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ABSTRACT
The turbulence equations are closed by specification of initial condi-
tions (using either a Taylor or an exponential series) and by a modified
Kovasznay-type closure. Good results for large times are obtained only
for the initial-conditions closure vsed with four or more terms of an
exponential series. The evolution of all of the initially-specified spectra
can be calculated rather well from the theory. From a fundamental

standpoint the method thus seems to be satisfactory.



I. INTRODUCTION

From a practical standpoint it would be advantageous to be able to
calculate the evolution of the turbulent energy spectrum by specifying
only that quantity initially. Unfortunately, because of the coupling be -
tween the members of the infinite hierarchy of multipoint correlation or
spectral equations, it appears that we are not able to do that, so that a
satisfactory theory would seem to require the initial specification of a
number of irteracting quantities. The prediction of the evolution of the
energy spectrum in fact requires the specilication of an infinite number
of initial multipoint corvelations or spectra (or functionals of these quan-
tities). 1 Those quantities, together with the correlation or spectral equa-
tions, can be used to calculate the initial time derivatives of the correla-
tions or spectra. The evolution of the turbulence can then be obtained by
using an exponential time series which is an iterative solution of the Navier-
Stokes equations. When the problem is formulated in this way, the correla-
tion or spectral equations are closed by the initial specification of the tur-
bulence and no assumption is necessary for closing those equations.

Cf course in practice we can specify only a finite number of the lower-
order quantities. This has been called the "gap problem. "2 It is the
problem of bridging the gap between the infinite number of correlations
which would theoretically be necessary for calculating the evolution of
the turbulence, and a finite specifiable number of correlations. Most
workers have attempred to bridge the gap by assuming that the initial
distribution of turbulent fluctuations is exactly Gaussian (zero odd-order
correlations). However, that is an artificial initial condition, probably
never realized for real turbulence. The importance of accurate initial
conditions is shown, for instance, by the data of Ling and Saad, 3 where

measurements were made downstream from a turbulence-producing



waterfall. The turbulence decay law for the initial conditions produced
by the waterfall is considerably different from that for initial conditions
produced by a grid. As will be seen later, the skewness factors for the
velocity gradient are also different.

Here, as in Ref. 1, we bridge the gap simply by specifying a suffi-
cient number of initial correlations or their spectral equivalents to cal-
culate the evolution accurately. Fortunately, we do not have to specify
the multipoint correlations or their spectral equivalents themselves
(those would be extremely difficult to measure) but only two-point func-
tionals of the multipoint spectral quantities. 1 It will be seen that the
evolution of all the quantities which are specified initially can be cal-
culated. If, on the other hand, a large number of initial conditions were
specified in order to predict the evolution of say one quantity, it might
be objected that the initial conditions were chosen to make the theory
agree with experiment for that one quantity. However, that objection
cannot be made if the evolution of all of the quantities which are specified
initially can be calculated, as in the present theory. From a fundamental
standpoint the calculation of the evolution of those quantities is all that
might be expected from a theory of evolving turbulence.

II. ANALYSIS

In Refs. 1 and 4 we gave the basic theory for closure by specification
of initial conditions and calculated results for low and moderate turbulence
Reynolds numbers (Ith between 3 and 70, where R,\ is the Reynolds num-
ber based on the Taylor microscale and the root-mean-square turbulent
velocity fluctuation). Here we compare calculated results with the higher

Revnolds number data of Ling and Saad. 3 The Reynolds numbers for those



data were high enough to obtain a -5/3-power region in the energy spec-
trum (R, between 300 and 800).
The exponential-series expression for the energy spectrum function

E was obtained in Ref. 1 as

P‘ 3 Bi(h)oxp[-zbs(u)(t - tl)J. (1)

- (.

E(x,t) = Bz(h')oxp[-mmz(t -4

where « is the wave number, ( is the time, ty is the intial time, and »
is the kinematic viscosity. Equation (1) gives the evolution in time of the
energy spectrum from an initial state which is specilied by the B's and
b's in the equation. The first term is the well-known expression for the
decay of E in the final period (weak turbulence approximation). The

rest of the terms in Eq. (1) therefore give the contribution of inertia to E.
In the present note we will retain a maximum of four exponential terms

in Eq. (1). This is one more term than it was necessary to retain for the
low and moderate Reynolds number data considered in Refs. 1 and 4.

With four terms retained, we will have to specify seven spectra at tl in
order to evaluate the functions B, Bl‘ Bz. B3' and bl' b2. and b3.
Evidently we need more spectra to describe the initial turbulence at higher
Reynolds numbers because a wider range of eddy sizes is excited, and the
turbulence structure is more complicated than at lower Reynolds numbers.
The spectrum functions, in addition to E(x,t), which we will specify ini-
tially are T(x,t), V(x,t), R(x,t), S(x,t), L(x,t), and M(k,t), which

are given by
T=0JE/ot+ ZI’KZE. (2)
V = 3T/2t + 2u°T, (3)

R = aV/dt + 2uk2V, (4)



S =R/t + 2w\'2R. (5)
L=08/dt+ 2!”\'28. (6)
and
2

M= 3L/t + 2vk°L. (7
The quantity T is the well-known energy -transfer function, and V, R,

S, L, and M are, respectively, two-point functionals of three-, four-,
five-, six-, and seven-point spectral quantities. 1 The latter five quan-
tities are somewhat similar to T, inasmuch as they contain the effects

of transfer between wave numbers of T, V, R, S, or L. However they
differ, in that they also contain other effects, so that the areas under
those spectra are not necessarily zero. as in the case of T. Equations (2)
through (7) are obtained, respectively, from two-, three-, and four-, five-,
six-, and seven-point spectral equations. 1 They cin be thought of as two-
point alternatives to the multipoint spectral equations and are much easier
to work with.

