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1. Introduction
~"~ - #

The phenomenon of fatigue-crack-closure, first discovered experimentally

by Elber [l,2], continues to be a subject of several recent experimental

and analytical studies; see, for instance, Refs. [3,4]. Elber has also

originally postulated that the crack-closure phenomenon is caused by residual

plastic deformations remaining in the wake of the advancing crack-tip.

Analytical models that lend theoretical support to the existence of

the crack-closure phenomenon in fatigue crack growth, and provide some

rationality for the adoption of an effective stress-intensity range, based

on closure effects, for the correlation of fatigue crack growth rate, have

also been proposed by Budiansky and Hutchinson [5].

As for a more general analysis of extending cracks under general block

cyclic loading, to obtain crack-closure stresses, crack-opening stresses,

details of crack-surface displacement, and residual stresses in the crack-

tip region, etc., elastic-plastic finite element analyses were first per-

formed by Newman and his colleagues [6,7,8]. Apart from these analyses, the

authors are aware of similar attempts only by Ohji and his co-workers [9,10].

The studies in [6-10] considered the Mode I case only. Also, since the crack

growth was simulated in [6-10] by shifting a finite element node (the current

crack-tip) to an immediately adjacent node, and since constant strain tri-

angle type finite elements were used to model the cracked structure, a

very fine finite element mesh (with the smallest element often being of the

order of 10 times the crack length) is necessary in the modeling procedures

of [6-10]. This can be very expensive especially when cyclic loads of

arbitrary spectrum are considered.

One of the objectives of the present report is to present an alternate

cost-efficient and accurate elastic-plastic finite element procedure to



analyse fatigue crack closure and its effects under general spectrum load-

ing. Both Modes I and II type cycling loadings are considered. Also

presented in this report are the results of an investigation, using the

newly developed procedure, of various factors that cause crack growth

acceleration or retardation and delay effects under high-to-low, low-to-

high, single overload, and constant amplitude type cyclic loading in a

Mode I situation. Further, the results of an investigation of a center-

cracked panel under external pure shear (Mode II) cyclic loading, of con-

stant amplitude, are reported.

2. A Synopsis of the Present Analysis Procedure

Before embarking on a presentation of the mathematical details, the

salient features of the presently reported analysis procedure are given

be low:

(i) The present elastic-plastic finite element procedure accounts for

arbitrary strain-hardening material behaviour; the mathematical description

of incremental elastic-plastic flow consists of Huber-Mises-Hencky yield

criterion, and a Prager-Ziegler type kinematic hardening rule which best

models the Bauschinger effects.

(ii) The well-known Hutchinson-Rice-Rosengren [11,12] type strain and

stress singularities, for strain-hardening materials, are embedded in specially

developed elements near the crack-tip. This eliminates the need for a very

fine mesh near the tip. For instance, the crack-tip elements in the present

procedure are of the order 10 of the crack length, as compared to constant

-3 -4
strain triangles of the order of 10 to 10 times the crack length generally

used in the procedures of [6-10]. A hybrid displacement finite element

method [13,14] is used in developing these special elements.



(iii) The above special hybrid elements are of circular-sector shape,

centered at the crack-tip; thus enabling one to model crack growth in any

arbitrary direction, from the crack-axis, under general mixed mode cyclic

loading.

(iv) In the present procedure, crack-growth is simulated by: (a)

translation of the core of circular-sector elements, with embedded H-R-R

singularities, by an arbitrary amount in the desired direction, (b) reinter-

polation of requisite data in the new finite element mesh, and (c) proportional

relaxation of tractions in order to create a new crack surface.

(v) In order to racist accurately determine the crack-opening stress c

and crack-closure stress O ., the displacements at nodes on the crack-axis
c*

before closure (and after opening), as well as the restraining force at the

corresponding nodes after crack-closure (and before opening) are extrapolated

against the load level. In all the cases studied, these two sets of extra-

polated values for o~ and 0" . were found to correlate excellently.

(vi) A static-condensation procedure is employed wherein the plastic

portion of the structure is isolated from the elastic; the stiffness of only

the former part keeps changing whereas that of the latter remains fixed.

This results in a considerable saving of the computational time. This and

the invocation of the appropriate anti-symmetric and symmetric conditions

for modes II and I problems, along with the use of special elements of a

large size as described in (ii) above, reduce the analysis procedure to be

feasible as a routine tool in design, if necessary.

(vii) A study is made to arrive at a criterion for the stress level

a , at which fatigue crack growth occurs. In prior literature, this crack
GX

extension stress level was chosen arbitrarily. For instance, in [6-8] the

crack is extended at the maximum applied stress in each cycle in a spectrum

3



loading, whereas in [9,10] the crack was extended at the applied stress

level at which the restraining nodal force at the new crack-tip becomes

zero. In the present study, for instance in a constant-smplitude (zero

to tension) cyclic loading, it was found that o" and CT ,, were very sensitive
op c*

to the chosen a . In the present work, a criterion, a = p(a - a )
ex * • ' ' ex ^^ max op7

+ cr where p is a constant of proportionality, is postulated; and p is

obtained by calibration such that the calculated o~ correlated with that
op

observed in experimental studies such as in [1,2,33. However, it is not

claimed that this is a general criterion; it is recognized that it is dependent

on material properties, and to an extent on the analysis procedure itself.

The mathematical details of the above features are discussed in the following.

3. Elastic-Plastic, Embedded Singularity, Incremental Finite Element
Method, Based on Hybrid Displacement Model, For Analysing Cracked Structures

To start with, we use circular-sector shaped "singularity" elements

near the crack-tip, as shown in Fig. 1. In these singularity elements,

a displacement field which corresponds to strain and stress singularities,

for strain-hardening elastoplastic materials, of the well-known Hutchinson-

Rice-Rosengren [ll,12] type, is assumed. The above singularity elements

are surrounded by "regular" eight-node isoparametric quadrilateral elements,

as shown in Fig. 2. Compatibility of displacements and continuity of trac-

tions between these "regular" and "singular" elements is enforced through

a Lagrangean Multiplier technique as shown below.

The incremental analysis of the present elasto-plastic problem is

based on a continuously updated Lagrangean (coordinate-system) formulation.

In the following, for simplicity, we consider the formulation in the context

of a general three-dimensional problem and present only the essential
v

mathematical details. We consider a fixed cartesian coordinate system, and



consider (V to be the 'state' (viz. deformation, strain, and stress) of the

structure before the addition of the Nth load- increment. Let x. be the
i

material coordinates of a point in the initial, undeformed and unstressed

N
configuration, C, . Let u. be the displacement, measured in the fixed

cartesian system, of a point in C. to the deformed state C . The new

coordinates of the material point in C then become X. = x. + u.. Let

Nthe (symmetric) Eulerean (true) stress tensor in C be T.., measured per
N ij

unit area in C and in the metric of the fixed cartesian system. Let the

body forces/unit volume in CL, be F. and prescribed surface traction/unit

area in C., be T. .
N i

Let additional body forces AF. (per unit CL^ volume) and additional

surface tractions AT. (per unit CL^ area) be applied during the movement of

the structure from C to C , , • Let additional cartesian displacements of
N N+l

N+l N
the material point in moving from C to C , be Au.; thus X. = X. + Au.

are the new coordinates of a material point in C 1 . The incremental Green

•it
strain A g. . from C to C •. , with reference to the metric in CM can then be

written as ,

dAu SAu -, rSAir oA

During the motion from CN to C , , , the state C is treated as one with

-'initial stresses". The new stresses in C , due to the additional incre-

mental loading, will be represented by the symmetric second Piola-Kirchhoff

N+l
stress tensor S../n..N, which is measured per unit area in C .N

- * « i j <3-2)
Assuming the material has yielded, the relation between the incremental



+ * *
stress (AS..) and the incremental strain A g. . will be written as

A\j " <jk£ <Tij> *\x . (3-3)

where E..,£ ̂s t^ie current constitutive property, as modified by plasticity,

N
and is a function of current true stress, T... Such a constitutive relation,

based on the well-known Huber-Mises-Hencky yield criteria, Drucker's

normality condition, and a Prager-Ziegler type kinematic hardening law has

been derived for the present plane stress conditions, following the procedure

described in Ref. 13.

Based on this, it can be shown that the variational principle governing

the equilibrium of state CN,, is 6An = 0 where,

P

An_(Au. ,Av. ,T_ . - ) =^ (j ! (TN. . + % A*S . .) A*e. . + \ T1? .Au. .Au, .HD i i Li y. I s. L> ij 2 ij/ ij 2 LJ k,i k,j
m

- (F1? + AF.)Au.lda - f T_.(Au. - Av.)ds - f (T. + AT.)Av.dsf (3.4)
1 1 3 — I -xji. Lil L 1 *^ 3_ 1 1 Jao *"• " -1- s

m . <
m

where

Q = domain of the m finite element,
m

dQ = boundary of the m finite element,
m

S = a portion of 9Q where tractions are prescribed,
m
N
T. . = true (Euler) stress in n , measured/unit area in C and in the

fixed cartesian metric,

N -
F.,T. = body force and surface traction, per unit volume and per unit

1 area, respectively, in r,

The Stress -increment AS., is commonly referred to as the Truesdell stress-
increment. This stress-rate is objective [15,16].



