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ABSTRACT

An approximate solution is developed for the determination of the inter-
laminar normal and shear stresses In the vicinity of a crack in a three
dimensional composite containing unidirectional Vinearly elastic fibers in
an infinite linearly elastic matrix.

In order to reduce the complexity of the formulation, certain assump-
tions are made as to the physically significant stresses to be retained,
These simplifications reduce the partlial differential equatlions of elasticity
to differential-dlfference equations which are tractable using Fourier trans-
form techniques. This ''"material modeling" approach Is in contrast with solu-
tions developed by censidering each lamina as a homogeneous, orthotroplic layer.
The resulting solution does not contain the classical singular stress field
for the fibers and the influence of broken fibers on unbroken fibers is falt
by a change In stress concentration factors. The matrix stresses however,
are unbounded as the fiber spacing vanishes and an equivalent fiber-matrix
geometry is proposed which gives the correct singular behavior.

The numerical solution is considered in detail and several specific ex-
amples are presented. The potential for damaged or debonded zones to be gen-
erated by an embedded crack is discussed, and stress concentration factors
for fibers near the crack are given. UDetailed comparisons are made between
the present solution, the analogous two-dimensional problem, and corresponding
shear-lag models.
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INTRODUCTION

In investigations concerning the potential use of composite materials
in advanced structures, considerablw attention has been given to problems
associated with damage or flaws In laminates and to the resulting fatigque
and fracture characteristics of the composite. The need for the capabllity
to design damage tolerant composite structures with at least the same de-
gree of conflidence as now exists for metallic structures is essential If
such materjals are to be used In production.

For composite laminates, the technique of hybrid materfal buffer strips
embedded at reguiar intervals throughout the laminate has been demonstrated,
for example see [ 1], to have the capability of arresting through-the-lami-
nate cracks, and in some cases to glve & reslidual strength apprgaching the
net section capacity of the laminate. The mechanism associated with the
crack arrast and ultimate fatlure of such lTaminates has not, however, been
explained nor have satlsfactory methods been developed to allow for accu-
rate prediction of crack arrest lvads or ultimate failure in terms of the
laminate geometry and materials. !t does appear however, both from [1] and
the experimental results reported In [2]) that, for composite laminates con-
talining embedded hybrid buffer strips or for single material laminates with
weakened Interface bonds, delamination between laminae appears to be direct-
iy associated with the laminates abillty to restrict crack growth.

The panel containing embedded buffer strips is considerably different
than the related design where either bonded or riveted stringers are added
externally without significantly interrupting the continuity of the basic

panel. The panel and stringers then act much more independently during



crack growth and fracture than appears to be the case In composite laminates
with Internal buffer strips. A detalled investigation of the problem of
riveted stringers reinforcing a cracked isotropic elastlc sheet |s presented
in[3). Similar studles for adheslvely bonded external stringers are re-
ported In [4] and [5], An analogous study concerning composite laminates
with internal buffer strips has net, to the knowledge of the authors, been
completed.

Considerable analytlcal work has been done for both lsotropic and ortho-
tropic materials in investigating the stresses In the vicinity of a crack
tip for the crack being near, at, crossing, or along a material Interface.
(see [ 6], [ 7], (81, [9], [10), and [ 11].} These studles considered the
laminate as a thin homogeneous Isotropic or orthotropic plane and Investi-
gated the resulting two-dimensional stress state. Through the thickness
variations In material properties and stresses were not consléered. It
appears that for the embedded hybrid buffer strip the significant stresses
are, In fact, the interlaminar stresses and the three-dimensional problem
must be considered. |t does not seem reasonable to antlicipate the develop-
ment of a general solutfon in the manner of the above mentioned two-dimen-
sional studies, as the extension to a three-dimensional strefs state with
finite thickness would be exceedingly complicated.

Some possibility of success might be had in modeling the lamirate as
in classical laminatlion theory, where, as discussed in [12] and { 13], the
Interlaminar stresses near a free edge of a laminate have bheen approximated.
Finite element or finite difference solutions also are a possibitity; how-
ever, without some Tmprovements in the current three-dimensional programs
to account for through-the-thickness variations, the computation time seems

prohibititve. A different approach,which appears to have more potential, is



to model the laminate as a heterogencous materlal consisting of separate
fiber and matrix phases, each with Its own characteristic properties. |f
the proper assumption® are made regarding the dominant stresses carried

by each phase, the appropriate flield equatlions can be simplified conslder=
ably while stil) retaining the fundamental nature of the solution. One
major assumption usually made in such a mode] is to neglect the norma)
stress In the matrix parallel to the fibers, The resulting solution then
does not contain the classlcal singular stress field at the end of the
notch but rather, the fibers feel the influence of the size of the noteh as
a change in a stress concentration factor.

