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1. Introduction

The phenomenon of fatigue-crack-closure, first discovered experimentally
by Elber [1,2], continues to be a subject of several recent experimental
and analytical studies; see, for instance, Refs. [3,4]. Elber has also
originally postulated that the crack-closure phenomenon is causedvby residual
plastic deformations remaining in the wake of the advancing crack-tip.

Analytical models that lend theoretical support to the existence of
the érack-closure phenomenon in fatigue crack growth, and provide some
rationality for the adoption of an effective stress-intensity range, based
on closure effects, for the correlation of fatigue crack growth rate, have
also been proposed by Budiansky and Hutchinson [5].

As for a more generai analysis of extending cracks under general block
cyclic loading, to obtain crack-closure stresses, crack-opening stresses,
details of crack-surface displacement, and residual stresses in the crack-
tip region, etc;, elasfic-plastic finite element analyses were first per-
formed by Newman and his colleagues [6,7,8]. Apart from these analyses, the
authors are aware of similar attempts only by Ohji and his co-workers [9,10].
The étudies in [6-10] considered the Mode I case only. Also, since the crack
growth was simulated in [6-10] by éhifting a finite element node (the current
crack-tip) to an immediately adjacent node, and since constant strain tri-
angle type finite elements were used to model the cracked structure, a
very fine finite element mesh (with the smallest element often being of the
order of 10-3 times the crack length) is necessary in the modeling procedures
of [6-10). This can be very expensive especially when cyclic loads of
grbitrary spectrum are considered.

One of the objectives of the present report is to present an alternate

cost-efficient and accurate elastic-plastic finite element procedure to
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analyse fatigue crack closure and its effects under general spectrum load-

~ing. Both Modes I and II type cycling loadings are considered. Also

prgsented in this report are the results of an investigation, using the
neﬁiy developed procedure, of various factors that cause crack growth
acceleration or retardation and delay effects under high-to-low, low-to-
high, single averload, and constant amplitude type cyclic loading in a

Mode I situation. Further, the results of an investigation of a center-

‘cracked panel under external pure shear (Mode II) cyclic loading, of con-

stant amplitude, are reported.

2. A Synopsis of the Present Analysis Procedure

Before embarking on a presentation of the mathematical details, the
salient features of the presently reported analysis procedure are‘given
below:

(i) The present elastic-plastic finite element procedure accounts for
arbitrary strain-hardening material behaviour; the mathematical description
of incremental elastic-plastic flow consists of Huber-Mises-Hencky yield
criterion, and a Prager-Ziegler type kinematic hardening rule which best
models the Bauschinger effects.

(ii) The well-known Hutcﬁinson-Rice-Roseﬁgren [11,12] type strain and
stress singularities, for strain-hardening materials, are embedded in specially
developed elements near the crack-tip. This eliminates the need for a very

fine mesh near the tip. TFor instance, the crack-tip elements in the present

-1
.procedure are of the order 10 of the crack length, as compared to constant

3 to 10-4 times the crack length generally

strain triangles of the order of 10~
used in the procedures of [6-10]. A hybrid displacement finite element

me thod [13,14] is used in developing these special elements.
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(iii) The above special hybrid elements are of circular-sector shape,
centered at the crack-tip; thus enabling one to model crack growth in any
arbitrary direction, from the crack-axis, under general mixed mode cyclic
loading.

(iv) In the present procedure, crack-growth is simulated by: (a)
translation of ﬁhe core of circular-sector elements, with embedded H-R-R
singularities, by an arbitréry amount in the desired direction, (b) reinter-
polation of requisite data in the new finite element mesh, and (c¢) proportional
relaxation of tractions in order to create a new crack surface.

(v) In order to mést accurately determine ;he crack-opening stress qop
and crack-closure stresé Ucz, the displacements at nodes on the crack-axis
before closure (and'aftér opening), as well as the restraining force at fhe
corresponding nodes after crack-closure (and before opening) are extrapolated
against the‘loadllevel. In all the cases studied, these two sets éf extra-
polated values for Gop and 0.y Were found to correlate excellently.

(vi) A static-condensation procedure is employed wherein the plastic
portion of the structure is isolated from the elastic; the stiffness of only
the former part keeps changing whereas that of the latter remains fixed.

" This results in a considerable saving of the computational time. This and
the invocation of the appropriate anti-symmetric and symmetric conditions
for modes II and I problems, along with the use of special elements of a
large size ag'described in (ii) above, reduce the analysis procedure-to be
feasible as a routine tool in design, if necessary.

(vii) A study'is made to arrive at a criterion for the stress level
cex’ at which fatigue crack growth occurs. 1In prior literature, this crack
extension stress level was chosen arbitrarily. For instance, in [6-8] the

crack is extended at the maximum applied stress in each cycle in a spectrum
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loading, whereas in [9,10] the crack was extended at the applied stress

level at whiéh the restraining nodal force at ﬁhe new crack-tip becomes

- zero. In the present stuay, for instance.in a constant-smplitude (zero

to tension) cyclic loading, it was found that Gop and ccl were &ery sensitive
to the chosen cex’ In the present work, a criterion, Uex = p(Gmax - cop)

f cop wheré p is a constant of proportionality, is postulated; and p is
obtained by calibration such that the calculated oop correlated with that
observed in experimental studies such as in [1,2,3]. However, it is not
claimed that this is a ‘general criterion; it is recognized that it is dependent
on ﬁaterial properties, and to an extent on the analysis proce@ure itself.
The mathematical details of the above features are discussed in the following.

3. Elastic-Plastic, Embedded Singularity, Incremental Finite Element
Method, Based on Hybrid Displacement Model, For Analysing Cracked Structures

To start with, we use circular-secto: shaped "singularity' elements
near the crack-tip, as sh%yn in Fig. 1. 1In these éingulérity elements,
a displacement field which corresponds to strain and stress singularities,
for strain-hardening elastoplastic materials, of the well-known Hutchinson-
Riqe-Rosengren [11,12] type, is assumed. The above singularity elements
‘are surrounded by "regular" eight-npdg isoparametric quadrilateral elements,
as shown in Fig. 2. Compatibilitonf displécements and continuity of trac-
tions between these '"regular" and '"singular' elements is enforced through
a'Légrangean Muitiplier technique as shown below.

The incremental aﬁalysis of the present elasto-plastic problem is
based on a continuously updated Lagrangean (coordinate-system) formulation.
In the following, for simplicity, we consider the formulation in the context
of a general three-dimensignal problem and present only the essential

mathematical details. We consider a fixed cartesian coordinate system, and
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consider CN to be the 'state' (viz. deformation, strain, and stress) of the
-structure before the addition of the Nth load-increment. Let Xg be the
material coordinates of a point in the initial, undeformed and unstressed

configuration, C,. Let uﬂ be the displacement, measured in the fixed

1

cartesian system, of a point in C1 to the deformed state CN. The new

coordinates of the material point in CN then become X? = X, + u?. Let
the (symmetric) Eulerean (true) stress tensor in CN be T§j3 measured per
unit area in CN and in the metric of the fixed cartesian system. Let the

body forces/unit volume in CN be F? and prescribed surface traction/unit

area in C_ be Tg-
N i
Let additional body forces AFi (per unit CN volume) and additional
surface tractions Aii (per unit CN area) be applied during the movement of

the structure from CN to CN+1' Let additional cartesian displacements of
the material point in moving from C_ to C be Au,; thus XN+1 = XN + Au
N N+1 i’ i i i

are the new coordinates of a material point in C

N1 vThe incremental Green

. az* . .
strain A gij from CN to CN+1’ with reference to the metric in CN can then be

written as,

dAu, ~0A BAu
* _ 1 i i Ug * *
by _VZ[AXN XNJ+2L NJ U (3.1)
, il ,i J R o
During the motion from CN to CN+1’ the state CN is treated as one with
"initial stresses'". The new stresses in C due to the additional incre-

N+1

mental loading, will be represented by the symmetric second Piola-Kirchhoff

stress tensor S , which is measured per unit area in C_.

(N) N
N+1 N * : '
S.. =T,.+AS,. : 3.2
ij(N) ij ij (3.2)

Assuming the material has yielded, the relation between the incremental
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stress (A Sij) and the incremental strain A gij will be written as

A* __t : N A* ' ' » 5
Siy T EBigra (Tip) Doy (3.3)

where E;jkl is the current constitutive éroperty, as modified by plasticity,
and is a function of current true stress; T?j‘ Such a cqnstitutive relation,
based on the well-known Huber-Mises-Hencky yield criteria, Drucker's
normality condition, and a Prager-Ziegler type kinematic hardening law has
been derived for the present plane stress conditions, following the procedure

~ described in Ref. 13.

Based on this, it can be shown that the variational principle governing

the equilibrium of state CN+1>1S SAHHD =0 wheré,
P .
O N (N 1 N\ * 1N
Aty (Bug 5 Bvy T 50 L 1 £ L(Tij T3 A8y Mgy Ty TP 8%,

N ' . o - ’ s
- (Fi + AFi)Aui]da - ag TLi(Aui - Avi)ds - £ (Ti + ATi)Avidsj (3.4)

m . (o}
m

where
. th _, .

