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ABSTRACT

An approximate solution is developed for the determination of the inter-
laminar normal and shear stresses in the vicinity of a crack in a three

dimensional composite containing unidirectional linearly elastic fibers in

an infinite linearly elastic matrix.

In order to reduce the complexity of the formulation, certain assump-
tions are made as to the physically significant stresses to be retained.

These simplifications reduce the partial differential equations of elasticity

to differential-difference equations which are tractable using Fourier trans-

form techniques. This "material modeling" approach is in contrast with solu-

tions developed by considering each lamina as a homogeneous, orthot;ropic layer

The resulting solution does not contain the classical singular stress field
for the fibers and the influence of broken fibers on unbroken H bens is felt

by a change in stress concentration factors. The matrix stresses however,

are unbounded as the fiber spacing vanishes and an equivalent fiber-matrix
geometry is proposed which gives the correct singular behavior.

The numerical solution is considered In detail and several specific ex-
amples are presented. The potential for damaged or debonded zones to be gen-

erated by an embedded crack is discussed, and stress concentration factors
for fibers near the crack are given. Detailed comparisons are made between

the present solution, the analogous two-dimensional problem, and corresponding
shear-lag models.
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INTRODUCTION

In investigations concerning the potential use of composite materials

in advanced structures, considerabiy attention has been given to problems

associated with damage or flaws in laminates and to the resulting fatigue

and fracture characteristics of the composite. The need for the capability

to design damage tolerant composite structures with at least the same de-

greo of confidence as now exists for metallic structures is essential if

such materials are to be used in production.

For composite laminates, the technique of hybrid material buffer strips

embedded at regular intervals throughout the laminate has been demonstrated,

for example see [1], to have the capability of arresting through-the-lami-

nate cracks, and in some cases to give a residual strength approaching the

net section capacity of the laminate. The mechanism associated with the

crack arrest and ultimate failure of such laminates has riot, however, been

explained nor have satisfactory methods been developed to allow for accu-

rate prediction of crack arrest !wads or ultimate failure in terms of the

laminate geometry and materials. It does appear however, both from [1] and

the experimental results reported in [2] that, for composite laminates con-

talning embedded hybrid buffer strips or for single material laminates with

weakened interface bonds, delamination between laminae appears to be direct-

ly associated with the laminates ability to restrict crack growth.

The panel containing embedded buffer strips is considerably different

than the related design where either bonded or riveted stringers are added

externally without significantly interrupting the continuity of the basic

panel. The panel and stringers then act much more independently during

fry,
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crack growth and fracture than appears to be the case In composite laminates

with internal buffer strips. A detailed investigation of the problem of

riveted stringers reinforcing a cracked isotropic elastic sheet Is presented

in [3]. Similar studies for adhesively bonded external stringers are re-

ported in [4) and (5), An analogous study concerning composite laminates

with internal buffer strips has not, to the knowledge of the authors, been

completed.

Considerable analytical work has been done for both isotropic and ortho-

tropic materials in investigating the stresses in the vicinity of a crack

tip for the crack being near, at, crossing, or along a material interface.

(See [6), [7), (8], [91, [10), and fill.) These studies considered the

laminate as a thin homogeneous isotropic or orthotropic plane and investi-

gated the resulting two-dimenO gnal stress state. Through the thickness

variations in material properties and stresses were not considered. 	 It

appears that for the embedded hybrid buffer strip the significant stresses

are, in fact, the interlaminar stresses and the three-dimensional problem

must be considered.	 It does not seem reasonable to anticipate the develop-

ment of a general solution in the manner of the above mentioned two-dimen-

sional studies, as the extension to a three-dimensional stress state with

finite thickness would be exceedingly complicated.

Some possibility of success might be had in modeling the lamirate as

in classical lamination theory, where, as discussed in (121 and [131, the

interlaminar stresses near a free edge of a laminate have been approximated.

Finite element or finite difference solutions also are a possibility; how-

ever, without some improvements in the current three-dimensional programs

to account for through-the-thickness variations, the computation time seems

prohibit6v.e. A different approach,which appears to have more potential,is
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to model the laminate as a heterogeneous material consisting of separate

fiber and matrix phases, each with its own characteristic properties. If

the proper assumptioF, are made regarding the dominant stresses carried

by each phase, the appropriate field equations can be simplified consider-

ably while still retaining the fundamental nature of the solution. One

major assumption usually made in such a model is to neglect the normal

stress in the matrix parallel to the fibers. The resulting solution then

does not contain the classical singular stress field at the end of the

notch but rather, the fibers feel the influence of the size of the notch as

a change in a stress concentration factor.

Zweben in [14] presents a detailed discussion of this "material mod-

eling" approach and in [;4] and [15] a two-dimensional problem for a notched

unidirectional laminate containing a damaged region with and without con-

straint respectively, is considered.

