1E-I L ill

-L, r'iU 2,2L) L4U L2U x4U NIL U

+RU L L 4j
-AJL h4U
++ gal r'lU r' 2u

1'rl L 4 i^ t4t1

+YA J r'1L it4t^
-YAvi L'2A L4 L,

l
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indicated in Tables 7-14 for a typical set of Orbiter mass properties which are

listed in Table 15, the response to a particular command is conditioned by the

jet select table (V, P, or PZI), and it is further conditioned by the user-

specified mode of cross-coupling compensation. The available compensation modes

are NONE (no compensation), ROT (rotational compensation only), and FULL (rota-

tional and translational compensation).

The FULL compensation mode is not applicable when the vernier jets are

selected; f therefore, eight different response matrices are sufficient to sup-

port all of the Orbiter control options that are currently provided in the HFRMP.

Only one of these eight matrices is required to support trajectory integration

in a_given flight profile segment. All eight matrices are stored in disk files

prior to the initiation of trajectory integration, and the appropriate one is

read into calculator memory at the beginning of each segment. All eight matrices

are re-calculated whenever the user makes any kind of change to the Shuttle Data

Base (where the Orbiter mass properties are stored):

The response matrices are 12 x 12 arrays of real numbers. In a given

matrix, each row corresponds to a particular translational or rotational con-

trol command. ^,' The first three- columns of each matrix contain the body-axis

components of the steady-state linear acceleration vector, and columns 4-6

contain the corresponding components of angular acceleration. Columns 7-9

contain rates of flow from the forward, aft left, and aft right tanks (in that

order), for propellant consumption that is chargeable to translational control.

Columns 10-12 contain similar rates for propellant consumption, that is charge-

able to rotational control.`

4.2.1 Uncompensated Response Calculations

Linear accelerations appearing in the uncompensated response matrices

(Tables 7-9) are calculated by use of the equation

tThe compensation mode is internally; defaulted to ROT if the user specifies
FULL compensation for the vernier jets.

ttIn Tables 7-14, each matrix is partitioned' into two 12 x 6 arrays, simply
for the purpose of fitting it conveniently on a page. Command identifica-
tion mnemonics aretabulated in a column to the left of each matrix parti-
tion.

15



CMD
LINEAR ACCELERATION (FT/SEC2 ) ANGULAR ACCELERATION_(RAD/SEC2)

ax ay az aX ay az

+A 0 .UO OOO 0.00000 O. 00000 0. 00	 uO 0. 00000 0.Oouuu

-X 0.000Ou u.00000 0.00000 0.00000 J.O000O 0.0UuOu
+Y J,.UOuou 0.00000 - 0.O000u 0.00000 O.UuOOU U.JuuUu
-f 0.00000 0.00000 O.u0uu0 0.u0000 U.0000U U.Uuuuu
+L 0.00000 U. 00000 0.00000 0.0ou0J 0.u0uUU 0.Juuuu

- Z u.0000G u.uOUOu U.JUuUO U.ut:6ou u.u000u 0.UGUuu

+tWI, u.uuu00 0.00000 - J.uu38u U. 00u47 -U.uJU1 5 U.uuuU i

-Auj, C:	 u.J00uu U.J0000 - 0.00386 -u.uuizi - u.Juulb -u.uJuu l
+rcd -0.0002a 0.00000 -u.005e6 J.UUuuu u.uuu35 u.0uuuu
-rL^t U.0u00'G J.uUuUu -O.UO772 -u.JuuuU -O.UUu2j u.uvUUu
+YAV4 u.0Uuuu -O.u0366 -U.Uuuiu -0. uuuiL - 0.uuJuU U. ubui3

-Yti,v U.J000u u. UU306 -J.uuuiu U.uuu15 -U.0-uuuu -u.UuUis

PROPELLANT CONSUMPTION RATES (LB/SEC)

TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD
FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGHT
TANK TANK TANK TANK TANK TANK

+A u.uiluuu u.UUGUU J.uuuuu 0.0JUUu U.uuuOu O.uuuuu

-X 0.00JU0 u.UUUOG 0.00000 0.00000- O.uUOuu U.UUOuu

+Y U.0UU0'0 O.u0000 O.u00u0 0.00'000 0.00000 U.JUUJO
-Y 0.00000 U.u0i100 O.UOOOO U.OuJuu 0.000U0 U.J(JuuU
+Z 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
- G 0.00000 O.u0000 0.000Uu 0.00000. 0.00000 O.OJuuJ

+RUL 0.00000 0.00000 0.00000 U.00uOJ 0.09230 U.Juuou
-Kul, 0.00000 0.00000 0.00000 0.00000 0.00000 0.09230
+t, Cd 0.00000 0.00000 0.00000 0.18460 0. U000u 0.00000
-r	 tl 0.00000 O.uG000 0.00000 U. 00000 0.09230 0.09230
+YIvq 0.00000 U-.00000 -0.u0uUU U.uOuu0 0.000uu 0.0923U
-YA.a 0.00000 0.00000 u.u0000 0.L)001(i 0.09230 O.Jouuu



1

Table B. Uncompensated Response Matrix for Jet Select Option P

CMD
LINEAR ACCELERATION (FT/SEC 2 ) ANGULAR ACCELERATION (RAD/SEC2)

ax ay aZ ax ay aZ

+X 0.27504 0 . u 0 u 0 0 U. U4661 -u.uu0ui -U.u0u33 U.U06G1
-X -0.2d2j1 U.UUODU 0.03d57 -J.uuuUZ -O.uuLll -u. uuui
+Y -O.UJ423 0.2du55 U. 00158 u.uu707 - O.uUU3J 0.06365
-Y -J.U0423 -0.2duD5 J. 6015d - 0 . 0 U 7 J 6 -u.00U31 -O.UJ365
+'L 0.00420 0.00000 0.4204J -0.000U7 J.uJ103 -u.Uuuuu
- Z 0.19200 0.00000 -0.55503 5 0.00010 O.JUuo1 0.U00u1

+ROL 0.054 j2 0.0442u O.UO217 0.01591 U.UJ184 -0.00050
-ROL 0.054}2 -0.04420 0.05217 -0.01590 0.00131 0.Ju050
+Pcd 9.00032 O.J0000 0.074.15 0.00J13 0_02225 0.000i7u
-PCH O.U9537 0.uuu00 -0.03505 -6.0uuud -U.ui437 U.UUOUu
+YAd -0.UO423 0.9005'0 0.0015b -0.u0345 -0.UJU31 0.0123(3
-IA4 -0.90413 -0.00050 U.00158 u.u03•f^) - u.uu03j - u.01233

PROPELLANT CONSUMPTION RATES (LB/SEC)

TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD
FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGHT
TANK TANK TANK TANK TANK TANK

+/1 0.0000u 3.lullu 3.1u71U J.JuuuO J.JuuuJ u.uuuuu

-X 6.21420 u.J000U U.uuuuJ U.JJUUu 0.6uUUJ U.uJuuu
+Y j. lu 7su 3. lu'/lu U. uvjjU J. u00uu U. 0uduu u, u0vuu
-^C 3. 1(1 U.uuJuu 3.1u/lu U.UuOUu u.uuu0u u.uuuuu
+G 3. it17iO J.lullu 3.i.u71U O.Uuiuu u .uJuuu J. uuuuu
-4 0.21429 o.21420 6.21420 U.JUuJJ J.OJuuJ 0.uuuJu

+RJL 0.00000 u.uuUJu 0. 00000 J. 00000 j.lu7i0 3.lu71U
_Rj L 0. U0100 0 . u 0 0 u 0 U. UUuuJ 0. UUuOu J. 107lu 3.1u71u
+klcd U.u0U00 U. U0000 0.90990 b. 2142u 3.lullu 3.1U710
-P%11 u. J000 u u.JuuUU 0.JODU0 3.1U71U 3.1u71u 3.10710
+YAeJ J. 00000 0.00000 u.J000O 3.10710 U.0UJU0 3.1v71U
-YAW 0.000ou U. 00000 0.00000 3.10710 3.10710 U.Ju0JU



PROPELLANT CONSUMPTION RATES (L8/SEC)

TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD
FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGHT
TANK TANK TANK TANK TANK TANK

