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SUMMARY 

Three Fe-12Ni alloys, individuallY alloyed with small amounts 

of V. Ti. and Al. \~ere manufactured through differE.,lt melting techniques. 

with special emphasis on electroslag remelting. in order to achieve 

different levels of metal purity and associated costs. The relative 

effectiveness of these melting techniques \~as evaluated from tensile and 

slow bend fracture toughness behavior at 25°C and -196°C after tempering 

the test specimens at various temperatures. 

This study has shown that the best melting procedure was vacuum 

induction melting (VIM) with or without electroslag remelting (ESR). VIM+ESR 

is the recommended procedure since ESR provides increased yield of plate 

product, a reduction of overall manufacturing costs and, depending on the 

alloy composition, improved tensile and fl'acture toughness properties. 

ESR improved the fracture toughness of the airmelted (AHl) grade of the 

Fe-12Ni-2Valloy. ESR also raised the ductility of the AIM grade to levels 

approaching those of the VUI and VIM+ESR grades of the same composition. 

The method of melting had only a minor effect or. the tensile behavior of 

Fe-12Ni-2V alloy tested at 25°C and -196°C. ESR was highly effective in 

raising the yield and tensile strengths of the Fe-12Ni-O.2Ti alloy, but 

ESR did not improve the fracture toughness of this alloy. Good toughness/ 

strength combinations at -196°C are available in all tln"ee of the Fe-12Ni 

alloys tested. For cryogenic applications the Fe-12Ni-O.SAl alloy, based 

on its manufacturing ease, is a prime candidate for further development. 



The put'pose of this pI'ogl'am is to evaluate tile effects of purity 

on cel'ta in mechan i ca 1 pI'operti es of i l'on-12-\~ei ght-pel'cent-ni eke 1 (Fe-l imi ) 

alloys containing individual small additions of titanium (Til. vanadium (V) 

and aluminum (All. Purity in the alloys used is achieved either thl'ough the 

lI~e of )11gl1 pUl'ity ingl'edients 01' thl'ough I'efinement of the melt by vacuum 

PI'ocessing 01' electl'oslag I'emelting. 

This pl'ogram is pal't of an effol't to develop and chal'actel'1ze 

matel'ials useful to NASA fOl' advanced space and aeronautical applications. 

The effol'ts al'e specifically dil'ectect towal'd cost I'eduction and impl'ovements 

of fractul'e toughness of il'oll-base alloys for 10l~ tempet'atul'e and cl'yogenic 

services. 

The Fe-12N1-0.2Ti alloy and the Fe-12Ni-O.5Al alloy materials wel'e 

pl'epal'ed ina vacuum induction fUI'nace. The Fe-12Ni -2V a 11 oy ingots wel'e 

made both in ail'-induction (Ar~l) and vacuum-induction (Vnl) fUI'llaces. Electl'o

slag I'emelting (ESR) of all tln'ee alloy compositions \~as done primarily to 

reduce the size of inclusions, imPl'tlV(l the chemical homogeneity (\lId stnlctural 

featul'es of the cast ingot. 

(1.13 inch) thick, prepared f,'om each heat of experimental material. Tensile 

and fl'acture toughness behavi or Qf seven a 11 oy plates l'epresllnti ng the three a 11 oy 

compositions and the various melting, purification and sol idificution procedures 

wel'e examined. Test specimens of each plate '","'e given difftH'llnt heat tl'eatments. 

Tensile and tht'ee-point bend fl'acture toughness tests wel'l:! pel'fOl'n:ed to asseSS the 

influence of matel'ial PUl'ity and heat tl'eatment on the mechanica 1 PI'opl~rties of 

Fe-12Ni alloys at -19GoC and 25°C. 
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2.0 EXPERIMENTAL MATERIALS MANUFACTURE 

2.1 Low Cost Approach to Experimental Fe-12Ni Alloys 

The experimental materials requirements of this program were 

small and therefore, laboratory type melting equipment was used to manufacture 

the three alloy cOmpositions. The high purity Fe-12Ni alloys were prepared 

in a vacuum-induction furnace using high purity alloying illgredients. The 

approach used to reduce manufacturing cost of the final plate product is 

thrOl.,gh yield improvement by electroslag remelting. 

Other approaches used for the manufacture of low-cost experimental 

Fe-12Ni alloys included air-induction melting of alloy ingredients of low 

reactivity, followed by electroslag remelting of the air melted material. 

In commercial practice, the Fe-12Ni alloys can be cost-effectively 

manufactured by techniques other than those described above. These approaches 

are discussed in a later section of this report. 

The stringent chemical analyses requirements of the three experimental 

Fe-12Ni alloys are as shown in Table I. Preliminary efforts to use low-cost 

charge materials, such as armco iron, in vacuum-induction furnace to produce 

the Fe-12Ni-0.2Ti and Fe-12Ni-2V alloys were quite unsuccessful. The control of 

carbon, titanium and even vanadium proved to be a challenging task during the 

preparation of the experimental alloys both in the vacuum-induction and air

induction melting systems. The first three vacuum-induction melted heats and 

two air-induction melted heats of the two Fe .. 12Ni alloys had to be scrapped 

because of non-achievement of the required uniform chemical composition. 
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High PUl'ity ingl'edients were, thel'efore, used in the subsequent 

effOl'ts, The basic Fe-12Ni-O,2Ti alloy composition could be made only in 

the vacuum melting system using high purity charge materials, The Fe-12Ni-2V 

alloy, however, could be made in both air-induction and vacuum-induction melting 

systems using only the high plll'ity charge materials. In the case of the Fe-12Ni-

0, 5A 1 a 11 oy, the pl'oducel' pl'eference \~l\S to melt it in the vacllum-i nduct; on furnace 

because of anticipated difficulties in achieving the required level of aluminum 

content in an ail'-induction furnace, The 60 ppm 1 imit fOl' the content of each 

I'esidual element in the experimental alloys, placed severe l'estrictions on the 

use of scrap and similar low cost charge materials. 

2,2 Hanufactul'i ntl PI'ocedUl'e of Expel';menta 1 Alloys 

Vii-gin chal'ge materials \~ere used for the manlifactlll'e of all Fe-12Ni 

alloys evaluated in this pl'ogram. The chemical cOIll\lo:;ition. source and cost 

information relative to these charge materials 'Il'e as pI'ovided in Table II. 

A ne\~ly raillmed and cured furnace lining of magnesic, was used to 

avoid 1111'!1t contamination from previous heats. The curing of the furnace 1 ining 

\~as done by melting a wash heat of Fe-12Ni alloys prior to proceSSing of each 

expel'imental Fe-12Ni alloy heat. 

The chemical analyses of the five VaCllll1ll-induction llle>lteu and t\~O 

air-induction melted experimental Fe-12Ni alloys al'e given in Table III. 

Each melt was cast into a cast. iron mold having a 178 mm round cornel'ed. 

sqllal'e (RCS) top opening \~hich tapered to 152 mm RCS along a length of 610 1\1m. 

The mold was fi tted \~ith a speci a 1 refractory hot top and \~hen fi 1"1 ed \~i th 

molten metal. pl'ovided an ingot \~eighing approKimate1y 160 Kg. The weight of 

the metal in the hot top was about 28 Kg. 
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lngl.)ts VE 949. VE 950 nnd AN 620 l~l1l'e fl.)l'ged into 125 111\" thick. 

305 lit" wide slabs, lngl.)ts VE 965, VE 966, VF-39 nnd A\~ 606 I~el'e fi,)l'ged nnd 

rl.)ugh nmcll1ned into lOa IflU diameter blll'S, The ingl.)t hot tops wl:H'e cut I.)ff 

during the forging opel'ation. Pl'iol' to forging, all in91.)ts wel'l;) heated to 

1100~C; Md sllllked at this t\1mpernture fi,)l' u pel'iod of one haUl'. 

The slubs were dressed by grinding off the scale fl'OllI all its 

surfaces. Each slnb \~ns ultNsonicnlly inspected and indicated absence 

of nn,Y i nternul defects. Subsequent lJ', l\ 11 s lubs I~el'e heuted to 11 OO"C. 

sQllked for one hour, and l'ol1ed into 29 nUll thick, 305 lllll wide plntes. 

The bnrs produce" fl'om vacuum melts VE 965, VE 966, VF-39 nnd 

uirmelt AN 606 I~ere used us consullIable electl'odes und electroslug l'E!melted 

into 152 nUll diullleter, npPI'Oximntely 55 Kg ingots. The slag lIsed fi,)l' l'emelting 

the Fe-12Ni-0.l\Al 11l11.)Y contained 70~ CUFa and SOX A1 2Q3; the sla~l used fot' the 

other alloys contuined 70% CllFa, 15% A1a03 and 15% CaO. The electl'Oslng melt 

in ench case wns initinted by charging molten slag which I~ns prepal'ed in a gNphite 

crucible in an induction furnace. Electl'Oslag remelting IvllS conducted in a closed 

mold under an argon atmasphel'e. 

The ESR ingots I~ere dl'essed by \jI'inding off the l"ipples 01\ tht:'!ll' surf,\rl). 

The ingots were heated to 1100"C and soaked for at least one hour pdt'l' to hulluntlr 

forgi n9 i oto slabs. The end of thl:' slab l'epl'esenti n~1 the bottom of the ESR i n~lO t 

Ivas hot sheared to l'tlmOVe the stal'~.er plate plus at least 60 nun section of the 

ESR in90t (lcljacent to the stilrter pl,'te. The slab I~as l'eheilted to 1100"C iII1d 

stl'ilight Ulv1\)l l'olled into a plate of the requil'ed dimensions. 

The plates pl'Oduced from flilly inspected slabs Ivere l'echecktld by ul tru

sonic inspection, Normal production mill standards I~ere applied /'\I\d the pl(ltes 

\~ere judged to be acceptable, 

Chemical analYSis rechecks were made on ESR plates and the ddta art) as 

pl'Ovided in n\ble III. 
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3.0 CHARACTERIZATION OF EXPERIMENTAL Fe-12Ni ALLOYS 

The Fe-12Ni alloys characterization was limited to the determination 

of tensile and fracture toughness at room temperature and -196°C of plate 

specimens in the as-rolled and several annealed (heat treated) conditions. 

