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INTRODUCTION



This semi-annual status report covers the period from December 1, 1977


to May 31, 1978 and contains a review of the research and applications, com­

pleted or in progress, as funded by the Office of University Affairs, NASA


and conducted by Purdue University, Laboratory for Applications of Remote


Sensing.



This reporting period marks the second half of the fifth year of


funding for a proposal entitled "The Applications of Remote Sensing Tech­

nology to the Solution of Problems in the Management of Resources in Indi­

aia." As indicated in this title, the purpose of this work is to introduce


remote sensing into the user community within the state of Indiana. The


user community includes those local, regional and state agencies involved


in the decision monitoring and/or managing processes of the state's re­

sources.



In order to carry out this work it is not only necessary to initiate


projects with these agencies but also it is necessary to meet with and


provide information to as many people and groups as well as agencies as


possible. During the past six months numerous meetings were held with
 

many different groups.



Among the groups that were contacted and received information about


this program were:



Area Planning Commission, Tippecanoe County


Indiana Geological Survey


U.S. Forest Service


Tipton County Commissioners and Engineers


Indiana Department of Natural Resources



a) Division of Reclamation


b) Division of Forestry


c) Division of Properties, Fish and Wildlife


d) Soil and Water Conservation Committee



Soil Conservation Service.



Listed below are the projects that are reported in this document:



Soils Inventory


Forestry Demonstration Project


Heat Loss Determination in Residential Buildings.
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INTRODUCTION



The acceleration of the National Soil Survey Program and the produc­

tion of useful, hiqh quality soil surveys in Indiana are among the prime


goals of the USDA/Soil Conservation Service and the Indiana Department of


Natural Resources Soil and Water Conservation Committee. The wide use of


soil surveys for engineering and planning purposes in addition to agricul­

tural uses has resulted inmany specific questions concerning the physical


nature of the different soil units depicted on soil maps. Inorder to pro­

vide the details necessary to understand the landscape composition and to


provide interpretation of soil maps for specific uses, information of a


quantitative nature is needed. To accomplish this task all avenues are


being considered, including remote sensing technology which can provide


quantitative measurements through computer analysis of Landsat multispec­

tral scanner (MSS) data.



OBJECTIVE



The overall objective of this task is to determine the applicability


of using computer analysis of Landsat multispectral scanner data inaccel­

erating and improving the quality of the soil survey program in Indiana.



To evaluate the usefulness of the data the following specific studies


were initiated:
 


1. Evaluation of the usefulness of spectral soil maps produced from multi­

spectral scanner data using pattern recognition techniques as quality


control insoil surveys-and as a means to evaluate quantitatively the


soil mapping unit composition.
 


2. Investigation of the possibility of producing high quality general


soil maps using false color Landsat imagery as the base map.



3. Development of a soil parent material map using multispectral resource


data.



4. Determination of the feasibility of producing a spectral soil map on a


county-wide basis with its accompanying manuscript and evaluation of the


utility of this type of soil survey report to user grouDs.



5. Evaluation of the usefulness of suoerimDosing computer classification


results upon aerial photobase maps inorder to gain the benefit of the


landscape perspective.
 


METHODS AND MATERIALS



Remotely Sensed Data



The remotely sensed data were of two forms, i.e., aerial photography


and Landsat data. May 1976 aerial coverage of Jasper County, Indiana was


taken at an altitude of 2000 m creating an approximate map scale of


1:15840. The Landsat data were collected June 9, 1973 and were relatively
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free of vegetative canopy, snow cover, interfering clouds and fog, and


scanner distortions.



Data Analysis



Base Map. A base map consisting of a block of 85 black and white pan­

chromatic aerial photographs (scale 1:15,840) was used in the registration


of the Jasper County Landsat data. Known north-south roads were located on


the aerial photography and used to parallel a y coordinate axis. A three­

parameter linear transformation was used to block the photos to a common


coordinate system.



Halftone acetate positives were created from the photographs. The


resulting transparencies were rectified and trimmed to field sheet size.


Rectifying corrected for tilt and vertical aspect, which improved scale


variations and crabbing (rotation). The halftone acetate positives were


used for comparing field soil patterns with the spectral classification of


soils.



Geometric Registration and Rectification. The blocked set of aerial
 

photographs was used as a base in the geometric registration and rectifica­

tion of the Landsat data. Corresponding points between the two images
 

(Landsat and photo block) were located by either displaying the Landsat


image on a CRT screen or by cluster analysis of the digital data. Groups


of approximately 100 data points were clustered and specific points within


the clustered areas were located on the aerial photos. A twelve parameter


equation was used to transform the coordinates between the images.



Compatible scales between the base map and the Landsat data were


accomplished by expanding the Landsat data to a scale of 1:15840, the


mappinq scale for Jasper County. For this registration a cubic convolu­

tion resampling algorithm was used to rescale the Landsat image to


1:15,840. Intermediate data values were calculated using a Lagragian


third order equation that used a 4 x 4 matrix or 16 spectral points. On


the curve of this equation intermediate data values were plotted and used
 

in expanding the scale. This method had the effect of smoothing the image
 

which could contribute to a somewhat less accurate classification but pro­

vide a higher quality map image for soil mapping. Classes that are very


close spectrally could lose their distinctness because of these calculated


intermediate values.



Compilation of Color Map Image. Three channels (1,2 and 4) were com­

bined to create a false color composite map, generally referred to as a


false color image, at a scale of 1:180,000. This image was generated to


aid in stratification of the county spectra. Enlarging the image to


1:120,000 enabled the user to delineate or interpret finer detail.



Stratification of the County



Geologic History. The geology of Jasper County is quite complex.


Underlying the county are tertiary and quarternary bedrock valleys formed


primarily by water erosion. These valleys, initially filled by quarter­

nary debris, were later covered by the early Kansan and Illinoian glacial
 

deposits.
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Evidence of much earlier geologic phenomena occur to the west where


coral reef domes reach within one to two meters of the surface. The


reefs are thought to be a product of the Silurean or Devonian ages and


are a good source of limestone. Material that accumulated to the side of


the domes, most likely water deposited, is generally not of good quality


which iswhy the smaller domes have been largely left untouched by lime­

stone excavation.



Glacial deposits that covered all of Jasper County from the Kansan


and Xllinoian were obliterated by a coalesced ice sheet from the Lake


Michigan and Erie glaciers of the early Wisconsin age. A thin ice extend­

ing from the Saginaw northeastern lobe covered the previous glacial activity

and appears to have truncated the Marseilles moraine in the eastern portions


of the county resulting in belts of kettles and intervening dunes covered


by submorainic rises. Characterized by the thin ice sheet the Saginaw lobe


covered low lying areas, but largely left higher elevations untouched.


Present surficial deposits in the lower areas are credited to this glacier.

The retreating glacier also left melt water laden with silts and clays

which, when the water eventually subsided, left these lacustrine deposits.



Outwash sands were blown into parabolic and longitudinal dunes across


the northern part of the county. Located under these dunes are peat areas
 

that suggest veqetation once grew in ice block depressions left by the


glaciers before being covered by (aeolean) sands. Vegetation establishing


itself on the dunes gradually caused them to stabilize. After glacial

activity subsided, geologic changes within the county have been in the form


of drafting outwash sands and the accumulation of peat and marl in low ly­

ing areas.



This complex geology was considered in the compilation of a parent

materials map of Jasper County. With the aid of Landsat data the area was


investiqated and parent material boundaries were delineated.



Stratification of Parent Materials. Training statistics are created


by sampling data points and calculating mean and covariance matrix for


each unique spectral range. This set of means and covariances was used


to "train" a classifier by providing a data base for calculating probabil­

ities of remaining data Points belongino to certain distributions.



