
1878-1978 

NASA CR 159447 

GE Document No. 78SDS4252 

00 
FINAL REPORT 

MINI-BRAYTON HEAT SOURCE 

ASSEMBLY DEVELOPMENT 

27 JUNE 1974 TO 1 OCTOBER_ 1978 
N79-12554
(NASA-CR-15947) MINI-BRAYTON HEAT SOURCE 

ASSEMBLY DEVELOPMENT Final Report, 27 Jun. 

1974 - 1 Oct. 1978 (General Electric Co.) 
CSCL 10A Unclas
306 p HC A14/MF A01 


G3/44_ 38905j_2
 

1 NOVEMBER 1978 

17
 

,!X_
 

space divisinI 

GENERALO ELECTRIC
 



1 Report No 2 Government Accession No 3 Recipient's Catalog No 

NASA CR 159447 

4 Title and Subtitle 5 Report Date 

MDan-Brayton Heat Source Assembly Development - Final Report 
6 

1 November, 1978 
Performing Organization Code 

7 Author(s) 8 Performing Organization Report No 
78SD4252 

D. Wean and W. F. Zmimerman 
10 Work Unit No 

9 Performing Organization Name and Address 

General Electric Company 
Space Division 11 Contract or Grant No 
P.O. Box 8661 	 NAS 3 - 18541
 

13 Type of Report and Period Covered 

12 Sponsoring Agency Name and Address Contract Report 
National Aeronautics and Space Administration 27 June, 1974 to 1 Oct. .1978 
Lewi~s Research Center 14 Sponsoring Agency Code 
Cleveland, Ohio 44135 

15 Supplementary Notes 

Project Managert 	R. H. Titran
 
Materials and Structures Division
 
NASA - Lewis Research Center
 

16 Abstract 
This report sunnarizes the work acccomplished on the MnI-Brayton Heat Source Assembly program, which 
was performed by the General Electric Company for the NASA-lewis Research Center under Contract NAS3
18541.
 

The objectives of the program were to develop the required technologies to design, fabricate and as
seable components for a high temperature Heat Source Assably (HSA) which would generate and transfer 
the thermal energy for a space borne Brayton Isotope Power System (BIPS). 

The HSA contract effort encoapassed, 1) technology development associated with the fabrication of the 
colurbium alloy (C-103) Heat Source Heat Exchanger (HSHX) with the ma3or thrust of this being on a 
diffusion welding (autoclaving) process for the core of the HSBX, 2) technology development on a high 
temperature multfol insulation system that also functions as an emergency cooling system for the 
isotope heat source, 3) design of the HSA and all its coponents, 4) fabrication of the HSA and its 
conrponents with a major effort being on the HSHX, and 5) acceptance testing of the HSHX and the HSA. 

17 Key Words (Suggested by Author(s)) 	 18 Distribution Statement 
Nuclear Heat Source; Isotope Power System;
 
Spaceborne Dynamc Power System, Brayton Cycle
 

19 Security Classif (of this report) 20 Security Classif (of this page) 21 No of Pages 22 Price 

Unclassified Unclassified 295 

For sale by the National Technical Information Service, Springfield Virginia 22161 

NASA-C-168 (Rev 10-75) 



NASA CR 159447
 

GE Document No. 78SDS4252
 

FINAL REPORT
 

(Contract NAS3-18541)
 

MINI-BRAYTON HEAT SOURCE ASSEMBLY DEVELOPMENT
 

27 JUNE 1974 TO 1 OCTOBER 1978
 

D. Wein
 
W. F. Zimmerman
 

1 NOVEMBER 1978
 

TECHNICAL MANAGEMENT:
 

R. H. Tztran
 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 
LEWIS RESEARCH CENTER
 
21000 BROOKPARK ROAD
 
CLEVELAND, OHIO 44135
 

ADVANCED ENERGY PROGRAMS
 

SPACE DIVISION 
Valley Forge Space Center
 

P.O. Box 8661, Philadelphia, Penna. 19101
 

GENERAL ELECTRIC
 



ACKNOWLEDGEMENTS
 

The following members of the General Electric Company - Space
 

Division technical staff made significant contributions to this
 

report.
 

P. Aller
 

E. C. Duderstadt
 

D. Fox
 

E. H. Sayell
 

W. Saylor
 

In addition to those listed above, numberous individuals con

tributed to the successful completion of this contract. A brief,
 

but not necessarily, inclusive list follows:
 

GE-VALLEY FORGE GE-EVENDALE BATTELLE COLUMBUS 
LABORATORIES 

0. R. Bitzer G. Anderson 
D. Woessner and 

J. K. Callender P. Blanz his Staff 

L. E. Douglas E. L. Burns
 

V. F. Haley L. N. Clements
 

C. E. Kelly J. R. Galley
 

H. A. Nordeen L. C. Hockstahl
 

R. P. Sardaro J. Hopkins
 

G. V. Schmidt J. R. Monday
 

F. M. Sheehan C. E. North
 

L. L. Tyahla D. R. Pence
 

B. J. Urbanik
 

C. W. Whitmore
 



Section 


1 


2 


3 


4 


5 


6 


TABLE OF CONTENTS
 

Page
 

INTRODUCTION..................... . 1-1
 

1.1 Objectives.................. . 1-1
 
1.2 Scope_. . . . . .............. .... 1-1
 
1.3 Brayton Isotope Power System Description . 1-2
 
1.4 HSA Description and Components ......... 1-6
 

SUMMARY........... ............................... .. 2-1
 

2.1 HSA Configuration ...... ................ 2-1
 
2.2 C-103 HSHX Fabrication Development...... .. 2-3
 
2.3 Insulation/Emergency Cooling Verification .. . . 2-6
 
2.4 Fabrication and Acceptance Testing...... .. 2-10
 

HEAT SOURCE HEAT EXCHANGER FABRICATION DEVELOPMENT - . 3-1
 

3.1 Diffusion Welding ............ .... 3-3
 
3.2 Machining . ... . .. . . . . . . . . . . . . . 3-25
 
3.3 GTA Welding ..... .............. 3-38
 
3.4 Forming ........ .............. 3-43
 
3.5 Leaching ...... .............. 3-45
 
3.6 Cyclic Pressure Tests .............. 3-47
 
3.7 Non Destructive Test Inspection .. ......... .3-60
 

INSULATION/EMERGENCY COOLING/AUXILIARY COOLING
 
VERIFICATION ................ ..... 4-1
 

4.1 Insulation Life Stability Tests ..... ......... A-2
 
4.2 Insulation Thermal Conductivity Tests..... .. 4-17
 
4.3 Insulation Vibration Tests......... .. 4-22
 
4.4 Material Compatibility Tests..... ... .. 4-34
 
4.5 Insulation Meltdown Tests...... .... .. 4-67
 

HSA DESIGN ...................... 5-1
 

5.1 Design Requirements.. ._......... ... .. 5-1
 
5.2 HSA Configuration .. . . ..... ..... . 5-7
 
5.3 Structural Analyses and Design ......... 5-20
 
5.4 Hydraulic Analysis.......... .. . .. 5-34
 
5.5 Thermal Analyses.............. .. 5-39
 
5.6 System Interfaces ......... ......... . 5-52
 

HARDWARE FABRICATION ........... ..... . 6-1
 

6.1 Cleanliness Requirements .. ............ 6-1
 
6.2 Heat Source Heat Exchanger Fabrication ..... .6-2
 
6.3 Support and Miscellaneous Hardware...... .. 6-32
 
6.4 Insulation .......... ............. 6-41
 
6.5 Weight................... .. 6-41
 

i 



Section 


7 


8 


9 


APPENDIX A 


TABLE OF CONTENTS (continued)
 

Page
 

ACCEPTANCE TESTS ................... 7-1
 

7.1 Requirements .................. 7-1
 
7.2 Test Flow Plan-. ................ 7-2
 
7.3 HSHX Proof Pressure Test. ............ 7-2
 
7.4 HSHX Pressure Drop Test ............. 7-7
 
7.5 HSHX Leak Tests . . - 7-12
................ 

7.6 HSA Proof Pressure Test ............. 7-12
 
7.7 HSA Pressure Decay Test ............. 7-12
 

CONCLUSIONS AND RECOMMENDATIONS ........... 8-1
 

REFERENCES ...................... 9-1
 

ACRONYMS ....................... A-I
 

ii
 



LIST OF ILLUSTRATIONS
 

Figure Page
 

1-1 Typical Brayton Isotope Power System. ......... 1-4
 

1-2 BIPS Module.................... .. 1-5
 

2-1 Heat Source Assembly. ................. 2-12
 

2-2 C-103 Machined Cylinder ................ 2-13
 

2-3 Photomicrographs Showing Typical Microstructures of
 
Diffusion Welds in HSHX Cylinder Number 1....... 2-14
 

2-4 Photograph of HSHX S/N 1 after Completion of
 
Conformance Tests and Re-inspection .......... 2-15
 

3-1 Finned Specimens without Mo Filler Bars .... ..... .3-6
 

3-2 Photomicrographs of Typical C-103 Sheet Specimens
 
Diffusion Welded at 1700K......... ..... . 3-9
 

3-3 Photomicrographs of C-103 Specimens Diffusion Welded
 
at 1730K........... ........................ ..3-10
 

3-4 Mini-Bulge Test Specimens after Hydro Tests ...... 3-12
 

3-5 Holographs of Specimen 121. .............. 3-13/3-14
 

3-6 Photomicrographs of C-103 Diffusion Welded
 
Specimen 133. ..................... 3-16
 

3-7 Photomicrographs of Specimen 132. ........... 3-20
 

3-8 Photomicrographs of Specimen 131. ........... 3-21
 

3-9 Photograph of Load Arrangement in Run 11. ....... 3-24
 

3-10 Diffusion Welding Trial Parts Awaiting Assembly . . . 3-26
 

3-11 Typical Trial Part Components for the 5. cm Diffusion
 
Welding Assembly. ................... 3-27
 

3-12 Trial Assembly of 23. cm Trial Part .......... 3-28
 

3-13 Photograph of Trial Part No, 1 Diffusion Welding
 
Assembly Prior to Welding ............... 3-29
 

3-14 Photograph of Trial Part No. 1 Diffusion Welding
 
Assembly after 5 Hour, 1700K and 62. MPa Welding
 
Cycles........... ......................... 3-30
 

3-15 Five cm Trial Part #2 Upper End Ring. ......... 3-31
 

3-16 Upper Portion of 23. cm Trial Part including Short
 
Length Mo Bars and Mo Bar Joints with Surface Dimples . 3-32
 

3-17 Diffusion Welded 5. cm Trial Part No. 1 after
 
Molybdenum Filler Bars and Outer Barrier Cylinders
 
Removed ........................ 3-33
 

III 



LIST OF ILLUSTRATIONS (continued) 

Figure page 

3-18 Photomicrographs Showing Typical Microstructure 
of Diffusion Welds in the 23. cm Trial Part... . .. 3-34 

3-19 Cli-mb-Straddle Milang of-Fins-on--Tria.l Part --
Inner Cylinders................... . 3-37 

3-20 Automatic GTA Welded Curved 0.13 cm Thick C-103 Sheets 
with Rabbetted Edges for Self Fixturing ........ 3-40 

3-21 Photomicrographs of Automatic GTA Weld of Curved 0.13 
cm Thick C-l03 Sheet at Locations Shown in Figure 3-20. 3-41 

3-22 Forming Process for Toroid Halves ..... ....... . 3-44 

3-23 Cyclic Pressure Test Specimen for Diffusion Weld 
Joint Strength Evaluation ............... 3-48 

3-24 Photograph of Cyclic Pressure Test Specimen before 
Testing ........................ 3-50 

3-25 Microstructure of Diffusion Welded Joint of C-103 Fin 
and Top Plate Cyclic Test Specimen. .......... 3-51 

3-26 Schematic of Cyclic Pressure Test ........... 3-52 

3-27 Holograph of Cyclic Pressure Test Specimen after 
Testing Showing Diffusion Weld Integrity. ....... 3-54 

3-28 Holographs of Cyclic Pressure Test Specimen Made at 
Pressures Indicated .................. 3-55/3-56 

3-29 Cyclic Pressure Specimen After Destructive 
Pressurization at Room Temperature. .......... 3-59 

3-30 NDT Effect Standard for Mini Brayton HSHX Diffusion 
Welds ......................... 3-61 

3-31 "C" Scan Trace of Ultrasonic Calibration Standard with 
Intentional Defects .................. 3-61 

4-1 Life Stability Test .................. 4-5 

4-2 Life Stability Test Assembly. ............. 4-6 

4-3 Raw and Normalized Life Stability Test Data -
1090K Hot Face. .................... 4-9 

4-4 Raw and Normalized Life Stability Test Data -
1145K Hot Face................... .. 4-10 

4-5 Raw and Normalized Life Stability Test Data -
1200K Hot Face................... .. 4-11 

4-6 Raw and Normalized Life Stability Test Data -
1255K Hot Face................... .. 4-12 

iv
 



LIST OF ILLUSTRATIONS (continued)
 

Figure Page
 

4-7 Raw and Normalized Life Stability Test Data 
1145K Thermal Cycle ................... 4-13
 

Treated for 63 Hours at 1323K and Bent over a 3t Bend
 

Treated for 63 Hours at 1323K and Bent over a 3t Bend
 

4-8 Raw and Normalized Life Stability Test of Bare Nickel
 
Foil @ 1255K Hot Face ....... .................. 4-14
 

4-9 External Appearance of 1255K Life Stability Test Sample
 
Prior to Diagnostic Disassembly ............. 4-16
 

4-10 Internal Appearance of 1255K (1800°F Life Stability)
 

Test Sample during Diagnostic Disassembly ........ 4-16
 

4-11 Thermal Conductivity of Multi-Foil Thermal Insulation . 4-20
 

4-12 Thermal Conductivity of Multi-Foil Thermal Insulation
 
at 6.9 KPa Contact Pressure ............... 4-21
 

4-13 Random Vibration Envelope ................ 4-24
 

4-14 Insulation Vibration Test Set-Up. ............ 4-26
 

4-15 Vibration Test Fixture. ................. 4-27
 

4-16 Vibration Test Fixture. ................. 4-28
 

4-17 Vibration Test Fixture Photos Showing Setup for
 
Vibrating along the Plane of the Sample ......... 4-29
 

4-18 C-103 Sputtered with 2 pm of Nickel and Vacuum Heat
 
Treated for 63 Hours at 1323K .............. 4-43
 

4-19 C-l03 Sputtered with 2 pm of Nickel Vacuum Heat
 
Treated for 63 Hours at 1323K and Bent over a 3t Radius . 4-43
 

4-20 C-103 Sputtered with 2 )m of Nickel, Vacuum Heat
 

Radius. ......................... 4-44
 

4-21 C-103 Sputtered with 2 um of Nickel, Vacuum Heat
 

Radius. ......................... 4-44
 

4-22 Ni/Mo/Nb/CaOz Zr02 Compatibility Test Capsules. ..... 4-47
 

4-23 Typical Cross Sections of Ni Foils.... ............ .4-48
 

4-24 Typical Cross Sections of Nickel Foils. ......... 4-49
 

4-25 Typical Cross Sections of Niobium Foils ......... 4-50
 

4-26 Typical Cross Sections of Molybdenum Foils. ....... 4-51
 

4-27 Typical Cross Sections of Foils Exposed to H20. ..... 4-52
 

4-28 Typical Cross Sections of Foils Exposed to H20. ..... 4-53
 

4-29 Reduction of Pure Zr02 by Mo and Nb at 950 0 C. ...... 4-57
 

4-30 Reduction of ZrO 2 by Ni and by Ni/Nb at 950 0 C ...... 4-58
 

v 



LIST OF ILLUSTRATIONS (continued)
 

Figure Page
 

4-31 Reduction of ZrO 2 by Nb and Accelerated Evaporation
 

of Ni..................... ..... 4-59
 

4-32 Reductor of Pure ZrO2 by N. and Ni/Nb at 720
0 C ..... 4-60
 

4733 Observations of Crucible #1 Tested at 1323K ....... 4-61
 

4-34 Typical Cross Section of Nb Wrapped Nb Foils at 1323K . 4-62
 

4-35 Typical Cross Section of Ni Foils and Unwrapped Nb
 
Foil at 1323K ...................... 4-63
 

4-36 Observations of Crucible #2 Tested at 1323K ....... 4-64
 

4-37 Typical Cross Sections of N1 Foils from Crucible #2
 
Tested at 1323K ..................... 4-65
 

4-38 Typical Cross Section of Nb Foil Wrapped in Mo Tested
 
at 1323K. ........................ 4-66
 

4-39 All Nickel Foil Small Scale Meltdown Test Assembly #1 . 4-69
 

4-40 Photograph of All Nickel Foil Test Sample after First
 
Meltdown Attempt. .................... 4-70
 

4-41 Photograph of All Nickel Foil Test Sample after First
 
Meltdown Attempt. .................... 4-70
 

4-42 Response of Test T/C's during Melt Test #1. ....... 4-72
 

4-43 Tantalum Foil Outer Cylinder...... ....... .... 4-73
 

4-44 Planar End Insulation and Heater Assembly ........ 4-73
 

4-45 Melting/Vaporization of Nickel Screen and Insulation
 
Blanket Cylindrical Section ............... 4-74
 

4-46 Typical Solidly Fused Area of Multifoil Insulation
 
at 44th Layer................... . .. 4-74
 

4-47 Small Scale Meltdown Test Assembly #2.... .... .. 4-77
 

4-48 Temperature Profile of Meltdown Test #2........ .. 4-78
 

4-49 Insulation Specimen after Meltdown Test #2....... . 4-79
 

4-50 End View of Specimen after Meltdown Test #2 - View with
 
One End Cap Removed ................... 4-80
 

4-51 Photomicrograph of Cross Section of Insulation after
 
Meltdown Test #2. .................... 4-81
 

5-1 Predicted Creep Strength and Approximate 90% Confidence
 

Limits for 1% Strain in 7 Years for C-103 ........ 5-5
 

5-2 Heat Source Assembly. .................. 5-10
 

5-3 Housing ......................... 5-11
 

vi
 



LIST OF ILLUSTRATIONS (continued)
 

Figure Page
 

5-4 Dome. .......................... 5-12
 

5-5 End Enclosures. ..................... 5-13
 

5-6 Heat Source Heat Exchanger ..-............. .-5-14
 

5-7 Insulation Cylinder ................... 5-15
 

5-8 Insulation Ends ..................... 5-16
 

5-9 HSA Bellow. ....................... 5-17
 

5-10 Heat Exchanger. ..................... 5-21
 

5-11 Common Center Line Header Variations. .......... 5-23
 

5-12 Bending Stress on Cylinder Wall vs. Unwelded Fin
 
Length. ......................... 5-27
 

5-13 HSHX Pressure Profile .................. 5-36
 

5-14 HSA 2D Thermal Model. .................. 5-41
 

5-15 HSA Temperature Profile during Normal Operation ..... 5-43
 

5-16 HSA Insulation Temperature Profile. ........... 5-44
 

5-17 Two Dimensional ECS Response HSA with LES 8/9 Heat
 
Source. ......................... 5-49
 

5-18 3D HSA Shutdown Transient with Fluid Flow Stopped . . . 5-51
 

5-19 System Interfaces .......................................5-53
 

6-1 Highlights of HSHX Manufacturing Process Plan . ..... 6-4
 

thru 6-9
 

6-2 Machined Inner Cylinder ................. 6-11
 

6-3 HSHX Production Parts .................. 6-14
 

6-4 Sealed Production Cylinder No. 1 before Autoclaving . . 6-17
 

6-5 Typical Pressure-Temperature Profile during
 
Autoclaving ....................... 6-17
 

6-6 Machining (Scalloping) of Inner and Outer Seal Cylinders
 

of 1st Autoclaved Production Cylinder .......... 6-18
 

6-7 Recovered Diffusion Welded Assembly after Leaching. . . 6-19
 

6-8 Ultrasonic Inspection of Production Cylinder. ...... 6-20
 

6-9 Ultrasonic Scan of Production Cylinder... .......... .6-21
 

6-10 Metallography - 1st Production Cylinder ......... 6-22
 

6-11 Machined Inner Scroll .................. 6-25
 

6-12 HSHX Weld Assembly in Vaious Stages of Completion. 6-27
 

6-13 Port Hole Machining ................... 6-28
 

vii
 



LIST OF ILLUSTRATIONS (continued)
 

Figure Page
 

6-14 Bracket Fixturing .................... 6-29
 

6-15 Final Stud Machining to Interface Dimensions. . ..... 6-30
 

6-16 Coffipleted Heat Source Heat Exchanger. .......... 6-31
 

6-17 Stainless Steel Housing ................. 6-33
 

6-18 Stainless Steel Dome with Gas Management Assembly . 6-34
 

6-19 Preload Screw ...................... 6-35
 

6-20 Titanium End Enclosure...... ..... ....... 6-36
 

6-21 Gas Management Assembly ................. 6-38
 

6-22 Connectors. ....................... 6-39
 

6-23 HSA Bellows ....................... 6-40
 

6-24 Insulation Cylinder ................... 6-42
 

6-25 Insulation End Cap. ................... 6-43
 

7-1 Mini-Brayton HSA Acceptance Test Flow Plan. ....... 7-4
 

7-2 HSHX Proof Pressure Test Set-Up ..... ............. 7-6
 

7-3 HSHX Pressure Drop Flow Test Set-Up ........... 7-8
 

7-4 HSHX Pressure Drop Flow Test Results. .......... 7-11
 

V1i1
 



LIST OF TABLES
 

Table 	 Page
 

1-1 	 Heat Source Assembly Subsystems and Components. ..... 1-8
 

3-1 	 Interstitial Impurity Contents of Diffusion Welded
 
Specimens at 17000 K ................... 3-18
 

4-1 Test Specimen Temperature Readings Before and After
 

Vibration Tests ..................... 4-31
 

4-2 Insulation Vibration Test Sample Weight Data. ...... 4-32
 

4-3 Chronology of All Nickel Test Specimen Diagnostic
 
Disassembly ....................... 4-75
 

5-1 PICS Temperature Limits............ ... .. 5-7
 

5-2 Summary of HSHX Design Variations...... .... .. 5-24
 

5-3 HSHX Stress Summary.............. ... .. 5-25
 

5-4 HSHX Maximum Stress Levels for Unwelded Fins.... . .. 5-28
 

5-5 Effect of Partial Welding.......... .... .. 5-30
 

5-6 Normal Operating Temperatures Near The Exit End of The
 
HSA..................... .... .. 5-42
 

5-7 ACS Analysis Summary................. .. 5-47
 

5-8 Maximum Temperature Excursion Due to Shutdown-

Transient ........................ 5-50
 

6-1 	 Loose Particulate Acceptance Criteria for HSHX Fluid
 
Loop. .......................... 6-1
 

6-2 	 HSA Weight Summary. ................... 6-44
 

7-1 BIPS System Flow Requirements .............. 7-9
 

7-2 HSA Scaled Pressure Drop Test Data. ........... 7-10
 

ix
 



SECTION 1
 

INTRODUCTION
 

This report summarizes the work accomplished on the Mini-Brayton Heat
 

Source Assembly program, which was performed by the General Electric
 

Company for the NASA-Lewis Research Center under Contract NAS3-18541.
 

The contract started June 27, 1974 and technical effort extended
 

through September, 1978.
 

1.1 OBJECTIVES
 

The objectives of the program were to develop the required technologies
 

to design, fabricate and assemble components for a high temperature
 

Heat Source Assembly (HSA) which generates and transfers the thermal
 

energy for a space borne Brayton Isotope Power System (BIPS).
 

1.2 SCOPE
 

The HSA contract effort encompassed the following major efforts.
 

1. Technology development associated with the fabrication of the
 
* 

columbium alloy (C-103) Heat Source Heat Exchanger (HSHX). This
 

included machining, forming, welding, with the major thrust
 

being on a diffusion welding (autoclaving) process for the core
 

of the HSHX.
 

2. Technology development on a high temperature multifoil insulation
 

system that also functions as an emergency cooling system for the
 

isotope heat source.
 

* 	Throughout this report "columbium" (Cb) and its scientific designation 

"niobium" (Nb) will be both used synonymously. 
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3. Design of the HSA and all its components.
 

4. Fabrication of the HSA and its components with a ma3or effort
 

being on the HSHX.
 

5. Acceptance testing of the HSHX and the HSA.
 

1.3 BRAYTON ISOTOPE POWER SYSTEM (BIPS) DESCRIPTION
 

The Braytbn Isotope Power System (BIPS)* is a 500 to 2000 watts
 

electrical (We) seven-year life space power system. It utilizes a
 

closed Brayton cycle shown in Figure 1-1, to convert thermal energy
 

from an Isotope Heat Source (IHS) to electrical energy at a net
 

efficiency exceeding 25 percent. The HSA which is one of the major
 

components of the BIPS, contains the Multi-Hundred Watt Isotope Heat
 

Source (for space missions) or the MHW Electric Heat Source (for ground
 

tests) both of which generate 2400 watts of thermal energy. The IHS is
 

a flight qualified heat source presently supplying power-on LES 8 and 9
 

and the Voyager spacecraft. Heat is transferred to the working fluid
 

(an inert gas mixture of Xenon and Helium) as it flows through a heat
 

exchanger within the HSA.
 

Emerging from the HSA, temperature and pressure are at a maximum and
 

the working fluid is expanded in a turbine, driving a compressor and
 

alternator - all mounted on a common shaft. "Work" in the form of
 

electrical energy is extracted in this Miniature Brayton Rotating Unit
 

(Mini-BRU). The Mini-BRU, an offspring of the NASA BRU which has
 

* 	 In earlier Design Study Reports the Brayton Isotope Power System 
was referred to as the Mini-Brayton Power System. 
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accumulated over 31,000 hours of operation, was developed under a
 

separate NASA Contract.
 

The working fluid then passes through a recuperator where it re3ects
 

some of its thermal energy which is used to preheat the gas returning
 

to the HSA. The recuperator, also developed under a separate NASA
 

contract minimizes waste heat rejection from the cycle and results in
 

operation of high cycle efficiency.
 

After emerging from the recuperator the cycle waste heat is re3ected
 

in a radiator. The working fluid then enters the compressor and is
 

discharged into the recuperator at higher temperature and pressure.
 

Passing through the recuperator it is preheated before entering the
 

HSA where the closed cycle resumes.
 

The Brayton power cycle has several outstanding characteristics which
 

makes it very attractive for space applications. The use of an inert
 

gaseous working fluid allows the cycle to operate over a wide temper

ature range which provides high Carnot efficiences; by employing a
 

recuperator, high system efficiencies can be realized. The system is
 

adaptable for efficient operation over a wide range of power levels
 

which can be controlled by changing the system operating pressure while
 

the turbomachinery size remains fixed. A gaseous working fluid allows
 

the use of simple, self-acting gas bearings, ensuring long component
 

life of the rotating component.
 

An illustration of the integrated BIPS Module is shown in Figure 1-2.
 