Qm = domain of the m  finite element,

_ th _. .
Bﬂm = boundary of the m  finite element,
S = a portion of anm where tractions are prescribed,

m
Tij = true (Euler) stress in'CN, measured/unit area in CN and in the
fixed cartesian metric,

F?,ii = body force and surface traction, per unit volume and per unit

area, respectively, in CN’

* ] .
fThe Stress-increment A S.,. is commonly referred to as the Truesdell stress-
increment. This stress-rate is objective [15,16].



*
Ae ij

Au

Av

'TherEuler

and

17 1, 1. = b N *
2 LT TR 8515 T Big iy B e G

= arbitrarily assumed displacements, in each element, that need
not satisfy interelement compatibility a priori. In elements
éurrounding the crack-tip, displacements corresponding to the
Hutchinson-Rice-Rosengren singularities, for hardening materials,

are included.

= independently assumed displaceménts at the element boundary,

B()m, which inherently satisfy inter-element compatibility

criteria,

= Lagrange Multiplier to enforce the compatibility condition,

Au, = Av, at 30 , and
i i m

= prescribed increments of body forces and surface tractions, re-
spectively, measured unit volume and unit area, respectively in
C L]
N

equations corresponding to 6AT (éAui, 6Avi, 6TLi) = 0 lead to,

* N ) - TN - - : v
A skj,j”+ ('rijAuk’j i + AF, + ij,j + Fk} 0 (3.6)
'(TN + A*S \n + TN Ao, n, =T . at 3Q _ 3.7

kj ki/"3 T Ti57%, 3" T CLk m
T, + AT, = Ty ; at S (3.8)
m
Au, = Av, at 3Q 3.9
1 1 m



In the above, a comma followed by an index such as i, is meant to designate
-a partial differentiation with respect to the cartesian coordinate, X?.

Eq. (3.6) refers to the equilibrium of the total second Piola-Kirchhoff

N+1 .
stress S.. in C
RS S T())

bracketed terms in Eq. (3.6) would be equal to zero. However, because of

N+ If state CN was in true equilibrium, the last two-
thé;inherent numerical errors in the incremental solution process, the

sfate CN may not be truly equilibrated. Thus, retaining the last two terms
in Eq. (3.6) leads to an "equilibrium-check'" iteration process, similar to
the one deséribed in detail by Hofmeister, et al [17]."Eq. (3.7) states that
the tractions derived from the assumed-incremental interior displacements
match the iﬁdependently assumed boundary tractions,lTLi.

is .the statement of inter-element displacement compatibility that is enforced

Finally, Eq. (3.9)
-in the present method, by means of Lagrange Multipliers, TLi'
‘Beqause of the advantages of the above describéd hybrid-displacement
moael,.and the convenience éf the conventional finite-element displacement
model, a combination of both the methods is used in the pfesent formulation.

Thus ene can visualize the domain of the cracked structure to be divided

into two regions, (a) a small region near the crack-tip where the singular,
near field solution is predominant, and (b) a region away from the crack-tip
where the effect of the singularity is not dominant. In the present calcu-
lations, a hybrid-displacement model is used to derive the stiffness properties
of the near-tip sector elements, and the conventional displacement model is
used to derive the stiffness properties of the far-field, eight-node

" isoparametric elements.

Consider first the development of the properties of the near-tip,

circular-sector shaped '"singular" elements, wherein, the three independent
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~variables Aui, Avi, and TLi are assumed as follows. :

fu, =AB, Av. =L Aq; T. =Rg ' (3.10)

where E, and Q are unknown independent parameters, and éq are increments of

nodal displacements during the generic load step, C. = C . The functions

N N+1

A andlg are arbitrary. However, L are.functions ar the boundary of the
circular-sector element such that they uniquely interpolate for Av at the
Boundary in terms of thé relevant Qg at the boundary, and in addition, en-
sure displacement-compatibility with the surrounding 8-noded isoparametric
quadrilateral élements (Fig. 2).

For faf—field regular elements, as mentioned earlier, the conventional

compatible displacement finite element model is used. The incremental

energy functional corresponding to this model can be expressed as,

m
. 1 s 1N :
A Mu.) = , ( A - Au S .
cp 4Y3) i1 L»r 2 lel x1 *t3 kit k, i

- Af‘.Au.)da - [ AT, bu_ds +£ () pu, . - Fdu,)da
i i 5 ii iji~i,3 iTi

(o}
m

- iliAuids}i : (3.11)

Sc oo B ) L

m
The finite-element approximations for a far-field regular element are con-

sidered as,

=D g (3.12)

*
The usual notation, (~) under a symbol, is used to denote a column vector,
and () under a symbol is used to denote a matrix.



from which the strains and deformation gradients are derived as,

b =Blgby ;=¥ 2

(3.13)

For purposes of convenience of notations we consider that, out of a total of

‘M finite elements, m =

...M are the far-field regular elements.

1, p are the so-called singular elements and m

= ptl

The assumptions for the field variables as in Eq. (3.10) for elements

m = 1,...p are substituted into Eq. (3.4) and the first variation of T
with respect to the parameters « and P is set to zero, to obtain, for

elements m =

where,

and

1, p, that
-T -1 -T
= P Ag + P -
g-f EAE EMYE L
B-2 ¢t

m
p= [ R'A ds
m
G = ’ETL ds
m
: T N T N
= W, 7., W, +W T.,W)dA
gg fl; <z1 ~ij &l ~ i a2
m
L. = f wI TN dA
Q"rt;’ =
m

10

HD

(3.14)

(3.15)

(3.16)
(3.17)
(3.18)
(3.19)

(3.20)

(3.21)



Substituting for g and E from Egs. (3.14 and 15) into Eq. (3.4), one can

egpress AnHD in terms of Ag only, as,

p
_ v 1., T T T
Mip = L 2 08 KT KM - by - bgi (3.22)
where,
k=9 1e o (3.23)
-1 T -1
K = (P 6 C (P ¢ 3.24
o - T - , _
M =F, =) L AT ds (3.25)
s_* ,
g
m
and
= (P'1G‘)T F, - C ) : (3.26)
AQC ~ ~l ~e ' '

Likewise the assumptiohs for the field variable in Eq. (3.12) for

elements m = p + 1 --M are substituted into Eq. (3.11) to obtain ATrcD,

for elements m = p + 1---M, as,

u _
= 1.t R _ AT RO, T R R
L (}SR + X)) 09 - 89°Ey - 8y Ey T E) (3.27)
where,
K= [B'E B as, (3.28)
= sz ~ A
R _ T N T N
Xe ‘£ W T T Tig W) da (3.29)
m
R STt 5.30
m

11



Es =] 0" Af ds | | (3.31)
SO'
m
and FZ = gT i ds (3.32)
. Sc_
m

Combining Eqs. (3.22) and (3.27), the total energy functional for the

system, A, can be written as,

SN O ok BN T o T,
AT = mgl [E nggg +-£g) AS - Qﬂ N - Ag AQCJ

M : -
1 ,.T, R T R, T\ R}
+ 20 (1 8 &+ KD og - 8" 1% - g N (3.33)
where,
qu = Eg; and Agi = Ez + EE' (3.34)

By expressing the element incremental nodal displacements qs in terms
_ "
of independent generalized global displacements Aq , and using the condition

*
of stationarity of Am with repect to Aq , one obtains the final expression,

[Keay 20 | {60 10T = { }+{m, } (3.35
| K(ay>P) | {8 [y M (qp) ) + 18, .35)
where
{q}N = generalized nodal displacements in state Cy (with loads PN)
[K(qN,PN)] = the tangent stiffness matrix at state CN which includes
the effects of initial stresses, displacements, and the
influence of plastic yielding at state CN’
*.N+1 . .
{Aq }N = incremental displacements of the structure from CN to CN+1’
{AQ(qN,pN)} = incremental loads, and

12



{AQeC} = residual nodal forces to check the equilibrium of state CN'

a .

The solution of Eq. (3.35) with a Newton-Rapﬁson type .equilibrium correction

. iteration, is essentially similar to that presented by Hofmeister et al (171,

and further details are omitted. Finally, we note that in order to carry

our the .incremental solution from CN+1 to the second Piola-Kirchhoff

N+1

Cr2?

‘stresses S, . are converted to Euler (tru str' ses in using the
s S _SIJ(N) _ (true) esses CN+1’ g

relation,

+1 +1
ax‘: Ly

N+1 1 i N+1
T,, = S : (3.36)
1 L Bxﬂ axy kAW
i o 4
Det [ N j .
ij

4, Details of Finite Element Field Assumptions

4.1 Circular:Sector Shaped Singular Elements

The dominant singularities in strains and stresses at the tip of a
crack in a monotonically loaded two dimensional body of a nonlinear material
obeying a power-hardening law of plasticity were analysed by Hutchinson [11]

and Rice and Rosegren (12]. (Hefeafter these are referred to as the H.R.R

singularities.) Their analyses were based on a deformation theory of plasticity;

however, to an approximation, these are considered to be valid, in the pre-
sent work, when a flow theory of plasticity is used. Further, the analysis
in [11,12] are valid only for stationary cracks. However, the nature of

singularities at the tip of a moving crack in an elastic-plastic solid is

" still largely uncertain. The existing attempts in the literature to obtain

analytical solutions to the problem of a '"steadily" moving crack-tip in

perfectly plastic materials, by Chitaley and McClintock (18] and Rice [19],

13



show a logarithmic strain-singularity at the crack-tip. However, one of
these éolutions [18] has been recently argued by Broberg [20] to be in error.
Due to these reasons, and for lack of criteria to. define ''steady' state
conditions, a priori, the H-R-R singularities [11,12] are allowed, in the
present analysis, to be present at the crack-tip which grows under fatigue
1oading; - This may, however, be viewed as én approximation in the general
context of the finite element method, in the sense that the hypothetical
exact solution is approximated by a set of assumed basis functions. It is
also noted that in spite of this approximation, the crack surface deformation
profiles, afte? fatigue carck extension, to be discussed later, do suggest
a possible change in the natdre and order of strain singularities near the
growing crack-tip. Finally, we note that if the nature singularities near
the advancing crack-tip both in the "transitory"bas well as '"'steady state"
conditions is clarified anélytically, it is, in principle, poésible to
affect the afpropriate changes in the present finite element modeling.