Prior work in Indiana revealed uniqueness of spectral classes to be


lost as training statistics were combined over a large area such as a


county. As spectral classes were combined, distributions became larger


and closer together. To avoid this problem, in Jasper County, a parent

material map was created so that training statistics could be generated


and used in specific parent materials, thus eliminating the need to extend


training statistics over broad areas. Parent material delineations also


provided a means of separating spectrally similar but genetically dif­

ferent soil classes within Jasper County.



Image interpretation of the false color composite map, single band


gray scale images, county and township road maps and knowledge of the


geological history of the area were used to create the parent materials map

of Jasper County. Initially, spectral stratification was noted on the
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image and investigated through field observations. The soil profile was


sampled to determine underlying parent materials and characterize the


profile. Munsell color charts were used to identify color boundaries for


Alfisols, Mollisols and drainage characteristics. Textural boundaries


were made and refined as the investigation progressed.



The completed parent materials map is shown in Figure 1. These


boundaries were digitized and overlaid onto the Landsat data. By assign­

ing unique values to the spectral data in a parent material and recording


that data in a channel, that information could be used to discriminate


statistical distributions created in each parent material. For classifi­

cation four channels 6f Landsat data rescaled to 1:15,840 by a cubic con­

volution interpolation and precision registered to the 85 aerial photo­

graphs were used.



Digital Analysis of Remotely Sensed Data



Data Sampling and Analysis Techniques. Differentiating parent material


boundaries made itpossible to develop unique statistical distributions of


the data within each delineation. Unique and subtle differences were hy­

pothesized to be more distinct in parent material delineations than distri­

butions developed across a whole county. Based on this hypothesis and the


need to develop a better point sampling method, four techniques were devised.


These techniques were designed to test the significance of parent material


delineations within a statistical classification and to determine if differ­

ing sample point selections would change classification accuracies. A


sunary of these techniques is listed in Figure 2.



Two methods of sampling data points were used to determine which would


most represent responses within the specified classification area. Subjec­

tive sampling of blocks of data was compared to systematically sampling

points at specific line and column coordinates across the entire classifi­

cation area. It was hypothesized that systematic sampling would more ade­

quately represent the spectral variability of a scene rather than subjective


sampling.



Another variability within the design was to limit the size of area


classified. The importance of parent material delineations was tested by

classifying only within parent materials as opposed to classifying the


entire county without regard to delineated boundaries.



A method was devised to evaluate the final spectral classes as to


countywide performance and accuracy within specific parent materials. Com­

pilation of soils at selected locations was hypothesized to be an adequate


means of testing performance. Due to time limitations the number of test


sites was limited, Quarter sections within the county were selected as


test sites because they were easy to locate and randomly selected. Quarter


sections were numbered across the southern part of the county within each


of three major parent material areas (outwash, lacustrine, till). Numbers


were then randomly selected within each parent material area and correspond­

ing quarter sections were noted on a Jasper County sections map. The 72­

hectare quarter sections were then located on aerial photographs which were


reproduced at 3 cm to 1 km to allow for mapping detail not generally mapped.
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Claqqification one 
 

Classification two 
 

ClassiFication three 
 

Cnnqification four 
 

Data Point Selection 
 

Subjective sampling of 
 
representative blocks of 
 
data withIn each parent 
 
material 
 

Systematic selection of 
 
data points from across 
 
the entire county (every 
 
eleventh line and column) 
 

Subjective sampling used 
 
in classification one 
 

Systematic selection of 
 

data points of every 
 
fifth line and column 
 
within parent materials 
 

Clustering 
 

Each block of data 
 
clustered requesting 
 
13 cluster classes 
 

Clustering the entire 
 
county selecting data 
 
points every eleventh 
 
line and column. 18 
 
cluster classes re­

quested



Same cluster group- 
 
ing used but group-


ings within parent 
 
materials kept as 
 
unique



Clustering within 
 

each parent material 
 
every fifth line and 
 
column. 13 classes 
 
requested per cluster
 


Classification



18 spectral distribu­

tions used to train


the Gaussian maximum
 

likelihood classifier
 


18 spectral distribu­

tions used to train


the Gaussian maximum


likelihood classifier
 


Layered tree design


used with Gaussian
 


maximum likelihood


classifier (60 classes)



Layered tree design


used with Gaussian


maximum likelihood


classifier (60 classes)



Figure 2. Data Point Selections and Subsequent Classifications.
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General Analysis Procedure. A general procedure was followed for each


of the four analysis techniques. Initially, a clustering algorithm was


used that established a group of spectral classes consisting of means and


covariance matrices which through an interpretive process was used insta­

tistically classifying the county. Figure 3 shows the process involved in


creating training statistics for the area.



Association of Cluster Classes to Specific Cover Types.



Plotting Mean Response Values. Classes derived from clustering were


evaluated as to their spectral properties. Identification of broad cate­

gories of vegetation, soil and water could be made by observing the mean


relative responses across the four channels (Figure 4). Characteristic


curves of soil, water and vegetation make them easily identifiable.



Ratioing. Differences between vegetation and soil can also be detected


by summing reflectances inthe visible bands (.5-.6 imand .6-.7 tm) and


dividing by the'sum of the two near infrared bands (.7- 8 m and .8-1.1 uM).

A high response inchannel three and low response in channel two yield a


ratio between channels of less than one that would indicate a vegetation


response. Water ismore responsive in the visible bands and therefore


maintains ratio values over one. Response curves associated with soils


generally follow an even pattern which displays values of one or more.



Magnitude of Response. When soils curves are identified, further sepa­

rations between the soils can also be made by consideration of their rela­

tive magnitude. The relative response across all four channels is summed


and these magnitudes are compared inorder to identify such soils as a high

spectral response of a well drained soil or low responding poorly drained


soil. Drainage classes 	 and their differing responses are shown in Figure 4.



Refinement of Cluster Classes.



Merging Function. Clustering statistics developed from more than one


clustering can be combined into a set of calculated means and covariances.


A merging function takes all statistical classes requested and compiles

classes with new calculated means and covariance matrices. Combined classes


were measured for divergence and pairs of classes with low divergence values


were merged into one spectral group. The processor used to merge classes


together calculated a new mean of all points contained in the original

classes merged and a resulting covariance matrix.



Some classes were encountered that had a spectral response representa­

tive of both soil and vegetation (Figure 4). These classes were combined


with a vegetation ifthey were spectrally similar or left to represent a


soil ifthe influence of vegetation was not too great.



Separability of Classes. Divergence of these cluster groupings was 
calculated to obtain a measure of the similarity between the classes. 
Divergence indicated the similarity of pair groupings: All possible
combinations of classes provide information necessary for combining,

remaining as distinct or eliminating classes.
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Final Training Class Selection. Information obtained from divergence


measurements, ratioing, plotting, and notation of relative reflectance


responses was used to define a statistical set of data points representing


the area to be classified. Creation of statistical distributions most


represerftative of the overall response is of crucial importance to correct


classification. When spectral distributions are confused, the classifier


will fail to separate accurately the data. Well defined separable dis­

tributions must be established if an accurate classification is the de­

sired result. The classifier also assumes classes are normally distributed


with mean and variance which further necessitates closely analyzing the


final training statistics.



Classification. A Gaussian maximum likelihood classifier was used in


all four analysis procedures. The results of the classification were


written on a magnetic data tape which could then be accessed for display­

ing part or all of the area. The data tape can be read to produce the


classification in the form of an alphanumeric map image, a gray scale


image and/or tabular output.



The specific classification procedures deviated in the method of


selecting training points for statistical analysis and in their application


to the area. A description of the variations within each analysis proce­

dure follows.



Classification One.