Ground tests of the system are to be conducted under an ERDA (DOE)
 

contract during 1978.
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1.4 HSA DEFINITION AND COMPONENTS
 

The Heat Source Assembly generates the thermal energy required for
 

operation of the Mini-Brayton System and transfers this energy via
 

a heat exchanger fluid loop to the Power Conversion System. The
 

subsystems and respective components which collectively comprise the
 

HSA are listed in Table 1-1.
 

The Isotope Heat Source is fueled with 2400 watts (thermal) of 238PuO2
 

ceramic fuel of 82 percent theoretical density. The design provides
 

positive safety margins for any re-entry up to 11,000 m/sec (36,000
 

ft/sec) and for all credible accident modes. This Multi-Hundred Watt
 

Heat Source is flight qualified for the LES 8/9 and Voyager missions.
 

During the BIPS ground demonstration tests, Electric Heat Source(s)
 

(EHS) developed during the Multi-Hundred Watt Radioisotope Thermo-Electric
 

Generator program will be utilized in place of the Isotope Heat Source(s).
 

The Heat Source Heat Exchanger (HSHX) transfers heat from the Heat
 

Source to the BIPS working fluid by means of a heat exchanger and
 

associated headers and ports.
 

The Auxiliary Cooling Subsystem (ACS) provides requires cooling of the
 

heat source and refractory HSA materials during non-operational periods
 

of the BIPS on the launch pad or during launch.
 

The Emergency Cooling Subsystem (ECS) is a passive system that is
 

automatically activated in emergency situations that could result in
 

an overtemperature condition of the heat source. Such emergencies can be
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precipitated by unplanned delays in orbit achievement prior to starting
 

up the power system; failure of the power conversion system (e.g., loss
 

of radiator integrity, Mini-BRU failure, leaks in the gas loop, etc.);
 

unplanned shuttle landing in remote areas where auxiliary coolant is
 

unavailable, etc. The ECS is capable of operating during all mission
 

phases included prelaunch. It is unlikely, however, that the ECS would
 

ever activate during the prelaunch phase since auxiliary cooling is
 

provided and the Heat Source is under positive control.
 

The Heat Source Insulation Subsystem (HSIS) consists of multifoll
 

insulation blankets which surround the HSA structure and minimizes the
 

heat loss from the system. Penetrations through the insulation are
 

provided for the primary cooling system (BIPS working fluid loop) and
 

for heat source supports.
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Table 1-1. Heat Source Assembly Subsystems and Components
 

Subsystem or Component Symbol Function- Major Components 

Heat Source HS Source of Thermal 
Energy for Power 
Conversion System 
(2400 Wt) 

* PuO2 Fuel 
* Re-entry Protec

tion Systems 

Heat Source Heat 
Exchanger 

HSHX Transfers heat 
from the HS to the 
Power Conversion 
System during 
Normal Operation 

o Heat Exchanger 
* Headers 
* Ports 
* Brackets and 

Studs 

Auxiliary Cooling 
Subsystem 

ACS Cools HS during 
Non-Operational 
Periods on Launch 
Pad 

* Gas Management 
Valve 

o Inert Gas 

Emergency Cooling 
Subsystem 

ECS Melting and fusing 
insulation 

* Multifoll 
Insulation (HSIS) 

Heat Source 
Insulation Subsystem 

HSIS Limits Heat Loss 
from HS during 
Operation 

* Multifoll 
Insulation 



2-i
 

SECTION 2
 

SUMMARY
 

The effort of this contract resulted in the fabrication of components
 

for (and assembly of) three Heat Source Assemblies. A major accomplish

ment was the assembly of a diffusion welded refractory alloy Heat Source
 

Heat Exchanger which represents an advancement in the state of the art
 

of this technology. Another principal thrust of the program was major
 

progress in the development of a high temperature multifoil insulation
 

system which functions as an emergency cooling system for the isotope
 

heat source in the event of a loss of cooling accident. Acceptance
 

tests on the HSHX's were conducted prior to delivery of the hardware.
 

A brief summary of the design, development, fabrication and testing
 

tasks follow.
 

2.1 HSA CONFIGURATION
 

The Heat Source Assembly, which is shown in Figure 2-1, would utilize
 

in a flight configuration, the existing Multi-Hundred Watt (MHW) plutonium
 

fueled Isotope Heat Source developed by the ERDA and the General Electric
 

Company for the LES 8 and 9 and Voyager spacecraft missions. In its
 

ground test configuration (which is the hardware delivered at the end of
 

this contract) it utilizes the MHW Electric Heat Source. Surrounding the
 

heat source and supported from it, is a columbium alloy (C-103) Heat
 

Source Heat Exchanger (HSHX). The HSHX is a finned plate heat ex

changer of cylindrical geometry with torroidal headers with inlet and
 

outlet ports at the extremities. The flow channels are formed by
 

machined fins of the inner cylinder. The outer HSHX cylinder is
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diffusion welded to the fins at high temperature and pressure in a
 

Hot Isostatic Press (autoclave). The headers are then welded to the
 

cylindrical core and the ports welded to the headers to complete the
 

assembly. Support brackets with studs are welded to each of the headers
 

to provide the mechanical support interface with the Heat Source. Sur

rounding the HSHX is an insulation blanket which is wound on a 30 mil
 

columbium structural support. The insulation consists of 39 inner layers
 

of .0013 cm ( mil) molybdenum foil followed by 20 layers of .0013 cm
 

( mil) nickel foil. The most outboard layer is 0.008 cm (3 mil) stain

less steel (CRES 301) foil to aid in handling. One side of each mil
 

foil is sparcely coated with zurcona particles (ZrO2 ) to provide spacing
 

between layers. The ZrO 2 particles are of the order of microns in size
 

and occupy less than 5% of the foil surface area. Stack up thickness of
 

a 60 layer cylindrical blanket is approximately 1. cm (,'0.4 inches);
 

stack up of a flat sample is only 0.4 cm (0.15 inches). This small stack
 

up characteristic is a significant design feature that relates to pre

launch ground cooling of the HSA. Ground cooling is required to maintain
 

the isotope heat source at safe temperatures when the primary cooling
 

loop (Brayton fluid loop) is non operative. It would also be required
 

to maintain refractory alloys at a temperature below which oxidation
 

would occur if exposed to an oxidizing environment. Ground cooling is
 

accomplished by backfillng the HSA with an inert gas (helium or argon),
 

The inert gas thermally shorts the insulation blanket thus providing a
 

low thermal resistance path to the external surface of the HSA. This
 

same passive cooling scheme can also be used during launch and orbit
 

insertion if the BIPS has not been started up. The insulation blanket
 

serves one other important function. It functions in orbit as an
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Emergency Cooling System (ECS) in the event of a power system failure
 

which could potentially cause an over-temperature of the isotope heat
 

source. The insulation blanket should melt and fuse at a sufficiently
 

low temperature, permitting a low thermal resistance path for heat flow
 

from the heat source to the space heat sink. This will preclude gross
 

overheating of the heat source which could lead to failure of the
 

isotope containment and a potential radiological hazard in the event
 

of accidental loss of, or circulation of the Brayton working fluid.
 

An outer housing, external to the insulation, provides the structural
 

load paths for the HSA and the mechanical interface with the power
 

system. The housing is sealed (although not hermetically) to contain
 

an inert gas during ground cooling. It would be provided with a pressure
 

release device to vent the gas in orbit. The ground test hardware is
 

equipped with a gas management valve for loading and venting the inert
 

Auxiliary Cooling Gas. Titanium end enclosures which mechanically lock
 

into the housing, are preloaded at assembly to support the heat source
 

during launch.
 

2.2 C-103 HSHX FABRICATION DEVELOPMENT
 

The manufacture of the HSHX from C-103 columbium base alloy requires
 

forming, machining, and joining operations which, in most cases, are
 

conventional and have been performed routinely. However, the machining
 

of thin fins on the inner cylinder, the forming and machining of the
 

header components, the precision fit-up and welding of the thin header
 

scroll components, and the diffusion welding of the heat exchanger
 

finned cylinder section required more intensive development and less
 

conventional tooling and manufacturing process techniques. In addition,
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radiographic, holographic and ultrasonic non-destructive techniques to
 

assess the soundness of weld joints and diffusion welded sections were
 

studied.
 

Fin Machining
 

The "finned" flow channel heat exchanger design requires the milling of
 

the flow passages on the inner cylinder. After this operation, one
 

hundred forty eight (148) fragile fins, 0.064 cm (0.025 inch)thick and
 

0.41 cm (0.160 inch) high, project from the inner cylinder. The 

radially outermost surface of these fins form the interface for diffusion 

welding to the outer cylinder. Thus, the OD surface finish of the cylin

der before milling must be as good as reasonably possible and this surface 

finish must be maintained during the milling of the flow passages (fins). 

The fragile nature of the fins requires that care be taken to prevent 

breakage during milling or handling. Areas investigated included cutter 

tooth geometry, coolants, feed rates, cutter speeds and feed direction. 

A photograph of the machined inner cylinder with the integral fins is 

shown in Figure 2-2.
 

Diffusion Welding
 

The gas pressure diffusion welding or Hot Isostatic Pressing (HIP) pro

cess is particularly well suited to the production of complex, internally
 

cored components such as the HSHX.
 

The diffusion welding development had as its goal to establish practical
 

process parameters which result in a monolythic HSHX core as evidenced
 

by grain growth across the joint interface and the absence of any bond
 

line porosity or other discontinuities.
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Areas investigated included cleaning techniques, methods of protecting
 

the sample couple from contamination during the autoclaving, process
 

parameters i.e., pressure, temperature and time, and methods to prevent
 

collapsing of fins during the hot gas pressure welding.
 

The cleaning,process selected on the basis of the least likelihood of
 

residual contaminants during diffusion welding, consists of acid etching
 

plus vacuum heat treating the C-103 prior to the hot gas bonding.
 

In order to protect the elements to be diffusion welded, it was found
 

necessary to double "can" them in columbium alloy foil.
 

Numerous flat coupons as well as finned samples, were diffusion welded
 

under varying temperature, and pressure conditions. The initial goal
 

during the early autoclave runs was to obtain welding at sufficiently
 

low temperatures and pressures to preclude bending of the unsupported
 

flow channel fins. Otherwise support bars would have to-be machined
 

and placed between fins to prevent collapsing during the hot isostatic
 

pressing and removed after diffusion welding. Although this was a
 

desirable ob3ective, it could not be accomplished. High pressure
 

diffusion welding was required. The unsupported flow passages were
 

filled with precisely machined molybdenum. The molybdenum filler bars
 

are leached out after the diffusion welding process by immersing the
 

parts in an acid solution of 25% HN03-25% H2SO4- 50% H20 at approximately
 

347 0K (1650F). The acid does not attack the columbium alloy.
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The 	autoclaving temperature investigated covered the range 13650K 

18100K (2000°F to 28000P) with pressures varying between 1.4 MPa
 

(200 	ps-iS and - 69 MPa (10,000 Psi). The parameters selected to insure 

diffusion welds which consistently exhibit no evidence of a weld inter

face line was 1810 0K (28000F), 69 MPa (10,000 psi) for three hours.
 

To obtain the temperature and pressure in a facility large enough for
 

the HSHX, an autoclave at the Battelle Columbus Laboratories was modified
 

under a subcontract to General Electric Co., and various trial parts
 

diffusion welded to verify the process. An example of the quality of
 

a typical diffusion weld resulting from autoclaving at Battelle is shown
 

in the photograph of Figure 2-3.
 

Inspection of the diffusion weld areas are accomplished by ultra

sonic scans using a calibration standard with prescribed defect sizes.
 

Welding and Forming
 

GTA welding of thick C-103 plates and thin sheet material have been
 

accomplished without any problems. Welding parameters were established.
 

Forming of the outer header scrolls requires careful tooling design to
 

avoid wrinkling of the "skin". Inner scrolls were machined from thick
 

plate.
 

2.3 INSULATION/EMERGENCY COOLING VERIFICATION
 

The thermal insulation system serves the following functions:
 

a) It limits heat loss from the HSA during normal operation.
 

b) 	It permits conduction when thermally shorted with an inert gas
 

on the pad, to provide auxiliary cooling of the Heat Source when
 

electrical power is not generated by the BRU.
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c) It should melt and fuse at a sufficiently low temperature to
 

provide emergency cooling in orbit in the event of loss of the
 

Brayton working fluid.
 

The zirconia coated multifoil insulation blanket, developed by Thermo-


Electron Corp. under an AEC Contract, appeared to meet these BIPS re

quirements. Preliminary selection of the insulation system to meet
 

these requirements were made after numerous material compatibility tests.
 

As described in 2.1, the insulation consists of 39 layers of molybdenum foil
 

followed by 20 layers of nickel foil coated with zirconia particles
 

that are cold sprayed on the foil and then fired at approximately 10750 K
 

for one to two hours. The system has a eutectic temperature of 1590 0K
 

(2400 0F) and limits the Mo-Ni interface to 9250 K. The zirconia particles
 

act as spacers between the foils to limit solid conduction effects.
 

Because of the small ZrO 2 particle size, the stackup thickness of the
 

insulation is small. When shorted with an inert gas the thermal resis

tance across the relatively small thickness of insulation is minimal, thus
 

permitting adequate heat transfer to cool the Heat Source on the pad,
 

during launch, and during the first few orbits if the Brayton Rotating
 

Unit is not circulating the working fluid.
 

A ma3or uncertainty of the insulation system was the ability of the cold
 

sprayed zirconia particles to remain adhered to the nickel foil under
 

anticipated vibration environments. NASA had some early experience with
 

loss of particles during transportation. A second major concern was the
 

capability of the insulation to provide stable thermal performance at the
 

high operational temperatures anticipated. Material interactions and
 

self welding of the foils over long periods of time is considered a
 

possibility. The third area requiring test verification was the meltdown
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operation for the emergency cooling function. Small scale meltdown
 

tests indicate that this passive technique can preclude overtemper

ature of the heat source, by decreasing the number of molybdenum
 

8
foils to .1 , resulting in a Ni-Mo interface temperature of 10751K
 

or by correspondingly substituting 33 columbium foils for the moly

bdenum foil and limiting the Cb-Ni interface to 975 0 K. Further
 

development effort however is necessary in view of the potential
 

radiological hazard associated with nuclear systems to finalize the
 

insulation ECS system for flight hardware and assure long term oper

ational stability for the 7 year lifetime.
 

Life Stability Tests
 

Early in the program life stability tests were conducted on an all
 

nickel insulation system to verify stable performance in vacuum under
 

operational temperatures for reasonably long tames. A total of six
 

tests were conducted on five cylindrical test samples simulating the
 

HSA configuration for a minimum of 1000 hours, in vacuum at hot insula

tion face temperatures of 1090 0K, 11450K, 1200 0K and 1255 0 K (15000F,
 

1600 0F, 1700°F and 18000F). One sample was thermally cycled five times
 

between room temperatures and 1145 0K (16000F) over a 1500 hour period
 

after it had already completed 1000 hours of testing at 1090°K (15000PF.
 

The samples consisted of 60 layers of .00127 cm (1/2 mil) nickel foil
 

with a dispersed zirconia coating on one side. One sample for compar

ison purposes, was pure nickel foil without the zirconia coating. These
 

preliminary test results indicated stable thermal performance for all
 

samples except for the insulation that did not have zirconia coated
 

nickel foil. No self welding of the foils was evident on the zirconia
 

coated samples when disassembled after the tests.
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Later during the program, accelerated life tests were conducted in an
 

evacuated oven on different combinations of foil (Nickel, Molybdenum
 

and Columbium) with zirconia (Zr02) at elevated temperatures. It was
 

concluded from thisstudy that some self welding of nickel foil and in

stability of the calcia (CaO) stabilized ZrO 2 could occur over the 7 year
 

life time. It was concluded that the ZrO 2 coated nickel should be limited
 

to 9750K with columbium or molybdenum foil inboard. The columbium foil
 

results in a lower eutectic point (14500 K) with nickel, resulting in
 

earlier meltdown of the system in the ECS mode. However, since more long
 

term tests would be required to optimize the system, it was considered
 

prudent to select a very stable system for the ground test hardware to
 

preclude performance degradation during the BIPS test program. Hence,
 

a molybdenum-nickel foil system was chosen with the nickel restricted to
 

a very safe temperature of 9250 K.
 

Vibration and Thermal Conductivity Tests
 

The purpose of the vibration tests were to verify the capability of the
 

zirconia particles to adhere to the foil under vibration environments.
 

Four test samples consisting of 60 layers of zirconia coated 0.00127 cm
 

(1/2 mil) nickel foil, stacked in a 10.16 cm (4 inch) diameter flat con

figuration, were subjected to a series of vibration tests at levels up
 

to 20 g's (well in excess of launch loads). The samples, as received from
 

the vendor, had certified weights which included the weight of zirconia.
 

The samples were weighed before and after each vibration test to deter

mine weight loss. Thermal conductivity measurements were also mode
 

before the first and after the last vibration test for each sample
 

respectively.
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Results of the test indicated negligible zirconia weight loss due to
 

vibration. The maximum accumulated zirconia weight loss for any one
 

sample was 2.5%i Thermal conductrvity-easurements did not indicate
 

any change in the effective thermal conductivity of the examples.
 

Meltdown Tests
 

Small scale meltdown tests were conducted on two cylindrical configur

ations simulating the HSA configuration. One consisted of an all
 

nickel foil system and the second a combination of 36 layers of
 

columbium followed by 24 layers of nickel. Both tests indicated the
 

start of melting at anticipated temperatures, i.e., the melt temper

ature of nickel 17300 K (26500 F) for the all nickel system and the Cb-Ni
 

eutectic temperature 1450 0K (21450 F) for the Cb-Ni foil system. Fusing
 

and solification of the foil occurred locally indicating a marked and
 

sudden degradation of the insulation. It would appear that this short
 

circuiting of the insulation would preclude overtemperature of the heat
 

source with appropriate optimization of the foil materials. Further
 

demonstration on full scale models are required before a flight system
 

can be selected.
 

2.4 FABRICATION AND ACCEPTANCE TESTING
 

Components for three HSA's were fabricated and acceptance tests per

formed. Final assembly and testing of the HSA's will take place at a
 

later date under a separate contract. A photograph of the HSHX, the
 

ma3or component of the HSA, is shown in Figure 2-4. Section 6 con

tains photographs of other HSA component hardware.
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Proof pressure tests on the HSHX were conducted at 2.5 MPa (360 psi)
 

(using a safety factor of 1.5). Pressure drop tests conducted using
 

air at room temperature and matching Reynolds number indicate LP
 

exceeds the contract specification by from approximately 10% to 25%.
 

However, in the BIPS 1.3KWe configuration the HSHX pressure drop would
 

only be about 60% of the allowed LAP for the HSHX, hence BIPS system
 

requirements are met. Leak tests conducted on the three HSHX's revealed
 

- 9
no detectable leak within the sensitivity (ixl0- 8 to 0.9x10 std cc
 

Helium) of the leak detector.
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SECTION 3
 

HEAT SOURCE HEAT EXCHANGER
 
FABRICATION DEVELOPMENT
 

The manufacture of the HSHX from the columbium base alloy C-103
 

(nominally Cb-10% Hf-l% Ti) includes several non-routine steps and
 

processes. Among these are the machining of nearly 150 fragile fins,
 

0.0635 cm (0.025 in) thick, 0.4064 cm (0.160 in) high and 38.1 cm
 

(15 	in) long in a C-103 cylinder approximately 24.13 cm (9.5 in) in
 

diameter. The outer edges of these fins are later diffusion welded
 

to a thin-walled C-103 cylinder: the diffusion welding process had
 

not been developed for this alloy.
 

An extensive amount of fabrication development effort was required to
 

establish the procedures for accomplishing these and other non-routine
 

fabrication methods needed to manufacture the HSHX.
 

The ma3or areas requiring development were as follows:
 

o 	Diffusion Welding - Diffusion welding is accomplished in the solid
 

state when components are held together under high pressure at
 

elevated temperature. Factors of extreme importance in achieving
 

3oining include the surface finish of the components to be diffusion
 

welded, surface cleanliness, microstructural influences such as cold
 

work, welding atmosphere, temperature, pressure, and time. To
 

achieve sound joints reproducibly, the limits of diffusion welding
 

process parameters had to be established.
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* 	Machining - The machining of many long, thin fins in the C-103
 

alloy inner cylinder required development because of the fragile
 

nature of the component and the- susceptibility to fin breakage.
 

Additionally, the smooth surface finish of the outer edges of
 

the fins must be maintained in order that later diffusion welding
 

to the thin-walled outer cylinder will not be hampered.
 

o 	Welding - Although GE had had a considerable amount of experience
 

in the welding of columbium and columbium alloys, it was neverthe

less necessary to establish weld parameters and weld shrinkage
 

allowances specifically for C-103 components of the size and thick

ness utilized in the HSHX. The high cost of refractory metal alloys
 

precludes establishing these parameters on actual parts. It was
 

therefore necessary that they be determined on small trial parts
 

prior to the start of manufacture of the HSHX.
 

* 	Forming - The outer halves of the toroids are fabricated from
 

0.13 cm (0.050 in) thick C-103 sheet. Dimensional tolerances are
 

important as these parts must be welded to mating parts. Again,
 

the high cost of the refractory alloy makes it imperative that the
 

forming process be developed and optimized using less costly
 

materials such as stainless steels prior to forming C-l03 parts.
 

The fabrication development efforts in these various areas are des

cribed in the following paragraphs.
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3-1 DIFFUSION WELDING
 

Experimental diffusion welding runs were made using C-103 specimens
 

for the purpose of establishing the limits of the 3oining process
 

parameters and selecting parameters which produce sound diffusion welded
 

]oints reproducibly. Both flat specimens and finned configuration specimens
 

were used in this work. Two autoclaves at the GE-Evendale facility 

a 16.5 cm (6.5 in) diameter and 29.2 cm (11.5 in) diameter - were
 

used in this work. The larger autoclave could accommodate a full
 

size HSHX. Initial experiments were conducted in the smaller of the
 

two GE-Evendale autoclaves to take advantage of its availability and
 

lower cost of operation. After considerable development effort, it was
 

determined that a higher temperature capability than the 16.5 cm dia

meter Evendale autoclave offered was required; a newer and larger auto

clave at Battelle Columbus Laboratories was subsequently modified and
 

used for delivered HSHX hardware.
 

3.1.1 EXPERIMENTS IN 16.5 cm (6.5 in) ID AUTOCLAVE
 

The first few diffusion welding runs were designed to evaluate several
 

material conditions, surface finishes, and surface cleaning variables.
 

These included three lots of material (two of which were recrystalized
 

and one of which had 70 to 90% cold work), several surface finishes and
 

several surface cleaning methods or combinations thereof (as-rolled by vendor,
 

mechanically polished, acid etched, and vacuum heat treated). Specimens
 

consisted of two pieces of 0.0635 cm (0.025 in) thick C-103 sheet approx

imately 1.9 cm x 2.54 cm (0.751n x l.in) sealed in 0.051 cm (0.020 in)
 

thick tantalum envelopes. It was concluded from these runs that the
 

best diffusion welds were obtained with specimens that had been either
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acid etched or acid etched and vacuum heat treated prior to diffusion
 

welding. There did not appear to be a decided advantage of cold working
 

the C-103; polishing and-solvent clean--ng prior to diffusion Welding was
 

less effective than acid pickling. Subsequent diffusion welding was
 

conducted using recrystallized material. Specimen preparation consisted
 

of solvent cleaning followed by acid pickling. The pickling solution
 

for C-103 components was 1 part (by volume) hyrofluric acid (HF), 4 parts
 

nitric acid (HNO3 ), 1 part sulfuric acid (H2SO4 ) and 2 parts water (H20).
 

When molybdenum filler bars or cover plates were used, they were pickled
 

with 44% (by volume) H2S04, 21% HNO3, 0.5% hydrochloric acid (HCl), and
 

34.5% H20 (30 seconds or less). Pickling was followed by deionized water
 

rinse, alcohol rinse, and a treatment in vacuum for 30 minutes at 1480K
 

(22000 F). Tantalum parts for the pressure envelopes also were acid
 

pickled in the same manner as C-103 alloy and given the vacuum heat treat

ment. All parts were wrapped in 0.00254 cm (0.001 in) thick tantalum
 

foil prior to the vacuum heat treatment.
 

Several diffusion welding runs were aimed toward evaluating the feasi

bility of diffusion welding finned specimens without molybdenum filler
 

bars in the slots. The purpose of this was to avoid, if possible, the
 

cost of the molybdenum, the cost of labor to fabricate the molybdenum
 

filler bars, the added difficulty in handling and assembly, and finally,
 

the necessity of leaching out the molybdenum bars after diffusion welding.
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The results of this investigation revealed that unsupported fins would
 

deform at autoclave pressure as low as 4.8 MPa (700 psi) at temperatures


U 	 of 1700K (26000F). Figure 3-1 is a dramatic illustration of the effect 

of a pressure of 6.9 MPa (1000 psi) in the autoclave. Considerably 

higher pressures were found to be required to obtain excellent diffusion 

welds. It was concluded consequently that molybdenum filler bars would 

I 	 be required. 

IDiffusion welding conditions for finned configuration specimens with
 
U-molybdenum filler bars in the slots were investigated in the next
 

several autoclave runs. Void-free weld interfaces were obtained in
 

U three hours at 1700K and 5.5 MPa (26000F and 8000 psi); however, some
 

voids were present in the joints at pressures of 4.1 MPa (6000 psi) and 

I 4.8 MPa (7000 psi), even though void-free welds had been obtained at 

i pressures as low as 1700K and 3.4 MPa (26000F at 4900 psi) in earlier 

runs on flat sheet samples. This suggests that other conditions of the
 

I experiments (perhaps metal surface conditions as affected by chemical
 

etching or cleaning) were not identical to those of the earlier runs and
 

I that these autoclave parameters could be marginal in obtaining consis-


U tently excellent-diffusion welds.
 

3.1.2 EXPERIMENTS IN THE 29.2 cm (11.5 in) ID AUTOCLAVE 

I Following the demonstration of making successful diffusion welds in 3 

i hours at 1700K and 5.5 MPa (2600°F and 8000 psi) in the 16.5 cm (6.5 in) 

ID autoclave in finned specimens, the diffusion welding experimental 

I work was transferred to the 29.2 cm (11.5 in) ID autoclave. This autoclave 

is large enough to accommodate the full size C-103 cylinder assembly for
 

I the HSHX.
 

I 
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I
 
lU 

Specimen No. 70 

1645K (25000 F) 

I 

I 
I 
I 

.... 

Specimen No. 72I 
1700K (26000F) 

I 

I 
U 

Specimen No. 74 

1755K (27000F) [I 

Figure 3-1 Finned Specimens Without Mo Filler Bars
 
6.9 MPa (1000 psi) Helium Pressure; Equivalent to Approx.
 
48.3 MPa (7000 psi) Bonding Surface Pressure.
 

I
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I An initial trial run was made to determine temperature gradients in 

the autoclave. The C-103 cylinder was simulated with a graphite


E sleeve 25.4 cm (10 in) ID by 29.9 cm (11 in) OD by 45.7 (18 in)


K in length and the sleeve heated to 1700K (26000 F) at a pressure of
 

55. MPa (8000 psi) for a period of two hours. Temperature varia-


I tion along the sleeve was on the order of 5.5K to 11K (10OF to 200F).
 

