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SUMMARY

K NOF FILMED

This two part volume reports on the second and third phases of
the NASA research contract NAS8-31373 initiated March 1975 and
culminating in December 1978.

The three phases of this contract are jdentified by three work
statements:

Phase I: Work Statement I dated March 1975

Phase II: Work Statement II dated December 1976

Phase III: Work Statement III dated November 1977.

Work Statement I dealt with the generation of Holographic fil-
ters by digital techniques and the work of this phase was reported
in final form through the interim final report dated August 1976
(Mississippi State University Report MSSU-EIRS-EE-77-1).

Work Statement II deals with digital data communication over RF
channels with both random and bursty error characteristics, i.e. a
compound channel. Volume I of the final report dated December 1978
reports on this phase of the contract. In particular a Hybrid de-
coder was developed and proven by gimulation to be superior to a
Viterbi decoder.

Work Statement III deals with a survey of projected coding
technology developments in the 1980-1985 time frame. Volume II of

the final report dated December 1978 reports on this phase of the

contract.



ABSTRACT

The main purpose of this research is to develop an algorithm
whose performance. approaches that of the optimal maximum likelihood
Viterbi decoder in dealing with random errors and yet possesses a
burst-error-correcting capability close to that of the optimal B2
decoders. The algorithm developed uses a syndrome detecting logic
to direct two decoders, namely, the Viterbi decoder and the algebraic
decoder, to assume the decoding load alternatively, depending on the
channel characteristics at the moment.

The algebraic decoder used in the hybrid algorithm is an opti-
mal B2 burst corrector suitable for the decoding of nonsystematic
convolutional codes. The algebraic decoder is capable of correcting
any short burst as long as the total number does not exhaust the
storage capacity of the decoder. It can also correct long bursts
equal to or less than (constraint length -1) blocks with high prob-
ability without having to sacrifice the random-error-correcting
capability of the codes. When encountering long bursts which are
beyond the error correcting capability of the algebraic decoder, the
overall system will outperform the Viterbi decoder because error
propagations are suppressed.

The hybrid system works extremely well for compound chaannels
with periodic bursty interferences; however, for random bursty
channels in which the required clean guard spaces are not present,
the performance of the hybrid system may on occasion become worse

than that of the Viterbi decoder.



An empirical study of the performance of the Viterbié ecq
in bursty channels was carried out and an improved algebra
for nonsystematic codes was developed. The hybrid algorithm was
simulated for the (2,1), k = 7 code on a computer using 20 channels
having various error statistics, ranging from pure random error to
pure bursty channels. The hybrid system outperformed both the
algebraic and the Viterbi decoders in every case, except the 12
random erxor channel where the Viterbi decoder had one bit less

decoding error.
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CHAPTER I
INTRODUCTION

1.1 Information Transmission

Communication is a process by which messages are transferred
from one point to another. A message is assumed to be an ordered
selection from a known set of symbols. Furthermore, communication is
a random process; otherwise there would be no need to communicate.
Lat X be a random variable whoge sample space consists of the m source
symbols; {xl. Xos oee xm}. At the destination, one of the desti-
nation symbols of the ensemble {yl. Yas oo Yo} will be identified by
the signal trangmitted. The destination can be represented by a
random variable Y, A gignal is a physical realization of the message
so that transmission through the media, or channel, is possible.

This conversion is done by the transmitter. The function of the
receiver is to guess the source symbol sent based upon the received
symbol yj and its a posteriori probability P[xilyjl for 1 =1, 2,
3, «v.y m . The optimal decision rule {s that xk is determined as
the source symbol sent if P[xklyj] > P[xilyj] for all 1 ¢ &k,

The assumption that the megsages to be sent ave chosen from a
finite set may not be as restrictive as it seems to be, (1) The
difference between very large and infinite becomes very small when
dealing with practical systems. For instance, our language uses
discrete symbols but it can be used to express nondiscrete feelings

and emotions to a fair degree of accuracy. (2) There is no real
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comuni:ation channel which can convey signads té® #h arbitrarv degree

of accuracy; Wwever, the quantization error caused by conve?ting 0
L ]

the conuinuqus sample space into discrete sample space can always be

made less than the channel errors if the quantization level is f:l.l'te°
o

enough. & °
L
fh order to make a quantitative analysis of communication sys-

)

tems we may define the information content of a message as the "uncer-
© [
tainty" of that message. The more likely the occurrence of a mespage,

the less information it carries. Therefore the irformation content
L

of a message is defined as®

. . ° °
Ix(xi) = - log P(xi)
which is also called the seM-information o‘f X= Xy o The average o
self-information over 11l source 'éymbols is called the entropy of
the source, a term borrowed from statistical “hermodymamics and used
in the same sense. 6.
Similarly the information provided about the event X = X, by
the occurrence of the event Y = yy may be defined as the mutual
information of the joint event X = Xy and Y = yj . This is a o
measure of how much the occurrence of a particular alternative, say ° o)
yj » in the Y ensemble tells us about the possibility of some alterna-

tive, say x, , in the X ensemble. Mutual information is denoted as

i

x, ly,)
»Y.) = log -LY . 1 .
) Py(x) o

) )

Teoy &4

*Log x is base 2, not base 10. .




The average mutual information over all input and output symbols is
denoted as

m n P, o(x |y )
1Y) = ] ] Py(xiyy) log i (b i L LA

As shown earlier in discussing the optimal receiver decision
rule, the effect of the transmission is to alter the probability of
each possible input from its a priori, 1i.e. P(xi), to its a posteri-
ori value, i.e. P[xi|yj] . The more the channel can improve the
a priori probability, the more capable the channel. If the channel is
noiseless, after transmission the a posteriori probabilities of all
messages would be deterministic. Obviously, maximizing the average
mutual information of a channel over all possible input assignments

can serve as a measure of the channel capacity, C.

Although I(X;Y) is a function of both the channel and the input
assignment, C is a function of only the channel. As a matter of fact,
for a symmetric, discrete memoryless channel--i.e., where the occur-
rence of each output symbol depends only on the corresponding input
symbol and does not depend on inputs and/or outputs in the past, and
the transition probabilities P(yjlxi) of the channel are symmetric--
the maximum occurs when the input symbols are equally probable. There-
fore just as entropy is a measure of the source demand, channel
capacity can be interpreted as the ability of the channel to handle
the demand.

1f the channel is noiseless, the channel capacity will always be
equal to the source entropy, even when the source rate reaches to in-

finity. If this were true, there would be no problems of communica-




tions, However, nature is not 80 benevolent; some disturbances are
bound to occur. This means the information handling capability is
limited for any physical channel; even the source messages are picked
from a finite set, i.e. each symbol carries only a finite amount of
information. The first resolution is to break the source symbols

into smaller units so that each new gsymbol will carry less information,

This is called source encoding. As mentioned earlier the most effic-

ient use of the channel is to make the a priori probabilities of the
source symbols equal. This can be taken care of during source en-
coding by using longer sequences to encode the less probable messages.
The message symbols may be broken down to any level necessary with

the smallest possible level being one bit; i.e. messages may be
encoded using only two symbols, "0" and "1". The level to which
message symbols should be broken depends on the channel quality, or
the a posteriori probabilities, or the channel capacity. If the chan-
nel signal to noise ratio is So strong that it allows the transmission
of 4 symbols without a wrong interpretation at the receiving end, then
4 symbols may be used to encode the message symbols. If the 4 symbols
are equally probable, then each symbol will carry I = ~log %-- log 4
= 2 bits of information. Therefore, the channel capacity is fully
used and reliable communication is achieved, However, 1f the channel
cannot distinguish 4 levels of signal yet 4 symbols are used to en-
code the message symbols, reliable communication cannot be achieved.
Up to this point it is clear that ag long as the channel ig not over

used, reliable communication is indeed achievable, This is the basis

of Shannon's [1948]! noisy-channel coding theorem.

R R i DRy T T



In practical communication systews, an attempt is made to send
signals at such low power levels that aven when the beat aignaling
method, such as antipodal signaling, ia uvsed, the receiver may still
make mistakes. This means the channel capacity per unit time is
below 1 bit per unit time. Therefore, even i1f the mesaage symbola
are broken into the loweat poasible unit, i.e, bita, messagen atill
may not be transmitted with confidence, Fortunately, Shannon's
theorem does not say that measages cannot be trangmitted at a rate
lover than 1 bit/unit time. To make the information content of each
bit luss than 1 bit, redundant bits which do not carrxy information
have to be added or one bit of information has to be distributed to
soveral bits. This {a where coding theory comes into play. This

gecond encoding before tranamission is called chamnel enceding to

distinguish it from the process called source oncoding. Since it ias
easier to dovelop codea for binary coding, normally source symbols are
encoded into binavy digits fivat and then chamel encoded; however,
this is not generally necessary. As a matter of fact, some q-ary B
(Roac-ChaudhutimNocqu¢nghem) coden, such aa the Reed-Solomon code,
have already been developed. Although the vast majority of the error-
correcting codea have been designed for additive noise, one-way,
memorylesn, symmetric chamnela having orthogonal jnput zignals, work
has been done for other types of chamnels, for {uatance, channela with
momory, chamnels with nonorthogonal {nput aignals, and asymmot ric
channela. For practical applications, chanvels with memory deawvrve

muial more attention and even move a0 in the future.



1.2 Compound Channels

During the discussion of the communication theory, the situation
was over simplified by use of a discrete memoryless channel as the
model. Although in nature there are channels which can be effective-
ly modeled as additive white Gaussian noise channels (AWGN), for
instance the space channels, the vast majority of the real channels
do have some degree of memory, i.e. each symbol in the output sequence
depends statistically both on the corresponding input and on past in-
puts and outputs. A physical channel of this nature is a channel
whose noises cluster into bursts, i.e. it will have numerous errors
in a short time span and be extremely clean at another time. We call
the noisy periods the bursts and the clean periods the guard space.
A strictly bursty channel, like a random error channel, is a highly

jdealized model; therefore, the so called compound channel--a channel

with both random errors and bursts--becomes a much more realistic
model for most physical communication channels. Unfortunately, due
to the complexity of its mathematical analysis, few results have been
achieved in this area. The existing coding schemes for compound
channels lean either to one side or the other or are severely limited
to some special situations. This problem is the major concern of the
rest of the work.

The reason we regard noise as the only factor which gives a chan-
nel memory is that the dependence of message symbols is removed after
gource encoding. In fact, messagc symbols are highly dependent in
most practical situations, for instance, the probability of an

English letter is statistically dependent on the occurrence of the




Preceding letters, words on the preceding words, sentences on the
preceding sentences seve However, it s Posaidble to map aAny megsage
sywhol set onto another set of two symbols, for instance "0" gnd "y,
such that the Prodabilities of these two aymbola are atatistically
independent. Thus the channel can be modeled as the binary symmetric
channel (BSC). Reasons for breaking Rassage aymbols to this funda-
Wental level are two-fold: (1) q-axy channelas perform worse than
binary channela in fidelity, although they can tranamit data (not
information) at a wuch higher rate; (2) for ease of analysis and
applicationg of error-correcting codes, q-ary codes are complicataed
to implement.

At thia point a biock diagram ®may ba constructed to summarisze

the discussion go far (Pigure 1.1,

| Source Suary Channel

om———

S L1 -] N X
° tncoder data Encoder

Ghannei}\l
Noiae

Source | Binary Chaunel _MJ
Destination Decudcr}h d;;“ "_M“Ducoder‘ ~——"

e L

Fig. 1.1 Block dlagram of communtcat {on svatem,

For an analog message source a guant{zer may be used to convert
the analog Wmessages into discrete symbola from a fingte aet, The
ensemble way be called A mource alphabet and each sample point a
letter. The next step {a to source encode these letters {nto binary

digits and then attach redundant bite, t.o, chamnel encoding, before



sending to the transmitter. The transmitter converts the binary
stream into suitable form for transmission over the physical channel;
this involves various signaling and digital modulation schemes. At
the receiving end the reverse procedure is applied; first, the
received waveforms are demodulated, then "channel decoded" to remove
errors, "source decoded" to convert the binary etream into source
letters and finally the received messages are dumped to data sink, or
the user. If analog messages are desired, a digital-to-analog con-
verter may be used. The quantization error can be made as small as
desired by decreasing the step size of the quantization level.
Normally, the trade-off depends upon cost consideration and the user's
needs. This is true for all other designing factors of a communica-

tion system, especially the application of error-correcting codes,

1.3 Historical Background of Coding Theory

Strictly speaking, coding theory has its own origin and was not
initiated by Shannon. Prior to the publication of Shannon's coding
theorem, Hamming had already developed the (7,4) code; as a matter of
fact, it was uged in the 1948 paper of Shannon! as an example.
Shortly thereafter, Golay? published his (23,12) code as well as the
rather straightforward generalization of Hamming's (7,4) code to all
of the other Hamming codes. Even though both were concerned with the
problem of reliable communication over noisy channels, the combinat-
orial, constructive, deterministic viewpoints of Hamming and the
probabilistic,statistical, existential viewpoints of Shannon were
quite different. However, Shannon's paper certainly added new

vitality and insight into the development of coding theory. Only




seven years later, Elias [1955)% invented convolutional codes,
obviously inspired by Shannon's coding theorem. Since then, coding
theory has developed in two different directions--the algebraic and
the probabilistic schools=-and the codes they developed are called
algebraic codes (block codes) and convolutional codes.

The existence of algebraic codes has its own right} these codes
are highly structured; their decodings are determiniatic; they can be
analyzed using abstract mathematics. As early as the 50's Muller
(1954]", Reed [1954]° and Slepian [1956]° indicated that a large
body of knowledge about finite mathematical structures, i.e. finite
rings, fields and algebrus, could be brought to bear on the coding
problem. Soon after, Prange [1957]7 proposed the binary cyclic codes
which were generated by the primitive polynomials over the Galois
§ield of 2 symbols. The big breakthrough in the development of
algebraic codes was the advent of the BCH codes (Hocquenghem [195918.
Bose and Chaudhuri [1960]9"0). the RS (Reed-Solomon [1960]1‘) codes
and the nonbinary BCH (Gorenstein and zierler [1961]!2) codes, which
are all generated by minimum polynomials of elements from the Galois
field GF(2™). The decoding algorithm of BCH codes was first proposed
by Peterson [1960]13, and then generalized and refined by Gorenstein
and Zierler, Chien, Berlekamp, Forney and Massey. The decoding of
BCH codes also requires computations which use Galois field arithmwe-
tic. BCH codes, in fact, are a asubclass of thecyélic codes which, in
turn are a subclass of the general linear block codes. Beaides
finite algebras, finite geometries were also applied to the coding

problem. Geometry codes were first studied by Rudolph l1964]1“ and

later extended and generalized by many other coding investigators.
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Both "finite projective geometry" and "Euclidean gecmetry" were
applied in the conatruction of these codes. The development of geowe-
try codea was motivated by a special decoding wethod for a subclass of
the block codea, including aome of the BCM codes, called majority
logic decodink. Majority logic decodable codes are orthogonalirable
codea. Some of the examplea are the (15,7) BCH code, maximum-length
codes, difference-aet codes, the (2'. 2® - m = 1) Hamming code, the
(2" = 1, m + 1) BCH codea, the (31,16) BCH code and the two typea of
geometry codes mentioned above, with the Reed-Nuller codea, as the
best known Buclidean geometry codea. Another important decoding
method for cyclic codes 1a the modified Meggitt decoder, called error—
trapping decoding, which can be applied to almost any cvelic coldes.
Although this decoding method enjoys a very aimple combinational
logic circuit, it losea error-correcting capability for long, high-
rate codea.

The algebraic codes, though they enjoy beautiful atructural
properties, do not approach an arbitrary amall errvor probabilicy
for asymptotically long block lengtha for vatex less than chaunel
capacity as promised by Shannon's coding theorem. While the alge-
braic codea are asymptotically weak, {t was known that the orruvr
probability of aequential dacodera, invented by Wozencraft and
Reiffen (1961]!% and subsequently refined by Fano [1963)'€ for the
decoding of convolutional codea, could be made to approach zero
rapidly as long as the tranamisaion rate was delow the computational
cutoff rate, R which, in general, {s a aubatantial fraction ot

comp

the channel capacity, However, this barrier was further removed by

the advent of the Viterbi algorithm [196?1.13 Both the sequential




1

algorithm and the Viterbi algorithm map the received sequence to the
most likely source sequence, i.e., maximum likelihood decoding, while
the latter is not bounded by Rbomp and thus is optimal in the
sense of Shannon's coding theorem., Since the number of comparisons
required per decoded bit for a Viterbi decoder increases exponetially
with constraint length k, it is impractical to attempt to achieve a
small probability of error merely by increasing the constraint
length. Therefore, it is imperative to find "good" convolution codes,
Costello [1974]18 defined "good" codes ag codes that have optimal
free distance, dfree’ a4 term he invented to represent the entire
distance between codewords from the encoder, As a result, he found
that the chance of an optimal dfree code being systematic is very
slim and nearly all the nonsystematic codes are better codes, Due to
the "non-algebraic" nature of their structures, convolutional codesg
are extremely difficult to analyze; consequently, very little ig
known about their structural properties. Thig is probably the main
drawback of this class of codes. Traditionally, the construction of
convolutional codes was done by trial and error and was limited to
Systematic codes., For nonsystematic codes, so far the only known way
to find good codes is to make an exhaustive search of all possible
codes, using an educated routine proposed by Bahl et. al,!9
Convolutional codes can be truncated into blocks of fixed length
and then decoded algebraically. Although the random-etror-correcting
capability would be reduced, algebraic decoders are very attractive
for burst-error-corrections. Unfortunately, with the exception of

the decoder proposed by Robert W, Boyd [1976]20. all the known




algebraic decoding algorithms are for systematic codes. Boyd's
decoder used the idea of multiple parity-check and wvas shown capable
of correcting short bursts of one block, Therefore, it is highly
deairable to develop further algedbraic decoding algorithme for non-
systematic convolutional codes to handle much longer bursts. This is
one of the major efforts of this dissertation. Clearly 1f such an
algebraic algorithm could be achieved, then with proper interfacing of
it with the Viterbi algorithm, a hybrid System could be developed
vith a performance equal to that of the Viterbi decoder for the random
errors and as powerful as the algebraic decoder itself for bursta.

For intermediate situationa, that is, in the compound channels, the
hybrid aystem should certainly outperform either of the decoders

alone,

1.4 Conclusion

A heuristic interpretation of Shannon's coding theorem vas
attempted and a historical background of the coding development was
briefly introduced. This chapter is not intended to be tutorial but
only serves to orient the readers to the discusaions in the follow-
ing chapters and make the discussions more comprehensive,

Coding for compound channels does have its "information theory"
foundation. Shannon's noiay-channel coding theorem is a very general
fundamental theorem. It applios both to memorylesa channels and to
channels with memory, and can be generalized to nondiscrete channels
as woll. Thore are also codea developed for strictly bursty channels
and for compound channels, howaver, moat of them are block codes and

the known convolutional codes for channels with memory are strictly
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for bursty channels; therefore, their random error correcting capa-
bilities are greatly sacrificed. Other techniques such as inter-
lacing and concatenation also have their shortcomings. Interlacing
achieves burst esror correction at the price of random error cor-
rection while concatenation involves using two codes, a process which,
of course, introduces rate loss. In any case, none of the existing
coding schemes hac” a performance approaching tﬁat of the optimal
Viterbi decoders for random errors and yet behaves as an optimal B2
bursts corrector when dealing with clustered errors. It is the purpose
of this work to attack this goal. As will be shown in the following
discussions, though there are problems not completely solved, some
very promising results have been produced and a coding scheme which
outperforms other known schemes in a large selection of practical
communication channels has been accomplished. It is felt that, at
least in principle, an optimal decoding algorithm for compound chan-
nels as defined above is achievable., Should such a scheme be realized,
coding applications would not be limited to a few special type of

channels. Its value and impact to practical communications could be

very significant.