Examination of the microstructures for cleanliness, i.e., sizes, amounts 

and distribution of various inclusions, stability of austenite, and the 

microstructural species developed as a consequence of the heat treatments 

provided to the experimental alloy samples was also conducted. 

3.1 Preparation of Test Specimens 

Specimen blanks were extracted from each alloy plate by sectioning 

with an abrasive wheel using copious amount of coolant to avoid burning of 

the specimen edges. Test specimens were oriented longitudinally, to the 

principal rolling direction. The tensile test blanks were 152.4 mm long, 

25.4 mm wide, 29 mm thick (6" x 1" x 1.13") and the fracture toughness test 

bars - 215.9 mm long, 50.8 mm wide, 29 mm thick (8 1/2" x 2" x 1.13"). 

These test specimen blanks 11ere di vided into groups. One group 

of specimen blanks was given no heat treatment which represented material 

in the "as hot-rolled" condition. The other groups were tempered at 5000, 

550 0
, 600°, 685° or 820°C for two hours followed by water quenching. Only one 

tensi 1 e a.nd one fracture toughness specimen WdS prepared for each condi ti on 

of test . 

Following heat treatment, the tensile test specimens were 

machined conforming to ASTM Standard E-8-69. The tensile specimens,tested at 

room temperature (25°C) and at -196°C, had gage length diameters of 12.8 mm 

(0.505 in.) and 8.9 nIDI (0.352 in.) respectively. 
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The three-point bend fracture toughness test specimens were 

machined to the geometry and dimensions as indicated in Figure 1. Each 

specimen was fatigue cl'acked to an initial crack length to specimen 11idth 

ratio (ail~) of approximately 0.6. 

3.2 Tensile Properties Evaluation 

Tensile testing was conducted in a 534 MN Baldl1in Universal Testing 

~'achine. Specimens were loaded at a constant strain rate of 0.004 em/sec. 

Tensil e properti es data for the three Fe-12N'j alloys evaluated at 25°C and at 

-196°C are presented in Tables IV and V respectively. 

3.3 Fracture Toughness Evaluation 

The three-point bend fracture test fixture used consisted of a base 

plate with tl10 adjustable roller support blocks and a semi-cylindrical load 

rod which was bolted to the crosshead of the tensile test machine. The 

specimen was synulletrically positioned over the two roller supports 11ith a span 

"I of 203.2 nm and the load was applied directly over the ligament containing the 

crack at a speed of 0.203 to 0.254 mOl per minute until fl'acture. 
I 

",\ 

(, 
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Load deflection curves were plotted on an X-V recorder from the 

outputs of a load cell and a double cantilever clip-in displacement gage which 

was positioned between a stationary and movable column of the testing machine. 

The deflection of the bend specimen was sensed by the relative vel'tica1 

displacement of the two columns. 

The load/deflection curve and the measurable crack length in the 

fractured specimen provide data which can be used to calculate the fl'acture 

toughness in terms of equivalent energy (KIcd ) and J-integra1. The empirical 

formula used for the equivalent energy toughness is: 
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whe:re, 

"1 = area under curve to maximum load 

R2 = area under curve to P2 

a = crack length 

B = specimen thickness 

f (a/W) = K calibration 

P2 = load at any point on 1 inear portion of 
load/deflection curve 

5 = span for three-point bending 

W = specimen width 

7. 

The J-integral was estimated by a tentative procedure developed 

by ASTl1 Task Group E24:01 :09. The J-integral value at maximum load (Jm) was 

calculated from the following relationship: 

where, 

A = area under the load/deflection curve up to the 
maximum load point 

B = specimen thickness 

b = uncracked ligament (W-a) 

The results of fracture toughness tests conducted at 25°C and -196°C 

on specimens of the three Fe-12Ni alloys are summarized in Tables VI and 

VII, respectively. 
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3.4 ~~hic Studios 

~!otu 11 o!)l'uphi c stlldi as of the oxperinmntu 1 1"0-1 !!Ni u 11 oys 

i ncllldod quu 1 ituti va exumi nuti OllS of the mucl'ostnlctul'es l'Opl'OS(mtu ti ve 

of the cust und fm'\1od conditi on I gl'U in':. ize in the vuri au!, grudos ot' p lute 

matOl'iul. inclusion she, shupo und Q'stl'ibution. nnd the miCl'Ostl'uctlll'es 

developed us u consequence of the haut tt'tlUtments pl'ovided to the lIIochunicol 

test sPQcimens. 

Typi eu 1 cust und t'Ol'gQd condition mUCl'ostl'uctUI'l~S at' the Fe~ 12Ni ~o. :ITi 

und Fo-12Nl-2V olloys ol'e shO\~n in Figul'Q 2. The nmtQl'iuls do not show {lIlY 

macl'o-det'ects. slIch us segl'egutlon or port's i ty. 

The gl'U ins he in the p 1 ute mntel'i u 1 s of tho vll1'i ous gl'udes at' t.he 

thl'eo oxpol'imentu 1 Fe-12Ni u lloys was estitnuted by eompul'1 son \'/ith ASTN 

stnndul'ds, Figlll'e 3 shOl~s gl'l.\in sizes at 100 X in AIN. AHHESR. VHI und Vn1+ESI~ 

pliltes of Fo-12Ni-2V ulloy. F~,lllI'Q 4 shOl'/s gl'nin silos nt 100 X ot' VIN <mel 

vm~ESR platos of ro-12Ni-0.2Ti ulloy und VIN+ESR pluto of Fe-12Ni-O.!.iAl olloy. 

Plutes of illl gl'udes of Fe-12Ni ulloys invostiguted in this pl'Ogl'Utn shaw gl'(lin 

s i les fi nel' thun ASnl 7, 

Typicul inclusions seQn in tho AHI. AU1+ESR, VIN and VI~I+ESR ~ll'(ldes 

of Fe~12Ni-2V alloy plntes (we dopicted in figUl'1' 5, lw:lusions OhSt'IVt'din 

the vm. und VU\+F.SR gl'udes of Fe-12Ni-O,2Ti alloy tlnd the Fe-12Ni-ll,bAl (lllllY 

ON) as shown in FigUI'Q 6. All mntel'iuls \~lJre judged to be l'l~1(\tivIJ1)' (:](l,1n 

n lthough the ESR gl'<\des uppelll' cleaner. 

The microstl'lIctul'es of uS-I'olled condition und the VGl'iolls tlllllPUI'tld 

condition Fe-12Ni-2V u110y pllltes of the AUI. AIN+ESR, VIN und VH1+t:SR grrldt.1s 

Ul'e sho\~n in riglll'flS 7 thl'Qugh 10. Tha samples from the pll1tQS I'epl'cscntiltivl' 

ot' the VUI';OUS types of melting und I'efining conditions \'/(wt) polished find 
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examined on 'the thickness cross section. The etching sol ution \~as pI'epal'ed 

by mixing 33 parts nitric acid, 33 parts acetic acid. 33 parts water and 

1 part hydrofluol'ic acid. This etching solution prior to use on the metallo

gl'aplJ'ic specimens was fUI'ther dil uted in the proportion 1 part of etchant 

to 20 pal'ts of distilled water. Microstructures of all plate specimens were 

examined at 1000 x. The as-hot I'olled condition microstl'uctures of al1 foul' 

grades of Fe-12Ni-2V alloy showed mixtures of fel'rite and aust.enite. The 

specimens tempered for two hours at 550°C and 600°C showed approximately 

the same structural features as the rolled condition specimens. HOI/ever, 

t.he stl'ucture in these samples etches to a darker shade. The specimens 

tempered at 650°C and 685°C, indicated clear signs of austenite transformation. 

The structure observed was fine. lamellar and consisted of a mixture of fel'rite, 

martensite and small islands of retained austenite. Tempering at 820°C followed 

by quenching results in the formation of fully martensitic structuI'e. 

Microstructural features in ESR plates of Fe-12Ni-2V alloys appeal' 

finel' and more unifOl'O\ compared to those in either Ant or Vr~l grades. 

The microstructul'es of VU1, VIM+ESR grades of Fe-12Ni-O.2Ti alloy 

and the VH1+ESR grade of Fe-12Ni-0.5Al alloy for the as-I'olled and different 

heat treated conditions al'e presented in Fi gures 11 through 13. The micro

structural features developed in these two alloys for similarly melted and 

heat treated conditions are essentially the same as descl'i bed fOl' t.he Fe-12Ni -2V 

alloy. 

I.e 
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4,0 CONSIDERATIONS RELATIVE TO CON~lERCIAL 
PROUUCTlON OF LOW COST Fe-12Ni~LLOYS 

la, 

The selection of steels fOI' aconollty of manufacture is a topic 

of majm' interest to both pr'Oducers and uset's. Specialty metals pI'oducel's 

have been conscious of the inadequacies of the conventional methods of 

melting, refining and ingot casting. The usel', on the otl' .... I' hand. hilS had 

several concerns for material availability, cost. optimum utilization in 

pl'Oductdesign. service pel'fol'lltance bellaviol'. pl'oduct 1 iabil ity. pl'evention 

of prenillture fa 11 ures. 

Resolution of these concerns has led to the I'elll ization th~t 

the conventi ona 1 two-slag pl'ocess of l1IilnufactUt'i n9 s tee 1 s can no langel' be 

cons idel'ed an ecollomi cally optimum pl'Oduction process. Speci fi ca l1y. t~lel'e 

is a cl'iticnl need for improving productivity and ovel'all qllal ity of electl'ic 

<irc fut'nace mel ted alloy steels. 