An earlier use of this technique was considered by Hedgepeth [16] and

Hedgepeth and Van Dyke [17] for unidirectional fibers in a two-dimensional

and three-dimensional array respectively. In each case however, the matrix

was assumed to transmit only shear stresses and both studies reduced to

one-dimensional solutions. Eringen and Kim, [18] extended the Hedgepeth

model to include normal stresses in the matrix and investigated the two-

dimensional problem of equally spaced parallel fibers in a single layer.

The present paper extends the method [16], [17], and [18] to the case

of an arbitrary number of broken fibers in a three-dimensional composite

containing equally spaced unidirectional fibers. The model developed below

is basically the same as [18] with some difference in the equilibrium equa-

tion perpendicular to the fibers and the significant difference of the

three-dimensional geometry.

a
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Of course, the solution needed is for a finite thickness laminate con-

taining angle-ply laminae, each of possibly different material properties

than the adjacent laminae as well as allowing for different materials with-

in a particular lamina.	 It is hoped that the present study will give some

insight Into the behavior of Interlaminar stresses near a notch and aid in

the development of more complete models. The extension of this investiga-

tion to Include angle-ply laminae is currently being considered by the

writers.

+1E
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FORMULATION

Consider an infinite three-dimensional matrix containing parallel

reinforcing fibers as lndicarcd in Figure (1), where both the fibers and

the matrix are assumed to be linearly elastic. The development given

below will be restricted to identical parallel fibers with the spacing

between fibers taken as equal. It is assumed that the fibers carry

only normal stresses and, In fact, support all the normal stress in the

composite in the direction parallel to the fibers. The matrix supports

shear stresses parallel to the fibers and normal stresses perpendicular

to the fibers. Using the coordinate system given in Figure (1), a

typical element can be isolated as shown in Figure (2), where a particular

fiber or matrix interface is identified by the indices m and n. Note

that the composite is doubly periodic in the y, z plane; however, this

symmetry is initially not required of the solution and random fibers may

be taken as broken with the resulting solution having no symmetry in

the y, z plane. All fiber breaks are assumed, however, to occur on the

plane x = 0 so symmetry does exist with respect to this plane. The

reduction to the ipecial case of broken fibers which are symmetric to

the y, z axes is covered following the general development and a considerable

reduction in computation time is realized.

The equilibrium equations for the element shown in Figures (2) and (3) are

x
A 

do m

' n + h {T l	 -T	 } + h {T	 -T,	 ti = 0,
F	 dx	 xy m+l,n	 xy lm,n	 Xzlm,n+l	 xzlm,n
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a	 - a	 + Z dK {TX	
+ T	 ) = 0, and	 (2)

Y lm+l,n	 Ylm,n	 y	

x

lm+l,n	 ylm,n

az	
z

- o	
+ 2 x {Txz	

+ 
Txz	 ) = 0.
	 t3)

	

Im,n+I	 Im,n	 Im,n+I	 Im,n

The stress-strain and strain-displacements relations are approximated

as follows, using he geometry of Figures (4) and (5).

du

ax	 E,n	
t4)

	

Im,n	
F dx

EM	
t5)

Im+l,n

a 7 1
m, n+I	

h 
{lJm n+l - W min }r	 t6)

Txyl
_ OM

{ 2 dx [vm+I,n + vm,n ] + h [um+l,n - um,n ]}, and	 t7)
m+l,n

rxzlm,n+i - 
GM { 2 x [woi,n+I + wm,n] + h [um,n+l - um n]}	 (g)

In the above equations 
um,n , 

 
m i n ' and 

w
m i

n are the x, y, and z components

of the displacement of a point on the m i n fiber located a distance x from the

y,z plane. The stress axl	 is the axial stress in the fiber and the

min

stresses aYl

	

, a zl	 , Txy l	 rxzl
	

are normal and shear stresses in the

m,n	 m,n	 m,n	 m,n

matrix. The constants EF , EM and GM are Young I s moduli of the fiber and the

1
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matrix and the shear modulus of the matrix respectively. A F is the area

of the fiber, and h is the shear transfer length.

The boundary conditions are for an infinite region, uniformly stressed

at points remote to the mid-plane (y,z plane) containinq an arbitrary number

of broken fibers with the cracks always beinq at the mid-plane. Super-

po,0','on may be used to consider two separate problems: the first, an

infinite region containinq no broken fibers and having a uniform axial stress,

aa , in the fibers, and the second, the infinite region with no stresses at

infinity and a compression stress of magnitude, ao , acting on the fibers

at the cracks. The second problem will be considered below as it is the

portion of the complete solution which is nontrivial.

