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ABSTRACT

In this paper the elastostatic problem for a nonhomogene-
ous plane which consists of two sets of periodically arranged
dissimilar orthotropic strips is considered. It is assumed
that the plane contains a series of collinear cracks perpendi-
cular to the interfaces and is loaded in tension away from and
perpendicular to the cracks. First the problem of cracks fully
imbedded into the homogeneous strips is considered. Then the
singular behavior of Lhe stresses for two special crack geome-
tries is studied in some detail. The first is the case of a
broken laminate in which the crack tips touch the interfaces.
The second is the case of cracks crossing the interfaces. An
interesting result found from the analysis of the latter which
may have an important bearing on 2 possible delamination frac-
ture initiation at stress-free boundaries in bonded orthotropic
materials is that for certain orthotropic material combinations
the stress state at the point of intersection of a crack and an
interface may be bounded whereas in isotropic materials at this
point stresses are always singular. A number of numerical
examples are worked out in order to separate the primary mater-
ial parameters influencing the stress intensity factors and the
powers of stress sinqularity, and to determine the trends regard-
ing the influence of the secondary parameters. Finally, some
numerical results are given for the stress intensity factors in
certain basic crack geometries and for typical material combina-
tions.

AT

[his work was supported by NASA-Langley under the Grant NGR-39-
007-011 and by the National Science Foundation under the Grant
ENG77-19127. )



| INTRODUCTION

In considering the failure of a given structural component
if the corresponding material is homogeneous and isotropic in
its strength and thermomechanical properties, the related frac-
ture process is relatively well-understood and the techniques
dealing with such problems are sufficiently well-developed.
This is particularly true in the absence of large scale plastic
deformations around the dominant flaw from which the fracture
failure would develop. On the other handa in composites, parti-
cularly in fiber-reinforced laminates, the situation is much
more complicated not only because of the nonhomogeneity and
anisotropy of the material which make it very difficult to ana-
lyze the problem, but also because of the highly nonhomogeneous
and nonisotropic distribution of the strength parameter making
the development and the application of a proper fracture cri-
terion also very difficult. In such materials it is quite
possible that the concept of the progressive growth of a domi-
nant crack with a well-defined leading edge is not an appro-
priate model for the characterization of gross fracture beha-
vior. Very often the damage zone developing around the dominant
flaw is somewhat irregular and diffused and the fracture process
is generally governed by a principle of "weakest link", the
local fracture propagation being progressive or in discrete
steps. Nonetheless, whatever the gross mechanism governing the
process of fracture failure in the structure, one may nearly
always assume that locally fracture initiation and propagation
will take place along the leading edges of the existing flaws
where the conditions of the relevant fracture criterion are
satisfied. Thus, in order to treat the local fracture pheno-
menon in composite materials quantitatively, one may need the
solution of the mechanics problem for flaws or cracks located
at or near the phase boundaries or bimaterial interfaces.

For composites which consist of bonded isotropic materials
a wide variety of crack problems have been solved in which
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either the asymptotic behavior of the stress state around the
points of geometric singularity, or the results for a specific
crack geometry have been discussed (see, for example, [1] and
[2] for review and references). On the other hand, crack
sroblems for homogeneous or nonhomogeneous anisotropic mat-
erials remain relatively unexplored. Most of the existing
solutions refer to infinite planes [3-7]. The crack problem
for an orthotropic strip is considered in [8] and that for an
orthotropic strip bonded to two orthotropic half planes is dis-
cussed in (9], The details of the problem for a finite crack
located in the neighborhood of, or intersecting, a bimaterial
interface in bonded anisotropic materials do not seem to have
been investigated. Even though the problem is rather compli-
cated mostly because of the large number of independent con-
stants entering the analysis, it may be made manageable under
certain simplifying assumptions. The main assumptions made in
this paper are (a) both materials are orthotropic, (b) the
nonhomogeneous medium consists of two sets of periodically
arranged dissimilar strips having different thicknesses, and
(c) the cracks in the strips are collinear, perpendicular to
the interfaces, and also periodically arranged (Figure 1).
Thus, one can take advantage of the symmetry of the medium

and formulate the problem for two bonded strips only. The
corresponding problem for isotropic layers or strips were con-
sidered in [10] and [11]. In 112) the effect of the thickness
and the elastic properties of the adhesive layer on the stress
intensity factors in bonded dissimilar isotropic strips was

considered.
2. GENERAL FORMULATION OF THE PROBLEM

Consider the plane problem for an orthotropic medium.
Referring to, for example, [13] if u and v are the x and y com-
ponents of the displacement vector, the equations of equili-

brium may be expressed as follows:
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for generalized plane stress, and

By ® Byp/8yp o By = Bppllyp o By = 1 % bypihyy (3)
for plane strain. Here, Eij' Vig and G1j. (1.57 = 11.2:%),

are the engineering elastic constants, indtces (1,2,3) refer
to the (x,y,z) directions, and the matrix (bij) is given by

(byg) » B= A", A= (ag) o (1,8) = (1.2.9)

511 - ]/Eii H aii - -Ufj/Eii B ’ (i’J) . (4)

. Ji

The stress-displacement relations are

R | av - b, 34 av

Iyx * Py1ax * b123y » Oyy byosx * b223y -
. du , AV
Oxy = ny(ay * %) (5)
for plane strain, and

B s oy
ax [xx Exx yy Ay Eyy X X Eyy
du aN
3y + T " Clxy/ny (6)

for generalized plane stress.