€T T T



CHAPTER II
CONVOLUTIONAL CODES

2.1 The Codes
Convolutional (or recurrent) codes can be ;iﬁ;;ded either ag a

subclass of the linear block (or Parity check) cod@i Or as linear

recurring sequences. Taking the first viewpoint, convolutional

codes differ from block codes only in that the pPresent code block

length, Taking the gecond viewpoint, however, convolutional codes
are nothing more than the recurring sequences Produced by finite

state gsequential machines and can pe analyzed as such.

2.2 Algebrajic Encoding and Decoding

Encoding of block codes can most easily be comprehended ag 5
mapping process from 8 k-dimensional vector space to the subspace of
an n-dimensional space, where n » | , The optimal mapping rule ig
to let the minimum distance between any two members in the rarige
8pace, {.e. code space, be the maximum achievable, Members {n the
range space are called code words, and their distance ig called
Hamming distance. For binary codes, the n-space is over GF(2) and
the distance between Yandy, d(uv) , s defined as the number of

components in which they differ,

ks R



A shorthand notation for linear Vector space is the matrix
notation. We may let the k basis vectors (each is a n-tuple) be

the k rows of a k xn matrix G » called generator matrix.

& 81,1 81,2 <o+ B),q
c = B - |82 B2,2 <or B g
& 8,1 8k,2 e+ Bg,n
3 . 4

Then encoding becomes the postmultiplication of the message blocks
(k~-tuples) by the generator matrix so that all code vectors are
linear combinations of the basis vectors that spans the code space.
It is known that for any k x n matrix G with rank k , there
exists a (n-k) x n matrix B with rank (n-k) such that the row

space of G is the null space of H or vice versa, H 1s called

the parity check matrix.

f )

N L I LU PSPPI W
hn-k J hn-k. 1 hn-k.z te hn-u.n J
9 )

Decoding is simply the postmultiplication of the received code
word Y by H . Since every member in G, 1i.e. g, is orthogonal
to every member in H , if the received I 1is indeed a member of G,

the product would be zero, i.e. ri=gHe=0

» otherwise, the pro-

duct would be nonzero, 1.e. Il = (3+5_)H-;§+£§-3§9‘g.

tCEDING PAGE BLANK NOT FILMED.
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L
- This nonzero vector is called the syndrome vector because it pro-

vides some information about the error vector e.

In order to find H, k x (n-k) simultaneous equations, i.e,
By hJ =0 for I=1, ..., k, J= 1, ..., n-k , have to be solved.
This involves a trememdous amount of work for large k and n-k ,
and unfortunately this is exactly how a "good code" should be. How-

ever, the simplicity of GF(2) arithmetic proygdes an easy way out.

That is, let G contain an identity matrix:
o H 9
]
E P P . Pl,n—k
]
¢ P |4 | 4
v 2l 22t 2 gk . . .
[ Lo i or G (L :E]
S . . . Q
' * *
: P P P
g kl k2 """ Tk,n-k
h [} L
then we can form:
¢ E )
t
]
P11 P21 sz : %
[ ]
P P P !
12 22 k2 ¢ . o oTsy
H = ) ;In—k i or H= ([P hn-k]
. : :
, E
1,0~k P3.n-k Ik,ﬂ-k :
H 4

) L

By so doing, it can be easily seen tl‘

con - 1133_1-[%] = [ZBE+P1] « [E+P] = (0]

Code words produced by this type of generator matrix always contain

their message words explicitly and therefore are called systematic @
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codes. Since the addition.al constraint of containing an identity
sub-matrix in the generator matrix imposes a severe limitation on the
freedom of choosing good codes, systematic codes normally do not give
optimal Hamming distances. Unfortunately, most existing algebraic
decoding schemes are for this type of codes.

Physical realization of :rity check codes can be achieved with
a k~stage shift register connected to an n-stage shift register in
parallel through some "EXCLUSIVE OR" gates. The encoder input
sequence X 1is shifted into the k-stage shift register k bits at
a time and outputs through those "EXCLUSIVE OR" s, or Mod-2 adders,
and fed into the n-stage shift registers. The content of the n-
stage shift registers is the encoded block of the corresponding source
block., The connection vectors between the two shift registers are
equa.). exactly to the k rows of the generator matrix, or the k

n~tuples that form the basis of the code space.

1f gij = ], there is a
connection between xi
and Yy o otherwise there

is no connection.

[LLTHH NN

Vl YZ YS ¢ . L N N L A yn

Fig, 2.1 Parity check coder,

For a low rate (1/n) convolutional code th: only difference is

that instead of shifting the whole block of k bits in, only one bit
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is shifted in at each time unit. As a result, we may regard the
whole source sequence X as 8 gemi-infinite source block and the

generator matrix as a gemi-infinite matrix:

fl1 B o B o 0 -+ @1 where the 51'8 for
i=1,2...k are equiva-
fz 0 gl “.e % 0 * ®
G = - lent exactly to the
. ‘ gy's of the corres-
l : l o ponding block code.
L,

This formulation can be easily seen from Fig. 2.1, As X, moves
along the upper shift register, it will eventually occupy every stage
of the register and the same is true for all other source bits except
that their occupation of the same stage is delayed one time unit
guccessively. This is why we may visualize X, , a8 being multiplied
by By» By B3+ and the same is true for Xy» gy ovo xL except
that the multiplications are delayed one time unit, or n bits, for
each successive source bit. For convolutional codes, normally a com-
mutator is used to sample the outputs of the n mod-2 adders and then
to send the encoded sequence out for transmissiom.

This analogous formulation of the convolutional codes not only
reveals some of the algebraic properties it {pherits from the linear
block codes such as the property of linearity, but also provides a
decoding method similar to that of the block codes. That is, if the
code is systematic, a parity check matrix H_~ can easily be found;
therefore, the same decoding procedure as that of the block codes can

be applied.
The block code model of convolutional codes also reveals their

power and limitations. Due to thelr recurrent nature, convolutional
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codes allow the entire source sequence, say L bits, to be encoded
as one whole block with very simple ancoding circuitry or small
gtorage requirement. Superficially, it seems that the ultimate
random coding bound Ple] <« Z-Ntké B R“] could be achieved with
Ple)] + 0 , when N= (L+k)n—+o . However, the proof that this
bound is valid depends strongly on freedom to choose the block-coder
connection vectors arbitrarily. The additional constraint of being
recurrent exactly destroys such freedom and limits the choice of good
codes. Indeed, if L is increased while k , the encoder constraint
length, is held fixed, error probability canhot be expected to
approach gero as N » ®» ., On the other hand, it is reasonable to
anticipate a bound on error probability that decreases exponentially
with a linear increase in encoder's constraint length k . As will
be shown later, merely {ncreasing k will increase the decoding com~
plexity exponentially for the optimal algorithm. Even so there are
limitations; the convolutional codes are still, by far, the best known
codes in practical situations because of their semi-infinite block
length nature.

So far, we have only considerad the low rate 1/n vodus, For
the general ¢/n codes, all we have to do {8 to uze t seta of
the construction as shown in Fig. 2.1, and the carresponding outputs
of the ¢ k-stage ghift registers are mod-2 added together before

being sampled, Fig. 2.2,
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The general matrix-formulation:

r Y
2

PO S S Yo SO LY T S
2 2

82 &2 5P P o w0 0

8 & By . By 0 0 ...
Q) 1) o)) (1) (1)

0 31 kg 33 soe &_1 & 0 “on
(2) (2) (2) (2) (2)

0 R 5 %y ‘e Bl B 0 ..

2 R 1) |1 L
0 gi) gg) 3:(‘) (_; (£) o ...
1 1 1
S T N P S
2
0 0 gi” 3.§2) see 0 (_)1 (2)
(2) (1) Q) (®)
0 0 & £ oo 0 B & o
¥
N " [,

In general the parity check matrix R is extremely difficult to
find, except when the codes generated are systematic. For syatematic

codues the connection vectora are auch that

(0

“1.1 - ] when § = ¢

ggg) - 0 whon J ¥ ¢ all for J < k
vy

By 0 when { ¥ 1
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Therefore, all that have to be specified are the “13.' for J > k.

A more comprehansive set of notations can be borrowed from Shu

Lin's book.?! Let

p

30(1‘1)» 80(102)0 .

80(201)3 80(2.2)| ’

ép

L] .
L] *
L] .

80(&‘1)u 30(1.2). .

\

1

. go(l,“)

.e go(l.n)

A\l
.
.

. ao(t.n)

)
1
LAY

LYY

3
.

(2)
LAY

#

v

= (L By

p

81(111)) 31(1»2)' .

g, (1), 8 @D, .
‘ - -

. .
. .

Sl(inl); 8‘(1.2)‘ .

’
Sr(l’l) gr(lun)

tr(201) Sr(ioz)

Ek‘l - SF - [ .

Lar(t.l) sr(t.i
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.e g‘(I.n)

.o al(i,n)

o

(N

N gr(l.n)

(I nr(z D“)

.
.
.

e gr\t,n)

\

)
B2

(2)
82

L
L]

L
‘ga)

-
PRV

o

L

b 85

3o ™~ e T

5 e
T

Q)

L )

L

[ B}

(x)1
LIYN
(2)
810

A\ ]
[

(2)
Sin |

W]

&0




where

1 1
@ o
(3) Pr

4
P -
—y

L

is a 2 x L identity matrix

is a & x & zero matrix

i3 a & x (n-2) matrix of the following form

s;(l.l).

8,.(2,1),

8.(2,1),

]
8:(1.2).

8.(2,2)

L]
L]
(3

8,.(%,2),

8;(19“'1)

8;(2u“‘1)

Bé(l-n'l)

L

23

With such notations the generator matrix of systematic (n,%) convo-

lutional codes is of the following form:

Aa

y

I P O
- 70

9 I B
g o0 1

Tt er et s

e
-}
-]

'I‘,'O te ettt

P _ gexros <+ =

L

P2 & By

T s s IR NN NN NN NN NN NE NN NEEEXR]

EOYOS

and the parity check matrix

ﬂm is:

I

zeros > =«

zeXros >




( )
T
B L - zeros v w
T
Y Q ?_E 1] zeros —
T
ga 0 g_'f ("] _gg 1 —» zeros y ®
T T T T
gk-l 9 P 0 B, 0 By L — zeros * ©
LN -‘3-:-19-3:-29— 3:93?°?££*°"
zeros + g:_l [ +
+ geros + +
¥ + zeros zeros
+ + + ¥
L [ ] [ ] L.} o

where I 1is an (n - ) x (n - &) didentity matrix and O , a0

(n-2) x (n - ¢) zero matrix. With both G and H defined,

encoding and decoding can be performed much as they are in the block
codes; the size of these matrices being gemi-infinite are not as
formidable as they seem. Due to the recurrent nature of these
matrices, the only information needed is the l’r's. They may be

grouped together as the so called sub-generator:

g(1,3) = (8p(1,3)» g (hhd) oo gk_l(i.j)) where k-1 =T

fOf 1‘1. 2' see £ Y j'l,?., 2o I\'l



Algebraic decoding of convolutional codes has the following
advantages:

(1) 1t involves only multiplications of the received sequence
and the parity check matrix, therefore, it enjoys the operational
speed advantage and simple circuitry.

(2) It does not propagate error effects to more than (k-1)
time units.

(3) 1Its burst correcting capability can be made better than
other decoding algorithms.

However, since the decoding is performed a digits at 8 time,
it cannot fully use the dfree as the probabilistic algoritha, conse=
quently, its random error correcting ability is greatly impaired.

Just as with block codes, the error correcting capability for
convolutional codes also depends on the minimum distance between
codewords. Due to the gemi-infinite nature of these codes, the
entire distance between codewords available from the encoder is
defined as free distance, dfree‘ to distinguish it from the term

minimum distances, ¢ which is used in the same sense except that

min’
it is a measure of the distance when algebrais decoding is applied.
The d is the ugeful d when the received gequence is trun-
nin free
cated, therefore, dmin < dfree' This i8 exactly why algebraic
decoders are inferior to probabllistic decoders in random error cor-
rections. Another jmportant congideration is that, just as with
block codes, syacematic encoding does not, in 3enetal. give optlmal
dftee convolutional codes. This fact was first discovered by
Costello [1976].\0 He has been able to obtain pounds on dfrea per
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transmitted bit

dfree
n

a
Fig. 2.3 1llustrates four of the bounds which he obtained, It ig

for several types of convolutional codes.

clear that in almost any case a nonsystematic convolutional code

will be a more powerful error corrector than a systematic code,

1.0 R
.81 i
nonsystematic ]

.64 ) te)

rothy
AL Pl}
R e Qo
4l 0(\)} Yoo%
.2 b
0 free
Na

Fig 2.3 Free distance bounds, !8

As will be discussed later, the major part of this work is to
develop an algorithm which allows a convolutional code to be decoded
by two decoders, an algebraic decoder and a probabilistic decoder,
interfaced together. In order to achieve maximﬁm performance, an
algebraic decoder that allows the decoding of nonsystematic codes ig
deemed necegsary, for otherwige its random error correcting capa-
bility will be severly limited. Unfortunately, no work has been done
in the development of algebraic decoding for nonsystematic codes,

except that Robert W. Boyd?® proposed an algorithm which is capable
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of correcting short bursts of one block long, i.e., n bits. In
Chapter IV, this algorithm will be modified and extended to exploit
fully the error correcting capability of the codes used. A good code
should be able to behave like an optimal B2 burst corrector, and it
will be shown that this is indeed so for the example (2,1), k = 7

code,

2.3 Sequential Encoding and Probabilistic Decoding

Convolutional encoders can also be modeled as finite state
machines and realized as such. This fact can easily be seen from
Fig. 2.4. As mentioned previously, for a convolutional code, the
code block depends not only upon the present input bit but also the
previous k-1 bits. Since there are Zk"1 possible patterns for the
previous k-1 bit streams, we may regard a constraint k encoder as
having 2“_1 states. The output of the encoder depends on both the
present input bit and the present state of the machine, i.e. the
encoder. In fact, convolutional codes are mainly applications of
linear sequential circuits. Other applications of sequential cir-
cuits are much simpler. For instance, we may want to realize a
sequential machine that gives us a prescribed output sequence for a
certain input history; output sequences of other input paths are
ignored as long as they do not interfere in the generation of the
prescribed sequence. However, for the encoding of convolutional
codes, we must consider all the possible input sequences, and the
function of the machine is to map the input sequences into the out-
put sequences in such a way that the minimum distance between any two

output sequences be the maximum possible, a formidable task.
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Therefore, the present methods of finding "good codes" or “good
machines" is limited to being empirical and analytical., No synthesis
procedure has been dgveloped yet. This is the major difference
between the application of linear sequential circuits to convolu-
tional codes and to other purposes. Until more is known about the
characteristics of the finite state machines and the structure proper-
ties of their output sequences, there probably will not be an impor-
tant breakthrough.

The decoding of convolutional codes amounts to ncthing more than
the recovery of the input sequence from the knowledge of the received
sequence. The received sequence is the output sequence contaminated
by noises during transmissicn or by erasures during storage. Like
block codes, the optimal decoding rule is to map the received se-
quence to the most likely source sequence. However, because the
received sequence is semi-infinitly long, it is not practical to
wait until the entire sequence is received before decoding. If this
were done, the amount of storage and number of computations required
would be beyond our imagination. Fortunately, convolutional codes
are not randomly chosen block codes with arbitrary block length;
they are recurrent codes. The complexity of convolutional codes
depend on their constraint length k . For an % code, the encoder
has Zk-l states, and the total possible output patterns are Zk for
binary inputs. Thus, intuition tells us that the additional error
probability caused by considering truncated received sequences for
MLD (maximum likelihood decoding) should be decreasing exponentially
with increasing truncation length--~this is exactly so. Fomey22

used random coding arguments to show that on the average, a
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truncation length of about 5(k-1) bits will result in an additional
error probability that is comparable to the MLD error probability.
Hemmati and Costello??d derived an upper bound and a formula to calcu-
late the bit error probability due to truncation of the received
sequence for MLD. They found that, at least for low values of P,
if the received stquence is truncated to length T such that dT >
dfree' the truncation error probability will be insignificant com-
pared to the MLD error probability, where d,r is the minimum distance
between the correct sequence and all other possible sequences at
length T. Normally, T is only 8 few times the encoder's con-
straint length k.

The sequential or finite state machine formulation of the convo~

lutional codes can best be illustrated with an example., Suppose 8

rate % code is to be 1mp1emented with the circuit ghown in Fig. 2.4,

|

T

Fig. 2.4 A particular 2,1, k=3 convolutional encoder.
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3 thetefore. a state

This 1g obviously 4 sequentia] circufe

diagras can be developed to depict the enco

ding action,
on the right

The diagranm
» Called the trellig diagram,

is €ssentially the same
thing ag the state diagram,

Fig. 2.5,

0/00 o

€an see that the convolutiona] encoders gre hot only 8€quential .
machines, but very special types L sequential machineg, Therefore %
the study of convolutiona) codes {g restricted to che study of 4 &)
subclass of the 8equentia]) machineg
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convolutional encoders can always be realized with shift regigters of
finite stages and some "EXCLUSIVE OR's",

As mentioned earlier, the optimal decoding rule ig to map the
received sequence to the most likely source sequence, i.e. maximum
likelihood decoding. This ig the basic Principle underlying all
decoding methods; it applies to block codes as well as convolutional
codes. For linear block codes, MLD simplifies to the mapping of the
received vector to the code vector which differs from it in the least

number of places among all other vectors in the code space. Though

numbey of bits, {i.e. algebraic decoding, their semi-infinite block
length advantage would be greatly sacrificed, On the other hand, 1f
the entire length of the received sequence be considered before a
decision ig made, the complexity of decoder and time consumed would
be astronomically high.
A radical innovation, which alleviated this problem was the

Proposal of the algorithm called "sequential decoding” by Wozencraft
[1957].%% The algorithm was subsequently refined by Reiffen!S apng

Fano, 16

the tree diagram which ig simply another form of the trellis diagram
or the state diagram. The tree Structure can be extended indefi-

nitely to the right; however, it repeats itself after k levels duye
to the recurrent nature of the code. There are 22 branches stemming

from each mode for an (n,2) code,

INAL PAGE b

ORI OOR QU ALITY
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Fig. 2.6 Tree diagram,

With the ai4 of the tree diagram, encoding {g simply a tracing
of the tree brancheg based upon the source 8equence ang decoding
becomes 4 reverged Procedure of tetracing the tree brancheg according
to the information contained in the received sequence. Sipce there
are only 2Q branches stemming from cach node, only 21 altérnationa
have to pe dec{ded upon at each decoding operation, This s equiva-

lent to truncating the received Sequence {nto the shortest blocks

rule; therefore, a tremendousg amount of work can be saved, Intuition
tells ug 1mmediate1y that the overall decoding error would be far
from optimal due ¢, the truncation of the received Sequence to gych
short blocks. The temedy {5 tq allow the decoder to look back as
deeply ag circumstanceg require to tetrace other Paths {f the dccum-
mulated errors committed hv the Present path Violated 4 ceértain

running threshold, During the searchback pertiod, Incoming data mugg
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be temporarily held in a buffer storage. If the chamel is very
noiay for a certain period of time and the searchback is extenaive, a
tremoudous amount of buffer capacity will be requived. Unless the
buffer capacity is wade infinite, there is always a finite posaibility
of buffer overflow owing to the fact that theve is always a finite
possibility of haviung extenaive search to the point where overflow
occurs. In order to avoid buffer overflow fox a certain fixed buffer
sige, the channel information rate wmust be limited to a figure much
lower than the capacity of the channel; this figure is terwed compu-
tational cutof{ rate Rcomp . Although the sequential decoder waps the
received soquence to the code space according to the MLD rule, the
additional erver caused by buffer overtlow or alternatively, the
limiting of channel rate to Rcomp venders it a suboptimal decoder.