The boundary conditions are then

umn	 ^^mn=wmn
=0 	 for x=m,

>	 ,

umn = 0 for ail unbroken fiber at x = 0,

ax	 = - ao	 for all broken fibers at x = 0,	 (11)

Im,n

T x	 = 0	 for all fibers at x = 0	 (12)
ylm,n

Txz = 0	 for all fibers at x = 0	 (13)
Im,n

The inclusion of the normal stresses in the matrix gives the necessary

freedom to require equations 02) and (13)• The above equations are

normalized by letting

(9)

(l0)

L
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n - x/h, Umn =umnA,	 Vm n =vmn /li p Wmn=wmnA

(14)

y = AF/h 2 ,	 E F = E F/GM ,	 and	 EM = EM/G M.

Usinq equations (4) - (S) and equations (14), the equilibrium equations,

equations (1), (2), and (3), may be written in terms of the displacements as

E Fy do (Um,n] + Z do N+l,n - Vm-i,n + 
4l
m,n+l - Wm,n-11

+ U
m+l,n + Um- i,n + Um,n+l +U m,n-1 -

 111.1 in,
	 = 0 '

	
(15)

2
EM[Vm+l,n - 2Vm,n + 

V,1-1,n ]+ 2 ( 2 d 
(Vm+l,n + 2V in, n + Vm- I,n]

+ do 
(U
m+1 n - Um-1 n ]) = 0	

and	 (16)

2

2Wm n + Wm n-1 ] + 2 (2 d zz (W	
+ 2W	 + l!

E M (Wm n+l -	
]

n	 m,n+1	 m,n	 m,n-1

+ do (Um,n+l - Um,n-1]} - 0.
	 (17)

It is now assumed that functions U (n, 0, ^ ) , V (n, 0, ,p), and

W (n, 0, 0) exist such that the normal ized displacements U
m,n' V in, n' and W in, n

are the Fourier coefficients in a double Fourier series expansion. Then,

m	 w

U (n, 0, y) = E	 E	 U	
(n)e-ir0 a-isp	

(I S)

r	 s=_w r,s

n
V (n> 0, D) = S	 V	

(n)e-ir. e - 
isd and.	 (19)r=_mss=-^ r>s



z	 Wr, s(n)e 
-iro a-iso .	 (2,0)

r , _ ^ s 	 ,

As the displacements are continuous functions of n, the representation given

above is necessarily valid. These equations may be inverted to yield

um,n (n) = 1 J J u (n, e, 
O ) e ime eino dOdo >	(21)

	

-Tr	 -Tr

Tr	 Tr

V	 (n) =	 rf v (n, e, ^)elme einO dodo, and	 (22)
m,n	 Tr ,J 

	

-Tr	 -Tr

Tr	 Tr

Wm n (ri _	
3 
r 

f W (n, 
e , 

o)eime eino 
dodo.	 (23)

-Tr	 -Tr

The equilibrium equations may then be written in terms of the functions

U, V, and W as

2'
E Fyd 

n
^ + i sin (e) 

d
R

 
+ i sin (,y) du + 2U [cos (o) + cos (o)-

- 21 = 0,	 (24)

2 [i + cos (e)) dtl - 2FM [i -Cos (e)] V + i sin (e) do = 0, and (25)

2 (1 + cos(o)] dn2 - 2EM [ I -cos (o)] W + i sin (o) do = 0.	 (26)

to

)

)
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	These three second order differential equations can be written as uncoupled 	
j

sixth order equations and if the boundary condition of vanishing displace-

ments for large n, equation (9), is enforced, the solutions then will have

the following form.

D (n, e , ^) = Ale-Dln + A 2e -D2n + A3e-D3n
	

(27)

V (n, B , 0) = 
Ble -

 
DIn + B2e - D2n + B3e -D3n	 (28)

w (n, B , ^) = 
Cle -Dln + C2e - D2n + C3e-D3n
	

(29)

where D l , D2 r D 3 must have positive real parts
	

Substituting into equations

(25) and (26) the relationships between B k , Ck , and A le are determined as

i A D sin (B)
B	 k 

k	
and	 (30)

k	
2 [1 + cos (B)] Dk - 2EM [1 - cos (D)]

i A k D k sin (^)	
(31)Ck	

2 [ 1 + cos 
(0)] 02

k
	 2E M [I - cos (0) ]

where k = I, 2, 3.	 Equation (24) then gives a sixth order algebraic equation

for D  of the form

alDk +a2 Dk+ a3Dk +a4 =D .	 (32)

M

)
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The coefficients a l are

yEF
at = —I-- [ 1 + cos (0) ][ 1 + cos (d) ] ,	 (33)

a 2 °-2yE FEM( 1 - Cos (B) Cos (^)],	 (34)

a 0	 2E M ([ 1 - cos (0) ] (yE FEMf 1 - cos (y) ] + [ 1 + cos (¢) ]

X [I -Cos (B)]) + [1 - Cos (0)](Y E F EM [I -Cos (0)]