Training sites consisting of approximately 1% of the data were chosen


within each parent material with at least one training site located within


each parent material. By previous field inspection and notation of transi­

tions on the false color imaqe training sites were selected that appeared


most representative of the area. Training areas were located by a coordi­

nate system of lines and columns which designated the appropriate data


points within the county.



Eleven blocks were clustered within the outwash area; seven blocks


were clustered in the rolling moraine till, seven in the outwash over till,


four in the lacustrine, two in the till (Alfisol) and one in the till


(Mollis6l). Approximately 7,000 total points were clustered in all the


areas. Ten to thirteen cluster classes were specified per block, depend­

ing on the apparent spectral variability within each area.



The resulting cluster classes were identified as vegetation, soil,


water or some combination of cover types based on the previously described


analysis procedures. Urban classes and related spectral responses were


largely ignored because they were of minimal area in the county and were


not of interest in soil characterization.



Spectral classes from all parent materials were merged together into


one set of means and covariances. Through a process of merging and diver­

gent measurements, a distinct set of spectral classes resulted. Ignoring


the parent material delineations the classifier categorized each data point


from the county into one spectral class developed from countywide sampling.





-12-


Classification Two.



A systematic sampling of data points for compilation of training sta­

tistics characterized the second classification procedure. Systematic


samples indicate all ranges of responses if they are significantly large

enough or the sampling increment is high enough.



A one percent sampling (eleventh line and column) approximated the


size of the first sampling and produced a set of eighteen means and their


associated covariances. Increments of six lines were avoided because of


the possibility of error due to scanner noise, as previously described.


Parent materials were not considered in the systematic sampling of data


points nor in the resulting classification. Parent materials were dis­

regarded to test if a significant increase in accuracy would occur when


the areas were delineated in classification.



Classification Three.



Spectral samples clustered in classification one were again used in


classification three. Data points selected for training were combined
 

only within parent material areas. These numbers of points varied with
 

size of the area, therefore, a larger area would be represented by a


larger number of points. Similar spectral classes were combined if they


represented the same cover type. Soil responses from other parent mate­

rial areas in some cases were quite similar, but the property of the clas­

sifier made it possible to retain those classes as unique within the same
 

classification algorithm.



By the use of a decision tree design each data point was not tested
 

against all other data points in all other spectral classes but rather was


tested against only those classes formed from spectral information within


a particular parent material area. Sixty statistical classes were con­

tained at the root node from which 6 stem nodes each representing a parent


material projected. These nodes were equidistant from the root node, there­

fore, they constituted one layer within the decision tree design. Consist­

ing of a set of spectral classes each node was used to discriminate which


classes would be used within a designated parent material area. A Gaussian


maximum likelihood rule was still used to classify points although the tree
 

design was used to discriminate the number of classes used in each unique


area.



One channel or a combination of channels could be used in the layered
 

approach for either discriminating parent material or classifying data


points. Of the 60 sets of means and covariances six classes consisted


only of a fifth channel which was used as a designator of parent materials.


These six classes were previously mentioned as the first layer in the clas­

sification scheme. Remaining classes of Landsat data contained in the root


node were compared to each of the stem nodes. Each parent material desig­

nator specified a unique set of statistical classes to be used in classify­

ing only that parent material. The process by which the classifier pro­

ceeded is shown in Figure 5. Stem nodes and their respective classes were


prespecified in the classification program.
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Channel 5 Area 1 Outwash



Channel 1-4



Classification 3 Classification 4


1-9 soil classes 1-8 soil classes



3 vegetation classes 2 vegetation classes



Channel 5 Area 2 Rolling moraine till



Channel 1-4 

Classification 3 Classification 4 
1-10 soil classes 1-8 soil classes 

3 vegetation classes 2 vegetation classes 

Channel 5 Area 3 Outw sh over till 

Channel 1-4 

co Classification 3 Classification 4 

r 1-8 soil classes 1-8 soil classes 
03 	 vegetation classes 2 vegetation classes



f CChannel 5 Area 4 Lacustrine 

EO -H_ 

- UChannel 	 1-4 

Classification 3 Classification 4



1-9 soil classes 1-8 soil classes


3 vegetation classes 2 vegetation classes



Channel 5 Area 5 Alfisols (Till)



Channel 1-4



Classification 3 Classification 4


1-8 soil classes 1-11 soil classes



3 vegetation classes 2 vegetation classes



Channel 5 Area 6 Mollisols (Till)



Channel 1-4



Classification 3 Classification 4


1-10 soil classes 1-8 soil classes



3 vegetation classes 2 vegetation classes



Figure 5. 	 Tree design used in classification procedure of Jasper


County spectral soil maps.



ORIGINAL PAGE lb 
OF POOR QUALITY 



-14-


The ability of the classifier to use only 60 classes limited complete


freedom in spectral definition. Soils were of primary importance in the in­

vestigation, thus, it was decided to combine vegetation from all areas and


classify using only three vegetation classes qrouped from across the county.


Again the classifier used approximately 1% of the data within the county to


train the classifier.



Classification Four.



Consideration of parent materials was integrated into the last analysis


and classification. Irregular boundaries of the six parent material delinea­

tions made it extremely difficult to record all points manually within each


area; therefore, a FORTRAN program was devised to locate every fifth line and


column coordinate point within each parent material area. This sampling tech­

nique involved aDproximately a four percent sample of the county. An incre­

ment of five was used to insure adequate sampling and avoid six line noise.


These line and column coordinates were used to cluster each entire parent ma­

terial area. It was decided that thirteen cluster classes would be the maxi­

mum number asked for A smaller number would not adequately represent the


ground scene, and a larger number may leave some spectral classes with too


few points to be considered a good statistical sampling. A separate set of


means and covariances was generated for each parent material. Vegetation


classes, soil and scattered vegetation classes were identified by the same


process described in the previous classifications. The four percent sampling


was used in the layered design to produce a county spectral classification


based on spectral probabilities from six different sets of statistical dis­

tributions. The design of the decision tree was identical to classification


three except different spectral classes were used to compile the tree.



Evaluation.



Field Observation. Evaluation of classifications was accomplished by com­

parison of completed classifications to the mapped quarter sections. Three


soil scientists comprised of one SCS soil scientist and two soil science grad­

uate students mapped the quarter sections with the specific objective of mapping


.45 ha delineations or larger. Normal mapping procedures were used to investi­

gate the quarter sections. Each quarter section was located and position noted


on the photograph. By traversing the land and taking sufficient borinqs to


identify drainage patterns and textures, map units were delineated on the aerial


photographs. Underlying calcarious till was identified by applying acid and


observing if any reaction were present. The color chart was used to determine


Mollic or Alfisol horizon colors. After investigation of surface and horizons,


map units of .45 hectares or more were noted on the field sheets. Each quarter


section was arbitrarily divided into three sections and mapped by one of the


investigators. After the quarter section was traversed, soil characteristics


were discussed and questionable areas were revisited. The final soil map was


a combination of observations from all individuals. The northern part of the


county was not chosen for evaluation because the distance was prohibitive in


the investigation. Mapping of these quarter sections was done prior to com­

puter analysis so bias in soil mapping could be avoided. The completed soil


maps were used to evaluate the spectral classification.



Correlation to Map Units at Randomly Selected Sites. An electrostatic dot


matrix plotter was used to produce individual plots of the mapped quarter sec­

tions that would be used in the evaluative procedures. Copies of these clas­

sifications were also reproduced on acetate to enable overlaying on the photo­

graph. All spectral classes were graphed as to their relative spectral response





across the four Landsat spectral bands, and copies were provided for each


analyst. Analysts were asked to compare each classification to the soil maps

and rate the classifications as to their correspondence to the maps. The two


most representative classifications would be used in field checking and from


this the most representative classification would be chosen.