+X J.00000 3.10710 3.10710 0.00000 0.000J0 0.0JuJU
-X 6.21420 U.00000 0.00000 0.00000 O.UODUO 0.00OU0

+Y 3.10710 3.10710 0. 00000 U. UUUUu 0.0U000 0. 00U00
-Y 3.10710 0.00000 -j.1071U U. U0000 J.UUOOU 0.UU000
+G o.21420 3.10710 3. 1071) 0. UU00u 0.00000 0.000100
-^ 6.121420 o.21420 6.21420 0. UU000 O. UU 000 J. UODUU

+AO , U .J000U U.OUOOO J. 00000 U. UUUOU 3. i'u71U 0. UuuuU
- R U.u0000 U.UOOJO U.U000O 0.0000U U. 000u0 j.lu7lU
+ 0.U0000 U.J0000 U.JU00U 6.2i42u U.ODUUU U.UJUJU

J. u0uu0 u. UODUU U. uuuuu U. UOUJO 3. 1U710 3.1U7i0
+YA4 0.6U000 U.000JU 0.0U000 3.10710 U.UUUUU 3.10710

ZA"q u.UOUOU U.JUODU 0.0UU00 3. 1U' "71U 3. 1071J U.uUUUJ

0
t0

CMD
LINEAR ACCELERATION (FT/SEC2) -ANGULAR ACCELERATION (RAD/SEC2)

ax ay a aX «y aZ

+X 0.z750-4 U:u0O 0 U 0.U4dbl -0.00001 -u.JuJ3.3 U.UOUul

-X -0.261y1 0	 UOUuJ U.U3d:^7 -0.JOU01 -0.UJ211 - u.0uJul
+Y -O.u0423 0.28J55 U.0J15d u. UU707 -u.uuu3u u.uu3u^
-Y =u.UU423 -U.Zduo5 U.0U15J -U.Uu7ud -U.uausl' -u.Ju3b6
+L -J. Jo i21 J. u0000 u. uci7id -u. u!0uu3 -U. UUZ4 q -U. JUUUU
-^ U.ij2OO U.JO000 U. DDU;j ^) U.uuulu U.uuuni 0.UuUUl

+ttili, U.0S025 U.UD57b -0.0671b U.JUbd7 - U.Jurti;4 -u.uu123
-RJL 0.0DU25 -U. J--)576 -0. Ud 77d -0. UO6b8 -0. Ju2ju u. 0u123
+r,C- -0.00jui U. UU000 - U.t	 57'4 U.00J1z U.Ui2U3 U.UuuJO

- rid U.1005u U.U000u -U.i755o -0.uu'uul -U.UU59U U.JUuuu
+YAvi1 - 0.00423 0.00050 0.00158 -0. UO345 - 0.0u u31 O. u123u
-YAN -J.U0423 -0.0005u U.UU158 u.uu345 -u.UuJ3u -O.Uli3d

(See Table 15 for Orbiter Mass Properties)
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Table 10. Rotationally Compensated Response Matrix for Jet Select Option V

CMD
LINEAR ACCELERATION {FT/SEC 2 ) ANGULAR ACCELERATION (RADfSEC2)

ax ay az ax u  otz

+X 0.00000 0.00000 U.00000 O.ODUOJ U.ODUUU IU.UUUUU

-x -0.00000 0.00000 O.000OO 0.00000 0. uu0uu 0.0uuuj
+Y 0.00000 0.00000 0.00000' 0.00000 0. 00000 0.uu0uu
-Y 0.00000 0.00000 0.00000 -0.000Ju U.00uOJ U.UUuuj
+Z 0. UOODU 0.u0000 G. Uu000 U. uuuUu J. UJuJu u. Uuuu0
- 6 u.UOOOO U.00000 U. J00Uu u. uuuuu J. JuU00 U. UUJOU

+R01, -U.00011 O.U002i -O.UO022 u.00U2b J. Ouuuu U. uuUuu
- JL -0.u0U11 -J.U0028 -0.000i3 -u.000Z6 d.JuUUU u.uuuuU
+r ri -O.J002u -U.Uouuu -0.00571 -u.uuuOJ O.UUu35 U.Uuuuu

U. uuJUJ 0.00000 -u. u0173 J. 000ou - u.u uu2j U. 0uuuu
+YAA -u.JOODU - U.UO366 -U.uJ_ill - 7.uuuuu U.UUuUU U.JuJ1.4
-fA-A -0.000606 u.JU366 -U.OU375 u.Juuuu U.UUuJu -O.uUU14

J

PROPELLANT CONSUMPTION RATES (LB/SEC)

TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD
FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGS{T
TANK TANK TANK TANK TANK TANK

+4 0.000006 U.00000 O.UOUOU U.UUUUJ U.0000u U.UuuuJ

-X O.u0u0u u.u000u O.UOUuU u.uuu(iu u.uuuUu U.UUUUU
+Y 0.00000 0.00000 0.OU000 0. 00000 0.Ouw)0 1). 0000u
- 1 0.00000 0.00000 0. 00u00 O.00DUu u.uuUuu U.OJuJu
+'L 0.UJ'00U 0.00000 0.00000 0.00000 O.JuUUu 0.0u0uJ
-G 0.00000 0.00000 0.00000 0.00000 0. U0000 0.000uu

+AOL 0.0000u O.UOOOO 0.00000 0.070632 U.U^914 0. 000u0
-RUL 0.00000 U.00000 0.00000 0.07708 0.00000 0.099ud
+rCd 0.00000 0.00000 0.000OO 0.18460 -O.O0004 0.00103
-YCi 0.00000 0.00000 0.00000 0. UU000 0.03249 0.09230
+YA4 U.00000 0.00000 06.00000 0.046UU 0.05236 0.09230
-YA+V 0.00000 0.00000 U. 00000 U. 04b3`) U.0923U 0.05341

(See Table 15`for Orbiter Mass Properties)



PROPELLANT CONSUMPTION RATES (LB/SEC)

TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD

FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGHT
TANK TANK TANK TANK TANK TANK

+X 0.00000 3.10710 3.10710 0.09260 0.04962 0.04812
-X 6.21420 0.00000 0. u0000 0.b9174 0.30238 0.30422
+Y 3.10710' 3. 1U71U 0. Uu000 i.22751 2.76001 1,. JU563
-Y 3.10710 0.00000 3.1U710 i.235dO l.dl3u6 2.7930x'
+Z 3.1071U 3.1071U 3.1U710 U. 23769 0.25121 0.25242
-Z 6.21420 u.21420 b./-1320 U.i_J789 J.13y43 0.15651

+RU L 0.00000 0.u 0000- 0.00000 U.52u82 3.5u2i4 3.o27y2
-Rj.L 0. 000Ou U..UU000 u. uuuu0 U.Si543 3. u2-1,^i3 3.4902
+Pc;H J.000Uu U.000u0 0.00000 6.21x61 3.13390 3.1jt49
°-PCH 0.00000 0.00OU0 U. UOODU 3.10673 3.12 32 3 it3b9
lYAW 0.00000 O.U0000 O.UUUOO 3.u8i]-o U.0*6113 3.76ti23
-YAW O.UOU00 O.U0000 0.00000 3.U802u 3 7t bj2 0.b5y#82

O

O
a '^^r
A b

 

tot

CMD
LINEAR ACCELERATION (FT/SEC 2 ) ANGULAR ACCELERATION (RAD/SEC2)

ax , ay aZ aX ay aZ

+X U.2757U 0.00001 0.04973 0. 000u0 U,. 000UO O. UUuuu
-X 70.26Z74 U.00D03 U.04572 - U. uuu00	 - -U.0u000_ U.UOUOU
+Y 0.02797 0.25772 0.02775 0.0000O O.00uUO 0.uuu00
-Y 0.02811 -0. 25769 0. 0 2780 -0.00000 0.00000 0. 0uuOu
+Z 0.01172 0.00021 0.41798 0.00000 -U.00000 0.uuuu0
- Z 0.19652 - 0.00029 -0.55801 0.00000 - 0.0000u 0.00000