Consider now the periodically arranged two sets of bonded
orthotropic strips shown in Figure 1. In addition to the geo-
metric symmetry indicated in the figure, it will be assumed



that the medium is subjected to in-plane loading which

is symmetric with respect to the x axis and is remote

from and perpendicular to the cracks,

Thus, the solution of the probiem may be obtained by the stan-
dard superposition technique, from the viewpoint of fracture the
fmportant component being the perturbation solution in which the
crack surface tractions are the only external loads. One may
note that because of symmetry it is sufficient to consider the
problem for one quarter of cach strip only, Let (x].y) and
(xz.y) be the local axes for the sets of strips 1 and 2 as

shown in Figure 1. Let the displacements be expressed in terms
of the following Fourier integrals:

A\l 2 W
[ fj(u.xj) cos ya da + ~[091(“'y)5i" X g0 da

4
4

n

UJ(XJ'Y) : 5

a

vj(xj.y) = E[;mj(n.xj) sin ya da + 5[ nJ(m.y) cos xJa do

0

(7a,b)
where j = 1, and j = 2 refer to the strips 1 and 2, respectively,.
Substituting from (7) into (1) one obtains a system of ordinary
differential equations for the unknown functions fj....nj. which
are coupled in pairs. Solving these equations we find

e ik
fj(d.xj) - k.::.‘AJ-k(l\)e M Iﬂj(\t.!j)
5 aX
= ala Ik
k;]t-jkA‘“‘(‘)o
S, ay/8
4 Syk™/ By
gj(“-.Y) = LB k(‘)‘— s ”j{"oy)
4 $ kkly/le

o (J=1,2) (8)

In (8) Sk y(i=1,2 , k=1,..,4) are the roots of the following
characteristic equation:



4 2 2 -
$ ¥ 5J45 + ﬁJS g sja 'sjl > sj4 -552 :

- 2 2 = =
The functions Ajk and Bjk y» (§J=1,2 , k=1,..,4) are unknown
and the constants cjk and djk are given by

2
g9 = =gy = (1-Byy849)/Byq84y

g %o
€2 = “Cyq (I-Bj,sjz),ejasJz -

2 2
dj] = -dJ3 = (SJI'BJIHJS)/BJ3SJIBJS ,

2 2
djp = ~d3n = (55085 Byg)/8538 50855 - (10)

The unknown functions AJk and BJk which appear in (8) are
determined from the boundary and the continuity conditions of
the problem. In addition to the assumed nature of symmetry in
loading and geometry, it should be emphasized that in the per-
turbation problem under consideration the only external loads
are the local self-equilibrating crack surface tractions.
Consequently, both components of the displacement vector would
vanish for y++=, and the x-component of the displacement, uJ
(j=1,2) would be zero along the axis of symmetry Xg A
(§=1,2). Thus, the sixteen conditions which have to be used
to determine the unknown functions Ajk and Bjk £33 .03 ko). ..s8)
may be stated as follows.

uJ(xj.y)+0 ‘ vJ(xJ,y)+0 » (§=1,2) for y+o , (1)
up(hyay) = up(=hyuy) u vylhyay) = vy(-hsyy)

O<y<e (12)

lex(h]oy) . OZXX(-hZ’y) ’ G]xy(h]!Y)

3 szy('hst) ’ Oiy<m |(13)



U‘i(o.y) =0 " “ny(O.Y) =0 ’ Oiy<"' ) (-.1“]!2 s (1‘)

l’ny(xjvn) =0 , 1xj'<hj ’ (J'I,Z) ’ (15)

clyy(x‘00) - D](K]) » |x1[<a ,

v](x].O) 5 - S a(lx.||<hl § (16a,b)

o
zyy(xzoo) pz(xz) » C"X2|<d ’

vz(xz.n) =0 , 0<|x2|<c . d<!le<h2 (17a,b)

In (9) it may arbitrarily be assumed that

RE(SJ})>0 » RE(512)>0 » (3-1.2) . (]8)
From (7), (8), (11) and (18) it therefore follows that

Bj](") =0 » sz(“) = 0 ’ (j'] |2) . (]9)

Ten of the remaining twelve unknown functions may be eiiminated
by using the homogeneous conditions (12-15) in (8), (7) and (6).
The last two unknown functions are then determined from the
mixed boundary conditions (16) and (17). The problem may be
reduced to a pair of integral equations by defining

’—3—' vj(xj.O) = ¢j(xj) B lejlhj ' (J=102) ) (20)

IH(‘j
and by replacing the conditions (16) and (17) by (20). Thus
all the unknown functions AJk and Bjk may easily he expressed
in terms of the new unknown functions q and wz. We now observe

that part of the mixed conditions, namely (16b) and (17b) is

equivalent to
a

=:](x]) =0 , a'~|x]I<h] : ff:'](x])dx1 =0 |, (21)
..a d

¢2(x2) el 0<lx2|<c : d<|x2|<h2 : Jéz(xz)dxz = 0[(22)