+ [I + cos (B) ][ 1 - cos (gyp) ] )) , and 	 (35)

a4 = 8 A [ I - cos (B)][ I - cos (gyp)][ cos (B) + cos (0) - 2].	 (36)

Letting Dk	 l k , the six roots can be obtained and, in order to satisfy

equation (9), the three roots with position real parts are taken,

It is noted that all roots of equation (32) vanish at 0 = ^ = 0 and

unbounded roots exist at 0 = $ = +n. The first is clearly seen from the

fact that if 0 = ip = 0 then a2 = a 3 = alt = 0. For B - ^ = +7r, a t = a2 =

0 and the resulting equation gives

D 2 = + (37)8 /yE F 	B = $ _ ,r. 

It also follows that the remaining roots must be unbounded and there-

fore letting B = 0 = a —¢ +7r, then

D 1 = Dg = J tSFM/I l+cos (a)]

	
(38)

This is the same value as the one singular root found in the two-dimensional

case [18], An additional special case exist when either B or (p equals zero

as a,, is then zero and therefore D 2 must vanish. The remaining two roots

k



are

D D	
M	 i+ ,/i - 2[I+cos(a ]^

1 ,	 3	 ^/

where if e = o, a= ^ and for ^ =0, a = e. The positive sign is taken

for D 1 and the negative sign for D3.

The functions, A 1 , A2, and A3, which depend on O and are next de-

termined from the boundary conditions, where equation (9) is satisfied by

the proper choice of D 1 , D2 , D 3 . Equation (10) gives

	

it	 IT

J

(Al + A2 + A 3 1e ime e in
^ded^	 = 0	 (40)

4,r2

	

-it	 7T

for all unbroken fibers, and equation (11) gives

	

n
r	

it

4n 2

	

J	 J	 [A1D1 + A,D 2 + A 3 D 3 ]e imo e in¢
dOd^ = 1	 (41)

	

IT	 -n

for all broken fibers.

The conditions of vanishing shear stresses on n = 0 specified by

equations (12) and (13) require the following relations between the three

functions A 1 , A2 , A3:

D 1 2 _ D32

	

A2 = -A l	 (42)
D2 2 _ D32

{[ l+cos (,6)ID2 2- 411l[ 1-cos($)]}{[ l+cos(6)]D 2 2 - 4E li( i - Cos (0)]}

{[ I+cos (^)]D 1 2- 4fli[ 1-cos($)]}{[ l+cos(e)]D1 2 - 4Eli[ i-cos(0)]}

and

2

	

A3 = -A l	 (1+3)
D32 - D22 

([ l+cos(¢)]D 3 2 - 4frl[ I -Cos (,y)]}{[ 1+cos(6)]D 3 2 - 4f M[ i -cos (0)]}

{[ l +cos(p)JD 1 2 - 4f M[ I-cos(y)]}{[ i+cos(6)]D 1 2 - 4fM[ i -cos (0)]1

i

13

(39)
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Equations (40) and (41) then reduce to a set of dual integ ral equations in

terms of the unknown function A 1 (O t o). Proceeding in the same manner as

(181, based on the orthogonality of the Fou ier series, these dual integral

equations can be reduced to a set of simultaneous linear algebraic equations.

Equation (40)' is identically satisfied by assuming

[ A1 + A2 + A 3 1 = E E H r se- ire e- 
ISO	 (44)

4n2
r s

where r and s correspond to the indices of the broken fibers and the H r s

are constants. Substituting from equations (42) and (43) into equations

(40), (41), and (44) then reduces equation (41) to a set of algebraic equa-

tions for the Hr s. The set of equations are developed as follows. Refer-

ring to equations (42) and (43), let

A2 = 0 2A 1 , and	 (45)

A3 = 0 3 A 1 .	 (46)

Then, from equation (44)

[I + 6 2 + 0 3 1A 1 = E E Hr,se- ire e
- is^	

(47)

4,r2 	r s

and equation (4+) is then

E E H	 r
	

j

D1+02D2+03Dg -irc3 -iso ime in,
r s	 r,s 

n	 rr	
e	 e	 e	 e	 ded,y= I

1 + 02 + 03
,r 	 ( 48)

where m, n, r, s correspond to broken fibers. With the constants H r s then

known, the Ak , B k , and C  are specified and the stresses and displacement

can be calculated.

In the numerical evaluation of equation (48) as well as the stress and
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displacement equations, the singular behaviour of D1 and D 3 at 0 = b - + a

and the behaviour of D I , DZ , and D3 along the lines 0 or ^ = 0 or n, must be

accounted for. Noting the form of OZ and 6 3 given by equations (40), (41),

(43), and (44) and the fact that D1= D 3 = 8EMAI+cos( a)) as 0 = ^ = a h +n,

It is seen that OZ = 03 in the limit. Proceeding to the limit as a * +n,

the integrand of equation (48) then remains bounded and equals D 1 at

C - 4 = n. The analogous behavior occurs in the two-dimensional case (18).