+RUL 0.0;6689 0.-04422 0.04777 0.01576 0.00000 -U.O0uUJ
-RUL 0.06670 -0.04422 0.04783 -0.01578 -0.00000 0.00000
+Pcti 0.00077 -0.00036 0.07458 0.00000 0.02226 -U.000u0
-YCH 0.09567 - 0.00024 -0.03477 0.00000 -0.01436 -u. uu0uU
+YA4 0.00768 0.01009 0.U1258 -0.00000 -0.00000 0.01227
-YAW U.00767 -O.U1008 0.01256 0.0U000 0.OU,00u -0.01227

NO

(See Table 15 for Orbiter Mass Properties)'



PROPELLANT CONSUMPTION--RATES---(LB/SEC)- 	 - --	 --	 -	 -

'TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD

FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGHT
TANK- TANK TANK. TANK i TANK TANK

+A U .JUuJu 3.1o7iJ 3. lU Ilu u. 1u z=45 J. JJ5J; J.00ZO f
-x 6.21410 u. uOj0o 0.UuUJ0 1. Jz3j 7 J.Oi244 U. U1210
+1 3,. lu	 LO 3_ 1u 71u - u. U 0 U 6 i 3. 3J7 1. 1J124_ 3. dtD!;3
=Y 3`.10710 0.uJJjU 3. 1JIiu 3.2JU51 3.:33737 1.2J.35u
+t 3 .21420 3. lu7.Lu 3, lu7lJ 1. 2U723 u. J15 y j U.0125u
-G u.2142J 0. 214-u 3.214z0 U. 03107 U.320uj U.372:;1

+iwL u.00u.JJ u.J000b U.O-iij1 1.7340: 3.luilU i).3u33
- 0.ji	 0O J J.UUuJJ u.JuuOO 1.77134 0.3JJsJ 3.1J71J
+ u . 0 0 J 0 0 0.00000 J.UOuou J. c2u3D U.Uuo1D J.u33!^v
-rC, d u.JUu0u u.UOJUJ u. U0000 U.uuJui 3.1u797 3. 1u71u
+YA;4 _u ,.0000U u.JUUdi; 0.uJUG0 3.:77	 4 1.5D344 3.iJllu
-ZA'I u.uu0U0 u.JU0u0 u.U000O 3.93115 3 .1071u 1.Du4-47

CMD
LINEAR ACCELERATION (FT/GEC 2 ) ANGULAR ACCELERATION--(RAD/SEC.- 	 -

ax ay az a °Cy a

0.17551 0.00JU3 0.04300 -O.u0uUU -0.00000 -u.uu0uu
-x -U.2o4iu U.00004 0.0034o -0.00000 -0.OuU00 0.uuOuJ
+Y u.u53o1 0.2i0y3 -0.17340 u.uouuU 0.00000 0.Uuuu0
-Y O.UD320 -0.21147 -u.17/2LJ - U.OUuuu- -u.JuuuJ U.0uuuJ
+Z -0.U066i 0.u0007 U.u465^j - U . U 0 0 J u U.uUUuu U.uUUJu
-Ij u.2U320 -0.00091 -0.57721 U.00000 -0.OuJuJ U.Ouuuu

+Rjl, U.U4771 0.U»d3 -u. 135d2 0. uuuDb - 0.0.iuu0 U.JuuUJ
-Rj.L 0.U4771 -O.u55d3 -u.13oul -0.Juo51 -u.uuJJu 0.OUuuU
+VC11 -J.uOdil -0.u01u1 -0.20731 0. uUJJ1 0. Ji264 U.uuuuu
-Y-il 0.1U0D4 0.00JU4 -u.l'75u3 U.uuJUu -J.uUS^lu u.UuuuU
+YH.4 0.Uly03 J.u2d3y -u. u7113 -U.UUUuJ U. UUuJJ U.ul17u
-YA4J 0.U1j61 - 1 .U20u J -0. 07157 O. J UUJ u.JJUJ U -U. u1175

0
O

k7
c^ >O

t4

(See Table 15 for Orbiter Mass Properties)
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PROPELLANT CONSUMPTION RATES (LB/SEC)

TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD
FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGHT
TANK, TANK TANK TANK TANK. TANK.

+A u.5537u 3 .06u93 3.u61du U.1U4 0J U.U'375 U.Ubly:)
-X 6.72346 0.5J914 U.SJy40'' 0.01309 0..11552 U. 31716
+Y 4 .3b%u$ 3.46822 O. j dllz 1.31173 2.d3dou 1.d534y
-^ 4.3'7.231 u.3dlti7 3. 469L)7 1.32331 i.86584 2.d4t)93

3.367o7 3.1u71U 3.10904 0.16327 U.265t4 U.Z6733
-G 10.5371B 6.L1"733 6.21420 0.55050 0.37133 0.3'932

+RJL 3.393 4 8 0.75763 1.29J59 0.95004 3. 33589 4.22J44
-RJL 3.38941 1.20116 0.75770 U. 94310 4.22245 3.32862
+Yv ^ 1..51900 0.88-138 0.8827a 6.29723 3.19159 3.16844
-YC1ri 2.69513 ' 0.44u32 0.44342 3.34012 3.2''020 3.206223
+ZA4 0.61690 0.17831 0.29388 3.16365 0.75217 3.d9763
-ZA-,V 0.61564 0.29943 0.17787 3.16236 3.3958 0.75045

CMD
LINEAR ACCELERATION (FT/SEC 2 ) ANGULAR ACCELERATION (RAD/SEC2)

' a x ay az ax ay uz

+A 0.20321 0 iJ000J 0.00000 0.0OU00 -0.0uUJ0 U-.00JJu
-x -0. 20654" -0.JOOOO -U.00000 0.00000 -0.U0000 U.O00uj
+Y J.UOU00 0.2577J -U.00DUO 0.JUJJU 0.J0JJO U.OUJJu
-Y U.00000 -0.25770 -0.00J00 -0.00J00 0.00000 O. JOJJJ
+Z' O.J0000 -J.uuGJu 0.419Du u.JOJJJ 0.O00J0 0.uu>Juu
-L -J.JOuuJ 0.00000 -u.52620 0.0OU00 -u.000uG u.UUuuJ

+xJL - 0.00000 O.J000O -0.00000 0.J1576 0 .000100 -u. JUJJJ
-tt:JL -0.00J00 -U.U0J00 -0.000J0 -6.ul57u -u.JUJJU O.UUuuu
+Ycil -0.00UJJ 0.00000 -0.00000 J. uuu0u 0.02226 -0. uuuuu
- e c n 0.J0000 U.0000J -0.Liu0uu J.JJuUU -U.u14so -0.UOUJu
+fA4 u_.u0uU0 u.UOUud U.UJcOUJ - O.J0000 U.iTOUJU U.u12z7
-Zo-N -U.UOUOJ U.JOUOU u. 00ouu J. uuJOu U. uuUUU -J.U12z7

7-

(See Table 15 for Orbiter Mass Properties)



Table 14. Fully Compensated Response Matrix for Jet Select Option PZI

CMD
LTNEAR-ACCELERATIO'N f-T/SEC 2 ANGULAR-ACCELE RAT?ON (RAD/SECS)

ax ay az aX ay Otz

+X 0.29067 -O.UOOUO 0.U0000 -O.UOUOU -O.U000O 0.000U0

-X -0.28288 0.00000 O.U0000 -0.00000 -0.000UU O.UUUUU
+Y 0.00000 -	 0.21120 -U.00000 0.00000 U.00000 0.00000

-Y -0.00000 -0;.,21120 -0.00000 -O. UOOOU -0.00U00 O. OOU00
+Z -0.00000 -0:00000 0.04787 -0.00000 -0.00000 -0.00U00
-"Z 0.00000 -0.00000 -0.57553 0.00000 -O.00UOO 0.00000

+ROL, -0.00000 -0.00000 0.00000 0.00655 -O.O'000O -U.ODUOO
-RU L: 0.00000 -0.00000 0.00000 -0.00651 -0.00000 0.00000
+PCH -0.00000 -0.00000 0.010000 -0.00000 0.01264 0.00000
-P--H -0.00000 -0.00000 0.00000 -0.00000 -0.00590 0.00000
+YAr7 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.01176
-YAvi -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.01175,