Substituting the results obtained from (6), (7), and (8)
into the conditions (16a) and (17a) we obtain two integral



equations to determine " and PR

Because of the large number of elastic constants and un-
known functions the process of deriving the integral equations
is rather complicated and 'eagthy. However, the technique is
straightforward and is quite similar to that followed in [10]
and [11]. Therefore, the details of the derivations will not
be given in this paper. As in [10], it can be shown that the
integral equations are singular and may be expressed as follows:

] ] ! X
I['(t'*x cEn) I Oget) - kg Ogaet) T ()t
]
+ I[klz(xl't) " k]z(x]"t)]¢z(t)dt . 31_1‘ p](x]) ’
2
x1£L] "

[[“21(*2"’ * Kgyikpr=82ieyitios ![%(t-lz ’ t+12)
( 2

* hpp(xpat) = kpplxpu-t)1ep(t)dt = fpy(xy)

XZELq ’ (zaanb)

[

where L] and L2 refer to the cracks on (y=0 , Oix]<h]) and
(y=0 , 05x2<h2) in the strips 1 and 2, respectively, and

-
Hy = 2E1y g/ (Tovy vy yy) o g = 2B, 0 v g/ (T=vp, Vo y) -

l24)
In deriving the integral equations one needs to define in a
systematic fashion a large number of elastic constants and
intermediate functions. Therefore, in order to conserve space
the definitions leading to the expressions of the kernels
kij.(i.3=1.2). and the constants Y4 and 7;4. and to the
relationships between the functions Ajk’ BJk and 4 will also



be omitted in this paper('). These definitions and the details
of certain derivations may be found in [14] for the group of
orthotropic materials which would give a characteristic equa-
tion having only real roots sjk.(j-l.Z; k=1,..,4) (defined
henceforth as the orthotropic materials of type 1), and in

[15] for materials which would give a characteristic equation
with only complex conjug:te roots (defined as the orthotropic
materials of type l!)('-).

The kernels k1J which appear in (23) are of the following

form:
kyg(xeot) = fsij(x,.t.d) da . (1.5°1.2) . (25)
Examining the behavior of Kij for a«»0 it can be shown that
C
S i
Neg & g ¥ vl (26)

where c1J are known constants, Even though this may imply
divergent kernels, by writing

- (_;'I
{kij(x1.t)¢j(t)dt . f¢jdt[éK1J-—Hi)du
J Lj s
+I¢jdt f dga L (4,5-1,2) (27)
L

41
0
and by using single-valuedness conditions (see (21),(22))

[s5(t)at = 0, (3=1.2) (28)

it 13 g%en that the singularity at o« = 0 may easily be removed.
Also, by examining the behavior of the integrands Kij' (i,§=1,2)
for a+= it can be shown that they decay exponentially provided
the series of collinear cracks L, (i=1,2) are fully imbedded in

[*1Note that the constant Y14 1s the same as the constants M4
and r., defined in [8] (eqs. 16 and 19) and the constants
definla in (24) correspond to 4u/(1+x) for the isotropic materials.

(**)In practice, since @ in the characteristic equation (9)
appears to be always a néaative quantity, the third type of mater-
ial giving four pure imaginary roots is not a realistic one.



the homogeneous strips (i1.e., they do not touch or iIntersect
the bimaterial interfaces). Thus, in solving the integral
equations (23), k{j may be treated as Fredholm kernels. In
this problem since the kernels of the integral equations have
only a Cauchy type singularity, the functions ¢ would have i
square root singularity at the end pointsoftiand the equations
may easily be solved by normalizing the intervals and by using
the technique described, for example, in [16]. After solving
the integral equations, the stress intensity factors may be
obtained in terms of the functions ¢j. For example, let Fig-
ure 1 describe the crack geometry, i.e., let Ly=(0,a), Lp*=
(c,d); then, the stress intensity factors may be defined

and obtained as follows [8]:

k(d) = 1lim 'm_"ﬂ- U]yy(t.O) = =lim u-’fz‘a't, @](t) »

ta t+a
k(c) = 1im /Z{c=¢t) ozyy(t.O) = 1im uz/ftt:ET bo(t)
t+c t+c
k(d) = 1im J/2(t-d) °2yy(t'0) = -lig uzﬁzta-t, ¢2(t) 4
t+d t

(29a-c)
3. CRACK TOUCHING THE INTERFACE

Two limiting cases of the problem discussed in the pre-
vious section are physically important and mathematically in-
teresting., These are the cases of a broken Taminate corre-
sponding to a crack touching the interface (e.g., a-hI. d<hy,
Figure 1), and a crack intersecting the interface (e.g., a=hy,
d=hy, 0<c<hy, Figure 1). For example, referring to Figure 1,
let a=hy and d<h2. In this case it may be shown that as a-+»
and for -hy<(xy,t)<hy, c<(|x2|,|t|)<d the integrands Ky, Koy,
and Ky, in (25) decay exponentially. Therefore, the kernels
ky2» kz1s and kpp are bounded in their respective closed do-
mains. On the other hand for xj;+hy, t-h; the exponential
decay in Kyy(x).t,a) disappears, indicating that kyj(x),t)
may contain terms which become singular as x; and t approach

10



the end point hy simultaneously. These singular terms can be
separated by studying the asymptotic behavior of the integrals
given by (25) (see [16] for the technique and [10], [14], [17]
and [13] for the application). To give an idea about the na-
ture of these additional singular kernels let