The electric arc fUt'nace is an excellent tool fOl' economically 

melting do\~n the cold chal'ge with simultaneous injection of oxygen and slag 

forming constituents. However, it is not an efficient tool fOl' refining 

molten metal because it takes 2 to I]. hours time inside the electl'ic al'c flll'nact' 

as compal'ed to 35 to 70 minutes in separate model'n l'efining vessels, 

The "outside" electl'ic an fUI'nilee I'efining tl'eatments of molten 

steel may include opet'ations sueh as: 

Vacuum degassing 
Argon stirl'ing (AS) 
Calcium/magnesium argon blowing (CAB) 
Vacuum oxygen decarbUl'ization (VOD) 
Argon-ol\Ygen decarburization (AOD) 
Ladl e~fut'nace pl'ocess (LF) 
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The objectives of melt treatment outside the electric arc 

furnace are to accomplish decarburization, prealloying and final deoxidation, 

desulfurization, degassin~ and homogenization of chemical composition and 

adjusting of teeming temperature and stricter controls of such other process 

variables. 

Vacuum induction melting of alloy steels can be economically justified 

on the basis of high purity requirement of the final product. However, the 

normal charge materials used for manufacturing vacuum melted alloys are of 

considerably higher purity (quality) and higher cost as compared to those 

used in the electric arc furnace. 

Melting and casting under vacuum environment per se does not lead 

to production of sound ingots. Special controls of the ingot solidification 

process are necessa:'y to provide defect free, dense ingots for further processing 

into the required mill products. Specialty metals producers, therefore, have a 

deep appreciation of the inter-relationships amongst the various metal refining 

and sOlidification processing steps and the achievement of various levels of 

product integrity and costs. 

Therefore, many strategies for the low-cost production of engineering 

alloys can be devised. However, the availability of appropriate metal processing 

equipment wi 11 dictate the optimized process i ng techni ques whi ch l1'ay be used for 

the production of a giver alloy. 

The suggested processing flow sheet for commercial production of very 

high purity Fe-12Ni alloys and low-cost Fe-12Ni alloys are as outlined below. 
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4.1 !!lull Pul"lty rUu 12M Alloys 

1) Vacuum induction melt':ng of Vil'gill charge matol'ials which 

would pNvldo a fiMl alloy composition of lowel' illlplIl'ity 

content thM the spoe'ification maximum. 

ll) Vacuum casting of tho alloy of I'oquh'od chemical 'Composition 

into l'octnngulal' oloetrodos '1'01' consumablo \'elllelting by tim 

oloctl'oslag \'ollmlting pNCOSS. 

3) Eloctl'oslag I'ollmlting of the electl'Odt.'l into il slab ingot 

suitablo 'I'm' dil'oct 1'01linginto plato. 

4) Rolling of tho slab ingot into plate of l'oquil'od dimensions. 

'l.ll 1Qi.~. C_ost re-12.N,,'I tlll9YS 

Tho low COl>t apPl'onch to tho manufactm'o of Fo-12Ni alloys could 

i nl.: 1 ude the '1'011 ow'! ng stops dopenrient upon tim type of mo Hen metal sllcondm'y 

\'efining oquiplIlont ilvailablo to tho spociillt,y illloys pl'oducel'! 

1) [loetl'ic arc fUl'nilco molting of chal'ge consisting of low 

cost il'Ol)' such as al1neo il'On, nickel sinttw 01' pellets, 

and MimI' Ii 11 oyi ng cons ti tU!lnts of tht) requil'od chelllicill pUl'i ty, 

11) Rt)fining of tht) moHon Illtltal in an AOI) 01' von vO~Slll. (lnd 

the pl'Opal'Gtion of the moltlln metlll of the I'tliluil'cd final 

dltllnical composition. 

3) Casting of tim molten alloy into 1't.1ctMgulal' electl'Odtls fOl' 

t.1lllctl'oslag rt.1melting. 

11) Electl'oslag nmmlting of the eltlctl'Oue into (l slab ingot 

suitable fOI' uil'ect l'o11ing into platt!. 

5) Rolling of the slab ingot into plato of I'equil'ed uiu\Gnsions. 
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If the alloy manufacturer does not have e1ectroslag remelting 

equipment suitable for producing slab ingots, the alternative is to cast 

round ESR ingots. These ingots can then be forged into slabs suitable 

for rolling into plates. This forging step, however, will add a significant 

cost to the final plate product. 

Appl ication of the principl es of thermodynamics and kinetics to 

conventional steelmaking processes has been a very useful tool in understanding, 

controlling and accomplishing metallurgical reactions. These same principles 

are applicable to vacuum induction melting, vacuum refining and refining of the 

molten metal through injection of gases, slag constituents and reactive metal 

powders. 

The main objective of vacuum-induction melting is to produce metals 

and alloys relatively free from gases and volatile impurities. This objective 

is attained by: (1) careful selection of charge materials, (2) purification 

of the melt under vacuum, (3) preventing contamination of the melt during 

melting and pouring into ingot molds. 

Charge materials fOI' vacuum melting are usually virgin metals of 

high purity or revert vacuum melted scrap. 

Purification in vacuulII induction melting is i1~hieved tliroU<Jh d,,,',O<.lil·· 

tion, deoxidBt,on, degassification and V(lldtilizaLiol,. 

Dissociation of oxides and nitrides is promoted at high temperatures 

and/or low pressures. The reduction of dissolved oxygen in vacuum induction 

melting is attained by (1) carbon reduction, (2) hydrogen reduction, and (3) 

adding a strong oxide-forming element. The first two of these methods yield 

gaseous reaction products which ar'e pumped away continuously. The thi,"d 

procedure leads to the formation of insoluble oxides which tend to remain in 

the metal as nonmetallic inclusions. 

ORIGINAL FAGE IS 
OF pOOR Q.UALITY 



, 
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For the· manufacture of very 1 O\~ ca\"bon Fe-12N; alloys, the most 

impol'tant reactions are metal-deoxidation and reduction of carbon to the 

desired lON levels. This is easily accomplished dUI'ing vacuum induction 

melting through carbon deoxidation \~hich prc>duces CO gas as the reaction 

product according to the fol101~ing reaction: 

where, 

£ + Q ~ CO (gas); 

Pco ~ partial pressure of CO 

ac = activity of carbon 

ao = activity of oxYgen 

The rate of carbon deoxidation reaction is vel'Y fast at steel mel ting 

temperatures. The degree of completion and kinetics of reactions occllI"ring 

in vacuum induction melting can be studied by a monitoring mass spectrometer 

in combination \~ith samples of chemical analyses and oxYgen potential measuring 

probes. For the preparation of Fe-12Mi alloys. once the molten chal'ge is 

properly deoxidized, the alloying of the iron-nickel melt with titanium, 

vanadium. aluminum can be achieved successfully. However, undesil'able reactions 

between the added alloy metals and the crucible refractories are problems 

which need careful contl·ol. An example of this is the addition of titanium 

to Fe-12N; allay. Brief descI'iptions of the AOD and VOD pl'ocesses are given below. 

The AOD process is being used by the steel industry predominantly fOl' 

the economical production of stainless stl:)els. Less well knO\~n are the applications 

of the AOD process for the production of super alloys. tool steels. and even 

chromium free nickel-iron alloys. 

" 
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The molten metal charge for the AOD refining vessel is usually 

premelted in either an electric arc furnace or an induction furnace with 

essentially all the alloying elements requil'ed to make a specific alloy 

composition. The carbon content of the melt is maintained in the range 

O.a to 1.5 percent. The melt is tapped into a ladle, deslagged and then 

transferred into the AOO vessel. Argon and oxygen in the t'equired propol'tions 

are injected through the tuyers located at the bottom back wall of the vessel. 

The proportion of argon and oxygen are varied from 1:3 at the beginning of 

the treatment to 3:1 at the end of the treatment period. The duration of 

the refining period lasts from 1 1/2 to 2 hours depending upon the initial 

carbon content of the melt. The metal tempel'ature is allowed to rise to 1740°C 

towards the end of the decarburization period for an effective removal of 

carbon down to 0.020 percent or even 10l~er. Argon promotes the carbon-oxygen 
" 

reaction through the removal of carbon monoxide formed during this l'eaction. 

After the carbon is reduced to the required level, a reducing 1 ime

silicon slag is added and the bath stirred with argon only. The excess heat 

in the metal is adequate to melt the slag. The chemical analysis of the alloy 

steel is checked and adjusted with the necessary finishing additions. 

In the von processes, the molten metal containing carbon content less 

than 0.5 percent and 0.2 percent silicon is deslagged and tapped into a 

specially designed ladle at a temperature around 1650°C. The ladle is then 

placed into a sealed vacuum chamber. The chamber is evacuated using a steam , 
ejector pumping system. The ladle has a porous plug at the bottom through 

which argon is injected for stirring the molten metal. For vacuum decarburization, 

oxygen is injected below the metal surface through an oxygen lance. The carbon

oxygen reaction suppl ies heat adequate to compensate the heat lost thl'ough 

radiation, conduction and that which is carried away by the evacuated gases. 
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Following the decarburization treatment, reductants are added to recover 

the chromium from.·the slag back into the metal. Corrective additions are 

made to adjust the. alloy composition. 

The ladle is then taken out of the vacuum chambel' and the metal 

is cast into ingot molds ;n the conventional manner. 

Thesol'idification defects occurring in conventionally cast ingots 

can be significantly reduced through the use of til!:: electl'oslagprocess of 

metal refining and ingot solidification. Consumable electrode processes, 

such as ESR, VAR (vacuum arc remelting) are electrically less efficient than 

primary melting processes, e.g., electric arc or induction melting because in 

the former processes, melting and ingot solidification is done in watel'-cooled 

molds. An important consideration in ESR is the achievement cfimproved yield 

and properties that may result in energy and labor savings in the manufactUI'e 

of mill products capable of meeting specific requil'ements. 