Zweben In [ 14] presents a detailed discussion of this "materlal mod-
eling' approach and in [ !4] and [ 15] a two-dIimenslonal probiem for a notched
unidirectional laminate contalning a damaged region with and without con-
straint respectively, is considered,

An earlier use of thls technlque was considered by Hedgepeth [ 16] and
Hedgepeth and Van Oyke [ 17] for unidirectional fibers in a two-dimensional
and three-dimensional array respectively., [n each case however, the matrix
was assumed to transmit only shear stresses and both studies reduced to
one-dimenslonal solutions, Eringen and Kim, [ 18] extended the Hedgepeth
mode! to Include normal stresses in the matrix and Investigated the two-
dimenslonal problem of equally spaced parallel fibers In a single layer.

The present paper extends the method [ 16], [ 17], and [ 18] to the case
of an arbltrary number of broken fibers in a three-~dimensional composite
contalning equally spaced unidirectional fibers. The model developed below
is basically the same as [ 18] with some difference in the equilibrium equa-
tion perpendicular to the fibers and the significant difference of the

three~dimensional geometry,



Of course, the solutlon needed is for a finlte thlickness laminate con-
taining angle-ply laminae, each of possibly different materlal propertles
than the adjacent laminae as well as allowing for different materlals with-
in a particular lamina, It is hoped that the present study wil]l give some
Insight Into the oehavior of Interlaminar stresses near a notch and ald Ia
the development of more complete models. The extension of thls Investiga-

tinn to Include angle~ply laminae Is currently being considered by the

wrlters.,



FORMULAT I ON

Consider an infinite three-dimensional matrix containing parallel
reinforcing fibers as Indicared in Figure (1), where both the fibers and
the matrix are assumed to be linearly elastic, The development given
below will be restricted to identical paraliel fibers with the spacing
between flbers taken as equal. It is assumed that the flbers carry
only normal stresses and, i{n fact, support all the normal stress In the
composite In the direction parallel to the fibers. The matrix supports
shear stresses parallel to the fibers and normal stresses perpendlcular
to the flbers. Using the coordinate system given In Figure (1), a
typical element can be Isolated as shown In Figure (2), where a particular
fiber or matrix Interface Is Identified by the indices m and n. Note
that the composite is doubly periodic in the y, z plane; however, this
symmetry Is Initlally not requlired of the solution and random fibers may
be taken as broken with rhe resulting solution having no symmetry in
the y, z plane. All fiber breaks are assumed, however, to occur on the
plane x = 0 so symmetry does exist witn respect to this plane. The
reduction to the speclal case of broken fibers which are symmetric to
the y, z axes is covered following the general development and a considerable
reduction in computation time is realized.

The equilibrium equations for the element shown in Figures (2) and (3) are

do

X
m,n
AL ———— + h{z -7 } + hit -T, } =0
Foodx Y m+l,n m, N Xz m, ri+1 My



h d
yIrn+I,n ylm,n 2 dx xylm+l,rl xylm’n
h d
a -0 + = — {1 ko } =0 (3)
Zlm.n+l zlm,n Z dx lem,n’rl xz'm.n

The stress-strain and strain-displacements relations are approximated

as follows, using .he geometry of Figures (4) and (5).

dum n
c = fp -, (h)
x]m,n Fdx
E
M
o = — {y -v._ 1}, (5)
ylm+l,n h mt+1,n m,n
E
M
[*3 = -""{ - }9 (6)
z,m’n+| h Ym,n+l T Ym,n
- = G {l.ii.[v v + I [u -u_ ]}, and (7)
xylm+l,n M2 dx " Tmtl,n M, h +1,n m,n
T = G {l-Ji-[w +w ]+ l-[u - u_ 1}, (8)
xz‘m,n+l M2 dx el m, n h “m,n+l m,n
in the above equations u , v , and w are the x, v, and z components
My N m,n m, n

of the displacement of a point on the m,n Fiber located a distance x from the

y,z plane. The stress g, is the axial stress in the fiber and the

[m.n

stresses © are normal and shear stresses in the

Txy ' Tz
lm,n -

I H U.I ’ l
2
m,n im,n m,n

matrix. The constants EF, EM and GM are Young's moduli of the fiber and the
L



matrix and the shear modulus of the matrix respactively, AF is the area
of the  fiber, and h Is the shear transfer length.