For either 0 or ^ equal to zero the integrand of equation (48) Is bounded

and vanishes at 0 = ^ = 0. In a similar manner all stress and displacement

equations have bounded integrands at all points in the region of integration.

R
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SYMMETRIC ARRAY OF BROKEN FIBERS

The above equations can be simplified considerably for the special

case of a symmetric array of broken fibers. For convenience in comparing

the two solutions only those equations which change due to the symmetry

restriction will be recorded and they will be indicated by the previous

equation number with an asterisk.

If a symmetric number of fibers is assumed to be broken with respect

to the y and z axes it then follows that the displacement U m,n (n) is even

valued on the indices m and n, while the displacement 
m n

(n) is odd

valued on m and even valued on n, and the displacement Wm n (n) is even

valued on m and odd valued on n. Equations (18) - (26) then become:

U(n, 0, 0 = E1	 E 1 te r 
s(n) cos(re) cos(o),	 (13)-

r=o s=o

V(n, 0, 0 = WE 	 E1 Vr,s(n) sinIre) cos (s-p),	 09)*

r=1 s=o

U(n, e, p) = E 1 	 E1 Wr,s(n) cos(re) sin(s¢),	 (20)*

r=o s=1

U m 
n (n) = 2 ! I U(n, 0, ,p) cos(me) cos(no) dodo,	 (21)*

n	 o 0

Vm n (n) I !	 1'(n,	 0,	 p) sin(me)	 cos(n,)	 ded6,	 (27.)'
0 0

Wm,n (TO	 -

4	 n

!n
"

I	 U(n,	 0,	 0 ) cos(me)	 sin(n,b)	 ded^,	 (23)x`
0 0

2U
yE F do — +	 sin(e) do + sinO do + 2V [cos(e) + cosO-2) = 0,	 (24)

16
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2 [I + cos(o)] ddl - 2Em[I - cos(D)]V - sin(0) dam' m o,	 (25)*
dn..

Z [ I + Cos( $)lanz - 2—E [ I - Cos (0)lw - sin($) d	 = o,	 (26),,

Equations (27), (28), and (29) remain unchanged, and equations (30)

and (31) become

-AKDK sin (8)
B k=	and	 (30)+',

Z[ 1 + Cos(0)1 DK - 2EM [ I - Cos (0)

-AKD K sin(o)

^K =
2 [ I + cos ($) ]DK - 2EM 	 cos ($) ]	 (31),t

The coefficients al, a 2 , a 3 , and ak are unchanged as are the roots to

the characteristic equation (32). The remaining changes are in equations

(40), (41), (44), (47), and (48) as

n	 IT

4 I f [A 1 + A2 + A 3 1 cos(m0) Cos (no) dBdo = 0, (40
W2 0 0

n n

! I [ A 1 D1 + A 202 + A 3 D 3 1 cos(Me) cos(n,p) dBd$ = I, 	 (41)
0 0

=[A 1 + A2 + A 3 ] = E E Hr 
s 

cos(r0) cos(s$),	 Olf
r s

4
[1 + 6 2 + 8 3 1A 1	E E Hr s cos(r9) cos (s p), and	 (47)

a`	 r s

i
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r r

r s Hr,s 
J 

J
^ o

D1+82D2+63D3

1+Q.'+23

cos(ro)cos(o)cos(mo)cos(n0 dodo a 1.

(118)*
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NUMERICAL SOLUTION AND RESULTS

A computer code has been developed for the numerical solution of the

above equations. The program was written in FORTRAN IV language for the

NASA-Langley Research Center CDC computer. l A maximum error of less than

I percent was achieved with the average computation time being on the order

of thirty minutes.

The results presented below concern comparisons between the present

three-dimensional solution, the two-dimensional studies of [161 and [181,

and the three-dimensional shear-lag problem of 1171. Differences in the

respective two- and three-dimensional analyses due to the inclusion of the

matrix normal stresses in the model are central in the discussion. Detailed

results are given apropos the manner of distribution of critical matrix nor-

mal and shear stresses, and the rate of decay of fiber stress as a function

of distance from broken fibers. All results are for EM = 2.0, E F = 5.2.

Changes in material properties do not change the form of the solution and

it was felt to be more Important to discuss the fundamental differences in

the various solutions and to investigate the significance of the geometric

parameters, i.e. fiber spacing and number of broken fibers.

It is important to note that in (1.181, equation (2.1)), the equilibrium

equation in the transverse direction, was written as

b d
Jn - an-i + 2 dy (Tn + Tn-i ) = 0.