B100R108) ® Byyglngot) ¢ Rygplnget) o 02 Rpet) 2 0y,
(30)

where klls represents the singular terms and k!lf is bounded
in the related closed domain. Let the material be of type |
with the real roots (see equation 9)

S17 ® 920 o 835 T wp0 4 834 % rwy 4 By * cwy

(31)
Then the asymptotic analysis of (25) would give
(hy=t)8,c/wyth
k1pg(Xget) = dgg —— i T ik Wl L BESN
[(h]'t)ﬁlsld!"‘h] 1] 't“ x])
3 \ (h]‘t)s]slhh"'wz 1 = =
[(h,-t)s]S/m thywy )P =(wyxy)?
P ______(__h:l_-t)p] 5/“-' "‘h.luhl
T Lhy =)y glugthyug 1=y %))
(hl't)815/102+h]u‘2
* ‘es EF;_-t)B /wa*h 1%-( )?
1 1352 "
0 < (xq4t) < hy (32)

where \gge+e-ahgg are known constants and depend on the elas-
tic properties of the materials only [14].
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ogether with 1/(t-xy), K11s 91ves a generalized Cauchy
kernel, Substituting from (30) into (23) and adopting the
crack geometry shown in Figure 1 (with a=hy), the dominant
part of (23) may be expressed as

| ¢ 1
" ‘ [tj}?"“k]]s(l]-t)]¢](t)dt 'P](x‘) ’ -hl‘XI<h] ’
~h
|

d
1 Jc tJ%E bp(t )dt=Pylx,) 4 coxy<d (33a,b)

where the bounded functions P] and Pz contain all the non-
singular terms in (23). It is clear that the sclution of
(33b) is of the form

0p(t) = Fplt)[(t-c)(d-t)1"/% , ccted (34)

giving the stress intensity factors as defined in (29). The
singular behavior of the solution of (33a) may be studied by
le* “ing

sp(t) = Fr(e)/(nf-t?)’ , O<Re(y)<l , -hj<tc<h, (35)

and by using the function-theoretic method described in, for
example, [16]. Thus, if we define the following sectionally
holomorphic function

1 hy f](t)

a(z) = 3 [ g dt o (xy s Re(2) (36)

-h
|
by using (35) the asymptotic analysis of (36) gives
iny
Fyl-hy)e 0 fiidyl g
(2hy)Ysinmy (z+hy)Y  (2h))Ysinny (z-hy)"

G(z) = + G, (z) .

c
0
|GO(ZN< lz;h'T?; v Yg<Rely) (37a,b)
]

12



where Co and Y, are real constants. Now, substituting from

(37) and (32) into (33a), we obtain the following characteris-
tic equation to determine the unknown constant y:

P w3y alY
~2coSny + A e T I P —— S —
85 .-y 86 y.1-v 87 el )

518 witls wi8{s

« Nl

e e A T

where, acain the material type I is assumed. It can be shown
that for all material combinations (38) may have only one root
in the strip O<Re{y)<1 and this root is always real. It can
also be shown that as the orthotropic material constants tend
to those for a pair of isotropic materials, the root 2 obtained
from (38) approaches the root of the corresponding isotropic
characteristic equation given, for example, in [10] or [18].

For this crack geometry the "stress intensity factor" may
be defined in terms of the cleavage stress Tayy in the neigh-
boring material which, from the fracture viewpoint, is the
most important stress component. To calculate this we note
that (23b) gives the expression for uzyy(xz.O) for -h,<x,<h,,
that is in the uncrecked as well as in the cracked portion
of the sirip. We also note that in the neighborhood of |x,|=h,
the singular behavior nf °2yy will be governed by the density
function "y and the singular part of the kernel k2]. As in K]],
it may be shown that for a»=, t~h|. x2+-h2,the exponential decay
in K21 disappears, indicating that kz](xz,t) miy contain terms
which become singular as X9 and t go to the end point simul-
taneously. If we again let

ko (Xp,t) = Koy (x5,t) + Kppelxy,t) (39)

the singular part of the kernel may be separated and may be
expressed as

13



(h t)ﬁjsfm]*ul '2

nk., (X .t) —--——----. skl
i - ID‘[(h1-t)ﬁ15/w]§ﬂ] 2] -(u]x()
' ?(h -.t)ﬂw/w.l a? 2
0 P
[(h]'t)l"lslll‘ Ll?h?] '(l'l?xz)
. ros S igingtughy -
]03[“‘ "t)ﬂlslu' \‘l ] -(u] 2)
- (‘h'l_ _t__)_ﬁ_,_ 5/m +uz e

V0N (<08, g aghy 12 - (aghy)?