The capability of pl'oducing slabs and other shaped ingots, besides 

rounds, high pl'oductivity, high yield, and improved surface quality and ingot 

structure, are important benefits of the ESR process relative to low-cost manu

factul'e of Fe-12Mi alloys, 

4.1 Fe-12Mi Allo,ys Plate ~lanufacturinfl Cost Estimates 

Estimates of COI)lparfltive costs of p.repal'ing Fe-12Ni alloy plates 

using .either high purity or low-cost chal'ge materials are as given below: 

A. Charge Materials 

Material 

Iron (Gl idden) 

Armco iron 
Nickel pellets 

Costs $/Kg 

1.28 

0.39 

4.85 

I 
I 
I 
f; , 
. 
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,Ti tani Ulll 
. Vcmadium (80% Fe-V) 

Aluminum (shots or pigs) 

3.68 
13.23 
1.08 
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. 8. Vacuulll. Induction Melting System. (VIH) 

C. 

laton production system and plant - $4.2 ~, 
Annua 1 producti on - 8200 tons 

Annua 1 Operating Costs (in thousallds) 

Depreciation 520 
160 
240 
360 
400 

Maintenance 
Labor 
Overhead 
Power 
Othel' Uti 1 i ti es 
Misc:ellan~ous 

Cost/Ton vm Hetal - approximately $226 

or Vacuum 0 

Electl'ic Arc Furnace (EF) - 20 ton 
AOD or VOD Unit - 25 ton 

100 
70 

$1,850 

E:F + AOD or VOD Systems and Plant Cost $5.6 M 
Annual PI'oduction - 30,000 tons 

Annual Operating Cost:; (in thousands) 
Depreciation 
~ja intenance 
Labor 
Overhead 
Po\~er 

Other Utilities 
Miscellaneous 

560 
200 
400 
600 
110 

60 
150 

$2,080 
Cost/Ton of EF + AOD or VOD Steel - appl'oximately $70 



D. ESR P.1ant-.Slab and Round Ingots 

Plant Cost 

Annual. Production 

18. 

$2.0 M 

5000 tons. 

Annual Operating Costs (in thousands) 

Depreci aHon 200 

100 

140 

210 

Maintenance 

Labor. 

Overhead 

Po~er 

Other Utilities 

Slag an9 Consumables 

.Miscellaneous 

Cost/Ton ESR ingot- approximati:1Y $1130 

30 

20 

)40 

60 

$90.0 

E. Manufacturing Cost Estimai:es of Fe-12Ni Alloy Pl ates 

1. Fe-12N.i-2V Alloy 

Manufacturing Steps 

Charge Materta 1 s, 
1 ate adc\itions ahd 
mark-up costs 

Furnace Charge 

Primary ~lelting 

Electrode Casting 

Electrod~ Pl'eparation . 

ESR (round) 

ESR (siab) 

Fo:ge ESR round -

Roll ESRslab 

Roll For;Jed S1 ab 
.. 

Cost of Pl ate - ESR Sl ab 

Cost of Pl ate..; ESR Round 
.-/.- .. . 

Ton -Metric ton (1000 Kg) 

. VIM + ESR Route 
Processmg - Cumul atlVe 
Step Cost test 

.. 

- . 

$226/T 

50/T 
20/T 

180/T 

180/T 

331/T 

440/T 

440fT 

. 

$2572fT* 
-

te572/1 OOOKg 

2798/1000Kg 

2848/950Kg 

2868/940Kg 

3048/925Kg 
3048/915Kg .. 

3379/900Kg 

3488/ 9l!5 Kg 

3819/90oKg 

$3.81/Kg 

$4.24/Kg 

EF+AOD~r VOD)+ESR Route 
Processlng 
Step Cost 

-

$70/T 

44/T 

25fT 
180/T 

180/T 

331/T 

440/T 

440/T 

Cumulative 
Cost 

$1644/T 

1544/1000Kg 

1714/1 OOOKg 

1758/940Kg 

1783/925Kg 

1963/910Kg 

1963/900Kg 

2294/885Kg 

2403/900Kg 

2734/885Kg 

$2.67/Kg 

$3.09/Kg 

i 

. 



2. Fe~12Ni~O.2Ti Alloy 

Nanufactul'ing Steps- VIM + ESR Route 
Processing 
Step Cost 

Chat'ge matel'ials, 
late additions and 
mark-up costs 
Furnace Chal'ge 
Pl'imal',Y Mel ting 

Electrode Casting 
Electrode Pl'epal'aj;ion 
ESR (round) 
ESR (slab) 
Forge ESR j'ound 
Roll ESR slab -

Roll FOl'~ed ESR slab 
Cost of Plate ~ ESR Slab 
Cost of Plate - ESR Round 

~ 

-
$226/T 

50/T 
20/T 

180/T 
180/T 
331/T 
440/T 
440/T 

3. Fe-12Ni-0.5Al Alloy 

Cumulative 
Cost 

$2267/T 

$2267/1000Kg 
2493/1000Kg 
2543/1000Kg 
2563/940 Kg 
2743/925Kg 
2743/915Kg 
3074/900Kg 
3183/9l5Kg 
35l4/900Kg 
$3. 48/Kg 
$3.90/Kg 

Nanufacturing Steps VIM + ESR Route 
Processing 
Step Cost 

Charge material s, 
late additions and -
mark-uE .:osts 
Furnace Charge ~ 

Pl'i lila t',Y ~le 1 ti n 9 $226/T 
Electrode Casting 50lT 
Electrode Prepal'ation 20/T 
ESR (round) 180/T 
ESR (slab) 180/T 
Forge ESR round 331/T 
Roll ESR slab 440/T 
Roll For~ed ESR slab 440/T 
Cost Qf Plate - ESR Slab 
Cost of Plate - ESR Round 

CUlllulative 
Cost 

$2254/T 

$2254/l000Kg 
2480/1000Kg 
2530/950Kg 
2550/940Kg 
27301 925Kg 
2730/9l5Kg 
3061/900Kg 
3170/9l5Kg 
3501/S00KQ 
$3.46/Kg 
$3.89/Kg 

19. 

EF+AOO(Ol' VOO)+ESRRoute 
Processing 
Step Cost 

-
-

$ 70/T 

44/T 
25/T 

l80/T 
180/T 
331/T 
440/T 
440/T 

CUlllulative 
Cost 

$1295/T 

$1 295/1 OOOKg 
1365/1 000 Kg 

l409/940Kg 
1434/925Kg 
16l4/910Kg 
1614/900Kg 
1945/885Kg 
2054/900Kg 
2385/885}(g 

$2.28/Kg 
$2.69/Kg 

EF+AOO(OI' VOO)+ESR Route 
Process 111g 
Step Cost 

-
-.---.~--

-
$ 70/T 

44/T 
25/T 

180/T 
180/T 
331/T 
440/T 
440/T 

CumulatlVe 
Cost 

$1280/T 
... ---.--~.---- ~ 

$1280/l000Kg 
1350/1 000 Kg 
1394/940Kg 
1419/925Kg 
1599/910Kg 
l599/900Kg 
1 930/885 Kg 
2039/900Kg 
2370/885Kg 

$2.27/Kg 
$2.68/Kg 
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5.0 DISCUSSION 

5.1 ~Ianufacturing Considerations of Fe-12Ni Alloys 

The present. study has indicated that the vanadium added Fe-12Ni 

alloy can be manufactured satisfactorily by both air melting and vacuum 

melting techniques. It can also be readily processed thl'ough electl'oslllg 

remelting. Ho\qever, the vanadium units of this al1oycal'lJI a high pl'ice 

tag. \~hen primary melting of this alloy is done in the vacuum induction 

melting unit, follo\qed by electroslag remelting, the basic cost of the alloy 

becomes highest of all three compositions investigated. In commercial practice, 

the Fe-12Ni-2V alloy can be advantageously manufactul'ed via the thl'ee step, 

electl'ic arc fUl'nace melting, AOD 01' VOD l'efining follo\~ed by electl'oslag 

l'emelting of a slab ingot. This procedul'e will lead to lowest-cost attainable 

fol' the fi na 1 mill pl'oduct. 

The titanium added Fe-12Ni alloy will l'equil'e pl'imal'Y melting in a 

vacuum induction fUl'nace. The high l'eactivity of titanium makes its, addition 

in the air ml;llting fUl'l1ace a vel'Y difficult task. A compl'omise wou·,ld be to 

melt the basic ;,;jloy in the electric al'c fUl'nace and make the titanium addition in the 

VOD unit. HOIqever, dUI'ing casting of the electrodes of this alloy, titanium 

loss is possible. Also, during electroslag I'emelting fUl'ther titanium loss 

could occur. One procedul'e in commercial manufactUl'ing practice is to add an 

excess amount of titanium to the primary melt to compensate for its loss during 

electroslag remelting. But regardless of the procedures used, titanium control 

in this alloy composition isa complex task, Another problem which I'equires 

. mentioning is revert melting of this alloy in the electric arc fUI'nace. The 

titaniulli oxidized during meltingof this alloy scrap in the electl'ic arc ai' air 

.: 
" 

( ,. 



21. 

induction furnace ~lill severely contaminate the melt with Ti02 inclusions. 

A safer practice,therefore, is to prepare this alloy composition in the 

vacuum induction fUl"nalce using mostly virgin charge materials and small 

amounts of mill revert scrap. The manufacturing cost of this alloy could be 

high if VOD refiriing unit is not available for alloying the be"ic melt 

prepared in an air furnace .. 

The aluminum added Fe-12Ni alloy is the easiest to melt, both in the 

primary melting and el:ectroslag remelting systems. In commercial manufacturing 

practice, Fe-12Ni-0.5Al alloy can be primary melted using the electric arc 

furnace and the ADO or VOD refining units. Electroslag remelting is facilitated 

by the fact that A1 203 (alumina) is a component of the slag used in this process. 

From the viewpoints of manufacturing ease and economies, the aluminum 

added Fe-12Ni allry w;Iuld be t~e primary choice with the titanium added alloy 

as the secondary choice' for further materials development and characterization 

consi derations. 

A summary of manufacturing cost estimates of commercially producing 

Fe-12Ni alloy plates of the three experimental compositions of a high-purity 

grade and a low-cost grade is as follows: 

Alloy 

Fe-12Ni -0. 2Ti 

Fe-12Ni-2V 

Fe-12Ni-0.5Al 

Plate Manufacturing 
High Purity 

Grade 

from ESR Sl ab $3.48/ Kg 
from ESR Round - $3.90/Kg 

from ESR Slab - $3.81/Kg 
from ESR Round - $4.24/Kg 

from ESR Slab - $3.46/Kn 
from ESR Round $3.89/Kg 

Cost Estimilte 
Low-Cost 
Grade 

$2.28/Kg 
$2.69/Kg 

$2.67/Kg 
$3.09/Kg 

$2.27/Kg 
$2.68/Kg 

i 
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5.2 tensile Behavim' 
= ...... 