1 The program is entitled, "Stresses in a Three-Dimensional Unidirectional
Composite Containing Broken Fibers," and is available through COSMIC,
112 Barrow Hall, The University of Georgia, Athens, GA 30602,

k
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This amounts to assuming that the fiber supports all of the shear

stress. We have changed this equation by replacing b with h to be consis-

tent with the present analysis. The results for the two-dimensional geome-

try presented to this paper were obtained by solving the appropriately

modified equations of (181. These changes gave insignificant differences

in the fiber stress but resulted in considerable changes in the matrix

stresses.

The constants y and h deserve further discussion as changes in para-

meters can be Interpreted to imply significantly different physical situa-

tions. That is, if 6 is taken as the distance between fiber boundaries,

the relationship between y, h, and 6 and the eoproximations assumed for tho

matrix surface over which stresses are transferred and strains calculated

are open to considerable freedom of definition, while still remaining within

the validity of the formulation for both the two- and three-dimensional

models. The geometry of Figure 2 and the corresponding geometry of (161,

1171, and (181 requires only that the distance h be consistent in all three

equilibrium equations.

For example, referring to Figures 2 and 3 and to equations (1) through

(8), it is seen that h is the width in the vertical plane over which the

shear stresses act in equation (1), while in equations (2) and (3), it is

the corresponding distance in the horizontal plane. 	 In equations (5) through

(8), it is related to the distance through which the matrix deformations take

place, and should be bounded by the distance between fiber centers, b + 6,

and the minimum spacing between fibers, 6. As seen below, the width in aqua-

tion (1) need not be the same as the distance in equations (2) and (3) or (5)

through (8).

J.Y.
l

1
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In Figures 6 and 7 three different geometries and corresponding assump-

tions y, h, and S are given for the two- and three-dimensional models, respec-

tively. The different value of y for each case is due to the particular geome-

try assumed and is derived by writing the equilibrium equation in the axial

direction, accounting for the specific fiber shape and shear transfer region.

Table i gives values of y for particular values of S for each case of Figures

6 and 7,

Case I in Figures 6 and 7 corresponds to assuming that the fibers have

the same material properties in shear and transverse normal directions as the

matrix, and would be more appropriate for nearly equal fiber-matrix properties.

Cases ii and III are more realistic for a typical composite, in which the

fibers usually have a much higher modulus than the matrix, and make the assump-

tion that the normal and shear strains occur over a critical distance equal to

the minimum distance between Fibers. The main difference between II and III is

the assumed shape of the Fiber. The decision as to whether a square or circular

fiber cross-section is more appropriate is based on considering the solutions

for close fiber spacing and comparing the manner in which the stresses increase

with decreasing S with previous elasticity solutions [19] and [20]. 	 In these

studies the stresses between two circular cylinders under the action of inplane

loading and transverse shear, respectively, were considered. 	 In both studies

the numerical results indicated a UY S behavior for the maximum stresses between

rigid cylinders as the distance S approached zero. For elastic cylinders un-

bounded stresses did not occur. Cases II and III are equivalent to assuming

infinite transverse normal and shear material properties :or the Fibers as all

the strain is assumed to occur over the distance between fibers; therefore, it

seems consistent to seek a model having matrix stresses which behave as 1 /rS

t°.
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if possible. From Figures 6 and 7, Cases II and III, the matrix material 	
I

supporting the stresses decreases like 1/h and 1/h 2 , respectively, and the	
1

stresses should Increase morn repidly with decreasing h in III than II.

By considering the present solution along with [161, 1171, and [181 and 	 i

expandiig the equations for small values of h, where h = 6, the matrix

stresses for all four models are found to increase as 0(I/vrh—) and 0(i/h)

for Cases II and III, respectively.

Case II is then more appropriate for close fiber spacing as it agrees

with the continuum solutions 1191 and [201, and it is suggested that the

actual fiber cross-section be represented as an "equivalent" square cross-

section having equal areas. All results given below are for Case II with

the corresponding y, h, and 6 relationship of Figures 6 and 7 and Table I.

Figure 8 gives the value of the maximum stresses as a function of h for

a square array of twenty five b! •oken fibers, (five broken fibers in the two-

dimensional study (181). The stresses for 1181 are larger For all values of

spacing h due to the added constraint of the present geometry. As the number

of broken fibers increase, the two solutions should approach each other.

This is indicated in Table 2 for the particular case of one by eleven broken

fibers i.e. (0,-5) through (0,5) where the stresses adjacent to the (1,0)

Fiber are compared with the stresses adjacent to the first unbroken Fiber for

one broken fiber in [181.