^	 W

PROPELLANT CONSUMPTION RATES (LB/SEC-)-

TRANSLATIONAL CONTROL ROTATIONAL CONTROLCMD
FWD AFT LEFT AFT RIGHT FWD AFT LEFT AFT RIGHT
TANK TANK TANK TANK TANK TANK

+X 0.46330 3.57U88 3.57040 0.16626 0.02999 0.03U3U
-X 6.25160 O.U3693 0.U3740 1.04765 0.01498 0.01467
+Y 26.67336 14.65366 11.54656 7.87348 1.36162 3.91333
-1 26.50964 11.46686 14.57396 7.82500 3.89733 1.34563
+Z 6 .21528 3.20395 3.20503 1.21355 0.01-751 0.013U4
-Z - 10.67118 6.22715' 6!21420 0.79452 0.34402 0. 397dO

+RJ, 25.690'67 12.12785 12.95239 7.45309 4.18962 0.7U401i
-RUL, 25.70410 12-.98268 12.16461 7.47731 U.722.13 4.18116
+PCH 27.05628 14.04470' 14.U3455 11.51797 O.U8930 0.13194
-PCd 25.02923 ! 11.76977 11.77451 4.826':57 3.18031 3.16041
+YAv1 13.23199 6.3044 0 6.°72368 6.90517 2.10436 3.3Ui3.i6
-IA4 13.34197 ' 6.776 96 6.35791 6.93498 3.31869 2.11b34



ITEM DESCRIPTION VALUE

GuuuiZ. UJUU LU
1 1AA.... ................................. uu %3u,^.u00U
3 ill.	 . ...	 ...	 ..	 ..	 .......	 ...	 ... 6-1ou 37 1.000x) JLu3 — r`2 2
4 ..	 ...	 .........	 ..	 ............ J0J4Jo /.. uJUU

1Y^ .	 ....	 ....	 .....	 ... — 9'!l. uu0ii
u 1Z,:.'..	 ..	 ..	 ...	 ......	 .... 2-4737o.Uuu0	 ^LUv —r"1^l
I1XY... ...	 ..	 ...	 ................ 5b^1. Ju 0 L JLU,3 — r 1=

9 ^-;	 LL........	 ........	 ..	 ........... L)..iuuJ	 1iY
10 ^YL.	 .	 ..	 .........	 ............. 3 i7.4UUu	 ica
11 SENwi--ST A.	 .....	 ....	 ......... 500.70U0	 ILi
12 3L:43jh	 31,..	 ..........	 ....	 ....... 1.31. li000	 1L4
13 6E,gsun	 tia,....	 .......	 ......	 ..'...	 .. 44u.luui	 1^
14 6 E Sit',	 AXr S	 Yl fCil........	 ............. 9U. Uu_Uu	 jJEV
15 3Ei46Jh	 AXc„i	 Y'Aiv .	 .....	 .........	 ....... U.UuJU jr 3.
16 SEA.^JA AXES	 ik6LL ....................... —ii 7.0000	 Uliv
17 uAP	 i.Y::LE...	 ..	 ..	 ........... 3J.JUuv _4lLLI3LL



EF .
x^

a = (32.174/W)	
EFYj	

(4)

EFzj
a

where W is the Orbiter gross weight and where zF xi , FFyj , and EFzj represent

the sums of thrust components (from Table 1) for all of the thrusters that are

designated in the appropriate jet select table (Tables 4-6) to be fired for the

purpose of implementing the command under consideration. The corresponding

angular accelerations are given by

a = q o a o 	 (5)

where

Lx/Ixx

LYIIYY	
(5)

..^Lz/ Izz

Lx
f

L	 Ly	 q o EL j o q	 (7)

Lz

and where EL j represents the 'sum of the individual torque vectors produced

by the designated thrusters,, as calculated from Equations (1) through (3).

The symbols Ix X , Iyy , and IZ Z represent the Orbiter's principal moments of

inertia, and primed vectors represent those whose components are measured

along the corresponding principal axes.

Expressions (5) and (7) are coordinate transformation equations (see

Reference 1) in which q represents the unit quaternion-that defines the angular

displacement of the Orbiter's principal axes of inertia with respect to to

body axes, and q represents its conjugate. The quaternion q is computed

internally by the HFRMP in such a manner that the associated rotation of

coordinates will transform the inertia tensor

25
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I
xx

[I] _ -Ixy

-I
zx	 yz	 zz

(which is composed of user-specified moments and products of inertia about the

Orbiter's body axes) into the diagonal form

I xx	 0	 0

[ I ^	 0	 Iyy	 O	 (g)

0	 0	 I^
zz

Propellant flow rates (columns `7-12),are assumed to be 3.1071 lb/sec for

each active primary jet and 0.0923 lb/sec for each active vernier jet. These

rates are based on the nominal 'vacuum thrust magnitudes (870 lb and 24 lb)

and specific impulses (230 sec and 260 sec) that are given in Reference 7.

Each thruster is assumed always 'to be fed from its nominal source (tank), no

-provisions are made for simulating propellant cross-feed.

4.2.2 Compensated Response Calculations

The compensated response matrices (Tabl es 10-14) are obtained by per-

forming elementary row operations on the uncompensated response matrices'

(Tables 7-9). Specifically, appropriate rows in the uncompensated matrix are

multiplied by ` positive factors and added to other rows in such a`manner as to

null the unwanted cross-coupling accelerations. The positive factors represent	
{

idealized ratios (calculated without regard to minimum-impulse or other limi-

tations) of the firing time required of tile compensating jets with respect

to the firing time of the jets activated by the primary command.
u	 'r

The results of the computations described in the preceding paragraph

are such that propellant consumed in the process of nulling cross-coupled

angular accelerations is charged to rotational control, and that which is

consumed in the process of nulli ng cross-coupled linear accelerations is charged`

to translational control, regardless of the nature of tile primary coamtand.

_Ixy	
Izx
	

I

Iyy	
IYz

	 (8)

-I
	

I

E
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4.3	 ATTITUDE CONTROL LOGIC

For the purpose of (1) applying an angular velocity impulse at the be-

ginning of a flight profile segment or (2) exercising rate-hold control (IRH

or LVRH)-within a segment, the HFRMP always applies rotational cross-coupling

compensation, whether or not such compensation has been specified by the user.t

For the aforementioned purposes, the compensation mode is internally defaulted

to ROT if the user has specified NONE; otherwise, the user's specification is

applied.

4.3.1 Angular Velocity Impulses

At the beginning of each flight profile segment, the HFRMP determines

the direction and magnitude of the instantaneous angular rate increment that is

to be applied about each of the Orbiter's body axes 	 These three increments

may be supplied directly by the user (the most common specification being zero

for all three components), or they may be calculated internally to yield user-

specified final (post-impulse) rates with respect to inertial space or the

Orbiter's local vertical frame. For each axis, an effective thruster firing

time is then calculated by dividing an angular acceleration into the angular

velocity increment, the acceleration being obtained from the appropriate row

(+ROL, -ROL, +PCH, -PCH, +YAW, or -YAW) and column (4, 5, or 6) of the applicable

response matrix (Table 10, 11., 12, 13, or 14). The entire row of the matrix

is then multiplied by the effective firing 'time, and the resulting linear velocity,

angular velocity, and propellant consumption increments are _added immediately

to the appropriate state variables and propellant accounts.

4.3.2 Rate-Hold Control

The HFRMP trajectory integration step size typically is several orders

of magnitude greater than the DAP cycle time; therefore, it is not practicable

to simulate the individual thruster firing pulses that are commanded by the

tThe reasoning here is that it makes little difference in the long run whether
the effects of rotational cross- coupling are removed immediately upon imple-
mentation of a-primary command, or a'short time later when the pilot or the
DAP determines (on the basis of angular velocity and/or displacement errors
detected by the IMU) that a corrective command is required.

27



real-world DAP for the purpose of maintaining the Orbiter attitude within

specified deadbands. The long-term effects of pulsed thruster firings are

simulated in the HFRMP by integrating the average accelerations and propel-

lant consumption rates that result from such pulses. An idealized and very

greatly simplified control logic is used for this purpose. The rationale is

that if the idealized logic is designed to minimize the average propellant

consumption, subject to the basic constraints of the real system, it will pro-

duce essentially the same long-term effects as the real world DAP.