1 r - . 3Au.~,

'I I"IT + Tlfj' ̂ ij = EijU^ij
) **ek* <3'5)dxj °*i

Au. = arbitrarily assumed displacements, in each element, that need

not satisfy interelement compatibility a priori. In elements

surrounding the crack-tip, displacements corresponding to the

Hutchinson-Rice-Rosengren singularities, for hardening materials,

are included.

Av. = independently assumed displacements at the element boundary,

dQ , which inherently satisfy inter-element compatibility

criteria,

T . = Lagrange Multiplier to enforce the compatibility condition,
Li

Au. = Av. at oQ , and
i i m

AF.,AT. = prescribed increments of body forces and surface tractions, re-

spectively, measured unit volume and unit area, respectively in

V
The Euler equations corresponding to 6Arr (6Au. , 6Av., 6TT . ) = 0 lead to,

i- i J-ji

A*S. . . + (i^.Au, .) . + AF. + frj1. . + F. \ = 0 (3.6)
kj ,J \ ij k , j / , i k L k j , j kJ

(rf. + A*S..)n. + T^.Au. .n. = T . at oQ (3.7)
\ kj kj/ j ij k,j i Lk m

T. + AT. = T. at Sa (3.8)
m

and

Au. = Av. at SQ (3.9)1 1 m



In the above, a comma followed by an index such as i, is meant to designate

Na partial differentiation with respect to the cartesian coordinate, X..

Eq. (3.6) refers to the equilibrium of the total second Piola-Kirchhof f

N+l
stress S . . XNV in CM , . If state C was in true equilibrium, the last two-

bracketed terms in Eq. (3.6) would be equal to zero. However, because of

the .inherent numerical errors in the incremental solution process, the

state C may not be truly equilibrated. Thus, retaining the last two terms

in Eq. (3.6) leads to an "equilibrium-check" iteration process, similar to

the one described in detail by Hofmeister, et al [l?]. Eq. (3.7) states that

the tractions derived from the assumed incremental interior displacements

match the independently assumed boundary tractions, T . . Finally, Eq. (3.9)
Lii

is the statement of inter-element displacement compatibility that is enforced

in the present method, by means of Lagrange Multipliers, T . .
J_i 1.

Because of the advantages of the above described hybrid-displacement

model, and the convenience of the conventional finite-element displacement

model, a combination of both the methods is used in the present formulation.

Thus one can visualize the domain of the cracked structure to be divided

into two regions, (a) a small region near the crack-tip where the singular,

near field solution is predominant, and (b) a region away from the crack-tip

where the effect of the singularity is not dominant. In the present calcu-

lations, a hybrid-displacement model is used to derive the stiffness properties

of the near- tip sector elements, and the conventional displacement model is

used to derive the stiffness properties of the far-field, eight-node

isoparametric elements.

Consider first the development of the properties of the near-tip,

circular-sector shaped "singular" elements, wherein, the three independent



*
variables Au., Av., and TT. are assumed as follows :

X 1 J_»l

^Avu = A JJ, Av± = L Aq; I = Ro, (3.10)

where P, and a are unknown independent parameters, and Aq are increments of

nodal displacements during the generic load step, C ~* CN, •. • The functions

A and R are arbitrary. However, L are functions ar the boundary of the

circular-sector element such that they uniquely interpolate for Av at the

boundary in terms of the relevant Ag at the boundary, and in addition, en-

sure displacement-compatibility with the surrounding 8-noded isoparametric

quadrilateral elements (Fig. 2).

For far-field regular elements, as mentioned earlier, the conventional

compatible displacement finite element model is used. The incremental

energy functional corresponding to this model can be expressed as,

m

ATTCD(Aui) = ^ I / • (2 EiiklAeklAeii + 2 TiiAuk iA\ i\jU J- _£—, -| ?S ^-J^-J- IX JL J-l £- J.J i\.,X t^.,Jm—p i j. \i
m

- AF.Au. jda - f AT.Au.ds + f (T^.Au. . - F^AuJda
i !/• J LI. ft J-J i.J x !S \lo m

m

- J* T^Au^sj: (3.11)
Sa

m

The finite-element approximations for a far-fieId regular element are con-

sidered as,

Au = D Aq (3.12)

<
The usual notation, (~) under a symbol, is used to denote a column vector,
and 0«) under a symbol is used to denote a matrix.



from which the strains and deformation gradients are derived as,

For purposes of convenience of notations we consider that, out of a total of

M finite elements, m = 1, p are the so-called singular elements and m = p+1

. . .M are the far-field regular elements.

The assumptions for the field variables as in Eq. (3.10) for elements

m = l,...p are substituted into Eq. (3.4) and the first variation of rr
HD

with respect to the parameters ot and p is set to zero, to obtain, for

elements m = 1, p, that

a = P"T(H +C )P~1 G Aq+ P~T C - P~TF, (3.14)
~ '« & «g « « * w ~e « ~4

B = P^G Ag (3.15).
"* •r-' *~

where,

m

and

m

H = | WT:E WdA (3.17)
~ Q ~ ~ ~

m
,T.

£ = J R A ds (3.18)

m

G = f RTL ds (3.19)
*~*_* _ *J r*̂  ̂ _̂/

m
/ T N T N \
VW1 i Wl + W2 i' V2J^ (3.20)

C = WT TN dA (3.21)

10



Substituting for a and 13 from Eqs . (3.14 and 15) into Eq. (3.4), one can

express ATT,™ in terms of Ao only, as,
HD *•

P

m— 1

where,

2
""

K = ( £ G ) H C P ^ ) (3.23)

K = (P'-'-G)1 C (P^G) (3.24)

(3-25)

m
and

AQ = ( P " ) (F. - C ) (3.26)**c \~i K/ ~4 ~e

Likewise the assumptions for the field variable in Eq. (3.12) for

elements m = p + 1 --M are substituted into Eq. (3.11) to obtain ATT

for elements m = p + 1 --- M, as,

CD < 3 ' 2 7>

where ,

T fc= f BT Efc B dA, (3.28)
*J s*^ s**j /^^nm

K! = I CW^ T^ W +W^ T^ W ) dA (3.29)
«g > «1 ?«1J t&L Kii «1J R^Z

m

R T NC = f BT T dA (3.30)~e J « ~
m

11



F^ = f DT AT ds (3.31)
***2 " ?« ~

m

and F4 = J °T ̂ ds (3.32)
sa"m

Combining Eqs. (3.22) and (3.27), the total energy functional for the

system, ATT, can be written as,

+ mj+l [l *aV + ̂ > A* - AST ̂ SR - ̂<j (3.33)

where ,

R = F; and t= + C R. (3.34)

By expressing the element incremental nodal displacements Aq in terms

&
of independent generalized global displacements Aq , and using the condition

of stationarity of ATT with repect to Aq , one obtains the final expression,

where

fq] = generalized nodal displacements in state C (with loads P )

[K(q ,P )] = the tangent stiffness matrix at state C which includes

the effects of initial stresses, displacements, and the

influence of plastic yielding at state C ,

{Aq } = incremental displacements of the structure from C to C ,,

(AQ(q ,p )} = incremental loads, and

12



} = residual nodal forces to check the equilibrium of state CLT.ec n N

The solution of Eq. (3.35) with a Newton-Raphson type equilibrium correction

iteration, is essentially similar to that presented by Hofmeister et al [17],

and further details are omitted. Finally, we note that in order to carry

our the incremental solution from C,... to €„,„, the second Piola-Kirchhoff

N+l
stresses S..,,,,. are converted to Euler (true) stresses in r , using the

relation,

Det

4. Details of Finite Element Field Assumptions

4.1 Circular-Sector Shaped Singular Elements

The dominant singularities in strains and stresses at the tip of a

crack in a monotonically loaded two dimensional body of a nonlinear material

obeying a power-hardening law of plasticity were analysed by Hutchinson [ll]

and Rice and Rosegren [12], (Hereafter these are referred to as the H.R.R

singularities.) Their analyses were based on a deformation theory of plasticity;

however, to an approximation, these are considered to be valid, in the pre-

sent work, when a flow theory of plasticity is used. Further, the analysis

in [11,12] are valid only for stationary cracks. However, the nature of

singularities at the tip of a moving crack in an elastic-plastic solid is

still largely uncertain. The existing attempts in the literature to obtain

analytical solutions to the problem of a "steadily" moving crack-tip in

perfectly plastic materials, by Chitaley and McClintock [18] and Rice [19],

13



show a logarithmic strain-singularity at the crack- tip. However, one of

these solutions [18 3 has been recently argued by Broberg [20] to be in error.