Both the normal and shear stresses are of considerable importance in

formulating a failure criterion capable of predicting matrix damage. 	 It is

seen in Figures 9 and 10 that compressive normal stresses exist over part of

the matrix region between the last broken and the First unbroken fiber, both

in [181 and the present study. The shear stresses decrease due to the differ-

ent boundary conditions at n = 0, from the corresponding shear-lag stresses;
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therefore, it seems likely that the shear-lag model would ;ead to a prediction

of greater matrix damage parallel to the fibers than the present model. In-

deed, related two-dimensional shear-lag studies concerning matrix splitting

for a unidirectional laminate (see [211 for one broken fiber and (221 for an

arbitrary number of broken fibers with splitting and yielding) indicate that

only a very small increase in the stress required to initiate damage can be

tolerated before unstable splitting occurs. The splitting develops in the

region adjacent to the last broken fiber which, as mentioned above, also has

compressive stresses using the model of [181 without damage. The analysis of

[221 is being extended to include a model having normal stresses in the

matrix, and it is hoped that the results will be more consistent with experi-

mental evidence, in which case local, stable, splitting has been observed [231

and [241. Such behavior has also been observed at the NASA-Langley Research

Center for Boron/Aluminum composites by C. C. Poe, (private communication).

An equally interesting observation is noted for the region between the

first and second unbroken fibers. As indicated in Figures 9 and 10, the shear

:tress is considerably reduced from its value on the opposite side of the

fiber; however, it is larger than the corresponding shear-lag solution. More

importantly, it is opposite sign than the shear-lag stress. The normal stress

is tensile and more than fifty percent larger than the maximum shear stress

in the adjacent region. First-ply matrix splitting has been noted for bonded

joints [251 which are very similar geometrically to the region in the vicinity

of the notch in the present work and the large tensile stress found here cer-

tainly admits the possibility of such damage.

Table 3 gives results using the present solution for a square array of

broken fibers as well as analogous results from 1161, 1171, and [181. The

maximum fiber stress occurs on the plane of the break (n = 0) and in the first

L.
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unbroken fiber at the center of the sides for the three-dimensional problems

and in the first unbroken fiber in the two-dimensional problems. For both

the two- and three-dimensional solutions, the maximum fiber stress is seen

to be slightly smaller for the shear-lag model. Both the fiber and matrix

stresses are larger in the two-dimensional case [181 than the present solution.

Figure 11 gives the magnitude of the maximum fiber stress in the first

unbroken fiber as a function of the number of broken fibers for a square

array, and compares these values with [161, [171, and [181. Also, for the

one particular case of eighty-one (nine) broken fibers, the stress in the

first four unbroken fibers is given. 'ihe decrease in stress is largest be-

tween the first and second intact fibers with the rate of change being rela-

tively small from that point on. As seen in the figure, the influence of the

broken fibers decreases more slowly for the two-dimensional model [181 than

for the present three-dimensional model.

ki



CONCLUSIONS

The significant difference between the present model (either two- or

three-dimensional) and the corresponding shear-lag model is in the change

in the manner of distribution of the critical shear stress in the matrix

and the introduction of matrix normal stresses. As noted, the critical

shear stresses are reduced on the order of fifty percent over the correspon-

ding shear-lag solution and the matrix normal stresses are found to be of

sufficient magnitude to suggest potential matrix damage. For close fiber

spacing both the normal and shear stresses in the matrix are shown to in-

crease without bound and an equivalent cross-section is proposed which gives

the correct singular behavior based on previously published elasticity solu-

tions.

Surprisingly, with these major changes in matrix stresses, the fiber

stresses are relatively unchanged, i.e., approximately three percent higher

than the corresponding shear-lag solution. The fiber stress in all solutions

is essentially independent of fiber spat;ng.

It then seems reasonable to expect, that any attempt to develop an

analysis for the investigation of matrix damage must be based on a more com-

plete model than the shear-lag assumption.

25
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b 2.00 1.50 1.25 1.00 0.75 0.50 0.25 0.10

L
0,33 o.4o o.44 0.50 0.57 o.67 0,80 0.91

y1 1 0.50 0.67 0.80 1.00 1.33 z.00 4.00 10.00

y^^ l 0.20 0.35 0.	 50 0.79 1.40 3.14 12.57 78.57

y2
1

0.11 0.16 0.20 0.25 0.33 0,44 0.64 0.83

y^ l 0.50 o.67 0.80 1.00 1.33 2.00 4.00 10.00

yili
0.20 0.35 0.50 0.79 1.4o 3.14 12.57 78.57

1 Two-dimensional geometry, Figure 6,

2Three-dimensional geometry, Figure 7.

TABLE I. Relationship between the fiber spacing 6 and the
constant y for the geometry of Figures 6 and 7.
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Model (3-01 (2-D)2 (3-D)3	 (2-D)4

ax 1.371 1.372 1.327 1,333

ay 0.316 0.316 - -

Txy -0.238 -0.238 -0.343 -0.344

1 present solution, fiber (1,0).

2 two-dimensional solution [181, fiber (1).

3 three-dimensional shear-lag 1171, fiber (1,0).