This run was an encouraging demonstration that this vessel could be 

Icapable of operating uniformly at conditions which appeared suitable 
I for diffusion welding the full sized C-103 cylinder of the HSHX. 

I-In the second run, 0.0635 cm (0.025 in) thick C-103 sheet specimens were
 

positioned at the top and bottom of the graphite sleeve. The conditions
 

of this run were 1700K (26001F) and 55. MPa (8000 psi) for three
 

hours. Metallographic examination of the specimen revealed well round

ed voids or pores at the weld interface in contrast to the
 

excellent welds developed in the small autoclave under supposedly
 

identical conditions.
 

K In the following run, also at 1700K (26000 F), the pressure was in-


I creased to 69. MPa (10,000 psi) for the first hour, after which it
 

was lowered to about 55. MPa (8000 psi) to avoid overheating of the
 

I pressure vessel. Excellent diffusion welding was achieved at these
 

slightly higher pressure conditions. In this run and all subse

quent runs, a graphite-free load support structure made from refractory
 

brick and molybdenum sheet was used. The graphite sleeve used to
 

simulate the C-103 cylinder had been replaced with a molybdenum cylinder,
 

E thus removing all graphite from the autoclave vessel.
 

I 
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In the next series of autoclave runs, attempts were made to obtain
 

repeatability of results as well as to re-evaluate the effect of
 

preparation variables of the samples on the quality of the diffusion
 

welds. It was found that on flat sheet samples excellent diffusion
 

welds evidenced by absence of voids at the interface could not always
 

be obtained at 69. MPa (10,000 psi) and 1700K (26000F), but that
 

increasing the temperature to 1730K (26500 F) improved the quality of
 

the welds. It was also evident that where plastic deformation had
 

occurred, as in a finned configuration (with round molybdenum filler
 

bars) and at the ends of the flat sheet samples, the joint interface
 

was completely obliterated by grain growth. Typical photomicrographs
 

from these runs are shown in figures 3-2 and 3-3. Because of arcing
 

in the autoclave that was experienced at 69 MPa (10,000 psi), pressure
 

was limited to 62. MPa (9000 psi), temperature was limited to 1700K
 

(26000F), and run duration was extended to 5 hours. Two finned speci

mens approximately 3.175 cm (1.25 in) square were included in the run.
 

Excellent welding occurred in the finned specimens. Subsequently, both
 

were used in pressure tests to determine weld integrity and strength as
 

described below.
 

The finned samples were prepared for pressure testing by leaching out I
 
the molybdenum bars, vacuum heat treating for 1/2 hour at 1480K (22000 F)
 

to remove hydrogen picked up during diffusion welding, welding plates
 

on each end (one plate having a tube attached), and finally relieving 3
 
weld induced stresses by annealing at 14800 K (22006F) for 1/2 hour in
 

vacuum.
 

I
 
I
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Figure 3-2 	 Photomicrographs of Typical C-103 Sheet Specimens 
Diffusion Welded at 1700K for 1 Hour at 69 MPa 
Plus 2 Hours at 55 MPa (Run No. 18). (OriginalMag 100X; Reduced 50%in Printing). 
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Plus 2 Hours at 55 MPa (Run No. 19). (Original
Nag 1OX; Reduced 50%in Printing). 
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U Internal pressure was applied to the specimens to increasingly higher
 

values with a hydraulic pump. Holograms were made periodically to
 

determine whether failure at the fin welds had occurred. Specimen 122
 

Iwas tested to a pressure of 69 MPa (10,000 psi), where failure
 

occurred by rupture of the C-103 fins at a tensile stress of approxi-


I mately 483. MPa (70,000 psi). The diffusion welded joints did not
 

fail.
 

Specimen 121 was given an additional post diffusion welding heat treat-


Iment at 1870K (29000 F) for 3 hours. This specimen was not tested to
 

failure, but was subjected to 48. MPa (7000 psi) hydraulic pressure
 

IB	(well into the plastic deformation range). Figure 3-4 shows the speci

mens after testing. Figure 3-5 shows holograms made during the course
 

of pressure testing Specimen 121 up to 48. MPa (7000 psi). The
 

U
 
I absence of interference lines crossing the weld line show that cracking
 

did not occur.
 

The final set of autoclave runs in the "large" GE Evendale autoclave 

I were made to determine the effect of height of the molybdenum filler 

bars on the quality of diffusion welds made at 1700 0 K and 62. MPa 

(2600°F and 9000 psi) for five (5) hours, near the upper temperature 

I and pressure limits of the autoclave. Height of the molybdenum filler 

bars was varied such that the fins were 0.00254 to 0.00762 cm (0.001

Ito 0.003 in) higher than the filler bars in one specimen, 0.00762 to 

0.0127 cm (0.003 to 0.005 in) higher in another, and 0.0127 to 0.01778 cm

I 	 (0.005 to 0.007 in) higher in the third specimen. Based on metallographic 

i 
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SP E 1
 

a I 
SPECIMEN 122. DIFFUSION SPECIMN 121. DIFFUSION WELDEDI
 

WELDED 3NDPRESSUR TESTED AND VACUUM HEAT TRATED AT
 
0
AT 69 MPa (10,000 PSI) 1870K(2900 F) - 3 HOURS INVACUUM AND PRESSURE TESTED AT 

48 Ma (7000 PSI) 0 

I
 
I
 

Figure 3-4 Mini-Bulge Test Specimens After Hydro Tests.I
 
Both Specimens were Diffusion Welded at 
1700OK - 62. MPa (26000F - 9000 psi)
5 Hours and Stress Relieved at 1480OK (2200OF)

1/2 Hour in Vacuum Before and After Weld
 
Assembly of End Plates and Tubing
 

I 
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Neg. 22. 0/1. MPa
(0/150 psi) 

Neg. 23. 0/3.4 MPa(0/500 psi) 

Neg. 24. 0/6.9 MPa 
(0//000 psi) 

Neg. 25. 0/0 MPa 
After 13.8 MPa 

(2000 psi) 

Figure 3-5 Holographs Of Specimen 121 Made at ressures Indicated.
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Neg. 26. 0/0 MPa Neg. 27 0/0 MPa 

After 21. M~a (3000 psi) After 28. MPa (4000 psi) 

Neg. 28. 0/0 MPa Nag. 31. 0/5516 KPa 0800 ps, 
After 34. MPa (5000 psi) After 48.MPa (7000 psi)
 

Figure 3-5 Holographs of Specimen 121 Made at Pressures Indicated.
 
(Continuesl
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examination of the microstructures, the best diffusion welding occurred
 

in the specimen in which fins were 0.00762 to 0.0127 cm (0.003 to 0.005
 

in) higher than the filler bars. The diffusion weld line was free of
 

I 	porosity and grain boundaries were quite random in this specimen, as
 
i 	shown in Figure 3-6. This was one of the best appearing diffusion welds
 

yet obtained. Another segment of this specimen was examined with an
 

I electron microprobe analyzer to determine the extent of molybdenum 

diffusion into the C-103 fins and plates from the filler bars during the 

I 	 high temperature, high pressure diffusion welding process. Prior to the 

examination, the filler bars and barrier sheets were leached from this 

segment; after the visible leaching reaction ceased, the segment was ex

i 	 posed to fresh leachant for two additional hours to ensure that all 

molybdenum was removed from the surfaces. Molybdenum was detected only 

E very near the surfaces. In most instances, it was less than 0.000254 cm 

(0.0001 in) from the surface, but in one instance it was found 0.000762 cm 

(0.0003 in) in from the surface. The highest concentration detected was 

about 10 percent, but concentrations were generally considerably less
 

than 	that amount. The variability of the concentration profiles, the
 

small amounts detected, and the limited penetration suggests that diffusion
 

I 	of molybdenum into the C-103 under the conditions utilized to diffusion
 
weld the HSHX is not a serious problem. The bulk properties of the C-103
 

I 
I are not affected; temperature bend tests of C-103 sheet specimens auto

claved in contact with molybdenum confirmed this conclusion. 

I
 
I 
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Figure 3-6 	 Photomicrograph of C-103 Diffusion 
Welded
 

Specimen 133, fins 0.00762 to 0.0127 cm 3
 
(0.003 to 0.005 inches) higher than filler 
10X

bars) . 

Autoclaved at 1700
0 K and 62. MPa (2600°F	 

i
 
and 9000 psi) for 5 hours 


I
 

'B!
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I
 
Analyses were made of interstitial impurities of several samples taken
 

I from the specimens autoclaved at 17000K and 62. MPa (2600°F and 9000
 

I psi). The results of these analyses are given in Table 3-1. These
 

data show that nitrogen and oxygen contents are about the same after 

I diffusion welding and leaching of the molybdenum filler bars as they 

are in the starting material, but that hydrogen content after these 

I processes is about 350-400 parts per million higher than that of the 

All of the added hydrogen is readily removed by a
 

1/2 hour anneal in vacuum at 1480K (22000F). After vacuum annealing the
 

I C-103 was completely ductile, no permanent embrittlement results from
 
the hydrogen temporarily picked up in the diffusion welding operation.
 

I The data also indicate that oxygen content of the C-103 is increased
 

Istarting C-103. 


I approximately by a factor of two during a 3 hour heat treatment in 

vacuum at 1870K (29000F). 

I Interstitial impurity analyses summarized below, were also made on C-103 

E specimens which had been exposed to the leaching acid (25% HNO 3 , 25% 

H2SO4 , 50% H20) used to remove the molybdenum filler bars. No significant

I increase in impurities occurred as the result of exposures of 24 and 48 

hour durations. 

Exposure Nitrogen Oxygen Hydrogen
 
time, hours PPM Ppm PPM
 

3 0 55 222 3 

24 56 203 2 

48 58 225 10
 

U No significant C-103 weight loss occurs as a result of exposure to the 
leaching acid and there is no apparent detrimental effect of the leachant 

on C-103. The slight hydrogen pick-up was removed by a 1/2 hour vacuum 

I anneal at 1480K (22000 F) after leaching. 

I 
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TABLE 3-1 
 1
 
INTERSTITIAL IMPURITY CONTENTS OF DIFFUSION WELDED
 

C-103 SPECIMENS AT 17000 K AND 62. MPa (26000 F
 
AND 9000 PSI) FOR 5 HOURS
 

Specimen
 
Number Condition en Oxygen 

123 Leached (a) 84 224 351
 

123 1/2 hr @42200FOh ) 59 287 7
 

133 Leacieed(a) 35 257 396 
 5
 
0 F(b )  
133 1/2 hr @ 2200 23 255 2
 

131 3 hrs @ 29000F(c) 43 441 3 
 1
 
132 3 hrs @ 2900*F(c) 43 565 6 
 3
 

(a)Analysis after molybdenum filled bars leached out. 
 3
 
(b)Analysis after 1/2 hour heat treatment in vacuum subsequent to
 

leaching.
 

(C)Analyss after 3 hour heat treatment in vacuum subsequent to 
 3
 
leaching.
 

I
 
I
 
I
 
I
 
I
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The other specimens with the fins ranging between 0.00254 cm and
 

0.00762 cm (0.001 to 0.003 in) and (0.005 to 0.007 in) higher than
 

the molybdenum filler bars exhibited porosity along the diffusion
 

weld line.
 

Segments were heated to 1870K (29000 F) for 3 hours in vacuum after
 

the filler bars were leached out to determine if the diffusion welds
 

could be improved. Insofar as improvement of the diffusion weld is
 

concerned, mixed results were obtained, similar to previous observa

tions. Diffusion welds in these specimens are shown both after auto

claving and after the 3 hours at 1870K (29000F) in Figures 3-7 and
 

3-8. The joint interface of Specimen 132 (Figure 3-7) was not improved
 

noticeable by the 1860K (29000 F) treatment, whereas some improvement in
 

weld interface appearance (less porosity and more random grain boundar

ies) was observed for Specimen 131 (Figure 3-8). Grain size in the
 

cover plates increased during the 3 hours, 1870K (29000F) heat treatment
 

from 50 micrometers (A m) (ASTM 6) to about 200 micrometers (/4m) (ASTM 2).
 

Grain size in the fins, which was about 140 to 200 A4m (ASTM 2-3) after
 

diffusion welding increased only slightly during the subsequent heat
 

treatment.
 

At this point in the diffusion welding development effort it was con

cluded that the maximum temperature - 1700K (26000 F) - attainable in 

the "large" GE-Evendale autoclave was somewhat marginal in assuring a 

high probability of attaining repeatable perfect diffusion welds even
 

through it had been demonstrated by the cyclic pressure tests (described
 

in 3.2) that imperfect diffusion welds demonstrated high strength. (Per

fect diffusion welds, without evidence of an interface line, were estab

lished as a requirement because of the lack of long time - 7 year - creep
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aAfter Diffusion Welding 


4 I 

I 

After 3 Hour, 18700K (29000F) Heat Treatment
 

Figure 3-7 Photomicrographs of Specimen 132 
(fins 0.00254
 
to 0.0076 
cm (0.001 to 0.003 inches) higher than
 
filler bars). 10X

Autoclaved at 1700K and 
 62. NPa (2600F and
 
9000 psi for 5 Hours.
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After Diffusion Welding
 

I 

IA
U1 yc
 

After 3 Hour, 18701K (29001F) Heat Treatment
 

Figure 3-8 	 Photomicrographs of Specimen 131 (fins 0.0127 to
 
0.01778 cm (0.005 to 0.007 inches) higher than
 
filler bars). lO0X
 
Autoclaved at 17000K and 62. MPa (26000F and
 
9000 psi) for 5 Hours.
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strength data on diffusion welds.) That perfect diffusion welds 3
 
could not be consistently achieved at 1700K and 62. MPa (26000 F and
 

9000 psi) even with the ratio of fin to molybdenum filler bars height 3
 
optimized, was indeed verified at a later date by autoclaving a 5.08 cm
 

(2 in) high full diameter ring sample. Some of the diffusion welds in I
 
this specimen were perfect with no micropores and having random grain 3
 
boundaries across the interface while other diffusion welds contained
 

significant numbers of pores and less random grain growth. Consequently I
 
a programmatic decision was made to modify a relatively new, large auto

clave at Battelle Columbus Laboratories to attain a capability of 1810K 3
 
and 69. MPa (2800°F and 10,000 psi) and to use this facility for 3
 
diffusion welding of deliverable hardware.
 

3.1.3 BATTELLE AUTOCLAVE AND EXPERIMENTS 
 I
 
Prior to modification for HSHX applications, the Battelle(1 )Autoclave 3
 
No. 8 had a demonstrated capability of processing at temperatures up to
 

1645K (2500°F) and 103. MPa (15,000 psi). The inside dimensions of 3
 
the pressure vessel are 66. cm (27 in) diameter and 274. cm (108 in)
 

between heads. In order to extend the temperature capability the 1
 

furnace was modified by replacing heating elements with molybdenum heater 3
 
wire supported on alumina spools on the inside of the pressure vessel. A
 

multilayer thermal barrier package is used between the furnace and vessel 
 3
 
walls to minimize heat loss to the vessel. The working dimensions of the
 

modified furnace are 51. cm (20 in) diameter by 170. cm (67 in) long. 
 I
 
The top portion of the furnace - 51. cm (20 in) long-is used as the 3 
working volume for diffusion welding the HSHX. 1 
(1)The abbreviation BMI (Battelle Memorial Institute) or BCL (Battelle
 

Columbus Laboratoreis) will be used synonymously in referring to
 
Battelle. 
 I
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U Pressurizing is accomplished by pumping liquid argon through a vaporizer. 

I A six zone power supply is used to power the furnace. 

The temperature within the furnace is monitored by 12 Type "B" thermo-

I couples (Pt30%Rh vs. Pt6%Rh). Eight additional Type "B" thermocouples

I are used to monitor the work load temperatures. 

I The loading stand upon which the diffusion welded specimens or HSHX is 

supported, consists of two molybdenum cylinders 25. cm (10 in) in 

diameter by 61. cm (24 in) high and one cylinder 25. cm (10 in) in 

diameter by 30. cm (12 in) high. The cylinders are separated by

E 0.13 cm (0.05 in)-thick molybdenum sheet. In addition, molybdenum foil
 

radiation shields are located in cylinder at its base. An additional
 

heat shield is located in the uppermost cylinder, approximately 2.5 cm
 

I (1 in) below its top. These shields are made up from at least three
 

layers of foil and serve to minimize convection currents within the 

I furnace. Temperature uniformity within the working volume is within the 

i specification limit of 1810K + 14K (2800°F + 250F). A photograph of 

the load arrangement in the autoclave is shown in Figure 3-9.
 

I Numerous autoclave runs with both flat sheet and finned specimens were 

I made during the checkout and qualification of the Battelle autoclave. 

It was determined that when the conditions of 1810K (28000) and 69. 

IMPa(10,000 psi) were met the diffusion welds were consistently excellent, 
with extensive grain growth across the interface and with no evidence of 

I porosity. After qualification of the autoclave and verification of a 

U
 
I 
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BATTELLE AUTOCLAVE I 
I 

TWO-INCH TRIAL PART
 

ToRMOCOUPLE 22 133-THERMOCOUPLE 

SPECIMEN 19I
 

MOLYBDENUM CYLINDER
 
SPECIMEN____20 SPECIMEN 21I
 

THERMOCOUPLE 21 THERMOCOUPLE 14 

MOLYBDENUM SUPPORT\! COLUMN 

£
BI ,I 

~I 

Figure 3-9 
 5
 
Photograph of Load Arrangement in Run 11.
 
(Taken After the Welding Cycle) 
 3
 

I
 
I
 
I
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i 
I 	 modified design of the clad seal for diffusion welded assemblies, two 

full ring samples essentially identical to the full scaled HSHX except

I 	 for length were autoclaved in separate runs. The first of these was a 

5. cm (2 in) long ring which had been modified after a leak developed 

I in an earlier run before the clad seal design was changed. The second 

' specimen was 23. cm (9 in) long. Photographs of these specimens in 

various stages of assembly and post diffusion welding are shown in
 

I Figures 3-10 through 3-17. A total of sixty fin diffusion welds were
 

examined metallographically and in each instance the diffusion welds
 

ifwere excellent, that is there was no microporosity at the interface,
 

I grain boundaries were random, there was no evidence of the original
 

interface and fillets had formed at the sides of the fins and outer
 

I cylinder. Typical microstructure is shown in Figure 3-18.
 

I
 

I Demonstration of repeated successful diffusion welds in the Battelle
 

autoclave at 1810 K and 69. MPa (28000F and 10,000 psi) for three
 

I hours completed the diffusion welding development effort and established
 

the parameters for the fabrication of the HSHX's for deliverable hardware.
 

3.2 MACHINING
 

3The finned heat exchanger design requires the milling of flow passages
 
Iin the inner cylinder. After this operation, nearly one hundred fifty
 

fragile fins, .064 cm (0.025 in) thick and .41 cm (0.160 in) high,


Iprojects from the inner cylinder. 
C-103 alloy may be compared to AISI
 
316 stainless steel in machinability with reference to tool wear, and
 

in that it is quite ductile and tends to gall and tear. Because of the
 

extensive machining required to form the many long, narrow fins, pre

liminary fin machining trials were made.
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Figure 3-10 , Mi moi wiiDiffusion Welding trial parts awaiting assembly.M MII
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Figure 3-11 

Typical Trial Part Components for the 5. cm (2-Inch)
 
Di ffusion Weldirng Assembly. (Parts are ready for
 
trital assembly before final cleaning and pickling.)
 



m m al a a a an an an a 
- u- l um 

40.. 

Figure 3-12
 
Trial assembly of 23. cm (9 inch) trial part. 
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Figure 3-13
 

Photograph of Trial Part No. 1 Diffusion Welding
 
Assembly Prior to Welding. 3 
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Figure 3-14 

Photograph of Trial Part No. 1 Diffusion Welding
 
Assembly After 5 Hour, 1700K and 62. MPa (2600OF 
and 9000 PSI) Welding Cycle.
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N FIGURE 3-15 

TRIAL PART #2 UPPER END RING
5. cm (2 IN)5 

I 
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23. cm (9 IN)TRIAL PART PARTIALLY LEACHED FOR WELD PREP 

THIS 	SECTION INCLUDES ONLY THE
 
LOWER, FULL LENGTH Mo BARS
 

FIGURE 3-16 UPPER PORTION OF 23. cm (9 IN) TRIAL PART 
INCLUDING SHORT LENGTH Mo BARS 

AND Mo BAR JOINTS WITH SURFACE DIMPLES 
(ALL Mo AND SEAL CYLINDERS HAVE BEEN REMOVED) 
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Figure 3-17 

Diffusion Welded 5. cm (2 in) Trial Part No. I After Molybdenum
 

Filler Bars and Outer Barrier Cylinders Removed.
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Specimen From Top Ring (l0X)
 

Specimen From Bottom Ring (100X)
 

Figure 3-18
 

Photomicrographs Showing Typical Mirostructure of Diffusion
 
Welds in the 23. m (9 in) Trial Part. 
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I 
In the initial attempt, fins were machined in several 3.18 cm x 3.18 cm
 

I (1.25 in x 1.25 in) segments of 0.64 cm (0.25 in) thick C-103 plate.
 

Straddle milling was used to machine both sides of the fins simultan-


I eously and thus minimize the tendency to break the fins. Galling and
 

I smearing occurred, primarily on the bottom surface of the slots between
 

the fins. While this is not a weld interface surface, it nevertheless 

I can affect the diffusion welding process if it retains entrapped debris 

3 or contaminants which can later contaminate surfaces to be welded. 

In order to improve surface finish, machinability tests were conducted


K in which cutter type, coolant, feed rate, and cutter speed were varied. 

Two cutter sets were used. Both were 7.6 cm (3 in) diameter side milling 

cutters, 0.48 cm (0.18 in) wide, one with 32 staggered teeth (16 each 

I 	side) and the other with 24 straight face teeth. Two coolants were usedi
 

one was sulfochlorinated mineral oil (Clear Tex 140) and the other a high


I 	 lubricity water base-sol-oil (Norton Wheel Mate 803). Feed-rates were 

0.004 cm (0.0015 in) and 0.008 cm (0.003 in) average per tooth, and 

I cutter speeds were 49.5 and 86.4 surface cm per minute. Conventional

I 

I 

milling procedures were used, and cuts made to full depth in one pass. 

A coolant pump was used which developed higher pressures than standard 

I milling machine pumps in order to better flush away chips which might 

cause galling and tearing of the surface. 

Although minor differences were noted in the surfaces obtained using
 

I various combinations of these four variables, galling and tearing still
 

occurred and provided the possibility for entrainment of surface contam

ination. However, with careful solvent and acid cleaning followed by
 

U 
I heat treatment in vacuum at 1480K (2200°F) for 30 minutes, the finned 

pieces could be satisfactorily cleaned for diffusion welding. 
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Considerable improvement in the surface of the slot resulted when slots
 

1 
I
 

were milled in two passes rather than one. The initial pass cuts 0.318 cm 3
 
(0.125 in) wide by 0.343 cm (0.135 in) deep slots, 0.5 cm (0.200 in) on
 

center. The 0.064 cm (0.025 in) thick, 0.41 cm (0.160 in) high fins I
 
are formed during the second (final) pass by climb-straddle milling. Climb
 

S
 
milling tends to discharge the chips away from the 

area being cut rather 


than into it. 
 3
 
Cutter failures were experienced with high speed steel cutters consequently 3
 
carbide typed cutters were used on the deliverable hardware. A photograph
 

of the fin machining operation of the inner cylinders of the three trial 3
 
parts is shown in Figure 3-19.
 

This inner cylinder was separated into three segments, two of them were
 

5. cm (2 in) in overall length and one was 23. cm (9 in) in overall 3
 
length. The parting grooves were machined prior to forming the fins.
 

The depth of each slot was measured at four positions along its length
 

while the segments were still on the mandrel used to hold the part during 
 3 
machining operations. These measurements indicate a variation of 0.015
 

cm (0.006 in) in slot depth over the entire cylinder. The molybdenum 3
 
filler bars were tailored to this variation by grinding to appropriate
 

thickness to obtain the desired ratio of fin to molybdenum bar height for
 I
 
diffusion welding. 


I
I
I
I
 

3 
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Figure 3-19 
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3.3 GAS TUNGSTEN ARC (GTA) WELDING
 

In the fabrication of the HSHX, several C-l03 alloy parts are joined
 

by welding. One example is the inner cylinder, which is formed by 3
 
welding together two 1.3 cm (0.5 in) thick half-cylinders formed
 

from plate stock. Another example is the scrolls. The outer-scrolls 3
 
are formed from 0.13 cm (0.050 in) thick sheet and the inner-scrolls
 

machined from heavy plate. The inner and outer halves are welded I
 
together; the toroid is then welded to the finned cylinder. 3
 
Because columbium alloys can be severely embrittled by interstitial
 

elements (carbon, nitrogen, oxygen, and hydrogen) extreme care must be I
 
taken during the welding process to avoid contamination by these elements
 

in the weldment. Welding is therefore accomplished by gas tungsten arc
 

(GTA) welding in a vacuum purged inert atmosphere weld chamber or by3
 

vacuum electron beam (EB) welding.
 

Preliminary welding experiments were performed with the objective of
 

determining the best method to use for each weldment (sheet-to-sheet, 3
 
plate-to-plate, etc.), to optimize the welding parameters for each pro

cess, and to obtain data regarding shrinkage during welding, and weld
 

strength. 3
 
Experience was first gained in welding unsupported 0.13 cm (0.050 in) 3
 
thick C-103 sheet, simulating scroll assembly welds. Curved sheets,
 

with rabbetted edges for self-fixturing, were joined by automatic GTA 3
 
welding. The curved pieces were supported 2.5 cm (1 in) from each side
 

of the weld joint by a curved fixture and tack welded at 7.6 cm (3 in) i
 
intervals prior to welding. Weld parameters were as follows:
 

Approx. Welding Current - 96 amps
 

Approx. Arc Voltage - 17 volts 
 3 
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I
 
Atmosphere - helium 

3 Welding Speed - 54.6 cm/sec (21.5 in/mi) 

I 	The weld appeared to be good visually as shown in Figure 3-20. The
 

welded sheet was cut at the two locations shown in the figure and
 

I]examined metallographically; location 1 included a surface irregularity. 

I-Montages of photomicrographs at the two locations are shown in Figure 
3-21. The microstructure appears to be similar at both locations, and 

I no evidence was noted that the presence of the surface irregularity was 

indicative of a potential problem. 