The boundary conditions are for an Infinite reglon, unifermly stressed
at points remote to the mid-plane (y,z plane) containing an arbitrary number
of broken fibers with the cracks always being at the mid-piane. Super-
pos!’fon may be used to consider two separate problems: the first, an
infinite region containing no broken fibers and having a uniform axlal stress,
Ty in the fibers, and the second, the infinite region with no stresses at
infinlty and a compression stress of magnltude, O acting on the fibers
at the cracks., The second problem will be considered below as it is the
portion of the complete solution which Is non-trivial.

The boundary conditions are then

Ymn = Ymn = Ymn 0 for x = w, (9)
up, , =0 for all unbroken fiber at x =0, (10)
1]
o, = -0, for all broken fibers at x = 0, {11)
Imsn
Ty = Q for all fibers at x = 0 (12)
Y,
= 0 for all fibers at x = 0 (13}

Txz
|"":”

The inclusion of the normal stresses in the matrix gives the necessary
freedom te require equations (i2) and (13). The above equations are

normalized by letting



n = x/h, Um,n = um,n/h' vm.n = vm,n/h’ wm’n o wm,n/h

(14)

o 2 T = E =
Y = Ap/h?,  Ep = EL/G,, and  E, = E /G,

Using equations (4) - (8) and cquations (14), the equilibrium equations,

equations (1), (2), and (3), may be written in terms of the displacements as

EpY dEZ[Um,n] * T [Vm+l,n Vet ™ Yonel ™ Y-
U - =
* UITH‘]’H * Um-i,n * Um,n-i—l * m,n-l lUm,n 0, “5)

— i1 d?
-9 L
EM[Vmﬂ,n 'Vm,n * Vm"l,n] * 2 {2 dn2 [Vm+l,n * 2Vm,n ¥ Vmﬂl,n]
d - -
+ an [Um+l,n Um-l,n]} =0, and (16)
E W R TS [ LI -l 9 L
M™"m, n+l my N m,n=-1 22 dnZ2 ““m,ntl M, n m,n~1
d
* Eﬁ-[um,n+l m,n-I]} 0 (7)

It is now assumed that functions U (n, &, ¢), V {(n, 8, ¢), and

W (n, B, ¢) exist such that the normzlizeddisplacements Um , Vm 0 and wm
¥

0 ,n

are the Fourier coefficients in a double Fourier series expansion. Then,

[j) (ns 9, ‘h) = 1L 13 UI‘ s(n)e'il'e e‘iSlb' (18)
r o= = 5 = =@ t
Vin, 8, ¢ =1 v S(n)e'i"o e 150 and (19)

I =2 =0 § = =m



> -] -]

Win, 0,8)= 1 D We g(n)e

F = wm g = -0

“{rog e"5¢ , (20)

As the displacements are continuous functions of n, the representation glven

above 1s necessarily valid. These equations may be Inverted to yield

T (1
Ry o TN =
T =7
L3 w
Vo o) = m‘r-gf f"\T (n, 8, $Je'™ &' dodg, and (22)
=T =T
T T
W o) = E}'vszw (n, 8, 8)e'™ '™ dodo. (23)
=N =

The equilibrium equations may then be written in terms of the functions

U, V, and W as

— 271 N W e
EFy%-r%i- i sin (8) —j—:;]!-+ i sin (&) .3.‘!114. 20 [cos (8) + cos (¢)
= 2] =0, (zq)

L _ ~
'5[1 + cos (8)] j—nL’- 2€, [1 - cos ()] T+ I sin (6) Sj%: 0, and (25)

ZW___
2

‘3 [1 + cos (8)] gﬁ- =0.  (26)

o.!n_
3]

2TE'M [1 - cos ()] W+ i sin (9)

10



These three second order differentlal equatfons can be written as uncoupled
sixth order equations and If the boundary condlition of vanishing displace-
ments for large n, equatfon (9), Is enforced, the solutions then wlll have

the following form.