0<|t]<hy , 0<[x (40)

21<hy

where “ and a, are the positive roots 501 and 599 of the
characteristic equation (9) expressed for the strip 2 and the
constants A are defined in [14]. Thus,for the purpose of ana-

lyzing the singularity Toyy may be expressed as

h
L 1 .
Sy (¥300) = uzj_hk;]s(xz,t)¢](t)dt b pyg(X,) (41)

where p,, contains all the nonsingular terms. Upon substitut-
ing from (35) and (40) into (41), the asymptotic analysis gives
k(h )

2y %240) = T ¢ 0y(x,) (42)

where no(x?) remains bounded as xz'-h2 and the "stress intensity

factor" k(hl) is found to be

14



K(hy) = aptim 2Y(h-t) Vg, (t)
"tnh‘

“ ||2 -y il I’Y -y Wy l_‘
W2 * st o™ (i) Tt Moo (50
- NN ]_ 2 Wa ‘-—
‘ - \ \ [ ‘
AT I Pt BRI LA Pt B (43)

4. CRACK CROSSING THE INTERFACE

Consider now the case of a crack crossing the interface.
In this problem the integral equations (23) are still valid
with the two end points of the cuts L] and l? Joining at the
interface. Ffor example, referring to Figure 1, let a = hl‘
d = h?. and 0<ch,ln this case at the end point P h‘ or
Xy ° h2
The sinqular parts k]ls and k?ls coming from k‘] and k?l are

all four kernels kij(xi.t) will have singular terms.

separated and are given by (32) and (40).  Quite similar
expressions may easily be obtained for kl?s and qus [14,15].
The dominant part of the system of singular integral equations

may then be expressed as

>, Jl.[-: = fokyielxgat)log(t)dt = Qulxy)
j=1 .

Ly = (=hyahy) o Ly = (e0hy) b xpely o (§21,2)(44)

where in the analysis the symmetry condition of ¢2(x?)

-&2(-t?) is used. If we now let



O<Re(p,8)<1 (45a,b)

and define the following sectionally holomorphic functions

hy¢,(t) h,d,(t)
Gy(z) = ” 1--1—-_—2—-dt v Gy(2) = ” 2 -f-;z-dt R (46a,b)

The asymptotic e;pressions for G, and G, may be obtained as [16]

ing
Fi(-h,)e Fy(hy)
6y(2) = e Ly 4 gy 0(2)
(2hy ) sinng (z+hy)" (z-h])b
ind
Fz(c)e | FZ(hZ) 1

G,(z) = -
. (hz—c)ssinns (z-c)6 (hz-c)asinns (z-hz)B

+ Gzo(z) . (47a,b)

where GJU(J = 1,2) has a behavior similar to that of Go(z)
which is given by (37b). Noting that outside their respective
cuts G1 and G2 are holomorphic, substituting from (47) into
(44), and following the procedure outlined, for example, in

[16] (see, also [14] for details) we obtain

F?(u)cotnﬁ = 0 (48)

figlB)Fs(hy) = 0, (§=1,2) . (49)

- T TN

where the coefficients in the functions fij(ﬁ) depend on the
elastic constants of the two strips only and are given in [14].

Since Fz(c) and Fj(hj) , (i=1,2) are nonzero constants, (48)

16



gives the known result & = 1/2 and from (49) we obtain the
following characteristic equation to determine the power of
singularity g:

= 1f8)l =0, (1.51,2) , O<Re(p)<1 . (50)

It is also important to note that the end point values F](h])

and Fz(h?) are not independent and are related by
f2(h?) - 'r](h-’)f-”(l‘)/f]z(l*') (5])

where ¢ is the root of (50). An additional condition such as
(51) is necessary to obtain a unique solution for the system
of integral equations (23), since in this case there is only
one single-valuedness condition which has to be satisfied by

the displacement derivatives " and Do namely

JhZ.\ (t)dt + Jhl (t)dt + fﬁf (t)dt = 0 (62)
b "1 Y2 y

c -h -h2

A systematic study of (50) indicates that for all material
combinations the characteristic equations may have either no
root or only a single real root in the strip 0<Re(B)<1. Also,
g = 0 is always a root and there are no other roots with Re(g)
= 0., In the fcrqgoing analysis only the possib’'lity of a power
singularity is investigated. The results show that for certain
material combinations (50) indeed has nro root in 0<Relp)<1,
implying that for these materials at the intersection of the
crack and the interface the stress state would 'e bounded.
However, this analysis does not prove that in such cases there

may not be a weaker, namely a logarithmic singularity. To
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investigate this question in (45) we let ¢ = 0 and substitute
the result into (46). We would then obtain the following
asymptotic relations:

6,(z) = ———log(z-hy) - -——;—J-Jog(z+h]) t Gy, (2)
; fnd
F,(c)e Fo(h,)
TR L il SR . | SN
2 sinng (z-c)ﬁ m hz-c)é 2
+ Ggylz) (53)

where G]} and 621 are bounded near and at the end points

Z = +hJ and 621

borhood of z = ¢. Substituting now from (53) into the integral

has a behavior similar to (37b) in the neigh-

equations (44) we obtain

Fo(c)cotns = 0, (54)

2
]°g(h1"xi)¥giij(hJ) ¥ R1(x1) o (1=1,2) (55)

where R] and R2 are bounded functions and the constants g1j ’
(i,j=1,2) depend on the elastic constants only. Equation (54)
again gives the known result & = 1/2. For (55) to be valid
at X; = hi , (1=1,2) the coefficient of sinqular terms must

vanish, or we must have

g 9yg Fylhg) =0, (1=1,2) . (56)

Since Fj(hj) , (j=1,2) are nonzero constants, from (56) it

follows that

18



19441 = 0 (57)

To show (57) analytically seems to be impossible. However, a
systematic numerical analysis indicates that for the material
combinations having @= 0 as the only acceptable power singu-
larity (57) is indeed satisfied identically. Furthermore,
these studies also show that (56) always gives

LA (58)

s2(ha) — “epU =hp) '
The result expressed by (58) meaning that in the composite
medium the derivative of the crack surface displacement 1s con-
tinuous at the interface is, of course, the physically expected

result.