Due to these reasons, and for lack of criteria to. define "steady" state

conditions, a priori, the H-R-R singularities [11,12] are allowed, in the

present analysis, to be present at the crack-tip which grows under fatigue

loading. This may, however, be viewed as an approximation in the general

context of the finite element method, in the sense that the hypothetical

exact solution is approximated by a set of assumed basis functions. It is

also noted that in spite of this approximation, the crack surface deformation

profiles, after fatigue carck extension, to be discussed later, do suggest

a possible change in the nature and order of strain singularities near the

growing crack-tip. Finally, we note that if the nature singularities near

the advancing crack-tip both in the "transitory" as well as "steady state"

conditions is clarified analytically, it is, in principle, possible to

af fec t the appropriate changes in the present finite element modeling.

The H-R-R solution for the dominant solution near the crack- tip for
6

stresses, strains, and displacements, respectively, can be expressed as:

-I/'
CTij ~ ka r 5i

. (4.2)

and u. ~ k r u.(cp) (4.3)
1 6 1

where (r and cp) are polar coordinates centered at the crack-tip; n is the

power hardening exponent in the Ramberg-Osgood relation between the equivalent

stress a and equivalent plastic strain e , viz., e ^ a ; k and k are

_ n, — «-
constants; and c r . . ( cp ) , e . . ( c p ) and u.(9) are functions of the angular co-

ordinate cp (see Fig. 1).

14



The above dominant singularities are embedded in the sector shaped

"singularity" elements surrounding the crack-tip. More over these singular

functions are augmented, in the singularity elements, by a large number of

arbitrary polynomial functions for displacements and strains. Due to this

reason, the singularity elements in the present analysis can be fairly

large; in the numerical examples presented later, these elements are, in

general, chosen to be about 10 times the crack length.

4.1.1 Displacements in the Interior of Singular Element

Based on the above reasoning, the incremental displacements in the

singularity elements are assumed as:

a Q ^ fl 0 . Q .
+ p -coscpr 9 + P cos9r 9 + p srncpr

I/ , , I/
(4.4)

n4-1

sitKpr n+19 - P12sincpr n+192 +P

I/ I/
(4.5)

15



where P's are undetermined parameters, cp is .the global angular coordinate;

and 6 is the angle measured from the symmetric axis of the sector element,

as shown in Fig. 1. The above are augmented by the three rigid body modes

for the element. Thus, using the matrix notation we write,

Au= A

as in Eq. (3.10). The strain increments are derived as,

Ae
rr

*V

» '

oAur/dr

Au /r + (1/r) dAue/3e

(1/r) Mu /ae + dAue/d - Au./r

(4.6)

(4.7)

4.1.2 Boundary Displacements for "Singularity" Elements

Along the circumference of each of the present sector shaped singular

elements, where 3 nodes are located as in Fig. 1, each of the displacements

Av and AvQ are assumed in the form:r w

Av. = a,. + a..6 + a0.i li 2i 3i (i = r,6) (4.8)

where a^., a and a are expressed in terms of the respective displacements

at the 3 nodes along the circumference. Since this displacement varies

quadratically at the circumference, continuity of displacements at the in-

terface of the present singular elements and the surrounding 'regular'

quadratic isoparametric quadrilateral elements is inherently satisfied.

Along each of the two radial boundaries of the singular sector element,

on which 4 mode (including the crack-tip as a node) are located, the dis-

placements are assumed as,

II
Av. = b2.r -h 1 - r.9) (4.9)

16



wherein the coeffecients b ...b, . are expressed in terms of the respective

displacements at the above mentioned 4 nodes. It is seen that the above

boundary displacement field along the radial lines is inherently compatible

at the interfaces with the adjacent singular elements.

Thus there is interelement displacement compatibility not only amongst

the singularity sector elements themselves, but also with the surrounding

regular isoparametric elements.

4.1.3 Boundary Tractions for Singularity Element

The boundary tractions T . for the singular element as defined in Eq.
JLX

(3.10), which are mathematically the Lagrange Multipliers in the hybrid

variational principle as in Eq. (3.4), are assumed as:

TL. = v. a.. (4.10)

where a. . are derived from an Airy Stress function, i|t, as:

1 O O

(4.11)

(4.12)

(4.13)

and v. in Eq. (4.10) denote the direction cosines of a unit outward normal

to the boundary. The Airy Function i|r is chosen such that the stress field

contains a r type singularity, as:

2 2 22 23 3 3ilr = c^r + a2r 9 + c^r 9 + c^r 9J + o^r + c^r 9

T O - j - 3 4 4 4 2
+ a r Q + a r 9 J + o r + a r 9 + or Q

403 . (2n+l/n+l) . (2n+l/n+l) . (2n+l/n+l)029 + o/13r
v + a^ 'e + or^r^ ^9

(4.14)

17



where a's are undetermined parameters. We note that the element boundary

traction field as chosen above is self-equilibrated.

4.2 Displacement Field Assumption for Regular Elements

As noted earlier, the region of the cracked structure outside the

above discussed singularity core region is modeled with conventional iso-

parametric displacement elements. An eight node isoparametric quadrilateral

finite element, as shown in Fig. 2, is used for this purpose. The trans*-

formation from cartesian coordinates of the element, with general quadratic

curves as boundaries, to curvi- linear coordinates | and T| , as indicated in

Fig. 2, is achieved through:

8 8

X = } N (5,T))X. ; y = Y N .(?,T|)y. (4.15)
M L x &1 x x

where, the functions N.(§>T1) are defined as:

NjCS.Tl) = (1/4) (1 + 55̂ (1 + TlVCtSjL " ̂i " 1} (4>16)

for corner nodes i = 1, 3, 5 and 7 as indicated in Fig. 2, and

52)d +7171 (4.17)

for nodes with 5. = 0, and, finally,

(4.18)

for nodes with 7). = 0. The displacement field for the regular element,

as defined in Eq . (3.12), is expressed as:

uy

18



where,

C"i1N,; 0; N2; 0;...Ng; 0-,,
2x16 0; N; 0; N ...0; N

(4.20)
g

and LAqJ = LAq..; Aq~ • •• Aq , J. From Eq. (4.19), the element strainsare

defined as:

Ae
XX

;
yy
xy

r ***!. (

{Ae} = -j Ae !- = B Au = B D Aq
~ *. yy ) ?& ~ « = ! « " *

AY,

where [B] =

Finally, we note

0

0 dN . /dy

oN./Sx-

(4.21)

(4.23)

(4.24)

where [j] is the Jacobian of the transformation used in Eq. (4.15).

5. Elastic-Plastic Constitutive Relations

In the present analysis, based on an incremental theory of plasticity,

. *
the piecewise linear relation between the stress and strain rates is taken

as :

(5.1)

*t
where E . . , * is the current tensor of elastic-plastic constitutive law; and

the total strain rate is assumed to be a sum of elastic and plastic parts,

si-
First, we develop the constitutive relation for a small-displacement theory
of plasticity, and later generalize it for the case of finite deformations.
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as :

The elastic strain increments are assumed to be given by the Hookes ' law as

where E. . , . is current elasticity tensor. In the classical rate theory of

. plasticity, which is used in the present, the elastic-plastic behaviour

of the material is fully described by specifying: an initial yield criterion;

a flow rate; and a hardening rule. The elastic-plastic constitutive tensor

E . . , * is obtained by specifying each of the above, as in the following.

(i) Initial Yield Criterion

The well known J. flow theory of Huber-Mises -Hencky is used in specifying

the initial yield criterion, which states:

f(J2) = (f) a! . a:. - a2
s - o (5.4)

where o~ is the yield stress of the material and cr. . is the deviatoric
Ys J ij

stress as defined by

a'. . = a. . - i CT 6. . (5.5)
ij ij 3 kk ij '

rl if i = j

ij 10 if i f j

For the special case of plane stress conditions. The initial yield surface

as described by Eq. (5.4) reduces to

f(a..)=a2 + a2 4- a cr + 3a2 - a2 = 0 (5.6)
ij xx yy xx yy xy ys

and for the case of plane strain conditions,
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2 2 2 2 2f(cr. ) = a + a + a - a a - e r a - a a + 3 a - 0 = 0
ij xx yy zz xx yy xx zz yy zz xy ys

(5.7)

(ii) Flow Rule

The well known Drucker's normality rule, which states that the plastic

strain increment is always orthogonal to the yield surface, or

d e i j = d x dr- <5-8)
ij

where dX is a proportionality, is used. If the plastic strain vector is

superimposed on the stress or space (as best depicted in Fig. 3), for small

increments of stress and strain the relation between the stress and the strain

increments and the yield surface will be

<dCTij - c d e i j
) ao7T = 0 < 5 - 9 >

From Eqs. (5.8) and (5.9) the proportionality constant dX is determined as

l ^-H' XJ
^-TY (5.10)

where c is a constant.