5.2.1 Vield Stl'ength. Tensile Strength and Ductility at 2S"C 

To facilitate compal'ative study of the tensile behavior of the 

thrt;e Fe-12Mi alloys, the data for the tensile tests conducted at 2S"C are 

pI'estmted in a bal' chal't form in Figure 14. All examination of this chart 

shows that the "00111 tempel'ature yi e 1 d st,'ength of the Fe-12Mi -2V a" oy 

ranged fl'OIII 58G ~IPa to 855 ~'Pa (85 to 124 Ksi) for the various heat treated 

conditions I~ith lIIinor differences among the AnI, Au\+ESR, vm and VIM+ESR 

grades. The yield strength I~as highest generally fm' the hot 1'01 led condition 

in all grades. The 68S"C tempe"ing treatment of this alloy provided the 

10\~est yield strength ranging f,'om 586 MPa to 634 ~'Pa (85 to 92 Ksi). 

The tensile stl'engtll of the Fe-12Ni-2V alloy ranged fl'om 738 NPa 

to 1117 MPa (107 to 162 Ksi). The Ani and AIM+ESR gl'ades pI'ovided higher 

tensile stl'ength than the vm and VUH'ESR grades. It is pl'esumed that the 

higher carbon content in the Am gl'ade may be responsible for the development 

of highel' tensile properties. 

The ductility, as reflected by the area reduction (RIA) values for 

the val'ious gl'ades of Fe-12Ni-2V alloy, follol1ed the normal trend that highel' 

RIA values are associated 11ith low yield strength values and 10lvel' RIA values 

associated with high yield strength values. The 68!ioC tempering tl'eatment of 

thi s alloy, compared to tempering at othel' tempel'atures. developed hi ghest 

ductility. ESR did not affect the tensile pl'operties of the Fe-12Ni-2V alloy, 

but it improved the ductility of the AIN grade, approaching the ductility values 

attained by the VIN and VI~'+ESR gl'ades of this COlllposiUon, 

\ . 
I 

I 
1 

1 . , 

r 

f 1\ 

I 
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The VIM grade of Fe-12Ni-0.2Ti alloy, as noted in Figure 14, 

developed yield strengths ranging from 586 MPa to 662 MPa (85 to 96 Ksi); 

11hereas, the VIM+ESR grade of the same composition provided improved yield 

strength - 703 MPa to 813 MPa (102 to 118 Ksi) for the hot rolled and different 

heat treated conditions. The higher ductility of the VIM grade of Fe-12Ni-0.2Ti 

alloy compared to the VIM+ESR grade for identical heat treatments can be 

explained on the basis of the lower yield and tensile strength developed for 

the former grade. 

The VIM+ESR grades of Fe-12Ni-O.5A1 alloy provided yield strengths 

(Ref. Figure 14) from 655 MPa to 800 MPa (95 to 116 Ksi) and tensile strengths 

of 765 MPa to 1055 MPa (111 to 153 Ksi) for the various heat treatments. 

5.2.2 Yield strength, Tensile Strength and Ductility at -196°C 

Figure 15 presents yie1 d strength and ductil ity comparisons for 

the three experimental Fe-12Ni alloy plates from different melt procedures and 

heat treated conditions which were tested at -196°C. 

The yield strength of different grades of Fe-12Ni-2V a110y varied 

from 924 MPa to 1145 MPa (134 to 166 Ksi) and the corresponding tensile 

strength, from 1089 MPa to 1476 MPa for the various heat treated conditions. 

The ductility of the vanadium added alloy for the AIM and AIM+ESR grade was 

slightly lowel' (RIA values of 49% to 61%) than that of the VIM and VIM+ESR 

grades (RIA values of 56% to 68%). 

The yield strength of the VIM and VIM+ESR processed Fe-12Ni-O.2Ti 

alloy plates for the different heat treatments ranged from 889 MPa to 1255 MPa 

(129 to 182 Ksi) and the tensile strength. from 1089 MPa to 1407 MPa (158 to 

204 Ksi). The area )'eduction (RIA) values corresponding to these strength levels 

are in the range 61% to 68%. 
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The yi~ld and tensile strength values for the VIM+ESR processed 

Fe-12Ni-0.5Al alloy are in the ranges 855 MPa to 1179 MPa (124 to 171 Ksi), 

and 979 MPa to 1379 MPa (142 to 200 Ksi) respectivelY. The reduction of 

&rea values are in the 62% to 68% range for the various heat treated conditions. 

The yield and tensile strength values of the titanium and aluminum 

added Fe-12Ni alloys show a drop when tempered at 550°C to 600°C and recover 

in the tempering range 685°C to 820°C • 

The preceding discussions of the tensile behavior of the different 

grades of Fe-12Ni alloys at 25°C and -196°C lead to the following observations: 

° The method of melting had only a minor effect on the room 

temperature and -196°C tensile behavior of the Fe-12Ni-2V 

alloy for the various tempered conditions. 

° VIM+ESR processed Fe-12Ni-0.2Ti alloy provided significantly 

higher yield and tensile strengths compared to the VIM melted 

same alloy tempered at various temperatures and tested at 

25°C and -196°C. 

° The three Fe-12Ni alloys, melted by the VIM+ESR process, 

generally displayed their highest yield strengths for tempering 

temperatures of 685°C or 820°C. 

° All three Fe-12Ni alloys displayed high ductility even at the 

cryogenic temperature of -196°C with area reduction (RIA) values 

above 50%. 

5.3 Fracture Behavior 

The fracture toughness of the experimental Fe-12Ni alloys evaluated 

at 25°C and -196°C and as represented by K1cd and Jm parameter values from the 
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three point bend pre-cracked test specimens are presented in Tables VI 

and VII respectively. 

Figures 16 and 17 present a comparative assessment of the three 

Fe-12Ni alloys tested respectively at 25 DC and -196DC. 

5;3.1 Fracture Toughness at 25DC 

The AIM and AIM+ESR grades of the Fe-12Ni-2V alloy heat treated 

at the same temperatures provided fracture toughness KT d values ranging _c 
from 127 MPalmto 259 MPa/ffi (114 Ksi/Tn to 236 Ksi/Tn) respectively. 

For the VII~ and VIM+ESR grades of the above alloy, the K1cd 
values for similar heat treated conditions ranged from 196 MPa/ffito 277 

MPa/ffi (178 Ksi/Tn to 252 Ksi/Tn) and 191 MPa/m to 302 MPa/ffi (174 Ksi/Tn 

to 275 KsilTn) respectively. 

These data indicate that ESR improved the fracture toughness of 

the Fe-12Ni-2V alloy. The VIM grade of this alloy provided higher KIcd 
values compared to the AIM grade. Also, the VIM+ESR grade of Fe-12Ni-2V alloy 

displayed higher fracture toughness than the AIM+ESR grade. 

The VIM and VIM+ESR grades of the Fe-12Ni-O.2Ti alloy, heat treated 

at various temperatures, provided fracture toughness K1cd values respectively 

in the ranges 192 MPa/m to 262 MPa/m (174 Ksi/Tn to 238 Ksi/Tn) and 192 

MPa/m to 230 MPa/ffi(175 Ksi/Tn to 209 Ksi/Tn). These data indicate that 

ESR provided no improvement in the fracture toughness of VIM grade of Fe-12Ni-

0.2Ti alloy. 

1-" 

.-"'i 



. , 
• , 

'j ., 

I 
I 
I 

26. 

Similarly,fracture toughness KIcd values of the VIM+ESR grade of the 

Fe-12Ni-0.5Al alloy varied from 186 MPa/mto 2Hi MF.,/m(161 KsilTn to 

197 Ksi/Tn). Compared to the VIM+ESR grade of Fe-12Ni-O.2Ti alloy. the 

VIM+ESR grade of the Fe-12Ni-0.5Al alloy displayed slightly lower KIcd 

fracture toughness values • 

5.3.2 Fracture Toughness at -196°C 

The fracture toughness data of the Fe-12Ni alloys tested at -196°C 

are comparatively presented in Figure17. 

The AIM and AIM+ESR grades of the Fe-12Ni -2V alloy provi ded fracture 

toughness values respectively in the ranges from 78 MPa/mto 133 MPa/m 

(71 Ksi/Tn to 121 Ksi/Tn) and from 77 MPa/"iilto 190 MPa/m (70 KsiiTn to 

173 Ksi/Tn). Therefore. ESR improved the fracture tou9hness of the AIM 9rade 

of this alloy. 

In contrast. the VIM+ESR grade of the Fe-12Ni-2V alloy displayed poorer 

fracture toughness. with KIcd val ues ranging from 38 MPa/m to 153 MPa/m 

(35 Ksi/Tn to 139 Ksi/Tn) compared to the VIM grade 11hose KIcd values ranged 

from 148 MPa/m to 263 MPa/m (132 Ksi/Tn to 239 Ksi/Tn). 

Thus, in regard to the fracture behavior of the various lIIelt grades 

of Fe-12Ni-2V alloy,at -196°C the VIM grade provided the highest fracture 

toughness values. 

The fracture toughness, KIcd values of the VIM and VIM+ESR grades of 

the Fe-12Ni-0.2Ti varied from 187 MPa/nl to 256 MPa/m (170 Ksiv'Tn to 233 Ksiv'Tn) 

and from 148 ~lPav'm to 258 MPav'm (135 Ksiv'Tn to 235 KsilTn) l'espectively. 

Therefore, ESR did not improve the fracture toughness of the VIM grade. 

COlnparing the VIM+ESR grades of the Ti and Al added Fe-12Ni alloys, it 

is observed that the former alloy developed high values of fracture toughness 

I' r 
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(ovel' 200 ~IPa/iil) when tempel'ed at 685°C and 820°C and the latter alloy 

developed sim11(11' high KIcd values \~hen tempered at 500°C, 550°C and GOO·C. 