T(n, 8, ¢) = Aje "1" 4 pge 020 4 Age 03N (27)
Tl 6 6) = 31700 4 8,727 4 o 70" (2)
W.(nv 0, ¢) = Cle-Dln + CZe~D2n + CBE“DSH (29)

where Dy, Dp, D3 must have positive real parts. Substituting into equations

(25) and (26) the relationships between B, C, and Ay are determined as

i AD, sin (8)
By =7 > — and (30)
7 [i + cos (8)] Dk - ZEM [1 - cos (8)]
. . i Aka sin ($) (31)
k= 2 = 4
7 (1 + cos ()] Dk - 2EH [1 ~ cos (¢)]
where k = 1, 2, 3. Equation (24) then gives a sixth order algebralc equation

for Dk of the form

a;D& + &2Dt + ﬂsDi tay, =0 . (32)



The coefficlents @ are

—

YEp
@y = —— [ 1 + cos ()1 + cos (9], (33)
agﬂ'ZyE?ﬁﬁl - cos (8) cos (¢)1, (34)

ag = 2, {[l - cos () I{yELE[1 = cos ($)] + [ + cos (¢)]
X [1 -cos (8)]} +[1 - cos (¢)]£TE}Eh [1 - cos {(8)]
+[1 + cos (8)}][1 ~ cos (¢)]i} , and (35)

ay = 8E3 [1 - cos (8)I[1 = cos (¢))[ cos (8) + cos (¢) - 2]. (36)

Letting Di = £, the six roots can be obtained and, in order to satisfy
equation (9), the three roots with position real parts are taken,

It is noted that all roots of equation (32) vanish at 8 = § = 0 and
unbounded roots exist at 6 = ¢ = +m, The first is clearly seen from the
fact that if 6 = ¢ = 0 then ag =ag =ay, =0, For 8 =4 =+, a) = a4y =

0 and the resuiting equation gives

Dy = + /8/{EF, 9= ¢ = T, (37

It also follows that the remaining roots must be unbounded and there-

fore letting 8 = ¢ = & —— +7, then

Dy = Dy =/3€M/[ theds(a)] (38)

This is the same value as the one singular root found in the two-dimensional
case [ 18], An additional special case exist when either 8 or $ equals zero

as ayis then zero and therefore Ds must vanish. The remaining two roots



13
are

— - 7 l 2
Dy, Dy = 2EM[1 cos (a)] " N/1 _ 2 l+cos(a)] / (39)
[ 1+cos(a)] fEFEh

where If 8 =0, o« = ¢ and for ¢ =0, o« = 6, The positive sign Is taken

for Dy and the negatlve sign for Dj.

The functions Ajp, As, and A3, which depend on 6 and ¢ , are next de-
termined from the houndary conditions, where equation (9) 1s satisfled by

the proper cholce of Dy, Dg, D3. Equation (10) glves

T T
I,‘L:? f f [Ay + Ap + Agle'™e!™dgdy = 0 (4o)
ki
-1 -7

for all unbroken fibers, and equation (11) glves

T i
zl; Jﬂ L[‘ [A1Dy + AsDy + A303]e‘m9e‘”¢dad¢ = ] ()
ki)
- -1

for all broken fibers.
The conditions of vanishing shear stresses on n = 0 specified by

equations (12) and (13) require the following relations between the three

functions Ay, Az, Ag:

012 - 2
Py = A (42)
D22 - D3?
{[ 14+cos (b)]Dy2- hEh[l-cos(¢)]}{[1+cos(aﬂb22» th[]'CDS(@)]}
:( . )

{[ 1+cos ($)1D,2- hEh[l-cos(¢)]}{{1+cos(6}]012— hgh[l-cos(e)]}

and

D12 - 022
2 2
D3® - Da

([ 1+cos ($)1D5% - MEH[I-cos(¢)]}{[l+cos(6)]032 - WEJ 1-cos(p)]}

{{ 1+cos{4)1D,% - QE;F 1-cos (¢) THI[ Y+cos(8) 1Dy - hi;{ 1-cos(8)]}



Equations (40) and (41) then reduce to a set of dual Inteqral equations In
terms of the unknown function Ay(8,6). Proceeding In the same manner as

[ 18], based on the orthogonality of the Foucter serles, these dual inteqral
equations can be reduced to a set of simultaneous linear algebraic equations.