Substituting the above relation for dX into the Eq. (5.8), now we get

a flow rule,
•/ Bf V of \

, Vda /\Sa. ./
deP = I SS iJL dCT (5.H)

ij c

For the simplest case of uniaxial tension or compression Eq. (5.11)

reduces to,

dep =± da, or c = ^_ (5.12)
dep
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Therefore in the case of the uniaxial loading the parameter 'c' is

the slope of stress-plastic strain curve. Or

2 , 2 dCT
eq

eq

where H is the slope of the equivalent stress-equivalent plastic strain

curve, and CT and de^ are defined, respectively, as

dep = /f deP.de?. (5.15)
eq ' 3 LJ ij

(iii) Hardening rule

Prager's [21] kinematic hardening low, as modified by Ziegler [22]

which appears to adequately model the Bauschinger effects that are generally

observed in most of metals under cyclic loading is chosen. In this case,

the subsequent yield surface is represented by,

f(CTij " Q?ij) = ° (5

Ziegler's [22] modified kinematic hardening rule states that the translation

of the yield surface, da.., is always in the direction of the vector o\. -

da±j = d\i (a - c^.) (5.17)

as shown in Fig. 3. For an infinitesimal increment of loading the vector

do".. - da., must be orthogonal to the outer normal to the surface; thus

(da.. - da..) - = 0 (5.18)
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The scalar quantity d (J. is obtained by substituting Eq. (5.17) into (5.18)

to get,

dp. = (5.19)

Therefore the rate of the yield surface translation is given by

da. . =

(a..-a..) ~- da
11 11 do mnJ J mn (5.20)

Upon substitution of de?. from Eq. (5.11) into Eqs. (5.2 and 5.3), the relation

between the stress rate and the total strain rate can be expressed as

follows:

a. for plane stress case:

da
XX

da
yy

da
xy

\» >

>=

E Sl Ev S1S2 S1S3
,2 S ' . 2 S ' S1-v 1-v

2
E S2 S2S3

, 2 " S ' S
1-v

2
E S3

2(l+v) S

<

f >

de
XX

de
yy

2de
xy

(5.21)

where

- E / of . _ d f \~ ~T v?5~ + v 'oF";
1-v xx yy

S2 ~ ~~2 \
1-v

f_ . df N,
oa ;

xx yy

- - E of
3 1+v da

xy
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qf of

xx

xx yy

yy xy

~)2
xy

of
da
xx

= 2 (a - a ) - (a - a- )xx xx yy yy

^- = 2 (a - a ) - (a - a )da v yy yy7 v xx xx'

= 3 (a - a )v xy xy3 3
(5.22)

b.

*• «%

xx

do
yy

da
xy

for plane strain case:

2
E(l-v) Sl

> =

(l+v)(l-2v) S ' (l+v)(l-2v)

(l-v)E
(l+v)(l-2v)

'l°2
S '

_2
S '

l 3

S2S3

XX

yy

2de

where

-
Ba
xx yy

3a
n .Vi '

xx yy

E
1+v da

xy

S = ,

Q =
r are defined to be same as in the plane stress case
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!• [(o- - a ) - (o- - a )]2 xx xx yy yy

2 C(ayy -«yy> ' (<T« ' °xx)]

__ = 3(0- - a ) (5.24)
oa v xy xy v 'xy j j

*t
As noted earlier, the above relation, d<7. . = E... > de . was derived for a

small displacement theory of plasticity.

In generalizing the above relation to finite deformations, one needs to

make a choice for an objective stress rate and an appropriate strain rate;

and E „ can De used as constitutive-relation tensor relating the chosen
ijk*

objective stress-rate and its conjugate strain rate. In [15,163, and

elsewhere, the advantages of using the corotational rate of Kirchhoff stress

[which is J times the true stress T..1, (which stress rate is physically

the stress increment measured in a coordinate system that is instantansously

coincident with the current carstesian system in the updated configuration

C , but is rotating with respect it at the same rate as the spin suffered

by the material fibers in going from C -» C ,), in the elastic-plastic

constitutive law for finite deformations have been discussed. If AK. . is
!J

the corotational rate of Kirchhoff stress, it is shown in [15,16], that it

is related to the Truesdell stress- increment AS., of Eq. (3.2), through:

A*S.. = AFC?. - A*g.,T^. - T1?, A*g, . (5.25)
ij ij &ik kj ik 6kj

N *
where T, . and A e, . are as defined earlier. Now, as discussed above and as

kj akj

elaborated in [15,16], a generalization of the elastic-plastic law can be

written as :
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AKij -

By substituting Eq. (5.26) in (5.25), the tensor E... . in the relation

A*sij = E A <5-27>

is found, and is used in the developments discussed earlier, ie . , Eq. (3)

on words. Finally, we note that in the above generalization for finite

deformations, the initial as well as subsequent yield functions are expressed

in terms of the true stress, T...
ij

5.1 Knee Correction

Once a point has yielded, the state of stress represented by its location

in the stress space stays on the yield surface until unloaded. The subsequent

loading condition of the point is determined, by checking^ - dT . . , as
Tij ^ ofloading, neutral loading, and unloading depending on whether -^ - dr..

Tij 1J

is positive, zero, or negative respectively. However, some complications

arise when an elastic or unloaded part of the structure near yield becomes

plastic with the next increment of load. A technique, herein called "knee

correction", Is used for dealing with each integration point in this transi-

tion region, of elastic and plastic behavior, and is briefly described in

the following.

First an estimate of strain and stress increments which made the point

yield is made by assuming,

fOr.j + yA-r^ - <*„) = 0 (5.28)

where AT., is the total increment of stress obtained for at the present in-

crement of loading, and y is tne proportionality constant so that the increment

yAr . . causes yield at the point. Solving Eq. (5.28) for y, yAr . . is treated
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as if it acts elastically, then subsequently the behavior is assumed to be

~k
elastic-plastic, with the remaining strain increment, (l-y)A g...

6. Finite Element Modelling of Crack Growth

The steps in the finite element simulation of crack growth in the

present procedure may be described as: (i) geometrical change in the crack

surface boundary; (ii) translation of the crack-tip singularities to the

advanced crack-tip; and (iii) release of surface tractions on the newly created

crack surface.

The change in the crack surface boundary is made by translating the

whole set of crack-tip core elements, as shown in Fig. 4, by arbitrary

distance Aa in the direction of intended crack extension; thus the new

crack-tip node which is designated by the center of the sector-shaped core

elements need not be coincident with any previously existing finite element

node before extension. Thus even though the fixed boundary in the uncracked

ligament of the structure is changed, the constraining condition of the nodes

need not be altered. Elements immediately adjacent to the core must be re-

adjusted to fit to the translated core. This process of translating the
5

core mesh also moves the embedded singularity in the elements to the new

crack tip area, leaving no singularities but large deformations and strains

in the wake of advanced crack-tip. All the 5x5 Gaussian data points in each

of the translated core element (and also the 5x5 points for the conventional

elements) may generally not coincide with those before translation, at which

plastic history data such as current stresses, plastic strains, plastically

dissipated work, yield surface translation, etc., are available. Therefore

the data at points in the new mesh are estimated by linearly interpolating

data on four Gaussian points in the old mesh that are nearest to the point
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under question in the new mesh. The simple but cumbersome mathematical de-

tails of this interpolation and smoothing process are omitted here for the

sake of brevity. With the fitted plastic data and the new element geometry,

element stiffness matrices are recalculated for the core elements as well

as for the surrounding rearranged elements and the global stiffness is

appropriately modified. Subsequent equilibrium check iterations using the

new stiffness of the structure correct fitting errors, if any, in the

plasticity data in the new mesh. At the same time, the tractions over the

distance AB (Aa as shown in Fig. 4) are incrementally removed, with equilibrium

check iterations being used at each step, to create a new traction-free

crack surface of length Aa. The finite element simulation of crack exten-

sion by the desired amount, Aa, is now completed.

7. Analysis of Fatigue Crack Growth Under Mode I Cyclic Loading

7.1 Description of the Problem
/

Through out the series of the present elastic-plastic finite element

analyses of fatigue crack growth under Mode I type cyclic loading, a thin

rectangular plate with a central crack and under uniform tensile stresses,

in a direction normal to the crack-axis, at the edges of the plate, is con-

sidered (See Fig. 5). The dimensions of the plate are: half width w = 230mm;

and half-crack length a = 27.3mm, respectively. The material is considered

to be a 2024-T3 Aluminum alloy, whose mechanical properties are characterized

2 2
by: yield stress, CT = 350 MN/m ; and Young's modulus, E = 70,000 MN/m .