5.3.3 Jm Pal'ameter Values· 

In Figlll'es 16 and 17, the bottom bal' chal'ts pl'ovi de data comparing 

the Jm values fOl' the thl'ee Fe-12Ni allays fOl' the dHfel'ent heat tl'eatments 

and tested respectively at 25°e and -196°e. 

The 25°e Jm parametel' values for the Am and VIN gl'ades of the 

Fe-12Ni-2V alloy indicate mal'kedly highel' toughness of the lattel' gl'ade. ESR 

improved the toughness of the AlN gl'ade but not of the VIN gl'ade. 

Concerni ng the Fe-12Ni -0. 2Ti all oy. the 25°e Jm pa l'al11etel' values of 

the VUI grade aI'e significantly highel' than the VU1+ESR grade. 

The Jm pal'ameter val ues of the VU1+ESR gl'ade of the Fe-12Ni -0. 5A 1 

tested at 25°C are hi gher than those of the VI~1+ESR grade of the Fe-12Ni -0. 2T1 

alloy. 

The Jm pal'ametel' va lues of the Fe-12Ni -2V allay for tests conducted 

at -196Q C are in the l'ange 0.01 to 0.15 ~lJ/m2. Exceptions are the AH1+ESR 

grade of this allay tempered at 600 0 e and 650·C and the VI~l grade tempered ilt 

685°C and 820·C. 

The Fe-12N1-0.2Ti alloy of both vm and VH1+ESR grades provided Jm 
values higher than 0.14 ~lJ/m2. The Jm values of the similal' grade of 

Fe-12Ni-O.5Al al'e significantly highel' than those of the titanium added Fe-12Ni 

alloy. 

The s1gnificance of high Jm parameter values of the VI~lmelts of all 

three Fe-12Ni alloys and VH1+ESR melts of the titanium and aluminum added Fe-12Ni 

al10ys may be explained by their highel' plasticity associated with lower gaseous 



28. 

impurity and non-metallic inclusion contents. There is a good correlation 

between the exceptional cleanliness of the microstructure of the VIM+ESR 

grade of Fe-12Ni-O.5Al alloy and its high Jm values for tests conducted at 

-196°C. 

5.4 Microstructures 

Evaluations of microstructures of the three Fe-12Ni alloy plates of 

different melt grades which were tempered at different temperatures have led 

to the following observ.ations: 

° All plates displayed fine grain size, smaller than ASTM No.7 

(Figures 3 and 4). 

° The VIM grades showed a large number of tiny non-metallic 

inclusions (Figures S(c) and 6(a)). The AIM grade of the 

Fe-12Ni-2V alloy showed lower inclusion content (Figure S(a)) 

than its VIM counterpart. However, electroslag remelted grade 

plates of Fe-12Ni alloys were cleaner than VIM and AIM grades. 

° The VIM+ESR grade of Fe-12Ni-O.SAl alloy plates showed the 

smallest size and the least number of non-metallic inclusions 

of the three Fe-12Ni compositions prepared by the various 

melting techniques. 

° Microstructures developed in three Fe-12Ni alloy plates were 

. unaffected by the melting pl'actices used. The microstructural 

features observed are consistent with findings reported in NASA 

Technical Note D-8232 (May 1976) concerning the development of 

various Fe-12Ni alloys. 

, 
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6.0 CONCLUSIONS 

Thl'ee Fe-12Ni alloys, individually alloyed \~ith small amounts 

of V, Ti. and Al, Nere manufactUl'ed thl'ough different melting techniques, 

Nith particulal' emphasis on electl'oslag I'emelting, in ol'del' to achieve 

different levels of metal purity and associated costs. The relative 

effectiveness of these melting techniques Nas determined from tensile 

and slo\~ bend fl'acture toughness behavior evaluated at 25°C and -196°C 

aftel' tempering I)f the test specimens at various tempel'atures. Conclusions 

of this study are as folloNS: 

Q The best melting procedure \~as vm with 01' \~ithout ESR. 

VU1+ESR is the l'ecommended procedure since ESR pl'ovides 

an increased yield of plate pl'oduct, a l'eduction of over

all manufacturing costs, and, depending on the alloy 

composition, improved tensile or fracture toughness 

pl'operties. 

o ESR impl'oved the fracture toughnes:; of the AIN grade 

of the Fe-12Ni-2V alloy. ESR also improved the ductility 

of the AnI grade to levels approaching those of the VJ~1 

and Vnl+ESR grades of the same composition. The method 

of melting had only a minor effect on the tensile behavior' 

of Fe-12Ni-2V alloy tested at 25°C and -196"C. 

o ESR Nas highly effective in raising the yield and tensile 

strengths of the vm grade of the Fe-12Ni -O.2Ti alloy. 

Howevel', ESR did not improve the fracture toughness 

charactel'istics of this alloy. 
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° Good toughness/strength combinations at -196°C are 

available in all three of the Fe-12Ni alloys tested. 

For example. the titanium-added Fe-12Ni alloy manu

factured by the VIM-ESR technique. and tempered at 685°C, 

provided at -196°C a maximum yield strength of 1255 MPa 

(~82 Ksi) and a fracture toughness K1cd value of 2.25 

MPa/iii (205 Ksiv'Tn). 

° The Fe-12Ni-0.5Al alloy. based on its manufacturing ease 

by the low-cost EF+AOD (or VOD)+ESR methods and its lo\~ 

temperature toughness/strength properties, is a prime 

candidate for further development and evaluation as 

promising material for cryogenic applications. 



31. 

GENERAL REFERENCES 

1. ~Iitzke, l~. R., Stephens, J. R. Effect of Minor Relative Metal 
Additions on Fracture Toughness of Iron-12-Percent-Nickel 
Alloy at -196°C ~nd 25°C. NASA Technical Note 0-8232 (May 1976). , 

2. Brown, W. F., Stanley, J. E. Plane strain crack toughness testing 
of high strength metallic materials. ASTM STP 410, pp. 1-65, 1967. 

3. Landes, J. D., Begley, J. A. Test results from J-integral studies -
an attempt to establish a JIC testing procedure. ASTM STP 560, . 
Fracture Analysis, pp. 170-180, 1974. 

'. , . . ' 

.," ,. 



TABLE I 

EXPERIMENTAL Fe-12Ni ALLOY COMPOSITION 

ALLOY I II III 

Nominal Designation Fe-12Ni-.2Ti-.05C Fe-12Ni-2V Fe-12Ni-.51l.1 

Meta" ic Elements 
(percent by weight) 

Ni cke1 12.0 - 13.0· 12.0 - 13.0 12.0 - 13.0 
Si1icon 0.010 max 0.010 max 0.010 max 
Titanium 0.17 - 0.26 - -
Vanadium - 1.7 - 2.1 -
Aluminum - - 0.25 - 0.50 
Iron Balance Balance Balance 

I Nonmetallic Elements 
(parts per million by 
weight) . 

Carbon 400 - 600 200 - 800 100 - 500 
Nitrogen 50 max 50 max 50 max 
Oxygen 100 max 100 max 100 max 
Phosphorus 50 max 50 max 50 max 
Sulfur 50 max 50 max 50 max 

Note: All other elements in above alloys shall not exceed 60 ppm by weight. 



TABLE II 

CHARGE MATERIALS USED FOR THE MANUFACTURE 
OF EXPERIMENTAL Fe-12Ni ALLOYS, 

THEIR SOURCE AND COSTS 

Glidden A-10l-B Melting Stock 

C-0.002, 
P-<O.OOl, 
H-O.OOlS, 
As-<0.0002 
Sn-0.002 

Si-0.002, 
Ni-0.014, 
0-<0.OSS2, 
Ag-<O.OOlO 
W-O.OOl 

Mn-0.004, 
Co-O.OOS, 
N-0.0017, 
Bi-<O.OOOl, 
V-0.003 

5-0.002 
Fe-99.l 
Cu-O.OOS 
Pb-0.0002 

.Icost $l.~I;!/Kg 

Nickel - Inco Nickel Pellets 

All elements - parts per million (ppm) 
-

C - <10 Co - <0.2 Cu - <1 Fe - <20 
o - 69 N - 7 H - <1 S - 9 
Al - <1 Sb - <0.2 As - <0.2 Bi - <0.2 
Cd - <0.2 Pb - <0.2 Mn - <1 P - <0.2 
Se - <0.2 Si - 2 Ag - <0.2 Te - <0.2 
Th - <0.2 Sn - <1 Zn - <O.S 

ICost $4.85/Kg 

Titanium'" - C.P. grade - Frankel Company 

Fe - <0.20 Si - <0.01 
Ti - 99.6% minimum 

Mn - <0.01 O2 - <0.10 

H - <100 ppm N - <100 ppm 
Pb - <10 ppm Sb - <lOppm 

*Note: Content of each element in weight percent unless otherwise 
reported. 
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TABLE II (Cont'd) 

CHARGE NATERIALS USED FOR THE ~IANUFACTURE 
OF EXPERINENTAL Fe-12Ni ALLOYS, 

THEIR SOURCE AND COSTS 

Ferro Vanadium* - Grade 80% FeV - Union Cal'bide Corp. 

V-77.19 
S - 0.012 

Si - 0.80 
P - 0.016 

C - 0.21 ~In - 0.08 

I Cost $13.23/Kg 

! Carbon* - No. 18 grade gl'aphite - Schuler Inoustrles 

C - 97.5 to 98.5 S - <0.02 Ash - 0.5 to 0.70 
Volatiles - 0.50 to 0.60 ~'oisture - Approx. 0.50 

~~7n~"'-------~ I Cost $O.46{Kg 

Aluminum* - 3/tl" Shot, t-:eynolos ~Ietals Co. 