Equation (40) is Identically satisfied by assuming

| “ire - A
L:E [Ay + Ay +A3l= ¢ Hl‘ & e e Fs¢ ()
r s

where r and s correspond to the indices of the broken flbers and the Hr 5
]

are constants, Substituting from equations (42) and (43) Into equations
(40}, (41), and (b44) then reduces equation (41) to a set of algebraic equa-
tions far the Hr 5 The set of equations are developed as follows, Refer-

ring to equations (42) and {(43), let

As = BaA, and (45)

Az = B3hAy. (46)
Then, from equation (44)

41_2 [1 + 8 +B3]A = L2 Hr se-ire e-i5¢ (47)
™ rs !
and equation {&F) is then

™ ki
Dy + B2Dp + B3D3 ;.5 : i
i i Hr,s.JF Jﬂ e 'rd e 156 e'me e|n¢ dodg= 1|,
T T

] + Ba + 83 (16

where m, n, r, s correspond to broken fibers. With the constants Hr then
1
known, the Ak’ Bk’ and Ck are specified and the stresses and displacement

can be calculated.

In the numerical evaluation of equation (48) as well as the stress and



15

displacement equations, the singular behaviour of D; and D3 at 6 = 6 =+ 7
and the behaviour of Dy, Dp, and D3 along the lines 8 or ¢ = 0 or m, must be
accounted for. Noting the form of 8, and By glven by equations (40), (41),

(43), and (44) and the fact that Dy= D =j@%ﬁ/[l+cos(a)r as 8 = ¢ = o > 4m,

it is seen that By = B3 In the 1imit. Proceeding to the limit as o -+ +m,
the Integrand of equation (48) then remains bounded and equals Dy at

€ = ¢ = m, The analogous behavior occurs in the two~dimensional case (18],
For either 8 or ¢ equal to zero the integrand of equation (48) 1s bounded
and vanishes at 6 = ¢ = 0. In a simllar manner all stress and displacement

equations have bounded integrands at all points in the region of Integration.



SYMMETRIC ARRAY OF BROKEN FIBERS

The above equations can be simplified considerably for the speclal
case of a symmetric array of broken fibers., For convenience In comparing
the two solutlons only those equations which change due to the symmetry
restriction will be recorded and they will be Indicated by the previous
equation number with an asterjsk.

If a symmetric number of fibers is assumed to be broken with respect
to the y and z axes [t then follows that the displacement qn,n(n) Is even
valued on the indices m and n, while the displacement qm'n(n) is odd
valued on m and even valued cn n, and the displacement W_ _{n) i3 even

myn
valued on m and odd valued on n. Equations {18) - (26) then become:

Uln, 8, ¢) = Z; I . s(n) cos(rg) cos{se), (13)%
rF=0 5=0 !
Vin, 0, ¢) = £, % V. S(n) sin{re) cos{s4), (19}
r=} s=0
Win, 8, ¢) = I, 2 W S(n) cos(re) sin(se), (20)#
r=0 s§=]
y TOT
U (R) =— [ s Un, 6, ¢) cos{md) cos(n) dods, (21)
m,n 2
T o o
l{ m T _
Vm n(n) == ff Vin, 9, ) sin(me) cos(ne) deds, {22}
! o o
y 7T
Wm n(”) = =T S r W(n, 8, ¢) cos(mB) sin(ne) deds, (23)
! 2 o

+ sin{¢) %%-+ 2V [ cos(8) + cos(e)-2] =0, (24)=

= d°U dV
‘YEF a;z—-‘f' Sil‘l(e) a;l-



L0+ cos(0) 19« 2E 11 - cos(e)]V - sinle) S a o, (25)+
dn® m n
TL1 cos(¢)]§-§¥- - 2B, [1-cos(O)IT - sin(9) £ = 0. (26)

Equations (27), (28), and (29) remafn unchanged, and equations (30)

and (31) becone

-A.D, sin(e)
B, KK . and (30)

-;-(: + cos(0)] D = 2B, [1 - cos(9)]

APy sin(e)

%-[I 4+ cos(¢)]0§ - 2%; (1 - cos(s)] (31)%

The coefficlents oy, ®p, w3, and «y are unchanged as are the roots to

the characteristic equation (32). The remaining changes are in equations
(40), (h1), (44}, (47), and (48) as

LU

— [ f[A; + Ay + Ajz) cos(ms) cos(n¢) dody = 0, (40)
0 0

T

53' S OT[AD; + AgDp + AgDs] cos(md) cos(ng) dode = 1, (41)%
: o 0

;é‘[A1 + Ao+ Azl =L I H. o cos{ro) cos(sd), IO
r s !