Two pieces of 5. x 10. x 0.64 cm (2 x 4 x 0.25 in) C-130 plate
 

I were GTA welded along the 10. cm (4 in) dimension. Edges to be joined
 

were prepped to provide a U-shaped joint with a 0.08 to 0.10 cm
 

U (0.030 to 0.040 in) land at the root. The two pieces were clamped in a
 

I fixture to prevent warpage during welding. The first weld pass or root
 

pass was a manual fusion weld without the use of filler wire. Three
 

I more weld passes were required to fill the joint. The direction of
 

travel was reversed for each pass in order to control warpage of the
 

Itest 
olate due to weld shrinkage. Manual welding was accomplished using
 

the following parameters: 

Approx. Welding Current - 150-190 amps 

Approx. Arc Voltage - 19-22 volts 

No. of Passes to - 43Complete 
Weld
 
Atmosphere - Helium 

3 Filler Wire - 0.23 cm (0.090 in) diameter C-103 

Electrode - 0.24 cm (.090 in) 2% thoriated tungsten 

L 
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Figure 3-20. 	 Automatic GTA Welded Curved 0.13 cm (0.050 Inch) Thick C-103 Sheets
 
with Rabbetted Edges for Self Fixturing. Cuts were made at the
 
Indicated Positions for Metallographic Examination.
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Figure 3-21. Photomicrographs Of Automatic GTA Weld of Curved 0. 13 cm 
(0.050-inch) Thick C-103 Sheet at Locations Shown inA
 
Figure 3-20. (50X)H
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The weld was radiographed and found to be free of cracks both before
 

and after the weld reinforcement was ground off. 3
 
One welding trial made was to EB weld 0.64 cm (0.25 in) thick C-103 I
 

plate. It was necessary to defocus the beam considerably in order to
 

obtain suitable flow of the fused metal, resulting in a large heat 3
 
affected zone in the plate and a somewhat irregular weld. In view
 

of the success with GTA welding, the additional effort needed to I
 
develop optimum EB welding parameters was not pursued. 
 3 
C-103 alloy sheets 0.064 cm (0.025 in) in thickness were also GTA weld-' 

ed. After the welds were certified, these sheets were used to make I 
mechanical test specimens for tensile, stress-rupture, and bend tests. 3 
All specimens were heat treated for three hours at 17000 K (2600'F) in 

vacuum to simulate the original proposed diffusion welding cycle. Some 3 
of the specimens were then aged in vacuum for 1000 hours at 1285K 

(1850'F) to determine if the welds were susceptible to age embrittlement. I 
During this aging, the specimens were sealed in an evacuated Cb-lZr 3 
capsule. Specimens were wrapped in tantalum foil inside the capsule and 

the capsule also wrapped in tantalum foil inside the vacuum furnace. 3 
The capsule also contained bend test specimens made from 0.64 cm (0.25 in) 

thick welded plate. I 

Bend tests were conducted at room temperature on the four 0.064 cm 3
 
(0.025 in) thick and four 0.64 cm (0.25 in) thick welded specimens, all
 

of which had been aged. Specimens were 5. cm (2 in) in length and 1.3 I
 

cm (0.5 in) in width. Bend tests were performed in three point loading 3
 
over a 110 degree mandrel and a radius 1.5 times the sheet thickness. Two
 

of the 0.64 cm (0.25 in) thick specimens were tested with the weld face 3
 
I 
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Figure 3-22 Forming Process for Toroid Halves. 
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freely during forming. The formed sheet is then stress relieved prior
 

to final sizing.
 

After the excess metal has been trimmed off, the form is pressed into
 

a trapped rubber mold. During this step, rubber static forces finish
 

form the part closely about the male punch. Spring back is taken into
 

consideration through the use of various thicknesses of formed aluminum
 

sheet over the male mandrel.
 

In the initial trials, 0.076 cm (0.030 in) thick AISI 304 stainless
 

steel was used to represent the C-l03 because of its similar forming
 

characteristics. In the earliest trial, some wrinkling of the outer
 

edge was encountered as the radial inward movement of the metal induced
 

circumferential contraction. A sturdier hold-down ring to prevent
 

compressive buckling of the outer flange and minor rework of the die
 

to form thicker sheet resulted in substantial improvement in quality of
 

the trial parts. At this point the part was close to final print dimen

sions. Subsequent stress relief, trim and trapped rubber reforming gave
 

good results and demonstrated that the part could be final sized in this
 

manner, if required accuracy is not obtained in the initial drawing
 

operation.
 

3.5 LEACHING
 

Leaching of the molybdenum filler bars from the diffusion bonded cylin

der can be accomplished by simple immersion in appropriate acid solutions.
 

This was determined in leaching tests using a tube to simulate a flow
 

passage in the HSHX.
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A tantalum tube, with an inside cross section approximately equal to
 

that of an HSHX flow passage, was used to simulate the flow passage.
 

This tube was filled with a total length of 23. cm (9 in) of moly

bdenum rod, the tube swaged snugly around the rod, and the lower end
 

of the tube mechanically sealed by crimping. The tube was installed
 

vertically in 345 0 K (165 0F) leaching acid, GE Specification P4AYA20
 

Class C, which has the following composition by volume:
 

25% Nitric Acid
 

25% Sulphuric Acid
 

50% Water
 

The amount of molybdenum remaining in the tube was determined periodi

cally by probing with a very fine wire. It was therefore unnecessary
 

to remove the tube from the leaching bath or to significantly displace
 

the acid within the tube to obtain leaching rate data. A near linear
 

leaching rate of about 1.3 cm (1/2 in) per hour was measured. The
 

23. cm (9 in) length of molybdenum was removed in less than 20 hours.
 

A control sample of Cb-103 approximately 0.64 x 0.64 x 1.3 cm (1/4 x
 

1/4 x 1/2 in) lost less than 0.1 milligram in weight during this ex

posure. There were no residues or deposits within the tube after leach

ing.
 

Alternate pickling solutions were also studied. These included the
 

following by volume:
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Solution X Solution Y 

H2SO 4 44% 30% 

HN0 3 21% 3% 

HCI 0.5% -

Water 34.5% 67%
 

Solution X reacted at an exceedingly fast rate, leaching 23. cm (9 in)
 

of molybdenum from the tube in 3 hours with no residue remaining. The
 

possibility of chloride effects have not been evaluated; for this reason,
 

this faster acting leachant is considered as a potentially excellent backup.
 

Solution Y produced a yellow/white deposit which slowed the reaction
 

to a stop within two hours.
 

The cleanliness and reliability of the P4AYA20 Class C etchant fostered
 

its selection for diffusion welded hardware in preference to Solution X
 

or Solution Y.
 

3.6 CYCLIC PRESSURE TESTS
 

The purpose of the cyclic-pressure test was to demonstrate that diffusion
 

welded 3oints of a specimen representinq a segirent of the diffusion
 

welded cylinder of the HSHX can withstand one-hundred cycles from atmos

pheric pressure to 115 percent of the design pressure at a temperature
 

of 1270 0K (18250F), which is in excess of predicted operating temperature.
 

The specimen was approximately 5. cm (2 in) wide and 7.6 cm (3 in)
 

long as shown in Figure3-23. The 0.013 cm (0.050 in) top plate actually
 

consisted of two thicknesses of 0.064 cm (0.025 in) thick sheet which
 

diffusion welded together during that process. Molybdenum filler bars
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Figure 3-23 Cyclic Pressure Test Specimen for Diffusion Weld 
Joint Strength Evaluation. 
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0.0076 to 0.013 cm (0.003 to 0.005 in) shorter than the fin-height 

U 	were positioned in the slots prior to diffusion bonding. These were
 

leached out after diffusion welding. This specimen was one of several


I experimental specimens included in the earlier diffusion welding run 

#24 	at Evendale. Autoclave conditions were 5 hours at 17000 K (2600 0 F) 

*- and 62. MPa (9000 psi) helium pressure. A photograph of the specimen
 

H is shown in Figure 3-24.
 

IPrior to fabrication, a thin slice was cut from one end of the diffusion
 
welded portion for metallographic evaluation of the weld interface. Although


I excellent diffusion welds were obtained in some of the specimens in this 

I same diffusion welding run#24, the diffusion weld in the cyclic pressure
 
test specimen contained some porosity as shown in Figure 3-25.
 

I 	A schematic of the test set-up utilized to conduct the cyclic pressure
 
U test is shown in Figure 3-26. The specimen, wrapped in a layer of 

corrugated tantalum foil and positioned in a vacuum furnace, was connected 

I to the vacuum/helium manifold throuqh a 0.64 cm ( 0.25 in) diameter tube. 

As evident in Fiqure 3-26, the interior of the specimen could be evacuated 

Iby 
closing valves 2 and 3 and opening valve 1. It could be pressurized
 

by closing valves 1 and 3 and opening valve 2. Pressure could be reduced
 

to atmospheric by closing valves 1 and 2 and opening valve 3. A bubbler
 

I 	 between valve 3 and atmosphere prevented back diffusion of air into the 

specimen. Prior to heating, the specimen was evacuated and back-filled 

I 	with high purity (99.995% minimum) helium several times to remove all
 

traces of air. During heatup, the interior of the specimen was under
 

dynamic vacuum. After the temperature was stabilized at 1270 0K (18250F),
 

I
 
I helium was admitted into the specimen providing a .930 MPa (135 psi)
 

2ressure gradient across the specimen wall.
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Figure 3-25 Microstructure of Diffusion Welded Joint 
of C-103 Fin and Top Plate Cyclic Test
 
Specimen
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I 
Pressure was cycled between .93 MPa (135 psia) and atmospheric by 

alternately opening and closing valves 2 and 3. Pressure was cycled 

I 
at a rate of about 10 times per minute. After the 100 cycles were 

completed, the specimen was evacuated prior to and during cooling to 

i 	room temperature.
 

No significant change occurred in specimen appearance or thickness
 

during the testing as indicated by .measurements made at six different


E locations before and after testing. No weld failures occurred as measurable 

by holography; a holograph made after the cycling is shown in Figure 3-27. 

i Subsequent to the cyclic pressure testing, the specimen was pressurized 

i internally at room temperature in 6.9 MPa (1000 psi) steps to failure. 

Pressure was applied using a hand-operated hydraulic pump attached to the 

I specimen through small diameter tubing. During this phase of the testing,

I 
 the specimen was mounted on the holography table, its back-plate bonded 

to a 	sturdy frame with epoxy. Holographs were made after each 6.9 MPa


I (1000 psi) step. Each holograph was made by two exposures of a single 

frame of film; the interference lines indicate a change in position of

IE	the surface at the time of the second exposure relative to its position 
at the time of the first exposure. If unwelded areas exist, circular 

interference lines will be present around these areas. Each 

i 	 interference line corresponds to a surface movement of approximately 0.3pm 

(12 x 10 - 6 in). 

The holographs are shown in Figure 3-28. Shown below each holograph is 

I the internal pressure at the time of each exposure and the maximum pres-

I sure attained between exposures. Holographs made with both exposures at 
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Figure 3-27. Holograph of Cyclic Pressure Test Specimen 

After Testing Showing Diffusion Weld Integrity. 
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(a) 0/0 MPaafter 6.9 MPA 
1000 psi 

(b 010 MPaafter 13.8 MPA 
2000 psi 

(c) 0/5.5 NPa0/800 psi 

ORtIGINAL PAGE Ib 
Op POOR QUALMT 

(d) 0/0 MPa (el 0/0 MPa (f) 0/5.5 Ma 

after 20.7 MPa aftsr27.6 MPa 0/800 psi 
3000 psi 4000 psi 

Figure 3-28 Holographs of cyclic pressure test specimen made 
at pressures indicated. 
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(g) 0/0 MPa (h) 0/5.5 MPa (i) 0/0 MPa 
after 34.5 MPa 0/800 psi after 41.4 MPa 

5000 psi 6000 psi 

IZ
 

(0) 0/5.5 MPa 
0/800 psi 

Wk 0/0OMPa 
after 48.3 MPa 

7000 psi 

01' 0/5.5 
0/80-

MPa 
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Figure 3-28 (Cont'd). Hologaphs of cyclic Pressure test specimen made 
at pressures indicated. 
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I zero pressure show permanent deformation (if any) that occurred as the
 

result of the pressure applied to the specimen between the two exposures.


I Those made with the initial exposure at zero pressure and the second ex

posure at 5.5 MPa (800 psig) show diffusion weld integrity.
 

The 	holographs in Figure 3-28 show that no significant permanent deforma-


I 	tion occurred as the result of pressurizing the specimen to 6.9 MPa (1000
 

psig) (a). Some minor yielding occurred at the lower left corner at 13.8
 

MPa(2000 psig)(b); there was no failure of the diffusion welds as shown
 

I in the next holograph (c). The holograph (d) for 20.7 MPa (3000 psig)
 

shows little or no change, but after 27.6 MPa (4000 psig) (e) minor
 

I additional permanent yield has occurred, but the integrity of the diffus

l ion welds was not breached (f).
 

Additional yielding occurred at 34.5 MPa (5000 psig) as shown in Figure
 

U 	6(g) with the welds still intact (h). Similarly, additional yielding
 

occurred at 41.4 MPa (6000 psig) (i), with welds still intact (j). The
 

absence of observable interference lines after 48.3 MPa (7000 psig) (k)
 

i 	 indicates that a considerable amount of permanent deformation occurred 

and that the interference lines are not resolvable. The absence of 

I 	circular interference lines in (1) indicates that no weld failures had
 
I 	occurred. The odd shapes of some of the interference lines can be attri

buted to motion of the back of the specimen. Since the back surface of
 

I the specimen was attached to a solid frame, any deformation that occurred
 

on the back surface would move the entire front surface of the specimen
 

also and contribute to interference lines in the holograms.
 

I 
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Failure of the specimen occurred at approximately 51.7 MPa (7500 psig)
 

internal pressure, which corresponds to stresses in the fins (disregard

ing stress concentrations and welding stresses) of 310. to 345. MPa
 

(45,000 to 50,000 psi). This is greater than the average room temper

ature yield stress of C-l03, and is an encouraging indication of the high
 

joint efficiency attainable by the diffusion welding process. It was also
 

encouraging in view of the less-than-ultimate weld interface quality that
 

existed in this particular specimen. Figure 3-29 shows the specimen after
 

failure. The bulged surface is evident in Figure 3-29(a); also evident I
 
is a tear along the weld which joined the end plate to the finned section 3
 
of the specimen. Rupture of the fins occurred at the weld between fins
 

and top plate as shown in Figure 3-29(b). The coating on the back side I
 
of the specimen which is noticeable in the figure, is epoxy cement used
 

to mount the specimen to a holder for holography during the destructive U
 
room temperature pressurization.
 

This cyclic pressure test demonstrated that a diffusion welded C-103
 

specimen, fabricated by procedures to be utilized in the manufacture of 3
 
the HSHX, survived 100 pressure cycles to 115 percent of design pressure 1
 
at 1270°K(18250 F) without loss of weld integrity.
 a 
It also showed that when the specimen was pressurized to failure at room
 

temperature, the diffusion welds held until stresses exceeded average 3
 
room temperature yield strength despite some porosity in the joint inter

face, demonstrating that high strengths are attainable by diffusion weld- I
 
ing even under lower temperature and pressure diffusion welding conditions
 

than those to be utilized in the manufacture of the HSHX.
 

I
 
I
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'Figure 3-29 Cyclic Pressure Specimen After Destructive Pressurization at 
Room Temperature: (a) Showing Bulged Surface and Tear Along 

Weld, and (b) Showing Separation of Fins 
Near Bond Line. 

From Top Plate at or 

Ln%0 
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3.7 NON DESTRUCTIVE TEST (NDT) INSPECTION 5
 
The purpose of this effort was to demonstrate that ultrasonic techniques
 

could be utilized for inspection of the integrity of HSHX bonds. Use
 

of ultrasonics instead of holography would be simpler, less expensive
 

and would make it unnecessary to pressurize the HSHX hardware (beyond
 

levels expected during operation) during inspection procedures.
 

Preliminary ultrasonic testing was performed on trial diffusion welded
 

specimens with voids created by the use of leachable molybdenum foil
 

shims at the weld line interface. Using an Immerscope 721, a 1.9 cm
 

(3/4 in) diameter focused transducer calibrated on a 0.051 cm (0.020 in)
 

diameter hole at 80% amplitude on a 5 MHz sound beam, the front and rear
 

surfaces of a 0.064 cm (0.025 in) thick sheet could be resolved. In 5
 
welded areas between two 0.064 cm (0.025 in) thick sheets the rear face
 

at 0.13 cm (0.050 in) could be identified and in void areas the interface I
 
at 0.064 cm (0.025 in) depth could be identified.
 

For purposes of calibration a "defect standard" was prepared in which
 

voids of varying lengths in the diffusion welds were caused by use of !
 

molybdenum shims which were later leached out leaving the desired defect.
 

This defect standard is depicted in Figure 3-30. As can be seen in
 

Figure 3-31, a "C" scan trace of the longitudinal ultrasonic inspection I
 
of that standard, all the calibration defects can be detected except the
 

very smallest, which is only 0.051 cm (0.020-inch) long. There is no i
 
certainty that the molybdenum shim used to develop this defect has been I
 
leached away. While the holographic method of inspection is an excellent
 

I
 

I
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tool for determining distortion of the sheet metal surface during
 

pressurization and pressure tests to failure, it was concluded that
 

the ultrasonic method of inspection is most satisfactory for evaluating
 

absence of contact in diffusion welds.
 

The quality of diffusion welds, that is the absence of porosity and
 

evidence of grain growth across the interface cannot of course be deter

mined by the ultrasonic scans. Diffusion weld quality is consequently
 

obtained by metallographic inspection of numerous diffusion welds taken
 

from specimens cut from the ends of diffusion welded cylinders. This in
 

combination with ultrasonic scan of 100% of the diffusion weld areas
 

provide an excellent assessment of the overall quality of the diffusion
 

welds on delivered hardware.
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SECTION
 

INSULATION/EMERGENCY COOLING/
 
AUXILIARY COOLING VERIFICATION
 

The insulation system identified for the Mini-Brayton HSA is a high tem

perature multifoil of the type developed by the Thermo Electron Corporation.
 

This multifoil insulation concept consists of many layers (60 in number
 

required for the HSA) of thin metal foils (molybdenum and nickel) separated
 

by high purity refractory oxide particles (calcia stabilized zirconia).
 

Each layer of metal foil, which is typically 0.0013 cm (1/2 mil) thick,
 

acts as a thermal radiation barrier. The oxide particles prevent adjacent
 

foils from coming in contact forming a metal-to-metal conduction path. The
 

oxide particles are a new microns in diameter and are sprayed onto one side
 

of each foil. The coated foil is then fired under vacuum at a temperature
 

of 1075K. The particle coatings are relatively sparse, and the low thermal
 

conductivities of the oxides plus the high contact resistance between
 

particles and foil minimize the conduction component of total heat trans

fer through the insulation.
 

The Emergency Cooling System (ECS) is designed to maintain acceptable heat
 

source temperatures in event of a failure of the primary HSHX operational
 

cooling mode. Failure to maintain temperatures of the iridium fuel clad

ding in the MHW-heat source below safe levels may result in a release of
 

PU02 from the heat source.
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The concept of an insulation blanket which melts when excessive temper

atures are experienced is the approach to providing emergency cooling
 

capability. Once a failure of the Mini7Brayton system takes place, all
 

of the energy generated by the heat source is transferred through the
 

melted and fused insulation blanket and then radiated from the outer HSA
 

surface.
 

The Auxiliary Cooling System (ACS) is designed to limit the temperature
 

of critical components while in a non-operating, fueled condition, such
 

as on the Launch Pad.
 

Description of Test Program
 

Testing of the multilayer foil insulation was conducted to demonstrate
 

experimentally that the multifoil insulation meets the system require

ments of long life performance and environmental stability and that the
 

emergency cooling concept is a viable approach.
 

The following tests were conducted: Thermal Conductivity, Vibration,
 

Life Stability (including Thermal cycle), Material Compatibility and
 

Small Scale Meltdown.
 

4.1 INSULATION LIFE STABILITY TESTS
 

The purpose of the life stability test series was to determine the thermal
 

stability of Nickel-Zirconia multifoil insulation in the temperature range
 

1090 to 1255K (1500 to 18000F). (Early in the program an all nickel foil
 

blanket was contemplated.) A secondary purpose was to evaluate the
 

effectiveness of the zirconia as separators by testing a sample without
 

a zirconla coating.
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The test program consisted of six tests of five all nickel multifoil in

sulation samples. Five tests of this series demonstrated the thermal
 

stability of nickel-zirconia multifoil insulation for at least 1000 hours
 

within the temperature range tested. The sixth test verified the thermal
 

instability of bare nickel multifoil insulation at 1255K (18000F),which
 

demonstrates the effectiveness of the zirconia as foil separators. A
 

regression analysis supported the test data observations. Diagnostic
 

disassembly of the l145Kand 1255K (1600 and 18000F) hot face samples has
 

confirmed that no significant self-welding of adjacent foils occurred
 

with the zirconia coated samples.
 

4.1.1 TEST SAMPLES AND TEST FACILITY
 

The life stability test sample consisted of a small cylinder and two
 

planar ends of all nickel multifoil insulation, inner and outer cylindri

cal tantalum enclosures, a quartz lamp heater, and a base with ceramic
 

standoffs.
 

The insulation sample consisted of a 5.1 cm (2.0 in) diameter, 8.26 cm
 

(3.25 in) long cyinder and two planar end discs, 5.1 cm (2.0 in)
 

in diameter. Each was composed of 60 layers of 0.0013 cm(0.0005 in)
 

thick nickel foil coated on one side with a very disperse zirconia coat

ing. The cylinder was wrapped around an uncoated nickel mesh support.
 

The thickness of the cylindrical insulation was about 0.61 cm (0.24 in)
 

thick and the planar ends were 0.2 cm (0.08 in) thick. Each planar
 

end had a 1.3 cm (0.5 in) diameter hole thru which the heater was mounted.
 

An inner tantalum cylinder with planar ends was the radiator. The test
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sample was heated by a 500 watt quartz lamp about 1.3 cm (0.5 in)
 

diameter and _0.2 cm, (A in) long. The lamp was mounted to an alumin

um base plate with ceramic standoffs. The mounted quartz lamp and the
 

completely assembled life stability test sample are shown in the photo

graph of Figure 4-1. Each test sample was instrumented with two tungsben/
 

tungsten-rhenium thermocouples on the hot face (diametrically opposite) and two
 

chromel-alumel thermocouples on the radiator (diametrically opposite).
 

The instrumented test sample is illustrated on Figure 4-2.
 

3
The test samples were placed in a vacuum bell 3ar and tested at 10

pascals (Pa) (10- 5 torr).
 

4.1.2 TEST RESULTS
 

As indicated, 1000 hour tests were conducted on four samples at hot
 

face temperatures of 1090, 1145, 1200, and 1255K (1500, 1600, 1700, and
 

1000 F). Each of these samples was individually heated with about 40 watts.
 

Approximately 20% of the heat flowed thru the sample, with the remainder
 

being edge losses and losses thru the heater and thermocouple leads. After
 

che test chamber was evacuated to about 10-4Pa (10- 6trr), the samples were heated
 

until the hot face temperatures reached the predetermined values. Then
 

heacer input was held constant and tests run fcr 1000 continuous houra,
 

After this high temperature vacuum exposure, the samples were cooleu Lo
 

room temperature before exposure to ambient. The test data are plotted on
 

Figures 4-3 thru 4-6 for 1090Kthru 1255K (1500°F thru 18000 F), respectively.
 

Raw test data given on sheet 1 of the figures consist of measured heater
 

input power, measured hot and cold face temperature, and calculated LT.
 

ormalized data given on sheet 2 of the figures were used as an evaluation
 

tool and is described subsequently.
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Figure 4-i 	 Life Stability Test - Sample Quartz Lamp Heater on Left 
And Fully Assembed Sample on Right L' 
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Using standard statistical techniques, a linear regression analysis was
 

performed to determine if raw and normalized hot face temperatures are
 

time-dependent. The-regress-ion ana-ys-i-s i-nd-i-cated7 at a 95% confidence
 

level, that for three of the five nickel-zirconia tests (1145K (1600OF),
 

1255K (18000P) and thermal cycling) the hot face temperature is not time
 

dependent. The 1090K (15000F) test exhibited a slightly negative slope
 

of a least square fit vs. time, but that sample was later tested in the
 

thermal cycling test and exhibited no time dependence. The 1200K (17000F)
 

test exhibited a slightly positive slope of a least square fit vs. time,
 

indcating an appreciation of performance with time. The overall assess

ment of the regression analysis is that all five nickel-zirconia tests
 

demonstrated thermal stability over a minimum of 1000 hours, with one
 

sample being tested for a total of about 2500 hours.
 

The thermal instability of the bare nickel foil is manifest in the raw
 

and normalized data of Figure 4-8, where the hot face drops, indicating
 

increasing thermal conductivity. The cold face rises with time, indicating
 

that as the thermal conductivity increases, progressively more of the heat
 

flows thru the sample.
 

A diagnostic disassembly was performed on three of the five samples (1145K
 

(16000) and 1255K (18000F) nickel-zirconia and the 1255K (18000F) bare
 

nickel). The nickel-zirconia samples were disassembled by removing the
 

two planar ends and then unwrapping the cylinder. With both zirconla
 

samples some sticking was observed between the edge of the planar ends and
 

the edge of the cylinder. The sticking was most prevalent to the nickel
 

screen (uncoated) around which time the cylinder was wound. All end layers
 

were separable, although the three innermost layers of the 1255K (18000F)
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sample were sticky. For both these samples, the 60 layer foil cylinder


I was completely unwound. Some sticking near the edges was observed.
 

With the 1255K (18000F) sample, some local sticking near the center
 

of the sample was noted at about the 10th layer from the inside, which
 

I continued to the innermost layer. This was apparently caused by slight
 

projections in the foil (caused by the screen support) which resulted in
 

I local metal to metal contact. The innermost layer of the 1145K (16000F)
 

sample stuck to the nickel screen but was removed, leaving an embossed 

I screen pattern on the foil. The innermost layer of the 1255K (18000) 

Isample welded to the screen and could not be removed. The external appear

ance of the 1255K (18000F) sample showing the outer tantalum cylinder prior
 

i to unwrapping is shown in the photograph of Figure 4-9. The internal
 

appearance of the sample is shown on Figure 4-10.
 

The bare nickel foil sample was disassembled after 1000 hours at 1255K


I- (18000F) hot face. The external surface of the sample had a darkened


I appearance. The cylinder was unwrapped to determine the extent of the
 

self-welding. Self-welding was evident as far out as the 60th layer of
 

Ithe 60 foil sample. After unwrapping four layers, and observing more
 

severe self-welding as the unwrapping proceeded, further unwrapping became


I impractical without severe tearing occurring. 

U The appearance of the planar end discs was considerably different. The 

inner surface of both end discs was darkened and crinkled. Self-welding

I was prevalent thru all 60 layers and evidence of vaporization of the 

I nickel was noted. 

I 
I
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1
mm 


FIGURE 4-9. EXTERNAL APPEARANCE OF 1255K (1800oF) 
LIFE STABILITY TEST SAMPLE PRIOR
 
TO DIAGNOSTIC DISASSEMBLY 

FIGURE 4-10. INTERNAL APPEARANCE OF 1255K (18000P LIFE STABILITY) 
TEST SAMPLE DURING DIAGNOSTIC DISASSEMBLY 
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The overall assessment of the diagnostic disassembly of the three
 

samples is that no significant self-welding of the zirconia coated
 

foils occurred during 1000 hours or more of operation in vacuum at
 

elevated temperature in excess of predicted operational temperatures.
 