Al - 99.87 
~Ig - <0.01 
Pb - <0.01 

Si - 0.06 
Cr - <0.01 
Sn - <0.01 

Fe - 0.06 
Zn - 0.01 
Ti - <0.01 

Cu - <0.01 
Ni - <0.01 

1 Cost $1.08/Kg 

~In - <0.01 

*Note: Content of each element in weight percent unless otherwise reported. 
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GRADE 

Elements VE 949 

Fe Base 
Nl 1~.2 

::11 0.009 
Ti 0.19 
V --
AI --
C 0.057 
N 3 PPM 
u 21 PPM 
P <0.005 
S 0.0048 

SEMI SLA8 PRODUCT 
REFINE --
FINAL 
PRODUCT 

ELEMENTS VE 965 
Fe Base 
Ni 12.1 
Si 0.03 
Ti 0.114 

V --
Al --
C 0.049 
0 118 PPM 
N 10 PPM 

TABLE III 

CHEMICAL ANALYSES OF EXPERIMENTAL 
Fe-12Ni ALLOYS 

VIM AIM 

VE 950 VE 965 VE 966 VF-39 AW-606 

Base Base Base Base Base 
,~. I 12.0 12.0 

_._. 
12.1 12.65 

0.005 <0.01 <0.005 <0.010 <0.01 

-- 0.18 -- -- --
1.90 -- 1.78 -- 1.88 

-- -- -- 0.46 --
0.057 0.052 0.047 0.035 0.088 
4 PPM 6 PPM 5 PPM 5 PPM 202 PP~ 

22 PPM 69 PPM 36 PPM 7 PPM 90 PP~ 

<0.005 <50 PPM <50 PPM <0.005 0.005 
0.003 30 PPM 30 PPM 0.004 <0.005 

SLAB BAR BAR BAR BAR 

-- ESR ESR. ESR ESR 

29 mm thick plates 

CHEMICAL ANALYSES OF ESR PLATES 

VE 966 VF-39 AW 606 
I 

Base Base Base 
11.8 11.8 12.6 
0.01 0.03 0.02 

-- -- --
1.68 -- 1. 71 

-- 0.39 <0.05 
0.046 0.036 0.08) 

62 PPM 64 PPM 81 PPM 
l1PPM 6 PPM 188 PPM I 

" 

AW-602 

Base 
12.8 

<0.01 

--
1.76 

--
0.073 
191 PPM 

77 PPM 
0.005 

<0.005 

SLAB 

--

, 
\ 

') 
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TABLE IV 

TENSILE PROPERTIES OF Fe-12Ni ALLOYS AT ROOM TEMPERATURE (25°C) 

Tempered and 
Alloy & Quench Ultimate Tensile Yield Strength E1on~ation Area 
Melting Temperature Strength (0.2%) (50.8 mm gage Reduction 

r40de (2 hours) 
°C MPa Ksi MPa Ksi % % 

Fe-12Ni-2V Hot Rolled 1103 160 807 117 14 53 

(AIM) 550 883 128 724 105 21 66 
685 800 116 634 92 18 70 
820 938 136 765 111 15 63 

Fe-12Ni-2V Hot Roll ed 1117 162 772 112 13 56 

(AIM+ESR) 550 855 124 717 104 20 71 
685 807 117 614 89 19 73 
820 945 137 765 111 16 66 

Fe-12Ni-2V Hot Rolled 1062 154 855 124 18 65 

(VIM) 550 821 119 696 101 22 73 
685 772 112 634 92 19 76 

820 896 130 745 108 17 73 

Fe-12Ni-2V Hot Rolled 1041 151 696 101 16 64 
(VIM+ESR) 550 800 116 676 98 19 73 

685 738 107 586 85 19 76 

- - 820 - ~ 

896 DO - 710 - 103 17 
~-

68 -_.-

) 



Alloy & 
t~e1ting 

Hode 

Fe-12rli-O.2Ti 

(Vm) 

Fe-1211i -0. 2Ti 
(VII#ESR) 

Fe-12rli-0.5Al 
(VIl#ESR) 

K ", ~ ;;" 

TABLE IV (Continued) 

THISILE PROPERTIES OF Fe-l2rli ALLOYS AT R00l1 TEl~PEP.ATURE (25°C) 

Tempered and 
Quench Ultimate Tensile Yield Strength Elongation Area 

Temperature Strength (0.2%) ( 50.8 rrrnqage) Reduction 
(2 hours) 

"e 11Pa Ksi 11Pa Ksi % % 

Hot Rolled 841 122 627 91 19 74 

550 745 108 662 96 22 76 
685 724 105 586 85 20 77 
820 758 no 614 89 19 76 

Hot Rolled 903 139 703 102 16 ! 71 
550 855 124 807 117 21 72 

685 1076 156 807 117 16 65 
820 1089 158 813 118 16 67 

Hot Rolled 903 131 655 95 18 70 
550 765 111 717 104 25 73 
685 1055 153 800 116 16 66 

__ 82Q I 1027 l~_ 772 ~2_. 17 66 , 
-

I 

I 



TABLE V 

TENSILE PROPERTIES OF Fe-12Ni ALLOYS AT LIQUID NITROGEN TB1PERATURE (-196°C) 

Alloy & Tempering Ultlmate lenSlie ne!o :.trengtn E l,Pngatl on 
f1e1ting Temperature Strength (0.2%) ( 50.8 rnrn gaw 

f10de (2 hours) 
cC HPa l<5i f1Pa l<5i % 

Fe-12Ni-2V Hot Rolled 1476 214 1145 166 16 
550 1255 184 1041 151 24 

(Am) 685 1200 174 986 143 17 
820 1303 189 1117 162 16 

Fe-12Ni-2V Hot Rolled 1400 203 1117 162 15 

(Am+ESR) 550 1200 174 1027 149 22 
685 1145 166 1020 148 19 
820 1234 179 965 140 16 

Fe-12Ni-2V Hot Rolled 1413 205 1069 155 19 

(vm) 550 1214 176 993 144 24 
685 1145 166 1034 150 17 
820 1227 178 1062 154 21 

Fe-12Ni-2V Hot Rolled 1379 200 1089 158 17 
(vm+ESR) 550 1186 172 1000 145 19 

600 1103 160 945 137 24 
650 1089 158 924 134 22 

I i 
. 

685 1048 152 993 144 14 
J_820 1220 177 1076 156 19 

Area 
Reduction 

% 

51 
55 
60 
53 

49 

58 
61 
51 

59 
63 
64 
68 

58 
56 
63 -
64 
63 
52 
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TABLE Y ~r~~tinued) 

TENSILE PROPERTIES OF Fe-12Ni ALLOYS AT LIQUID NITROGEN TEMPERATURE (-196°C) 

Tempering Ultimate Tensile Yield Strength Elongation 
Alloy & Temperature Strength (0.2%) (50.8 nrngage) 
r~el ting (2 hours) 
r~ode ·C 14Pa Ksi MPa Ksi % 

Fe-12Ni -0. 2Ti Hot Rolled 1220 177 1124 163 20 

(Vm) 550 10B9 15B 993 144 25 
6B5 1103 160 889 129 18 
820 1110 161 965 140 21 

Fe-12Ni-O.2Ti Hot Rolled 1276 185 993 144 18 
550 1207 175 993 144 23 

(VIf4+ESR) 600 1289 187 931 135 23 

650 1358 197 1000 145 17 
685 1407 W4 1255 182 17 
820 1372 199 1193 173 21 

Fe-12Ni -0. 5Al Hot Rolled 1220 177 1000 145 23 
500 1179 171 855 124 25 

(VIf1+ESR) 550 979 142 883 128 22 
600 1089 158 1014 147 23 
685 1379 200 1172 170 18 

- -- - 820 - -
1331 

--
193 JJ79 __ 171 L_17_ 

-- --

Area 
Reduction 

% 

65 
66 
64 
68 

63 
63 

-

65 
61 
61 

64 

66 
64 -

68 

62 
65 
64 
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TABLE VI 

FRACTURE TOUGHNESS OF Fe-12Ni ALLOYS TESTED AT ROOM TEMPERATURE (25°C) 

Heat Treatment KIcd+ J * m 
Alloy & Aging Temperature Energy Balance 11 Joules in-1b He1ting (2 hours) 

m2 in2 Mode °C 14Pa/m KsilTn 

Fe-12Ni-2V Hot Roll ed 127 116 0.11 626 

(AIM) 550 199 181 0.27 1570 
685 211 192 0.27 1569 
820 142 129 0.09 497 

, 

, 

Fe-12Ni-2V Hot Rolled 125 114 0.05 287 I 

(AIH+ESR) 550 248 226 0.3B 2181 
685 259 236 0.35 1978 
820 179 163 0.22 1279 

I 
Fe-12Ni-2V Hot Rolled 196 178 0.26 1469 

(VH4) 550 264 240 0.53 3010 
685 277 252 0.47 2690 
820 214 195 0.37 2116 

Fe-12Ni-2V Hot Rolled 191 174 0.18 1032 1 , , 

(VIM+ESR) 550 263 239 0.38 2154 
685 302 275 0.48 2715 
820 271 247 0.37 2139 

-

+KIcd = SP21 A/A2 f (a/w) 

B~13/2 

*J = 2A m bB 
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TABLE VI (Continued) 

FRACTURE TOUGHNESS OF Fe-12Ni ALLOYS TESTED AT ROOM TEMPERATURE (25DC) 

Heat Treatment KIcd+ J* m 
Alloy & Aging Temperature Energy Balance M Joules in-lb Melting (2 hours) 

m2 in2 Mode DC MPalffi Ksi,.,...,.-n 

Fe-12Ni -0. 2Ti Hot Rolled 192 174 0.24 1390 

(VIM) 550 225 205 0.43 2429 
685 262 238 0.41 2355 
820 214 195· 0.38 2196 -

Fe-12Ni-0.2Ti Hot Rolled 230 209 0.25 1410 

(VIM+ESR) 550 220 200 0.23 1334 
685 192 175 0.18 1029 
820 214 195 . 0.22 1271 

Fe-12Ni -0 .5A 1 Hot Rolled 201 183 0.29 1648 

(VIM+ESR) 550 216 197 0.40 2276 
685 186 159 0.22 1265 
820 199 181 0.27 1569 . 