For the pair of materials in which (50) has a root in
Ocp<l, at the point (y=0, x1=h] or x2=-h2) the stress state
will be singular. At this point, since the important stress
components are the normal and shear stresses on the interface,
we may directly analyze the singular behavior of these stresses.
To do this one has to go back to the original formulation of the
problem and express these stresses in terms of the density
functions ¢, and PE Thus, after somewhat lengthy but straight-
forward analysis we find [14,15]

1

-
i O1xiihye¥) = 3

-_— N

IL h1j(y'5)¢j(5)ds o (I=x,y) .,
J

L} - ('h]'h]) s |-2 - (C-hz) . (59)

19



Studying the asymptotic behavior of the kernels h it can be

1)
shown that as y-0, S¢¥h] ins-h,<s<h,, and s+h, in c<s<h, simul -
taneously the kernels become unbounded. By expressing

h‘j(YOS) . h{Jf(Y-S) + hijs(y's) ’

the singular parts hijs of these kernels can again be separated.

For example, for h (y,s) we obtain

xls
_(_h_]"'s)Y]/z 3 Lh]"s)\"llz
(hyts)2+(wyy/Byg)?  (hy-s)?+ (@ y/Bg)°

2*I3hx]s(y's)

(hy*s)vovya/2vyp  , (hy=8)vpryy/21y,
(h1+5)2*(w2y/815)2 (h1-s)1+(w2y/H]5)2

Y3'g1*varge (Ny-5)By5/u,
80 [(hy-5)Byg/wy]74y?

e

Y3rg3tvargg (My-5)8y5/u, . (60)
A80 [(h]-5)815/w2]2+y2

+

where the definition of the material constants y and )\ as well
as the expressions for the remaining functions ths' hy1s‘ and

h may be found in [14] and [15].

yes
If the materials are such that the stress state at

(y=0, x]=h]) is singular, i.e., 0<f<]l, then one can again de-

fine ¢, and Gy (i=1,2) as in (45) and (46) and obtain (47).

Now observing that outside the cuts Ly and LZ' specifically

along the y-axis G] and 62 are holomorphic, one can use (47)
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to evaluate the singular terms in (59) (see, for example
[16-18]). It can then be shown that

k
Trxx(Msy) s 22+ aoly) , (y20)
Y

k
O1xylhyey) = —:4[!- tr,(y) . »0 (61a,b)
where the "stress intensity factors" may be expressed in terms

of the density functions as follows:
Tim (h]-t)B¢1(t) ’
t»h]

A
kxy ® lyy liﬂl(h1-t) ¢1(t) . (62a,b)

k .',J

XX XX

The constants Hyw and My are known functions of the elastic

constants and may be found in [14] and [15].

For the material combinations in which 9 and by have
no singularity at x; = hy, x, = -h,, ({.e., 1f B = 0 is the
only acceptable root of (50)), since the kernels hij have
singular parts of the form (60), from (59) it is not at all
obvious that the stresses too would be bounded at the point
(y=0, x]=h]). This question can be examined by substituting
from (45) with g = 0, 6 = 1/2 into (59) and by going through
a routine asymptotic analysis, which yields

G]XX(h]o.V) — F](h])exx]c'g y C(y)

‘J]xy(h'lsy) = D(.V) (63alb)
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where C(y) and D(y) are bounded functions. It turns out that
in all material combinations for which g = 0, the constant

By 15 identically zero; therefore, the stresses are bounded.

Considering the fact that in isotropic materials the
stress state at the intersection of an interface and a crack
is always singular (i.e., g>0), from the viewpoint of delamina-
tion or debonding fracture the practical importance of the pos-
sibility of having bounded stresses at such locations in design-

ing with certain orthotropic materials needs no elaboration.
5. NUMERICAL SOLUTION

In this paper the numerical results are obtained for
several specific types of crack geometries. In the first
group of solutions it is assumed that the cracks are fully
imbedded in homogeneous strips and (see Figure 1)

a<h, , ¢ =0 , d = b<h, . (64)

The single crack, a = 0, b # O or a # 0 b =20 1s considered

as a special case. In this problem the integral equations (23)
are solved by using the Gauss-Chebyshev integration method [16]
with L, = (-a,a) , L, =(-b,b) and under the single-valuedness
conditions (28). The stress intensity factors are then obtained

from (29a) and (29c) with d = b.

In the second group of solutions it is assumed that a = h]

and Q<b<h In this case the Gauss-Jacobi integration method

X
is used to solve the integral equations. The details of the
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numerical method may be found in [16,140r 18]. After obtain-
ing the density functions the stress intensity factors are

calculated from (29¢c) (with d=b) and (43).