The H-R-R solution for the dominant solutiop near the crack-tip for

I3 A
stresses, strains, and displacements, respectively, can be expressed as:

-1/ .
n+l- : »
cij a~ kc r O'ij(rq)) (4.1)
-n/ i

n+1-
eij ~ ke r eij(¢) (4.2)
. 1/
n+l- ,

and u, ~ ke r ui(w) (4.3)

where (r and @) are polar coordinates centered at the crack-tip; n is the

power hardening exponent in the Ramberg-Osgood relation between the equivalent

stress 0 and equivalent plastic strain Ep’ viz., ep ~ Qg ; kc and ke are
-n - -
constants; and cij(m), eij(¢) and ui(w) are functions of the angular co-

orqinate ¢ (see Fig. 1).

14



The above dominant singularities are embedded in the.sector shaped
."singularity" elementé surrounding the crack-tip. More over these singular
functions are augmented, in the singularity elements, by a large number of
arbitrary polynomial functions for displacements and strains. Due to this
reason, the singularity elements in the present analysis can be fairly
large; in the numerical examples presented later, these elements are, in

general, chosen to be about 10“1 times the crack length.

4.1.1 Displacements in the Interior of Singular Element

Based on the above reasoning, the incremental displacements in the

singularity elements are assumed as:

1/
_ 2 2 n+l
Aur = Blr + ZBer + B3r9 + Bsr + B6r29+ Blocoscp
1/ 1/ 1/
+ Bllcos¢r n+19 + Blzcos¢r n+192 + Bl3sinmr n+l
1/ 1/
\ n+1 . . nt+l, 2 ’
+ 31431n@r 6 + Blss1nmr 0 (4.4)
2 2 2 Yin
A“e = 52r + 54r6 + s7re + ﬁsr + Bgr 6 - Blos1n¢r
1/ 1/ 1/
' . n+l . ‘n+l,.2 n+1
- 51151nmr ® - 61231n¢r o Bl3cos¢r
1/ ' 1/
+ 614cos¢r n+16 + BlSCOS@r ‘n+192. (4.5)

15



where B's are undetermined parameters, @ is .the global angular coordinate;
and © is the angle measured from the symmetric axis of the sector element,
as shown in Fig. 1. The above are augmented by the three rigid body modes

for the element. Thus, using the matrix notation we write,
Qg = Q‘E . _ . (4.6)

as in Eq. (3.10). The strain increments are derived as,

Aerr ?Aur/ar
{ae} = q degg b = 4 bu_/r + (L/r) dbugla® 4.7)
Aere (1/1) BAur/ae +VBAue/Br - Aue/r

4.1.2 Boundary Displacements for "Singularity' Elements

Along the circumference of each of the preseht sector shaped singular
elements, where 3 nodes are located as in Fig. 1, each of the displacements

Avr.and Ave are assumed in the form:

.= . 2 .'= l '
Av, = a_, + aZie + a319 (i =r,0) (4.8)

i 11

where ali,‘a21 and a3i are expressed in terms of the respective ‘displacements
at the 3 nodes along the circumfe}ence. Siﬁce this-displacement Varies
quadratically ét the circumference, continuity of displacements at the in-
terface of the present singular elements and the surrounding 'regular’
quadratic isoparametric quadrilateral elements is inherently satisfied.

Along each of the two radial boundaries of the singular sector element,
on which 4 mode (including the crack-tip as a node) are -located, the dis-_
placements are assumed as,

2 1/n+1
Avi = b1i + b2ir + b3ir + b&ir (i =r,9) (4.9)

16



wherein the coeffecients b_....b

i 4i are expressed in terms of the respective

displacements at the abqve mentioned &4 nodes. It is seen that the above
boundary displacement field along the radial lines is inherently compatible
at the interfaces with the adjacent singular elements.

Thus there is interelement displacement compatibility not only amongst
the singularity sector elements themselves, but also with the surrounding

regular isoparametric elements.

4.1.3 Boundary Tractions for Singularity Element

The boundary tractions T., for the singular element as defined in Eq.

Li
(3.10), which are mathematically the Lagrange Multipliers in the hybrid

variational principle as in Eq. (3.4), are assumed as:
T.. =V, 0;. (4.10)

where Gij are derived from an Airy Stress function, {, as:

o__ = (L/r) 34/3r + (1/x7) 374 /207 (4.11)
0gy = 32y /317 | | (4.12)
oo = (UrPRy/e - (rpfyerde (4.13)

and vi in Eq. (4.10) denote the direction cosines of a unit outward normal

to the boundary. The Airy Function { is chosen such that the stress field

] -1/n+1 X .
contains a r type singularity, as:
2 2 2.2 2.3 3 3
= )
§ =T toar 8 + o, 0" + Q,r 8~ + ogr” + ot
3,2 3,3 4 4 4.2
6
+ a7r 0” + a8r 0~ + agr + alor + allr 0
4.3 (2n+1/n+1) (2n+1/n+1) (2n+1 /n+1’)92
+ oy ,T 0~ + al3r + a14r‘ o t dlsr
(4.14)

17



where o's are undetermined parameters. We note that the element boundary

traction field as chosen above is self-equilibrated.

4.2_Disp1acément Field Assumption for Regular Elements

As noted earlier, the region of the cracked structure outside the
above discussed singularity core region is modeled with conventional iso-
parametric displagément elements. An eight node isoparametric quadrilateral
finite element, as shown in Fig. 2, is used for this purpose. The transe
. formation from cartesian coordinates of the element, with general quadratic
curves as boundaries, to curvi-linear coordinates § and 1, aslindicated in

Fig. 2, is achieved through:
8

_ 8
i
K= ) NEDK Y- 1Zluia-; My, (4.15)
where, the functions Ni(§,ﬂ) are defined as:
NG = (/A H B+ MY EE, - M, - 1) (4-16)
for corner nodes i = 1, 3, 5 and 7 as indicated in Fig. 2, and
N (6,1 = (1/2)(1 - £ (1 + M) (4.17)

for nodes with gi = 0, and, finaily,
N, GEM) = (/)1 - 'ﬂz)(l + EE.) (4.18)

for nodes with ni = 0. The displacement field for the regular element,
as defined in‘Eq. (3.12), is expressed as:

Du -

{ag) =4 " =D g (4.19)
'Auy ~
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where,

(4.20)

; N ; 0;...N 0-,
1 3 ’ b 3 ) :
[D] [ 8 §
2x16 0; ves0 N8

2

and LAqJ-= LAql; qu cen Aq16J° From Eq. (4.19), the element strains are

defined as:

jAexx }
{ ae} ~{te,, y “BA=3D1g . (4.21)
Avxy
aNi/ax 0 |
where [B] = 0 oN, /3y S (4.23)

ON. /ax ON. /ay

Finally, we note’

BNi/Bx aN /ag\ '
{ } -t i (4.24)
BNi/By BN /BT]

~where [J] is the Jacobian of the transformation used in Eq. (4.15).

5. Elastic-Plastic Constitutive Relations

In the present analysis, based on an incremental theory of plasticity,
, . %
the piecewise linear relation between the stress and strain rates is taken

as:

= Xt
dcij = Eijkl dekL _ (5.1)

*t . . . . .
where Eijkz is the current tensor of elastic-plastic constitutive law; and

the total strain rate is assumed to be a sum of elastic and plastic parts,

%* . . .
First, we develop the constitutive relation for a small-displacement theory
of plasticity, and later generalize it for the case of finite deformationms.
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as:

= ge© ‘deP
dekz dekz + dekz (5.2)

The elastic strain increments are assumed to be given by the Hookes' law as:

. e
45 T Eijre e (5.3)

where Eijkz is current elasticity temnsor. 1In the classical rate theory of
.plasticity, which is used in the present, the elastic-plastic behaviour

of the material is fully described by specifying: an initial yield criterion;
a flow réte; and a hardening rule. The elastic-plastic constitutive tensor
E;jkz is obtained by specifying each>of the above, as in the following.