SP2~2 f (a/w) +K1cd = 

BW3/ 2 

2A *J = bB m 

h 
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TABLE VII 

FRACTURE TOUGHNESS OF Fe-12Ni ALLOYS TESTED AT LIQUID NITROGEN Ta~PERATURE (-196DC) 

Heat Treatment K1cd+ J * ! m , 
I 

Alloy & Aging Temperature Energy Balance 
~I Joules in-lb I 

Melting (2 hours) 
ri in2 I Mode DC HPa{m Ksillil 

Fe-12Ni-2V Hot Rolled 96 87 0.05 304 I 
(Am) 550 78 71 0.05 265 

I 
I 

685 133 121 0.11 625 
I 
I 

820 126 115 0.09 496 i 
Fe-12Ni-2V Hot Rolled 77 70 0.01 72 I 

550 132 120 0.11 638 I 
(AIH+ESR) I 

I 600 175 159 0.19 1104 I 

650 190 173 0.23 1320 
I 
, 

685 130 118 0.12 699 
, 

I 

820 115 105 0.08 439 I 
, 

Fe-12Ni-2V Hot Rolled 162 147 0.12 692 I 

(VIM) 550 145 132 0.12 700 : 

685 179 163 0.18 1015 
820 263 239 0.47 2700 I 

Fe-12Ni-2V Hot Rolled 64 58 0.04 213 

(VIM+ESR) 550 38 35 0.01 45 
600 96 89 0.08 443 • 

650 136 124 0.11 625 
685 153 139 0.14 785 , 

820 152 138 
~--

_0.09 _____ ___ 5~J ________ 

"-'>.:'/' ·.;'~J;{~j~:?i;~~~:=;':?" '~:'~7 "-":-:.";;'TC~'~'----'~ 
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TABLE VII (Continued) 

FRACTURE TOUGHNESS OF Fe-12Ni ALLOYS TESTED AT LIQUID NITROGEN TEMPERATURE (-196°C) 

Alloy & 
Melting 

Mode 

Fe-12Ni-O.2Ti 
(VIM) 

Fe-12Ni-0.2Ti 

(VIM+ESR) 

Fe-12Ni-0.5Al 

(VIM+ESR) 

0 

Heat Treatment K1cd+ 
Aging Temperature Energy Sal ance 

(2 hours) 
°C MPa/m 

Hot Ro 11 ed 201 
550 187 
685 256 

820 226 

Hot Rolled 258 
550 148 
600 173 

650 162 

685 225 

820 243 

Hot Rolled 305 

500 259 
550 245 
600 235 

685 198 
820 181 

+KIcd 
= SP21 Al/A2 f (a/w) 

Bw3/ 2 

*J m 
= 2A 

bB 

Ksi I Tn 

lB3 
170 
233 

206 

235 

135 
157 

147 
205 

221 

278 

236 
223 
214 

180 
165 

J m* 

M Joules in-lb 

m2 . 2 1n 

0.24 1362 
0.17 997 
0.34 1913 

0.29 1668 

0. 42 2374 

0.14 818 
0.20 1159 

0.16 905 
0.30 1725 

0 . 38 2192 

0.47 2711 

0. 46 2599 
0.33 1912 
0.34 1931 

0.24 1375 
0 ~15 865 

, 

, 
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Ingot 

Fe-12Ni-O.2Ti alloy 

Ingot 
Fe-12Ni-2V alloy 

Forged 

UUfW'"4"'_ 
PtlT$I.UIGK. ,litNA. 11219 , , . 

Forged 

FIGURE 2 . Typi ca 1 macrostructure of t\yO Fe-12Ni alloys. 
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(a) Ani (b) AH1+ESR 

(c) VHi (d) VnI+ESR 

FIGURE 3. Gl'ain size of AUI (a), AHI+ESR (b), HI (c). VHI+ESR (d) 
plates of Fe-12Ni-2V alloy. 
Nagnific tion '100 hot l'olled condition. 



(a) VI~1 (b) VH\+ESR 

(c) VH1+ESR 

FIGURE 4. Grain size of VHl (a) VH1+ESR (b) plates of Fe-12Ni-0.2Ti alloy 
and VI1+E R (c) plates of Fe-12Ni-0.SA1 alloy. 
lagnification 100, hot rolled condition. 
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(a) Wl 
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(c) VIN 

(b) WI + ESR 

" 

. , , 

, ' 
: 

" 

" 

(d) VHl + ESR 

FIGURE 5 ' Typical inclusions in AUI, AH1+ESR, VH1, and VH1+ESR grades 
of Fe-1 2Ni-2V alloys, 
~lagnification - xlOO, as rolled condition, 
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FIGURE 6 

(a) VIM 

; , 

.' . 

; 

: .. , 

... 

(b) VIM + ESR 

(c ) VIM + ESR 

Typica l inclus ion s in VIM. VIM+ESR grade s of Fe-1 2Ni-O. 2T i 
(a & b) and Fe-12Ni-O.SAl (c) all oys. 
Ma gni fication xl OO. as rol l ed condition. 
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FIGURE 8 

(a) As ro 11 ed 

(c) Tempered & quenched at 
685°C 

(b) Tempered & quenched at 
550°C 

(d) Tempered & quenched at 
820°C 

Mi crostructure of Fe-12Ni -2V a 11 oy - AIM+ESR grades. 
Magnification xlOOO 



(a) As rolled condition 

(c) Tempered & quenched at 
685 · C 

'II' ; ,;~.' 
. 1 I -,. .... 

• • 4l.1 . / " 
(b) Tempered & quenched at 

550·C 

(d) Tempered, quenched at 
820·C 

FIGURE 9 ~!iCl"Ostructure of Fe-12Ni-2V all oy - VI~1 grade. 
~lagnificat;on 1000 



(a) As l'oll ed condition 

(c) Tempered & quenched at 
600 ' C 

Telllpered que nched at 
550' C 

(d) Tempered & quenched at 
650 ' C 

FIGURE 10 ~li cro;t l'lI ctu l'e of Fe-12Ni -2V alloy - VHI+ESR grade. 
~la gnifica tio n . 1000 



() Tempered & quenched 
at 685°C 

", . , 

.' . ~.' .. . -. 
.' • , 

. . \. ~f""" 
\ ~ . ' .. 

.:..,.,;, ~ . :. 
. \: \f 
. \~J 

. ... . ~.'... . , , . " 
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(f) Tempered & quenched 
at 820°C 

FIGURE 10 (continued). ~1icrostructure of Fe-1 2Ni-2V all oy - VI~1+ESR grade. 
Magnification xl 000. 
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(a) As rolled condition 

(c) Tempered & quenched at 
685°C 

(b) Tempered & quenched at 
550°C 

(d) Tempered & quenched at 
820°C 

FIGURE 11 Micros truc t ure of Fe -1 2Ni-O.2Ti alloy - VIM grades . 
Magnificatio n - xlOOO 

-_..-,,-. ........ _.,.....,.. 
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(a) As rolled condition 

(c) Tempered & quenched at 
600°C 

'. 
.. ./; .. . • , 

(b) Tempered & quenched at 
550°C 

(d) Tempered & quenched at 
650°C 

FIGURE 12 Microstructure of Fe-12Ni-O.2Ti alloy - VIM +ESR grade. 
Magnification - xlO OO. 



(f) Tempered & quenched ~t 
820· C 

FIGURE 12 (cont inued). Microst,' ucture of Fe-12Ni-O . 2Ti alloy - VI~l+ESR grade. 
Magnification x1000 . 



";;p." .r , . 
• •• 

(c) Tempered & quenched at 
SSO' C 

(b) Tempered & que nch ed at 
SOooC 

(d) Tempered & quenched at 
600°C. 

FIGURE 13 . ~'i crostructul"e of Fe -1 2Ni-0.SAl alloy - VHli£SR gl·ade . 
~'agni fica ti on - 1000 . 



( ) T mp Ilch d 

.0/2 P 

(fl T mpered & qu nched 
at · 20·C 

FIGU RE 1 (ontillu dl. Nicrost"uctu'"e of Fe-12Ni-0. SAl alloy - VI~I+ES R gt'ad . 
Nagni fica i on 1000. 
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Figure 14. Tensile properties of Fe-12Ni alloys as affected by different melting procedures and 

heat treatments for tests conducted at 25°C. 

* R.R. = Hot Rolled Condition 
+ Tempering Temperature °c 
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* H.R. = Hot Rolled Condition 
+ Tempering Temperature °c 
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Figure 16. Fracture toughness of Fe-12Ni alloys as affected by different melting and heat treatments for 
tests conducted at 25°C. 

* H.R. = Hot Rolled Condition 
+ Tempering Temperature °c 
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Figure 17 • Fracture toughness of Fe-12Ni alloys as affected by different melting procedures and heat treatments t 
for tests conducteJ at -196°C. t 
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* H.R. = Het Rolled Condition 
+ Tampering Temperature DC 

.'~:-:-------'---'----- ----- ---
.. ~- ---.. 

l 
l 
l 


	0001A02
	0001A03
	0001A04
	0001A05
	0001A06
	0001A07
	0001A08
	0001A09
	0001A10
	0001A11
	0001A12
	0001A13
	0001A14
	0001B01
	0001B02
	0001B03
	0001B04
	0001B05
	0001B06
	0001B07
	0001B08
	0001B09
	0001B10
	0001B11
	0001B12
	0001B13
	0001B14
	0001C01
	0001C02
	0001C03
	0001C04
	0001C05
	0001C06
	0001C07
	0001C08
	0001C09
	0001C10
	0001C11
	0001C12
	0001C13
	0001C14
	0001D01
	0001D02
	0001D03
	0001D04
	0001D05
	0001D06
	0001D07
	0001D08
	0001D09
	0001D10
	0001D11
	0001D12
	0001D13
	0001D14
	0001E01
	0001E02
	0001E03
	0001E04
	0001E05
	0001E06
	0001E07
	0001E08
	0001E09
	0001E10
	0001E11
	0001E12
	0001E13
	0001E14
	0001F01