For those who are familiar with optimal control theory, sequential
decoding can be viewed as a discrete 1inear tracking problem and the
algorithm ts analogous to the wmethod of dynamic propramming. The
ohjective ts to minfmize the Hamming distance between the code se~
quence and the recelved sequence,  The admiaxible atate trajectoriea
couniat of the entive code space and the contrel policy {a the decoded
MERMARG ROQUONLCY,

Slnve searchbacks tmpoxe a mevere limitation on the performance
of the sequential algorithm, a novel approach fz to keep a vunning
geore or branch metrvic on each of the 2ku‘ mont likely paths leading
to each state. The melection of the dentred path {a postponed until
aome time later to avold a hasty deciaion which wight be vegpretted

later. This i2 the basic tdea of the optimal MDD algorithn Jdeveloped

T ™Y
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by viterbi.25 If all the possible paths have to be saved and
decision making has to be postponed {ndefinitely, this algorithm would
have no advantage at all, because the entire semi-infinite sequence
would be treated as one whole block. However, the objective is to
find the path that correlates best with the received sequence. It
can be shown2® that among the 21 paths entering each state at each
level, only one path, i{.e. the path that correlates best with the
received sequence up to that stage, can be a possible candidate for
the overall maximum likelihood path; the rest of the paths can be
discarded, This will leave only 2k paths, called the gsurvivor paths,
to be considered as decoding progresses along the trellis diagram.
Furthermore, as mentioned earlier in this section, if a decision is
made after 5(k-1) stages have progressed, the additional error
probability due to truncation will be comparable to the MLD error
probability and even less significant if the received sequence is
truncated to length T so that dT > dfree' Since the Viterbi
algorithm does not involve searchbacks, buffer overflows do not occur
and full channel capacity can be utilized. For these reasons, this
algorithm is regarded as having truly maximum likelihood and as being
optimal for the decoding of convolutional codes., The price paid for
this optimality is the complexity uf the hardwrce which grows expo-
nentially with constraint length or linearly with the number of
{nternal states. However, {f the constraint length is limited tc less
than 10 stages, the hardware complexity will not grow beyond realiza-
bility. An additional advantage is that Viterbi decoding ls performed

in real time, on a bit-by-bit basis; therefore, an inp:.i buffer is not
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required. This is the algorithm intended to be used as part of the
hybrid syatem and receives congiderable attention in the next chapter

where fts burst error correcting capability will be discussed in
detail,

Details of the two probabilistic decoding algorithms discussed

above can be found from references 15, 16, 25, 24, 27 28, and 29.

2.4 Special Codes--Codes for Burst Errors

So far the discussions about error-correcting capabilities of
convolutional codes have been restricted to their applications to
DMCs, i.e. channels containing random errors only. The free distance
proposed by Costello!® as a measure of the random-error-correcting
capability of a code does not apply directly to its burst-error-
correcting capability. Codes suitable for some special burst error
patterns are designed at the sacrifice of their random-error-
correcting capabilities and are thus not Renerally optimal,

Burst-error-correcting convolutional codes are divided into types

Bl and B2, The definitions can be found in Shu-Lin's An Introduction

to Error—correctig; Codes.21 Chapter 12,

All the burst-error-correcting codes work well only when the
channel {s segmented with error-free intervals which are called guard
spaces. This is why their applications are severly limited, A type
Bl code {s capable of corrvecting a burst of length L, {.e. L burgt-

error correcting code, provided that an error-free guard space of

nk-1 digits is given. A type B2 code is capable of correcting a

burat of length = An y fee. L phased-burst-error-correcting code,

provided that a clean guard space of n(k-1) digits {s given. Since a

gy,
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L' = (A=1)n+1 . As L becomes large (for fixed n) the error-cor-
recting capability between the two becomes very close. Since the

B2 codes, due to the additional restriction, are easier to analyze,
and their Performances are not very much different from the Bl codes,
most previous studies were conducted in thig area. Lower bounds on
the length of the guard space required for fixed [ were established
by Wyner and Ash, 30 This bound stateg that for a type B2 (n,k)

code, the constraint length k must satisfy the following inequality:

n+ 2

k > — A+
or equivalently,
nk-1) > BEL

where n(k-1) is the guard Space and L = )\n , the phased-burst-error

+
correcting capability Therefore, (guard Space required) > ntt x

-n-=-2
(burst length). An optimal B2 code ig 4 code that satigfieg the above
equation with equality, It can be seen that according to the Wyner-
Ash bound, the ratio of guard space length to maximum burst length is

exactly 5¥t~% for an optimal B? burst-error-correcting convolutional

n-u
code,
The first burst-error correcting convolutional code was intro-

duced by Hagelbarger [1959]3’;1t was later refined by Peterson [1961]?2

Iwadare [19¢8)33 discovered two clasges of type Bl codes which require
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much shorter guard space than the corresponding Hagelbarger codes.
Type B2 codes were first studied by Wyner and Ash [1963]?0 They also
found sowe optimal B2 codes; these are (n,n-1) codes for n = 2, 3,
and 4, Subsequently, Berlekamp [1964]3“ formulated a general pro-
cedure to construct optimal B2 (n,n-1) codes for any n ., Although
the burst-error-correcting capabilities of these optimal B2 codes are
attractive, it is important to realige that these are codes specially
designed for burst error correction; in general their random-error-
correcting capabilities are greatly reduced.

Codes for both burst and raundom errors do exist; for instance,
the diffuse code and the Gallager's adaptive decoding scheme; however,
the former {s a systematic orthogonalizable code and the latter is
applicable only to systematic orthogonalizable codes. None of themn
is optimal in burst and/or random error correction,

Special techniques such as interlacing or concatenation are not
desirable because they either achieve a burst-error-correcting capa-
bility at the sacrifice of random-error-capability or introduce rate
loss by using two codes, one inside the other. Furthermore, it ig
impossible to make their performances approach optimum for bott

random and burst errors.

2.5 Conclusion

Discussions in this chapter can be summarised as follows:

(1) In general, convolutjonal codes are better randomerror
correctors than block codea.

(2) The best decoding algorithm for convolutional codes is the

optimal maximum likelihood Viterbi decoder,
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(3) The performance of the Viterbi decoder for channels with
burst errors or with both random and burst errors is largely unknown.
An original study is deemed necegsary and will be the main efforts of
the next chapter.

(4) Good convolutional codes are those with large free distance;
therefore, they are not likely to be systematic codes.

(5) Algebraic decoders truncate the received sequences into
short blocks; thus much of the random error correcting capabilities
of the convolutional codes are not used. However, they provide
better control over burst errors. Since all the known algebraic
decoding algorithms are designed for systematic codes, an algebraic
decoder for nonsystematic codes must be developed. This will be the
topic of Chapter IV.

(6) Special codes designed for strictly burst channels do
exist; however, they are not suitable for random errors.

(7) Special techniques for correcting combinations of burst
errors and random errors are also available, but they either intro-
duce rate loss--for instance, concatenation--or reduce the random
error capabilities of the codes, for instance interlacing. There-

fore, these techniques will be excluded from further consideration

other than for possible additional protection over the hybrid systems.




CHAPTER IIT

PERFORMANCE OF THE VITERBI DECODING
ALGORITHM FOR COMPOUND CHANNELS

3.1 Introduction

As mentioned in the last chapter, the random—error-correcting
capability of the Viterbi decoding algorithm is largely unknown,
Existing work in this area is quite limited. Viterbi decoders are
generally very good for random error channels but are not ag efficient
for burst errors;335 guch error patterns result in bursts of errors

from the Viterbi decoder of approximately 10 to 20 bits, depending on

the decoder constraint length and the encoder used, 36

More recent studies have reported the performance through analyt-

ical statements and computer simulations of short constraint length
convolutional codes with binary phase shift keying (BPSK) modulation
and Viterbi decoding for comnunication channels with classical Rician
Fading. 36 Analytical predictions of performance of convolutiongl
codes have also been derived for bursty channels;37 however, inter-
leaving was used prior to Viterbi decoding. This is more like a study
of the potential burst-correcting capability of the codes rather than
the performance of the decoding algorithm. Interleaving tends to
improve the burst-correcting capability at the sacrifice of the
random-error-correcting capability for a particular code. As
mentioned earlier, physical channels in nature do consist of both

types of errors. It would make more sense if methods of evaluating

o od i
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the performance of the Viterbi decoders over channels with varioug
degree of memory could be constructed,

Normally, compound channels are difficult to analyze although
performance may be characterized through statistical simulation of
various encoders and decoders for compound channels with various
ratios of burst to random error statistics.

The following sections present the method and the results of a
computer simulation investigation of the performance of Viterbi

decoders when receiving data corrupted with burst and random errors

on the same channel, the compound channel.

3.2 Method of Study and Some Preliminary Findings

T T P i pm, ap o

Five encoders were modeled (see Table 3.1) ranging from a con-

straint length of 3 to 7 and free distance of 5 to 10. Two decoder

Pt e

sy

constraint lengths were utilized and overall channel statistics of

10-3, 10-2, 10-1 bit error rates were simulated. The burst errors

P S R

=

T
% T

were inserted at random within the random error stream and burst

pa

lengths of 2, 3, 4, and 5 or more bits were randomly distributed

T ot P

through the data with appropriately varying statistics.

—rm—

A comprehensive set of computer simulations for Viterbi deco-

ders with random and bursty error inputs was generated., The complex

L e o A e B

channels were simulated using a random number generator as were the

PR

source sequences. Although convolutional codes are linear group
codes and their properties will be invariant if the all zero
sequence is used, for asthetics and for detecting any nonlineari-
ties which might occur in the hybrid decoding algorithm, the uge of

randomly generated source sequences seems more preferable,
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TABLE 3.1

HOOKUP VECTOR

00007

00005

00017

00015

00020

00032

00075

00053

00171

00133
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The computer simulation of the Viterbi decoding algorithm can
best be explained with an example, using hand calculations. In the
following illustrations, the rate %-. K = 3 code discussed in
Sec. 2.3 will be considered again. This encoder is rather simple in
form and short in constraint length (hence limited in error correction
capability) but allows a demonstration of the type of error output
sequences which occur from decoders using the Viterbi decoding
algorithm. The encoder is a constraint length 3, rate *% encoder
shown in Fig. 3.1. A typical input data sequence and coded output
sequence is shown in Fig. 3.2. This code has a dfree of 538 and is

typically capable of correcting two bit error patterns in a received

sequence 6 bits long.

3.2,1 Decoder Operation:

kY

A periodic section of the trellis diagram for this code is shown

k-1 31 2. 4) , these

in Fig. 3.3. This code has 4 states (2 2
states with the corresponding outputs and transactions constitute
the periodic section of the trellis diagram.

On a BSC, errors which transform a channel code symbol 0 to 1 or
1 to 0 are assumed to occur independently from gymbol to symbol with
probability p., If all input (message) sequences are equally likely,
the decoder which minimizes the overall error probability for any
code, block or convolutional, {8 one which examines the error-
corrupted received sequence y,, Y,, ... yj ++. and chooses the data
sequence corresponding to the transmitted code sequence X,, X,,...

X which {s closest to the received sequence in the sense of

j...
Hamming distance; that i{s, the transmitted sequence which differs
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Data Sequence Input X xz, x3, o

Data Sequence Output y11y21' ylzyzz.y13y23....

Where y11 = x1 + xi—l +Yi_2

= x, + x

Y21 i 1-2

Figure 3.1 Convolutional encoder (k=3)

Input Data Sequence 0o 0101101010011 0 1...

Coded Output Sequence 00 00 11 10 00 Ol O1 00 10 00 10 11 11 01 01 00 ...

Figure 3.2 Imput and output data sequences
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from the received sequence ia the minimum number of symbols.

Referring first to the tree diagram of the coder, this implies
that the path in the tree whose code sequence diffe.s is the minimun
number of symbols from the recaived seyuence should be chosen.
However, recognizing that the transmitted code branches merge con-
{inually, the choice may be equally 1imited to the possible paths
in the trellis diagram. Examination of this dlagram indicates that
it is unnecessary to consider the entire received sequence (which
conceivably could be thousands oY millions of symbols in length) at
the same time, deciding upon the most likely (minimum distance) trans-—
mitted sequenceé. In particular, immediately after the third branch,
which of the two paths leading toO node or state a is more likely to
have been sent can be determined. For example, if 010001 is received,
it is clear that this is at distance 2 from 000000 while it is at
distance 3 from 1110113 consequently, the lower path into node a may
be excluded. For no matter what the subsequent received symbols will‘
be, they will affect the distances only over subsequent branches after
these two paths have merged and in exactly the same way. The same
can be said for pairs of paths merging at the other three nodes after
the third branch. The minimum distance path of the two paths merging
at a given node »#111 be referred to as the "survivor'. Thus it is
necessary only to remember which was the minimum distance path from
the received sequence (or gurvivor) at each node, as well as the value
of that minimum distance. This is necessary pecause at the next node
level, the two pbranches merging at each node level must be compared

to determine which were guvvivors at the previous level for different
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nodes. For example, the comparison at node a after the fourth branch
is between the survivors of comparisons at nodes a and ¢ after the
third branch. Thus, i{f the received sequence over the first four
branches is 01000111, the survivor at tue third node level for node a
is 000000 with distance 2 and at node ¢ it is 110101 also with die-
tance 2. In going from the third node level to the fourth, the
received sequence agrees precisely with the survivor from ¢ but has
distance 2 from the survivor from a. Hence the surviovor at node a
~f the fourth level is the data sequence 1100 which produced the code
sequence 11010111 which is at (minimum) distance 2 from the received
sequence.

In this way, it is possible to proceed through the received
sequence and at each step for each state preserve one surviving path
and its distance from the received sequence, which is more generally
called metric. The only difficulty which may arise is the possibility
that in a given comparison between merging paths, the distances or
metrics may be identical, Then one may simply flip a coin as is done
for block codewords at equal distances from the received sequence,

For even if both of the equally valid contenders are perserved,
further received symbols would affect both metrics in exactly the same
way and thus not further {nfluence the choice,

The internal operations of the decoder have been shown in the
following examples. At the bottom of each of the examples the equiva-
lent input and output error sequenves have been shown. The arrows
indicate the output digit the decoder will select for a buffer memory

of 9 digits. Fig. 3.4 illustrates the make up of the block of
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operations and memories used in each decision step of the decoder.
For the k = 3 rate = 1/2 encoder there are 4 survivor paths
and 4 metrics to remember. For the k = 7 rate = 1/2 encoder there
are 64 survivor paths and 64 metrics to remewber. Thus, simulation
of the k = 7 rate = 1/2 encoder will be considerably more involved

than it would be for a k = 3 rate = 1/2 encoder.

3.2,2 Preliminary Findings

Immediate results from this short constraint length code can be

summarized as follows:

1. Viterbi decoder constraint lengths DCL (decoder buffer
memory storage capability in bits) is an important parame-
ter relating to performance. In general, the ratio of
error clusters to decoder constraint length is directly
proportional to unsatisfactory performance. In the example
presented in Section 3.2.1, it is clearly evident that
although a buffer memory of 6 performs well for random
errors, where it is very unlikely for 2 or more errors to
occur within a space of a few bits of data, it produces
a very poor performance for bursaty error situations such
as 2, 3, 4, or 5 errors confined within a short span of
data. In fact, Increasing the DCL to 9 results in much
better performance, This is to be expected, but the ques-
tions are what is the relationship for longer constraint
length codes and wheve is the point of limiting returns?

2, Short apans of errors often produce more errors than a
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of received signals; of course, during this time the output

is highly unreliable data.

3.3 Results and Findings of Computer Simulations

Computer simulations of Viterbi decoders exhibiting input data
with both random and bursty error patterns are summarized in this
section., The data runs were made for three Nominal Error Probabili-
ties, 10%, 1%, 0.1%, with the burst error percentages composing half
the total percentage. Bursts were spread over various ranges with
lengths 1, 2,"3, 4, and 5 or more with varying percentages of the
total error percentage,

Fig, 3.9 shows a typical print out for a data run with the
statistics that were compiled.

Data runs were made for both 2000 word strings and 200 word
strings to determine if significant differences might be encountered,
thereby implying that a 2000 word string might not be long enough.
Two decoder constraint lengths were used to ascertain the effects of
this parameter and five encoder constraint lengths were used to
determine whether longer encoders achieved better performance than
short encoders. The channel error statistics used were rather noisy,
varying from error rates of 10_1 to 10-'3 bit error rates. These
rates allowed shorter computer runs while the performance chacter-
istics were still indicated.

Table 3.1 {llustrates the type of decoders modeled with the type
E being comparable to the Viterbi decoder being used with the Space

Shuttle Communication System,3°



Figure 3.9 Typical printout of the simulation

program - Viterbi decoder
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Table 3.2 lists the parameters varied for each type of decoder
and Table 3.3 lists the param: “ers tabulated for each data run.

Some parameters have been summarized by tables to facilitate
discussion and to illustrate the performance of these decoders. In
Table 3.4 the overall probability of error with coding 18 compared to
the overall probability of error without coding by ratio. These num-
bers should be interpreted in the following manner. If the coding has
helped the system, then the output error probability should lower
the error probability without coding. Thus, in the extremes the ideal
ratio is 0.0 and the worst ratio approaches = with a ratio of 1.0
indicating that no help is indicated by coding.

The statistics in Table 3.4 can be somewhat misleading if one
does not realize that these are overall statistics which do not reflect
the reduction of the number of errors in words (if any). In Table 3.5
a comparison of the reduction in the number of errors in words is
presented,

A feeling for the benefits obtained may be gained if one realizes
that the output of the Viterbi decoder may be corrected further. For
instance, the Space Shuttle Digital Data Link will further decode some
special data words, the synch words.39 These words, being encoded in
a triple error correcting code word, are capable of correcting all
errors in a word of 3 bits eor less. Thus, 1t should be determined
whether the Viterbi decoder, even in the face of bursty errors, has
reduced significantly the errors per word of 4 or more. Data in

Table 3.5 indicate that for channels of 10-2 BER or less there is a

good reduction of these words of & errors or more. The significance
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of this lies 1n{tﬁe synch-lock system of a communication system. The
communication a;;lem will lose lock and enter a probation or a search
mode if more than 3 errors occur in a synch word. If the search

mode is entered, data 1s lost by the frame and this results in con-
siderable data loss.

The Viterbi decoder is rather unpredictable with respect to
decoder size versus burst error performance as may be seen from
Table 3.5 for the cases of decoders C, D, and E for 0.1% NEP. These
decoders are longer than types A and B and in theory should do better
in that they are capable of correcting more errors per word than A or
B. However, when these decoders make migtakes, they take longer to
re-establish the correct bath.

The purpose of a hybrid decoding system is to add a "quick look"
decoder which can spot burst errors and the error free space which
comes after. The output of the "quick look" decoder may be used
during the error free space to reset the Viterbi to a best guess path
which should help to alleviate the disadvantage of the longer coders.