(i) Initial Yield Criterion

The well known J2 flow theory of Huber-Mises -Hencky is used in specifying

the initial yield criterion, which states:

_ _3_ ) ’ - 2 -
£(3y) = (3) 935955 =~ Ty = O (5.4)

where Ovs is the yield stress of the material and G;j is the deviatoric

stress as defined by

. 1 '
cij = dij 3 Gkk 6ij (5.5)
fl if i = j
3

o0 if i #

6

For the special case of plane stress conditions. The initial yield surface

as described by Eq. (5.4) reduces to

£0.) =c> +02 +0 o0 +30% -0 =0 (5.6)
ij XX vy XX Yy xy ys

and for the case of plane strain conditions,
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f(@..) = 02 + 02 + 02 -0 0 -0 O -0 © +-302 - 52 =0
1] XX vy zz XX yy XX ZZ Yy zz Xy ys

(5.7)
(ii) Flow Rule
The well known Drucker's normality rule, which states that the plastic

strain increment is always orthogonal to the yield surface, or

P _ of
deij dA acij (5.8)

where dA is a proportionality, is used. If the plastic strain vector is
superimposed on the stress or space (as best depicted in Fig. 3), for small
increments of stress and strain the relation between the stress and the strain

increments and the yield surface will be

of
a0,
1

(do,, - cdef ) =0 G

1]

2

]
From Eqs. (5.8) and (5.9) the proportionality constant d\ is determined as

3f \
1 (acij) dcij
ax = E‘Z’af S (5.10)

Héckz \ackL/

where ¢ is a constant.

“Substituting the above relation for dA into the Eq. (5.8), now we get

-( df \( df )
1 &ﬁmf aci.
aeP = < 4o

= (af\< Bf) mn
aokz/ ackz

a flow rule,

(5.11)

For the simplest case of uniaxial tension or compression Eq. (5.11)

reduces to,

“ae?

1]

0 |=
o
o]
o)
a]

o
1}
I3

(5.12)
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Therefore in the case of the uniaxial loading the parameter 'c' is

the slope of stress-plastic strain curve. Or
—q (5.13)
P

eq

2 2 ©
¢ = 3 H = 3
de

where H' is the slope of the equivalent stress-equivalent plastic strain

curve, and ceq and dszq are defined, respectively, as

_ é } ’
%eq ‘/ 2 913713 (5.14)
P oo [2 4P 4eP
aed =[5 ae} e, | (5.15)

(iii) Hardening rule

'Prager's [21] kinematic hardening low,.as modified by Ziegler [22]
which appears to adequately model the Bauschinger effects that are generally
observed in most of metals under cyclic loading is chosen. In this case,

the subsequent yield surface is represented by,

f(oij - dij) =0 . (5.16)

Ziegler's [22] modified kinematic hardening rule states thgt the translation

. of the yield surface, daij, is always in the direction of the vector cij -

o.., ie.
1J, b

= o,. - .
daij dp ( 13 aij) (5.17)

as shown in Fig. 3. For an infinitesimal increment of loading the vector

doij - daij must be orthogonal to the outer normal to the surface; thus

(dcij - do. ) =0 (5.18)
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The scalar quantity dp is obtained by substituting Eq. (5.17) into (5.18)

to get,

of do .
Bci. ij
dp = ] ST (5.19)
(O, p-6 ) S
kL k4 acu
Therefore the rate of the yield surface translation is given by
"y _of
©157%3) S0 - “m
do, . = = - (5.20)
ij ©. -t ;) of
kL “k4 aok£

. Upon substitution of dgzj from Eq. (5.11) into Eqs. (5.2 and 5.3), the relation

between the stress rate and the total strain rate can be expressed as

follows:
a. for plane stress case:
- 2 B 3
S g S Ev 518 515
do 7° 8 T2 s "Ts ||
XX 1_\) 1-v XX
2
S S,S ’
dao o= | E_.2 .23 <4 >  (5.21)
vy lde S S . vy
e S
do - - - = 2de
xy | sym 2(1+v) S | ny
. d - o
where
_ _E [ 3f 3f \
S 1 2 \30 tVv 3 /
1-v XX vy
_ _E of of
S5 7 (Vac 3 )
1-v vy
g = E of
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S=CQ+SI$_+SZBO‘ +ZS3BG
XX Xy
2 2 2
_ /. °f ) 3f ) ( 3f >
=\ /) "\ AT
XX vy X
of _
acxx =200, - oy) (oyy dyy)
of
= =200, -~ ) - (O -a )
30
yy vy XX XX
of
=3 (@ -«o. ) (5.22)
chy Xy Xy
b. for plane strain case: .
2 -
(o ] [Eaw 5 VE U582 58T (L.
XX (1+v)(1-2v) S?  (I4+v)(1-2v) s S XX
' 2
: S S,S .
; - (A-V)E _ 2 _ 273
3 w0y L T+ (l-2vy = 5 ° s | %y 262
SZ‘
do : - sym - £ -
Xy 2(1+v) S jZde
. V)t 4 L
where
- E J of Af |
81 T Ry (io2yy LY 55—+ Vx5 §
XX vy
. _ E [ Of _ df
S, T a2 Wee o T AV 55
. XX vy
- B _of
®3 1+v 3o
Xy
S = .
} are defined to be same as in the plane stress case.
Q="
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2f _ 3 ] ]
3¢ 2 [(Gxx Q/xx) (UYY ayy)]
XX .
of 3
= = - - (o) -
o0 2 [(ny Oly‘y) ( XX axx)]
yy
of | :
= = 3(c -o ) (5.24)
fle] X X
Xy y y
_ N A
As noted earlier, the above relation, doij = Ezjkl dekL was. derived for a

small displacement theory of plasticity.
In generalizing the above relation to finite deformations, one needs to

make a choice for an objective stress rate and an appropriate strain rate;

and EF‘kL can be used as constitutive-relation tensor relating the chosen
1]

objective stress-rate and its conjugate strain rate. In [15,16], and
elsewhere, the advantages éf using the corotational rate of Kirchhoff stress
[which is J times the true stress Tij]’ (which stress rate is physically

the stress increment measured in a coordinate system that is instantansously
coincident with the current carstesian system in the ubdate& configuration

c but is rotating with respect it at the same rate as the spin suffered

N’

by the material fibers in going from C_ - ), in the elastic-plastic

N~ Oyl
constitutive law for finite deformations have been discqssed. If AKij is

the corotational rate of Kirchhoff stress, it is shown in [15,16], that it

« .
is related to the Truesdell stress-increment A sij of Eq. (3.2), through:

* VN B N _ N %
A Sij AKij A gikaj Tik A gkj (5.25)
N * : . , .
where Tkj and A gkj are as defined earlier. Now, as discussed above and as

elaborated in [15,16], a generalization of the elastic-plastic law can be

written as:

<o
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A J _ *t A* ‘
K13 7 Bique B Bies  (5.26)
By substituting‘Eq. (5.26) in (5.25), the tensor E;jkz in the relation
r's. =gt , " |
Si5 T Eijke ® Buy (5.27)

is found, and is used in the developments discussed earlier, ie., Eq. (3)
on words. Finally, we note that in the above generalization for finite
deformations, the initial as well as subsequent yield functions are expressed

in terms of the true stress, Tij"

5.1 Knee Correction

Once a point has yielded, the state of stress represented by its location

in the stress space stays on the yield surface until unloaded. The subsequent

. s . , s . =}
loading condition of the point is determined, by checking an dTij’ as
ij
Of g4r..
oT, . ij
is positive, zero, or negative respectively. Howevetr, some complications

loading, neutral loading, and unloading depending on whether

arise when an elastic or unloaded part of the structure near yield becomes
plastic with the next increment of load. A technique, herein called "knee
correction", 1s used for dealing with each integration point in this transi-
tion region, of elastic and plastic behavior, and is briefly described in
the following.

First an estimate of strain and stress increments which made the point

yield is made by assuming,

£y + V0T - ) =0 (5.28)

where ATij is the total increment of stress obtained for at the present in-
crement of loading, and v is the proportionality constant so that the increment

yATij causes yield at the point. Solving Eq. (5.28) for v, yATij is treated
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as if it acts elastically, then subsequently the behavior is assumed to be

. . . . *
elastic-plastic, with the remaining strain increment, (l-y)A gij.

6. Finite Element Modelling of Crack Growth

The steps in the finite element simulation of crack growth in the
present procedure may be described as: (i) geometrical change in the crack
surface boundary; (ii) translation of the crack-tip singularities to the
advanced crack-tip; and (iii) release of surface tractions on the newly created
crack surface.

The change in the crack surface boundary is made by translating the
whole set of crack-tip core elements, as shown in Fig. 4, by arbitrary
distance}Aa in the direction of intended crack extension; thus the new

- crack-tip node which is designated by the center of the sector-shaped core
elements ﬁeed notnbe coincident with any previously existing finite element
node before extension. Thus even though the fixed boundary in the uncracked
}igament of the structure is changed, thé constraining condition of the nodes
need not be altered. Elements immediately adjacent to the core must Bé re-
adjusted to fit to the translated core. This process of translating the
core mesh alsonmoves the embedded singularity in the elements to the new
_érack tip area, 1éaving no singularities But lérge deformations and strains
in the wake of advanced crack-tip. All the 5x5 Gaussian data points in each
of the translated core element (and also the 5x5_poiﬁts for the conventional
elements) may generally not coincide with those before translation, at which
plastic history data such as current stresses, plastic strains, plastically
dissipate& work, yield surface translation, etc., are available. Therefore
the data at points in the new mesh are estimated by linearly interpolating

data on four Gaussian points in the old mesh that are nearest to the point
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under question in the new mesh. The simple but cumbersome mathematical de-
tails of this interpolation and smoothing process are omitted here for the
sake of brevity. With the fitted plastic data and the new element geometry,
element stiffness matrices are recalculated for the core elements as well

as for the surrounding rearranged elements and the global stiffness is
appropriately modified. Subsequent equilibrium check iterations using the
new stiffness of the structure correct fitting errors, if any, in the
plésticity data in the new mesh. At the same time, the tractions over the’
distance AB (Aa as shown in Fig. 4) are incrementally removed, with equilibrium
check iterations being used at each step, to create a new traction-free
crack surface of length pa. The finite element simulation of crack exten-

sion by the desired amount, Aa, is now completed.