For comparing the theory with the experiment of Ling and Saad, 3 the
experimental input can be conveniently obtained from an empirical equa-
tion for E, Eq. (8) in their paper. The higher-order spectra were not
measured directly in their experiment, but could be calculated from their
equation for E and Eqs. (2) through (7). Except for experimental error
those values will be the same as those that might have been measured
directly. The B's and b's in Eq. (1) can be related to the initial spec-
tra by successive differentiations of that equation with respect to time,
setting t = tl' and using Eqs. (2) through (7).

The use of Ling and Saad's Eq. (8) for obtaining the initial conditions

might be taken as ar indication that it is necessary to know the decay



law to predict it. However that is not the case. Their equation was
used because the initial spectra could not be measured directly in their
experiment. Moreover we do not need to know E for the whole decay
period, but only at enough early times to calculate the required initial
spectra, the latter being a much smaller amount of information. At anv
rate the nature of the problem seems to be such that we do not have a
reasonable alternative to the procedure followed here.
III. RESULTS AND DISCUSSION

Before giving results obtained from Eq. (1), we will consider a
Taylor series with a maximum of seven initial spectra (the same maxi-
mum number that will be used with Eq. (1)), and a modified Kovasznay -
type closure (modified to include an effect of initial T). 5 Results for
those calculations are given in Fig. 1, where the initial state is speci-
fied at tj = 0.0048. The quantity u; is a velocity component, the over-
bar indicates an averaged value, and the stars indicate that quantities
have been nondimensionalized by the kinematic viscosity and an experi-
mental constant. A (the proportionality constant in the power decay law
for Tl-%) having the dimensions [(length)2 (time)l':ﬂ.3 The turbulent
energy (1/2)6;; is obtained by integrating E over all wave numbers.
Figure 1 indicates that the Taylor-series results agree with experiment
only for small times. Evidently, many more terms (and initial spectra)
would be required in order to obtain accurate results for ﬁ;ﬁ: at large
times. Note that even if enough terms were retained in the Taylor series
te give accurate results for GE, the decay of the higher-order spectra
which would then have to be specified initially could not be accurately

calculated. Thus the use of a Taylor series in the present problem does



not give a satisfactory solution, regardless of the number of terms re-
tained.

The modified Kovasznay-type closure is in somewhat better agree-
ment with experiment than the Taylor series, but at large times the agree-
ment is still not good. This is in contrast to its good agreement at moder-
ate and low Reynolds numbers.® It was introduced in Ref. 5 in an effort
to reduce the required number of initial spectra. Evidently that effort is
successful only for moderate and low Reynolds numbers. It is possible,
of course, that a more sophisticated method might be more successful
(e.g. see Ref. 6).

A comparison between theory and experiment using the exponential
series (Eq. (1)) is given in Figs. 2 to 8, where the initizl state is again
specified at t} = 0.0048. As in Refs. 1 and 4, unphysical singularities
occasionally occurred in the theoretical spectra. Inasmuch as the un-
physical values were localized, particularly in the higher-order approxi-
mations, they were simply omitted in plotting the curves.

Figure 2 gives a comparison between theory and experiment for the
decay of turbulent energy. Theoretical curves are shown for one, two,
three, and four exponential terms retained in Eq. (1). The curve for
four terms is in good agreement with experiment for the whole &ecay
period. Comparison of the curve in Fig. 1 for one term retained (weak
turbulence approximation) with the experimental curve shows the effect
of inertia on the decay process. In contrast to the results for moderate

1,4 where inertia and viscous effects were of the

Reynolds number,
same order of magnitude, the inertia effe~ts for the present higher

Reynolds number results are at least an order of magnitude greater than



the viscous effects. Thus most of the decay at high Reynolds numbers

is due to inertial self-inter- .tion of the turbulence, rather than to viscous
effects. Figures 3 and 4 shov' how the energy and the transfer spectra
decay with time.

Figures 5 and 6 compare theory and experiment at a late time for
all of the spectra which are initially specified to describe the initial tur-
bulence. The prediction of the decay of all seven of the spectra which
are specified initially is rather good. Thus the present theory appears
to solve an initial-value prob'em for higher Reynolds number turbulence
in which the decay ol seven inidally-specified spectra is predicted.

Although the initial dissipation spectrum h’zE is not specified in-
dependently, because of its importance in turbulence theory it is com-
pared with experiment and with the energy spectrum at a late time in
Fig. 7. Again, good agreement is indicated. The separation of the
energy and dissipation spectra is good evidence that we are dealing with
high Reynolds number turbulence.

Another important quantity is the skewness factor of the velocity
gradient. That quantity can be calculated from the spectra of £ and T. 1
The plot in Fig. 8 indicates excellent agreement between theory and ex-
periment for the skewness factor. The difference between the trend in

8

Fig. 8 and that in grid-generated turbulence” is probably due to the differ-

ence between initial conditions for grid-generated turbulence and the

waterfall-generated turbulence considered here. 8
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SKEWNESS FACTOR

=== THEORY: FOUR TERMS IN EQ. ()
=== EXPERIMENY

160 180

Figure 7, - Comparison of ymmlul enerqgy dissipation
spectrum at a late time « = 0,01) with experiment of
reference 3 and with energy spectra,

== THEORY: FOUR EXPONENTIAL TERMS IN EQ. (1)
= == EXPERIMENT
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Figure 8, - Comparison of ewolution of theo-
retical skewness factor of velocity gradient
with experiment of reference 3,
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