Table 3.6 presents a summary of the error statistics for the
2000 word simulation for nominal channel bit error rates of 10 2 and
1073, The actual channel error rates were 1.5289 x 10 2 BER and
.1078 x 1072 BER. The decoded data output bit error rates are pre~
sented as well as the probability of x errors per word occurring for
x=0,1, 2, 3, 4, and 5 or more errors per word,

Conclusions to be drawn from these simulation runs are summa-

rized below,

1. The 2000 word simulations for BER of 10~ and 10~ seem
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to be long enough data runs for accurate results, The
BER of 10-3 seems to be long enough with perhaps one or
two cases that would be more reliable with longer data
runs.

The longer DCL decoders for the type C, D and E decoders
are necessary for good performance by the decoders. This
is reasonable when one considers a normal DCL of 4 to 5
times the encoder constraint length.

Error rate improvements of roughly an order of magnitude
were typical for the 10-3 BER longer DCL decoders.

The probability of words occurring in the decoded data
stream that contained more than 3 errors (hence rendering
a synch word unusable if the errors occurred in a synch
word) were ri:iuced significantly for the type E decoder
using a DCL of 35 and BER of 103, (Probability of four
errors or more before decoding was .6000% versus .050% after
decoding.)

The probability of words occurring in the decoded data
stream that contained more than 2 errors (hence rendering
a synch word incorrect and creating a possible loss of a
frame of data due to false synch loss) was reduced from
1.000 % to .050% after decoding for the type E. DCL of

35 decoder.

Longer data runs are necessary for the type E decoder with

DCL of 35 to ascertain that the results are not unique to

this run.
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For the same overall channel error rate, the relative
order of magnitude of degradation varies from 10 to 100
when the channel contains both random and burst errors

as compared to the random only situatiom, Fig. 3.10-3.14.

T TRy, Yy e |
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TABLE 3.2

PARAMETERS VARIED FOR EACH TYPE DECODER

No. of Source Words: 2000, 200

Total Nominal Error Probability

in Simulation: 10%, 1%, 0.1%

Decoder Constraint Length (DCL):

TYPE DECODER DCL VARIATIONS
A 9, 15
B 12, 20
c 15, 25
D 18, 30
E 21, 35




A.

B.

TABLE 3.3

PARAMETERS TABULATED FOR EACH TYPE DECODER

krror Statistics Actually Occurring in Error Vector During
Simulation

1. Number of Errors in a row: 1, 2, 3, 4, 5 or more
2. Error Probability in % in terms of frequency of occurrence
3. Error Probability in % in terms of total number of bits

4. Number of times a particular number of errors in a row
occurred

Error Statistics as They Occur in the Received Sequence Before Decoding
1. Same as Al above
2. Same as A2 above
3. Same as A3 above
4. Same as A4 above
5. Number of errors per word 1, 2, 3, 4, 5 or more

6. Number of times a particular number of errors in a
word occurred

7. Error probability of item 6 in percent

Error Statistics as They Occur in the Decoded Data Sequence
Same Items 1 through 7 for B above.

Improvement of the Channel Due to Coding - in Terms of Error
Probability Per Bit

1. Ratio of Error Prob. (with coding/without coding)
[Note ideally the ratio of item D1 is 0.0]

2. Decreasing of Frror Prob, (without coding/with coding)




TABLE 3.4

OVERALL CHANNEL IMPROVEMENT RATIO VERSUS TYPE DECODER, DCL, NEP, NSW

DECODER NOMINAL ERROR NO. OF SOURCE CHANNEL IMPROVEMENT _(PROB. OF ERROR WLTH CODING )
_TNPE bCcL PROBABILITY (NEP) WORDS (NSW) (PER BIT BASIS)  (PROB. OF ERROR WITHOUT CODING)

Lo £ 2

© u 5 e

©oom % e

Lo . =% S

£ 011 200 0

S = o

> - % W

B 12 0.1% .2_;-'8% _;%g%g_gi

> %% B

29



TABLE 3.4
(Continued)
OVERALL CHANNEL IMPROVEMENT RATIO VERSUS TYPE DECODER, DCL, NEP, NSW

DECODER NOMINAL ERROR NO. OF SOURCE CHANNEL D(PROVMNT- (PROB. OF ERROR WITH CODING)
TYPE DpCL PROBABILITY (NEP) WORDS (NSW) (PER BIT BASIS) ~ (PROB. OF ERROR WITH CODING)
2000 .239142
B 20 12 200 320787
2000 .188406
B 20 0.1%2 200 500000
2000 .941907
¢ 15 102 200 .9238533
2000 . 603986
c 15 1z 200 478723
2000 .666667 S
¢ 15 0.1z 200 ~7G0000 :’ =
2000 .940754 § E
¢ 25 10% 200 937973 P
N
2000 .599898 2
¢ 25 12 200 .478723 § &
2000 666667 <
¢ 25 0.1z 200 ~700000

€9



TABLE 3.4
(Continued)
OVERALL CHANNEL IMPROVEMENT RATIO VERSUS TYPE DECODER, DCL, NEP, NSW
DECODER NOMINAL ERROR NO. OF SOURCE CHANNEL IMPROVEMENT (PROB. OF ERROR WITH CODING
TYPE BCL PROBABILITY (NEP) WORDS (NSW) (PER BIT BASIS) “(PROB. OF ERROR WITHODS CODING)

2000 1.441064

D 18 10z ~200 1.345436
2000 .812468

D 18 12 ~700 .702128
2000 .768116

° 18 0-12 200 500000
2000 1.223415

D 30 10z 200 1.222390
2000 .15846

D 30 12 200 ~170213
2000 .00000

D %0 0-12 200 00000
2000 1. 705632

E 2 10z 200 1.795260
2000 . 743996

E 2 1z 200 .71276€

9




TABLE 3.4
(CONTINUED)
OVERALL CHANNEL IMPROVEMENT RATIO VERSUS TYPE DECODER, DCL, NEP, N5W

DECODER NOMINAL ERROR RO. OR SOURCE CHANNEL IHPROVMT‘ (PROB. OF ERROR WITH CODING)

TYPE DCL PROBABILITY (NEP) WORDS (NSW) (PER BIT BASIS)  (PROB. OF ERROR
i ? 0-12 250 155058
©om » L -
S . - 4 L
E 35 0.12 _2‘.2’.8% %

T T

99




TABLE 3.5

WORD ERROR RATE IMPROVEMENT VERSUS TYPE DECODER - NEP = 10Z ~ 2000 WORD SIMULATION

NO. OF WORDS IN ERROR AFTER DECODING

NO. OF WORDS DECODER TYPE: A B Cc D E
ERRORS/WORD  RECEIVED IN ERROR  DCL: 9 15 12 20 15 25 18 30 21 35
0 1l 92 163 135 318 151 151 69 203 71 232
1 14 191 243 138 190 116 119 52 82 44 67
2 21 230 235 213 228 174 168 70 130 68 88
3 35 274 241 233 232 187 192 116 110 86 113
4 57 277 215 241 224 257 256 126 190 103 124
5 or more 1872 936 903 1040 908 1115 1114 1567 1285 1628 1376
WORD ERROR RATE IMPROVEMENT VERSUS TYPE DECODER - NEP = 1% - 2000 WORD SIMULATION
0 1117 1696 1792 1773 1858 1735 1735 1694 1956 1729 1964
1 397 213 1861 150 80 123 123 114 11 94 13
2 210 64 31 56 47 30 31 65 11 75 7
3 129 13 5 12 6 51 53 54 4 40 6
4 61 11 3 6 4 54 51 29 4 13 4
S5 or more 86 3 2 3 S 7 7 44 14 49 6
WORD ERROR RATE IMPROVEMENT VERSUS TYPE DECODER - NEP = 0.1Z - 2000 WORD SIMULATION
0 1933 1977 1984 1985 1988 1979 1979 1978 2000 1973 1999
1 35 21 16 14 11 9 9 9 0 11 1]
2 12 2 0 1 1 S S 7 0 9 0
3 8 0 (1} 0 0 1l 1 1l 0 2 0
4 5 o 0 0 0 6 6 1 0 2 0
5 or more 7 0 (1] 0 0 4] 1] 4 (1] 3 1 S

SR — by MR WG s D v v e g Tn A %e e WL e e O T S g gl R e, W g S S T S S e S o T T e T R T Ayt ey PR T O b T I NI + 40N Rt o e oo s gl i ST




TABLE 3.6
ERROR STATISTICS FOR 2000 WORD SIMULATION FOR 1% AND 0.1Z ERROR RATES

ACTUAL ERROR ERROR PROB. PROB. OF VARIOUS ERRORS PER DECODED WORD IN PERCENT
DECODER PROB. OF OF

TYPE DCL __NEP _ RECEIVED SEQUENCE DECODED SEQ. 0 1 2 3 4 5 or more
A 9 12 1.52892 .685932 84.7999 10.6500 3.2000 .6500 .5500 -1500
B 12 1z 1.52892 .5281 2 88.6499 7.5000 2.8000 .6000 - 3000 .1500
o 15 12 1.52892 .9234 % 86.7499 6.1500 1.500 2.5500 2.7000 .3500
D 18 1z 1.52892 1.2421 % 84.6999 5.7000 3.2500 2.7000 1.4500 2.2000
E 21 1z 1.52892 1.1375 2 86.4499 4.7000 3.7500 2.0000 .6500 2.4500
A 9 .12 .10782 .0390 % 98.8499 1.0500 .1000 .0000 .0000 . 0000
B 12 1% .10782 .0250 2 99.2499 . 7000 .0500 .0000 .0000 -0000
c 15 .1X .1078% .07187 2 98.9499 -4500 .2500 .0500 . 3000 .0000
D 18 .1z .10782 .0828122 98.8999 .4500 .3500 .0500 .0500 «2000
E 21 .12 .10782 .09218 2 98.6499 .3500 .4500 .1000 .1000 .1500
A 15 b ¥ 4 1.52892 .4250 % 89.5999 8.0500 1.8500 .2500 .1500 . 1000
B 20 12 1. 2892 .3656 Z 92.9000 4.0000 2.3500 .3000 .2000 -2500
c 25 12 1.52892 9171 2 86.7499 6.1500 1.5500 2.6500 2.5500 <3500
D 30 1x 1.52892 <2421 % 97.7999 .3500 .5500 .2000 . 2000 . 7000
E 35 iz 1.5289% .1625 % 98.1999 .6500 -3500 .3000 .2000 2

A 15 .1X .1078% .02509 2 99. 2000 .8000 .0000 .0000 . 0000 <0000
B 20 .12 .1078% .0203 2 99.3999 .3500 .0500 .0000 .0000 .0000
c 25 .1Z .10782 .0718 2 98.9499 .4500 .2500 .0500 .3000 .0000
D 30 12 -1078% .00008 % 100.0000 .0000 .0000 .0000 .0000 <0000
E 35 .12 -1078% .0093752 99.9500 .0000 .0000 ,0000 .0000 .0500

S . . ——— e
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CHAPTER 1V
ALGEBRAIC DECODER FOR NONSYSTEMATIC CODES

4.1 Introduction

As mentioned in Chapter II, it is highly desirable that decoding
algorithms for nonsystematic convolutional codes be developed. Since
parity check matrices are difficult to form for this type of codes,
an alternate approach must be taken. The method discussed in the
following sections truncates the semi-infinite generator matrix G
of a code to a submatrix Gs , called the subgenerator of the cor-
responding code, such that its inverse, i.e. G;l, exists. Thus,
encoding is simply the postmultiplication of the message sequence by
GS and decoding, the postmultiplication of the received sequence by

G-l

, i.e. ¥ =XG and X =YG -1 where X and Y_  are the
s 8 S s s 8 s 8

]

message sequence and the received sequence truncated to segments of
length equal to the order of GS. Obviously, this decoding method
works well only when the channel 1is quiet; it does not provide any
error protection for the messages sent.

However, due to the structural properties of the generator
matrix G_ , the order of the subgenerator GS can be made an inte-
gral multiple of both & and n . This means that if only one block
of the message and the received sequence is replaced and multiplied,
together with several previous blocks, by their respective multi-
pliers, Gs and Gﬁ_1 , at each encoding and decoding operation,

multiple parity checks can be provided. This is the basic idea for

ok
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the decoding of nonsystematic convolutional codes,

As shown in Chapter II the basic building blocks of the semi-
infinite generator matrix of a systematic convolutional code are the
'+ 1 submatrices, Go, Gl’ cees Gp o where each Gi is an £ x n
matrix. This is still true for a nonsystematic code except that these

s do not contain an identity matrix or a zero matrix of order & .

g
i
Obviously, the minimal requirement of the subgenerator GB is that
it must be a nonsingular matrix of order 6n or a nonsquare matrix
of full rank containing all the T + 1 submatrices, where 6 1is an
integral multiple of 1% . Additional requirements are derived from
the consideration of the encoding and decoding of the first block.
Boyd2? has been able to show that & Z-H%E and v nonzero rows
must be prefixed to G prior to truncation. The conditions for the
existence of Gs can be summarized as follows:20
1. GS must have at least &n columns where § Z'E%E .

2, rank {GO} must be ¢ .

3, p must equal v .

u 1is the number of the memory elements required in the minimal
realization of the encoder and v , in the obvious realization of
the encoder. The concept of obvious realization and minimal reali-
zation of an encoder will be illustrated in thc next section with an
example. It is of interest to note that v = k - £ = 'L ; where k
is the so called encoder's constraint length, obviously k = (r + ne.
To keep the hardware complexity to a minimum, it is desirable
to find a subgenerator of minimal size which is called the minimal

subgenerator, designated as G6 . The inverse of Gy i{s called the




-1 is obtained,

minimal inverse and designated as GG-I . Once G6
the decoding process becomes fairly simple. The received sequence
may be shifted into n (6-1) stage shift registers one block, i.e.
n bits, at a time. After each block is entered into the input shift

register, the estimated encoder inputs; X , are formed by (8% + v) =
(s + ML mod-2 adders and a connection matrix equal to Gs—l , SO
that X = rGG'1 , Fig. 4.7. Obviously, § + T blocks of input data
are estimated by each decoding operation and only § operations are
participated in by each received block. This leaves at least 1
reliable operation for error correction i{f the burst length is not
over I blocks in a span of T + & blocks of the received sequence.
However, the most difficult problem is the actual j{dentification of

the reliable operation or operations should an error event occur.

Most of the discussions in Section 4.3.3 are directed to this problem.

4.2 Physical Realization of convolutional Encoders

The parameters H and Vv mentioned in the last section can
gerve as measures of the complexity of a convolutional encoder. It
is known that any V = k-2 rows in the generator matrix can at most
span &8 W dimensional space, where u <V with equality holds when
the code is nonsystematic. Physically Vv represents the total
number of memory elements in the obvious realization of the encoder.
Since it is most 1ikely that a systematic coder can be further
simplified, the number of memory elements demanded in its minimal
realization is designated a ¥ . Another interpretation of v and
uy is that u = log, (number of {nternal state) and 1 = log, (number

of output states). An output state 18 the sequence of outputs obtained

w0 T
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at time t or later, given that the inputs at time t or later are
all zeros. The number of output states is less than or equal to the
number of internmal states.

It is hoped that the following example may clear some of the
doubts. Consider a (3,2) systematic code generated by the following

subgenerators.
8(1:1) = [80(1:1)9 81(1.1)9 82(1:1)] = (111
S(Zal) - [80(2»1)9 81(2:1), 82(2)1)] = (1 0 1)

A matrix formulation is achieved from the subgenerators through

use of some auxillary functions?! in the following manner:

go(l.l) 1 gl(l,l) 1 gz(l.l) 1
fo " ) fi T (21)-0 F2 " (21)-1
g,(2,1) 1 B s ByLes
g(1) 1 0 1\/0 0 1\ /0 O 1}
- 117,100} (7, 1 (0] [P, 1=
2(2) o1 1/\o 0o o/\o o /]
1 L2 3 1 .2 o3 1 o2 o3 \]
81 801 801\ [%11 811 Bn1 8,1 85 By
=[Gy G5 G) = 3 1 o2 o3
1 42 o3 1 L2
852 B2 202/ \Bi2 %12 812 8., 822 &

and the generator matrix may be written as:
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¢ 4 - 1
Gy G, G, 0 0 where G. = 101
0 {0 1 1]
0 Go Gl 620 "001"
S "lo o ¢, 6 € 170 0 o
0 1 2 -, -
"0 0 1]
+ Gr'Gz-
® 0 0 1]
L /

The parity check matrix may be writtemn using auxilliary functions as

follows:
T T T
Po = [1 1] P = [1 0] P, = (1 1]
and
/ P y 4 9
1 12 13) T
H, hy hZ b3 Py I, 111
- 1 2 3 - T -
H, h} h? nf Py I, 1 00
1 42 w3 T
H, b} b hj PoI_, 110
‘ \ P, . P
then,
f )
“0 o 0 O where H, = (L1 1
H1 Ho 0 O Hl = [1 0 0]
H = H.=H, = [1 1 0]
— H2 Hl Ho 0 r 2
H, H, Hy
+
\ o ‘

In order to see the physical significance of G and H, it 1is
more convenient to express them in terms of the Huffman delay

4
operator,o D , which signifies a time delay of one unit. Thus, if
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x? signifies the first input of block 1 , then szt signifies
the first input bit of block 1 - &, i.e. the &th block previous

to block 1 . The formula for the transformation is

.
G, Em e GO

1 2 n
Gz(n). GZ(D), vees GZ(D)

1 2
| 6a-1(D) G2_(D)yeues Go (D]

n=—

G(p) =

) = [X}(D), R2(D), +-vs 1))

where

_ N 1 N o N T N .
di(D) 8oL + D gL +D gzL + ... +D gL for N=1,2,... 1

r L = 1,2,..-“"1 »

fp) = b+ DS 4 DG+ ..+ D x:
and
H(p) = [H}(D), HZ(D), ... H(D) ]

I ? for N=1,2,... 10 .

vhere H (D) = ht; + Dlh’: 4 ...+Dh
Using the D operator the code can be written as

y(D) = x(D)G(D) and G(D) H(D) = O

By employing the D operator, the example code can be trans-

formed as follows:




1 o2 o3
81 81 &n 101
Go - - »
1 .2 3
82 &2 82 011
1 o2 o3
&, & B
G -
2
1 2 .3
822 82 By
1 o ol 1 2.1
G, (D) 8y, D8 D78y
«- 1+40+0 = 1
3 . o3
GI(D) 8y, +D
- 14D+
Gl(p) = gl +Dg! +D2g!
2 (D 802 82 P
- 04+40+0 = 0
3 e o3
GZ(D) 892 +D
- 1+0+
and

- 1 12 B3 = 1

H [ho,ho.hol L 1 1}
1 - 1 1 211

H (D) ho +D h1 +D h2

= 1+0D+D?

19

1 o2 g3
811 811 8 001
ot 1 .2 o3 i
flz B, 8 ¢ 00
0 0 1
0 0 1

2 - o2 2 4 p242
61 (D) gy, + D gy, + D°dy,

= 0+0+0 = 0

3 4 p2g3
g, * DBy
D%
2(p) = 2 4 p2g2
G2(D) g§, + D 8%, + D’g,
= 1+0+0 = 1
3 4+ p2g3
g1, ¥ D78y,

2

H1 [hl’hl'hl] {1 0 0]
2 = h? 2 + D?ne
H4(D) ho +D h1 hz

= 1+D?