In the third group of solutions it is assumed that the
crack crosses the interface, that is, a = hys d = hZ' o-cch2
(Figure 1). In this case for >0, the integral equations (23)
are solved by substituting from (45) and by using the Gauss-
Jacobi integration method. Here the additional conditions are
(51) and (52). After obtaining ’y and by the stress intensity
factors are determined from (29b) and (62) (see again [16],

[14] or [18] for numerical procedure).
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b, RESULTS

The elastic properties of the materials used in the nu-
merical examples are shown in Table 1, Materials 3, 4, and 6
are basically isotropic and the remaining materials are ortho-
tropic., For the materials | through 8 the roots of the charac-
teristic equation (9) are real, meaning that they are of type
I. Materials 9 and 10 are of type Il for which (9) has complex
conjugate roots, The numerical results given in this paper are
all for the case of plane stress. Table 2 shows the material
combinations used in the numerical analysis. The table also
shows the powers of singularity y and ¢ at the point of inter-
section of the crack and the interface corresponding to a crack
terminating at the interface (a-h1. d<h2). and that crossing the
interface (a=hy, d=hp, ¢>0), respectively (Figure 1). Unlike
the isotropic materials, the characteristic equations (38) and
(50) giving v and & in bonded orthotropic materials are quite
complicated. They contain six independent material parameters
and hence do not lend themselves to ¢ relatively simple syste-
matic parametric study. However, once the material combination
is specified ¥ and ¢ can be determined quite accurately.

Even though it is very difficult to separate the material
parameters which influence most of the values of ¢ and y, and
the stress intensity factors for the imbedded cracks, the cal-
culations show that in this respect perhaps the most important
single material parameter is the longitudinal stiffness ratio
Eyyy/E2yy. In order to assess the effect of the remaining ma-
terial constants a rather large rumber of calculations were
done by fixing E,yy and EZyy' by systematically varying one at
a time the remaining six constants, and by calculating v, 8,
and the stress intensity factor k(a), the latter for imbedded
cracks in material 1 only. The general trend is as follows:
As Eyyxs Gyyys and vy, (of the medium 1 containing the crack)
are increased, y and k(a) increase, and as Epyy, Gpyys vouy

24



Table 1 Elastic constants of the materials
used in numerical calculations*
7 Exal | Eyy/ } : hxyl ‘[ﬁ“ 5
No. 1070/ m? ‘ﬂ“ﬁ/mz [ 109N/m? vy
(10%psi) (106psi) | (10%psi)
——t— - -+ —
55.16 170.65 4.83
| 1(0) (8.0) (24.75) (0.7) 0.036
Y i S =
134.45 31.03 24.13
| 2(0) (19.5) (4.5) (3.5) 0.880
154.77 155.83 59.68
3(1) (22.447) | (22.6) (8.655) | 9-300
167.55 170.55 62.40
4(1) (24.3) (24.75) (9.05) 0.300
10.07 31.03 0.883
| 5(0) (1.46) (4.5) (0.128) | 0-036
30. 34 31.03 10.83
6(1) (4.3) (4.5) (1.57) 0.400
G BT R T T A T
| 700) | (g 8) (22.5) (0.7) 0.020
34.48 6.89¢ 3.45
8(0) (5.0) (1.0) (0.5) 0.350
i 4 e
21.37 66.88 17.93
9(0) (3.1) (9.7) (2.6) 0.200 |
Sl EE S = T
17.24 17.24 6.895
10(0) (2.5) (2.5) (1.0) 0.760

(*) The materials are boron-epoxy and graphite-epoxy
with various ply orientations.
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Table 2 The power of stress singularity y for a
crack in medium 1 terminating at the in-

terface and 2 for a crack crossing the

interface. The properties of materials
used in various combinatiuns are given
fn Table 1
Cons Materials Power of Sing. ;lll ;lll
Med.1 | Med.2 Y g 2yy 2xy
| 1 2 0.55048 | 0 5.50 | 0.20
11 3 2 0.65699 | 0.04248) 5.02 | 2.48
111 1 2 0.66549 | 0.04887| 5.50 | 2.58
Iv 4 6 0.68914 | 0.14547| 5.50 | 5.75
v 4 5 0.80352 | 0.05354| 5.50 | 70.a
VI 7 8 0.74523 | 0.05197( 22.5 | 1.40
VIl 2 1 0.42258 | 0 0.182| 5.00
VIII 2 3 0.36911 0.04248| 0.199| 0.403
IX 9 10 0.61554 | 0.08520| 3.88 | 2.6
X 10 9 0.43410 | 0.08520| 0.268| 0.384
26



are increased, v and k(a) decrease. Among these variables
the most significant factor influencing y and k(a) appears
to be the ratio of shear moduli GIxy/Gny' This may partly
te obsecrved also from Table 2 and Figure 2. The figure
shows the stress intensity factor k(a) for imbedded cracks
in material 1 as a function of the width ratio h2/h1 for

a fixed relative crack length a/h]-O.B and for material
combinations I, IIl, IV, and V given in Table 2. For these
material pairs the stiffness ratio E1yy/E2yy is constant
Ixy/Gny is 0.2, 2.58, 5.75 and 70.8, respectively.
It is seen that k(a) is consistently higher in material
pairs having the greater Glxy/Gny ratio, Figure 2 also
shows that for h2+0. as expected, in all material combina-
tions k(a) approaches the periodic collinear crack solution
in an infinite plane which is the same for all homogeneous
orthotropic as well as isotropic materials.