RESULTS AND DISCUSSION



The four classifications were completed and evaluated by comparison to


previously determined randomly selected sites within Jasper County. The fol­

lowing is a summary of the results of the methodology used in the Jasper


County classification procedures.



Result of Registration



Difficulties in fitting the rectified halftone positives to the regis­

tered Landsat data prompted a registration of Jasper County using the recti­

fied halftone positives as a base rather than the black and white panchro­

matic unrectified photographs. The rectified halftone positives, when used


for registration, will not provide a better correlation between the two images,

i.e., Landsat and halftones. However, with the use of halftones in conjunction


with the Landsat classification, both must be registered to the same standard.


As with the unrectified photographs, error was predicted to be no more than


thirteen meters displacement.



Using rectified photographs should have eliminated some error due to


crabbing and scale differences in blocking the photographs. However, because


the halftones were trimmed to less than 20% overlap, difficulty is being en­

countered in the blocking procedure. When registration to the halftone posi­

tives is completed, the data points will be reclassified using the most accu­

rate of the four statistical distributions.



Parent Materials Map. The 32 level histogrammed false color image proved


to be more detailed than necessary for preparation of a parent materials map.

Although the fine clicinq of the spectral distribution provided more informa­

tion, becuase of difficulty in visually interpreting the color levels (minute

differences were not easily discernible) fewer defined levels would be more


reasonable.



FieZd Mapping of Quarter Sections. The map units were recorded on aerial 
photographs at 3 cm to 1 km which were evaluated by four soils analysts. Map­
ping of the quarter sections required approximately two weeks of field worl 
to complete.



Random selection resulted in the outwash quarter sections occurring in


the same section while two other quarter sections occurred side by side in the


other parent materials (Figure 6). The occurrence was advantaceous in that map­

ping the entire section was easier by eliminating the need to travel to four


different locations, but abundance of wooded lots and pastures narrowed the


area that could be used for soectral evaluation of soils. One disadvantage of


MSS data is the inability to obtain soil responses through trees, or dense


vegetation such as maturing crops and pastures.



The completed soil maps of the quarter sections (Figures 7-13) display a


wide variety of soils. The outwash section, although Drilarily covered by

vegetation, ranged from excessively well drained Plainfield sand to various


histic soils such as Houghton and Adrian. The lacustrine map units


ranged from well drained to poorly drained soils characterized by
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A-C - A-C profile



Co-Corwin, fine-loamy, mixed, mesic Typic


Argiudolls (well drained)
 


Od-Odell, fine-loamy, mixed, mesic Aquic


Argiudolls (somewhat poorly drained)



Wo-Wolcott, fine-loamy, mixed, mesic Typic


Haplaquolls (poorly drained)



G - Bedrock 	 1 meter



Figure 7. 	 Till parent material 
T27N R7W SW Sec 20 

Od-Odell, fine-loamy, mixed, mesic Aquic


Argiudolls (somewhat poorly drained)



Pc-Parr, fine-loamy, mixed, mesic Typic


Argiudolls (well drained)



Figure 8. 	 Till parent material


T27N R7W NW1 Sec 21
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Cn-Conover, fine-loamy, mixed, mesic Udollic


Ochraqualfs (somewhat poorly drained)



Mo-Montmorenci, fine-loamy, mixed, mesic


Aquollic Hapludalfs (moderately well.


drained)



Wo-Wolcott, fine-loamy, mixed, mesic Typic


Haplaquolls (poorly drained)



Figure 9. 	 Till parent material


T27N RN Sec 28. 
 0 



Al-Alvin, coarse-loamy, mixed, mesic


Typic Hapludalfs (moderately well


drained)



Ch-Chelsea, mixed, mesic Alfic Udipsam­

ments (excessively drained)
 


Rr-Rensselaer, fine-loamy, mixed, mesic


Typic Argiaquolls (poorly drained)



St-Starks, fine-silty, mixed, mesic Aeric


Ochraqualfs (somewhat poorly drained)



Figure 10. 	 Lacustrine parent material
 

T28N R7W SE Sec 23.



Al-Alvin, coarse-loamy, mixed, mesic


Typic Hapludalfs (moderately well 

A



drained)


Dr-Darroch, fine-silty, mixed, mesic



Aquic Argiudolls (somewhat poorly



drained)



Ma-Mahalasville, fine-silty, mixed, mesic


Typic Argiaquolls (poorly drained)
 


Ro-Roby, coarse-loamy, mixed, mesic Aquic


Hapludalfs (somewhat poorly drained)



Rr-Rensselaer, fine-loamy, mixed, mesic


Typic Argiaquolls (poorly drained)



Figure 11. 	 Lacustrine parent material


T28N R7W NE Sec 28.
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Dk-Dickinson, coarse-loamy, mixed, mesic Typic Haplaquolls
 

(excessively drained)



Dr-Darroch, fine-loamy, mixed, mesic Typic Hapludalfs


(somewhat poorly drained)



Rr- Rensselaer, fine-loamy, mixed, mesic Typic Argiaquolls


(poorly drained)



Figure 12. 	 Lacustrine parent material 
T28N RW S See 32 
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Ad-Adrian, sandy or sandy skeletal, mixed, euic, mesic Terric


Medisaprists (very poorly drained)



Ba-Brady, coarse-loamy, mixed, mesic Aquollic Hapludalfs (somewhat


poorly drained)



Of-Gilford, coarse-loamy, mixed, mesic Typic Haplaquolls (poorly


drained)



Ho-Houghton, euic, mesic Typic Medisaprists (very poorly drained)


Md-Maumee, sandy, mixed, mesic Typic Haplaquolls (poorly drained)


Mr-Morocco, mixed, mesic Aquic Udipsamments (somewhat poorly



drained)


Pn-Plainfield, mixed, mesic, Typic Udipsamments (excessively



drained)



Figure 13. Outwash parent material, T23N RSW Sec 28.
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Some averaging occurred by combining cluster groups together. Dis­

tinctiveness of better drained areas was lost as well as more poorly drained


soil responses. For example, the Odell, a somewhat poorly drained, was


represented by the same statistical group as Corwin, a well drained soil.


Corwin and Odell have silt loam surface textures and differed in color by


lOYR2/2 for Corwin compared to lOYR2/l for Odell. Parr, another well


drained silt loam with lOYR2/2 surface color, was also confused with the


Odell. Due to closeness in color and drainage profiles, these soils would


have been quite close spectrally; however, soil distinctness was lost when


distributions from across the county were combined.



A poorly drained Wolcott soil with a silt loam surface texture and


1OYR2/I surface color did not correlate to any specific spectral class.


All map units had evidence of scattered vegetation data points which were


not in as great abundance as in other classifications. Figures 14 and 15


show spectral responses of soils and soil-vegetation complexes along with


identified vegetation classes.



Figure 16 shows the resulting county classification from the first


analysis. The overall county map isvery representative of general cover


types within the county. Only on fine detail maps is the classification


less than adequate for defining soil series. Soils differences that indi­

cate dramatic chances such as the organic soils are easily recognized, but


the more subtle differences are confused. Borrow pits along Interstate 65


are recognizable but, as stated before, were classified as a poorly drained


or histic soil.



Classification Two. A systematic clustering of prespecified lines and


columns characterized the second classification scheme. By systematically
 

sampling the entire county, data which could be overlooked by block clus­

tering would be sampled. Unique areas of smaller than 225 ha could be


bypassed since those areas are not mapped (due to the expense in estab­

lishing a soil series and the small area in relation to the county) as a


soil series within a county. Those areas overlooked in a systematic


sampling would not be of importance in characterization of county soils.