The material is assumed to be elastic-perfectly-plastic. It is noted that

the above problem definition is identical to that used by Newman [8]. The

plate is assumed to be in a state of plane stress.
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Because of the symmetries of geometry, applied loading, and material

homogeneity, only a quarter of the cracked plate is analysed. Fig. 5 shows

the finite element breakdown that is used. A total of 6 sector-shaped sing-

ularity elements near the crack-tip, and 43 conventional quadratic isoparametric

elements are employed. Some of these isoparametric elements are 6 noded tri-

angles, while the majority are 8 noded quadrilaterals (See Fig. 5), It is

seen that the total number of nodes in the finite element mesh for the

quarter-plate is 171, with a total number of degrees of freedom of 311.

The radius of the sector-shaped singularity elements is chosen as

p = 2.8mm; ie., p/a = .103. While the crack-extension per cycle of loading,

Aa, can be arbitrary (ie., not related to the finite element mesh size) in

the present analysis procedure, it is chosen to be &a = 0.14mm in the present

series of computations.

7.2 Techniques to Minimize Computational (CPU) Time

Firstly, we note that the near-tip elements used presently are of the

order 10 times the semi-crack length; and the total number of algebraic

equations for the above problem are only 311.

In the present procedure, a tangent modulus (stiffness) approach is

used in each increment and in each iteration in the respective increment.

Thus a faster convergence is obtained in the process of iterations of

equilibrium correction, etc. However, it is noted that only the stiffness

matrices of the plastic portion of the structure need to be changed in the

present tangent modulus approach, whereas, those of the elastic portion re-

main fixed.

For the presently considered levels of applied far-field tension on the

specimen, only "small-scale" yielding conditions prevail near the crack-tip.
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A typical plastic-zone size near the crack-tip for the presently considered

class of Mode I problems is shown in Fig. 6a, being superimposed on the finite

element mesh. It is seen that the plastic portion of the structure (designated

"Region P") is considerably smaller than the elastic portion (designated

"Region E"). Thus only the stiffness matrix of region P need to be changed

in each load-step and each iteration in the present procedure.

However, the total number of times, say N, that the combined stiffness

matrix (for Regions P + E) must be inverted in the course of analyzing a

typical problem, say the case a growing crack under constant amplitude

cyclic loading, is N = [(no. of iterations/cycle) X (number of load increments

per cycle) X no. of load cycles ]. For a typical problem, say 8 cycles of

constant amplitude loading, a typical value for N can b e N = 4 x 2 8 x 8 = 896,

(ie., 4 iterations per cycle, with 28 load increments/cycle, etc.)» This

is a rather enormous amount of computing; and hence a more economical way

of solving the stiffness equations is mandatory.

Since the plastic-zone is a small-size, by an appropriate node numbering

scheme, the stiffness matrix of the plastic zone can be arranged, as in Fig.

6.b, so that it is a small sub-set of the global stiffness matrix of the

structure (eventhough the plastic zone size keeps changing with load, an

approximate preliminary analysis can be made to determine its size at

maximum load). Then we use a static condensation procedure to first

eliminate the equations corresponding to the nodes in the elastic portion,

in the very first load-increment. Thereafter only the equations for the

nodes in Region P need to be operated upon, in all subsequent load steps

and iterations. Thus, in the example cited above, (N = 896), in all but

one of the 896 solutions, the number of equations being solved is rather

very small, and correspond to the total number of unconstrained nodal
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displacements in Region P. This enables the present computations to be

economically feasible.

Also, the computer program is so arranged that the data obtained from

computation upto the end of a given spectrum of loading can be used as in-

put data at the beginning of a different spectrum of loading. For instance,

at the end of a constant Hi-amplitude cyclic loading, the data is stored on

a direct access permanent disc file and used as initial conditions for a

low amplitude cyclic load specturm; in this process not only the case of

Hi-amplitude loading but also the case of Hi-to-Lo block loading is solved.

7.3 Monitoring of Crack-Closure and -Opening in the Finite Element Model

Let us assume, that at a given instant of time (at a given point in

the loading history), the location of the crack-tip, the location of the

4 nodes on the radial line (which coincides with the crack surface) of the

singular sector element, the locations of all other nodes on the crack axis,

as well the current (deformed) profile of the crack surface, are all known.

We denote the current nodes on the crack surface as "Updated Lagrangean

Nodes". Let us now assume that the crack-tip is now further extended by an

arbitrary amount (Aa) and the structure is then subjected to further loading.

We first note that, in the present development, the boundary displacement

(in the direction of the applied normal stress) along a radial line of a

"singular" sector element is of the form,

2
Av = a r + br + cr + d (7.1)

where a, b, c, and d are expressed in terms of the normal displacement,

Av , of each of the 4 nodes on the radial line of the sector element in its
y

current location. Using the above equation, and knowing, a priori, the

31



radial coordinates, (ie., r, as measured from the current crack-tip), of

the respective nodes on the radial line of the sector element in its

immediately previous location, one can compute the values of Av at the

above mentioned "Updated Lagrangean Nodes". By adding (or subs, tract ing,

as the case may be,) these incremental displacements to the previously

known values, an accurate prediction of the current crack surface deformation

profile is made.

During the unloading part of any cycle, of the present cyclic loading

case, at the instant the displacement (in the direction of applied tension)

at one or more nodes on the crack surface becomes negative, further un-

loading stopped. The computational procedure is then switched to a dis-

placement control type, and the above negative displacements are preeisely

enforced to be zero; thus finding the precise stress level at which the

closure constraint on the respective node must be enforced.

After the crack-closure is detected, the respective node(s) are constrained

thereafter, until the restraining force(s) at the node(s) just becomes zero

and begins to be tensile in nature. The corresponding applied stress level

defines the crack-opening stress.

The above processes are illustrated for the case of constant amplitude

cyclic loading in Fig. 7; in which, the vertical displacement (when the

crack is open) and the restraining force (when the crack closes) at a node,

at which the crack closes and opens, are plotted against the applied stress

level. It can be seen from Fig. 7 that the crack-opening stress cr (or

the closure stress a .) can be most accurately determined by extrapolating

to zero the respective nodal displacement after opening (or just before

closure, to find o" .) , as well as by extrapolating to zero the restraining

force at the respective node just before opening (or just after closure to
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find cs „). It can be seen that the values a and a . obtained by the
cA op c.Si J

above two sets of extrapolation procedures agree excellently. This indicates

that the present numerical procedure of determining CT and a , by monitor-

Ing crack-surface displacements and the nodal restraining forces, is very

accurate.

Finally, some comments on the presently observed patterns of crack-

closure are given, before proceeding to a discussion of specific cases. In

general, closure was noticed to occur at the node closest to, the current

crack-tip, as indicated in the sequence of unloading steps in Figs. 8a-c.

However, if the current crack-sruface profile is irregular, as in the case

of Hi-to-Lo block loading to be discussed later, crack-closure may first

occur at the node closest to the crack-tip; however, in the subsequent

unloading step, closure may occur at a node far-removed from the crack-tip,

as indicated in Fig. 8d. From the results to be discussed later, this

pattern of crack-closure appears to contribute significantly to growth

retardation and delay effects.

7.4 Criterion For Crack-Extension Stress Level

In the present work, a study is made to arrive at a criterion for the

stress level, cr , at which fatigue crack growth occurs. In prior literature,
GX

this crack-extension stress level was chosen arbitrarily. For instance,

in [8] the crack is extended at the maximum applied stress in each cycle

even in a general spectrum (for instance, high-to-low, low-to-high, etc.,)

loading, where as in [10] the crack was extended at the applied stress level

at which the restraining nodal force at the new crack-tip becomes zero. In

the present study, for instanc.e in a constant-amplitude (zero-to-tension)

cyclic loading, it was found that the crack opening and closure stresses,
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a and a , respectively, were sensitive to the chosen a
op c* ex

In the present work, a criterion, a = a + p(a - a ). where
ex op max op

p is a constant of proportionality, is postulated; and p is obtained by

calibration such that the calculated a correlated with that observed in
°P

experimental studies such as in [l,2,3]. However, it is noted that this

constant of proportionality p may, to some extent, be dependent on the

numerical methodology employed in fatigue crack modeling itself. Thus

the above described calibration may be considered as valid only in the

context of the particualr methodology employed in the present work.

Three different test cases, each with a different magnitude of constant

amplitude (zero to tension) cyclic loading, were studied with different

values being chosen in each case for the above mentioned constant of

proportionality, p. The idea was to select a 'p1 that yields results, in

each case, for (a /a ) that are in best agreement with the experimental' op max ° *

results [l,2,3l for 2Q24-T3 Aluminum alloy, which is the material simulated

in analysis.