=

o
4

[1+8; +83]Ap =2 ZH_ _ cos(re) cos(se), and (47)
r

T 5 !



T
7
3 o

Dy+B2Da+B4D4

]+Bz‘f‘33
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cos (ro) cos (s¢)cos (me)cos{nd) dodé = 1,

(ils)s'r



NUMERICAL SOLUTION AND RESULTS

A computer code has been developed for the numerical solutlon of the
above equations. The program was written in FORTRAN !V language for the
NASA-Langley Research Center CDC computer.! A maximum error of less than
| percent was achieved with the average computation time being on the order
of thirty minutes.

The results presented below concern comparisons between the present
three-dimensional solution, the two-dimensional studies of [1€] and [18],
and the three-dimensional shear~lag problem of [17]. Differences In the
respective two- and three-dimensional analyses due to the Inclusion of the
matrix normal stresses In the model are centra)l In the discussion. Detailed
results are given apropos the manner of distribution of critical matrix nor=
mal and shear stresses, and the rate of decay of flber stress as a functlon
of distance from broken fibers. Al]l results are for Eh = 2.0, _% = 5,2,
Changes in material properties do not change the form of the solution and
it was felt to be more Important to discuss the fundamental differences In
the various solutions and to investigate the significance of the geometric
parameters, l.e. flber spacing and number of broken libers.

It Ts Important to note that in (118], equation {2.1)), the equilibrium

equation In the transverse directlon, was written as

Pjor

g -0 +

d =
N % — (1_+ 1 ]) = 0,

dy *'n n-

1 The program Is entitled, "'Stresses in a Three-Dimensional Unidirectional
Composite Containing Broken Fibers,' and Is avallable through COSMIC,
112 Barrow Hall, The University of Georgia, Athens, GA 30602,
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This amounts to assuming that the fiber supports all of the shear
stress, We have changed thls equation by replacing b with h to be consis~-
tent with the present analysls. The results for the two-dimenslional geome~
try presented in this paper were obtained by solving the appropriately
modifled equations of [18]., These changes gave insignificant differences
in the fiber stress but resulted In considerable changes in the matrix
scresses,

The constants ¥ and h deserve further discussion as thanges in para-
meters can be interpreted to Imply significantly different physical situa-
tions. That Is, If & Is taken as the dlistance between fiber boundaries,
the relationship between v, h, and & and the aoproximations assumed for the
matrix surface over which stresses are transferred and strains calculated
are open to considerable freedom of definition, while sti1] remaining within
the valldity of the formulation for both the two- and three-dimensional
mode!s, The geometry of Figure 2 and the corresponding geometry of [i6],
[171, and [18] requlires only that the distance h be consistent in all three
equilibrium equations.

For example, referring to Figures 2 and 3 and to equations (1} through
(8), it Is seen that h is the width In the vertical plane over which the
shesr stresses act in equation (1), while in equations (2) and (3), 1t is
the corresponding distance in the horizontal plane. In equations (5) through
(8), it is related to the distance through which the matrix deformations take
place, and should be bounded by the distance between fiber centers, b + §,
and the minimum spacing between fibers, 4. As seen below, the width in equa-
tion (1) need not be the same as the distance in equations (2) and (3) or (5)

through (8).
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In Flgures 6 and 7 three different geometries and corresponding assump-
tions vy, h, and § are given for the two- and three-dimenslonal models, respec-
tively, The different value of y for each case is due to the particular geome~-
try assumed and is derfved by writing the equilibrium equation in the axial
directlon, accounting for the specific Fiber shape and shear transfer region.
Table 1 glves values of y for particular values of § for each case of Figures
6 and 7.

Case | in Figures 6 and 7 corresponds to assuming that the fibers have
the same materfal properties in shear and transverse normal directions as the
matrix, and would be morc appropriate For nearty equal fiber-matrix properties.