Identification of cluster classes resulted in eight definite soil


responses, six vegetation classes and five soils with some vegetative


influence. In subjective sampling, vegetated areas such as the Jasper


Pulaski State Fish and Wildlife Area, wetland areas and scrub oak areas


on sand ridges were generally avoided, but systematic sampling chose points


throughout the county which accounted for the increased number of soil­

vegetation responses. A good definition of scrub oak, wooded areas and


trees and plants along creeks and rivers was the result of the second


classification because these were not avoided and could be classified


with actual representative data points from the area.



Evaluation of the soil maps revealed the second classification to be


more representative than the first but not of the quality displayed in the


third and fourth techniques. Again, difficulties were encountered with


scattered data points of vegetation appearing across the map units, but


not to the extent of classification one. Odell, a somewhat poorly drained
 

soil, was again confused with the well drained soils, Parr and Corwin.
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Figure 16. 	 County classification from


first analysis procedure.
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had been chosen to evaluate the classification so no prepared ancillary


data were available to help explain these phenomena.



In the till areas Odell and Corwin were difficult to discriminate;


both reflected as the lightest soil- class. In some transitions to darker


poorly drained soils, such as in T27N R7W Sec2OSWk till, Odell responded


much lower spectrally than when it was associated with Parr or Corwin. It


appears that Odell, a somewhat poorly drained soil, has a wide range of


reflectance. Since its drainage characteristics resemble well drained


and poorly drained parameters, it may be less well drained in association


with poorly drained soils and better drained when associated with well


drained soils. Also, data point averaging could affect these responses.



The lacustrine shows good correlations with excessively drained soils,


but evidence of inclusions within the soils was not supported with ancil­

lary data. Areas of small inclusions could have been overlooked in the


initial mapping. So, areas in question should be revisited.



The outwash areas showed good definition between spectral classes and


soil series. Some variability was evidenced in separation of Brady, a


somewhat poorly drained silt loam with lOYR3/I color, and Plainfield, a


well drained fine sand with IOYR4/3 color. Although Brady was separated

for the majority of the map units, some pixels representative of Plainfield


were integrated in the map units.



Gilford, a poorly drained sandy loam with lOYR2/l color, was com­

pletely separated from the Maumee, a poorly drained loamy fine sand with


lOYR2/O color. Other parameters than drainage characteristics must have


contributed to this spectral variability. Slight differences in texture


and color could also have contributed to the ability to separate these two


poorly drained soils. Maumee, for the most part, appeared in depressional


wet spots and could have been categorized as a very poorly drained soil


which may also have contributed to separability.



Evaluation after classification suggested that again the greatest con­

tributor to misclassification was largely due to the influence of a com­

bination of soil-vegetation responses.



Classification Four. The last classification proved to be the most


accurate of the four analysis techniques. By clustering within parent


materials four percent of the data was sampled compared to a one percent


sampling in the previous analysis techniques. A larger sampling provided

better definition of spectral response which resulted in a more accurate


classification



The county was statistically classified with 52 soil representations

and two vegetation classes. Ten spectral classes were used in the outwash,


twelve in the till (rolling moraine), ten in the outwash over till, nine


spectral classes in the lacustrine area, thirteen identified in the till


(Alfisols) and ten classes within the till Mollisol area.



Although overall classification four appeared more representative,


misclassification was apparent in the outwash and lacustrine quarter
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sections. The lacustrine area, T28N R7W Sec32 S , was better represented


by classification three. Mixing of two spectral classes occurs in the


Dickinson map units, an excessively drained fine sandy loam with lOYR2/2


surface color. Vegetation isscattered more throughout these map units


inthe last classification than inclassification three. The outwash sec­

tion, T23N R5W Sec28, which consists of large map units of Gilford and


Maumee, two poorly drained soils, were not differentiated as in the pre­

vious classifications. The same occurrence was noted within the lacustrine


area, where spectral responses of low responding soils were checked. The


poorly drained soils were representative of the lowest reflective soil,


but both graphs also revealed the next lowest responding soil as higher


reflecting inthe third channel. Ifvegetation was masking the response


of soil, then perhaps bare soils within the same response group are clas­

sified to the nearest group responding as a bare soil with no vegetative


influence (Figures 20, 21).



Initial success at identifying soils was based on the ability to dif­

ferentiate drainage profiles; thus itwas surprising to note two poorly


drained soils within the same parent material. Spectral characterization


of soil parameters is needed to define the extent to which each parameter


contributes to overall spectral response.



Unique Characteristics of the Data. Scattered vegetation was evident


across all classifications and contributed to interference with the homo­

geneity of all map units. These scattered vegetation-soil complexes were


at first considered to not be a valid delineation. Further inspection of


response values found that these data points were indeed a combination of


vegetation and soil responses. CroD information from June 1973 found


ninety percent of the corn and sixty percent of the soybeans were planted


by early June. This gives explanation to why so many scattered data points


were found in evaluations. These data should have been gathered before


decisions were made regarding the date to be used inanalyzing the remotely


sensed data. At this time it is not known exactly how vegetation influences


a soil response, that is,whether it gives an overall high response or low


response or only influences the response in channel two and three. Infor­

mation then cannot be extrapolated from these combination pixels as to the
 

type of soil the vegetation isoccurring on. If the combination points


appear in a map unit, those points cannot be assumed to be a part of that


map unit because of the possibility of inclusions occurring within the


unit. The easiest way to eliminate this problem is to choose a date that


isknown to be relatively free of interfering ground cover The next step


would be to analyze responses to predict the soil from the combination


response.



Aerial photographs were not rectified which contributed to error in


matching map images. The resulting rectified halftone transparencies


were used for reregistration which should produce a more accurate map


representative of the county. Map quality photos should be essential


for creation of registration data and map quality output.



Evaluation of Quarter Sections. Evaluation of quarter sections was,


ingeneral, a subjective approach with map units and spectral classifica­

tions being overlaid for comparison. One analyst did use a numerical


approach by counting data points within each map unit and calculating





0 1 

0 C 2 -­ . 2 3 --­ 2 

U) 

> 6 7 , 

c_ 

1-soil 
2­ soil 

4 - soil 
5 - soil 
6 - soil 
7 - soil 

,. 

C 

0 

Figure 20. 

I II 
(.5-. 6M) (.46-.7pm) (.7-. 81m) 

Wavelength Channels (Pn) 

Classification four lacustrine soil spectral responses. 

(.8-l.lm) 



--

1.'0 
ISt

 4 

2K 
.3 N3 -­

C)1 - -=­

2- ~soil


2 - soil-. 
 
- soil -,3 
 

"N
5 - soil 
 
6 - soil Xs
7 - soil 
8 - soil



O 7-soil8M)



(.7-.B8lm) (,8-1.lvm)(,5-.6pM) (.6-, 7m) 

Wavelength Channels (viM) 

spectral responses from outwash area, classification 
four.



igute 21.. soil 
 



-37­


the percent soil each spectral class represented. The purest map units or


those spectral classes that represented the largest portion of any single


map unit were found in the last classification. All analysts agreed that


the last two classifications were the most representative of the four clas"


s-ification techniques.



A more quantifiable evaluative technique is necessary to provide an


objective approach in selecting classifications. Bias was also integrated


in the analysis techniques by the same individuals mapping the quarter


sections and evaluating the classifications. By varying the individuals


that mapped the quarter sections and evaluated the quarter sections, a more


objective evaluation would result.



A statistical evaluation was attempted to test the validity of separating


the parent materials. Both analyses (all highest responding classes and all


lowest responding classes across parent materials) proved highly significant


at the .01 level; therefore, the hypothesis of the homogeneity of distribu­

tions was rejected. These values may have been overly inflated due to the


large number of points used in compilation of the distributions. Calcula­

tion of degrees of freedom is based on the total number of points used in


the set of distributions; therefore, the large number of points contributed


to the significant values. The problem was further complicated because


at least six classes were needed for testing so no classes could be elim­

inated to reduce point size. A test more sensitive to relationships of


distributions and less sensitive to point quantities is needed.