7. Analysis of Fatigue Crack Growth Under Mode I Cyclic Loading

7.1 Description of the Problem

s

Through out the series of the present elastic-plastic finite element
analyseé of fatigue crack growth under Mode I type cyclic loading, a thin
rectangular plate with a central crack and under uniform tensile stresses,
in a direction normal to the crack-axis, at the edges of the plate, is con-
sidered'(See Fig. 5). The dimensions of the blaie are: half width w = 230mm;
and half-crack length a = 27.3mm, respectively. The material is comnsidered
to be a 2024-T3 Aluminum alloy, whose mechanical properties are characterized
by: vyield stress, Oys = 350 MN/mZ; and Young's modulus, E = 70,000 MN/mz.

The material is assumed to be elastic-perfectly-plastic. It is noted that
the above problem definition is identical to that used by Newman [8]. The

plate is assumed to be in a state of plane stress.
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Because of the symmetries of geometry, applied loading, and material
homogeneity, only a quarter of the cracked plate is analysed. Fig. 5 shows
the finite element breakdown that is used. A total of 6 sector-shaped sing-
ularity elements near the crack-tip, and 45 conventional quadratic isoparametric
elements are employed. Some of éhese isoparametric elements are 6 noded tri-
angles, while the majority are 8 noded quadrilaterals (See Fig. 5). It is
seen that the total number of_nodes in the finite elément mesh for the
quarter-plate is 171, with a totél number of degrees of freedom of 311.

The radius of the sector-shaped singularity elements is chosen as
p = 2.8mm; ie., p/ao = .103. While the crack-extension per cycle of loading,
Na, can be arbitrary (ie., not related to the finite element mesh size) in
" the present analysis procedure, it is chosen to be Aa = 0.l4mm in the present

-series of computations.

7.2 Techniques to Minimize Computational (CPU) Time

Firstly, we note that the near-tip elements used presently are of the
order 10-1 times the semi-érack length; and the total number of algebraic
equations for the abéve problem are only 311.

In the present procedure, a tangent modulus (stiffness) approach is
useéd in each increment and in each iteration in the réspective increment.
Thus a faster convergence is obtained in the process of iterations of
equilibrium qorrection, etc. However, itAis noted that only the stiffness
matrices of the plastic portion of the strﬁcturé need to be changed in the
ﬁresent tangent modulus abproach, whereas, those of the elastic portion re-
main fixed.

For the presently considered levels of applied far-field tension on the

specimen, only '"small-scale' yielding conditions prevail near the crack-tip.
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A typical plastic-zone size near the crack-tip for the presently considered
class of Mode I problems is shown in Fig. 6a, being superimposed on the finite
element mesh. It is seen that the plastic portion of the structure (designated
""Region P'") is considerably smaller than the elastic portion (designated
"Region E'"). Thus only the stiffness matrix of region P need to be changed

in each load-step and each iteration in the present procedure.

However, the total number of times, say N, that the combined stiffness
matrix (for Regions P + E) must be inverted in the course of analyzing a
"typical problem, say the case a growing crack under constant amplitude
cyclic loading, is N = [(no. of iterations/cycle) X (number of load increments
per cycle) X no. of load cycles ]. For a typical problem, éay 8 cycles of
constant amplitude loading, a typical value for N can be N = 4 x 28 x 8 = 896,
(ie., 4 iterations per cycle, with 28 load increments/cycle, etc.). This
is a rather enormous amount of computing; and hence a more economical way
‘of solving the stiffness equations is mandatory.

Since the plastic-zoné is a small-size, by an appropriate node numbering
scheme, the stiffness matrix of the plastic zone can be arranged, as in Fig.
6.b, so that it is a small sub-set of the global stiffness matrix of the
structure (eventhough the plastic zone size keeps changing with load, an
approximate preliminary analysis can be made to determine its size at
maximum load). Then we use a static condensation procedure to first
eliminate the equations corresponding to the nodes in the elastic portion,
in the very first load-increment. Thereafter only the equations for the
nodes in Region P need to be operated upon, in all subsequent load steps
and iterations. Thus, in the example cited above, (N = 896), in all but
one of the 896 solutions, the number of equations being solved is rather

very small, and correspond to the total number of unconstrained nodal
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displacements in Region P. This enables the present computations to be
economically feasible.

Also, the computer program is so arranged that the data obtained from
computation upto the end of a given spectrum of logding can be used as in-
put data at the beginning of a different spectrum of loading. For instance,
-at‘the end of a constant Hi-amplitude cyclic loading, the data is stored on
a direct acces;"permanent disc file and used as initial conditions for a

low amplitude cyclic 1lpad specturm; in this process not only the case of

Hi-amplitude loading but also the case of Hi-to-Lo block'loading is solved.

7.3 Monitoring of Crack-Closure and -Opening in the Finite Element Model
Let us assume, that at a given instant of time (at a givén point in
the loading history), the location of the crack-tip, the location of the
4 nodes on the radial line%(ﬁhich coincides with the crack surface) of the
singular sector element, the locations of all other nodes on the crack axis,
as well the current (deformed) profile of the crack surface, are all known.
We denote ﬁhe current nodes on the crack surface as "Updated Lagrangean
 Nodes". Let us now assume that the crack-tip is now further extended by an
arbitrary amount (Aa) and the structure is then subjected to further loading.
We first note that, in the present developmené, the bouﬁdary disélacement
(in the direction 6f the applied normal stress) along a radial line of a

"singular" sector element is of the form,

Av. =ar nt+l + br2 +cr +d (7.1

where a, b, c, and d are expressed in terms of the normal displacement,
Avy, of each of the 4 nodes on the radial line of the sector element in its

current location. Using the above equation, and knowing, a priori, the
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radial coordinates, (ie., r, as measured from the current erack-tip), of
the respective nodes on the radial line of the sector element in its
immediately previous location, one can compute the values of Avy at the
above mentioned "Updated Lagrangean Nodes'. By adding (or substracting,
as the case may be,) these incremental displecements to the previously
known values, an accurate prediction of the current creck surface deformation
profile is made.

| During the unloading part of any cycle, of the present cyclic loading
case, at the instant the displacement (in the direction of applied tensiqn)
at one or more nodes on the crack surface becomes negative,.further un-
loading stopped. The computational procedure is then switched to a dis-
placement control type, and the above negative displacements are pregisely
enforced to be zero; thus finding the precise stress level at which the
closure constraint on the respective node must be enforced.

After the crack-closure is detected, the respective node(s) are constrained
thereafter, until the restraining force(s) at the node(s) just becomes zero
‘and begins to be tensile in nature. The correseonding applied stress level
defines tﬁe crack-opening stress.

The above processes are illustrated for the case of constant amplitude
cyclic loading in Fig. 7; in which, the vertical displacement (when the
crack is open) and the restraining force (when the crack closes) at a node,
at which the crack closes and opens, are plotted against the applied stress
level. It can be seen from Fig. 7 that the crack-opening stress cop (or
the closure stress °cz) can be most accurately determined by extrapolating
to zero the respective nodal displacement after opening (or just before
closure, to find Gcl)’ as well as by extrapolating to éero the restraining

force at the respective node just before opening (or just after closure to
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find cc It can be seen that the values cop and Gcz obtained by the

2
above two sets of extrapolation procedures agree excellently. This indicates

‘that the present numerical procedure of determining cop and © by monitor-.

cd’
ing crack-surface displacements and the nodal restraining forces, is very
accuréte. ’

Finally, some comments on the presently observed patterns of crack-
closure are given, befére proceeding to a discussion of specific cases. In
general, closure was noticed to occur at the node closest to, the current
crac&-tip, as indicated in the sequence of unloading steps in Figs. 8a-c.
However, if the current crack-sruface profile is irregular, as in the case
of Hi-to~Lo block loading to be discussed later, crack-closure may first
occur at the node closest to the crack-tip; however, in the subsequent
unloading step, closure may occur at a node far-removed from the crack-tip,
as indicated in Fig. 8d. From the results to be discussed later, this

pattern of crack-closure appears to contribute significantly to growth

retardation and delay effects.