The results, for instance, for the case (cr /<J . = .40) and
. v max ys

(R = a . /o" = 0) are summarized as follows:
mm max

P

1.0

.85

.62

.40

Levelled-off c
op

115 MPa

94

79

58

[a /a ] at steady state
op max

.82

.67

.56

.41
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Similar results were obtained for the cases, (O /a ) = .229 and
max ys

(CT /a ) = .314. From these three sets of results, it was observed that
max ys

p—0.62 yields results for (a /a ) that are in best agreement withK . op max' 6

experimental observations, which indicate that [a /a ] at steady state
op max J

is about 0.56.

Thus when p is chosen to be 0.62, the results obtained for the steady

state vaule of (a /cr ) for three-different cases of (0 /a ) arev op max' v max ys

summarized as follows:

Case Wo.

1

2

3

CT /cr
max ys

0.229

0.314

0.40

Levelled off crop

44 MPa

57.5 MPa

78 . 5 MPa

(a /a ), steady state
op max ' 3

0.55

0.52

0.56

It is hypothesized that the above constant p = 0.62 may be used throughout

the rest of the analysis, ie., for cases of general spectrum loading. We

also note that when the load level Cf during any cycle is first determined,

the number (and size) of load steps between this O and CT in the
op max

respective cycle, is so adjusted that the pre-chosen level of cr [ = a +
GX ^P

p(a - a )] coincides with one of the load-increments in the cycle.KV max op J

We now discuss the results of analysis of each of the loading cases.

7.5 Constant Amplitude Zero-to-Tension Cyclic Loading

(i) The results for a , for the case of (a /a ) = 0.4 and R =
^ ' op v max ys

(cr . /a ) = 0, are shown in Fig. 9, for Scycles of loading. It is ob-v mm max & J 6

served that CT reaches a "steady-state" value of 0.56 a after the 4op max
th
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or 5 cycle. It is also noted that this value for cr /a (= 0.56) is

in reasonable accord with experimental results [1,2,3] for the same material,

a 2024-T3 Aluminum alloy.

(ii) From Fig. 7, wherein the opening displacement and restraining force

at a node, at which crack-closure occurs, are plotted against the applied

stress, a nonlinearity in the variation of the opening displacment, as the

load approaches cr (for instance, between points D-E in Fig. 7 ^ is observed;
TI13 2C

this can be seen to be due to plastic deformation. In the subsequent un-

loading (from point E in Fig. 7) the opening displacement decreases linearly,

thus showing the effects of elastic unloading. When crack closure occurs

(point F in Fig. 7), a nonlinearity in the variation of the nodal-restraining

force (between F-G) can be noticed until the applied stress in the cycle

becomes zero; this reflects plastic compression.

(iii) Knowing a in each cycle, we define the effective stress-intensity

o op
factor as:

AK , = C.. v'nXa + NAa) (a - a ) (7.2)
eff 1 o max op

where C, is the finite-size correction factor for the present crack geometry

(which was found to be C, = 1.017 from a finite element linear analysis of

the crack with a = a ; and thereafter assumed to be constant); N is theo

number of cycles and Aa is the crack growth per cycle. For convenience,

the variation of AK ,, is plotted against a, the current crack length, in

Fig. 10. It is seen that AK ff levels-off after a few cycles to a steady

state value.

(iv) Fig. 11 shows the crack surface deformation profiles, for in-

stance, at various stages of unloading during the 8 cycle of the present

constant-amplitude (R = o) cyclic loading. The large blunting at the initial
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crack-tip location (a = a ) is observed to remain permanently. The surface

of the extended crack is observed to be fairly smooth. During the 8

cycle, it is observed that precise crack-closure occurs only over the area

Aa (ie., only at the previous location of the crack-tip node) even upon

full unloading; however, it is also noted that at this stage, the opening

of the crack faces between the points a and the precisely closed node is

very small (See Fig. 11) .

Lo-To-High Block Loading

A two level block loading, from low to high, with cr in the highermsix

level being 1.273 times the cr in the lower level, is considered. The
max

maximum stress in the lower level is taken such that (cr ) 4 (cr ) =
max Low ys

.314. As mentioned earlier, the data at the end of 4 cycles of low level

block loading (See Fig. 12) is recovered from a constant-amplitude test

case, with the corresponding stress level. The following results were

obtained:

(i) The variation of crack-opening stress, cr , as the cyclic loading

progresses, is shown in Fig. (12). It can be seen that immediately after

the step up in the level of applied stress, a decreases by about 33%

of its steady state value corresponding to the lower level of block loading.

Subsequent to this, cr increases monotonically to a steady state value

corresponding to the higher level of block loading, within about 5 cycles.

Prior to this stabilization, AK ff in the higher level of block loading re-

mains considerably higher than the steady state value corresponding to this

stress level; thus indicating growth acceleration following the load step-up.

(ii) The variation of AK ff with N, with AK ,.,. being defined as earlier,

is shown in Fig. (13). It is seen that there is a jump in AK immediately

following the step-up in the level of applied loading; thereafter AK ,.,.
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decreases monotonically down to its base line value corresponding to the

higher level block loading, but doesn't go below this base line value. This

appears to indicate that the growth rate of the crack, initially growing

at a steady rate corresponding to the lower level blocking loading, suddenly

accelerates and then smoothly shifts down to a steady state rate correspond-

ing to the higher level block loading.

(iii) The representative crack surface profiles for instance, at

various stages of unloading at the end of the 8 cycle (high stress) of

the current low-to-high level block loading, are shown in Fig. (14).

From this Figure, it can be seen that the step-up in the level of loading

causes a blunting of the crack-tip (ie., at the location x/a = 1.02 in

Fig. (14), when the step-up in loading occurs in the present finite element

simulation). Even during the unloading at the end of the present two level

block loading, as seen from Fig. (14), the crack-closure occurs only over

the area Aa .(ie., only at the previous location of the crack-tip node).

v
High-To-Low Block Loading »

After 8 consequitive cycles of a high level block loading (the data

at which point is recovered from the corresponding constant amplitude test

case), the CT is reduced by 21.4% and 8 more cycles of this reduced levelmax J

block loading were considered. The magnitude of the applied stress in the

high-level block was such that (a ) . 4 a = 0.40. The following5 v max high ys .

results were obtained.

(i) The variation of the crack-opening stress o~ , as the loading

progresses, is shown in Fig. (15). It is seen that immediately after the

step-down in the load level, no abrupt decrease in 0" , as was the case in

Low-to-High loading, occurs in the present High-to-Low block loading case.
0
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After the load-level step down, a stayed at about 0.70 (CT ) within5 op J ^ max'low

the number of cycles of low-level load considered presently. It may be

possible that, as further number of low-level load cycles are considered and

the crack-tip grows further and eventually surpasses the plastic zone

created during the high level block loading, the o" decreases to a base
op

line value corresponding to the lower level block loading. However, limita-

tions of c onputer funds precluded the possibility of considering a larger

number of load cycles at the low level.

(ii) The AK ,.,. versus N curve (plotted for convenience as AK ... vs a/a
err eff o

for the present case is shown in Fig. (16). It is seen that after the load-

level step down, AK ,.,. remains remarkably lower than its base line value

corresponding to the low-level block loading; thus indicating the presence

of a considerable retardation of growth, but no delay.

(iii) Fig. (17) shows the crack surface profiles during various

stages of unloading in one of the low-level cycles of the present Hi-to-Lo

block loading. It is seen that at the stage of unloading indicated by point

'B1 in Fig. (17), the crack closes only at the previous crack-tip (closure

area = Aa). Further unloading, represented by point C, causes another node

away from the current crack-tip to close, as seen in Fig. (17). The area

of crack-closure thus increases as the unloading progresses.

To understand the effects of the features of crack-closure as in the

present case, the problem was reanalysed with the constraint of closure being

removed on the node (as discussed above) far away from the crack-tip, but

leaving the closure-constraint on the node closest to the crack-tip. The

corresponding changes in a are indicated by a broken line in Fig. (15);

while the change in AK is also indicated by a broken line in Fig. (16).
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These results indicate the influence of properly imposing the closure-

constraints on nodes even far away from the crack-tip; when the considered

loading, as the present Hi-to-Low case, causes such a type of crack-closure.

Single Over Load

The case of a single overload after 4 cycles of a constant amplitude

block loading, followed by further cycles of constant amplitude (equal in

magnitude to that before overload) was considered. The following three

cases were considered.