Delineations Made by the Classifier. Favorable correlations with the


classification map were found when field observations were made. As in the


past, drainage patterns and organic matter differences were found to be


highly correlated to reflectance. Organic differences were evidenced by


the separable histic inclusions in the north and southeast. Minor differ­

ences in texture also were evident especially in the outwash area. Again,


it is not certain how much contribution each of these soil parameters make


to the overall soil reflectances.



Areas of moderate to severe erosion located in the till region were


found to correlate almost 100% with one spectral class. Two separate areas


were checked and both gave evidence to good correlation. The second area


showed large areas of erosion running east to west that when field checked
 

were not that extensive. This could be caused by east-west bias that occurs
 

in clustering. Clustering samples point left to right across a line; there­

fore, the probabilities of Doints lying next to one another being in the


same class is slightly higher than for points lying to the north or south.


Surrounding pixels may have contributed to the erosion areas which would


result in exaggerated erosion classes.



The eroded class, in both areas, was not the highest responsive class.


In general, the highest respondino class tended to have the largest var­

iance because it isan all inclusive class of points above a certain re­

sponse. Erosion representation, since it is not the highest responding


class, has definite limiters on its response range which contributes to a


better defined distribution with smaller variance.





The sand ridges, in the northern part of the county, were defined by


the vegetative response of the scrub oak, that occurred on the ridges.


This provides the ability to map Plainfield sand, the predominant soil


of the sand ridges, by delineated scrub oak areas. Areas of native vege­

tation or inthis case scrub oak could be used to identify underlying


soils ifcertain soils supported unique vegetation types.



A vegetation map of the county was also available through the use of


the tree design processor which was used to delineate the Jasper-Pulaski


Fish and Wildlife Refuge, the location of rivers and creeks, drainageways,


and pastures and/or wheat fields. County roads and Interstate 65 were


also visible on the final classification. Boundaries of parent materials


could also be obtained and individual parent material classifications


could be printed because of the nature of the layered processor (Figures


22-27).



Map products of the soils classification can be all or any part of


the county at any scale. The products can be on acetate or computer


printout with grey scale values, alphanumeric or symbol sets. This map


quality product gives a synoptic view of Jasper County that has not been
 

available without Landsat except through mosaicing aerial photographs.



An Augmented Procedure for the County Soil Survey. Ifthis type of


analysis has the potential to be used in soil surveying, where does itfit


into the county plan for a survey? The decision to use remotely sensed


data could be made at the same time the designation to initiate the soil


survey ismade. Data preparation and imagery analysis would then be insti­

tuted at the same time preliminary investigation was to take place. If


photography were used as a base map for registration, then itmust be taken


inadvance. If 7 minute topographic maps are to be used for registration,
 

photographs need not be available until the usual time. Digital analysis,


evaluation, refinement, and creation of map products can also be done


before soil mapping begins. Map products could then aid inbeginning the


soil mapping by locating spectrally similar soils, identifying inclusions,


providing information to areas not readily accessible, identifying drainage


profiles, locating possible areas of erosion, and identifying textural and


organic differences. If a parent material or soil association map were
 

created, this could aid indeveloping soil interpretations and establish­

ing soil series within the county. Finally, the remotely sensed data could


be used as a quality control for map units by identifying the percent inclu­

sions, their extent and location. Figure 28 shows a possible augmented


soil survey procedure.



Limitations and Difficulties. The greatest limitation was the inter­

ference of vegetation with soil response. Consideration of planting dates


should influence the date when the remotely sensed data are chosen. Future


remotely sensed data systems may not have the same difficulty as the Landsat


MSS data, but now this isextremely important.



Registration is important ifclose correlation to resolution size


elements isto be made. Aerial photography should be of map quality if


good correlations are desired. The photographic imagery and remotely


sensed data should be collected at approximately the same time.
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Figure 26.
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Difficulties in delineating closely associated soils in some areas


were encountered. Somewhat poorly drained soils were confused with mod­

erately well and well drained soils which isnot surprising when the close­

ness of their drainage characteristics is considered. Some classes of


somewhat poorly drained soils are s6 minutely different from better drained


soils that discussion as to their delineation can be controversial even


upon field inspections. These difficulties must be considered when cri­

ticism arises against MSS remotely sensed data being used because of


inability to make certain soil delineations.



Evaluation of these classifications indicated the classification


involving a systematic data point sampling technique for compilation of


training statistics within unique areas to be the most representative.

Other classifications that used training samples across the entire county

resulted in statistical distributions that were too broad for a fine de­

lineation of spectral responses. Establishing a statistical representa­

tion across such a large area as Jasper County created distributions that


diminished subtle differences in responses.



The subjective nature of the evaluative techniques was not adequate

to evaluate classification performance quantitatively. A homogeneity test


was used to determine the necessity of parent material delineation but


this also proved inadequate. A more objective approach for determining

classification performance and a test less sensitive to point quantities

and more sensitive to relationships of distributions are needed.



Random quarter section evaluation was a sufficient means of sampling

the county soils, but not all parent materials were sampled. Therefore,


questions about the outwash over till area on the last classification


remained unanswered. Future classification evaluation should include a


larger sampling over a more extensive area.



Initially itwas thought that the soil Darameter most affecting Landsat


spectral responses was drainage characteristics. Results in the outwash


area produced spectrally separable soils of the same drainage characteris­

tics indicating that either minor textural or organic matter differences


might also significantly affect soil spectral response. Although a success­

ful classification has been produced that will qreatly aid Jasper County in


their soil survey, more research isneeded to determine the soil parameters

that make spectral separations possible and to what extent each of the


parameters contribute to overall soil response.



Final map products are available that delineate parent materials,


vegetation across the-entire county, specific sections or any area of the


county at any map scale. These map products can be printed on acetate or


paper with soil and vegetation classes represented by alphanumeric char­

acters, symbols or varying grey scale values.



Products from this study are to be available along with rectified


halftone transparent aerial photogranhs to be used inmapping the soils of


Jasper County. The two images printed at the same scale (1:15840) were


specifically designed to be a readily usable tool for field investiga­

tions. These products will provide information inareas not readily
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accessible and can provide the opportunity of extending the mapping time


during the summer months when covered crop canopies make itextremely


difficult to map.



Inconclusion, this research has investigated a number of capabili­

ties using remotely sensed data. Specifically, the research resulted in


the following:



1) Designing a methodology for using remotely sensed data from the


initiation of a county soil survey to evaluation of the map units;



2) Successfully creating a parent materials map through image interpreta­

tion of Landsat data;



3) Analyzing four statistical methods of classifying data points and


recommending the most representative of the four to be used incounty


soil mapping;



4) Finding drainage characteristics, textural and organic matter differ­

ences, erosion, and scattered vegetation to be significant contributors


to soil responses;



5) Map units that were easily characterized as to their homogeneity, and


drainage characteristics inrelation to other soils;



6) Readily available single feature maps such as vegetation maps;



7) Definable parent material areas that contribute to a more representa­

tive statistical classification of a county soil map;



8) Finding that selection of data acquisition dates isextremely important,



9) Vegetation affecting soil responses across the Landsat channels, how­

ever, itwas not known how much and to what extent the response was


affected,



10) 	 Findinq statistical distributions for classification of an area to be


of extreme importance if an accurate classification is desirable;



11) 	 Landsat providing a synoptic view of Jasper County that has not been


available for other counties unless aerial photographs were mosalced
 

together;



12) 	 Map products designed to be readily used inthe research of county


soils.
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HOOSIER NATIONAL FOREST PROJECT



INTRODUCTION



Since 1975 the LARS staff have been involved in a demonstration of com­

puter-aided Landsat analysis for the Hoosier National Forest. The demon­

stration involves the production of maps and tabular acreage statistics for


predominant land use on the Brownstown Range District of the Forest. The


ultimate objective of this activity has been to define the utility of Land­

sat remote sensing and computer analysis to day-to-day forest management.