7.4 Criterion For Crack-Extension Stress Level

In the present work, a study is made to arrive at a criterion for the
stressilevel, Cex’ at whichrfatigue crack growth océurs. In-prior literature,
this -crack-extension stress level was chosen arbitrarily. For instance,
in [8] the crack is extended at the maximum applied stress in each cycle
even in a general spectrum (for instance, high-to-low, low-to-high, etc.,)
loading, where as in [10] the crack was extended at the applied stress level
at which the restraining nodai force at the new crack-tip becomes zero. 1In

the present study, for instance in a constant-amplitude (zero-to-tension)
N i

cyclic loading, it was found that the crack opening and closure stresses,
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c and © respectively, were sensitive to the chosen o .
op cl ex

In the present work, a criterion, ¢ =0 4+ p(g - 0 ), where
ex max - op’’-

op
. p is a constant of proportionality, is postulated; and p is obtained by
calibration such that the calculated oop correlated with that observed in
experimental studies such as in [1,2,3]. However, it is noted that this
constant of propertionality p may, to some extent, be dependent on the
numeriéél methodology employed in fatigue crack modeling itself. Thus
the above described calibration may be considered as valid only in the
~context of thevparticualr methodology employed in the present work.

Three different test cases, each with a different magnitude of constant
~amplitude (zero to tension) cyclic loading, were studied with different
values being chosen in each case for the above mentioned constant of
proportionality, p. The idea was to select a 'p' that yields results, in
each case, for (cop/cmax) that are in best agreement with the experimeﬁtal

results [1,2,3] for 2024-T3 Aluminum alloy, which is the material simulaﬁed

in analysis.

The results, for ipstance, for the case (cmax/oys‘= 40) and
(R = cmin/dmax = .0) are summarized as follows:
P ~ Levelled-off cop [oop/cmax] at steady state
1.0 115 MPa .82
.85 94 " .67
.62 79 " .56
.40 58 " A4l
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Similar results were obtained for the cases, (O /o) = .229 and
. max ys

(cmax/cys) = .314. From these three sets of results, it was observed that
p~0.62 yields results for (Gop/cmax) that are in best agreement with
experimental observations, which indicate that [Uop/cmax] at steady state
is about 0.56.

Thus when p is chosen to be 0.62, the results obtained for the steady

state vaule of (o /o ) for three-different cases of (0O /o) are
op max ~ _ max  ys

summarized as follows:

Case No. omax/cys Levelled off cop (Gop/cmax)’ steady state
1 0.229 L4 MPa 0.55
2 0.314 57.5 MP, ' 0.52
3 C0.40 78.5 MP_ 0.56

It is hypothesized that the above constant p = 0,62 may be used throughout
the rest of the analysis, ie., for cases of general spectrum loading. We
also note that when the load level cop during any cycle is first determined,
the number (and sizej of load steps between this Uop and,Gmax, in the
respective cycle, is so adjusted that the pre-chosen level of oex[ =0 +

op

p(c - 0_ )] coincides with one of the load-increments in the cycle.
max op

We now discuss the results of analysis of each of the loading cases.

7.5 Constant Amplitude Zero-to-Tension Cyclic Loading

(i) The results for ¢ _, for the case of (o /© ) =0.4 and R =
op max ys

(o ) = 0, are shown in Fig. 9, for 8cycles of loading. It is ob-

. /o
min max

served that cop reaches a "steady-state" value of 0.56 Gmax after the 4th
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or Sth cycle. It is also noted that this value for O /o (= 0.56) is
, op “max

in reasonable accord with experimental results [1,2,3] for the same material,
a 2024-T3 Aluminum alloy.

(ii) From Fig. 7, wherein the opening displacement and restraining force
at a node, at which crack-closure occurs, are plotted against the applied
stress, a nonlinearity in the variation of the opening displacment, as the
load approaches cma% (for instance, between points D-E in Fig. 7) is observed;
this can be seen to be due to plastic deformation. In the subsequent un-
loading (from point E in Fig. 7 ) the opening displacement decreases linearly,
thus showing the effects of elastic unloading. When crack closure occurs
(point F in Fig. 7), a nonlinearity in the variation of the nodal-restraining
forcel(betWeen F-G) can be notiéed until the applied stress in the cycle
becomes zero; this reflects plastic compression.

(iii) Knowing cop in each cycle, we define the effective stress-intensity

{
‘factor as:

MK o = Cy Ji(a, + Nba) © -9 | (7.2)

op

where C, is the finite-size correction factor for the present crack geometry

(which was found to be C, = 1.017 from a finite element linear analysis of

1
the crack with a = ao§ and thereafter assumed to be conétant); N is thg
number of cycles and Aa is the crack growth per cycle. For convenience,
the variation of AKeff is plotted against a, the current crack length, in
Fig. 10, It is seen that AKeff levels-off after a few cycles to a steady
state value.
| (iv) Fig. 11 shows the crack surface deformation profiles, for.in-

. . . th
stance, at various stages of unloading during the 8  cycle of the present

constant-amplitude (R = o) cyclic loading. The large blunting at the initial
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crack-tip location (a = ao) is observed to remain permanently. The surface
~ of the extended crack is observed to be fairly smooth. During the 8th
cycle, it is observed that precise cfack-closure’occurs only over the area
Aa (ie., only at the previous location of the crack-tip node) even upon
lel unloading; however, it is also noted that at this stage, the opening

of the crack faces between the points a_and the precisely closed node is

(o}

very'small (See Fig. 11).

Lo-To-High Elock Loading

A two 1evei block leading, from low to high, with cmax in the highe;
level being 1.273 times the Umax in the lower level, is considered. The
méximum stress in the lower level is taken such that (O’max)Low T (Oys) =
.314. As mentioned earlier, the data at the end of 4 cycles of low level
block loading (See Fig. 12) is recovered from a conétant-amplitude test
case, with the co;responding stress level. The following results were
obtained:

(i) The variation of crack-opening stress, cop’ as the cyclic loading
progresses, is shown in Fig. (12)., It can be seen that immediately after
 the step up in thenlevel of applied stressf UopAdecFeases_by about 33%
of its steady staté value corresponding to the lower level of block loading.
Subsequent to this, cop increases monotonically to a steady state value
cofresponding to the higher level of block loading, within about 5 cycles.

Prior to this stabilization, AK in the higher level of block loading re-

eff

mains considerably higher than the steady state value corresponding to this
stress level; thus indicating growth acceleration following the load step-up.

(ii) The variation of AKef with N, with AKeff being defined as earlier,

f

is shown in Fig. (13). It is seen that there is a jump in AKeff immediately

following the step-up in the level of applied loading; thereafter AKeff
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decreases monotonically down to its base line value corresponding to the
higher level block loading, but doesn't go below this base line value. This
appears toAindicate that the growth rate of the crack, initially growing
at a steady rate corresponding to the lower level blocking loading, suddenly
accelerates and then smoothly shifts down to a steady state rate correspond-
ing to the higher level block loading.

~(iii) The representative crack surface profiles for instaﬁce, at
- various stages of unloading at the end of the Sth cycle (high stress) of
the current low-to-high level block loading, are shown in Fig. (14);
Erom this Figure, it can be seen that the step-up in the level of loading
causes a blunting of the crack-tip (ie., at the location x/ao = 1,02 in
Fig. (14), when the step-up in loading occurs in the present finite element
" simulation). Even during the unloading at the end of the present two level-
block loading, as seen from Fig. (l4), the crack-closure occurs only over

the area Na (ie., only at the previous location of the crack-tip node).

High-To-Low Block Loading ﬁ

After 8 consequitive cycles of a high level block loading (the data
at which point is recovered from the corresponding constant amplitude test
case), the Gmax is reduced by 21.4% and 8.more c&cles ofAthis re&uced level
block loading were considered. The magnitude of the applied stress in fhe

high-level block was such that (O s 0 =0.40. The following

max)high ys
results were obtained.

(i) The variation of the crack-opening stress Uop’ as the loading
progresses, is shown in Fig. (15). It is seen that immediately after the

step-down in the load level, no abrupt decrease in oop’ as was the case in

Low- to-High loading, occurs in the preseﬁt High-to-Low block loading case.

I

J
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: After.the load-level step down, Gop stayed at about 0.70 (o‘max)low within
the number of cycles of low-level load considered presently, It may be
.possible that, as further number of low-level load cycles are considered and
the crack-tip grows further and eventually surpasses the plastic zone

created during the high level block loading, the cop decreases to a base
.line value corresponding to the lower level block loading. However, limita- A
tions of canputer funds precluded the possibility gf considering a larger
number of load cycles at the low level.

(ii) The AKeff versus N curve (plotted for convenience as AKeff vs a/aO
for the present case is shown in Fig. (16). It is seen that after the load-
1¢ve1.step down, AKeff remains remarkably lower than ité base line value
corresponding to the low-level block loading; thﬁs indicating the presence
-ofﬁa considerable retardation of growth, but no delay.

(iii) Fig. (17) shows the crack surface profiles during various
stages of unloading in one of the 1ow-1ev¢1 cycles of the present Hi-to-Lo
block loading. It is seen that at the stage of unloéding indicated by point
'B' in Fig. (17), the crack closes only at the previous crack-tip (closure
area = MAa). Further unloading, represented by point C, causes another node
~away from the current crack-tip to close, as seen in Fig. (17). ‘The area
of crack-closure thus increases as the unloading progresses.