- 1 2 3 -
52 [hz'hz’hzl (1 1 o]
3 3 3 2143
H3 (D) 'h°+Dh1+Dh2

= 1



i

LD bt e by Vbbb e

therefore
c}(n) cf(n) cg(n) 1 0 1+D+0D2

G(D) = n
1 2 3 2
G2 (D) G2 (D) GZ (D) 0 1 1+0D

H(D) = (u!(D) u2(D) H3(D)] = [(1L+D+D%2 1+D 1) .

By using the equation y(D) = x(D)G(D) , it can be obtained that
1 0 1+D+0n?

y, v, v51 = [x; x,]
0 1 1+0n?

= [x. x. (L+D+ Dz)x1 + (1 + Dz)le
= [x. x (xl +x,)+D x, + D2(x, + x,)] .

Therefore the obvious realization for the encoder is shown in Fig. 4.1,

DX, DX,

X 1]
1

L l

X L_r_]_l DX, _Dnzxi%_‘ Yi = (X + Xp)+ DX,

+ D¥(X, + X,)

(5]

Fig. 4.1 Obvious encoder realization,
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From Fig. 4.1 it can be seen that

AV) -

the length of the first shift register, or
the first constraint length

max {deg[G)(D)]} = max{deg[G}(D),G2(D),63(D)])

1<3=<3

max{deg[l, 0, 1+ D + D2]} = 2

\Y

, = max{deg[0, 1, 1+ D2]} = 2

The overall constraint length v ig given by v = % vy =V tv, =

i

\Y

4 ; therefore, the encoder has 2 = 2“ = 16 internal states. A

detailed study of this circuit indicates that there are only 4 = e
distinct output states; therefore, this encoder can be simpliried
using only u = 2 memory elements., An encoder using the minimum
possible number (u) of memory elements is called a minimal realiza-

tion. The minimal realization of the example code is

u = the no, of memory
demands in the
x ] ] ] minimum realization
X . ’ >y, = 2, while the no.
of memory elements
for the obvious
realization = v = 4

y3

memory )
element

Fig., 4.2 Minimal encoder realization.
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As pointed out earlier, p <v 1is a typical phenomenon for the
systematic codes and there are only u linearly independent rows
among any v rows in the generator matrix G . This implies that
the subgenerator Gs is generally singular or does not have full
rank for systematic codes. Therefore, the proposed algebraic decoding
does not apply directly to this class of codes unless their generator
matrices are simplified according to their minimal realization. The
applicability of the proposed decoding method to systematic codes
needs further investigation. Since nonsystematic codes are generally
superior to systematic codes, this problem will not be pursued any

further in this work.

4.3 Algebraic Decoding of Nonsystematic Codes

4,3.1 Derivation of the Minimal Subgenerator and Its Inverse

Since the first block of Y depends on the present block and
the previous T blocks of X » then v = 'Y nonzero rows must be
prefixed to G prior to trurcating it into the minimal subgenerator
G6 . This, in turn, requires the input sequence X to be prefixed
by v =T2 2% zero bits.

Congider the Paaske's (3,2) , v=4 code whose I +1 sgub-

matrices are

101 100 110
G, = G, = Gr =G, =
011 101 011

This code has u = 4 = v and the rank of Go is 2 = ¢ ;

apparently it does not violate the conditions of having a minimal
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-1
subgenerator GG such that GG exists, The order of G6 mugt

- L )nw (=hyeq o
satigfy N6 §n > ( ) )n (3_2)(3) 12 ,

Generally G6 may not be g square matrix; GG is a 8quare
hatrix only when i3 an integral multiple of (n~2) and ¢ satis-
fies 1itg required relatjon as an equality. More Precisely, ¢p is
the number of columns ang (62 + y) is the number of rows in G6 H
they are equal only if G6 is a square matrix,

For the Paagke'g (3,2) , v = 4 code

,’f— én columng \N’J
110 099 000 09 g 7

F blocks || 11 0090 gg, 00 o '
or v bit ;
prefix 1090 1, 0 0 0 o 0 0 o |

000101100110 2+ v

000011101011 rows

e

Then Ggl is




0

1
0
0
1
1
1
1
1

{

0
0
1
1
0
0
1
1
1

0
0
0
0
0
0
0
0
0

0
1
0
1
1
1
1
1

and decoding we would perform

0 1

10

11
11
01
0 1
0 1
00
0o
0 o

0

0
0
1
1
1
0
0
0

H 2 H o o o o o
©

H O = o

i = r G-1 .

)

4.3.2 an Example-~the (2,1), k = 7 Code
To establish the requirements for the (2,1) x = 7 code we

have:

G« [1 1] g

- 1,2
[801801]

1 - 1 . pl.2 2
GI(D) By, D 81, +D

- [l 0] G2 = [l 1] G3 = [1 l]

. ol o2 - [ol o2 - [o] o2
[311811] f821821] [331331]

=~ [0 0] Gs = [0 1] G = [1 1]

(g;,82,)

1+l 4 p

lg51351] [351351]

1 3.1 4.1 5.1 6.1
81 * D7y, + D 84y + D75, + D 3!

+D +0+ 0+ pb

84
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20p) o 2 4 Dlg2 4 13, 3.2 42 5.2 6.2
G (D) 8, Digs, D821+D831+D8u1+D851+D861
- 1+o+1)2+1)3+o+1)5+1)6

and

G(D) = [6{ (D),62(D)] - [1+D+p24p3, D6, 1 + p2

Y2

Fig, 4.3 Encoder for the (2,1) sy no= ] code,

» and Rank{Go} = 1 =

Therefore Gd has Ncs =8n =g g 2 = 12 columng

and S8 +y e 12 rows

Furthermore, GG must he Prefixed with V=Tg = ¢ fonzero royg,
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The minimal subgenerator matrix is:

r s
11 G
o 1 1 1B
© 0 0 1 1
1 1 0 0 0 1 ;1 ,
1 1 1 1 ¢ o o 1 1
6o =1 0 1 1 11 9 4 4 ; 4 , °
111 0o 1 1 1 1 o o o ;4
0 1 1 1 1 ¢ o
1 i 1 0 1 1 1 ,
1 1 1 o 1 ;
(- ] 1 1 1 ¢
‘ 1o o

In order for G6 -~the inverse of the minimum sugELnerator

matrix-~to exist, three conditions must i satisfied: (1) Gg must

have at least 6n columns, (2) y nmust equal to v, (3) rank {Gy}
must be g. Q

It has been shown that the (2,1), k = 7 code under consideration
satisfies all these conditions,

With a computer program, using Gaussian elimination technique

(o)

and mod-2 arithmetic, it was found that the desired inverse is:



87

col 12 3 4 56 7 8 9101112
(0011110111001 0]
1111101110010
0100011000111
111111011101
101000110011

el 011111101110
§ 901010100011
1100001001101
111011101011
0001100111200
111101110101
(11110111010 0]

for the example code,

4.3.3 Error Detection and Correction

With both GG and Ggl on hand, encoding becomes simply post=

multiplication of Xy by ©

-1
Yo by G& .

S and decoding, postmultiplicat!on of

Before going through an example, a notation, » which

ii
L)
signifies the estimated value for the I bit {n block 1 of the

input sequence X obtained from the LtH

decoder operation should
be introduced.
Assume that an encoder for the example code receives the

following input sequence

x = 01 1011011011
tod
x11

xa xl €8BSR IAIEIEENIELILEENLIOETRNETIBEDOLS
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Then the encoded sequence would be

Yy = (00009 001193 101193 1)[c,]
TL bitg
prefix
= 00 11 o1 01 11 319 00 01 o1 00 01 o1
yO yl y2 L] . » L] . L L] L] L[] . - L] * . L ] yll

one block at a time, and postmulti-

Plying the contents of the regigter by Ggl - Each operation

estimates ope block of input datg and at the gg
Previous blocks,

mated by severa] Operationg,

As will pe seen in the following

developments, it 1s thege repetitiong which alloy for error detec-~
tion and correction,

operations,

It ig easy to see fron Table 4.1 that each message block xJ

has been estimated 6 + r times. If the channel ig clean, a11 the

§+r éstimates ghoyld be in perfe

ct agreement, This fact Provideg

Us a clue for error detection, The simplegt approach is ¢t compare

tection method, whic
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TABLE 4.1

A SEQUENCE OF DECODER OPERATIONS

Decoder Contents of Output of .

Oporation Input Reatster (y) e Mod 2 Adder (X) N
0 00 00 |00 o0 o0 00 ajojolojaljolololo 0701 0 F

e R

1 00 100 foo joe fop 111 | fo fo fo o o o fofo oo o

T \.1 xgﬁ ;:r

2 00 {00 100 {00 11 [ ol oo lolotolalo (UN IR |

et | Y N

1) 1 v xVix! N-

3 00 00 100 (1) o1 oy OO (o Ja o oo ta o 1/ 0

4 00 100 [ T o1 |1} V00 Jo o [0 jo fo (AR

5 00 (11 qot Jor In o e oo to oo (ANER AN

6 o for pre 1o foo brodoojodfolrvlolhvlyjo

7 01 o1 11 1o joo {m 1o o tagsoly il jolh o]l

8 0 111 {10 foo jor o Godo ottt fo byt loia gy

9 11 110 {00 {01 fo1 [oo U VR OB I N I T AT IR T A O VO 1] 0

10 10 100 fo1 101 loo [m Grotrrrlor (vjotr ] ol

1n 00 101 101 foo {m {0 Sy oy falo BRARTIRER

A D Bl Bl v B ol B il el vl e I T D e e A e

e et e ey el ] o cU ik fed ke e et an

o S
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output associated with column £ for one decoder operation and the
output associated with column £ - & for the next operation, pro-

viding column £ is one of the last (§ - 1) £ columns of Ggl

and
is nonzero in at least one of its first n positions.
For the example code ¢ shall be chosen from the last (§ - 1)2

= 5 colums of Ggl such that its first n = 2 positions are not

all zeros. Column 11 of Ggl fite the theorem and thus the exis-
tence of errors can be detected by mod-2 addition of the estimate
associated with col. 10, i.e. £ - 1%, with the estimate associated
with col. 11, i.e. E , obtained from the previous operation. The
result of this comparison is appended to the syndrome sequence. An
all zero syndrome indicates that no channel errors have occurred.

Since one block of the input data has been estimated by several
decoding operations, error corrections can be achieved by replacing
the estimate obtained from the erroneous block with any estimate for
the same bit which did nut require the use of that block.

It has been shown that a message block J , say xj , will be

b

estimated 6§ + ' times; however, an error in r” can only propagate
§ - 1 times. This fact indicates that operation 1 may be used to
correct an error in block Jj , say gj , as long as J + 6 <1 <
j+6+T .

The present approach is to use the syndrome sequence to signal
the beginning of an error rather than to identify an error pattern.
When an error starts, beginning with that block, the next & -1

blocks of estimate must not be used for error correction as error

effects are still contained in these estimates, The T estimates

following the § - 1 estimates are supposed to be error free
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providing that successive erroneous blocks are not closer than
§ + T = 1 blocks, i.e. a guard space of § + T - 1 blocks are re-
quired. This is to safeguard the estimates for block j obtained
from operations j +§ to j+d+ T =1 are not corrupted by other
erroneous received blocks having direct effects on this interval.
Since an error in the rj , may not cause a "1" immediately for
the syndrome bit assoclated with that operation, i.e. sJ may not be
"I" ., a method must be devised to keep track of the beginning of a
syndrome even if the first few syndrome bits are zeros.
A list of all the possible error patterns in one received block

and their associated syndrome sequences is given in the following

table.

Error Pattem Syndrome
Event in Block j o Itl GIt2 343 3+ GJ¥S 36 T

A 01 1 1 1 1 0 0 1 0 ...
B 10 1 0 1 1 0 1 1 0 ...
C 11 0 1 0 0 0 1 0 0 ...

The syndromes are listed to the point where the effects of the errors
have ended.

From the above table, it is clear that when the first "1"
appears in a syndrome sequence, errors may have already propagated
several blocks. For instance, for event C , the earliest possible
error indicated by ¢ = 1 has 3 = -1 which means that an error in
block r-1 shows its nongzero svndrome bit after receiving block 0,

This implies that this error can be corrected by operation i where
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a1+3<i<=1+8+T , or s<i<l ,

while both events A and B have g? = 1 with j = 0, meaning they
can be corrected by operation i, where 6 <1<12.

In order to distinguish the various error patterns that require
different correction timing since the firat appearanca of the nonzero
syndrome, it seems that the entire syndrome sequences have to be used.
A second look shows that this is not so. As can be seen easily frouw
the syndrome table, if the first two syndrome bits are 11, event A
{s uniquely identified. If the first two bits are 10, correct identi-
fication of error events depends on one more syndrome bit; if the
third bit is a "1", even. B is the error; if a "0", event C is the
one. A systematic way of doing this is to draw a “syndrome tree" as
shown in Fig. 4.4. The tree stops at the point where each branch
correaponds to only one posaible error event, (The notation C'!

aignifies errvor pattemrn C in block r”1 ). Events with the same

s~ =0
sl =0
¢, B
g =1
e}
@0 =1
sl =}

Fig. 4.4 Syodrome tree,
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"-1"s are grouped together and a syndrome sequence shall be recorded
to the point that each group can be uniquely identified. For the

example code,

80 g1 52 g3 g4 g5 o6
If s=1 00 - - - correct and reset s - group 1

8=1 - - - - <« < correct and reget & - group 2

vhere "-" indicates "don't care". One way to implement this algo-
rithm 15 to use the following circuitry to match the syndivome
sequences obtained above for each group of error events so that a

"1" will be produced to signal the correct timing for error cor-

rection,
.1
-———{ }r—' }--1 }- )
TRANSFER L
AND -1
RESET L-1%
b

"OR Do

OR

Fig., 4,5 Syndrome search logic.

The decoder consists of a conncetion matrix which corresponds
to G;l on (§ = 1) -atages input repisters, (v + §¢) mod 2 adders,

v+t 1) - stage output reglsters and a syndrome search logic
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as shown in Fig, 4.3,

Decoding operations are aa follows: the received aequence is
shifted into the input registexs one block at a time. After each
block ia entered into the input reglater, the eatimated oncoder
fuputs X, ave formed by the (8¢ + v) mod 2 addera and the connec=
tion matvix, This action is equivalent to performing x =8 G;‘ .

If there are no erroneous received bitm, the eatimatens will be exact,
1.0, X = X, and the snydrome bit that corveaponds to that block
will he zero. However, if the recelved hlock {a in exrvor, beginuing
from that operation and lasting through the next (& - 1) operationa,
the estimates for that block will be wareliable. Under the con-
dition that the following &+ 1" = 1 dinput blocks ave all cleaw,
eatimates fur that block obtained from the next ' opevatione are
correet. The tracking of the errora ix taken cave of by the syndrome
gearch logtc,  1f channel ertors vause fucorrect estimates to entev
the output shift rvegistev, the comdition {x indicated by a agero
avndrome and the erronevus extimates are veplaced by other extimates
via the transfer pates as soon as coreaet ostimates ave obtafuable,
{.0. when the syudveme search logic produces a "M output, and the
avadrome replater {2 vosel Lo gery to veatart anvther search,

Fi}is 4.5,

4.3.4 Nodified Algehrate Decoder

The above propased decoding method vorks well when burats ave
soparated by enough evrror tive hlocks; {te estimatea ave wnveliable
1T the chamnel {a not so henovalent,  This motivates cons deratton

of a hybrid decoding svstom,

[ o Lod gt . Se a 4§ 3 W 1° "§
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Since the checking of the guard space is the main issue, it is
necessary to know when an error starts. One way of achieving this
purpose is to re-encode the estimated sequence and compare it with
the received sequence, block by block. Whenever the two sequences do
not agree, that block is considered to contain an error. Since §
error free blocks are required, as soon as an error is detected, the
next & blocks are examined. If they all agree, the decoder assumes
an error free guard space was received, which would imply that the
error was properly corrected. If the next § blocks do not agree,
the decoder estimates will be regarded as unreliable and a second
algorithm will have to be used. Since the algebraic decoder is a
good burst corrector and requires an error free guard space of finite
length, the second algorithm would be most likely a randem error
corrector and hence would not require error-free guard space; in
particular, the maximum likelihood probabilistic decoder, namely, the
Viterbi decoder is proposed as the second phase of the hybrid system.

Additional hardware includes an extra encoder to re-encode the
estimated sequence, n mod-2 adders to compare the re-encoded sequence
with the received sequence and a flag logic to check the violation of
guard space requirement. Whenever the outputs of the second encoder
differ from the received sequence for a certain block, an "1" enters
the flag logic; after it propagates § times, a flag will be set.
1f there are no differences between the re-encoded sequence and the
received sequence in the guard space, indicated by an all zero flag
register, the flag is reset to zero and the estimate of that block is

regarded as correct. A flagged decoder estimate is considered to be

& —— PR —
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AN orasure and the phase 1Y random ervor corrector w11l be swmmoned
to take over the duty,
Since a guard pace of § = & blocks g required for the

example code, the "flag logie" would be as ghown in Mg, 4.6,

Qutput from the re-encoded(
sequence and received

" lag » .
Flag Regtater gequence comparator ’ )

T N NS N e e e e 4 .

(B R ey S, LA

Flag o

VR

Fig 4.0 Flag logte,

The tdea ot vorparing the re-encaded sequence vith the received
dequeinee to check the eNistence of the tequired clean-guard spave iy
N very rel{ahile, Although clean intevvals always agree with the
reveived sequence when temencaded, the converse {s not Revessarily
truel an etvonecus Bloch mav aluo dAntee with {tw vertesponding
received dlock when terenveded (t the ryrror Pits are not Corrected,
A A matter of tact, a whole hurst aight be wistahen as a clean

nterval (¢ no verrect ion had ever beon made, Ther=tore, the wod{ f{ed
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algebraic decoder works well only for the correction of short bursts
where the burst corrections can be made definite.
More will be said about the hybrid system and several altema-

tives will be presented in the next chapter.

4.3.5 Probabilistic Decoding of Long Bursts

So far discussion has been limited to the correction of short
bursts of one block. The definitions of “long bursts" or "short
bursts" are not intended to be rigorous, those bursts that can be
stored in a decoding table or incorporated into the syndrome search
logic so that their decodings can be made definite may be defined as
short bursts; otherwise, as long bursts. Therefore short bursts can
be regarded as bursts of one to two blocks. As pointed cut earlier,
the multiple parity check encoding allows one source block to be
decoded (I' + §) times while only § received blocks are required for
each decoding operation. This means that if one received block is in
error, there are ' chances to recover the source sequence, {.e. if

3

r’ 1is in error, the {th

estimate can be used for correction as long
as J + 8 <3 <j+8+T . With each additional block of the burst
length, the chances diminish one. Therefore, the entire source se-
quence of (T + 8)U bits is still recoverable as long as the burst
length does not exceed ' blocks. Thus, [' consecutive bursty
blocks, beginning at the jth bleck, could be corrected by the
(J+8+T - nth estimate, providing that the following received

+I4H8 =
blocks, 1.e. rj+r to rj Fes-1

blocks, are all error free. The
potentfal burst correcting capability of the algebraic decoder is

that a burst of length ' blocks can be corrected as long as {t is
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TABLE 4.2

DECODER OPERATYON3 IN THE PRESENCE OF A LONG BURST

173
£
2
(4]
w
&
o
1
=
o
1]

a0 01 o

10 00 01 m

01 11

01

00 11
11
11

Code sequence:

1T 00 00 00 00 o 00
01

1o co oy

Error scquence:

00 01

0l

00 O

10

00

Received sequences

1

Decoded sequonce:

Quiput of

Content of
Input Register (1)

Deceder
Operation

(x)

2 Adder

Mod-

— — < — = =~
— f — — — fot —
————— T e T T
- — — e = —_ ]
= —_ - = -

~t i, [ - — — =
~1 - = < =z £
< T o = T
< — —~ = =~ <
< = k] ~— = —
< < — < Lo =
T ——— e
- < — =3 =3 — =
= -~ = z = £
- - — - = —
< = — — < =
—t ~z v w0 o

10

o
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followed immediately by a clesn guard space of & blocks. The ratio
of guard space required to the maximum burst length correctable ig
simply 6/T ., For the example (2,1), k = 7 code considered, thisg
ratio is 1; therefore, it obviously outperforms the Wyner-Ash's

codes and is justified as an optimal B2 code.