The massive self-welding observed with the bare nickel (no zirconia)
 

foil sample proves the effectivenss of the zirconia particle separa

tors.
 

Although this macroscopic evaluation of the zirconia coated nickel
 

foil indicated thermal stability at high temperature, material compati

bility tests which were conducted subsequent to the tests described
 

revealed some potential chemical instability of Ni/ZrO2 which could
 

occur over the 7 year life time. The results of these material compati

bility tests, discussed in 4.4, led to a conservative design modifica

tion which restricted the nickel foil to lower temperatures.
 

4.2 INSULATION THERMAL CONDUCTIVITY TESTS
 

The purpose of the thermal conductivity tests was to:
 

e Measure the effective thermal conductivity of 60 layers of nickel

zirconia multifoil insulation in vacuum.
 

* 	Assess the effect, if any, of a vibration environment on the effec

tive thermal conductivity of the multifoil insulation.
 

a 	Assess the expected Auxiliary Cooling Subsystem (ACS) performed by
 

measuring thermal conductivity of insulation backfilled with inert
 

gases at 1 atm pressure.
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Thermal conductivity measurements were performed on two sets of multi

foil thermal insulation. Each set consisted of two separate stacks of
 

0.0013 cm (0.0005 in) thick individual nickel foils separated by zir

conia particles sprayed on one face of each foil. The 10.2 cm (4.0 in)
 

diameter stacks were nominally 0.13 cm (0.050 in) thick as tested at
 

6.9 kPa/l.0 psi contact pressure and each contained 60 individual foils.
 

The four separate samples (stacks) were identified by the tags 1D, 2D,
 

5D, and 6D respectively.
 

The measurements were made by the guarded hot plate technique. This
 

technique has an accuracy of + 5% across its temperature range of 115K
 

to 1255K (2500F to 18000F). A set of two sample stacks was required,
 

consequently, the average data for the two stacks is reported. The
 

test samples consisted of two sets each of the twin stacks, as fabri

cated, and then the same two sets remeasured after a vibration test.
 

After an extensive error analysis, beyond that required for the ASTM
 
(1)
 

C177 method, the final results were normalized for the effects of
 

radial edge losses in this extremely anisotropic material. Test data
 

is given in Figures 4-11 and 4-12. Figure 12 shows results for con

ductivity in Krypton and Xenon gas which were made in tests subsequent
 

to the first set of data given in Figure 4-11. The following is a
 

summary of the results:
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" 	The effective thermal conductivity in a vacuum is 6.4 x 10- 3 watts/
 

m K (3.7 x 10- 3Btu/hr ft OF) at a mean temperature of 1016K (13690 F),
 

with average hot and cold faces of 1222K (1740PF) and 813K (10030F),
 

respectively, and with an average compressive load of 6.9 kPa/1.0 psi.
 

This is in substantial agreement with the TLCO reported effective
 

-3 	 conductivity of 6.69 x 10 watts/m K (3.87 x 10 3 Btu/hr ftOF).
 

Performance of the insulation in the HSA should result in lower
 

effective thermal conductivity in the absence of compressive loads.
 

* 	The measured effective thermal conductivity of the insulation in
 

inert gases at r 1 ATM is greater than the conductivity of the gas
 

alone by a factor that ranges from 1.45 for helium to 2.74 for argon.
 

Therefore use of the pure gas conductivity in ACS analyses will give
 

conservative results.
 

" 	The vibration testing had no significant effect on effective thermal
 

conductivity for the four samples tested. Therefore, degradation
 

of insulation due to launch vibrations is not anticipated (see 4.3).
 

o 	Multifoil insulation is extremely anisotropic, with a ratio of the
 

lateral conductivity (parallel to the layers) to the through con

ductivity (perpendicular to the layers) being 10000 to 1, indicating
 

the great importance of joint design to minimize edge losses.
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4.3 INSULATION VIBRATION TESTS 

The purpose of these vibration tests on insulation samples was to 

evaluate the abili-ty of-the--ziroonra partrcles to -adhere to-tfe -foil 

during worst case vibration environment associated with potential 

space missions. 

Six samples were procured from Thermo Electron Corporation for these
 

tests. The samples were 10. 2 cm (4 in) diameter disks composed of
 

60 layers of 0.0013 cm (.0005 in) nickel foil coated with zirconia.
 

Four underwent vibration (samples 10, 2D, 5D and 6D) and two were used
 

as conductivity standards. During vibration some of the samples were
 

heated to anticipated temperatures at launch.
 

The maximum zirconia weight loss in the worst case, due to the entire
 

vibration test spectrum was 2.5% of the total original zarconia weight.
 

Conductivity measurements made before and after vibration testing show
 

no significant change, verifying that vibration is not deleterious to
 

the performance of insulation system.
 

4.3.1 TEST DESCRIPTION
 

The vibration test program was conducted in two parts. The first part
 

was a "survey test" to determine vibration and zirconia particle adher

ance characteristics of the insulation system for nominal environments.
 

The second part of the vibration test program was a "capability test"
 

to determine insulation system vibration survivability up to 20g's,
 

which is far in excess of potential mission environments. Weights were
 

recorded immediately before and after each test to determine zirconia
 

weight loss.
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In the "survey test", the multifoil samples were subjected first to
 

a ig, 15 minute, sinusoidal sweep from 10-500-10 Hz in the plane of
 

the sample (x axis) and then perpendicular to the plane of the sample
 

(y axis). Then the samples were sub3ected to a typical mission 3
 

minute random vibration spectrum (Figure 4-13) in both the x and y
 

axis.
 

In the "capability test" the multifoil samples were sub3ected to a
 

series of 15 minute sinusoidal sweeps from 10 to 20 Hz to 500 Hz and
 

back to 10 or 20 Hz. The initial ig level in these tests were increased
 

in steps after each sweep, to a maximum value of 20g's in the final
 

sweep as follows: 

Test Sequence Number, N g Level Frequency 

1 
2 

2 g's
3 g's (1) 

10-500-10 Hz 
" 

3 
4 
5 

5 g's 
10 g's
20 g's (2) 

" 

20-500-20 Hz 

(1) 	samples #1-D and #2-D not tested at 3g's
 

(2) 	the lower limit of 20 Hz for the 20g test was required
 
because of displacement limitation during vibration
 

Two of the samples were vibrated along the plane of the samples, the
 

other two samples were vibrated perpendicular to the plane of the
 

samples. As previously indicated, the ob3ective of the "capability
 

tests" was to determine if there was a sinusoidal vibration level at
 

which the samples would break down, (i.e., lose significant amounts of
 

zirconia).
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Test specimens were fixed to a support plate which was bolted to a
 

C-150 shaker table as shown in the sketch of Figure 4-14. A radiant
 

heating fixture (also shown in Figure 4-14), supported off a separate
 

"A" frame, was held in close proximity to (but never in contact with)
 

the insulation sample during vibration. Photographs of the test fix

ture and test set up are shown in Figures 4-15, 4-16 and 4-17. A
 

screen, evident in the photographs, was affixed to the bottom of the
 

heater to prevent any MinK heater insulation particles from falling on
 

to the vibration sample.
 

4.3.2 TEST RESULTS
 

The tests were conducted during the following time periods:
 

January 22, 1975 - Samples 5-D and 6-D subjected to 1 g
 

sine survey test.
 

February 6, 1975 - Samples 5-D and 6-D subjected to
 

random survey and capability tests
 

(sine sweeps up to 20 g's)
 

February 11-14, 1975 - Samples 1-D and 2-D subjected to
 

complete spectrum of tests
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 3
 

The samples were heated during the tests to hot face temperatures I 
ranging from 340K (150 0F) to 590K (6050F). A summary of the temper- -
ature profiles during vibration is given in Table 4-1. The results 

of weight measurements are summarized in Table 4-2. In all instances
 

the weight measured prior to the vibration tests exceeded the weight
 

certified by the vendor. It is conjectured that this is due to adsorp- I
 
tion of water vapor (samples were not maintained and stored in a closely
 

controlled environment. Normal laboratory room temperature and humidity
 

conditions prevailed). It was also noted that weight measurements differ-3
 

ed before and after storage periods, ranging from days to weeks, in
 

between tests. This is also attributed to changes in humidity and resul- 3
 
tant adsorption or evaporation of H20. One sample (6-D) apparently lost
 

20 mg during a 2 week storage period. The significant observation from
 

the weight measurements is that the immediate loss of weight after a 3
 
vibration test (which would be attributed to loss of zirconia particles)
 

was in every case essentially negligible. The largest loss in zirconia 3
 
weight for the worst case (sample 6-D) was 2.5% after a series of sepcnr

ate vibration surveys on the same day without a storage period. It is
 

also significant that in all cases the zirconia area density after 3
 
completing the test program met the prescribed specification limits for
 

the insulation. It was also observed that, samples l-D and 2-D which 3
 
were held at higher temperatures (closer to predicted temperatures)
 

than the other two samples, exhibited smaller weight losses after vibra- U
 
tion. 
 3
 

v
 I
 

I 



TABLE 4-1 TEST SPECIMEN TUAPERATURE READINGS BEFORE AND AFTER VIBRATION TESTS DEG K 

Top 
Center 

Sample I-D 
Top Bottom 
Edge Center 

_ 

Bottom 
Edge 

Top 
Center 

Sample 2-D 
Top Bottom 
Edge Center 

Bottom 
Edge 

Top 
Center 

Sample 5-D 
Top Bottom Bottom 
Edge Center,Edge 

Top 
Center 

Sample 
Top 
Edge 

6-D 
Bottom 
Center 

Bottom 
Edge 

SURVEY TEST 

IG Sine, X axis 
Before 
After 

540 
403 * 

398 
368 

330 
322 

319 
315 

505 
505 

370 
372 

332 
335 

320 
322 

339 339 

Random, X axis 
Before 
After 

503 
547 

380 
398 

329 
338 

320 
325 

517 
517 

385 
387 

332 
333 

323 
325 

342 342 
340 

317 307 305 

1G Sine, Y axis 
Before 
After 

493 
477 

376 
368 

326 
330 

319 
320 

479 
472 375-

328 
329 

323 
324 

339 339 

Rardom, Y axis 
Before 
After 

472 
474 

372 
375 

329 
330 

324 
324 

474 375 
378 

329 
332 

324 
325 

342 342 
342 

318 
317 

303 
304 

302 
302 

CAP BILITY TEST ** 

2G sine 
Before 
After 

497 
503 

411 
417 

340 
344 

333 
339 

589 
590 

439 
442 

342 
344 

328 
335 

342 317 304 302 343 
343 

318 
318 

301 
301 

300 
300 

3G Sine 
Befote 
After 

D E L E T E D 
F O R I-D 

3 
A N D 

G T E S T S 
2-D 

342 318 304 302 345 
344 

324 
320 

300 
S02 

299 
302 

5G Sine 
Before 
After 

464 
470 

394 
400 

335 
339 

332 
336 

589 
585 

433 
434 

335 
342 

332 
337 

342 318 304 302 346 
346 

319 
324 

303 
303 

302 
303 

10G Sine 
Before 
After 

507 
528 

413 
420 

335 
345 

330 
340 

592 
569 

454 
440 

342 
343 

335 
337 

339 
347 

343 
337 

317 
314 

303 
304 

303 
304 

20G Sine 
Before 
After 

484 
488 

393 
404 

337 
340 

329 
335 

589 
542 

446 
436 

343 
346 

339 
341 

142 345 
342 

320 
318 

306 
307 

305 
305 

Blank Spaces Indicate no Data Recorded 

* Heater Shorted Out During Tests. 

*" Samplesl-D and 5-D vibrated along Y axis in capability test 
Samples 2-D and 6-D vibrated along X axis in capability test 



Table 4-2 Insulation Vibration Test Sample Weight Data
 

Sample Weivht Weight Loss (- or Gain (+)

1-D 2-D 5-D 6-D I-D 2-fl 5-D. 6-D 

Fraction of C Fraction of Fraction of Fraction o 

Original Original Original I iginal 
gms .rns . Rms s Ms em s IzrconiajqmsPm.s Zirconia Zirconia I Zirconia 

S*YLE PREP 

Bare Foil Weight 53.4550 53.2113 53.5328 54.4329 - - -

After ZrO2 Spray 53.5905 53.3616 53.7312 54.5932 +.1355 1.0 +.1503 1.0 +.1984 1.0 +.1603 1.0 

SURVEY TEST 

After Cond. Test 53.5930 53.3632 53.7334 54.5992 +.0025 +.018 +.0016 +.O11 +.0022 +.011 +.0060 r.037
 
(2) (2)
 

After 10 Sine,X-Axis 53.5930 53.3632 53.7326 59.5962 .0000 +.000 0000 .000 -.0008 -.004 -.0030 -.019
 
(3) (3) k3) (3) I
 

After Random, X-Axis 53.5931 53.3630 53.7285 
 54.5744 +.0001 +.001 -.0002 -.001 -.0030 _.015 I-..00'91 -.130
 

After IG Sine, Y-Axis 53.5932 53.3632 53.7315 54.5953 +.0001 +.001 +.0002 +.001 -.0011 -.006 -.0009 -.006
 

After Random, Y-Axis 59.5923 53.3632 53.7247 54.5736 -.0009 -.007 .0000 .000 -.0038 -.019 -.0008 -.005
 

CAPABILITY TEST
 
(1)
 

After 2G's Sine 53.5932 53.3632 53.7241 54.5742 .0000 .0000 .0000 .000 -.0006 -.0031 +.0006 +.004 

After 3G's Sine Deleted 53.7240 54.5717 - - - - -.0001 -.001 -.0025 -.016 

After 5G's Sine 53.5930 53.3632 53.7236 54.5717 +.0007 +.005 .0000 .000 -.0004 -.002 .0000 .000 

After 10G's Sine 53.5927 53.3620 53.7233 54.5111 -.0003 -.002 -.0012 -.008 -.0003 -.002 -.0006 -.004
 

After 20 0 s Sine 53.5930 53.3632 53.7223 54.5709 +.0003 +.002 +.0012 +.008 .0000 .000 -.0002 -.001
 

Total Weight Loss +.0025 +.018 +.0016 +.011 -.0079 -.040 -.0223 -.139
 

(I) 	Samples I-D and 5-D vibrated along Y-axis in capability tests.
 
Samples 2-D and 6-D vibrated along X-axis in capability tests.
 

(2) 	Samples 5-D and 6-D underwent 1G sine tests along the Y-Axis before random along the X-axis.
 

(3) 	Sample 5-D weighed 53.7315 grams after test on 1/22/75 and 53.7269 grams prior to test on 2/6/75. C 

Sample 6-D weighed 54.5953 grams after test on 1/22/75 and 54.5750 prior to test on 2/6/75. 
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As indicated in Section 4.2, thermal conductivity measurements made
 

before and after the tests showed no significant change in effective
 

thermal conductivity.
 

It is concluded from these tests, which subjected the insulation to
 

vibration environments far in excess of that anticipated during launch,
 

that the zirconia coated foil will not suffer any degradation in thermal
 

performance due to loss of zirconia.
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4.4 MATERIAL COMPATIBILITY TESTS
 

The objectives of the material compatibility tests were two fold, first
 

to determine the long term effect of interaction between the nickel
 

foils in the insulation blanket and the C-103 HSEX and second to evalu

ate the long term stability of the materials that comprise the insula

tion blanket. These are described briefly below.
 

4.4.1 EFFECT OF NICKEL VAPORIZATION ON C-103 HSHX
 

The ability of the HSHX to retain its mechanical properties and ductil

ity over the operational life of the system requires that the C-103
 

columbium base alloy not be significantly contaminated during operation.
 

Potential sources of contamination include, principally, the nickel
 

which can vaporize from the multifoil insulation, and also the outgass

ing of CO and other vaporous species from the dense graphite isotope
 

heat components. Contamination from these graphite components will be
 

controlled by procedures developed on the Multi Hundred Watt (MHW) pro

gram in which high temperature outgassing in vacuum and protection of
 

the baked out components in inert gas was employed.
 

A significant level of analytical effort and some brief experiments
 

were performed to evaluate the possible effects of nickel vapor trans

fer and diffusion into the C-103 HSHX. In order to scope the problem
 

the worst case situation - one in which the insulation blanket is com

prised entirely of nickel foils - was investigated. The highest rates
 

of nickel vaporization would occur from the foil at the hotter end of
 

the HSHX; bulk diffusion of the nickel into the columbium alloy heat
 

exchanger is also greater at the hotter end. However, grain boundary
 



4-35
 

diffusion of nickel into the columbium alloy at the colder end of the
 

HSHX could be appreciable and could result in considerable grain
 

boundary embrittlement if it occurred. The formation of brittle inter

metallics and their effect upon ductility and strength were also a
 

concern. The magnitude and consequences of such vapor transport, diffus

ion and embrittlement are discussed in the following paragraphs.
 

4.4.1.1 NICKEL VAPOR TRANSPORT
 

Nickel vaporization rates were calculated from the hottest portion of
 

the nickel foil insulation, and a cosine function distribution of this
 

vapor to various positions along the axial length of the HSHX was deter

mined. The calculations were reiterated to determine the nickel vapor
 

contributions to various points along the HSHX from progressively colder
 

portions of the inner nickel foil insulation sleeve, and estimates were
 

made of the effects of such axial vapor flow to colder ends of the
 

system. The Ni vapor impingement rate was thus calculated to be 1.98
 

pm/yr at the hot side insulation temperature of 1182K (16681F) and
 

691x10-4 m/yr at the low temperature end of 1038K (14080 F). This equilibrium
 

rate decreases by a factor of about 290 from the hot to the cold end.
 

However, this neglects the net line-of-sight flux of Ni down the temper

ature gradient to the cold end. The magnitude of this effect for the
 

design geometry was estimated numerically with a model calculation which
 

indicates that deposition rates of nickel or columbium at the cold end
 

would be increased by only about 10% above the uncorrected value.
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4.4.1.2 	NICKEL CONCENTRATION GRADIENTS IN C-103
 
AND GRAIN BOUNDARY DIFFUSION
 

The nickel concentration gradients were calculated on the hot end of
 

the HShX as affected by nickel vapor arrival rates and as influenced
 

by bulk diffusion and grain boundary diffusion, and an estimate was
 

made of the depth of embrittlement due to formation of intermetallics.
 

For Ni concentrations up to the solubility limit, the diffusion co

efficient is representable by D = 9.3 exp (-80,400/RT) cm 2/sec.
 

Published work(2)on Cb-Ni diffusion couples and on high-rate vapor
 

condenstation of Ni on Cb indicate that overall diffusion coefficients
 

may be as much as two orders of magnitude higher once CbNi and other
 

intermetallic compounds are formed. The Ni diffusion penetration was
 

calculated with the boundary condition of constant Ni deposition rate
 

appropriate to that temperature. According to these initial calcula

tions, at 1182K diffusion penetration after ten years would be to a depth
 

of about 40 micro meters (pm) and the surface Ni concentration would reach
 

57 atomic percent. At 1038K the depth would be about 4 /-m and
 

the surface concentration would be about 4 atomic percent. These cal

culated surface concentrations exceed the solubility limit of ^,1%
 

thus, the formation of a surface layer of intermetallic compound would
 

be expected. Once the surface layer of intermetallic compound is formed,
 

diffusion rates would be significantly higher. If the supply of Ni were
 

unlimited, the thicknesses of compound layers formed would be about ten
 

times the penetration depths calculated above. However, the growth of
 

the compound layer is limited by the vapor transfer rate of Ni to the
 

columbium alloy. The layer thickness was initially estimated by assuming
 

that all of the Ni deposited forms a surface layer of CbNi. This pre
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dicted a 50 pm thick layer at 1182K and 0.2 pin at 1038K in a ten year
 

period. It has been reported by the Russians and subsequently observed
 

in experiments outlined below that the compound formed is Cb5Ni, in

stead of CbNi; thus, the layer would of course be much thicker, or
 

about 250 pm thick. This initial estimation was refined further by
 

the experimental work and additional calculations reported in detail
 

below to indicate 164 pm (.0065 in.) thickness of embrittled layer in
 

10 years.
 

The published Cb-Ni diffusion studies report no significnt grain

boundary diffusion. However, they were at diffusion temperatures
 

110K to 165K (200 to 300 0 F) higher than those anticipated in the heat
 

exchanger. No appropriate data exist on grain-boundary diffusion of
 

Ni in C-103. However, the activation energy for grain-boundary
 

diffusion was estimated by analoqy with data for b.c.c., Fe,
 

along with estimates of the extent of the penetration. Such cal

culations suggest that, at the hot end, bulk diffusion out of the
 

grain boundaries will limit grain-boundary penetration to twice the
 

bulk penetration. At 1038K, grain-boundary diffusion would be rela

tively more important, but its effect will be limited because of the
 

very limited supply of Ni. It is not possible, without experimental
 

effort, to predict how significant this grain boundary penetration
 

would become.
 



4-38
 

4.4.1.3 NICKEL/C-103 DIFFUSION EXPERIMENTS
 

Two experiments were performed to evaluate the ductility of C-103
 

alloy containing nickel additions.
 

The first experiment involved preparation of small arc melted buttons
 

of C-103 containing 0, 2-1/2 and 5 weight percent of nickel. The
 

alloy without nickel was ductile under cold forming whereas those with
 

progressively higher nickel contents were progressively embrittled.
 

The second experiment involved sputtering of about 2 pm of nickel on
 

the surface of 1.3 x 5. x 0.064 cm (0.5" x 2" x .025") C-103
 

sheet, diffusing this nickel into the C-103 at a temperature of 1323K
 

(19220F) (below the Ni-Cb eutectic temperature of 1448K (21470 F) for
 

a period of 63 hours and conducting bend tests with the surface contain

ing the diffused nickel in tension. An intermetallic phase about 19 pm
 

thick was identified by x-ray diffraction as Cb5 Ni. In a 3t bend test
 

at room temperature, cracks formed in the area containing the inter

metallic phase, but these did not propagate into the base alloy. Photo

micrographs of these specimens before and after bend test are shown in
 

Figures 4-18 through 4-21. This second experiment permits a reassess

ment of the effects of nickel diffusion into columbium.
 

The presence of Cb5Ni confirms the Cb rich portion of the Cb-Ni phase
 

diagram reported by Russian workers.(3) Results by Duerden and Hume

Rothery(4)do not show the appearance of Cb5 Ni. It is clear that such
 

a Cb rich phase increases the possible conversion rate of C-103 into
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compounds under conditions where the Ni supply rate controls the
 

kinetics. Under these Ni-deficient conditions the expected phases
 

would be on the Cb rich end of the phase diagram.
 

Gross estimates of the diffusion coefficients were obtained from Ni
 

condensation , growth(5 )on Cb and Ni-Cb diffusion couples(6)3n which
 
2
 

- 3.3 x 10-13 cm
the CbNi + CbN 3 phases form. These yield D 


sec
 

at 1182K which is obtained using data calculated from the
 

-
RussLan work(5)and a D a 1 x 10 11 measured at 1348K (19670 F) from a 

-diffusion couple (4Dt) distance (6) . A D of 1.7 x I0 11 cm2/sec can
 

be extrapolated from the Russian data(5 )at 1373K and 1273K for CbNi +
 

CbNi3 layers. These two estimates at 1182K vary 2 orders of magnitude.
 

The actual phase found in this work was Cb5Ni, which melts at 1623K
 

rather than 1843K and presumably has a lower activation energy and
 

higher diffusion rate than CbNi. The 12 fold coordination radii for Nw
 

and Cb are 1.25A and 1.47A respectively and so Ni is probably the
 

diffusion species in whatever compounds form because of its smaller
 

atomic radii. In contrast to the high diffusion values estimated above
 

for the compounds, the coefficient for Ni in Cb is given by D = 9.3
 

exp (-80, 400/RT) (7 ) and yields a much lower value of D = 1.2 x 10-14
 

cm2/sec. at 1182K (16680F).
 

The phase observed in the Ni-C-103 diffusion couple heat treated at
 

1323K (1922OF) for 63 hr. was Cb5Ni. The 2 pm thick Ni coating was
 

completely converted into Cb5Ni within this time. The resulting
 

Cb5Ni layer is approximately 19 pm thick and allows a lower limit of
 

D in Cb5Ni at 1323K to be made by using
 

(4Dt) > 19. x 0- 4 cm,
 

D > 4 x 10-12 cm2/sec.
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The Ni vapor impingement rate JNi at 1182K is
 

I

JNi = 58-x -- atom/cm2sc, 

1.83 x 1019 atoms/cm
2yr.
or 


The Cb conversion rate into Cb5Ni may then be 5 times the nickel
 

impingement rate which results in a maximum thickness conversion
 

rate for Cb of
 

d(Cb) = 16.4 pm/yr. = 0.00064 in/yr.
 

At the end of a 10 year lifetime the Cb5Ni could be almost 164 pm
 

thick and a coarse estimate of the minimum value of D required for 

the compound formation rate to be controlled by Ni vapor impingement 

on the free surface can be now made. Assuming A = (4Dt) , 

d)D _ 2D
 at Et
 

For this velocity to be equal to the maximum Cb consumption rate of 16.4 pm/yr
 

(0.00064 in/yr.)
 
(Cb) = 2D 

D = I x 16.4 Pm x 164 pm
 
2 yr 3.15 x 10/ sec/yr
 

or D = 4.3 x 10- 13 cm2/sec.
 

This must be the diffusion coefficient in order for impingement to be
 

controlling. Since this diffusion coefficient is lower than the
 

earlier estimated diffusion coefficients, Ni vapor impingement, rather
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than diffusion, would control the conversion rate of Cb into Cb5Ni up
 

to the end of the C-103 part service life.
 

The Cb conversion rate is 16.4 pm/yr and results in 0.01651 cm (0.0065 in)
 

mils) conversion in 10 yr., 0.013 cm (0.005in) in 7.7 yr., 0.0077 cm
 

(0.003 in) in4.6 yr. and 0.0013 cm (0.0005 in) in 0.8 yr.
 

The diffusion and bend experiments indicated, as would be expected,
 

that brittle intermetallics would form if nickel vapors are allowed to
 

diffuse into C-103 in sufficient quantity to exceed the solubility
 

limit. The basic ductility of the base alloy, however, is sufficient
 

to prevent propagation of the crack into the base alloy even under
 

significant plastic deformation. Avoiding nickel transfer from the
 

foil to the HSHX is clearly very desirable.
 

The initial diffusion calculations indicated that replacement of the
 

first two 0.0013 cm (0.00051)Ni layers (of an all nickel foil insula

tion system) with Cb would be effective if only CbNi were formed. The
 

foils would stop the Ni flux at the low temperature - 1038K (14080 F) 

end. At 1182K (16680F) the Ni flux through the 0.0013 cm (0.0005in) Cb
 

would be negligible until the foil is converted into CbNi or Cb5Ni
 

(this would require about 5 years if CbNi were formed but only 1 year
 

if Cb5Ni were formed.) The diffusion of Ni through this additional
 

barrier layer would then also reduce the final impingement rate of Ni
 

vapor on the second Cb layer and ultimately upon the Cb heat exchanger.
 