Cases i and |1 are more realistic for a typlcal composite, in which tae
fibers usually have a much higher modulus than the matrix, and make the assump-
tion that the normal and shear strains occur over a critical distance equal to
the minimum distance between Fibers., The main difference between |1 and Jil is
the assumed shape of the fiber, The decision as to whether a square or circular
fiber cross-sectlon is meore appropriate is based on considering the solutions
for close Fiber spacing and comparing the manner in which the stresses increase
with decreasing 8 with previous elasticlity solutions [19] and [20]. In these
studies the stresses between two clrcular cylinders under the action of inplane
ioading and transverse shear, respectively, were considered. In both studies
the numerical results indicated a 1/¥§ behavior for the maximum stresses between
rigid eylinders as the distance § approached zero. For elastic cylinders un-
bounded stresses did not occur. Cases |l and 1)! are equivalent to assuming
infinite transverse normal and shear material properties or the fibers as all
the strain Is assumed to occur over the distance between Fiberé; therefore, it

seems consistent to seek a mode!l having matrix stresses which behave as 1/
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if possible. From Figures 6 and 7, Cases |l and (1], the matrix material
supporting the stresses decreases 1lke 1/h and 1/h?, respectively, and the
stresses shouid increase more repidly with decreasing h in |1l than II.

By considering the present solution along with [16], [17], and [18] and
expanding the equations for small values of h, where h = §, the matrix
stresses for all four models are found to Increase as 0(1//h ) and 0{i/h)
for Cases |) and 11, respectively.

Case Il is then more appropriate for close fiber spacing as [t agrees
with the continuum solutions [19] and [20]), and it is suggested that the
actual fiber cross-section be represented as an "equivalent' square cross-
section having equal areas. All results given below are for Case |! with
the corresponding y, h, and § relationship of Figures 6 and 7 and Table I,

Figure 8 gives the value of the maximum stresses as a function of h for
a square array of twenty five kroken fibers, (five broken fibers in the two-
dimensional study [18]). The stresses for [18] are larger for all values of
spacing h due to the added constraint of the present geometry. As the number
of broken fibers increase, the two solutions should approach each other.

This is indicated in Table 2 for the particular case of one by eleven broken
fivers i.e. (0,~5) through {0,5) where the stresses adjacent to the {(1,0)
fiber are compared with the stresses adjacent to the first unbroken fiber for
one broken fiber in [18].

Both the normal and shear stresses are of considerable importance in
formulating a failure criterion capable of predicting matrix damage. It is
seen in Figures 9 and 10 that compressive normal stresses exist over part of
the matrix region between the last broken and the first unbroken fiber, both
in [18] and the present study. The shear stresses decrease due to the differ-

ent boundary conditions at n = 0, from the corresponding shear-lag stresses;
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therefore, it seems likely that the shear-lag model would jead to a prediction
of greater matrix damage parallel to the fibers than the present model. In~
deed, related two-dimensional shear-lag studies concerning matrix splitting
for a unidirectional laminate (see [21] for one broken fiber and [22] for an
arbitrary number of broken fibers with splitting and yielding) indicate that
only a very small increase in the stress required to initlate damage can be
tolerated before unstable splitting occurs, The splitting develops in the
region adjacent to the last broken fiber which, as mentioned above, also has
compressive stresses using the model of [18] without damage, The analysis of
[22] is being extended to include a model having normal stresses in the
matrix, and Tt Is hoped that the results will be more consistent with experi-
mental evidence, in which case local, stable, splitting has been observed [23]
and [24). Such behavlor has also been observed at the NASA-Langley Research
Center for Boron/Aluminum composites by C. C. Poe, (private communicatlon).

An equally interesting observation is noted for the region between the
first and second unbroken fibers. As indicated in Figures 9 and 10, the shear
stress Is considerably reduced from its value on the opposite side of the
fiber; however, it is larger than the corresponding shear-lag soiution. More
importantly, Tt is opposite sign than the shear-lag stress. The normal stress
is tensile and more than fifty percent larger than the maximum shear stress
in the adjacent region. First-ply matrix splitting has been noted for bonded
joints [25] which are very similar geometrically to the region in the vicinity
of the notch in the present work and the large tensile stress found here cer-
tainly admits the possibility of such damage.

Table 3 gives results using the present solution for a square array of
broken fibers as well as analogous results from {161, [17], and [18]. The

maximum fiber stress occurs on the plane of the break {n = 0} and in the first
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unbroken flber at the center of the sides for the three-dimenslional problems
and in the first upbroken fiber In the two-dimenslonal problems. For both
the two- and three-dimensional solutions, the maximum flber stress is seen
to be sifghtly smaller for the shear-lag model. Both the fiber and matrix
stresses are Jarger in the two-dimensional case [18] than the present solution.
Flgure 11 gives the magnitude of the maximum fiber stress In the first
unbroken fiber as a functfon of the number of broken fibers for a square
array, and compares these values with [16], [17], and [18). Also, for the
one particular case of eighty-one (nine) broken Fibers, the stress in the
first four unbroken fibers is given. The decrease in stress s largest be-
tween the flrst and second intact fibers with the rate of change being rela-
tively small from that point oﬁ. As seen in the figure, the Influence of the
broken fibers decreases more slowly for the two-dimensional mode! [18] than

for the present three-~dimensicnal model.
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CONCLUS |ONS