At a given instant of time, suppose that inertial effects and natural

torque (due to aerodynamics, and the gravity gradient) are such that, if not
counteracted by the attitude control jets, they would produce an undesired

angular acceleration component of magnitude v about one of the Orbiter's

body axes. When the user specifies the IRH option, v represents the appro-

priate body-axis component of the Orbiter's total natural acceleration (rela-

tiveto inertial space); when LVRH is specified, it represents the difference

between the natural acceleration of the Orbiter and that of its local-vertical

i reference frame.

For the purpose of calculating average effects of the control system

response, we treat v as if it were a constant, and write the equations

_w = w 0 + vt	 (10)

E	 and

e	 e
0 + co 0 t'+ IZvt 2	 (11 )

y	 to describe the uncontrolled angular velocity and angular displacement (about

the axis under consideration) as functions of time.

The purpose of the attitude control logic is to maintain the angular
displacement '-e within the limits of -D and +D, where D represents, the user

specified deadband width, in such a manner as to minimize the RCS propellant

28

8



consumption. Figure 1 illustrates an idealized case f in which © 0 = D and

w0 = -'Zowopt' where

ow	 = 
4opt	

Dv	 (12)
 ) j

represents the magnitude of a uniform corrective rate increment that is applied

at a regular interval

T	 4 D/v	 (13)Max

Equations (12) and (13) are obtained by solving Equations (10) and (11)

for the angular velocity increment -that minimizes the average propellant con-

sumption rate, which (for any value of -2w0 = Aw < 4 Dv ) is given by

W = ( T/T) Wa 	(14) 	 q

where Wa is the steady-state consumption rate of the thrusters which oppose

the natural acceleration (i.e, Wa is the sum of columns 7-12 from the appropriate

row of Table 10, 11, 12, 13.,-or 14), T is the electrical pulse width of the

corrective thruster firing, and

is the interval between pulses. The magnitude of the angular velocity incre-

ment is related to T by the equation

Aw - a	 ,	 (16)	 .

y	
where

'The idealization consists of using angular velocity impulses to represent
thruster firings, and of making the magnitude of <w0 precisely half the magnitude
of the corrective impulse ow. This is the average magnitude' of'wp, which is
randomly distributed between 0 and 'Aco'in the real world.	 -
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T* = T	 .014 seconds	 (17)

is the effective pulse width and where a is the magnitude of the steady-

state angular acceleration produced by the control jets that oppose the

natural acceleration.

When (15), (16), and (17) are substituted into Equation (14), the

average propellant consumption rate is found to be related to Aw by the ex

pression

W	
0 + 1014a ) wav	 (13)

Aw	 a

Equation (10) shows clearly that the average propellant consumption rate in-

creases when the angular displacement is undercontrolled (i.e., when Aw <

4 V Uv ), as illustrated in Figure 2. If -2w 0 	ow > 4 Dv , then it becomes
necessary to apply control pulses at both the upper and the lower deadband limits,

as illustrated in Figure 3. This represents an overcontrolled situation that

is even more inefficient than undercontrol because it results in the alternate

firing of thrusters that oppose each other. Clearly then, in the idealized

case under consideration, the optimum value of -ow is given byEquation (12), from

which we obtain

T	 4 Dv /a + . 014 seconds	 (19)
opt

for the optimum electrical pulse width of the average corrective impulse.

So far, we have treated T as if it were a continuous variable. How-

ever, in the real world, T must be an integer multiple of the DAP cycle

time C. Therefore, we write

T	 NC ` ,	 (20)

where

N	 MAX (1, INT (Tope/C))	 (21)-
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and where 
Topt 

is obtained from Equation (19). The function MAX (X,Y) repre-

se

n

ts the maximum value of the arguments X and Y, and the function INT (Z)

represents the integer part of the argument Z.

Equations (0) and (21) imply that some degree of undercontrol or over-

control is unavoidably required in the general case. The degree of overcon-

trol (if any) is reflected in the value of 0 , which represents the average

acceleration magnitude produced by the reinforcing jets (those which produce

torque of the same sign as the natural acceleration), and which is given by

one or the other of the two equati ons

fIf INT (Tap ,/C)	 0]: Q = (T*) 0 /16D -	 (22a)

and

[If INT (Topt/G)	 0]: r = 0	 (22b)
}

where 1* is given by Equation (17) . Equation (22a) can _ be obtained by sub -
stituting aT* for Awo t and (v + L,) for v in Equation (12) 	 The value of r^

represents the idealized' minimum amount by which the natural acceleration
v must be supplemented in order to balance the counteractive control _pulses

of fixed magnitude aT* ^ ^^ (NC - 0.14).

After having calculated ki , the average magnitude of the counteractive
jet acceleration is obtained from the equation

which describes the aforementioned balance of average accelerations.

'r

''To arrive at Equation (22a), the acceleration from the reinforcing jets is
treated as if it acted continuously at the average level. A greater~ value,

i	 approaching Q T (a0) 2/80 -- v as v approaches zero , would be obtained if r3
were treated asthe average resulting from uni form angular velocity impulses
applied at the lower deadband l imit. The use of Equation (22a) is justified
on the basis of the better agreement between the results it produces and those
produced by more detailed simulations of the actual onboard DAP logic (Section g).
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To calculate the average linear and angular acceleration vector com-

ponents that result from controlling angular motion about the body axis under	 t

consideration, the data in columns 1-6 of the appropriate pair of rows	 (+ROL

and -ROL, +PCH and -PCH, or +YAW and -YAW) in the response matrix (Table	 10,

11 1 	12,	 13,	 or 14)	 are multiplied by the acceleration factors

Aa - a/a (24)

and

AR = G/R (25)

-where R represents the steady-state angular acceleration magnitude produced

by the reinforcing jets. 	 The factor AA is applied to the row which represents

-	 a commanded rotation of the same sign as the natural	 acceleration component,

and A	 is applied to the rote which represents a commanded rotation of the

opposite sign. i
f

To calculate the corresponding propellant consumption rates, columns	 to
€1

7 -12 are multiplied by the factors

P	 = Aa	 (T/T*) (26)

'f1	 and

P	 = A	 (T/T*)	 a (27)

'x

where, as indicated by Equation	 (17), T/T* represents the ratio of the elec-{

trical width to the effective width of the average control	 pulse. Equations

(26)	 and	 (27)	 represent an implicit variation of specific impulse (ISP)	 with

electrical pulse width.	 This variation is illustrated for the PRCS jets in

Figure 4, where the implicitly-defined HFRMP values are superimposed on acurve

reproduced from Reference 7.
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The HFRMP performs the calculations defined by Equations (19) through

(27), for each one of the Orbiter's three body axes, at every point in the

trajectory calculation process where state variable derivatives are computed.

The attitude-control propellant consumption rates and the associated components

of linear  and angular acceleration are summed with their counterparts which are

e	 ( g ravity, aer odynamics, and commanded translational

	

produced by other effec ts (g	 y,	 namicsY

thrust), and then integrated by means of a 4th order Runge-Kutta scheme to

calculate the Orbiter's state vector and propellant expenditure as a function

of time.,

As a final "note of interest with respect to the simplified rate-control
logic,, Equations (19) through (23) indicate that the average acceleration mag-

nitude in each direction of rotation about a given axis is given by

1	 3	 U	 (C-.014) 2/16D	 (28)

whenever v is of negligible magnitude. When this result is substituted_ into

Equations (26) and (27) , the average propellant consumption rate for attitude

control about the axis under consideration is found to be

i
aC ( C -.014)	 lY►,^	 (W +	 W,)	 (29)16O	 4x	 k^	 a

where W^ and WV respectively, are the steady-state propellant consumption rates

for the thrusters that oppose and reinforce the natural acceleration. Further

snore, the cited equations indicate that the average consumption rate decreases

to a value of

W = -IC (C-.014)	
W	 (30)160	 a

when the natural acceleration magnitude increases to the value

v = [a(C-.014)1 2/16D	 ,	 (31)

i

1
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and that any further increase in the value of v causes W to increase

again. Equations (29), (30), and (31) very succinctly illustrate the basic

relationships between the DAP cycle time C, the deadband width D, and the

average propellant consumption rate due to attitude "deadbanding". The impli-

cations of these equations are of course subject to the limitations of the

simplified rate-control logic. One of the more significant limitations is the

assumption that the natural acceleration isconstant everywhere within the

attitude deadband. This clearly will not be true when the deadband is very



S. COMPARISON OF HFRMP AND SSFS DATA

For the purpose of verifying the HFRMP OMS/RCS/DAP models, a consider-

able amount of data were generated with the HFRMP to be compared with similar

data which were generated by the Space Shuttle Functional Simulator (SSFS)

and published in References 9 and 10. Iii the SSFS, thruster firing commands

are computed at the same frequency as that of the real-world DAP, using a

jet-select logic and ari idealized limit cycle control law representative of

the Shuttle onboard software. As pointed out previously, the HFRMP does not

simulate individual RCS thruster firing pulses, but instead calculates the

average accelerations and propellant rates that result from such pulses in

an attempt to simulate their° long-term effects. Aside from this basic dif-

ference in simulation technique, the following differences are known to exist

between the environmental and Shuttle system models that were used in the

two programs

1. The primaryreaction control system (PROS) thrust and moment data
contained in Tables 1-3 differ significantly in some instances from
those which were being used in the SSFS when the data were gener-
ated for References 9 and 10.