Correction of long bursts cannot be made definite because of the
large number of syndrome patterns involved. However, the long bursts
may still be decoded with high probability of being correct by ex-
tracting the general characteristics of the ensemble of syndrome
patterms. One method of decoding long bursts is to examine the syn-
drome sequence to see if a certain length of consecutive zeros can be
obtained. As soon as thig pre-established criterion is satisfied,
the decoder retracks to the operation prior to the appearance of the
first zero and replaces the estimates of that operation for the
previous (I' + §) decoded blocks. This requires a buffer register
to store the estimated (I + §) blocks decoded bits at each step and
constantly replaces the contents of the buffer register with the
current estimates unless the svndrome bit at that step is zero. This
decoding method does not always catch the bursts in time; first, the
criterion is difficult to establish; {f it is made too tight, an
incorrect estimation may be mistaken as the zorrect one, If it is
made too loose, correct timing may be missed and a large number of
correctable bursts may be left uncorrected. One favorable feature of
this method is that, if the clean guard space is long enough, {i.e,

longer than (5§ + z) blocks, where z {s the length of the pre-

established all zero syndrome sequence that has to be checked, not
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only can most of the long bursts be corrected but most of the longer
bursts, regardless of how long they are, can be partially corrected,
i.e. at least the last T blocks of most longer bursts can be cor-

corrected.

4.4 Error Bound and Characteristics of the Decoder

Calculation of error bound is extremely difficult due to the
large number of error patterns that could be decoded probabilisti-
cally. However, in order to provide some indication of the perform-
ance of the decoder, a rough estimate is attempted which could be a
very loose measure of its capability.

Since the proposed decoder is capable of correcting all short
bursts of one to two blocks definitely, with some capability for
longer bursts of any length, the overall error probability should be
upper bounded by the probability of getting bursts longer than 2
blocks.

Let p be the channel error rate. Then q =1 - p would be
the probability of any one bit being received correctly. A long
burst can be viewed as a short burst whose guard space contains at
least one erroneous bit. The probability of such events is
P(o) = (1 - g¢)(1 - q!?) . An incorrect decoding will output 12
uncertain bits; if assuming random binary values for each bit, only
half of them could be decoded incorrectly. Thus, the overall bit
error probability is upper bounded by

pp) < 2 a-qha-qdd .
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Clearly, thias is a very loose bound, since it is assumed that none
of the long bursts can be corrected. Of course, this is not true
with the present algorithm.

The circuit of the entire decoder was given in Fig. 4.7. It is
quite simple. Parts count ig around 4 times the number of rows, with
the addition of two buffer registers i{f long bursts are to be cor-
rected--one for the storage of outputs for later retrieval and one
for temporarily holding the contents of the transfer gate for later
use.,

The decoder operates quickly if only bursts of one to two blocks
are stored in the table, or incorporated in the syndrome search logic
for definite decoding. For long bursts correction, after an initial
delay of a few blocks, which is compatible with the requirement of
the Viterbi decoder, the rest of the decodings are in real time and
no real disadvantages will result.

Since Ggl is of finite size, error propagation can be greatly
suppressed. For the example code, the error effect of any received
block cannot propagate to more than § = 6 consecutive operations
from the time it enters the decoder. This is a great advantage of
the algebraic decoder over the probabilistic algorithms.

As mentioned in Sec. 2.4, the Wyner-Ash criterion of optimal

B2 code 1is

length of guard space n+ 2

length of longest burst correctable n-2

For the (2,1), k = 7 example code, the ratio is 3. Since this code

is capable of correcting bursts of 4 bits when a guard space of 12

o B rtas W ver QRN Sy oy o0
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The overall algebraic decoder can be shown as follows:

Connection Matrix

»

it il I ML

dOOPOOPDDD

Tranafer Gates

Output (x) Register

¢ = unconditional
reset

o s
bm o rm - - -

Syndrome Search Logic

Figure A.7 Ervow Correcting Decoder.




standing of the characteristics of the optimal df codes, 71t can

be seen from Wyner-Ash's formu]lg that for fixed %-, the longer the

Furthermore, the larger the 7 s> Or equivalently k , the more flexj-
ble the algorithm; i.e. there are more operationg available foy
Correctiong, Therefore, longer constraint codes make the Correction

of long bursts easier. Thig is consistent yjith the requirement of

It hag been shoyn that thig algebrajc decoder Perforng extremely

well for the eXample (2,1), k = 7 code; {¢ 1s capable of cor-

LY et T
S .
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high probability of success. Correctiouns of bursts longer than 6
blocks are limited to their last 6 blocks. The only requirement is
that 6 blocks of clean guard space must follow immediately after the
short bursts with somewhat longer space for the long bursts. If the
syndrome table can be made to include all the burst patterns, 6 blocks
of guard space would be all that is needed for any bursts, long or
short, The relative short guard space required as compared to its
burst error correcting capability justifies the (2,1), k = 7 code as
an optimal B2 corrector in the sense of the Wyner-Ash criterfon,

The conclusion, then, is that {f methods could be provided to
remove random errors prior to the application of the algebraic
decoder, the chance of burst error corrections would be greatly im-
proved as the chance of acquiring clean guard space {s increased,

This will be the topic of the next chapter,



CHAPTER V

HYBRID DECODER

5.1 Philosophy

Although the algebraic decoder has the potential of correcting
any bursts of length T' blocks or less ina I + § block's span of
incoming data stream, the number of distinct syndrome patterns that
have to be identified forbids such attempts for large I . With the
innovation of new memory devices such as magnetic-bubble memories,
however, such large memory requirements may not be impossible in the
future.

Unlike the concatenated codes, the proposed coding scheme employs

only one code, an optimal d convolutional code, with a two

free
phase decoding process. The interfacing of the two phases is quite
flexible. Various probabilistic decoding algorithms can be selected
as the second phase and different interfacing methods can be employed
to fit the particular channel characteristics and the user's needs.
Previously, an attempt has been made to use the algebraic decoder
to carry the main load, the Viterbi decoder coming into help only
when the desired error-free guard space does not exist. This scheme
has the advantage of being fast and causing relatively short decoding
delay. However, if long bursts--i.e., bursts which have not been
designed into the syndrome search logic to be identified--are encoun-

tered, the hybrid system will lose synchronization and errors will

propagate. Study of the performance of the Viterbi decoder in Chapter
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III reveals that this decoding algorithm is also capable of correcting
short bursts, i.e., bursts of two blocks or less. Therefore, it can
be concluded that both the algebraic algorithm and the Viterbi
algorithm are capable of correcting random errors and short bursts,
but the latter do not require error-free guard space. It is the
ability of the two algorithms to handle long bursts that needs our
attention. In the Viterbi decoder, which is optimal in the sense
that it utilizes the entire distance between codewords available from
the encoder, error propagation is much more prominent than in the
algebraic decoder, which bases its decoding decision on the trun-
cated data stream. The superiority of the Viterbi decoder in hand-
ling random errors and short hursts and the complementary nature of
the algebraic decoder and the Viterbi decoder when encountering long
bursts, motivated the development of an alternative hybrid decoding
system that possesses the same error-correcting capability as the
Viterbi decoder during random errors and short bursts but can sup=-
press error propagation effects as well as the algebraic decoder,

In order to achieve such a system, methods must be developed to
switch the decoding load back and forth between the two decoders
according to the channel property at the moment. If the channel is
clean or has random errors or short bursts, the decoding duty is
allocated to the Viterbi decoder. If the channel encounters a long
burst, as soon as it is certain that the burst is over, the load is
shifted to the algebraic decoder for the next 72 bits duration. When
the hybrid system is operating in the algebraic mode, should another
long burst error occur, that mode is terminated immediately and a

shift is made back to the Viterbi decoder. In this manner, no
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error-correcting duty is allocated to the algebraic decoder; it is
used only to identify the syndrome sequence and as a subsidiary
decoding device during the resynchronization period of the Viterbi
decoder. As pointed out earlier, the algebraic decoder is not capa-
ble of correcting any error that is not correctable by the Viterbi
decoder but the latter does have a much longer decoding delay than
the former. Thus, to let the algebraic decoder take over the duty
only after the long burst is over seems a logical choice.

A flow diagram will depi.ct the overall concept and the hybrid

decoding procedure much more clearly, Fig. 5.1.

5.2 Algorithms

5.2.1 Syndrome Detecting Logic

For the alternative hybrid decoding system, syndrome detecting
instead of syndrome searching becomes the main theme. As indicated
in the flow diagram, the hybrid system must be able to detect the
beginning and the ending of a burst and to distinguish the long bursts
from the short bursts. One possible implementation of the syndrome
detecting logic is shown in Fig. 5.2,

The syndrome detec:ing logic so designed will produce a "1" if,
and only if, when a long burst is over, it stays at "1" for the next
36 operations unless encountering another error which will terminate
the algebraic mode prematurely. Thus, the hybrid algorithm will be
such that if thc syndrome detecting logic output is "0", the Viterbi

decoder will be employed; otherwise, the algebraic decoder will be

employed.
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VITERBI
DECODER

ALGEBRAIC
DECODER

K=X+1

5IT=0}

Flgure 5.1 Ryhrid Dacoding Flow Chart
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decoder. If out

put 1s "1" use

-

v.. .1 >
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Figure 5,2 Syndrome Detecting Logic
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The development of the ayndrome detecting logic is quite compli-
cated, especially the syndrome search portion which involves the
listing of all distinct syndrome psticmms for shert bursts and the
forming of a syndrome tree. The purpose of the syndrome tree is to
eliminate all the redundant bits of the syndrome sequences under con-
sideration so that a simpler logic system can be made. Further simp=-
lification or combination of the "NOR" gates is possible by the "prime

implicant table" method.

5.2.2 Syndrome Detecting Logic Development Procedure

The function of the syndrome detecting logic, S.D.L., is to
detect long bursts which are not correctable by the Viterbi decoder
and to allocate the decoding duty to the algebraic decoder so that
error propagation can be confined to the latter.

The heart of the S.D.L. is the syndrome search logic S.S.L.,
which identifies specific short bursts, should a bursty event occur,
therefore allowing recognition of longer bursts not individually
recognized,

The first step toward the development of the syndrome search
logic is to list all the possible syndrome patterns caused by the
short bursts. The best way to achieve this is to use a computer pro-
gram that simulates the syndrome calculator and tabulate the error
vectors and their associated syndrome patterns in the output.

Table 5.1 is a list of the syndrome pattems of the short
bursts, i.e. bursts confined to within two blocks, for the example

code.,
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TABLE 5.1

LIST OF THE SYNDROME PATTERNS OF THE SHORT BURSTS

EVENT ERROR SYNDROME  PATTERN LENGTH
PATTERN s* 8! 82 g3 g% g5 46 47

A 1lojo]o 1/oj1]1jof1/1]0 7

B oli1{o0]o 1{1{1}j1f{0jol1]o 7

! 1{1lo]o ol1|ojolo]1]olo 5

c 1jol1j0 1{1hyflof1f1{o]1 8

D oli1l1{o0 1{of{1lof1lalo] 8

E 1j0lo}1 1{1]jojoj1{1]1]1 8

F oj1lo0j1 1iotofof1fof2]1 May be 8 &
combined

¢ 1/0]1}1 1{ofoloj1lof[1|o0]) . 8
1000101~

H oy1l11 1{1/o{1|o0|o0lo0fo0 4

b3 1{1]1]o0 olotofl1j1{1]1]1 5

K2 1{1/071 oloj1l1]1|1j0f1 6 i

! RIMRE oy1{riofoft|l1lo b
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As may be noticed, the first nonzero digit of the syndrome
sequence may not appear immediately after the receipt of an erroneous
block, that is, there may be a delay of several input blocks before
the first appearance of an "1" in the syndrome sequence. This effect
i1g designated by a superscript; i.e. J~3 signifies error pattern J
in block r 3 . The superscript "o" will be dropped, i.e. A=A,

In Chapter IV the use of a syndrome tree to eliminate some of
the redundant syndrome bits has been mentioned. While it is legiti-
mate to do so if the purpose is to distinguish one short burst from
the others, this simplification is not valid if the purpose is to
abstract the short bursts from all the possible bursts, long and
short. On the contrary, the number of bits to be examined must be
extended to a length at least equivalent to the syndrome length of
the maximum length bursts under consideration. For the example
channel, it is assumed that no burst of length 6 blocks (12 bits) or
longer should exist or at least the chances of encountering such
bursts are extremely slim. Based upon this assumption, it is evident
that the maximun length syndrome patterns are limited to 12 bits.
This means syndrome sequence for a 12 bit span must be examined before
one can be certain whether it is a short burst or otherwise. The
reason is very gimple--the syndrome pattern of a short burst can be
the prefix of the syndrome pattern of some long bursts and until the
entire length of the pattemm has been examined no assertions can be
made concerning the length of the burst.

Because of the above reasoning, the "syndrome detecting logic"

has been revised to that shown in Fig. 5.3. The shift register is

NI T ~ I T ry = o e - - -ﬂ. im
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extended to 12 stages with one additional stage which will be
explained later. Furthermore, because some syndrome patterns of the
long bursts have 8 consecutive zeros, there can be no certainty

that a burst is over by observing 7 consecutive zeros. Since the
shortest syndrome of the short bursts has & bits, the syndrome de-
tecting logic must be implemented in such a way that this syndrome

is detected before gate 3 is turned on. This requires that at least
9 consecutive zeros must have entered the shift register before gate
3 can be turned on; otherwise, this shortest burst will always be
interpreted as "a long burst {s over" for some time, and then behave
unpredictably for the next 36 operations. In order to avoild exces-
sive delays after a long burst is over, the "SO" stage is added to
limit the delay to the least possible. Of course the whole design

is based on the assumptior that no burst longer than 12 bits should
ever occur. If, in fact, t:..» channel encounters a burst of L blocks
longer than 6 blocks, the detecting logic will direct the decoding
action to the algebraic decoder L bits too early and this will result
in L bits data loss; however, this is not a disastrous situation,
since bursts longer than 6 blocks will be decoded ia error by the
Viterbi decoder also, but with the following 72 bit delay as well.
The beauty of this logic circuit is that it can catch the ending of
most long bursts within 4 operations with only a few exceptions, these
being the bursts whose syndromes have excessive delays. However, in
no case will the delay be longer than 9 operations, and for an over-
whelming majority of the bursts, the ending can be tndicated exactly;
thege are the longest barsts anticipated, i{.c. bursts of 6 blocks,

though they are not supposed to occur frequently,
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Furcther simpliftcation and combination of the avadrowe patterms
of ahort burats way be posaible by the "Rarnaugh wap' or "prime tmpli-
cant table" wethod, but in practice this fa highly uwlikely, The
ayndrome patterna of the short bursts connint of only a very amall
portion of the total posaible wyndrome patterna and {n general they
are widely meattered {n the "Rarnaugh wap", f.e. the chance of two
ayndrome patterna of the short burats being adjacent in extrewely
small. For the example code, only the ayndromer of event R and
event U can be combined with the elimination of one variable,

The rest of the ayndrome detecting logte fa a divect tvanslation
of the verbal apecification into logie expresniona, Thia will be
solf-evident after a detalled explanation of the fanctiontug of the

fogie elveult,

2.7 Me Functivning of the Syndeowe Betecting Logle

tn the normal situation, the channel s auppored to be clean and
wo action shatll be taken by the 8.1 L3 the cutpat of gate U ia al-
wava 0%, which weans the decading duty {e ansumed by the Viterhi
Jecoder,  However, fv case of any ervor event, a MY will enter the
ahift veglater atages within 12 operativna from the ovcurence of the
ovenl.  As soon ax the "1V entera the ahift vepiater, gate > will be
actuatod amd the 8,000 fa (o a atand=by position, should the event
bo a random error or a ahort burst, pate will be veset to {tw
ortginal atate as soon as the Clvat MM e the zymdvome teaches 8!
and the alevt fn released. 10 the event {x not 4 random evvor o
alort burnt, pate 2 will atay {n the “aot " pasition watil the Yirat

MM the avidyrome veachen 8, tee. a4 12 B adelav atove the Tlvat
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appsarance of the nonsero syndrome bit, or 9 consecutive zeros have
entered the shift regiscer, whichever happens first. And conditioned
on the fact that gate 2 is still in the "set" position, i.e. the

event is not a random error or a short burst, then gate 3 will be
actuated. With both gate 2 and gate 3 in the "set" position, gate 1
will produce a "1" output which means the decodiug action shall be
shifted to the algebraic Jdzcoder. As soon as the decoding duty is
assuped by the algebraic decoder, a counter starts to count. At the
end of a 36 count, both gates 2 and J will be turmed off and the $.D.L.
returned to i{ts normal state, However, if the channel encounters
anocher error prior to the ending of the 36 counts, the decoding will
also be returned to the Viterbi decoder, but the $.D.L. will remain

in the "alert" mode. Should the second event be a random error or
short burst, the S.D.L. will return to its normal state as usual;
otherwise, the decoding duty will be assigned to the algebraic decoder
after the burst i{s over, in the same manner as {f this event were
encountered for the first time. Therefore, the $.D.1., switches the
decoding actions back and forth between the two decoders according

to a set of predetermined decision rules.