To understand the effects of the features of crack-closure as in the
present case, the problem was reanalysed with the constraint of closure being
removed on the node (as discussed above) far away from the crack-tip, but
leaving the closure-constraint on the node closest to the crack-tip. The

corresponding changes in cop are indicated by a broken line in Fig; (15);

while the change in AKeff is aiso indicated by a broken line in Fig. (16).
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These results indicate the influence of properly imposing the closure-
constraints on nodes even far away from the crack-tip; when the considered

loading, as the present Hi-to -Low case, causes such a type of crack-closure.

Single Over Load

The case of a single overload after &4 cycles of a constant amplitude
block loading,Afollowed by further cycles of constant amplitude (equal in
magnitude to that before overload) was considered. The following three

cases were considered.

o
-~ Op - g
Case Base O o overload - max op.base
max (*] o e
max, base. ‘max base op.base
1 110 MPa 1.273 0.151
2 110 MPa 1.455 0.283
3 © 80 MPa 2.0 0.681

_ In the above, © is the maximum applied stress prior to or after

max.base v
overload; © is the overload stress; © is the maximum calculated
overload op.max
value for crack-opening stress after overload; and Uop base is the base line

opening stress for an otherwise constant-amplitude cyclic load at level
o] , and all these stresses are illustrated in Fig. (18a). The ob-
max.base ‘
tained restuls are discussed below:
(i) The variations of cop during the load cycling, for the three different

ratios of stress-overload, are indicated in Figs. (18a,b,c) respectively.

In all the three overload cases, an abrupt decrease in oop (which relative
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decrease becomes more predominant as the overload stress-ratio increases)
is noticed immediately after the single overload application. After this,
in all the three cases, T increases again to reach a peak value ©

op : op .max

before levelling off a steady-state value. This relative values of © D
opmax
increases as the overload stress ratio increases. Also as the overload

stress-ratio increases, the later is the occurance of this cop max” For

. . . X th
instance, for the overload stress-ratio of 1.273, copmax occurs in the 4

cycle after overload (Fig. 18a); for overload ratio of 1.455 this occurs
in the Sth cycle after overload (Fig. 18b); while for the case of overload-
rato 2.0, cop is still increasingv(Fig. 18c). This implies that the higher
the overload ratio is, the more remarkable both the retardation and delay
effects are.

. s . . . g _
(ii) The curve depicting the variation of the ratio ( opmax cop.base)/

(@

maxbase " copbase) with the_oyerload stress-ratio, which is drawn using the
above discussed 3 data points, is shown in Fig. (19). By extrapolation,
the"threshold value of the overload ratio, at which retardation effects coﬁe
into play, is seen to be about 1.10. in contrast, Bernard et.al [23]'report
a threshold overload ratio of 1.3 ~ 1.4 based on a series of experiments on
the material Ducol W30B whose yield strength is 366 MPa (, comparable to the
presently considered Uys = 350MPa). It is noted however, that the present
analysis is based on a plane-stress assumption, while Bernard et.al [23]
note the dependence of the experimentally determined thfeshold value on the
specimen thickness.

‘ (iii) The variation of AKeff with N (or a/ao) for the single-overload,
case, with a ratio of 2, is shown in Fig. (20), with a similar variation
being noted for the other two overload cases considered. It is seen that

AK experiences a sudden jump immediately after the overload, and then

eff
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decreases below its base line level corresponding to a constant-amplitude

cycling at ©

level; thus indicating. the presence of retardation
max,base -

and delay effects (these terms are used here in the same sense as defined by
Barnard, et.al [23])in this single overload case. It is also noted that the
quantitative effects of retardation and delay depend on the overloéd ratio.
(iv) The crack-line deformation profiles at various stages of unloading
at the end of the considered number of cycles are shown in Fig. (21) for the
case of overload ratio of 2, while similar results.were noted for the other
two overload-rafio cases also. It is seen that the application of the sihgle
overload to the specimen (at the instant when a/ao = 1.02 in Fig. 21)
causes a large (plastic) blunting which is retained in the crack-surface
profile even as fhe/crack advances in further cyclic loading. When the
specimen is fully unloaded, at the end of the cycle illustrated in Fig. (21),
almost the whole surface area ahead of the previously mentioned location of

blunting is noticed to close, while the crack surface area behind this

blunting location is seen never to close.

8. Analysis of a Center-Cracked Specimen under Pure Mode II Cyclic Loading
A center cracked square plate under a constant amplitude cyclic loading

7of7pﬁré sheaf, wﬁich is ﬁnifofmiyrdistfiﬂufed atr£ﬁe4edgeé of»the piate;iié

analysed. Plane stress conditions are assumed. The material is considered

to be 2024-T3 Aluminum alloy, (same as in the Pure Mode I case discussed

earlier). The dimensions of the plate are: L =W = 140mm; a, = 40mm. The

maximum amplitude of the uniformly distributed shear is taken to be T max

SOMP (tr Jo = .23).

a ~ max ys

In the present problem, the geometry of the plate with the crack is
symmetrical about both the x and y axis (See Fig. 22), and the external

loading in anti-symmetric with respect to both x and y axis.

42



As earlier, the present material is modeled as an elastic-perfect-

‘plastic material. We note also that the presently considered material has

the same properties in tension as in compression.

Thus, the displacement field has the following antisymmetrié properties:

u (6,5) = -u (x,-¥) = u (%,y) = -u_(-x,-y) (8.1)

W Gy) = mu (xY) S u eey) T u (exemy)  (8.2)

where u is the displacement in x direction, etc. Further, it is noted that

these displacements may be discontinuous at the crack surface, ~a < x < a .
Thus, in the finite element modeling, only a quarter of the plate is modeled .
(és shown in Fig. 22) with the displacement boundary conditions: U =0

along y = 0, in the uncracked ligament only; and uy = 0 at nodes along x = 0.

The linear elastic results, based on the first load increment, from the

present finite element analysis indicate:

K, = 0.075; Ky, = 3.777 | (8.3)

which compare favorably with the following results (obtained by using the

finite-size correction factors of) Bowie and Neal [24] for an identical

K, = 0.0 Ky = 3.899 . (8.4)

The fact that KII # 0 in the present finite element analysis is the result

of inherent numerical errors, such as round-off and truncation, in the

finite element analysis.

Also, to check the numerical accuracy of the present finite element

modeling, a second run was made wherein a half of the plate was modeled,
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as shown in Fig. (23), instead of only a quarter of theAplate. In this
model, uy was set to zero at nodes along x = 0, along with constraints to
suppress the other two rigid body motions of the plate as a whole. Both
the sets of results (ie., those when a quarter and a half of the plate,
respectively, are modeled) correslated excellently.

VIn Fig. (24a) the results for the displacements uy at the upper and
lower crack surfaces, u; and uj respecti?ely, are plotted for the linear
-elastic case. Thesg qumerical results for u; and u; are identical in the
linear elastic case. This equality of u; and uy is noticed as the loading
continues in the first cycle (crack being stationary) and when the plastic
zone size is significant at T = 70 MPa (see Fig. (25) for the shape of the
plasticity zone at T = 70 MPa).

For lack of any other criteria, the crack was extended, in the present
procedure, at 70 MPa (the maximum applied stress béing 80 MPa), in the
direction of the initial crack ie., in the x-direction. It is seen from
Fig. (24a) that significant increase in uy is brought about by the process
of crack extension and hence the attendant plastic unloading; however, again,
u; and ui are almoét identical (to the 4th significant digit). Thus it is
seen that through the all stages of loading, crack extension and plastic-
unloading, and fufther loading (to 8 MPa in this case) after crack extension
the upper and lower crack faces experience identical displacements in the
y direction, ie., perpendicular to the initial crack axis.

On the other hand, the displacements u at the upper and lower surfaces
of the crack, u: and uﬁ are plotted in Fig. (24b) for the cases of loading
when linear-elastic conditions prevail (v = 31.1 MPa); when appreciable
plastiéity-develops at the crack-tip (v = 70 MPa), when the crack is ex-

tended (and hence there is plastic loading) at T = 70 MPa, and when the load
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is further increased to 80 MPa after crack extension. It is seen that the
ﬁagnitudes of u: and uﬁ are nearly identical (to the Ath significant digit),
but with opposite sign, in all the above cases. However it is iﬁteresting
to observe that the change (as a ratio of the respective value prior to
crack e%tension, at the same load) brought abo;t by the process of crack
“extension (and hence plastic unloading) in uy is much more pronounced than
in u -

It is interesting to note that in the linear elastic case the crack-
surface displacements u; and uﬁ (see Fig 24a) exhibit almost a linear
variation from the crack-tip; thus indicating a lack of any 7 (in particular, .
JT type for linear elasticity) component in uy for the linear elastic casé.
On the other hand, for the linear elastic case, the tangential displacements

u 2 . - , .
u and u (See Fig. 24b) do exhibit a,J; behavior near the crack-tip,

for the present Mode II problem. Also, it is seen from Fig. (24b) that,
as plasticity develops, the tangential displacements u: and uﬁ exhibit a.
2 (@ < 1/2; and specifically ¢ = 1/n+l as corresponding to Eq. (4.3))
variation near the crack-tip. However, for the pure Mode II case, even
in.the presence of plasticity, the analyses of Hutchinson [11] and Rice
and Rosengren [12], indicate that there may not be a rq—(a < 1/2) type
variaﬁion in uy near the crack-tip. But the present results for uy in the
presence of plasticity, Fig. 24a, are seen to contain such an ra(a < 1/2)
type variation near the crack-tip. However, it should be noted that the
angular variation of the singularity functions, Gi(d), as embedded in the
present sector elements (See Eq. (4.3)) are being approiimated as quadratic
polynomials in each sector element (See Eqs. 4.4 and 4.5). The fact_that
ra(a < 1/2) type variations in uy are numerically obtained along the radial

line of the sector element lying on the crack sruface, as in Fig. 24a,
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suggests that the above angular variations are not being solved highly
accurately in the present numerical method. However, it appears that these
numerical errors are identical at ¢ = tmas well as at ¢ = -7, so that u; =
ug as in Fig. (24a).
y

Finally the crack surface displacements (u;,,uﬁ) and (u: and ui) at the
end of the first cycle of loading (ie., when the applied stress is brought
back to zero) are also indicated in Figs. (24a) and (24b) respectively.
Once again it is seen that even after complete unloading, u; and uﬁ are
identicél in magnitude and direction, where as u: and u_ are idéntical in
magnitude but opposite in direction.