Case Base
max

a overload -f
cr
max, base.

op - a ,rmax op.base

" ,_ : " amax base op.base

110 MP

110 MP

80 MP

1.273

1.455

2.0

0.151

0.283

0.681

In the above, cr , is the maximum applied, stress prior, to or after
' max/base

overload; cr .. , is the overload stress; a is the maximum calculated
overload op.max

value for crack-opening stress after overload; and o is the base line
* & op.base

opening stress for an otherwise constant-amplitude cyclic load at level

cr . , and all these stresses are illustrated in Fig. (18a). The ob-
max.base

tained restuls are discussed below:

(i) The variations of a during the load cycling, for the three different

ratios of stress-overload, are indicated in Figs. (18a,b,c) respectively.

In all the three overload cases, an abrupt decrease in cr (which relative
op
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decrease becomes more predominant as the overload stress-ratio increases)

is noticed immediately after the single overload application. After this,

in all the three cases, cr increases again to reach a peak value a
op G r op.max

before levelling off a steady-state value. This relative values of a
opmax

increases as the overload stress ratio increases. Also as the overload

stress-ratio increases, the later is the occurance of this cr . For
op.max

instance, for the overload stress-ratio of 1.273, a occurs in the 4
opmax

cycle after overload (Fig. 18a); for overload ratio of 1.455 this occurs

in the 8 cycle after overload (Fig. 18b); while for the case of overload-

rato 2.0, cr is still increasing (Fig. 18c). This implies that the higher

the overload ratio is, the more remarkable both the retardation and delay

effects are.

(ii) The curve depicting the variation of the ratio (O - a )/
' opmax op.base

(a - a ) with the overload stress-ratio, which is drawn using thev maxbase opbase

above discussed 3 data points, is shown in Fig. (19). By extrapolation,

the threshold value of the overload ratio, at which retardation effects come

into play, is seen to be about 1.10. In contrast, Bernard et.al [23-" report

a threshold overload ratio of 1.3 ~ 1.4 based on a series of experiments on

the material Ducol W30B whose .yield strength is 366 MP (, comparable to the
3

presently considered o = 350MP ). It is noted however, that the present
y s si

analysis is based on a plane-stress assumption, while Bernard et.al [23]

note the dependence of the experimentally determined threshold value on the

specimen thickness.
**

(iii) The variation of AK ff with N (or a/a ) for the single-overload,err o

case, with a ratio of 2, is shown in Fig. (20), with a similar variation

being noted for the other two overload cases considered. It is seen that

AK ,-,- experiences a sudden jump immediately after the overload, and then
err
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decreases below its base line level corresponding to a constant-amplitude

cycling at a level; thus indicating the presence of retardation
lUclX ) D3SG

and delay effects (these terms are used here in the same sense as defined by

Barnard, et.al [23])in this single overload case. It is also noted that the

quantitative effects of retardation and delay depend on the overload ratio.

(iv) The crack-line deformation profiles at various stages of unloading

at the end of the considered number of cycles are shown in Fig. (21) for the

case of overload ratio of 2, while similar results were noted for the other

two overload-ratio cases also. It is seen that the application of the single

overload to the specimen (at the instant when a/a = 1.02 in Fig. 21)

causes a large (plastic) blunting which is retained in the crack-surface
/

profile even as the crack advances in further cyclic loading. When the

specimen is fully unloaded, at the end of the cycle illustrated in Fig. (21),

almost the whole surface area ahead of the previously mentioned location of

blunting is noticed to close, while the crack surface area behind this

blunting location is seen never to close.

8. Analysis of a Center-Cracked Specimen under Pure Mode II Cyclic Loading

A center cracked square plate under a constant amplitude cyclic loading

of pure shear, which is uniformly distributed at the edges of the plate, is

analysed. Plane stress conditions are assumed. The material is considered

to be 2024-T3 Aluminum alloy, (same as in the Pure Mode I case discussed

earlier). The dimensions of the plate are: L = W = 140mm; a = 40mm. The

maximum amplitude of the uniformly distributed shear is taken to be T =
max

80 MP (T /a = .23).
a max ys

In the present problem, the geometry of the plate with the crack is

symmetrical about both the x and y axis (See Fig. 22) , and the external

loading in anti-symmetric with respect to both x and y axis.
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As earlier, the present material is modeled as an elastic-perfect-

plastic material. We note also that the presently considered material has

the same properties in tension as in compression.

Thus, the displacement field has the following antisymmetric properties;

u (*,y) = -u (x,-y) = u (-x,y) = -u (-x,-y) (8.1)
A. A, A X

uy(x,y) = -uu(-x,y) = uy(x,-y) = -uy(-x,-y) (8.2)

where u is the displacement in x direction, etc. Further, it is noted that
X

these displacements may be discontinuous at the crack surface, -a < x < a .

Thus, in the finite element modeling, only a quarter of the plate is modeled

(as shown in Fig. 22) with the displacement boundary conditions: U =0

along y = 0, in the uncracked ligament only; and u = 0 at nodes along x = 0.

The linear elastic results, based on the first load increment, from the

present finite element analysis indicate:

K. = 0.075; K. = 3.777 (8.3)

which compare favorably with the following results (obtained by using the

finite-size correction factors of) Bowie and Neal [24] for an identical

problem:

K = 0.0 KIT = 3.899 (8.4)

The fact that K £ 0 in the present finite element analysis is the result

of inherent numerical errors, such as round-off and truncation, in the

finite element analysis.

Also, to check the numerical accuracy of the present finite element
0

modeling, a second run was made wherein a half of the plate was modeled,
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as shown in Fig. (23), instead of only a quarter of the plate. In this

model, u was set to zero at nodes along x = 0, along with constraints to

suppress the other two rigid body motions of the plate as a whole. Both

the sets of results (ie., those when a quarter and a half of the plate,

respectively, are modeled) correslated excellently.

In Fig. (24a) the results for the displacements u at the upper and

u 4
lower crack surfaces, u and u respectively, are plotted for the linear

u !L
elastic case. These numerical results for u and u are identical in they y

u a
linear elastic case. This equality of u and u is noticed as the loadingy y
continues in the first cycle (crack being stationary) and when the plastic

zone size is significant at T = 70 MPa (see Fig. (25) for the shape of the

plasticity zone at T = 70 MPa).

For lack of any other criteria, the crack was extended, in the present

procedure, at 70 MPa (the maximum applied stress being 80 MPa), in the

direction of the initial crack ie., in the x-direction. It is seen from

Fig. (24a) that significant increase in u is brought about by the process

of crack extension and hence the attendant plastic unloading; however, again,

uu and u are almost identical (to the 4 significant digit). Thus it is

seen that through the all stages of loading, crack extension and plastic-

unloading, and further loading (to 8 MPa in this case) after crack extension

the upper and lower crack faces experience identical displacements in the

y direction, ie., perpendicular to the initial crack axis.

On the other hand, the displacements u at the upper and lower surfaces
X

u SL
of the crack, u and u are plotted in Fig. (24b) for the cases of loading

when linear-elastic conditions prevail (T = 31.1 MPa); when appreciable

plasticity develops at the crack-tip (T = 70 MPa), when the crack is ex-

tended (and hence there is plastic loading) at T = 70 MPa, and when the load
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is further increased to 80 MPa after crack extension. It is seen that the

magnitudes of u and u are nearly identical (to the 4 significant digit),
X X

but with opposite sign, in all the above cases. However it is interesting

to observe that the change (as a ratio of the respective value prior to

crack extension, at the same load) brought about by the process of crack

extension (and hence plastic unloading) in u is much more pronounced than

in u .x

It is interesting to note that in the linear elastic case the crack-

u a
surface displacements u and u (see Fig 24a) exhibit almost a linear

Glvariation from the crack-tip; thus indicating a lack of any r (in particular,

VT type for linear elasticity) component in u for the linear elastic case.

On the other hand, for the linear elastic case, the tangential displacements

u and u (See Fig. 24b) do exhibit a /\/r behavior near the crack-tip,
X X

for the present Mode II problem. Also, it is seen from Fig. (24b) that,

as plasticity develops, the tangential displacements u and u exhibit a
x y

ra (a < 1/2; and specifically a = 1/n+l as corresponding to Eq. (4.3))

variation near the crack-tip. However, for the pure Mode II case, even

in the presence of plasticity, the analyses of Hutchinson [ll] and Rice

and Rosengren [12], indicate that there may not be a r (a < 1/2) type

variation in u near the crack-tip. But the present results for u in they y
cy

presence of plasticity, Fig. 24a, are seen to contain such an r (a < 1/2)

type variation near the crack-tip. However, it should be noted that the

angular variation of the singularity functions, u.(̂ ), as embedded in the

present sector elements (See Eq. (4.3)) are being approximated as quadratic

polynomials in each sector element (See Eqs. 4.4 and 4.5). The fact that

r (a < 1/2) type variations in u are numerically obtained along the radial

line of the sector element lying on the crack sruface, as in Fig. 24a,
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suggests that the above angular variations are not being solved highly

accurately in the present numerical method. However, it appears that these

numerical errors are identical at <b = +Tras well as at <f> '= - rr , so that uU =
y

I
u as in Fig. (24a).