2. Although both programs use the 1962 Standard atmosphere model to
calculate density as a function of altitude, altitudes are calculated
with respect to a spherical earth in the SSFS. In the HFRMP, alti-
tudes are referenced to the Fischer ellipsoid.

3. The atmosphere is assumed to be stationary (in a geocentric inertial	 v
frame) in the SSFS, while in the HFRMP it is assumed to rotate with
the earth.

4. The aerodynamic coefficients used in the SSFS (at least during the
generation of data for Reference 9) were representative of a doors-
closed Orbiter configuration. In the HFRMP, aerodynamic coefficients
are calculated from curve•-fit equations that include analytical -esti-
mates of the effect of open doors.

5.1	 PROPELLANT CONSUMPTION
3

5.1.1 Tran slational acid Rotat ional (Maneuvers

Tables 16 and 17 contain PRCS propellant requirements for different types

of translational and rotational maneuvers, as calculated by the SSFS and by

the HFRMP	 Two different cross coupling compensation options (ROT and FULL)

were used in the'HFRMP-calculations, and the results; obtained from both options
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COMMANDED DIRECTION OF TRANSLATION

+X -X tY +Z -Z

SSFS	 (REF.	 9) 27 30 42 23 43

HFRMP (ROT COMP.) 23 26 47 _	 24 34

HFRMP (FULL COMP.) 28 34 55 25 46

COMMANDED ROTATION

ROLL- PITCH YAW

SSFS (REF.	 9) 18 22 24

HFRMP (ROT COMP.) 17 21 21

HFRMP (FULL COMP.) 32 29 25

Table 16. PRCS Propellant (Lb) Required to Produce a Linear
Velocity Increment of One Foot per Second

(See Table 15 for Orbiter Mass Properties)

i

Table 17. PRCS Propellant (lb) Required to Start and Stop
a Rotational Maneuver Executed at a Rate of
One Degree per Second



are contained in the cited tables. For each maneuver type, the circled HFRMP

value represents that generated with the compensation option which most nearly

approximates the type of compensation applied in the SSFS simulations.

The SSFS data are taken from Reference 9 The attitude deadbands were

set at 0.5 degrees per axis and the translational cross coupling thresholds

(which must be exceeded before any compensation is applied) were set at 0.3

feet per second per axis for the SSFS calculations. The propellant consump-

tion data were based on simulated linear velocity increments of one foot per

second, and angular velocity increments of one degree per second. For maneu-

vers of this magnitude, the translational cross coupling threshold was ex-
ceeded only in the case of Z translation. Therefore, the HFRMP compensation

mode that most closely approximates the SSFS simulation is FULL in the case of

-Z translation, while in all other cases it is ROT. No threshold values are

involved in the HFRMP compensation logic; the effects of cross-coupled acceler-

ations are either removed completely and instantaneously, or not at all.

Considering the differences in simulation methods and in the basic PRCS

force and moment data, the HFRMP propellant consumption values shown in Tables 	 r

16 and 17 are reasonably close to those generated by the SSFS. OMS propellant
consumption data generated by the two programs were identical: 19.9 pounds

for a velocity increment of one foot per se,:nd, with an Orbiter gross weight

of 200 017 pounds.

5.1.2 VRCS Attitude Maintenanc e

Table 18 contains vernier reaction control system (VRCS) propellant_

consumption rates for five different-attitude-hold options and six orbit

altitudes. These data, taken from Reference 9, were generated by the SSFS

witha 40 millisecond DAP cycle 'time and attitude deadbands of 0.1 degrees

per axis. Table 19 contains comparable data which were generated by the HFRMP,

using the ROT compensations option and the rate-hold control logic described in

Section 4.3.2. The orbit inclination was set at 20.5 degrees for all HFRMP

attitude-maintenance runs.
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Table 18. SSFS Propellant C
Attitude Maintena

(Deadband

N

90

X POP INERTIAL HOLD 9

Y POP INERTIAL HOLD 3
W
O

I

Z POP INERTIAL HOLD 15

X POP ZLV_(HEADS DOWN) 23

Y POP ZLV, (HEADS DOWN) 1



Table 19. HFRMP Propellant Consumption Rates (Lb/Hr)' For VRCS
Attitude Maintenance, With 40 mSec DAP Cycle

(Deadband = 0.1 Deg/Axis)

y-

-saw

ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP INERTIAL HOLD 14 7 3 2 2 1

Y'POP INERTIAL HOLD 3 3 3 3 2 2

w'0
'— Z POP INERTIAL HOLD 17 11 8 6 6 4
f--

X POP ZLV (HEADS DOWN) 31 17 6 2 1 .4

Y POP ZLV (HEADS DOWN) 7 .5 .4 .4 .4 .3

(See Table 15 for Orbiter Mass Properties)

t - Averaged over a one-orbit period



.	 ..._ . .

The agreement between the VRCS propellant consumption data produced by

the two programs is considered to be excellent except at the two lowest altitudes,

where the differences in the atmosphere and aerodynamic models are sufficient

to produce significant differences in propellant requirements for the X POP ZLV

(Orbiter X axis Perpendicular to the Orbit Plane, Z axis continuously aligned

with Local Vertical), the Z POP Inertial Hold, and the X POP Inertial Hold modes.

The data contained in Tables 13 and 19 represent hourly rates, averaged

over one orbit period. The presentation of the data in this manner should not

be taken to mean that propellant consumption is a linear function of time in

all cases. The HFRMP data shown in Figure -5 illustrates that the instantaneous

rate can vary significantly over the time span of an orbit period.

5.1.3 PRCS Attitude Maintenance

Tables _20 and 21 are analogous to 18 and 19, the differences being that

attitude control was executed by the PRCS rather than the VRCS, and the dead-

bands were widened to 0.5 degrees per axis. The agreement between the results

of the two programs is riot as good as that previously demonstrated for VRCS

control. The poorer agreement can be attributed partially to the differences

_ in the basic PRCS force and moment tables. However, these differences are not

believed great enough to explain all of the disparities between Tables 20 and

21, which probably for the most; part reflect the inherent limitation of the`

simplified HFRMP logic when it comes to modeling the effects of the relatively

high degree of overcontrol that often attends the use of tiie PRCS for attitude

maintenance. Nevertheless, the agreement is considered adequate to satisfy

the purposes of the HFRMP'I', especially when taking into account the limitations

of the computing equipment for which it was designed.

t i.e., relative motion studies relating to Orbiter/IUS proximity operations
of comparatively short duration.
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ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP INERTIAL HOLD 32 30 26 23 21 20

Y POP INERTIAL HOLD 22 16 12 10 10 18

0

~ Z POP INERTIAL HOLD 36 28 26 24 23 24

F-

X POP ZLV (HEADS DOWN) 49 38 27 23 20 14

Y POP ZLV (HEADS' DOWN) 18 18 18 18 18 17

(See Table 15 for Orbiter Mass Properties)

t - Averaged over a one-orbit period



Y

Table 21

	

	 HFRMP Propellant Consumption Rates (Lb/Hr) For FRCS
Attitude Maintenance, With 40 mSec DAP Cycle

(Deadband = 0.5 Deg/Axis

ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP INERTIAL HOLD 29 26 24 24 25 26