Thus, while use of two intervening layers of 0.0013 cm (0.0005 in)
 

columbium alloy foil would prove effective in reducing nickel transfer
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in the case of CbNi formation, the formatIon of Cb5Ni dictates a single
 

layer of 0.013 cm (0,0051n)foilwhich would provide much longer delay
 

in initiating nickel transfer of an all nickel foil insulation system.
 

A conservative approach in the baseline insulation system utilizing
 

molybdenum foils to replace the nickel'foils in the region of high
 

temperature would be to incorporate an inboard columbium foil to getter
 

any NI vapor that may reach it.
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Figure 4-18 	C-103 Sputtered With 2 pm of Nickel and Vacuum Heat 
Treated for 63 Hours at 1323K (19220F). Mag: 150X 

Figure 4-19 C-103 Sputtered with 2 pim of Nickel Vacuum Heat
 
Treated for 63 Hours at 1323K (19220F) and Bent
 

Over a 3t Radius. Mag: 75X
 



ORIGINAL PAGE IS 
OF POOR QUALITY4-44 

v 
Figure 4-20 
C-103 Sputtered With 2 
 tof Nickel,Vacuum Heat


Treated for 63 Hours at 1323K (1922°F) and Bent
Over a 3t Bend Radius. 
150X
Mag: 


E-17'. 

Tigure 4-21 
C-130 Sputtered With 2 
 tm
of Nickel, Vacuum Heat

Treated for 63 Hours at 1323K (1922°F) and Bent
Over a 3t Bend Radius. Mag: 750X 
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4.4.2 INSULATION MATERIAL COMPATIBILITY TESTS
 

I The 1000 hour "Life Stability" tests discussed in 4.1 revealed no apparent
 
* 	 degradation in thermal performance of a scaled down cylindrical configura

tion of nickel foil in which a temperature gradient (similar to that ex-


I pected during operation) existed across the foils. Nonetheless, because
 

of the long life (7 year) requirementfurther tests were performed to


E determine if any insulation material interactions would occur that were

K not 	observed in the macroscopic evaluation of the "Life Stability" test
 

specimens. In this new series of material compatibility tests a sizeable
 

number of square shaped capsules (also referred to as crucibles) were 

prepared in which different combinations of flat foils and ZrO 2 were arrang

ed. The configuration of the flat foils and ZrO 2 within the crucibles were 

arranged to investigate nickel, molybdenum, columbium (= niobium, Nb) and 

ZrO2 interfaces and interactions, characteristics of zirconia coated vs. 

I	uncoated foils, 5% Zr0 2 vs. 50% ZrO2 coverage, wet vs. dry zirconia and 

effect of nickel purity. The capsules were subjected to accelerated life 

I	tests in an evacuated oven temperature of 993K/720oC, 1223K/950oC and
 
1323K/10500C. All foils and materials in a capsule were essentially at
 

the same temperature, that is, no temperature gradient was intentionally
 

I imposed across the foil pocket. A tungsten weight was incorporated to assure 

I good contact. 

In the first series of tests a combination ZrO 2 coated nickel, molybdenum


E and columbium (Nb), foils were tested at 993K/7200 C, 1223K/9500 C and 1323K/ 

10500C for approximately 170 hours. Figure 4-22 gives the matrix of con-

Efigurations and test conditions. 
All 	nickel and niobium foils were
 
I 
I
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0.0013 cm (0.0005 in) in thickness except the high purity nickel which
 

was 0.013 cm (0.005 in). The molybdenum foils were 0.0025 cm (0.001 in) 
 3
 
thick. The purpose of this first test series was to: (1) determine the
 

safe long term operating temperature for nickel foil; (2) determine if I
 
molybdenum can act as a diffusion barrier between nickel and columbium; 3
 
(3) determine if moisture accumulated during storage is a potential prob

lem; and (4) determine if a heavy coverage of zirconia on nickel foils 3
 
decreases self welding. Figure 4-23 through 4-28 show photomicrographs
 

of typical cross sections of the foils. The general conclusions that I
 
were reached by a study of the capsules and the photomicrographs are as 3
 
follows:
 

1. 	There is evidence of nickel vaporization at 993K /720 0C 3
 
although the amount was quantitatively unmeasurable after
 

168 hours. An upper limit on the operation of nickel for I
 
long term dependability on the HSA should be r-993K/7200 C.
 

2. 	There was no evidence of self -welding of nickel foils with 

a 5% ZrO 2 coating at 993K/720 OC. I 

3. 	Self-welding of nickel foils with a 5% ZrO 2 coating at I 
1223K/950 °C was severe after 168 hours. 3 

4. 	A heavy coating (50%) of ZrO 2 is effective in reducing self- 3
 
welding; e.g., at 1223K/950 °C no welding was evident.
 

Thinning of the nickel foils however was more severe with 3
 
the heavy ZrO2 coating indicating some reduction of Zr02
 

by Ni. Additionally use of a heavy Zr02 coating would un- I
 
doubtedly degrade the thermal performance of the insulation
 

due to conductive effects across the ZrO 2.
 I 
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- NfiMo/Nb/CaO: Zr02 COMPATIBILITY TEST CAPSULES. 
.32cm 

* 

LWS____N 	 --
TWQGSTENORIGINAL 
(.02 IN.THICK) 
-051cm "-Ni"" 

CONTAINER 

_PRE Zr02 

CAPSULE COATING 
NUMBER 	 COVERAGE 

4 to 6% 

2 4 	to 6% 

3 4 	to 67. 

4 4 to 6% 

5 4 to 6% 

6 50% 

7 507. 

U0 
8 4 to 6% 

9 	 4 to 6% 

I 	 iII,
 
!S
 

TESTING
 
TEMPERATURE 

7200 C 


950°C 

10300C* 

9500C 

1050°C 

9500C 


10500C 


950°C 


10500C 


118 IN.) DIA. HOLE 

OF POO~o QUALITYPAGE 13. 
-Ni 

COATINGS
 

-mo CAO: 	 ZrO2 

REMARKS 

Out:gassed I hr. @ 5000C
 
prior to test
 

Outgassed 1 hr. @ 5000C 
prior to test 

Outgassed I hr. @ 5000C
 
prior to test
 

Exposed to 120 	prior to test 

Exposed to H20 prior to test 

Outgassed 1 hr. @ 5000C 

prior to test 

Outgassed 1 hr. @ 5000C, ,'t
prior to test
 

High purity nickel outgassed

1 hr. @ 5000C 	prior to tc-t 

High purity nickel outgassed 
1 hr. @ 5000C 	prior to test 
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11
I
 

CRUCIBLE #8, 9500 56
 

7I
 

CRUCIBLE #1, 7200 C, 56X
 

CRUCIBLE #2, 950oC, 56X
 

m I
 
CRUCIBLE #21
 

(120X) 

(ETCHED)3
 

FIGUE Ni/Ni/Ni/Mo/Nb//NiU
4-3 TYICAL 


FIUE423TPCLCROSS SECTIONS OF Ni FOILSI
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Ca0:ZrO2 COATED SIDEI5% 
.. ./ 

. . . 

AVG. THK'S. 
MIN. THK'S. 

-
-

.0013cm 
.001cm 

(1L60X) (7200C) 
CRUCIBLE #1 

*MAX. 
.. 5% CaO ZrO2 

THK'S. 
COATED SIDE 
- .0013cm 

MIN. THK'S. - .0066cm 
(1160x) (950 0C) 

I+I CRUCIBLE #2+ 
507 CaO:ZrO2 COATED SIDE
 

MAX. THK'S. 
MIN. THK'S. 

-
-

.0013cm 
.0005cm 

(920X) 
CRUCIBLE #6 

(950'C) 

5% CaO:ZrO COATED SIDE 
MAX. THK'S. - .013cm 
MIN. THK'S. - .012cm 
(580x) (950°C)
 

"HIGIV PURITY Ni 

FIGURE 4-24 TYPICAL CROSS SECTIONS OF NICKEL FOILS Ni/Ni/Ni/Mo/Nb//Ni 

I 
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FIGURE 4-25 TYPICAL CROSS SECTIONS OF NIOBIUM FOILS 
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FIGURE 4-26 TYPICAL CROSS SECTIONSOF MOLYBDENUM FOILS
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FIGURE 4-27 TYPICAL CROSS SECTIONS OF FOILS EXPOSED TO H20
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5. 	Molybdenum foil is not an effective barrier between Ni and
 

Nb if it is discontinuous around the Nb. 
 5
 
6. 	H20 causes serious degradation of Ni and Mo. Consequently, £
 

the foil should be stored in a dry environment and baked
 

out prior to assembly or operation at temperature. 3
 
7. 	Use of high purity nickel foil does not minimize evaporation 3
 

of nickel. Its use is not recommended.
 I
 
The second series of material compatibility tests were conducted to deter

mine the interaction characteristics of uncoated nickel and molybdenum I 
foils. It was found that at 993K/7200 C there was no evidence of evapor-1 

ation of nickel of self-welding of the foils whereas at 1223K/9500 C 

there was substantial evaporation of nickel and self-welding of the foils. j 
All of the Mo foils were coated with nickel. I 
The third series of material compatibility tests were conducted to deter

mine, separately, the interaction characteristics of niobium foils coated
 

with 5% calcia stabilized ZrO 2 and the molybdenum foil coated with the 3
 
Zr0 2. It was found that at 1223K/9500 C there was no welding of foils or
 

measurable reaction with the ZrO 2 although it appeared from the color of I
 
the ZrO 2 in the bottom of the crucibles that ZrO 2 is more stable with Mo
 

than with Nb. This conclusion was reinforced by examining the pure ZrO 2
 

in the bottom of the capsules which were tested. The color change and 5
 
porosity of the ZrO 2 particles give an indication of the reduction of
 

the ZrO 2 . Figures 4-29 through 4-32 show enlarged photographs of the i
 

i
 
I
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I 
Zr0 2 particles taken from the bottom of various capsules. The general
 

I conclusions reached from a study of these results are as follows:
 
1. 	Pre test exposure of zirconia to H20 vapor is severely
 

damaging.


£ 	 2. Exposure to a temperature of 1223K/9500 C reduces pure
 

ZrO2 faster than a temperature of 993K/7200 C.
 

3. 	Reduction evolves release of gas, probably 02.
 

4. 	Mo and Nb alone cause less reduction of ZrO2 than
 

combinations of Mo-Ni and Nb-Ni foil with ZrO2.
 

I 	 Some further tests on oxide stability were conducted at 1223K/950°C and 
1323K/10500 C. Various combinations of foil material, pure Zr0 2 and 

calcia stabilized ZrO2 were heated for approximately 170 hours at a pressure 

5
Iof 1.3 x 	10- Pa (10- 5torr). Additionally, single, double and triple wraps of
 

Nb foil around Nb,and Mo foil around Nb, were included in some of the crucibles
 

i to determine the effectiveness of these in protecting Nb from interaction
 

Iwith nickel. Some typical observations and photomicrographs of crucibles
 

with 	wrapped foils tested at 1323K /1050 0C are shown in Figure 4-33
 

Ethrough 	4-38. 
 General conclusions reached from this series of tests
 
are as follows:
 

~1 . Mo foil with calcia coated Zr02 is stable at 1323K/1050 0C.
 

2. 	Combinations of Mo and Ni foil with calcia stabilized ZrO 2
 

is stable at 1223K/950 0C but not at 1323K/10500 C.
 

3. 	Combinations of Nb and Ni foils with calcia stabilized Zr02
 

is not stable at 1223K/9500C.
 

U 4. Calcia stablized Zr02 is more stable than pure ZrO 2.
 

5
 

I 
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I 
5. 	Complete Nb wraps around an Nb specimen is somewhat more 5
 

effective in protecting the Nb specimen from Ni penetration
 

because of the gettering behavior of the protective Nb wraps. 


Nonetheless if a sufficient number of Mo protective wraps are
 

used the Nb specimen can be protected from nickel interdiffusion. i
 

It is interesting to note that compatibility tests of Ni, Mo and Nb foils 3
 
conducted at Battelle -Columbus Laboratories and at NASA-Lewis Research
 

Center indicated that Ni-Nb foil combinations were more resistant to I
 
diffusional welding (i.e. self-welding) at 1223K/9500 C than Ni-Mo or Ni- 3
 
Ni combinations. It was surprising that Ni-Nb did not weld while the
 

Ni-Mo did weld in view of the fact that the reported intermetallic growth
 

rates of Ni-Nb are substantially higher than Ni-Mo. It is believed that
 

the reason for this seemingly behavior is due to more intimate contact of I
 
the Ni-Nb foils than the Ni-Mo foils. It is considered that such differ-
 5
 
ences in behavior do not lend confidence to observations of non-welding in
 

either foil combination if the behaviors are very reflective of uncontroll- 5
 
able differences in contact and the foils do weld (interdiffuse) when in
 

contact. i
 

The overall conclusions from the material compatibility studies at GE, 3
 
NASA and Battelle relating to the design of the insulation blanket can be
 

summarized as follows: i
 
* 	Nickel foil should be limited to 993K/7200 C or less to avoid 5
 

self-welding of foils and instability of ZrO 2 with Ni.
 

Ii
 

I 
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PURE Zr02 
AS- RECEIVED CONDITION 

(35X) 
PARTICLES WHITE 

PURE Zr02 
CRUCIBLE #22 (950'C) 
ALL MOLY SYSTEM 

PARTICLES GRAY 
(NO BLACK PARTICLES) 

3.PURE ZrO2 
CRUCIBLE #20 (950°C).,,.____ALL Xb SYSTEMy 

4PARTICLES GRAY 
-. (NO BLACK PARTICLES) 

(35X) 

FIGURE 4-29 REDUCTION OF PURE ZrO2 BY No AND Nb AT 950°C
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PURE Zr02
 

CRUCIBLE #2 (950°C)
(35x)
 

Ni/Ni/Ni/Mo/Nb//ZrO2
 
PARTICLE GRAY & BLACK 
BLACK PARTICLE SHOWN 

PURE ZrO
CRUCIBLE 2 #15 

(35X)
 
Ni/Mo/Ni/Mo/Ni//ZrO Ni 
PARTICLES GRAY & NICK 
BLACK PARTICLE SHOWN 
NOTE "NICKEL STUCK TO Zr02 

FIGURE 4-30 REDUCTION OF ZrO2 BY Ni AND BY Ni/Nb AT 950'C
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(230X) 

"PURE" ZrO STUCK ON 
----BOTTOM OF ii CRUCIBLE 

CRUCIBLE #2, 9500C 
NI/Ni/Ni/Mo/Nb//NI 

U 

INSIGNIFICANT STICKING 

3 
OF "PURE" Zr02 ON BOTTOM 
OF Ni CRUCIBLE #8, 9500C 
Ni/Ni/Ni/Nb/Mo //Ni 

I "PURE ZrO ON Ni 
-CRUCIBLE 12 

(9500C) (920X) 
(UNETCHED) 

3 
.... .(460X) 

CRUCIBLE #2 

.009cm -T0DTA 

a FIGURE 4-31 REDUCTION OF ZrO2 BY Nb AND ACCELERATED EVAPORATION OF Ni. 
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5 PURE ZrO2 Ni 

CRUCIBLE'#1 (720 C) 
oN N/N/N/Mo/Nb//ZrO2 Ni 

(35X)
WHITE & GRAY
 

GRAY PARTICLE SHOWN
 
IPARTICLES 


PURE ZrO
 
#14 

.,._____ Ni/Mo/Ni/MoiNV/ZrO2 Ni 
(35X) 

UCRUCIBLE (720°C)
 

PARTICLES WHITE & GRAY 
PARTICLE SHOWN
5GRAY 

PURE ZrO2
 
CRUCIBLE #14 (720 C) 
WHITE PARTICLE SHOWN 
(35X)
 

FIGURE 4-32 REDUCTION OF PURE Zr02 BY Ni AND NtI/b AT 720 0 C 
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I #2 NL - LOST APPROX. 0.0025 cm THK'S. 

* #3 Ni - LOST APPROX. 0.003 cm THK'S. 

I #4 Ni - LOST APPROX. 0.0038 TO 0.0051 cm M'S. 

. #5 Ni - N1O CHANGE TOP SHINNY 
fie cnf% .Nb s 7 O40. f lt. ' 

* BARE Ni DID NOT STICK TO BARE 

I SINLE WRAPPED Mb SPECIMEN - COMPLETELY PENETRATED WITH Ni 

o DOUBLE WRAPPED Nb SPECl!EN - METALLIC LOOKING Ni PENETRATION -'0. 

I TRIPLE WRAPP'D Nb SPLCIEN - Ni PENETRATION - O. 

o 50%CaD:ZrO2 VISIBLE BETWEEN SPECIMENS, (01 AND #2) 

* BARE Kb GAINED 0.0076 cm (CENTER) 0.015 cm (EDGES) 

j BOTTO OF CRUCIBLE APPAREN'TLY RUNNING HOTTER TIIAR TOP OF CRUCIBLE 

FIGURE 4-33 OBSERVATIONS OF CRUCIBLE #1 TESTED AT 1323K/1050°C
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CRUCIBLE #21
 

OBSERVATIONS 


* TECO POWDER ORIGINAL COLOR (Mo MORE STABLE WITHI CaO:Zr0 2 THAN Nb) 

* ,i -1 GAINED APPROX. 0.0005 TO n.nn -m TEIC'S. 

0 #2 NL LOST APPROX. 0.0025 cm THK'.Q. 

* #3 Ni. - LOST APPROX. 0.0025 TO 0.0038 cm 

* #4 i - LOST APPROX. 0.0025 TO 0.0038 cm 

. #5 Hi STUCK TO io (DRITTLE) 

* BARE Nb - CAINED 	 APPROX. 0.0076 cm 

* SINGLE WRAPPED hb - BlfTL (LOST)
 

" DOUBLE WRAPPED Nb - BRITTLE (LOST) .
 

TRIPLE 	WRAPPW Nb - PENETRATION - 0.
 

UCRO R 0. 


FIGURE 4-36 OBSERVATIONS OF CRUCIBLE #2 TESTED AT 1323K/lo 0
 c 
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I 
* Calcia stabilized ZrO 2 should be utilized since it is more
 

Istable than pure Zr0 2.
 

* 	ZrO 2 is more stable with Mo than with Nb, hence for a very
 

conservative design approach (ignoring melt down require

ments for emergency cooling) the use of Mo foils at temper

atures greater than 993K/7200C or some lesser upper level
 

seems warranted for ground performance tests.
 

* 	Care should be taken to assure that the Zr02 is dry.
 

3a 	 Use of very high purity nickel foil has no effect on reducing
 

nickel evaporation or foil self-welding.
 

* Final design of the insulation system for a flight system


Iwould require long term stability tests on subsize or full size
 

gfoil
blankets in the actual design configuration.
 
4.5 INSULATION MELTDOWN TESTS
 

The purpose of the insulation meltdown tests was to demonstrate the


I Emergency Cooling System (ECS) concept for the HSA. Two "small scale" 

tests were conducted ; the first meltdown test was of an

W	all nickel foil (60 layer) configuration and the second was a combination 

of columbium and nickel layers, a design which was under consideration at 

the time of the test. A description of the tests and the results are 

I 	 discussed in the following paragraphs. 

I
 
I
 

i
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4.5.1 SMALL SCALE MELTDOWN TEST OF ALL NICKEL FOIL CONFIGURATIONS
 

One of two extra life stability test samples (see Figure 4-39) was 5
 
selected for this 60 layer all Ni small scale meltdown test to provide
 

a preliminary evaluation of the Mini-Brayton HSA ECS. The test specimen
 

was heated with a tungsten wound heater. Instrumentation included two 5
 
tungsten-rhenium T/C's, one on the inner tantalum cylinder (as illustra

ted) and the other on the 30th layer of insulation (not shown), and two 
 j 
chromel-alumel T/C's, both on the outer tantalum cylinder. The sample
 

was placed in a vacuum chamber which was evacuated to about 1 x 10-4 Pa £
 
(10-6 torr), and the sample was heated to a hot face temperature of about I
 

1255K (18000 F).
 

In the first test attempted, the ECS activation was simulated by applying
 

320 watts to the heater. This thermal input caused a rapid heatup of the 3
 
inner tantalum cylinder to about 2200K (35000F), at which time the instru

mentation began reading erratically. Shortly afterwards, (about 5 minutes), 5
 
the heater burned out. Diagnostic disassembly revealed that the mullite 3
 
heater core had fused and deformed, shorting out the tungsten winding.
 

Melting/vaporization of the sample had been initiated at four locations I
 

around the center of the cylindrical sample, as shown in the photographs
 

of Figures 4-40 and 4-41, and on the inside of both end caps. No molten I
 
material was noted during this test, and no molten residue was observed
 

during disassembly, it is believed that evaporation caused the material
 

removal. 
 5
 
The heater was rebuilt using a tungsten wire and the test re-initiated. 3
 
After a stable hot face was achieved (1215K (17250F), 40.5 watts), the
 

emergency load was simulated (226.1 watts). 


_____I
 

5 
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Figure 4-40. 	Photograph of All Nickel Foil Test Sample
 
After First Meltdown Attempt
 

estSapl
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After 15 minutes, the tantalum inner liner reached 1740K (26600F), and
 

I melting/vaporization commenced. The inner Ta liner fluctuated between
 

5-1830K (28300 F) and 1660K (25250F) for 30 minutes as melting/vaporization
 

proceeded , until the heater again burned out. The 30th layer reached a
 

Ipeak temperature of 1690K (25850F) (shy of the 1730K (26500 F) phase change
 

temperature of nickel) just at heater burnout. A recorder chart of these
 

Itemperatures is presented on Figure 4-42. 
 No molten nickel was observed
 
during this meltdown test. Evaporation of the nickel foil was obvious as
 

the glass bell jar became noticeably darker as the test proceeded.


IFollowing cooldown, the test specimen was diagnostically disassembled. The
 

tantalum foil cold face was visibly darkened and was probably due to vapor


I deposited nickel (see Figure 4-43). One planer end of the insulation was 

I removed and partial fusing all around the joint was observed (see Figure 

U 
4-44). The tungsten heater wire was observed to be broken near one end 

of the assembly. Melting/vaporization was initiated over 90% of the 

inner circumference near the center of the cylinder (see Figure 4-45).and 

I appeared to have progressed about midway through the insulation blanket 

I in spots. In an attempt to determine how deeply melting/vaporization had 

3 
proceeded into the insulation cylinder, the blanket was unwound from the 

outside. Table 4-3 presents the cogent observations. Self-welding of 

I-
adjacent foils was observed as far out as the 56th layer and increased in 

magnitude as the unwrapping proceeded. By the time the 44th layer was 

reached, three larger solidly fused areas of foil were encountered
5which prohibited further unwrapping.
 

.1 
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Tantalum Foil Outer Cylinder -Note DarkenedFigure 4-43. 
Appearanlce Due to Vapor Deposited Nickel
 

Figure 4-44. Planar End Insulation and Heater Assembly-


Note Fused Edge of Insulation
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Figure 4-45. Melting/Vaporization of Nickel Screen and
 

Blanker Cylindrical Section
3Insulation 
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Figure 4-46. MelpingalolzlyonedAeof tfickl 


Typical Solidly Fused Area of Multifoil
Figure 4-46. 

Insulation at 44th Layer
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 TABLE 4-3 CHRONOLOGY OF ALL NICKEL TEST SPECIMEN DIAGNOSTIC DISASSEMBLY
 

Layer from Layer from
 
Outside Inside Observations
 

3 56 Beginning of self-welding 

I 
11 49 Encountered difficulty in 

unwrapping 

14 45 Encountered solidly fused 
area 

15 	 45 Encountered second solidly
Ifused 	 area -%/1200 past
 
above
 

16 44 Encountered third solidly

fused area; no further
 
unwrapping possible
 

I Due to the exceptionally high temperatures involved in this small scale 

I configuration, continuous tungsten heater performance was tenuous, so much 

so that a complete meltdown was never achieved during this test. However, 

I a graphite heater used in a later small scale melt test of the columbium

I 
 nickel foil configuration did not burn out and that test was run to comple

tion as discussed below.
 

I 	 4.5.2 SMALL SCALE MELTDOWN TEST OF COLUMBIUM-NICKEL FOIL CONFIGURATION 

i 	The insulation material compatibility tests indicated that nickel foil
 
should be limited to the low temperature region of the insulation blanket.
 

I During the time frame when those tests were being conducted and before a
 
design decision was made to incorporate molybdenum foil for the Ground
 

IDemonstration HSA Hardware, it was considered prudent to subject a candi-

I 	 date columbium-nickel foil small scale cylindrical specimen to meltdown 

=
 

U
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conditions. The primary objective was to verify that melting would be
 

initiated at the Nb-Ni eutectic temperature of 1448K (21470F), an
 

improvement in the meltdown characteristics of the all nickel foil sys

tem.
 

The test configuration was similar to the first meltdown test except
 

that a graphite heater was incorporated and the insulation foil material
 

was altered as shown in Figure 4-47. The insulation cylinder consisted
 

of 36 inboard columbium foils followed by 24 layers of nickel foil. The
 

planar end caps were molybdenum foil since these layers need not neces

sarily melt to achieve successful emergency cooling operation. Figure
 

4-48 gives the test temperature history of thermocouples distributed in
 

the insulation specimen. It is evident that when the Ni/Nb interface
 

at the 36th foil reached the nickel-columbium eutectic temperature a
 

very sudden decrease in temperature occurred indicating a reaction that
 

essentially spoiled the insulation characteristics of the foil blanket
 

as would be expected if melting/vaporization occurred. At this point
 

the test specimen was observed to flash red hot. Photographs of the
 

insulation blanket specimen after the meltdown test are given in Figures 3
 
4-49 and 4-50. The melting and fusion of the foils into a solid mass is
 

evident. A photomicrograph of a cross section of the blanket is shown 3
 
in Figure 4-51. The solid fusing of the columbium foils and melting
 

and solidification of the nickel foils is graphic. I
 
I 

I
 
I
 



FIGURE 4-47 - SMALL SCALE MELT DOWN TEST ASSEMBLY #2 
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ORIGINAL PAGE I33OP'POOR QUALITY 

FIGURE 4-49 

INSULATION SPECIMEN AFTER MELT DOWN TEST #2 
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FIGURE 4-50
 

END VIEW OF SPECIMEN AFTER MELT DOWN TEST #2
 

VIEW WITH ONE END CAP REMOVED 
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FIGURE 4-51 

PHOTO MICROGRAPH OF CROSS SECTION OF INSULATION AFTER MELT DOWN TEST #2
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A very significant conclusion from both meltdown tests is that the self

welding of adjacent foils in the ECS mode will assist in maintaining a 


safe heat source PICS (iridium fuel clad) temperature even if melting is
 

incomplete. The fusing shorts out the insulation by increasing the 


1
I 
3 
I
 

thermal conductivity several orders of magnitude. Analytically determined 3
 

emergency mode temperature response of the heat source which does not
 

account for the self-welding phenomenon is undoubtedly very conservative.
 