The only drawback of this algorithm is that when the channel
encounters a short burst while the decoding i{s in the algebraic mode,
it will never go back to the algebraic decoder after the burst s
over, even if the Viterbi decoder is not re~rrachronized, f.e. the
counter has not fiuished the 36 counts. ihi{s problem can be cir-
cumvented by an "AND" at the output of S$.8.L. with the complement of

the counter's output so that {f the counter {3 {n the counting mode,
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gate 2 cannot be reset, i.s. gate 2 can be turned off if, and only
if, the counter is not in the counting mode. Furthermore, the feed-
back connection between the output end of gate 5 and the counter
shall be removed, which means that once the counter starts counting,
nothing can terminate it until it finishes the 36 counts, This
alternative implementation also has its shortcomings. It regards all
the short burats which occur when the counter is in the counting mode
as long bursts and re-initiates the counter with each new occurrence
of a burat., If the chaunel iz rich in random errors or short bursats,
the decoding will return to the Viterbi decoder momentarily and stay
with algebraic decoder the rest of the time, Methods must be incorpo-
rated so that the counter can be initiated only when the burst is
long. This can be done by conditioning the gate 1's output with the
8.5.L. output before sending to the "SET" terminal of the counter, so
that the counter cannot be re-fnitiated unless the S.8.L. vutput is
"0", i.e. the event s a long burst, With such modifications, every
time the hybrid decoder encounters a loug burst, the next 36 decoded
bits are regarded as unreliable repardless of whether the occurrence
is within the 36 bits span or not; however, the occurrence of random
errors or ghort bursts will not {njtiate the counter, even if the
hybrid system {s in the counting mode; the only action that the system
takes {w Lo return the decoding to the Viterhi decoder for as long aw
the error event lasts. For the Jdetafls of this modified 8.D.1L., please
reo Flg. 5.4,

Si{nce during the counting perfod the Viterhi decoder's outputs

are not reliable, temporarily returning the decoding operationz to

c L e——— g,
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this decoder does not guarantee error free reaults. This fact loada
to the consideration of a third variation, 1t ia known that the
algebraie decoder is not Just a syndrome creator, but can also werve
as a multiple parity check decoder for convolutional codes, The

only requirewent {s that & = 6 blocks of errvor free puard space
must be provided. This {s true in general with very high probability
{f random ervors are the case. Under the condition that the channel
{s indeed so0 benevolent, the algebraiv decoder may be used to correct
all errors wheun the Viterbi decoder is out of synchronization, The
algebraic decoder {a capable of correcting all erroy patterns that
are limited to within 2 blocks, d.e. & bits, whdch fa exactly the sawe
as that of the Viterbi decoder for short blocka, Theuretically, the
evror correcting potential of the algebraic decoder is up to bursta
of 6 hlocks long, but the complexity of the hatdeare o the womory
storage requived forbida such fmp lementation, Fven {f the evror
corvecting of the algehrate decoder fe limited to random evpors and
ghort burats, the thivd varfation would pertorm much better than the
{{rst two {f the channel is known to gplve enough etror tvee puatd
space, The cholce {« actually dependent, not upen the overall errot
rate but upon the channel chavacteristics, that {z whether the channe
hag more random errovs or bursty ervorg, ot whether the chamel error
events are sparse cnough to provide clean guand apace. The S, L.

for this variation is ahown fn Fig. 5.5 and Fig, S0,

5.3 Computer Simulation

The vbrid decading process: develuped, together with the Viterbi

and alpebraic decodeva, was atmulated on a Univae 108 to verity (ta
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s.S.L. Inputs Connection Table

Note:

g |s? $3 [s" I 3| s® s7 |s® g? ‘,510 gll|gl? | The WAND" gate shown is a typical gate Lf t feeds
a-te _ IR SERPE Bt — I SRR S S il o mantt . The

1 ] 1 * o111 1 cojo . O o | o into the "OR" gate labelled a8 <3

1 1 1 [ 1 0 o l17 010 0 . 0 0| inputs of the "AND" gate are connected to the

BRI 1_ 1]l 0 111 0 1. -0 0 0 shift register stages si, i=1,2,...12.

i le j1lol 130, 1. jo to {Q Wh 1 11 be od
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F,G {1 0 0 0 110} 1] -}j0_ 10 0 | .0 jwmot before feeding into the corresponding "AND"

H 1 |1 0] 141 0] o|lo}].030 0 0 0__| gate, please see the "S.S.L. Inputs Connection
1 1 0 | 0 0 0}0 0 0 10 0 0 0 Table". If the corresponding entry in the table
I 1 1 11 1 110 1 0, 010 - = - - -
K 1 1 1 1 0 _;0;0 0 a _ - isaldonotco-ple-entit,ifa 0", complement
L 1 110 0 1{1110 { 010 0 0 _ | 1t, £ a "-" is showm, which means "don't care”,
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st

- §§

— Sl.

— S

___-5

| 6

-—s;

To S.S.L. R

| 29

310

—5

l——§

Figure 5.6 Syndrome Search Logic (S.S.L.) Connection Diagram

1?1



122

error correcting capability and to compare the performances of the
three. Details of the simulation are given in the Appendix. Random
information was encoded using the (2,1), constraint length 7 convo~
lutional code.

Twenty-three complex channels were simulated and 2000 words, or
64000 bits, were used for each test run. For each channel the nominal
error rate was made 1%, 0.1X and 0.01X. Channels were characterized
by both random errors and bursts with burst lengths ranging from 1
block to 6 blocks. The 23 channels ranged from channels with 0X
random errors, i.e. pure bursty channels to channels with 100X random
errors, with an increment of 5% random errors for each successive
simulation. The frequency of bursty events was always made inversely
proportional to the burst lengths. Whenever a burst was simulated, a
random number truncated to the appropriate length was inserted to the
error sequence; however, for a random error only the corresponding
received bit was inverted. The two additional channels simulated were
the channel with strictly short burats and the channel with strictly
long bursts.

A syndrome table consisting of all the syndrome patterns for
short bursts was stored so that the decoding of short bursts could be
made definite. Long bursts were decoded according to the standard
method discussed earlier, that is, identifying the correct decoding
operation and using the outputs of that operation to replace all the
previously decoded b.:s. Thus, a finite chance of erroneous decoding
is possible.

A buffer register of length equivalent to the decoder's con-

straint length of the Viterbi decoder was used to temporarily hold
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the algebraic decoder's output; the function of this buffer is two-
fold, first, for holding the algebraic decoder's outputs for later
retrieval and possible corrections, second, for synchronization with
the Viterbi decoder's output. After an initial DCL bits delay, the
syndrome detecting logic commanded the system to accept one of the
sub-decoder's output according to a bookkeeping register's content--
1f "1" was indicated, using the algebraic decoder's output, otherwise
using Viterbi's output.

Parameters monitored were error counts and error probabilities
for each type of error event and in addition, the number of errors
per word; each word was regarded as 32 bits for the code tested. All
were reccrded before decoding and after decoding and for all three
decoders. Finally, an overall performance measuxre was calculated in

terms of both error reduction and error ratio.

5.4 Experimental Results and Findings

Table 5.2 summarizes the results of all the 23 simulations. It
can be easily seen that the hybrid decoder out-performed both the
Viterbi decoder and the algebraic decoder in every case, The only
exception was that for the 1% random error channel, the hybrid
decoder had one decoding error while the Viterbi decoder corrected
all the errors. This could be an accident, however, it is also
anticipated that while the hybrid decoder is the best decoder for
compound channels, its performance can only approach that of the
Viterbi decoder in strict memoryless channels, but can never exceed

it,



TABLE 5.2

COMPARISON OF CHANNEL PERFORMANCE FOR DIFFERENT CODING SCHEMES

Z OF NOMINAL CHANNEL ERROR
RANDOM PROBABILITY 1 0.12 0.01%
ERROR | PERFORMANCE NO. OF | CEANNEL IMPROVEMENT |NO. OFCHANNEL IMPROVEMENT | RO. OF|CHANNEL IMPROVEMENT
ERROR |_E.P. with Coding (ERROR {_ E.P.withCoding |ERROR | E.P. with Coding
- BITS E.P. withoutcoding | BITS E.P.without Coding | BITS E.P.without Coding
RECEIVED SEQUENCE 3840 493 22
DECODED SEQUENCE: VITERBI 543 0.282812 53 0.215010 0
ox ALGEBRAIC 631 0.328646 41 0.166329 0
HYBRID 325 0.169271 32 0.129817 0
RATIO OF IMPROVEMENT : HYBRID/VITERBI 0.598528 0.603772
RECEIVED SEQUENCE 3727 462 21
DECODED SEQUENCE: VITERBI 527 0.282801 37 0.160173 0
5% ALGEBRAIC 670 0.359538 46 0.199134 0
HYBRID 325 0.174403 26 0.112554 )
RATIO OF IMPROVEMENT 0.616699 0.702703
RECEIVED SEQUENCE 3632 442 20
DECODED SEQUENCE: VITERBI 519 0.285793 27 0.122172 0
10z ALGEBRAIC 680 0.374449 42 0.190045 0
HYBRID 348 0.191630 17 0.076923 0
RATIO OF IMPROVEMENT 0.670520 0.629629 (]
RECEIVED SEQUENCE 3513 421 19
DECODED SEQUENCE: VITERBI 460 0.261884 23 0.109264 0
15% ALGEBRAID 679 0.386564 26 0.123515 0
HYBRID 300 0.170794 13 0.061758 0
RATIO OF IMPROVEMENT 0.652174 0.565218
RECEIVED SEQUENCE 3419 400 16
DECODED SEQUENCE: VITERBL 459 0.268500 16 0.080000 0
202 ALGEBRAIC 676 0.395437 19 0.095000 0
HYBRID 293 0.171395 6 0.030000 0
RATIO OF IMPROVEMENT 0.638343 0.375000

LZAS



TABLE 5.2
(Continued)

COMPARISON OF CHANNEL PERFPORMANCE POR DIFFERENT CODING SCHEMES

T oF NOMINAL CHANNEL ERROR 1x 0.1 0.01%
RANDOM: PROBABILITY NO.OF | CHANNEL IMPROVFMENT| NO. OF| CHANNEL IMPROVEMENT! NO. OF| CHANNEL IMPROVEMENT
ERKOR @ TERFORMANCE ERROR | E.P. with Coding | ERROR | _E.P. with Coding | ERROR | _E.P. with Coding
i BITS E.P. without Coding, BITS E.P. without Coding | BITS E.P.wvithout (bding
;  RECEIVED SEQUENCE 3330 | 385 15
! DECODED SEQUENCE: VITERAI 432 0.259459 27 0.140260 0
257 | ALGEBRAIC 691 : ..:5015 21 0.109091 0
j HYBRID 277 0.166366 16 0.083117 0
~ |
. RATIO OF IMPROVEMENT: HYBRID/VITERBI 0.641203 { 0.592592
. RECEIVED SEQUENCE 1231 366 13
:  DECODED SEQUENCE: VITERBI 418 0.258743 17 0.092896 0
302 | ALGEBRAIC 658 | 0.407303 25 0.136612 o
| HYRID 255 | 0.157846 10 0.054645 0
© RATIO OF IMPROVEMENI 0.610049 0.588238
| RECEIVED SEQUENCE 3111 341 12
! DECODED SEQUENCE: VITERBI 345 | 0.221794 8 0.046921 0
352 ALGEBRAIC 674 0.433301 21 0.123167 0
HYBRID 219 | 0.140791 5 0.029326 0
RATIO OF IMPROVEMENT 0.634783 0.625008
(=) 2
RECETVED SEQUENCE 3017 333 11 =%
{ DECODED SEQUENCE: VITERBI 326 | 0.216109 10 0.060060 0 o @
40X , ALGEBRAIC 650 | 0.430892 22 0.132132 0 % 9-
g HYBRID 204 | 0.135234 5 0.030030 0 ? >
RATIO OF IMPROVEMENT | 0.625768 0.500000 ,"_‘E;
-t
RECEIVED SEQUENCE 2905 310 10 > '6
DECODED SEQUENCE: VITERBI 329 0.226506 9 0.058065 0 =
452 ALGEBRAIC 662 | 0.455766 25 0.161290 0 =
HYBRID 220 | 0.15146) 6 0.038716 0 (77
RATIO OF IMPROVEMENT 0.668693 0.666667

STl
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TABLE 5. 2
{Cont inued)

C/HPARISON OF CHANNEL PERPRNANCE POR UIPYEREET CODING SCHEMES

2 o o SRORARILITY e 1z : 0.12 0.01%
RANM V2 rann - Wi (% CHWRREL IVPVIVERENT | W, OF | CHASNEL 1MPRI/ENENT | %0. OF | CHANNEL LFROVEIENT
23 REET IR — JERROP | P.P. with Coding j EBOR | P.P. with Coding | ERROR | E.P. with coding
TTe—e_ 3175 E.P.without Coding | BIT8 ! E.P.vithoutCoding | BIT3 | E.P.without coding
kRt TREIEGR ‘2793 5 17 10
| O AL LHLENCR: VITERBS fs - 6.220751 P 0.0648351 U
ix ALLERRS LT, 636 6.49%339 L2 0.167232 0
' HYERID L 212 5.15120% - 0.041958 0
l'},'!;", ’F’ "ﬁ?!f-m Vl?ﬁi';/'lITP?LI H.68%312 ' : 0.857143
VELEIVED LR ERR 2657 | | 269
UROLEL WAEMCE: V1TRREL 227 €.171192 P 0052065 9
oy ALGRRRAYC C 693 6.%22624 L 0.14%099 0
HIEK 1L P 172 0.129713 6 | 0044610 0
PITIL GF IREROTEMRN 6.757765 S 0.85714% 0
e ; e .
VECRIVH) LR ENCE 2511 ;2% 9
SELARET TUREACE:  VITRERI L 219 6.17447%2 L7 0.056000 0
o1 ALLEERALL W 0.66215) ;33 0.284000 0
HIBFID C1ET L 0,14%94% Y 0. 04800 0
PATIG G ISFROIIEENT ‘ Con.y3888 0.857143
VLLRIVED THIFIENCE 2371 i | 23 9
) DL/SOEL SUEEWE: VITEERD P19z o 6.161957 . 0.925424 0
651 ALLERRALS 1672 1 6.566845 {19 0.161017 0
HYREID D131 1 0,310962 ¢ 0.025625 o {
PATIG OF IMPVIIIPHENY i 4.642292 ; ; 1.000000 ;
S A itk R . : ‘ i
YRCYIVEL SEAFECE j2241 ! . 212 9
Jur | URCOUED SEAEMCE:  VITREBL L1686 0.148148 iP5 0.047170 0
; ALLELEAIC L 69% 1 0.621151 s 0.047170 0
; HYBRIL {126 ;  0.112450 P05 1 0.047170 0
H 4 ! : i
. BATIO GP IMPESVEMENT i i 0.759038 i i
»e <




TABLE 5, 2
(Continued)

COMPARISON OF CHANNEL PERFORMANCEZ FOR DIFFERENT CODING SCHEMES

ey o
XoF o OMINAL SrcpaEl ERKGR | 12 0.12 0.012
RANDOM o _PRCEABILITY TN, oricmwzx. IMPROVEMENT | NO. OF | CHANNEL IMPROVEMENT | NO. OF | GHARVEL [MPROVENENT
LFROR ! PERFORMANCE T { ERROR = E.P. with Coding |ERROR | _E.P. with Coding | ERROR | E.P. with codi
' T~~~ BITS |EP. vith Coding E.P. without Coding |BITS |E P.without Coding
BRECTIVED SEQUENCE T 2087 | 194 9
' DECODED SEGUENCE: VITERBI ! 113 : 0.10R289 0 0.000000 0
75% ALGEBRAIC | 6035 10.583613 17 0.175258 0
HYBIRD |75 | 0.071874 0 0. 000000 0
|
} ret10 OF DMPROVEMENT : HYBRID/VITERBI | [ D.663724
RECFIVED SEQUENCE Y 177 9
 LECODED SEAGENCE: VITERBI S R ¥/ 0.120494 2 0.022599 0
BOx ALGEBRAIC P'o634 1 0.652935 12 0.135593 o
' HYBRID |75 | 0.077240 1 | 0.011299 0 e
: |
. RATIO OF IMPROVEMENT l 0.641028 0.499978 % a
. | o G
! RECEIVED SEQUENCE 11778 160 8 2
| DECODFD SEQUENCE: VITERBI i 85 0.0956113 0 0.000000 /] % >
g5y | ALGEBRAIC 655 | 0.73678) 1 0.137500 ] =
: HYBRID i 48 | 0.053993 0 | 0000000 0 O v
PATIO OF IMPROVEMENT ; 0.554704 g; E’)
e
. RECEIVED SEOUENCE L1639 149 8 1)
i DECODED SFQUENCE: VITERBI i 62 0.075656 4] 0.0 0 2 6
907 | ALGEBRAIC | 660 | 0.805369 8 0.107383 0
. HYERTD i 48 0.058572 o | 0.0 O
! ' |
* RATIO OF IMPROVEMENT j 0.774188 i
— , RECEIVED SERUENCE | 1452 137 8
95% ‘ DECODED SENUENCE: VITERBI | 12 2.01/529 (1] 0.000000 (4]
i ALGEBRAT. | 645 | 0.88843y 7 0.102190 0
g HYBRID ; 12 | 0.016529 0 0. 000000 o
| RATIO 9P IMPROVEMENT ; |_1.000000 l N -

rs

4



TABLE 5. 2
{Continued)

COMPARISON OF CHANNEL PERFORMANCE FOR DIFFERENT CODING SCHEMES

z oF INAL CHANNEL FYROR 12 0.1z 0.012
m PERPORMANCE PROBABL..TY NO.OF |CHANNEL IMPROVEMENT | NO. OF | CHANNEL IMPROVEMENT | NO. OF | CHANNEL MPROVEMENT
ERROR | E.P. with Coding | ERROR | E.P. with Codin ERROR | _E.P.with Coding
BITS |E.P.without Coding | BITS E.P.without Coding | BITS | E P.without Coding
RECEIVED SEQUENCE 1131 135 8
DECODED SEQUENCE: VITERBI 0 0.000000 0 0.000000 0
ALGEBRAIC 632 0.964150 7 0.103704 0
1002 HYBRID 2 0.003051 0 0.0v0000 0
'RATIO OF IMPROVEMENT:HYBRID/VITERBI
RECEIVED SEQUENCE 2487 310 16
SHORT DECODED SEQUENCE: VITERBI 11 0.008846 0 0. 000000 4]
BURST ALGEBRAIC 0 0. 000000 0 0. 000000 ]
ONLY HYBRID 0 0.000000 0 0.000000 0
RATIO OF IMPROVEMENT
RECEIVED SEQUENCE 4911 643 3
LONG DECODED SEQUENCE : VITERBI 1225 0.498880 72 0.223950 1 0.064516
BURST ALGEBRAIC 1183 0.481776 87 0.270607 2 0.129032
ONLY HYBRID 732 0.298106 43 0.133748 1 0.064516
RATIO OF IMPROVEMENT 0.597551 0.597223 1.000000
o
2%
* Q)
° 9.
k /
LA
2%
K /)
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Due to the amall amowt of data teated, {.e. 04000 bitw foy
each teat, the statfatics ohtained Jdid WOt vet weew wtabilteed,
expecially for thome low woire chawnels, However, the collucted
data did reveal the tendency o taproving performance with ta=-
creasing burat contenta of the chanttela.  This phenomenon WaR even
mre pronowced for low wotae channela,  Ar an ext veme Came, the
short burst only channel had all etvore vemoved after the hebriyd
decading but had 11 errur bita left when Viterhi decwlet wan
appliedi the overall petrformance gatn of the hybetd decoder wver
the Vitethl decoder wan apouud W% to W%, e ta t vemendous
fmprovement and there ta o keown atgor!the which van perform ao well,
therefore, the goal of achieving an algorithm whore petrformance
approaches that of the maxiwum Pike ot Viteshg decoder (n com=
Battfug vandom ervors A vet porneeres a burat Errar vottest fug
capab ity approaching that or (he virtimal 1) hurat covrectoyr was
"almat" fulefiled. e tearan the word "atmoet" (x weed ta that the
hvbrtd algorithm does not exactly mateh the theoretival peV v tmancey
of the twe.  Purther davurg{on abowt thia Point followe (n the nest
sectiong 4t fa hoped that wowe Hight can he ahod o fugthey {mprove -

ments of thir algor{thm,

Peb o Nacusatona and Cone bog o

The matn dranback of (e rrepezed hvbieid decoder ta the fnabh i ey
of the avadrome detecting logie to tell the beglnnfng and the ewding
W an ervior event delinttely, although (6 coutd teld wit, high prahas
blltty.  The mecond drawback {s that the vl rowe detoct thg togiy

coutd not Hatingutalh a short buret from a randem ovvar; all pandom
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errors were treated as short bursts. This may not be a hazard if the
random errors are sparsely distributed. However, if the successive
random errors are not separated by enough clean guard space, it will
be mistaken as a long burst and allocated to the algebraic decoder.
Clearly, the algebraic decoder may commit more mistakes than the
Viterbi decoder for such "pseudo-bursts", and thus become a source of
deterioration for the hybrid decoder. However, this deterioration
would not happen if the syndrome detecting logic could correctly
identify the beginning and the ending of an error event. Therefore,
the first drawback seems the most serious one,

Another factor which has a decisive influence on the performance
of the hybrid decoder is the number of consecutive zeros in the syn-
drome patterns. If the maximum nunber of consecutive zeros over gll
syndrome patterns were small, the decision of the event "error is
over" could be made much earlier, then the guard space requirement
could be significantly relaxed, and many long bursts could be broken
up into several short bursts., If this were true, the overall per-
formance of the hybrid decoder would also be improved.