Y POP INERTIAL HOLD 20 19 20 20 20 20

w
a

Z POP INERTIAL HOLD 28 23 18 17 17 16
F-
d

X POP ZLV (HEAD- DOWN) 42 34 25 25 26 27

Y f)P ZLV'(HEADS DOWN) 27 27 27 27 27 27



5.2	 TRAJECTORY PERTURBATIONS DUE TO RCS TRANSLATIONAL CROSS COUPLING

Tables 22 and_	 23 contain HFRMP data relating to downtracl: displacement

of the Orbiter which results from uncompensated translational cross coupling

during extended intervals of DAP attitude maintenance. The data were obtained

by differencing the results of HFRMP runs in which ROT compensation was speci-

fied (in conjunction with both the V and the P jet select options) with similar

runs in which the FULL compensation mode was specified in conjunction with the

P jet select option. The displacements obtained with ROT compensation in-

cluded the effects of aerodynamic drag and translational cross coupling, while

the displacements obtained with FULL compensation included the effects of drag

alone. Since the attitude histories were identical for all three combinations

of jet-select option and compensation mode, it was 'reasoned that the displace-

ments due to drag were essentially the same. It follows that when the displace-

ments obtained with FULL compensation are subtracted from their counterparts

obtained with ROT compensation, the result represents the displacement due to

translational cross coupling alone,.

Reference 9 contains no data of the type, cinder consideration here. How-

ever Reference 10 contains comparable data for two cases: Y POP ZLV at 150

miles altitude, with VRCS and PROS control. The Reference 10 data, which

were derived from SSFS simulations, are enclosed by parentheses in Tables 22

and 23. The comparisons, although severely limited in Number, tend to verify

the HFRMP results.1

Trajectory deviations due to RCS cross coupling are of considerable

import in at least two areas of on-orbit activity:

1. during stationkeep ng, where they tend to drive the Orbiter away
from its desired position relative to a payload, and

2. during orbit determination, where they tend to pollute navigational
measurements.

By no means should the data in Tables 22 and 23 be taken as comprehensive

general representations ,of cross coupling effects on the Orbiter's trajectory.

In the first place; significant displacements can occur in directions other

than down'track. Secondly, the displacements in general are very nonlinear

functions of time; therefore, the hourly "rates" shown in the cited tables

46
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Table 22. HFRMP Downtrack Displacement Pates (Ft/Hr)' Due To VRCS
Translational Cross Coupling, With 40 mSec DAP Cycle

(Deadband	 0.1 Deg/Avis)

ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150_ 200 500

X POP INERTIAL HOLD 1022 804 252 216 254 234

Y POP INERTIAL HOLD 343 404 448 466 469 428

0

Z POP INERTIAL HOLD -149 -82 -31 -7 0 14
f

CC

X POP ZLV (HEADS. DOWN) 2280 1214 447 145 45 19

Y P)P ZLV (HEADS DOWN) 34 27 23
(21)

21 79

(See Table 15 for Orbiter Mass Properties)

- Averaged over a one-orbit period
Data from Reference 10, based on SSFS Simulation



Table 23. HFRMP Downtrack Displacement Rates (Ft/Hr) t Due To PRCS
Translational Cross Coupling, With 40 mSec DAP Cycle

(Deadband = 0.5 Deg/Axis)

UT
0

ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP INERTIAL HOLD -370 -249 -216 -209 -206 -233

Y ! POP.INERTIAL HOLD -150 -162 -173 -190 -224 -257
W

>o

Z POP INERTIAL HOLD -246 -108 -24 -32 -38 -41'

X POP ZLV (HEADS DOWN) -1137 -614 -236 -110 -82 -85

-744 
Y POP ZLV (HEADS DOWN) -823 -826 -830 -833 -837 -937

(See Table 15 for Orbiter Mass Properties)

t Avaeraged over a one-orbit period
it - Data from Reference 10, based on SSFS simulation



cannot be used to estimate even the downtrack displacement alone for any time

interval appreciably different from the appropriate orbit period". Figures G,

7, and 8 illustrate the nonlinearity of the trajectory deviations and the

diverse nature of the displacement histories for three representative attitude

maintenance situations.

i

y

fThe word "rate" is a misnomer for the data under consideration	 What the tables
actually represent are the displacements at the end of one orbit period,
normalized to a Common interval of one hour to facilitate comparisons between
orbits having different periods
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6. EFFECTS OF LENGTHENING THE DAP CYCLE TIME

The Shuttle OAP cycle time has recently been lengthened from the old

value of 40 milliseconds to a new value of 80 milliseconds (Reference.. 7) to

alleviate problems associated with pressure transients in the RCS propellant

feed lines. This section addresses the influence of that change oil trajectory

perturbations and attitude-maintenance propellant requirements, as determined

by the results of HFRMP calculations

G.1 ATTITUDE MAINTENANCE PROPELLANT COSTS

Tables 24 and 25, when compared with Tables 19 and 21, indicate that the

longer DAP cycle time will have a negligible effect on the VRCS propellant

requirement for attitude maintenance, but that the propellant rrequirement for
1

PRCS attitude maintenance within 0.5 degree deadbands will increase by as much

as a factor of 5 in some cases. This result can be explained as follows. Use

of the PRCS for attitude maintenanceenerall 	 1g	 y produces a significant degree	 i
of overcontrol (see Figure 3). In a case of extreme overcottrol , the pulse

frequency is directly proportional to the minimum effective pulse width, which

increases by a factor of (.080	 .014)/(.040 - .014)	 2.5 when the mi n nnrrrr

electrical pulse width is lengthened from 40 to the new value of 80 milliseconds.

The average propellant consumption rate is proportional to the product of pulse

frequency and the electrical pulse width, the latter of course having been

increased by a factor • of 80/40 = 2.

Tile preceding rationale is summarized in Equation (29), which also indicates

that propellant consumption is inversely proportional to the deadband width.

Therefore, if the DAP cycle time is held at 80 milliseconds, a five-fold in-

crease in the deadband width (from 0.5 degrees to 2.5 degrees per axis) Should
r	 be expected to reduce the propellant consumption rates in Table 25 to the approx-

imate levels  shown in Table 21-. Table 26, which represents a four-fold in-

crease in the deadband width, tends to `suppor~t this conclusion. The same is

i true of Figure 9, which shows the variation of PRCS propellant consumption for

deadband widths in the range of 0.5 to 10 degrees, as determined from HFRMP

siMUlations of a representative attitude maintenance mode.

4	
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Table 24. HFRMP Propellant Consumption Rates (Lb/Hr)' For VRCS
Attitude Maintenance, With 80 mSec DAP Cycle

(Deadband = 0.1 Deg/Axis)
i

ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP INERTIAL HOLD 14 7 3 2 2 1

Y POP INERTIAL HOLD 3 3 3 3 3 2

--o

~., Z POP INERTIAL HOLD 17 12 8 6 6 4

f-

X POP ZLV (HEADS DOWN) 31 17 6 2 1 .4

Y f7F ZLV (HEADS DOWN) .7 .6 .5 .4 .4 .3

(See Table 15 for Orbiter Mass Properties)

- Averaged over a one-orbit period



ORBIT ALTITUDE (NAUTICAL MILES)

- 90 100 120 150 200 500

X POP INERTIAL HOLD 119 126 132 133 137 139

Y'POP INERTIAL HOLD 110 ill 113 115 115 112
Uj
0

Z POP INERTIAL HOLD 104 99 98 90 90 89,

X POP ZLV (HEADS DOWN) 126 125 134 138 139 139

Y P)P ZLV- (HEADS DOWN) 139 139 139 139 139 139

4.