5
It would appear from the test results that an insulation system which 


incorporates multi-material foils will spoil when the eutectic temper

ature is reached at the interface. This would suggest that with judicious 3
 
selection,some tailoring of the Emergency Cooling System (ECS) activation
 

temperature is possible in the flight design to assure safe heat source 


temperatures,as well as long life stability during the normal operation 


of the HSA.


I
3 
U 
I 
U 
I 
3 
U
U 
I
I
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(2) 	Thermal Cycling - The HSA shall nave the capability to withstand
 

a minimum of 100 startup-shutdown thermal cycles.
 

(3) 	Working Fluid - The Brayton cycle gas shall be a mixture of He
 

and Xe having a molecular weight of 83.8.
 

(4) 	Heat Source - The basic fuel sphere assemblies (FSA) shall be as
 

developed for the multi-hundred watt-radioisotope thermoelectric
 

generator. The MHW-HS consists of 24 Pu02, graphite covered,
 

iridium clad fuel spheres suitably spaced and supported in a
 

cylindrical canister having an overall diameter of 18.26 cm
 

(7.19 in) and overall length of 43.10 cm (16.99 in).
 

(5) 	Heat Source Heat Exchanger - The HSHX shall be fabricated from
 

the columbium base C-103 alloy and designed to transfer 2400 w(t)
 

to the working fluid at a flow rate of 0.57 Kg/sec. (0.126
 

lb/sec.). The working fluid enters the HSHX at 980K (13050F)
 

and exits at 1144K (16000 F). The maximum pressure drop shall
 

be no more than 0.0015 MPa (0.22 psi) at an operating pressure
 

of 0.243 MPa (35.3 psia).
 

The 	HSHX shall be designed for a maximum of two percent creep
 

in the radial direction (1% axial) for the design life.
 

The 	HSHX, manifolds and ducting providing containment of the
 

working fluid, shall be designed for zero leakage for the design
 

life. The maximum permissible measured leak rate for a fabricated
 

unit 	shall not exceed one times ten to the minus 6 standard cc/sec.
 

of helium following pressure and performance testing.
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(6) 	Auxiliary Cooling System (ACS) - The ACS is required to provide
 

cooling of the HS during all non-operational phases of the power
 

system and limit temperatures of all HSA surfaces exposed to the
 

atmosphere. There are two design criteria for the ACS. The
 

maximum temperature of exposed surface of the HSA shall not exceed
 

466K (3800 F) while on the launch pad to prevent possible ignition
 

of fuel vapors present during pre-launch operations. The maximum
 

temperature of all refractory alloys exposed to air shall not
 

exceed 523K (4830F) to preclude oxidation.
 

(7) 	Emergency Cooling System (ECS) - The ECS shall maintain the isotope
 

heat source at a safe temperature in the event of a failure of the
 

power conversion system, such as a loss of the working fluid.
 

During the transient condition after onset of an emergency condition,
 

the Heat Source Post Impact Containment Shell (PICS) shall not exceed
 

times and/or temperatures which would cause breaching of the PICS
 

and release of the isotopic fuel. Upon reaching a steady state con

dition after ECS activation the PICS temperature shall not exceed
 

1773K (2732°F). The threshold temperature for ECS activation shall
 

not exceed 1755K (27000F).
 

(8) 	Weight - The HSA shall be designed for minimum weight with a goal
 

for a flight worthy system not to exceed a maximum limit of 40.8kg
 

(90.0 lbs).
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5.1.3 C-103 CREEP STRENGTH CRITERIA
 

During the design phase of the HSHX the available applicable C-103
 

creep data was utilized to size the HSHX structure for the creep
 

criteria stated in 5.1.2. At the time of the design an allowable
 

1% creep strength for the specified design life, of 22.6 MPa (3038
 

psi) was estimated from the available creep data and was so specified
 

for the heat exchanger structure. As additional test data became
 

available from the NASA material test program it became apparent
 

that the original extrapolated 1% creep strength was over-estimated
 

by a factor of approximately two. Consequently some of the original
 

margin built into the design was diminished as a result of the
 

updated 1% creep allowable. These design margins are discussed in
 

5.3. The latest NASA creep data is shown in Figure 5-1.
 

5.1.4 STRUCTURAL LOADING CRITERIA 

The Heat Source Assembly is designed for a load factor of 50g acting 

- along each of the three principal axes. This load factor was derived 

from dynamic response characteristics of similar spacecraft designs 

(LES 8/9). The insulation support frames need not be required to meet 

the 50g criteria because of their isolation due to the insulation foils. 

The frames can be designed for a 15 g load factor acting along each of
 

the principal axes.
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5.1.5 SAFETY CRITERIA
 

The safety design criteria relating to explosion, re-entry and impact
 

environments, specified for the MHW Heat Source, which are given in
 

Section 5.2 Volume I of NASA CR 121223, apply to the Titan IIIC mission
 

HSA design. Additional safety requirements which apply to the temper

ature response of the Heat Source in the HSA configuration are as
 

follows:
 

1. 	During an orbit operation the Heat Source external surface (girdle)
 

temperature shall not exceed 1373K (20120F). This is based on the
 

MHW Specification for the Heat Source. This requirement shall also
 

apply if the HSHX inlet temperature is increased to 1200K (17000F).
 

2. 	During on pad operations, the external surfaces of the HSA shall
 

not exceed 466K (3800F). This is to preclude auto-ignition of
 

booster propellants. Additionally the maximum temperature of all
 

refractory alloys exposed to air shall not exceed 523K (4830 F) to
 

preclude oxidation.
 

3. 	During the transient and steady state conditions after onset of an
 

emergency condition, the Heat Source Post Impact Containment Shell
 

(PICS) shall not exceed temperatures which could cause breach of
 

the PICS and release of the isotopic fuel. These temperature
 

limitations are time dependent and are as follows:
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TABLE 5-1 

PICS TEMPERATURE LIMITS
 

TEMPERATURE RANGE MAXIMUM TIME AT TEMPERATURE 

1773-1873K 10 Hours 

1673-1773 50 

1573-1673 200 

1473-1573 1000 

>1323K On Impact 

5.2 HSA CONFIGURATION
 

The HSA, without the Electric Heat Source (which is provided under the
 

BIPS program contract) is shown in Figure 5-2 (Dwg. 47E313000). The
 

HSA external housing, Figure 5-3 (Dwg. 47J313060), is a right cylinder,
 

with rings on both ends to which are bolted elliptical domes shown in
 

Figure 5-4 (Dwg. 47E313030). The housing and domes are fabricated from
 

stainless steel for the ground demonstration tests.
 

Protruding from the cylindrical section near each end are 38.1 mm
 

(1.5 in.) ID columbium alloy (C-103) tubes - inlet and outlet ports for
 

the Heat Source Heat Exchanger. These tubes are joined to the housing
 

by a bellows system to allow for thermal expansion differentials. Pro

truding from each dome are electrical connectors. The aft dome contains
 

the thermocouple connectors primarily from the heat exchanger. These
 

thermocouples should not have to be disturbed since the aft dome does
 

not need to be removed once assembled. The forward dome which is removed
 

to insert and/or remove the EHS or shipping support spacer, has the
 

connectors for the EHS power leads. Thermocouple leads from the EHS and
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forward end enclosure and preload screw are brought out through an
 

additional connector in the forward end dome. However these thermo

couples might have-to be-rep-l-aced each-time the dome is removed because
 

of their fragile nature.
 

Inconel "C" seals are used throughout the housing assembly to provide
 

a leak-tight unit.
 

The mounting interface of the HSA consists of three self-aligning uni

ball bearings on the forward housing and one uniball bearing on the aft
 

dome.
 

Internally, the HSA consist of provision for an Electric Heat Source
 

(EHS), to be mounted in the center of the housing and supported through
 

inconel preload screws to titanium end enclosures (spiders), Figure
 

5-5 (Dwg. 47C313092), on each end. The end enclosures in turn are
 

mounted to the housing end ring flanges. This whole assembly is pre

loaded by tightening down the forward preload screw. This is necessary
 

to keep the heat source under compression for all load conditions. The
 

Heat Source Heat Exchanger (HSHX) encloses the volume around the EHS and
 

is mounted off the EHS. During shipment of the assembly, in the event
 

an EHS is not available, a shipping support spacer supports the HSHX.
 

The HSHX shown in Figure 5-6 (Dwg. 707E839), is made of columblum alloy
 

(C-103) and consist of two circular headers, 238.76 mm (9.40 in.) center
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line diameter, 38. mm (1.50 in.) inside diameter. The headers are
 

spaced 403.86 mm (15.9 in.) on centers and 3oined together by concentric
 

cylinders (the HSHX core) with 148 flow vanes for Brayton working fluid
 

flow. As indicated previously, each header has one port which penetrates
 

the housing to provide connection to the rest of the Mini-Brayton System.
 

The ports, at each end of the HSHX, are in line with each other.
 

Insulation for the HSA consists primarily of zirconium coated molybdenum
 

and nickel multi-foil sheets wound over a C-103 columbium alloy cylinder
 

This insulation cylinder is installed on the I.D. of the housing. The
 

insulation is shown in Figure 5-7 (Dwg. 47D313043). Zirconium coated
 

molybdenum multi-foil disks mounted between C-103 columbium alloy disk
 

support (Figure 5-8, Dwg. 47C313038) are used on each end between the
 

HSHX and the spiders to insulate the ends.
 

The C-103 HSA bellow assembly is shown in Figure 5- 9 (Dwg. 47c313008). 

A bellow assembly is installed over the inlet and outlet ducts to seal 

the HSA for auxiliary cooling. The bellows provide for thermal expan

sion of the housing during warmup after power is applied to the Electric 

Heat Source (or after an isotope heat source is assembled into the HSA 

in the case of a flight system). The bellows are qualified by proof 

pressure tests at 0.276 MPa (40 psi) , thermal cycling to 1035K (14000F) 

three times, mechanical cycling 1000 times with + 0.254 cm (+ 0.10 in) 

offset in two orthogonal axes and then leak testing to 10-9 std cc 

helium/sec. 
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5.2.1 ASSEMBLY PROCEDURE
 

The external configuration of the HSA consists of a stainless steel
 

cylinder 32.41 cm (12.76 in.) I.D. with 0.081 cm (0.032 in.) thick
 

walls. On each end of the cylinder is attached a flange for assembly
 

of the elliptical end dome and end enclosure support.
 

The multi-layer foil insulation cylinder is inserted into the housing
 

and supported on the forward end by a welding assembly fixture end
 

plate. Next, the HSHX is attached to the aft end plate of the welding
 

fixture and is installed into the housing. The HSHX is then moved off
 

center as far as possible by means of the welding fixture.
 

Government furnished (GFE) extension ducts are welded to the inlet and
 

outlet ports; the HSHX is then returned to the housing centerline posi

tion. Molybdenum multifoil insulation is then wrapped around the inlet/
 

outlet extension ducts and the housing bellows and "C" seals slid over
 

this. The inboard flange of each bellows is then bolted to the housing
 

with "C" seals in place. The outboard lip of each of the two bellows
 

is then welded to a "Z" ring on the inlet/outlet extension ducts. With
 

the forward end of the HSHX supported by the welding fixture, the Electric
 

Heat Source graphite supports are installed. Next the multifoil end
 

insulation, pre-load screw, barriers, bearing disks and end enclosure are
 

installed and T/C's leads are fed thru the insulation. The assembly is
 

then turned over and the forward end welding fixture plate is removed.
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The EHS is installed and the graphite heat source supports put in place.
 

The pre-assembled end enclosure, pre-load screw and multi-foil end
 

insulation are now installed while feeding EHS power leads thru the
 

multi-foil. At this point the assembly is pre-loaded by torquing the
 

pre-load screw.
 

The EHS power cables are now connected to EHS leads. T/C leads and
 

power cables are routed to connectors mounted in the elliptical end dome.
 

Also mounted on the forward end dome is a valve assembly which is used
 

for gas management and auxiliary cooling. The dome and "C" seal are
 

then attached to the housing flange and torqued.
 

Aft end T/C's are now routed to connectors mounted in aft end dome. The
 

dome and "C" seal are bolted and torqued to housing flange, the system
 

is now vacuum sealed and ready for testing.
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5.3 STRUCTURAL ANALYSES AND DESIGN
 

This section contains brief descriptions of the structural analyses
 

and design trade-offs of the HSHX and HSA support components.
 

5.3.1 HSHX DESIGN
 

5.3.1.1 HSHX Joint Header Configuration Trade Off and Analysis 

Detailed stress analyses were performed to determine the optimum HSHX
 

configuration (lowest weight and ease of fabrication) which meets the
 

1% creep stress design criterion.
 

Stress analyses were performed on five different toroidal header design
 

concepts. Four design concepts were finalized to the point where they
 

met aprescribed 21 MPa (3000 psi), 1% creep stress allowable at 1255K
 

(18000F) at 100,000 hours used in early design trade-offs. Two of
 

these designs, the common center line (E) with conical interface, and
 

common with no fillet radii were found to be feasible designs. The
 

common with no fillet radii design (Figure 5-10) was selected as the
 

most attractive due to its low stress levels, 12 MPa (1.784 psi) maximum
 

stress, and low weight, 2 kg (4.4 lbs.) for both headers. It consists
 

of a cylindrical center section (core) with toroidal headers at each
 

end. The cylindrical section is composed of an inner cylinder with
 

machined fins to form flow channels and an outer cylinder, welded
 

together using the hot isostatic pressure process. The core and toroidal
 

headers are gas tungsten arc welded together to form the HSHX pressure
 

vessel assembly.
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Stress analyses were performed to determine the stress levels in the
 

toroids and at the ]oint between the toroids and the cylindrical-fin
 

-center sectron. The stress analysii utilized the "SNAP" computer pro

gram, (Reference 8), a finite element program utilizing shells of revolu

tion with axisymmetric loading.
 

This common E design was analyzed for three variations: a) a full
 

fillet radii, b) a conical interface, and c) no fillet radii.
 

Sketches of these basic variations are shown in the first column of
 

Figure 5-11. In order to meet the "early" 21 MPa (3000 psi) allowable
 

stress level, the configuration of each design variation would have to
 

be radically altered to those shown in the second column of Figure 5-11
 

with the exception of the selected Configuration #c.
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The following table shows pertinent data from the configuration computer
 

run for each variation which resulted in the lightest weight HSHX that
 

meets the 34000 psi creep aIlowable for the particular design variflton.
 

TABLE 5-2 SUMMARY OF HSHX DESIGN VARIATIONS
 

(SEE FIG. 5-11)
 

DESIGN MAX. STRESS HEADER EASE OF SECTION
 
VARIATION IN HEADER WEIGHT MANUFACTURE THICKNESS
 

MPa ksi kg lbs cm in
 

a 21 3.0 8.8 19.4 Difficult .13-.89 .05-.35
 

b 21 3.0 5.0 11.1 Easier .25-.57 .10-.225
 

c 12 1.8 2.0 4.4 Easiest .13 .05
 

The selected HSHX design common E without fillet radii is clearly the 

lightest weight design with the lowest stress profile and undoubtedly
 

the simplest to fabricate from among the designs. The calculated header
 

stress of 12 MPa (1784 psi) and plenum (see Figure 5-10) stress of 17 MPa
 

(2488 psi) results in margins of safety of respectively 0.55 and 0.1 for
 

a maximum allowable stress of 19 MPa (2774 psi), the original contractual
 

specification of 1% allowable creep at 1270K (18250F) for 10 years.
 

Reevaluation of design margins based on the updated NASA creep test data
 

extrapolations and revised lifetime requirements are given in Table 5-3.
 

This table shows the predicted stress levels and temperatures in the
 

critical regions of the HSHX. The "starved" region represents those
 

flow channels where the flow rates are lowest due to pressure drop vari

ations. These are the highest predicted HSHX operational temperatures.
 

The latest NASA creep test data extrapolated to 7 years (the revised
 



TABLE 5-3
 

HSHX STRESS SUMMARY
 

HSHX PREDICTED PREDICTED ESTIMATED 1% - 7 YR CREEP STRESS DESIGN MARGIN 

REGION MAX TEMP. MAX STRESS (FINE GRAIN) 

Nominal Starved 0 41 MPa 0 79 MPa At Starved 28K(500 F) Higher At Starved 28K(500 F) Higher

Flow Region (60 psi) (115 psi) Temp. Than Starved Temp Than Starved Temp
 

0Temp 0.79 MPa 0.79 MPa
.41 MPa 0 41 MPa 


K OF K OF MPa PSI MPa PSI MPa PSI ,fPa PSI (60 PSI) (115 PSI) (60 PSI) (115 PSI)
 

CORE 1175 1655 1190 1685 4 8 691 8 2 1190 20 2900 15 2175 3.2 1.4 2 1 


PLENUM 1195 1690 1210 1720 8 9 1298 17 2488 16 2320 12 
 1740 0.8 0 0 3 -0 3
 

HEADERS 1215 1730 1235 1760 6 4 931 12 1784 12 1740 9 1305 0 9 0 0 4 
 -0 3
 

f0 

0.8 
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HSA lifetime requirements) are shown for both the "starved" temperatures
 

and for temperatures 28K above these maximum HSHX operational temperatures.
 

The two pressure levels 0.41 MPa and OY.7Y MPa for which HSHX stress levels
 

are given represent the 1.3 KW BIPS system pressure (the anticipated
 

operational pressure for the HSA's) and the HSA contractual design speci

fication respectively. It is evident that with the reduced 1% creep
 

strength allowables, the diffusion welded core still has large positive
 

design margins. At the anticipated BIPS system operational pressure
 

the headers and plenum area also exhibit positive design margins, even
 

at temperaturesexceeding the maximum predicted operational levels by
 

28K. At the HSA design specification pressure (0.79 MPa), the stress
 

levels in the headers and plenum are just about at the 7 yr-l% creep
 

stress allowable at the maximum predicted temperature levels. At a
 

temperature 28K higher, however, they exhibit negative design margins.
 

5.3.1.2 EFFECT OF UNWELDED FINS
 

The purpose of this analysis was to determine the extent of lack of
 

welding of fins to the outer HSHX cylinder that could be tolerated
 

without exceeding design limits. The results are given in Figure 5-12
 

which shows the maximum stress levels as a function of unwelded fin
 

length. Table 5-4 summarizes the results of the analyses, giving the
 

maximum fin and shell stresses for cases without any fins unwelded up
 

through the condition of three adjacent fins without welding.
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TABLE 5-4 

HSHX MAXIMUM STRESS LEVELS FOR UNWELDED FINS 
(AXIAL PLUS BENDING) 

NUMBER MAXIMUM TENSILE MAXIMUM TENSILE 
OF FINS FIN STRESS SHELL STRESS 

UNWELDED MPa PSI MPa PSI 

0 6.5 946 8.2 1190 
1 16.3 2364 23.4 3388 
2 33.5 4864 52.4 7597 
3 53.9 7812 93.3 13537 

every other fin 14.8 2144 31.2 4532 
every third fin 17.0 2462 24.0 3488 

The maximum stress of 24 MPa (3488 psi) for the case of every third
 

fin completely unwelded along its axial length is approximately equal
 

to the 1% 7 yr creep stress at 1175K (1655 F) which represents the
 

nominal maximum predicted operational temperature in the diffusion
 

welded region of the HSHX. Thus, for the 0.79 MPa (115 psi) specifi

cation pressure of the HSA, a situation in which every third fin is
 

totally unwelded would result in stresses in the diffusion welded sec

tion of the HSHX at about the 1% creep limit.
 



TABLE 5-5 

EFFECT OF PARTIAL WELDING
 

CIRC b-1vflErENTTL 

PARTIAL WELDING
 

aI
 

PRESSURE LEVEL 
 0.41 MPa (60 PSI) 


Direct Tension Stress in Fin - Full Weld 2.9 MPa (427 PSI) 

(Bending Stress not considered)
 

1% - 7 Yr. Fine Grain Creep at 1175K
 
(lG55OF) = 23 MPa (3360 PSI)
 

Margin of Safety with Stress Concentra
tion Factor Kt = 2.0 
 2.9 


Minimum Circumferential Weld Length

with Kt = 2.0 
 .016 cm (.0064 in) 


DIRECTION ..3 c-ft 

0.79 MPa (115 PSI)
 

5.6 MPa (819 PSI)
 

1.1
 

.031 cm (.0122 in)
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The Columbium alloy support 3oints are simple shear clips spaced every
 

450 (except for the forward end) around the periphery of the two parts.
 

Each support 3oint consists of a bracket with a stud welded to the heat
 

source heat exchanger. The stud interfaces with the mating support on
 

the heat source.
 

The mating surfaces of all the brackets forms a 19 cm (7.5 in) circle
 

about the heat source heat exchanger and heat source center lines.
 

5.3.2 HSA SUPPORT STRUCTURE
 

5.3.2.1 Housing
 

The purpose of this analysis was to structurally size the housing which
 

is the primary support for the HSA.
 

A flight design beryllium housing (actual GDS hardware is stainless steel
 

to minimize cost) was analyzed for inertia loads due to launch and for
 

accident explosion blast over pressure loads. Maximum calculated stresses
 

are in the range of 207 MPa (30,000 psi) tension and 5 MPa (700 psi)
 

shear. These loads are within material allowables.
 

The HSA housing serves the following purposes:
 

1) It provides a sealed container for auxiliary cooling on the pad 

and protects components from external environments in space, and 

2) It supports the HSA. 

3) It provides the mechanical mounting points to the BIPS hardware. 

The housing consists of a cylindrical section and end domes. The
 

cylindrical section consists of a thin walled cylinder with integral
 

end rings. The end rings include a radial "U" ring section for
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attaching the end dome. The end rings serve three functions; the first
 

of these is to stiffen the cylindrical section and reduce relative motion
 

between the spherical segmented end domes and the 6ylindrical section.
 

The second function of the ring section is to react heat source and heat
 

source heat exchanger launch loads.
 

The heat source heat exchanger is attached to the heat source by a
 

series of clips at each end as discussed in the previous paragraph.
 

The heat source is held in place by end enclosure supports at each end.
 

The third function of the housing is to transmit launch loads to the
 

heat source assembly mounting points and hence to the BIPS hardware.
 

Housing loads were calculated for the three launch orientations;
 

1) 50 g's applied radially up at the S of the heat source asscmbly,
 

2) 50 g's applied radially to the side at the £ of the heat source 

assembly, and 3) 50 g's applied axially at the £ of the heat source 

assembly, (Fifty g's was the load criteria for the MW-RTG). In
 

addition, housing loads were calculated for a 45 psi blast over pressure
 

(Figure 5-1 of reference 9). The maximum stresses as indicated previous

ly were within beryllium allowable stress levels.
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5.3.2.2 End Enclosures
 

The purpose of this analysis was to verify the structural integrity of
 

the heat source end enclosures which are essentially the same as the
 

MHW-RTG end enclosures.
 

These titanium end enclosures were structurally analyzed for inertia
 

design loads of 50 g's applied to the heat source along any axis. The
 

assembly showed positive margins of safety for these conditions.
 

The heat source end enclosures shown previously in Figure 5-5
 

(Drawing 47C313092), support the heat source and the heat source heat
 

exchanger and react the inertia loads transmitted by them. These loads
 

are then transmitted to the heat source assembly housing.
 

The end enclosures consist of a hub to which the heat source is mount

ed and six radial legs equally placed around the hub. The enclosures
 

are made from titanium alloy (Ti-6AL-2Sn-4Zr-2Mo).
 

End enclosure loads were calculated for three launch orientations;
 

1) 50 g applied radially up at the heat source assembly center line,
 

2) 50 g applied radially to the side at the heat source assembly
 

center line, and 3) 50 g applied axially at the heat source assembly
 

center line.
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5.4 HYDRAULIC ANALYSIS
 

The hydraulic analysis of the HSHX included a pressure drop-and- flow
 

distribution analysis of the core, headers, inlet and exit ducts, and
 

an evaluation of the square to circular transition from the core to
 

the header. Uniform flow distribution in the core requires that the
 

static pressure profiles in the inlet and exit headers be parallel,
 

i.e., each core flow channel have the same static pressure drop. The
 

HSHX configuration has inlet and outlet ducts on the same side, pro

viding a "U" shaped flow path through the core. Heyda and Fulton,
 

Reference 10, have done extensive analytical work on this flow configur

ation and their loss factors and balancing techniques have been employed.
 

As flow enters the core, the velocity in the inlet header steadily
 

decreases along its length. This deceleration results in a static
 

pressure rise along the inlet header, which in the "U" shaped flow con

figuration somewhat offsets the loss in the outlet header.
 

Figure 5-13 presents the results of computer predicted flow distribution
 

on pressure drop for inlet and outlet header diameters of 3.8 cm (1.5 in)
 

and a HSHX nominal flow of 0.053 kg/sec. (0.117 lb./sec.). A recovery
 

factor (1) of 0.75 was used for the inlet header, and a 2.0 velocity
 

head loss (Y) was assumed in the exit header. Fluid channel flow
 

rates vary from 0.93 to 1.14 times the average flow. Since flow thru
 

the core is laminar, flow is very nearly proportional to A P; therefore,
 

Figure 5-13 provides a good graphical representation of the core flow
 

distribution. The strong effect of inlet and exit duct size on overall
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HSHX pressure drop can be clearly seen. For the nominal flow of
 

0.053 Kg/sec., inlet and outlet ducts of 3.2 cm (1.25 in.) yield an 

overall A P of about 1.86 kPa/0.27 psi as compared with 1.24 kPa/0.18 

psi for 3.8 cm meter (1.5 in.) diameter ducts, the latter being the 

selected duct size for the design. 

Flow could be balanced by increasing the pressure rise in the inlet
 

header or by decreasing the loss in the outlet header. Theoretically
 

uniform flow header sizes can be readily calculated by balancing the
 

header diameters as follows:
 

DINLET = (I
 

DEXIT
 

where: 	 DINLET = Inlet Header Diameter 

DEXIT = Exit -Header Diameter 

= Inlet Header Recovery Factor = 0.75 

Y = Outlet Header Velocity Head Loss = 2 

Hence 	 DINLET 0.78
 

DEXIT
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Uniform flow distribution could thus be achieved by maintaining the
 

3.8 cm (1.5 in.) diameter inlet header and increasing the exit header
 

diameter to 4.9 cm (1.92 in.) or by maintaining the 3.8 cm diameter
 

exit header and decreasing the inlet header diameter to 3.0 cm (1.17 in.).
 

Increasing the outlet header diameter would be the safest approach,
 

since the flatness of the resultant pressure profiles does not necessi

tate so accurate a determination of - and . It is questionable if the
 

potential A P reduction from uniform flow is worthwhile in view of the
 

large entrance and exit duct losses. Attaining perfectly uniform flow
 

at the expense of additional tooling, cost, and weight associated with
 

a larger diameter exit header is not warranted. Therefore uniform dia

meter inlet and exit headers were selected with a diameter of 3.8 cm
 

(1.5 in.).
 