Within the last decade environmental pressures in the form of legis­

lation including the Resources Planning Act, the National Forest Management


Act and pending Wilderness Legislation have increased the burden of forest


planners to be more responsive to apparent public desires for goods and


services from our National Forest lands. The desire to maximize this re­

source utilization is dependent on timely information regarding the nature


of the resource in question. Both man-power ceilings and inflation con­

tinue to drive the cost of ground survey, the most common part of forest


inventory, upward so that the collection of data from which informative
 

plans can be developed is extremely expensive. Although remote sensing


is not capable of providing information regarding all aspects of forest


inventory, it can certainly be both timely and valuable at appropriate


links in the information chain



Since we have demonstrated the capability of the Landsat technology to


provide useful information (described in previous semi-annual reports), we


have redefined our thrust to address the form in which that information


should be presented. The attached paper, presented before the 1977 Amer­

ican Societyof Photogrammetry, details some of the product improvement


work in which we have become involved.
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ABSTRACT



The forests and associated range and wildland complexes in the U.S.


form an important renewable natural resource base. The management of these


resources rely heavily on timely knowledge about their location, condition


and status. The gathering of current, accurate information is a prereq­

uisite upon which management decisions will be based. Remote sensing

technology offers a vehicle to meet the information needs of resource


managers.



However, satellite derived information has not been widely accepted as


a resource management tool in forestry. In general, the single tree syndrome


has blocked the acceptance of the 1.2 acre resolution capability of digitally


processed Landsat data. Ironically, often maps and tabular acreage for


forest type and land-use are provided on a 10 or 40 acre cell size. In such


circumstances Landsat results provide too much information on a pixel-by­

pixel basis.



Improvements in the technology now allow multispectral data to be


classified by a new processor which incorporates both spectral and spatial


characteristics of the ground cover. Classification unit sizes are variable
 

and can approximate current field mapping unit size. Tabular summaries and


maps are provided from Landsat classified data and both can be generated for


management classifications. These functions can now help provide informa­

tion in a form more readily acceptable to the user.



This paper emphasizes new analysis tools available which consider the


spatial characteristics of Landsat MSS data. Results and applications of


these techniques will be discussed.



• Paper presented at the 1977 American Society of Photogrammetry Annual



Meeting, Washington, D.C.
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INTRODUCTION



The environmental 70's will be remembered through history for leaving


a telling trail of environmental legislation. The Renewable Resources


Planning Act of 1974, and the Forest Management Act and Bureau of Land


Management Organic Acts of 1976 will alter and intensify human involvement


in environmental concerns. As professionals entrusted with the steward­

ship of our nation's renewable natural resources, foresters will be under


closer scrutiny of the American public Pressures are increasing to pro­

vide more goods and services from this diminishing forest resource base.


Technologically, we are capable of meeting these demands. If we are fully


aware of our resource base, we can positively manage it to provide those


services which the public desires. Paramount to meeting these demands is


the knowledge of the existinq resource potential. Without current quality


inventory information, any intensification of management would be fruitless


if at all possible.



Wildland and timberland inventories historically have been difficult


to obtain because of the complexity of the material being studied and its


geographic dispersion and diversity. Since the launch of Landsat we have


had the synoptic coverage capable of viewing these resources, and the tech­

nical know-how to identify and map their extent. With computer-assisted


analysis techniques it appears feasible to reduce large amounts of spectral

data to information usable to resource managers. The results presented


here describe a demonstration of the potential application of machine­

assisted analysis of Landsat MSS data for supplyinq resource information


The study involved personnel from the U.S. Forest Service and the Labora­

tory for Applications of Remote Sensing (LARS) at Purdue University. The


objective of this study was to supply land use classification maps from


Landsat for the Brownstown Ranger District, an area that the Forest Ser­

vice had recently mapped. The resulting maps and tabular data from both


processes would be compared and the potential of machine-processed Landsat


data evaluated.



METHODS AND MATERIALS



The test site (Figure 1) is a continuous block of S6,680 hectares


(140,000 acres), situated in south-central Indiana. The area is located


on Illinois aged topography and consists of numerous northeast trending

ridges and valleys The oredominant vegetation is the oak-hickory associa­

tion, common to the central hardwood region of the Eastern United States.


In addition to producing timber, the area has heavy recreational pressures


due to its proximity to some large population centers.



The Forest Supervisor's Office was in the process of updating their


area management plans and had just completed a land use map of the site.


The map was comprised of seven classes (hardwoods, conifers, brush, crop,


pasture, water and urban) and was developed through photo-interpretation

and ground survey. The minimum area displayed on the map was 85 hectares


(21 acres), or one hectare more than the mid-point of the mapping unit


size, which was 16.19 hectares (40 acres).
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We were to attempt duplicating the Forest Service map using the Land­

sat data. The analyst used a "modified cluster" technique for selected


training areas. Spectral classes were identified with the aid of small­

scale color infrared photography-. Spectral groups were combined during


the classification to match the land use classes identified by the Forest


Supervisor's staff. The final map contained only five classes: hardwoods,


conifer, brush, ag lands, and water. The urban class was dropped since


there were virtually no identifiable urban areas on the site. Crop and


pasture lands were combined into an agriculture class because they were


difficult to separate on the date of the data used. The final map was


prepared at maximum Landsat resolution so that mapping unit size equaled


resolution, or approximately 0.45 hectares (1.1 acres).



RESULTS



The first map that we produced was the per-point classification,


Figures 2a and b, which visually agrees with the Forest Service map. How­

ever, a number of points appear to be misclassified which cause a "salt


and pepper" pattern on the map. This, in fact, might be a true represen­

tation of the spectral canopy of the forest. Undoubtedly, there are a few


points which are misclassified. This is probably due to the fact that the


spectral definition of one of the classes is too broad. For example, there


were few brushland training classes so the variance of that class may be


expected to be greater than say the variance of the deciduous forest class.


The deciduous forest class was formed by grouping various spectral classes


which we identified according to different slope, aspect, and crown closure


density situations. What has apparently happened is that one of the low


crown density subgroups has been confused with brushland. Once the reason


for the misclassification is understood, the analyst can reselect specific


training areas, thereby trying to reduce the variance in each class's mean.


By so doing, the confusion between the sparse or less dense deciduous and


brushland will be reduced and the classification map will improve. This


process can be both time consuming and costly depending on the amount of


"cleaning" that is necessary.



At maximum resolution the Landsat classification map is visually

unappealing and does not correspond well to the forest map. The problem
 

was that we were comparing a map where each unit represents 0.45 hectares


with a map where the smallest unit is 8.5 hectares (21 acres).



To make the comparison meaningful, we had to bring the mapping units


into closer agreement. Our next map (Figure 3) was prepared by eliminating


every other line and column. Each element on the mad now represents a


ground area of approximately 2.02 hectares (5 acres). The data are not


averaged inthis process, just simply eliminated. Obviously, this approach


is satisfactory in some situations, although increasing the frequency which


one drops lines and columns is not suggested.
 


DISCUSSION



The material provided to the Forest Supervisor was useful but not


optimal for his specific situation For this project we had to consider


more than the spectral characteristics of the scene. Somehow, we had to
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account for the spatial variations in the forest canopy. Inactuality,


the photo-interpreter accounts more for textural repetitions inthe scene


than tonal associations.