1' two-dimensional shear-lag [161, fiber (1).

TABLE 2. Comparison of maximum stresses for an array of
one by eleven broken fibers in the three-dimensional
model and one broken fiber in the two-dimensional
case. The geometry of Figures 6 and 7 case II with
h = 6 = 1.0, y = 1.0 is used.
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M 1 ox	(3-D) 2 Qx	 (2-D)3
x	

(3-D) 4 ox	 (2-p)a

1 1.171 1.384 1.146 1.333

9 1.521 1.908 1.456 1.828

25 1.821 2.318 1.728 2.216

49 2.087 2.666 1.967 2.546

81 2.321 2.974 2.181 2.838

1 M equals the total number of broken fibers in the three-

dimensional case.	 (vrM for the two-dimensional case)

present solution.

3 two-dimensional solution (181.

	

14 	 solutions 1161, (171.

	

TABLE 3.	 Maximum fiber stress (stress concentration factor) for
a square array of broken fibers, h - ^ - 2.0, -, - 0.5.
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FIGURE 1.	 Three-dimensional array of parallel fibers.



^ x I 	 (x+sx)
min

Txzim(nxv

T

i

	 lower surface (x)

Y (m)

Figure 2. Free-body diagram for a typical element of the (m,n) fiber.

hk



lm,n+l)

face

t^

I	 I
I

I

1 x
` (Yx l m ^x+4x) 33

.xYlm+l^n(x)

io Y ; m+i nlx,

TXVII	 ^(x+Gx)

°Y;m,n(x}

IxYlm n(x)

Txylm+fx+Gx)
4h..r.r.r

Y (m)	 __
a ---&*

Txyi.n+l,n(x)

T xzl m n(x+Ax)

Txy'm,n(x)

a x, I m n 

x

ax lm n(x
+ex)

TXZIm n+}x+Ax)
am" — 0

1

r
3 	 J (rn+ 1 , n)Z m'n(x)	
I	 I	 face
I

txz!m n lx;	
I

,

I

I

I

TxZIm,n+i(x)

jz!m,n+i(x)

.:tn)

ITxzl m,n(x)	 xzIm,n+I(x)

axjm,n(x)

Figure 3•	 `ide views of the free-body diagram of Figure 2.



um+l,n

34

vm+i,n (x) 	 vm,n(A)

Plane "n" where (a, b, c)
and a"ter a,_Formation.

Note: To ;nsure symmetry

d vm,n

and (a', b" c") are the points before

I	 d
Y2 2	 [vm+I,n + v

m n ) rather than7x

Figure w.	 Displacements for a region containinq the m,n fiber.
(x,y plane)



I

„lx)

35

'	 J

w	 (x)	 w

	

m,n	 m,n+Ikx)

	

?lane "m" where (b, c. d) and tb', c	 d') are three points netore
and after deformation.

Noce: To insure vmmetry yy	 1—, ^^ 
	
(w+ tv	 1 rather than

d	 dx	 m,n+I	 m,n'

dx "'n , n

Fiqure 5.	 Displacements for a region containing the m,n fiber.

(x.z plane)



t

^ ^6

Case

36

h

t	 V	 1	 / //
b

Y1 - A F/th = b/h

h - b+d, h	 b

O F - b/h

matrix stresses are 0(1)

as d- ► 0

Case II

h/2

Y11 = A F/th = b/h

h = ^, h , 0

V F = b/(b+,S)

matrix stresses are

0(1/,S) as ^ - 0

Case III

h

f^'1J

VIII	
AF/h`

h=	 h'• 0

V F = A F/ ( b+6) t

matrix stresses are
0(1/', ) as , - 0

^►- ^•--

FIGURE 6.	 Geometry for the fiber-matrix cross-section, two-dimensional

model.
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YI ' A F /h2 - b-/h2

h - b + 6, h > b

V F j b2/h2

matrix stresses are
0(1) as	 6 -► 0

Y11 = A F/bh = b/h

h	 6, n > 0

V F	b2/(b+6)2

matrix stresses are

0(1/Y^S) as 6 -► 0

Case II

^w jw h/2

b
b

I

Case III

h/2

_	 7\

b
h

t^

AF/h2

h = 6, h > 0

O F = AF/(b+6)-

matrix stresses are

0(1/6) as 6 - 0

aid

FIGURE 7. Geometry for the fiber-matrix cross-section, three-dimensional

model.



twu-d im.

three-dim.

38

a

2.5

2.0

1.5

1.0

0.5

0.0

<z

2.0	 I.`	 1.0	 0.5	 0.0

h (h=6)

FIGURE 8. Maximum stresses as a function of fiber spacing for the present
solution and [18], using case it of Figures 6 and 7.	 Square array
of twenty-five broken fibers (five in the two-dimensional problem).
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