Finally the crack surface displacements (u , u ) and (u and u ) at the
y y x x

end of the first cycle of loading (ie., when the applied stress is brought

back to zero) are also indicated in Figs. (24a) and (24b) respectively.

u JL
Once again it is seen that even after complete unloading, u and u are

u J&
identical in magnitude and direction, where as u and u are identical in

X X

magnitude but opposite in direction.

Thus for the present material, with identical properties in tension

as. in compression, it is seen that in all cases of pure-shear type external

loading, the upper and lower surfaces of the crack move together in the

direction perpendicular to the initial crack-axis, whereas they slide

past one another in the direction of the crack-axis. Thus, it appears for

these types of materials the phenomenon of crack-closure, as observed

experimentaly and as analysed presently in Mode I type loading conditions,

does not occur in pure Mode II type cyclic loading.

. However the present experience indicates that crack-closure may occur

even in pure Mode II cyclic loading if the material has different properties

in uniaxial tension and compression. Consideration of such materials is not

pursued in the present work.

Finally, the computed shapes and sizes of the plastic zone near the

crack-tip at various stages of pure shear loading are indicated in Fig. (25).

46



9. SUMMARY AND CONCLUSIONS

Based on the results discussed so far, the following observations and

conclusions appear to be possible:

(i) If one assumes that the crack- growth-rate, da/dN, in fatigue-

loading of Mode I type, is related to the effective stress- intensity factor

in the form:

where AK „ = c- //TT a (c - a ) and n is an exponent, the present results

for 4 illustrative types of block loading indicate that: (a) growth retar-

dation occurs in Hi-to-Low and single overload cases, and acceleration in

Lo-to-Hi block loading, (b) significant delay effects prior to retardation

are observed in the case a single- over load in an other wise constant ampli-

tude cyclic loading.

(ii) The crack-surface deformation profiels, in the different Mode I

loading cases, viz., constant amplitude, Lo-to-Hi, Hi-to-Lo, and single

overload, have distinctly different characterstic shapes as sketched below:

CONSTANT LO-TO-HIGH HIGH-TO-LOW SINGLE OVER-LOAD
AMPLITUDE

Schematic Representation of Typical Crack-Surface Profiles in Different

Cases of Applied Cyclic Loading.
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Each of the above crack surface deformation profiles leads to a

different pattern of crack-closure when the specimen is unloaded. In the

cases of Lo-to-Hi loading and single overload, a considerable amount of

crack-surface blunting occurs at the instant when the applied load is

stepped up. This blunting precludes the possibility of crack-closure

behind the location of this blunting in the subsequent load cycling (in the

cases of Lo-to-Hi and single overload). Thus in these two cases of loading,

immediately after the step-up in load level takes place, crack closure

occurs only in the small area adjacent to the current crack-tip. Consequently,

the total compressive force acting on the closed surfaces in these two

cases, is also small immediately after the load step-up as shown in Figs.

(26) and (27) respectively. In Fig. (26), the maximum opening displacement,

in each cycle (ie., at maximum applied load indicated, for instance, by
t

point A in Fig. 26) at the node closest to the current crack-tip, as well

as the total compressive force over the closed area of the crack upon total

unloading in each cycle (such as at point B in Fig. 26) are shown for the

case of Lo-to-High loading; while similar results are shown in Fig. (27)

for the case of single-overload. In both the cases, it is seen that the

total compressive force over the closed crack-surface-becomes a minimum

right after the step up in the applied load; thus resulting in a lower

value of CT at which the crack-opens in the tensile portion of the sub-
op

sequent loading cycle. These phenomena, brought about essentially by a

smaller area of crack-closure (due to crack-blunting that occurs at the

instant of load step-up), may be responsible for the 'delay1 effects -

such as, the delayed retardation in the single overload case, and the de-

layed transition of opening stress levels from the base-line value for

lower amplitude block loading to the higher base-line value for the higher
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amplitude block loading (see Fig. 13) in Lo-to-High loading case.

(iii) As mentioned, growth retardation occurs in the cases of single

overload and Hi-to-Low block loading. Observing the crack-surface profiles

for the forementioned two cases, at the instant of complete unloading in a

cycle, several cycles after the initial overload, as shown in Figs. (21)

and (17), respectively, it is seen that the area of crack closure for both

the cases is much larger in comparison with the other two cases (see Fig.

11 and 14). Consequently, the total compressive force in the closed crack-

surface is relatively larger in the single-overload and Hi-to-Lo cases than

in the other two cases. Thus, in the single overload and Hi-to-Lo cases,

after the change in applied level, the crack-opening stresses level off at

a much higher value than the baseline value corresponding to the level of

applied loading after the formentioned change in loading level.

From these observations, it appears that the pattern of crack-closure

has a significant effect on growth retardation in general spectrum loading..

(iv) The crack surface profiles for the Hi-to-Lo loading case, several

cycles after the load-step down as shown in Fig. (17), possess certain novel

features. Crack closure is seen to be possible not only at the node closest

to the crack-tip, but also nodes for removed from it, with no closure

being observed at nodes in between. In this case also, growth retardation

was found to be possible.

(v) Thus, a correlation between the process of a significant crack-

blunting at the instant of transition in the amplitude of applied load-

transition, and the possibility of growth retardation is found to exist,

as summarized below.
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Loading Case

Constant

Amplitude

Lo-to-Hi

Hi-to-Lo

Single

Overload

Blunting of
Crack at Load-
Transition

NO

YES

NO

YES

Dip in a
op

in the Subsequent
Cycle

NO

YES

NO

YES

Delay

NO

YES

NO

YES

Area of
Crack Closure

Small

Small

Large

Large

Retardation/
Acceleration

NONE

Acceleration

Retardation

Retardation

The phenomenon of crack-closure was not observed in the present numerical

modeling of a thin-center-cracked sheet (of an elastic-perfect-plastic

material with identical properties in uniaxial tension as in compression)

subject to external pure shear (Mode II) cyclic loading of constant amplitude.

The implication of this in the more general problem of fatigue crack growth

under mixed-mode cyclic loading deserves further study.
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Fig. 1. Nomenclature for a Circular-Sector Shaped Singular Element.
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Fig. 2. 8-Noded Isoparametric "Regular" Element.
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Fig. 3. Yield Surface Translation : Kinematic Hardening Law.
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+ MESH AND NODES BEFORE TRANSLATION

--O-— MESH AND NODES AFTER TRANSLATION

NEW CRACK-TIP

Fig. 4. Schematic Representation of Translation of Singular Elements.
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Fig. 5. Finite Element Model of a Center Cracked Specimen Under

Uniaxial Cyclic Loading. ( Singular Sector Elements

Shown Within Detail "A")

57



PORTION OF DETAIL "A" IN FIG. 5

E : ELASTIC ZONE

P : PLASTIC ZONE

Fig. 6a. Representative Size of Yield Zone at max

P : PLASTIC STIFFNESS MATRIX

E : ELASTIC STIFFNESS MATRIX
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Fig. 6b. Schematic Representation of Incremental Equations in

the Presence of Yielding.
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(d)

CLOSED CLOSED

Fig. 8a - 8d. Representative Patterns of Crack Closure ; (8a - c)

Crack Closes Only at Nodes Closest to Crack-tip ;

8d : Crack Closure Occurs Also at Nodes Away From

Crack-tip.
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Fig. 10.AK vs N Curve for Constant Amplitude Cyclic

Loading.
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Fig. 13. K vs N Curve for Lo -To-High Block Loading.
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Fig. 18a - c : Crack-Closure and Crack-Opening Stress for Three

Different Cases of a Single Over-Load.
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Fig. 22. Geometry and Finite Element Model of a Center-Cracked

Panel Under Pure Shear Cyclic Loading.

74



Fig. 23. An Alternate Finite Element Model of a Center-

Cracked Panel Under Pure Shear Cyclic Loading.
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Fig. 24 ; 24a : Normal Displacement Profiles of the Upper and Lower

Surfaces of the Crack ; 24b : Tangential Displacement Profiles

of Upper and Lower Surfaces of the Crack.
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Fig, 25. Plastic-Zone Near Crack-Tip in a Center-Cracked Panel

Under Pure Shear Cyclic Loading.
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Fig. 26. Maximum Opening Displacement at a Node Closest to Crack-Tip

and Total Compressive Force over Closed Area Near Crack-Tip

in Each Cycle, in Low-to-High Block Loading.
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Fig, 27. Maximum Opening Displacement at a Node Closest to Crack-Tip

and Total Compressive Force over Closed Area Near Crack-Tip

in Each Cycle, in a Single Over-Load Case.
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