Thus for the present material, with identical properties in tensiqn
as. in compression, it is seen that in all cases of pure-shear type external
loading, the upper aqd lower-surfaces of the crack move together in the
direction perpendicular to the initial crack-axis, whereas they slide
past one another in the direction of the crack-axis. Thus, it appears for
these types of materials the phenomenon of crack-closure, as observed
experimentaly and as analysed presently in Mode I type loading conditioms,
does not occur in pure Mode II type cyclic loadihg.

. . However the present experience indicates that crack-closure may occur
even in pure Mode II cyclic loading if the material has different properties
in uniaxial tension and compression; Consideration of such materials is not
pursued in the present work.,

Finally, the computed shapes and sizes of the plastic zone neér the

crack-tip at various stages of pure shear loading are indicated in Fig. (25).
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9. SUMMARY AND CONCLUS IONS

Based on the results discussed so far, the following observations and
conclusions appear to be possible:

(i) If one assumes that the crack-growth-rate, da/dN, in fatigue-
loading of Mode I type, is related to the effective stress-intensity factor

in the form:

da _ c (&K

b 9.1)

n
eff)

where AKeff =< vq?; (qmax - Gop) and n is an exponent, the present results
for 4 illustrative types of block loading indicate that: (a) growth retar-
dation occurs in Hi-to-Low and single overload cases, and acceleration in
Lo-to-Hi block loading, (b) significant delay effects prior to retardation
are observed in the case a single-overload in an other wise constant ampli-
tude cyclic loading.

(ii) The crack-surface deformation profiels, in the different Mode I
loading cases, viz,, constant amplitude, Lo-to-Hi, Hi-to-Lo, and single'

overload, have distinctly different characterstic shapes as sketched below:

e >

CONSTANT LO-TO-HIGH HIGH-TO-LOW SINGLE OVER-LOAD
AMPLITUDE

Schematic Representation of Typical Crack-Surface Profiles in Different

Cases of Applied Cyclic Loading.
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Each of the above crack surface deformation profiles leads to a
different patte?n of crack-closure when the specimen is unloaded. In the
cases of Lo-to-Hi loading and single overload, a considerable amount of
crack-surface blunting occurs at the instant when the applied load is
stepped up. This blunting preclqdes the possibility of crack-closure
behind the location of this blunting in the subsequent load cycling (in the
cases of Lo-to-Hi and single overload). Thus in these two cases of loading,
immediately after the step-up in load level takes place, crack closure
occurs only in the small area adjacent to the current crack-tip. Consequently,
the total compressive force acting on the closed surfaces in these two
cases, is also émall immediately after the load step~up as shown in Figs.
(26) and (27) respectively. In Fig. (26), the maximum opening displacement,
in eééh cyclf (ie., at maximum applied load indicated, for instance, by
poinﬁ A in Fig. 26) at the node closest to fhe current crack-tip, as well
as the total compressive force over the closed area of the crack upon total
unloading in each cycle (such as at point B in Fig. 26) are shown for the
case of Lo-to-High loading; while similar results are shown in Fig. (27)

7 for the case of single-overload. 1In both the cases, it is seen that the
total compressive force over the closed crack-surface.becomes a minimum
right aftef the step up in the applied load; thus resulting in a lower
value of cop at which the crack-opens in the tensile portion of the sub-
sequent loading cycle. These phenomona, brought about essentially by a
smaller area of crack-closure. (due to crack-blunting that occurs at the
instant of load step-up), may be responsible for the 'delay' effects -
such as, the delayed retardation in the single overload case, and the de-
layed transition of opening stress levels from the base-line value for

lower amplitude bleck loading to the higher base-line value for the higher
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amplitude block loading (see Fig. 13) in Lo-to-High loading case.

(iii) As mentioned, growth retardation occurs in the cases of single
overléad and Hi-to-Low block loading. Observing the crack-surface profiles
for the forementioned two cases, at the instant of complete unloading in a
cycle, several cycles after the initial overload, as shown in Figs. (21)
and (17); respeétively, it is seen that the area of crack closure for both
the cases is much larger in comparison with the other two cases (see Fig.

11 and 14). Consequently, the total compressive force in the closed crack-
surface is relatively larger in the single-overload and Hi-to-Lo cases than
in the other two cases. Thus, in the single overload and Hi-to-Lo cases,
after the change in applied'level, the crack-opening stresses level off at
a much higher value than the baseline value corresponding to the level of"
applied loading after the formentioned change in loading level.

From these observations, it appears that the pattern of crack-closure
has a significant effect on growth retardation in general spectrum loading..

(iv) The crack surface profiles for the Hi-to-Lo loading case, several
cycles after the load-step down as shown in Fig. (17), possess certain novel
features. Crack closure is seen to be possible not only at the node closest
to the crack-tip, but also nodes -for- removed f;om'it, with no closure
being observed at nodes in between. 1In this case also, growth retardation
was found to be possible.

(v) Thus, a correlation between the process of a significant crack-
Blunting at the instant of transition in the amplitude of applied load-
fransition, and the possibility of growth retardation is found to exist,

as summarized below.
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Blunting of

S in o
Dip in o

. _ p Area of Retardation/
Loading Case| Crack ?t.Load in the Subsequent Delay Crack Closure Acceleration
Transition
Cycle
Cons tant NO NO NO Small . NONE
Amplitude
Lo-to-Hi YES YES YES Small Acceleration
Hi-to-Lo NO NO NO Large Retardation
Single ' s
YES YES YES Large Retardation
Overload '

. The phenomenon of crack-closure was not observed in the present numerical

modeling of a thin-center-cracked sheet (of an elastic-perfect-plastic

material with identical properties in uniaxial tension as in compression)

subject to external pure shear (Mode II) cyclic loading of constant amplifude.

The implication of this in the more general problem of fatigue crack growth
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under mixed-mode cyclié loading deserves further study.
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Fig. 1. Nomenclature for a Circular-Sector Shapedv_ éinéu_laf Element,
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Fig. 2. 8-Noded Isoparametric 'Regular" Element.
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SUB SEQUENT
YIELD SURFACE

CURRENT
YIELD SURFACE

Fig. 3. Yield Surface Translation : Kinematic Hardening Law.
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—@— MESH AND NODES BEFORE TRANSLATION

e~ = MESH AND NODES AFTER TRANSLATION

Fig. 4. Schematic Representation of Translation of Singular Elements.
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[—— DETAIL "A"

Fig. 5. Finite Element Model of a Center Cracked Specimen Under
Uniaxial Cyclic Loading. ( Singular Sector Elements

Shown Within Detail "A")
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PORTION OF DETAIL "A" IN FIG. 5

7

E : ELASTIC ZONE

P : PLASTIC ZONE

Fig. 6a. Representatve Size of Yield Zone at cﬁax'

P : PLASTIC STIFFNESS MATRIX
E : ELASTIC STIFFNESS MATRIX
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Fig. 6b. Schematic Representation of Incremental Equations in

the Presence of Yielding.
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Fig. 8a - 8d. Representative Patterns of Crack Closure ; (8a - c)

Crack Closes Only at Nodes Closest to Crack-tip ;
8d : Crack Closure Occurs Also at Nodes Away From

Crack-tip.
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Fig. 22, Geometry> and Finite Element Model of a Center-Cracked
Panel Under Pure Shear Cyclic Loading.
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Fig. 23. An Alternate Finite Element Model of a Center-

Cracked Panel Under Pure Shear Cyclic Loading.
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Fig. 24 ; 24a : Normal Displacement Profiles of the Upper and Lower
Surfaces of the Crack ; 24b : Tangential Displacement Profiles

of Upper and Lower Surfaces of the Crack.
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Fig. 25. Plastic-Zone Near Crack-Tip in a Center-Cracked Panel

Under Pure Shear Cyclic Loading.
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Fig. 26. Maximum Opening Displacement at a Node Closest to Crack-Tip
and Total Compressive Force over Closed Area Near Crack-Tip

in Each Cycle, in Low-to-High Block Loading.
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Fig, 27. Maximum Opening Displacement at a Node Closest to Crack-Tip
and Total Compressive Force over Closed Area Near Crack-Tip

in Each Cycle, in a Single Over-Load Case.
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