So far all the drawbacks of the proposed hybrid decoder have
been mentioned. These drawbacks are difficult to remove, First,
it is not possible to store all the syndrome patterns because of
storage space and the searching time involved, Second, the number of
syndrome patterns are in the same order as the number of error patterns
and are of the same length. For distinct syndrome patterns to exist,
about 3/4 of the n-tuples in the n-space must be selected. This will

not allow all the syndrome patterns to have a "1" in the first position

and a "1" in the last position, and the all-zero biocks within all
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patterns will be very short. Unless some other approach 1is taken,
no drastic improvements can be seen.

The propoged hybrid decoder, though it has these drawbacks, is
in performance still superior to any known algorithms for the com-
pound channel. This is because that the chances of encountering a
"bad" syndrome pattern are low and the "bad" syndrome pattern causing
an erroneous decoding is still lower. Even for arbitrarily long
bursts, the algorithm allows the decoding errors committed by the
algebraic decoder to be limited to within (I + §)2 bits and the rest
of the sequence is passed to the Viterbi decoder. Furthermore, the
error propagation effect of the Viterbi decoder is also suppressed,
Exror propagation - uppression can be achicved for any error event,
regardless of whether ft can be corrected by the algebraic decoder or
not; therefore, this is the biggest advantage of the hvbrid decoder
and one of the factors that is responsible for the overall improve-
ment of the algorithm,

Based on the above observation, 1t seems that the proposed
algorithm works best when the channel is rich in shert bursts and
worse when the chamnel is strictly random and the random errors are
not separated by enough clean guard spaces.  Since purely random
events, by definf{tion, must be distributed evenly over their sample
space and not tend tu cluster together, for channels with reasonable
error deasity clean guard spaces should be achieved. Therefore, {t
is those "nearly random and vearly bursty errors" that cause troubles.
Just wheve the dividing line {s between "a Rroup of random erroie"

and "one long burst" is not quite clear. The correct definin-, of the

two kinds of errors may have to depend on a better understanding of




have to pe made to assume shorter length, This ig true becauge if

the decision is made too late, the ending of 8ome of the shorter

"zero check" ig actually 4 trial-and-r.rpop Process; i¢ depends on the
8yudrome Patterng a4 well ag the channel error distribution. The
optimal choice of the length may be determined empirically through
Computey simulation; however. such determination is time and money

consuming, and {¢ varies frop channel to channe}, The reason that



CHAPTER VI

RECOMMENDATIONS

6.1 The Goal

Theoretical formulation indicated that the rate 1/2, constraint
length 7 code used for simulation should be an optimal B2 burst
corrector. Its random error correcting capability is well-known to
be very good--actually the best code that has ever been used in
practical applications. Tais code is capable of correcting 6 con-
secutive blocks of errors in a 12 block span; that is, even if half
of the received sequence is in error, no information has been lost as
long as the erroneous bit streams are separated by clean guard spaces
of 6 blocks or longer. For error events that are not followed by these
clean guard spaces, the information content is still recoverable if
they are randomly distributed with a short length of 1 to 2 blocks as
these are deemed correctable by the Viterbi decoder from an earlier
study. The goal is to find a decoding algorithm which can fully
exploit the potential burst-correcting capability of the code and yet
perform as well as the Viterbi decoder in dealing with the random

errors.

6.2 Problems and Possible Approaches of Attacking

These Problems

As mentioned in Sec. 5.5, the proposed algorithm performs well

for compound channels but it has not reached the full error correcting
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potential of the code. Several immediate problems encountered
during the realization of the proposed hybrid algorithm were also
pointed out in that section. Here it is well to reconsider these
problems:

1. The syndrome patterns do not always begin with a "1" and
end with a "1". The damages cauged by this fact might not
be when the errors are segmented by long clean guard spaces
but rather when two consecutive bursts, the syndrome of one
prefixed with several zeros and the other suffixed with
several zeros, are so close that the zeros of both syndromes
are overlapping. Since the chances of such events are very
low, they may not be a serious problem. One possible solu-
tion might be the use of "syndrome removal" instead of
"syndrome resetting". After each decoding operation,
methods may be used to calculate the syndrome of the assumed
error vector and subtract it from the content of the syn-
drome register. If the assumption made is correct, the
syndrome register will be Zero; otherwise, the correction is
improper and it should be attempted again at the next opera-
tion. It would be even better if methods could be devised
to extract information about the error vector from the
remainder of the syndrome register after each syndrome
removal. Another approach is to re-encode the decoded
sequence. If both sequences are in perfect agreement, it
may be assumed that the received sequence is error free and

this fact may be used to check the clean guard space require-

ment. However, the above statement is only a necessary
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condition-—not a sufficient one--for being "error-free'.

This is true because the re-encoded gsequence and the

received sequence are still in perfect agreement, provided
the received sequence is not worror-free' and no correction
has been made. As a matter of fact, these two sequences are
always in agreement with each other if there has been no
correction attempted. Therefore this method 1is deemed not
usable for the hybrid system.

The number of consecutive zeros within the syndrome patterns
causes a delay in recognition of the ending of an exrror
event. Theoretically two consecutive bursts may not show

any gap between their syndrome sequences if they are space
with a clean guard space of minimum length, i.e. 6 blocks for
the example code. However, the syndrome patterns are not

the all "1" vectors, &S a matter of fact, there may be seve-
ral consecutive zeros within a syndrome pattern; therefore,
it cannot be concluded that the error is over by examining
one "0'" in the syndrome sequence, not even after seeing
geveral "O"s. What can be done is to examine all the possible
gyndrome patterns and to find out just what the maximum num=
ber of consecutive "g'g among all the syndrome patters is.
However if this number plus 1 is used as the decision-making
timing, the ending of some bursts may be overlooked if they
are followed "too close" by other bursts. This may result in
combining gseveral shorter pursts into a long burst with some

of the error-correcting capability of the algebraic decoder
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sacrificed. If the channel error distribution is such that
the error events are sparse, the above-mentioned method will
not cause significant detericration, otherwise extra caution
must be excercised. One empirical solution is to perform
experiments, using various "sero-check" lengths, to deter-
mine which one gives the best performance.

The syndrome detecting logic used for the proposed hybrid
decoder can only differentiate short bursts from long bursts.
Random errors may be treated as either short bursts or long
bursts, depending on when the error sequence obtained the
required clean guard space., If a group of random errors is
treated as a short burst, no problem will result. However,
if it is treated as a long burst,the nondefinite decoding of
long bursts by the algebraic decoder and the excellent
random-error-correcting capability of the Viterbi decoder
would, on the average, cause deterioration. Just what could
te done for this problem is not quite clear at the moment.
This i{s true because little is known about the Viterbi
decoder's performance with respect to the density of error
bits in the received sequence,

It is felt that tull fnformation content of a contami-
nated sequence must be extractable if the "complexity of
hardwares" {s disregarded. Probably a completely different
approach should be taken fn the forming of svndrome pattems
and the designing of syndrome search logic. It is also
possible that the proposed algorithm is the optimal within

realizability, Much {8 left to be determined by future
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investigations. A more ambitious task is the gtudying of the E

structure properties of the convolution codes by both the

finite-state machine and the algebraic point of views and the

e

inter-relation between the two approaches. In any case, it
is felt that a hybrid system using both properties must be
used in order to exploit fully the burst-error-correcting
capabilities of the ~onvolutional codes. This is because the
optimal random errot correcting decoder is already available,

i,e. the viterbi decoder.

6.3 Further Improvement Of the Proposed Algorithm

1f a little bit more “complexity" disadvantage can be tolerated,
further ijmprovement of the proposed algorithm is still possible.
Since the reduction of the number of errors per words is more
pronounced than the reduction of total errors, it is possible to con-~
catenate the proposed algorithm with a block code, for instance 3
triple error correcting BCH code, to further remove the remaining
errors. 1f the application requires stronger pburst correction, then
interlacing may be used prior to hybrid decoding. If high performance
is required for both random errors reduction and bursts reduction, then
both concatenation and interlacing may be used. Since the proposed
algorithm uses only one code with two decoding algorithms applied al-
ternatively, additional concatenation and interlacing will not

complicate the overall system beyond toleration.



APPENDIX

SIMULATION

As pointed out in Sec. 5.2.3, there are many different ways of
interfacing the two algorithms and each has its advantages and dig-
advantages. It was found during actual computer simulations that the
last variation, with some additional modifications, worked the begt
among others. Simulations were performed on Univac 1108 multipro-
cessor. The final procedure adapted was to let the algebraic decoder
correct all the bursts, long and short. Random errors were treated
as short bursts if they were followed by enough clean guard space;
otherwise, they were passed to the Viterbi decoder to be decoded
probabilistically, This is because the algebraic decoder can correct
short bursts definitely while the Viterbi decoder can only decode
probabilistically,

Both source data and chennel statistics were created by using the
pseudo-random numbers. The general process was to create source words,
each consisting of 32 bits, encoding these words, adding channel errors
in a fashion consistent with specified channel statistics, and then
decoding the received sequences using differing alcorithms. Parameters
were monitored which allowed calculation of probability of bit error
rates for both coded and uncoded systems. Fig. A 3 is a sample of the
output format which shows the type of data monitored, collected, and
tabulated. Table A.l lists the input parameters that have to be

specified.
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The computer program developed allows the simulation of any

rate 1/n code, as long as the constraint length of the encoder is less

than 32 stages; however, some minor adjustments must be made 1f n ¥ 2

and the generator matrix is not of size 12 x 12.
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APPENDIX A

ENCODER

Encoding is performed sequentially in strict accordance with
the diagrams shown in Fig. 2.4 or Fig. 4.4. Each encoding operation
causes one bit of the source sequence entering the shift register.
Then the contents of the corresponding stages are mod-2 added accord-
ing to the connection vectors. After the outputs of these EXCLUSIVE
ORs were transferred to the codeword register, the contents of the
shift register were shifted sequentially one place to the right., Then
the shift register was ready to receive the next input bit.

The source words were generated from a set of uniformly dis-
tributed pseudo-random numbers by referring to the seed number. The
seed number was changed every time when a new set was request i %O
prevent repetitious data. Since convolutional codes are linear codes,
the decoder's performance should be invariant to any message sent.
This implies that an all zero sequence could be used to test the
decoder's capability. Reasons for using pseudo-random numbers as
test data are (1) to detect any non-linearities which might occur in

th= hybrid decoding algorithm and (2) for aesthetics.




141

APPENDIX B
CHANNEL

Channels of various statistics can be simulated by proper
choice of the channel parameters. Determination of an error event
is accomplished by examining a sequence of pseudo-random numbers
uniformly distributed between 0 and 1. Since the probability of
observing a number lying between a certain interval is simply the
length of that interval, error events of various probabilities can
be created by assigning proper length of intervals to each of them.
For instances, if a 30% channel is desired; among the 30% errors, 15%
are burst errors and among the burst errors, 10% are short bursts

and 5% are long bursts, then the assignment is shown as follows:
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Fig A.1 Probability distribution function of the
pseudo-random numbers.
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Channel characteristics are gsimulated via an error sequence
which is initially assumed to be all zero. The pseudo-random numbers
are examined one by one. 1f a number in the random error interval is
observed, the corresponding position of the error sequence i8 in-
verted into 1. However, {f the number falls into the range of a
burst interval, another random number i summoned, and its binary
representation {s truncated to the length of the correspading burst,
then stored in the proper positions of the error sequence. This is
done because the bursts should not be limited to the all "]1" pattern.
With this statistically created error sequence, channel characteris-
tics are fully described. Transmission of the message sequence over
the channel is simply a modulo-2 addition of this sequence and the
error sequences the output sequence is stored in the received word
register to be decoded.

The simulations performed in this experiment are not intended to
model any particular channel but rather to create the gross statistics
of most channels. 0f course, the program developed is capable of
modeling any particular channel if parameters describing the channel

are made available.
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APPENDIX C
VITERBI DECODER

The Viterbi algorithm used in the program is exactly as de-
scribed in Sec. 3.2.1.

First, a decoding table is constructed and stored. This table
contains all the information of the trellis diagram; it provides
output data for all possible states with all possible input combi-
nations.

For each decoding operation, one received block is fetched from
the received word register. Since there arve 22 paths leading to
each node of the trellis, the outcomes of these paths are compared
with the received block to determine which one is the most likely
path; this has to be done for all nodes. The path that causes the
least number of errors is selected for each state and the number of
errors caused is recognized as the score of that state. At the same
time, the corresponding input bit is stored in the survivor sequence
register, The following decoding steps compare the 22 paths lead-
ing to the same node, but the selection of the optimal path is based
one the accumulated score of the previous operations and the current
operation, Otherwise, the procedures are the same. The lengths of
the survivor registers are made equivalent to the decoder's con-
straint length. Since the contents of these registers are shifted
to the right one place after eachk operation, outputs start dumping

out after DCL operations. Furthernore, all the survivor paths will
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be merged together before reaching the end of the registers. The

outputs pouring out from any of them are the same; customarily the

first survivor register is used for collecting the decoded sequence.

The reason that all the Zk—l , 1.e. the number of states, survivor

registers must be kept is that during the course of decoding, their

entire contents are needed for possible {nterchanges.

o - @ L ﬂ



APPENDIX D
ALGEBRAIC DECODER AND SYNDROME DETECTING LOGIC

Algebraic decoding is achieved by postmultiplication of the
received sequence with the inverse of the generator matrix, i.e.
~s = rsGS—l. This is equivalent to modulo-2 addition of all the row
vectors of Gy whose corresponding multiplier bit is a "', The
process is as follows: shift the received sequence into the DA
register, oneé block at a time; examine the content of DA bit by bit;
at the same time advance the row vectors of G‘S_1 ; if a 1 is found
in DA, retain that row vector; otherwise discard it; finally,
modulo-2 add all the rows retained and store the result in XA2 , the
right most bit becomes the current decoded bit.

The syndrome bit of a particular operation is obtained by
modulo-2 addition of the 10th pit of XA2 and XAl , counting from
the left, where XAl is simply the XA2 of the previous operation
left-shifted one place. The syndrome bit obtained from each opera-
tion is stored sequentially in SYNR to form the syndrome sequence.

Since the number of possible syndrome patterns grow & exponen-
tially with the length of the burst-error considered, only short
bursts of 2 blocks long are stored in a subroutine called SYDSRH.
The digital representation of these short bursts lies between 496 and
3872; therefore, if the content of SYNR falls {n this range, a

gsearch of the SYDSRH table starts. 1f the syndrome sequence matches

exactly to oné of the syndrome patterns tabulated, the ending and



146

the length of the error vector are known precisely and the decoding
is definite. Since the nonzero interval of the syndrome patterns of
the short burst varies from 5 to 8, the entire decoded sequences of
12 bits resulting from these steps of the operation are subscripted
and stored for later retrieval.

Long bursts are those bursts which cannot be found in the SYDSRH
table. The decoding of the long bursts depends on the examination of
a certain number of consecutive zeros, designated as ZCK, in the
syndrome sequence. If this criterion is satisfied, starting from the
operation right shead of the appearance of the first "0" s counting
back, 12 temporary decoded bits are replaced by the entire decoded
sequence of that operation. It seems that the content of XA? of
every step has to be saved; however, this is not necessary. All that
has to be done is to transfur the content of XA?2 to a temporary regis-
ter XAIT at each step when the corresponding syndrome bit is not "0";
otherwise, no action shall be taken.

GIR register is used to keep track of the decoding actions of
the algebraic decoder for the hybrid decoder's information., If an
error event has been corrected by the decoder, a "1" is recorded in
the corresponding position; otherwise the filling of a "0" or a "1"
depends on whether that step of the opcration for the corresponding
hybrid system should be in mode 1 or mode 2, where mode 1 designates
the Viterbi mode and mode 2, the algebraic mode.

Since an erroneous decoding of the Viterbi decoder may cause the
outputs of the next 36 operations, i.e. 72 received bits, to be un-

reliable, during this period, the only useful results are those

b R YA R D SRl S U TR UM Y Tl 12l Bt B TR 4 td v e ek e
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coming from the algebraic decoder. Therefore, a counter CIR is
employed to keep track of the out-of-gynchronization period of the
Viterbi decoder. If a long burst is detected, i.e. when the search
of SYDSRH falls, as soon as the burst is over, CIR starts to count
from 1, 2, ... up to 36, one increment after each decoding step; then
it is reset to zero, waiting for the next initiation. During the
counting period the hybrid system is regarded as in mode 2. Whenever
the channel is clean, the corresponding bit position of the GI1R
register is assigned a "0", if the system is ir mode 1; otherwise,
"1" is assigned. Another function of the mode register is to remind
the hybrid system to keep on counting, even if decoding is temporari-
ly returned to the Viterbi decoder for some hybrid schemes, or for
this particular scheme, when a short burst is encountered while in
mode 2,

Since most times the error vectors are not as long as 12 bits,
it is desirable to truncate the decoded vector in XAlT to proper
length before transfer and replacement; SYCC and ZCS counters are
used for this purpose. SYCC tells the beginning and ZCS, the length

of the replacement.
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APPENDIX E

HYBRID DECODER

The hybrid decoder becomes very simple with its gub-decoders
and the GIR register on hand. After an {pitial delay of 35 bits,
all 3 registers namely the decoded sequence register of both sub~
decoders and the GIR registeX, gtart pouring out data. The hybrid
decoder accepts outputs ghifted out from either oné of the decoded
gequence registers according to the corresponding book-keeping bit
of the GIR register. 1f a "O" is observed, the Vviterbi decoder's
output is accepted as the final decoded bits otherwise the algebraic
decoder's output is recognized. Since the hybrid decoding 1is per-
formed parallel to its sub—decoders, bit-by-bit, no great time loss
results. The whole gystem is operated in real time and outputs data
uniformly. The only possible gource that might cause nonuniform
outputs 18 the searching of the syndrome table SYDSRH; therefore, the

gize of this table must be kept small.

. e
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Card 1

NW ~ number of possible words

NBPSW ~ number of bits per source word

N ~ number of bits per source block
K - number of EXCLUSIVE ORs
CL - encoder constraint length
DCL - decoder constraint length
GDS - guard space to be inserted in the channel, could be entered
as zero.
ZCK - number of zeros in the syndrome sequence to be examined before

making the decoding decision for long bursts.
ASEED

the initial seed number to be assigned to induce a sequence of

pseudo-random numbers, it could be any real number.

Card 2,3

PBL and BL - BL denote the various error events and PBL are their
corresponding probability assignments. They are sub-
scribed variables; a total of 12 varieties can be accom-
modated; however, only minor changes of the program are

required to increase this capacity.

Card 4

HK1 and HK2 - the connection vectors of the encoder, represented in
octal numbers. Can be increased if the number of EXCLUSIVE
ORs of the enccaer is more than 2.

Card 5,6

G (D) - row vectors of the generator matrix, represented in octal num-

ber. G (1) is not used unless algebraic encoding is intended,
G1(1) - row vectors of the inverse of the generator matrix, repre-

sented in octal number

If the generator matrix is other than 12 rows, minor adjustment must

be made in the program.

TABLE A.1 Input parameters of the simulation program
~hybrid system.
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