During the first decade of research and development in applying digi­

tal analysis techniques to multispectral remote sensing data, emphasis has


been concentrated on extracting information from the spectral domain. In


other words, the methods applied have been those which analyze the spectral


measurements on a pixel-by-pixel basis. Some work has been done to utilize


temporal information by registration and analysis of data from the same
 

scene collected at different times. Even less work has been done inex­

traction and use of spatial information based on shape, context, texture


and other forms of spatial relationships which, from photo-interpretation


experience, are known to be significant



An algorithm has been developed which incorporates the simple spatial


relationship-adjacency into the machine analysis process. The processor


called ECHO, for Extraction and Classification of Homogeneous Objects, allows


the analyst to account for the textural qualities of the data during classi­

fication.



Flexibility is provided to allow the user some latitude inmatching the


data set to the objectives of the analysis. This control is achieved through


parameters which determine: (1)the cell size or number of pixels comprising


the basic classification unit, (2)the level of homogeneity required within


a cell, and (3)the degree of annexation of similar cells into aggregate

fields. The cell size used isdependent on the resolution of the sensor and


the area of the "ground object" which is to be detected. The homogeneity


parameter controls the classification of the cell and ranges from a per­

point classification of each pixel to complete per-field classification
 

where each cell is treated as a unit. The third parameter controls the de­

gree of annexation of cells of similar spectral Droperties into larger


aggregate fields.



With the ECHO processor we reclassified the data utilizing various cell


widths. To illustrate, we selected a six-section area in the northern part


of the site. As we will see, in Figures 4 through 6 the map becomes more


blocky as cell width is increased. With careful selection of the classi­

fication parameters, the analyst can control the amount of cell splitting


that the classifier performs. Cell splitting allows for a class of high


variance to be distinguished from surrounding material. The option would


be useful in separating small inclusions of pine plantations from the more


predominant surrounding hardwoods. The hardwood class contains a greater


spread, or variance, than the conifers, thereby allowing for the separation


between the classes.



When carefully aoplying the ECHO processor, we can eliminate small


errors which often appear to be areas of misclassification. This, there­

fore, makes the final map more appealing to managers who are used to maps


possessing less detail. Additionally, a slight improvement in classifica­

tion accuracy isalso sometimes achieved. Again, this is due primarily


to combining pixels which occur at the tall of a class distribution and


are prone to misclassification because they are placed into a class with


greater variance.
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CONCLUSIONS



Spatial processing has a definite place in the analysis of Landsat


data for'renewable resource management.- For large regional- mapping pro­

jects, Landsat data are apparently more sensitive to changes in the ground


scene than necessary. The ECHO processor accounts for the spatial varia­

bility in the scene. Maps can be produced which more closely approximate
 

the user's state-or-the-art of current need.



There are other approaches which can be utilized. We have only con­

sidered a processor which accounts for the primary characteristic of spatial


information--class variability. This may, in fact, simulate the thought


process which an interpreter uses in aggregating classes into cells but


does not replicate the physical process. In actuality, an algorithm which


determines the majority class within a cell and classifies the cell by the


majority would more closely approximate an interpreter's physical process.


We intend to look at this approach for future work.



During this study we identified an apparent non sequitur. The apparent


paradox is simply stated:



Because of geographic diversity and the physical difficulty and


cost involved in collecting natural resource data, Landsat would


appear to have obvious application. Resource managers, however,


are concerned because the resolution of the satellite data is


less than considered optimal at 0.45 hectares (1.1 acres). How­

ever, these same individuals produce maps and tables at 16 hec­

tares (40 acres) or larger cell sizes to assist in development


of large area plans.
 


As scientists have been too willing to sell resource managers too much


based only on a system capable of providing spectral information, users have


been too concerned about replacing existing aerial (photo-interpretation)


data collection and analysis systems. Much discussion has revolved about


the large area implications of Landsat and computer-aided analysis but


ignored the salient features, such as spatial manipulation of the data,


that would make itmore appealing.





MONRE DROWN 

MONROI0 

LAWRENCE JACKSON



Figure 1. Hoosier National Forest test area inSouth Central Indiana. o 
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Figure 2b. Simplified Forest Service typ rap for the same area as 
classified above. Blank= forest, C = conifer, a = ag lands, 
P = pasture, and W= water. 
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HEAT LOSS DETERMINATION INRESIDENTIAL BUILDINGS



INTRODUCTION



Thermal Remote Sensing (or Thermography) can be defined as a technique

of imaging an object using the thermal infrared energy radiating from the


surface of the object. The instrumentation consists of a thermal scanner


and one or more monitors to display the area being scanned. Thermography

has been developed as a tool to measure the temperature of various surfaces.


The non-contact nature of this method, together with the display of the


entire surface-temperature distribution over an object, gives thermography

unique application possibilities. These include medical diagnosis (cancer

detection, etc.), hot spot detection inelectrical power transmission lines,


surveys of land and sea temperatures from aircraft and satellite, non­

destructive testing (NDT) of products for flaws, and biological studies of


plant development and insect physiology.



Inrecent years, energy being the focus of attention, new applications

of thermography for energy conservation have emerged, particularly inthe


industrial sector. A survey of the literature indicates that most of the


work so far has been more qualitative than quantitative. The qualitative

analysis of thermal images (thermographs) reveals "apparent" areas of heat


loss (hot spots), giving no indication as to how much heat is being lost.


This study investigates the feasibility of extracting quantitative heat


loss information through the computer-aided analysis of thermal imagery.



OBJECTIVES



The project objectives are:



1. To assess the value of building heat loss data to municipal government


community development activities.



2. To develop a mobile thermography unit capable of makinq radiant tem­

perature surveys of building side walls.



3. To assess the feasibility of developing a computer-aided analysis


system extracting accurate economic information regarding energy

losses inbuilding side walls from calibrated digital thermography


data.



STATUS



The Community Development Agency for the city of West Lafayette pro­

vided a list of residences available for conducting the heat loss survey.

Itwas originally intended to collect thermal data from several homes


varying inage, building materials and the amount of insulation. However,

due to technical problems and lack of ideal weather conditions (cold, calm,


clear nights), data were collected from only two houses. Using a DYNARAD


model 209A IRscanner, thermal imagery was obtained and recorded on video­

tape. A total of 10 images of the side walls of the two houses were re­

corded, 6 from the first house and 4 from the second. Ancillary data


collected consisted of: photographs of the houses, ambient temperature
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measurements inside and outside the houses, and some radiant temperature
 

readings of "critical" points within each scene using a BARNES PRT-5 radia­

tion thermometer. These readings served as reference temperatures later


on inthe analysis. The images were then digitized, using an analog to


digital converter developed at LARS, and reformatted into LARSYS multi­

spectral storage tape format, compatible with LARSYS functions. The ther­

mal imaging system is illustrated in Figures 1 and 2. The six images from


house 1 were calibrated using a two-point linear calibration. Temperature


distribution maps (T-maps), which are grey scale printouts indicating grey


level (response)-temperature associations, were generated (Figure 3).



These temperatures are not true but "apparent" temperatures as no


correction has yet been applied for emissivity. A computer program is


being developed which will perform the emissivity correction, given the


spectral emissivities of the building materials contained in the scene.


A literature search conducted to obtain the spectral emissivities (inthe


8-14vm region) of building materials has revealed a dearth of such infor­

mation.



The next phase of the project is to generate a data channel contain­

ing the digitized boundaries of the different building materials inthe


scene along with total emissivity (due to lack of spectral emissivities)

information for each material. This additional channel of data will be


used inmaking the emissivity corrections to yield the true temperature

distributions inthe scene. Once the true temperatures and the ambient


temperatures are known, heat transfer equations can be applied to extract


quantitative heat loss information.
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