Table 25. HFRMP Propellant Consumption Rates (Lb/Hr)" For PRCS
Attitude Maintenance, With 80 mSec DAP Cycle

(Deadband	 0.5 Deg/Axis )

i

U,V

(See Table 15 for Orbiter Mass Properties)

Averaged over 'a one-orbit period



Table 26. HFRMP Propellant Consumption Rates (Lb/Hr) t For PRCS
Attitude Maintenance, With 20 mSec DAP Cycle

(Deadband	 2.0 Deg/Axis)

1

ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP INERTIAL HOLD 33 31 31 32 33 34

Y POP INERTIAL HOLD 26 26 26 27 27 26

w
a

Z POP INERTIAL HOLD 30 25 22 21 21 21

r

X POP ZLV (HEADS DOWN) 44 37 30 33 34 34

Y P.)P ZLV (HEADS DOWN) 34 34 34 34 34 35

(See Table 15 for Orbiter Mass Properties)

- Averaged over a one-orbit period
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A

6.2	 TRAJECTORY PERTURBATIONS

Table 27, when compared with Table 22, shows that the lengthened DAP

cycle time has a negligible effect on the magnitude of trajectory deviations

produced by translational cross coupling arising from VRCS attitude mainte-

nance. Table 28, on the other hand, indicates (when compared with Table 23)

that the corresponding effects arising out of PRCS attitude maintenance within

0.5 degree deadbands are increased by factors greater than 6. The reason that

the trajectory perturbation factors are higher than the corresponding propel-

lant consumption factors can be explained, again, in simple terms.. Everything

else being equal, it is logical to expect that the displacements of the Orbiter
due to uncompensated cross coupling should be proportional to the total momentum

content of the expelled RCS propellant, which in turn is proportional to the
product of_ pulse ,frequency and the effective width of the thruster pulses (as

opposed to the electrical width in the case of propellant consumption) . It

has already been pointed out in Section 6.1 that in a severely overcontrolled 	 i

attitude maintenance situation (see Figure 3), the effective pulse width and

the pulse frequency are each increased by a factor of approximately 2.5 when

the DAP cycle time is increased from 40 to 80 milliseconds._ Therefore in

this kind of situation, the trajectory deviations should be expected to in-
crease by a factor of approximately (2.5) 2	6.25.

As indicated by Table 29, the effect of the lengthened DAP cycle on

Orbiter trajectory perturbations can be ameliorated by increasing the attitude

deadband width, in the same manner _(and_in the same proportion) as it can be
in the case of propellant consumption; provided of course that other operational
considerations will permit the use of the wider deadband's.

Significant increases in the-attitude -deadband widths may not be feasible,

for instance, when the Orbiter is stationkeeping at close range with a free
flying payload. In such a case, precise translational control of the Orbiter
must be maintained by the pilot on the basis of the visually observed relative
motion of the payload. In the presence of large Orbiter attitude excursions_,

it is difficult for the pilot to determine whether a change in the apparent
position of the payload is actually due to relative translational motion, or
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Table 27. HFRMP Downtrack Displacement Rates (Ft/Hr) 
t 

Due To VRCS
Translational Cross Coupling, With 80 mSec DAP Cycle

(Deadband = 0.1 Deg/Axis)

ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP INERTIAL HOLD 1622 804 258 216 257 238

Y POP INERTIAL HOLD 343 405 449 469 478 440

o

Z POP INERTIAL HOLD -149 -82 -31 -7 9 14

X POP ZLV (HEADS DOWN) 2280 1214 447 145 45 23

Y f 3 ZLV (HEADS DOWN) 34 28 24 23 23 22

(See Table 15 for Orbiter Mass Properties)

Averaged over a one-orbit period



ORBIT ALTITUDE (NAUTICAL-MILES)

90! 100 120 150- 200	 - 500

X POP INERTIAL HOLD -11°9 -1247 -1302 -1328 -1365 -1547

Y POP 'INERTIAL-HOLD -864 -881 -889 -960 -1187 -1468

0
Z POP INERTIAL HOLD 166 272 200- -95 -221 -269

F--

X POP ZLV (HEADS DOWN) -1254 -808 -569 -484 -471 -522

Y P)P ZLV (HEADS DOWN) -5516 -5512 -5517 -5528 -5544 -6173

- —	 ---	 —	 --	 — - - - --	 --- ---	 ----- 

Table 28. HFR14P Downtrack Displacement Pates (Ft/Hr)` Due To 'PRCS
Translational Cross Coupling, With 80_mSec DAP Cycle

E	 (Deadband = 0.5 'Deg/Axis)

t



ORBIT ALTITUDE (NAUTICAL MILES)

90 100 120 150 200 500

X POP _INERTIAL -HOLD -424 -330 -334 -334 -337 ^y1

Y POP INERTIAL HOLD -239 -245 -247 -265 -320 -365

Z POP INERTIAL HOLD -209 -70 -2 -39 -58 -66

f--

X POP ZLV (HEADS DOWN) - 1146 - 622 -249 - 152 -126 - 134

Y P)P ZLV (HEADS DOWN) -.1350 -1352 -1356 -.1360 -1365 -1525



due to a rotation of his reference frame (the Orbiter)^. On the other hand,

if the attitude deadbands are not widened, the lengthened DAP cycle may require	 ^

1	 the pilot to execute manual translational corrections much more frequently to

compensate for the greater translational deviations which attend the automatic

maintenance of attitude by the DAP. As illustrated in Figures 10 and 11, this

is especially true if it is necessary to inhibit the upward-firing Q) PROS

jets to minimize plume impingement effects on the payload.

It is not the intent of this discussion to attempt a general evaluation

of the overall influence of the lengthened DAP cycle an Orbiter/payload prox-

imity operations. Such an evaluation is far beyond the scope of this report,

not to mention the limited capabilities of the HFRMP computer program. The

intent is rather to point out and to describe some potential operational prob-

lems that are suggested by results obtained from the relatively simplified

HFRMP calculations, and whicn %ould seem to merit a more comprehensive investi-

gation involving a real-time man-in-the-loop simulator.

In this vain, one final observation will be made; this time witm regard

'to the potential influence of the lengthened DAP cycle time an We dynamic

effects of Orbiter RCS plume impingement on a nearby payload. Even when special

precautions are taken to fire only those RCS, thrusters whose plume centerlines

extend away from or at right angles to the payload, the plumes expand suffi-

ciently to cause sensible perturbations of the payload attitude in many cases.

Again assuming everything else to be equal, the magnitude of these pertur-

bations can btu 	 to increase in direct proportion to the total momentum

content of the expelled RCS propellant. For a given Orbiter doadband, it

follows then that the lengthened DAP cycle should increase payload attitude per -

turb.Vions in the sama ratio as that previously calculated for Orbiter trans -

lational perturbations, i.e., by a factor of approximately 6.25.

In some cases, such as in a grappling operation, this makes little difference
since any kind of relative m6tion (whether its origin is rotational or trans-
lational) is objectionable.
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7. CONCLUSIONS AND RECOMMENDATIONS

Comparisons of data generated by the HFRMP and the SSFS computer program

(Section 5) fail to indicate any gross errors in the HFRMP models of 'tile

Orbiter OMS/RCS/DAP system. On tine basis of these comparisons, it is believed

that the HFRMP models are sufficiently accurate to produce valid flight pro-
9

file designs for proximity operations flight phases.

The absolute accuracy of the simplified HFRMP attitude control logic

could not be established for PRCS maneuvers and attitude maintenance because
'the published SSFS data which are currently available were generated prior to 	 r

certain revisions of -the PRCS thruster force and moment tables that were in-

corporated in the HFRMP data base. Recent inquiries directed to personnel

familiar with the SSFS indicate that the PRCS forces and moments currently used

by that program are still somewhat different from those used ill the HFRMP, by

reason of differences in the plume impingement effects which are presented in

Table 3. These inquiries revealed also that a revision of the plume impinge-

ment data is expected in the near future. With thisin mind, it was decided
to postpone any effort toward a more precise correlation of HFRMP and SSFS data.

However, after 'the plume impingement updates become avai1ab l and have been

incorporated in both programs, further data comparisons are recommended for tine

Purpose of establishing tine accuracy of tine HFRMP models more firmly.

It is believed that tiie simplified RCS/DAP models utilized in the HFRMP

are potentially useful in connection with ground-based orbit determination,

where they might be used to estimate trajectory deviations attributable to

RCS cross coupling (see Ficgures 6, 7, and 3)

Finally, the potential close-range stationkeeping'problems that ire

suggested by tine HFRMP simulations of 80 millisecond DAP cycle effects (Section

6) are believed to be of sufficient import to merit further investigation by
means of a real-.time man-in-the-loop; simulator, preferably one which models

the dynamic effects of RCS jet plume impingement ors the payloa.d .
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