The significant difference between the present model {elther two- or
three~dimensional) and the corresponding shear~lag mode] Is In the change
In the manner of distribution of the critical shear stress in the matrix
and the introduction of matrix normal stresses. As noted, the critical
shear stresses are reduced on the order of fifty percent over the correspon-
ding shear-lag solution and the matrix normal stresses are found to be of
sufficient magnitude to suggest potential matrix damage. For close fiber
spacing both the normal and shear stresses in the matrix are shown to in-
crease without bound and an equivalent cross~section is proposed which glves
the correct singular behavior based on previously published elasticity solu-
tions.

Surprisingly, with these major changes in matrix stresses, the fiber
stresses are relatively unchanged, i.e., approximately three percent higher
than the corresponding shear-lag solution., The fiber stress in all solutions
is essentially independent of fiber spac.ng.

It then seems reasonable to expect that any attemp% to develop an
analysis for the investigation of matrix damage must be based on a more com-

plete model than the shear-lag assumption.
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s/b | 2,00 | 1.50 | 1.25 | 1.00 | 0.75 | 0.50 | 0.25 | ©.10
—;; 0,33 [ 0.40 | o.44 | 0,50 | 0,57 | 0.67 | 0.80 | 0.9]
Y}l 0.50 | 0.67 | 0.80 | 1,00 | 1.33 | 2.00 | 4,00 { 10,00
v}, | 0.20 | 0,35 | 0.50) 0.79 | 1.h0 3.14 |12.57 | 78.57
y% 0.11 0.16 0.20 0.25 0.33 0,44 | 0.64 0.83
yﬁl 0.50 0.67 | 0.80 1.00 1.33 2.00 | 4.00 | 10,00
v3,, | 0-20 | 0.35 | 0.50 } 0.79 | 1.40 3.14 112,57 | 78.57
1Two-dimensional geometry, Figure 6,
2Three-dimensional geometry, Figure 7.
TABLE |. Relationship between the fiber spacing § and the

constant y for the geometry of Figures & and 7.
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Mode (3-p)! (2-p)2 (3-p)3 | (2-D)4
E; 1.371 1.372 1.327 1.333
oy 0.316 0.316 - -

?;Y -0.238 -0,238 -0, 343 -0.344

1 present solutlon, fiber {1,0)}.
2 two-dimensional solutlion [18], fiber (i).
3 three-dimensional shear-lag [17], fiber (1,0).

“ two-dimensional shear-lag [16], fiber (1).

TABLE 2. Comparison of maximum stresses for an array of
one by eleven broken fibers in the three-dimensional
model| and one broken fiber in the two-dimensional
case. The geometry of Figures 6 and 7 case || with
h=46&=1,0,v=1.01s used.

29



Ml g, (3-0)? s, (2-0)? g (3-0)" 5, (2-0)"
| 110 1.384 1.146 1.333
9 1.521 1.908 1.L456 1.828
25 1.821 2.318 1.728 2.216
49 2.087 2.666 1.967 2.546
81 2.0 2.974 2.181 2.838
1 M equals the total number of broken fibers in the three-
dimensional case. (VM for the two-dimensional case)
2 present solution.
! two-dimensional solution [18].
“ shear-lag solutions [16], [17].
TABLE 5. Maximum fiber stress (stress concentration factor) for

a square array of broken fibers, h = § = 2,0, y = n.5.
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Case |
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FIGURE 6. Geometry for the fiber-matrix cross-section, two-dimensional
mode ! .
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Case |

b
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Case |1
Y = AF/bh = b/h

h=68, h>0
Ve = b2/ (b+48)?

matrix stresses are
0(1//3) as § - 0

Case 111

Ve = AF/(b+ﬁ)“

matrix stresses are
0(1/8) as 6 = 0O

FIGURE 7. Geometry for the fiber-matrix cross-section, three-dimensional
mode | .
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FIGURE 8., Maximum stresses as a function of fiber spacing for the present
solution and (18], using case || of Figures 6 and 7. Square array
of twenty-five broken fibers (five in the two-dimensional problem).
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