whereas G

A close examination of the results giving &, y. and k(a)
indicates that generally one could accomplish a certain re-
laxation in the stress singularity at the point of inter-
section of a crack and an interface in composites by intro-
ducing orthotropic materials. This may be seen, for example,
by comparing the g values fer various material combinations
given in Table 2. In fact fc. certain orthotropic material
combinations it is even possible to have g=0, i.e., no
singularity, whereas in isotropic materials 0O<g<1, i.e., the
stress state is always singular. The value of ¢ has, of course,
an important bearing on the initiation of a possible delamination
fracture from the stress-free boundaries in bonded materials.
Even though the result regarding the possibility of 2=0 may
appear to be somewhat paradoxial, considering the fact that
in two isotropic wedges forming a half plane ¢ is dependent
on the wedge angles as well as the material constants and may
be zero for certain ranges of wedge angles, it should not be
completely unexpected. The possibility of reduction or com-
plete elimination of singularity power g by varying the
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secondary material constants seems to introduce an added
flaxibility in designing against the edge delamination jpn
pbonded materials.

In solving the integral equations it is assumed that the
composite medium is under a state of generalized plane stress
and is subjected to external loads away from and perpendicular
to the cracks. Thus the crack surface tractions in the per-
turbation problem considered in this paper are constant and are
at the following ratio:

py(x) -p E
G Ot | R . (65)

pp(x) Py 2yy

The stress intensity factors obtained for the imbedded cracks
located in the first or second set of strips are given in Fig-
ures 3-7. Comparison of the results given in Figures 3 and 4
shows that for the same longitudinal stiffness ratio Eyyy/Epyy
and the same material 2, k(a) calculated for an isotropic me-
dium 1 is consistently greater than that calculated for an ortho-
tropic material 1. This means that by introducing material
orthotropy it is possible to obtain certain relaxation in the
stress intensity factor. However, as seen from Figure 2, due
to the effect of the secondary material parameters the opposite
is also possible. In Figure 2 note that the combination IV
refers to an isotropic-isotropic material pair - wherv:s 111
and V are isotropic-orthotropic pairs giving stress intensity
factors which are respectively lower and higher than that of
IV. Corresponding results for the stress intensity factor k(b)
for cracks imbedded in the second medium are given in Figures

6 and 7. Materials in Figures 5 and 7 are of the type Il and
those in Figures 2, 3, 4 and 6 are of type 1. It should be ob-
served that as the thickness of the uncracked strips go to zero,
the stress intensity factor in the cracked strips approach that
of the periodic crack problem in the infinite homogeneous (iso-
tropic or orthotropic) medium.
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Figure 8 shows a sample result for a composite medium in
which both sets of strips contain cracks, Additional results
for two as well as one set of cracks may be found in [14] and

[15].

The stress intensity factors for the case of a broken
laminate (i.e., for a=h; and c=d, or a=0 and d=hp, c=0) are
given in Figures 9-12, Figures 9 and 10 show the results for
meterial combinations I and Il where all materials are of type
I and Figures 11 and 12 give an example for the material com-
bination IX where both materials are of type II. The fiqgures
show that in all cases as the width of the uncracked strip
(i.e., the net ligament between the cracks) goes to zero, as
expected, the stress intensity factors become unbcunded. In
these problems the stress intensity factor is defined by (42)
and is calculated from (43).

The results for a crack crossing the interface are given
in Fiqures 13-19, In these problems the stress intensity fac-
tor at the crack tip k(c)=ky is defined by and calculated from
(29b). For those material combinations in which g>0 the stress
intensity factors at _he point of intersection of the crack and
the interface kxx and kyy are defined by (61) and are calculated
from (62). For the material combinations II, IX and 1 used in
these examples, Table 2 shows that power of stress sinqularity
y for a crack in material 1 touching the interface is greater
than 1/2. Therefore, as the crack length 2« approaches 2hy or
as c+hp, the stress intensity factor kp at the crack tip calcu-
lated on the basis of 1/2 power becomes unbounded. Also, as the
length of the net ligament 2c¢ goes to zero kp again becomes un-
bounded. These features of the solution may be observed from
Fiqures 13, 16, and 19 giving the crack tip stress intensity
factor as a function c/hp. Figures 13 and 16 show ki for ma-
terial combinations Il and IX in which g>0. Figure 19 gives
an example for the case in which #¢=0. It may be noted that
qualitatively the results for the two cases are quite similar,
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The stress intensity factors ky, and ky, for material
combinations Il and IX are given in Figures 14, 15, 17, and
18. Note that in the limiting case of c=hp, that is for the
case of the crack touching the interface, the power of the
stress singularity at the interface would be y which is al-
ways qreater than g. Therefore, as expected and as seen from
the figures, for c+hp the stress intensity factors calculated
on the basis of singularity power g become unbounded. In
these problems for the type of loading under consideration

the normal component k of the stress intensity factor seems

to be negative. Sincex:here is no crack surface interference,
physically this means that normal stress along the interface
near the crack surface is compressive, there is no inconsis-
tency, and the singularity should be interpreted in the same

way as in punch problems.
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Figure 6 Stress intensity factor kp=k(b) for cracks imbedded
in strip 2 (a=0, c=0, d=b<hp) for material combin-
ation I
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Figure 8 Stress intensity factor k(a)=ky for the crack in
material 1 in a composite medium where both sets
of strips contain cracks. Material combination I,
width ratio hy/h2=4
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