In order to facilitate fabrication of the HSHX machined inner header,
 

circular flow channel holes are incorporated. The circular holes in
 

the header are .41 cm (0.16 in.) diameter and are .64 cm (0.25 in.) long
 

with a .81 cm (0.32 in.) long plenum section separating them from the
 

rectangular core. The circular inlet holes increase the core AP by
 

.16 kPa (0.023 psi) while the flow imbalance AP in the headers decreases
 

.04 kPa (0.005 psi) for a net increase of .12 kPa (0.018 psi). This is
 

considered a reasonable A P penalty for the greatly simplified and
 

reliable fabrication of round rather than rectangular holes in the
 

machined header fittings.
 

All of the above analysis has been based on the nominal flow rate of
 

.053 kg/sec. (0.117 lb/sec.). The flow rate may be as large as 0.057
 

kg/sec. (0.126 lb/sec.). For flow rates close to the nominal value,
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a close approximation of AP can be made by multiplying by the square
 

of the flow ratio. The pressure drop thus is predicted to be 1.4 KPa
 

(0.2 psi) at the nominal flow of 0.053 Kg/sec. (0.117 lb/sec.) and
 

1.6 KPa (0.23 psi) for the specification flow of 0.057 Kg/sec. (0.126 ib/
 

sec.).
 

Various options to decrease the pressure drop below 1.4 KPa by varying
 

the header dimensions were studied. These were invariably found not
 

justifiable because of weight and cost penalties.
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5.5 THERMAL ANALYSES
 

The purpose of the thermal analysis of the UISA was to
 

* 	Provide inputs to the design of the HSA
 

o 	Evaluate ESA thermal performance during normal operation
 

* 	Analytically evaluate performance of the Emergency Cooling
 
System (ECS)
 

* 	Analytically evaluate performance of the Auxiliary Cooling
 
System (ACS)
 

One, two, and three dimensional thermal models, programmed for computer
 

usage, were utilized in the thermal studies. Simple one dimensional
 

models were used early in the program to perform parametric sensitivity
 

studies. The detailed two dimensional models were based on the Multi-


Hundred Watt (MHW) k sphere model of the isotope heat source and were
 

utilized primarily to predict the isotope heat source component temper

atures, e.g., the PICS (iridium fuel clad) response to activation of the
 

ECS. The three dimensional models were developed to provide a detailed
 

temperature map of the HSA and to determine the heat balance, the ACS
 

response and the response to transients (startup, launch and shutdown).
 

Brief descriptions of the salient thermal studies are presented in the
 

following paragraphs.
 

The analytically predicted thermal performance of the preliminary design
 

is divided into four areas: nominal operation, ACS, ECS, and transient
 

analyses.
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5.5.1 NOMINAL OPERATION
 

The two dimensional thermal model is illustrated on Figure 5-14. Nominal
 

operational temperatures near the exit are listed in Table 5-6.
 

The three dimensional model of the preliminary design, on which are label

ed the predicted temperatures, is given on Figure 5-15. This profile
 

represents nominal flow conditions with the HSA radiating to the surround

ing space radiator at 345K (1600 F). Insulation hot face temperatures range
 

from 1055K (14400 F) near the inlet to 1170K (16500 F) near the exit. The
 

temperature distribution through the insulation is shown on Figure 5-16.
 

If nickel foil is to be limited to 923K/6500 C (a conservatively safe temper

ature) then it is evident from the figure that nickel foil must be limited
 

to the outer 20 layers of the blanket. The temperatures predicted by the
 

two and three dimensional models indicate that all HSA materials are opera

ting within a requisite range.
 

An analysis was performed to evaluate the effect of non-uniform HSHX flow
 

distribution on the circumferential temperature differential and to deter

mine the allowable limits for circumferential gradients in the critical
 

components.
 

The 3D preliminary design thermal model was used to obtain an accurate
 

representation of the circumferential gradient. The baseline case is that
 

with the flow ratio, defined as the ratio of flow in any given channel to
 

the average channel flow, equal to 1.0. This case was shown on Figure 5-15
 

as the nominal case.
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TABLE 5-6.- NORMAL-OPERATING TEMPERATURES NEAR THE EXIT
 
END OF THE HSA (TWO DIMENSIONAL MODEL)
 

COMPONENT NODE TEMPERATURE K (OF) 
NUMBER 

Fuel Center 96 1645 (2500) 

PICS 93 1505 (2250) 

T=50 Impact Shell 91 1425 (2110) 

Heat Shield 3010 1295 (1870) 
Surface 

HSHX Inner Wall 101 1195 (1690) 

Helium Xenon 301 1100 (1515) 

HSHX Outer Wall 121 1165 (1640) 

Inner Insulation 601 1160 (1630) 
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FIGURE 5-15 
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HSA INSULATION TEMPERATURE PROFILE 
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The 3D model consists of a 1/8 wedge of the HSA; thus each computer run
 

represents 1/4 of the circumferential temperature gradient. Circumfer

ential conduction is included within but not between wedges. Since the
 

nominal case represents the midpoint of the flow distribution range
 

(1.14 to 0.93 of the nominal flow rate), the two extremes were analyzed
 

to complete the profile. Actually extremes of 1.22 and 0.89 of the flow
 

rates (which represent conservatively high and low extremes) were used in
 

the temperature analyses. Results of this study indicate maximum circum

ferential temperature differentials of approximately 35K (600 F) on the
 

heat source and the HSHX. The location of the maximum AT is near the
 

exit header.
 

The fluid exits the HSHX at about 1145K (16050F), which is very close to
 

the specified Brayton turbine inlet temperature. Since the working fluid
 

is heated as high as 1175K (16600 F) in the region of lean flow, this
 

indicates adequate mixing prior to exiting the HSHX.
 

Since there are no specified allowable limits for circumferential temper

ature gradient, a scoping study was performed to determine a rough magni

tude of permissible limits. MHW reentry analyses of the heat source have
 

shown that a circumferential surface gradient of 1110K (20000 F) is toler

able. Preliminary structural analysis of the HSHX has indicated that a
 

165K (3000F) longitudinal gradient produces a negligible stress. Thus,
 

it appears that circumferential temperature gradient on the order of 35K
 

(60F) in the heat source and the HSHX is tolerable.
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The HSA contract requires that the heat source surface temperature not
 

exceed-13-73K (20-120 F) during normal operation, even if the HSHX inlet
 

temperature is raised 55K (1000F) to 1035K (1405%F).
 

The 3D thermal model was utilized to determine if this requirement is
 

met. For HSHX inlet and exit temperatures of 1035K (14050 F) and 1200K
 

(17000 F) respectively, which correspond to a 55K (1000F) higher turbine
 

inlet temperature, the maximum heat source surface temperature is 1315K
 

(19050F). This is approximately 60 K (1100 F) lower than the contract
 

requirement. Thus the contract required temperature limit is met even
 

with the optional higher turbine inlet temperature of 1200K/17000 F.
 

5.5.2 AUXILIARY COOLING SYSTEM (ACS)
 

It is required that the ACS maintain any surface exposed to the external
 

environment below the booster fuel auto ignition temperature of 465K
 

(3800 F). To determine if this requirement is met an analysis was conducted
 

under the assumption that the HSA housing is exposed to the external environ

ment. The internal volume of the HSA is charged with 1 atmosphere of helium
 

to provide a low resistance path for heat flow from the isotope heat source
 

to the HSA housing. Results of the study are tabulated in Table 5-7. It
 

is evident from the results that the specification requirement is satisfied.
 



5-47
 

TABLE 5-7. ACS ANALYSIS SUMMARY
 

TEMPERATURES, K (OF)
 

Preliminary Reference
 
Design Design
 

Housing 425 (305) 425 (305)
 

Inner Foil 505 (450) 540 (515)
 

HSHX 950 (1250) 975 (1295)
 

Heat Source Surface 1095 (1510) 1050 (1430)
 

PICS (Iridium Fuel Clad) 1345 (1965) 1325 (1925)
 

5.5.3 EMERGENCY COOLING SYSTEM (ECS)
 

The ECS is designed to maintain acceptable heat source temperatures in
 

the event of a failure of flow of the working fluid through the HSHX.
 

The problem is to dissipate the 2260 watts (7713 Btu/Hr) which is normally
 

transferred to the helium-xenon working fluid. The method selected is
 

that of melting/vaporizing/fusing the multifoil insulation blanket until
 

the therma) resistance is sufficiently low to transfer the full 2400 watt
 

(8191) Btu/hr) heat load to space while maintaining safe PICS (iridium 

fuel clad) temperatures. 

The 2D model (Figure 5-14) was utilized to perform the analysis. It must
 

be emphasized that the analytic predictions are ultra conservative in that
 

the effect of self-welding and fusing of the foils is not included in the
 

computer model; the phenomena which was observed in the small scale melt

down tests will considerablv alter the temperature response analytically
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predicted herein. These analytical results are shown in Figure 5-17 
on
 

which 17 representative nodes are plotted. Nine of ten insulation nodes
 

(54 of 60 foil layers) melt and the remaining node reaches a peak temper

ature of approximately 1530K (23000F). This insulation node will evapor

ate in approximately 70 hours. The PICS reaches a peak temperature of
 

approximately 2030K (32000F) about 40 hours after activation of the ECS
 

and stabilizes at approximately 1615K (24500F).
 

Full scale tests should be conducted to verify that these analytic results
 

are indeed overly conservative.
 



2/Co 

0tu 

I0 
1iUN 0AO 

er r r E"4 

0,c 1V19d 

/ 70f0 

o/ 10/ 

TW DIESOA 

30 /A' fl00A SO 
714 Z-Z,-k-071# 

RESPONSE 

FIUR 

10 8'09a 
FfC ~tC 

WTHL6/9HETtOUC 

5-7I 

/00 -/'0 

7-so 

t 

SS 



5-50
 

5.5.4.4 TRANSIENT ANALYSIS
 

A potentially damaging situation during a Brayton system ground demon

stration test is failure of the Electric Heat Source. A 3D thermal
 

model analysis examined the transient thermal response of the HSA to a
 

step decrease in power from 2400 watts to zero watts. The shutdown
 

transient was simulated by zeroing the internal generation of the heat
 

source and by stopping the flow of the working fluid, the later being
 

a conservative assumption. The transient temperature response to shut

down is illustrated on Figure 5-18 for the nodes which responded with
 

the largest temperature swings. Since the fluid flow has stopped, all
 

heat is transferred thru the insulation. Consequently, due to the
 

large thermal inertia of the HSA, the response is slow. The maximum
 

temperature ramps are tabulated in Table 5-8. The most critical component
 

is the HSHX and the 85K (1500 F) excursion in 15 minutes is judged to be
 

within acceptable limits.
 

TABLE 5-8. MAXI4UM TEMPERATURE EXCURSION, 
DUE TO SHUTDOWN TRANSIENT 

COMPONENT MAXIMUM TEMPERATURE EXCURSION 
K/15 MINUTES (OF/15 MINUTES) 

Average Heat Source 70 (125) 

Heat Source Surface 10 (15) 

HSHX 85 (150) 

Columbium Insulation 80 (140) 
Support Cylinder 

Inner Insulation 50 (90) 

Outer Insulation 2 (3) 

Housing 0.5 (1) 
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Startup transients are reported in detail in Reference 11. A worst case
 

cold startup analysis indicated that no critical stress conditions are
 

anticrpated on &ny components on the HSA due to these transient con

ditions.
 

5.6 SYSTEM INTERFACES
 

The HSA's are supported off three mounting points on the housing and
 

domes with the inlet and outlet extension ducts welded to the BIPS
 

recuperator, and turbine inlet ducts. The location of the mounting
 

points and the inlet/outlet ducts are the critical mechanical inter

faces with the Brayton system. Electrical interfaces are provided by
 

both power and instrumentation connectors. A Gas Management Valve
 

provides the interface with ancillary BIPS support equipment for back

filling and venting the HSA's during auxiliary cooling.
 

These system interfaces are shown on Figure 5-19 (Dwg. 47E313138).
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SECTION 6
 

HARDWARE FABRICATION
 

6.1 CLEANLINESS REQUIREMENTS
 

The required seven year operational life of the HSA, and the critical
 

nature of the components in the BIPS fluid loop requires stringent clean

liness criteria to be imposed on the fabrication procedures. Reference 8
 

specifies in detail these cleanliness requirements. The salient
 

requirement is that all parts that are internal to the Xe-He fluid
 

loop, must be flush cleaned with specified cleaning fluid to assure
 

no residual hydrocarbons and no loose particulates in accordance with
 

the acceptance criteria given below in Table 6-1.
 

TABLE 6-1
 

LOOSE PARTICULATE ACCEPTANCE CRITERIA FOR HSHX FLUID LOOP
 

Particle Quantity 
Size - Micrometers Permitted 

150 0 

100 - 150 40 particles/ m2 

25 - 100 1000 particles/m 2 

0 - 25 unlimited
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All HSA parts that are external to the fluid loop are cleaned by
 

immersion or flush cleaning with specified cleaning agents and blown
 

dry with nitrogen or inert gaS to -emove residual contamination and
 

particulates. Following cleaning,items are packaged in clean Nylon C
 

bags and heat sealed. These are then double protected in a polyethylene
 

outer bag.
 

6.2 HEAT SOURCE HEAT EXCHANGER (HSHX) FABRICATION
 

The C-103 HSHX is the major and most critical component of the HSA.
 

The engineering requirements and complete definition of the hardware,
 

including reference to appropriate specifications, are contained in the
 

six GE configuration control drawings listed below which provide the
 

basis for manufacture of deliverable hardware. 

Assembly, Heat 

Scroll, Inner 

Title 

Source Heat Excha

Drawing No. 

nger 707E839 

101D9580 

Scroll, Outer 101D9581 

Cylinder, HSHX 

Bracket 

101D9586 

152B4843 

Port 152B4585 
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The assembly drawing indicates the weld assembly of the components,
 

the key interface dimensions which must be controlled in the welding
 

and finish machining operations on ports and mounting brackets, and
 

the necessary post-weld annealing, inspection and test requirements.
 

A general outline of the process for the manufacture of the HSHX com

ponents is indicated in Figure 6-1 and described in greater
 

detail below.
 

6.2.1 INNER CYLINDER
 

The inner cylinder is formed from 1.27 cm (0.5 in)thick plate by care

fully pressing a forming bar down on the plate which is supported under

neath by two parallel forming bars, one on each side of the pressure bar.
 

Except for short lengths at either edge of the plate the plate is formed
 

or "bumped" into a half cylinder using sheet metal templates to guide the
 

"bumping" operations. (See Figure 6-1a).
 

The formed piece is supported in a milling machine with conventional
 

shop clamping and supporting devices and, in a single set up, the weld
 

preps are machined for both joints.
 

The cylinder halves are clamped together and installed in the vacuum
 

purged GTA welding chamber. The parts are tack welded together at the
 

weld joint and a single root pass without filler is applied at each
 

weld joint. Subsequent filler wire passes complete these welds; atten

tion was paid to alternating welding direction and to reforming and/or
 

stress relieving the components as required to avoid gross deformation
 

of the part.
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Figure 6-1a. Highlights of HSHXC Manufacturing Process Plan 
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Figure 6-lb. HSX Manufacturing Plan (continued) 
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Figure 6-1c. HSHX Manufacturing Plan (continued)
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Figure 6-1d. HSHX Manufacturing Plan (continued)
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Figure 6-le. HSHX Manufacturing Plan (continued) 
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Figure 6-1f. 	 HSHX Manufacturing Plan (continued) 
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The cylinder is stress relieved at 1700K (26000F) for one hour.
 

After stress relief, the part is reformed to shape and re-stress
 

relieved, if necessary.
 

A rough cut is made on the OD of the cylinder to fit it within a
 

support fixture in which the ID surface is turned to final dimension
 

and surface finish. The part is then installed on an expanding man

drel with a precision OD mated to the precision ID of the cylinder.
 

Then the slot machining and machining to length complete this cylinder
 

for diffusion welding assembly. Welds are radiographed and fluorescent
 

penetrant inspected (FPI) and the cylinder is helium leak tested. A
 

photograph of the machined inner cylinder is shown in Figure 6-2 and
 

also in Figure 6-3 along with other components.
 

6.2.2 OUTER CYLINDER
 

This component is made from 0.127 cm (0.050 in) thick C-103 sheet by
 

trimming to rough size, rolling into a 3600 cylinder and trimming the
 

circumferential length to a dimension which makes allowance for weld
 

shrinkage (Figure 6-1b). The cylinder is fixtured and welded to produce
 

a cylinder very close, but slightly undersize with respect to installa

tion over the inner cylinder. This cylinder is then thermally sized
 

over a stainless steel mandrel by vacuum heating to progressively higher
 

temperatures in the range from 645-1090K (700-15000 F). This sizing oper

ation is specifically tailored for each cylinder to permit a simple, but
 

snug, fitup with the specific cylinder to which it mates.
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Final weld inspection includes radiographic inspection, FPI, and helium
 

leak test. A photograph of the C-103 outer cylinder is shown in Figure
 

6-3. 
 5
 

6.2.3 DIFFUSION WELDING ASSEMBLY
 

Several expendable components are required for the diffusion welding
 

assembly. These include the Cb-lZr inner and outer seal cylinders, 
 3 
the inner and outer molybdenum barrier cylinders, the C-103 end rings,
 

the molybdenum flow passage filler bars and molybdenum and tantalum 


foil wrapping to protect the assembly from contamination in the high
 

pressure, high temperature autoclaving process.
 

The Cb-lZr seal cylinders are formed from rolled and welded sheet. No 


I

I
 
thermal sizing is required but these cylinders must fit on the inside 3
 
and outside of the diffusion bonding cylinder assembly with sufficient
 

precision in fit-up to permit weld seal assembly to the end rings. The 3
 
cylinder welds are radiographic and FPI inspected and the cylinders
 

helium leak tested. A photo is shown in Figure 6-3. 3
 
The molybdenum barrier cylinders are rolled in four segments but not 
 3 
welded and fit into place in the diffusion welding assembly between the
 

component and the Cb-lZr seal envelope. Grinding fixtures are used to
 

trim the circumference to accurate length for precision fit up. A 
 3 
photo showing two segments is given in Figure 6-3.
 I

I
I
I
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I The end rings are fabricated from rolled and welded bar stock, as shown 

in Figure 6-lb. Radiographic and FPI inspection are used to verify the 

U welds. The rings are stress relieved, finish machined and the welds in
 

the ring helium leak tested. One of the two required rings have four
 

I axially drilled holes located in it for evacuation prior to final seal-

Ring 
of the assembly. A photograph of the rolled bar stock and finished
 

end rings is shown in Figure 6-3.
 

I-The diffusion welding assembly is cleaned, assembled, welded, evacuated,
 
Ibaked-out, sealed, diffusion welded, metallographically evaluated, leach

ed and ultrasonically inspected as prescribed in GE Specification P3AYAl5.
 

E The assembly is as indicated in Figure 6-1c. The assembly is made in 

Islid into place, and the top end ring is installed.
 

I the vertical position on a clean air flow bench using chemically cleaned 

I 
parts. The inner cylinder is installed over the lower end ring, the 

molybdenum filler bars are installed, the outer cylinder is dropped in 

place over the inner cylinder and molybdenum bars, the inner and outer 

barrier cylinders are installed, the inner and outer seal cylinders are 

IThe diffusion welding assembly is then installed on the rotating ID 
welding fixture and seal welds are made in the vacuum purged GTA tank

Ibetween the end rings and the Cb-lZr seal cylinders. 
I 	The assembly is then transferred to the EB welding chamber where it is
 

baked out under vacuum at 335K(1400 F) or higher for a minimum of 16
 

then placed in the evacuation ports and EB welded 

I in place completing the sealing of the assembly. 

Ihours. Solid plugs are 


I
 



FIGURE 6-3 
HSHX PRODUCTION PARTS
 

C-103 OUTER AND INNER CYLINDERS 
 Cb-lZr SEAL CYLINDERS
 

{ * 

MOLYBDENUM BARRIER CYLINDER SEGMENTS C-103 END RINGS 

i2 s 

)m 

• 

00, 

v, , ' 



1 	 6-15
 

I
 
The sealed assembly shown in the photo of Figure 6-4 is then wrapped in
 

I 	layers of tantalum foil and installed in the BCL autoclave. A typical
 

temperature and pressure history applied in the Hot Isostatic Pressing
 

(HIP) process is shown in Figure 6-5. After the temperature equilibrates
 

Iat 1810K and 68.95 MPa (2800°F and 10000 psi) these conditions are main
tained for three hours before the power is turned off and the system is
 

H•allowed to cool slowly to room temperature.
 
U 6.2.4 DIFFUSION WELDED ASSEMBLY CYLINDER MACHINING AND LEACHING
 

With the diffusion welded assembly fixtured on the holding fixture,


U metallograhic test rings are machined from each end of the assembly and 

i 	the ends of the assembly are finish machined to length (Figure 6-1d).
 
The OD and ID of the assembly is carefully machined to partially remove


U areas of the Cb-lZr pressure envelope and expose sections of the moly

bdenum barrier cylinders. A photo of the scalloped assembly is shown in 

I 	 Figure 6-6. 

3 The finished diffusion welded cylinder assembly is recovered by leaching
 
the molybdenum barrier cylinders, removing the Cb-lZr outer seal cylinders
 

and then continuing to leach the molybdenum filler bars from the flow


U passages and any remaining areas of the molybdenum barrier cylinders from 

the OD and ID of the assembly.I 
I
I
I
I
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Ultrasonic inspection of 100% of all diffusion welds is then performed
 

along with metallography of the test rings. A photograph of the cylin-


der being ultrasonically inspected is shown in Figure 6-8. The trans

ducer head, which transverses the length of the cylinder as the cylinder 


is rotated in steps, is out of view on the vertical tube behind the 


cylinder. A typical "C" scan trace is given in Figure 6-9. The white
 

areas represent the diffusion welded fin to outer cylinder regions.
 

No unwelded areas were observed. Typical metallography from the
 

3
 

3
 

I
 

end test rings is shown in Figure 6-10. Excellent grain growth across I
 
the diffusion weld with no evidence of porosity or the location of the 3
 
original weld interface is apparent. This metallography along with the
 

ultrasonic inspection demonstrate the superior quality of the diffusion
 

welds and give high confidence in the integrity of the heat exchanger.
 I
I
I
 
U
 
I
I 

I
I 

I
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FIGURE 6-10
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* 	 6.2.5 INNER SCROLL MACHINING
 

The inner scroll is machined from plate stock in several steps as in-


I 	dicated in Figure 6-le. The bore section of the plate is removed by
 

machining and the concave surface of the scroll is rough machined.
 

The part is reversed and the outer surfaces of the scroll are rough
 

I 	machined. After this, the part is stress relieved at 1700K (26000 F)
 

for one hour. The part is then faced at the cylinder end. After
 

U 	inverting the part, the rabbeted ends of the scroll are machined, the
 
inside surface of the scroll is machined and several of the flow passage


I holes are drilled and tapped undersize for the next fixturing operation.
 

i The part is inverted and installed on a fixture which supports the inside
 

surface of the machined scroll. The part is held on the fixture by means
 

I of several undersized drilled and tapped holes located at the eventual
 

location of air flow passage holes. After final contour machining of 

I the outside of the scroll, the locating bolts are removed and the flow 

I passage holes are drilled to final size with the part clamped to the 

fixture with external clamps. Figure 6-11 shows photographs of the
 

U finished part along with a photo of the hole drilling operation.
 

E 	6.2.6 OUTER SCROLL FORMING
 

As indicated in Figure 6-1f, the outer scroll forming is accomplished
 

H as follows. The 0.127 cm (0.050 in) thick C-103 sheet and aluminum
 

I sheet spacers are trimmed to size. The aluminum sheet, which acts to
 

protect the C-103 from galling on the steel die surfaces, is installed
 

E on either side of the C-103 forming blank and the assembly is installed
 

I 
I 
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under the hold-down plates of the forming die. After forming, the
 

aluminum spacer materials are removed and the C-103 scroll with
 

integral flanges is chemically cleaned and stress relieved at
 

1590K (24000F) for one hour. The flanges are removed and the scroll
 

member formed to final size using trapped rubber forming aided by
 

placement or removal of aluminum spacers to control spring back.
 

The finish formed piece is stress relieved again and a final trim

ming and weld preparation made.
 

6.2.7 MISCELLANEOUS PARTS 
 3
 
These include mounting brackets, studs and inlet and outlet ports.
 

The mounting brackets are formed from 0.15 cm (0.06 in) thick C-103
 

sheet stock with a boss welded on and tapped to receive the stud screws.
 

The inlet and outlet ports are rolled and welded from sheet stock and I
 
sized to fit the openings in the scrolls and to provide for full pene

tration butt welding.
 

6.2.8 WELD ASSEMBLY 
 I 
The diffusion welded cylinder and inner scrolls are assembled on a 3
 
welding fixture which supports the ID surfaces of both parts at the
 

weld joint. The parts are tack welded together at the OD and between
 

the weld fixturing shoes at the ID. The weld fixture is then reposi

tioned with the ID fixturing shoes inboard of and adjacent to the ID I
 
welds while the circumferential weld joints are made. After the inner 
 3 
scrolls are assembled, the outer scrolls are held in place by fixturing
 

clamps and the components tack welded and GTA welded on the OD and ID 
 3 
circumferential weld joints. The process in various stages of assembly
 

is shown in Figure 6-12. 
 1 
I 
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MACHINED INNER SCROLL
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Holes for the forward and aft ports are precisioned machined in the 

scrolls, to provide for butt weld attachment of the ports. This 

operation is shown in Figure 6-13. The ports are precisely fixtured 

to the scrolls and butt welded in place from the outside, and back 

welded on the inside. Fixturing is required to control distortion during 

the welding operation. Finished welds are radiographically inspected. 

After the ports are in place, the forward and aft brackets and studs I 
are welded in position. The brackets are fastened in position on
 

special fixtures which assure accurate location of the tapped holes
 

relative to the final assembly, during the welding operation. This is 
 3 
shown in Figure 6-14.
 

Final stress relief of the welded assembly is done at 1590K (2400°F)
 

for one hour with the assembly double wrapped in tantalum foil and 
 3 
positioned on a molybdenum wrapped ceramic fixture. Small fixtures
 

are used in each port to control distortion during the heat treat. 
 U 
After the stress relief the studs are faced off to critical interface I 
dimensions in order to mate with Electric Heat Source supports. This 3 
machining operation is shown in Figure 6-15.
 

Final inspection of the assembly takes place after conformance tests 
 U 
(pressure drop and proof pressure) and includes radiography of all i
 

welds (except brackets and stud welds), 100% ultrasonic re-inspection
 

of the diffusion welds and leak tests of the fluid loop. Photographs 
 3 
of a completed HSHX assembly is shown in Figure 6-16.
 

II 
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ORIGINAL PAGE ISOF POOR QUALITY 

CYLINDER WITH INNER AND OUTER SCROLL PIECES
 

INNER SCROLL WELDED OUTER SCROLL FIXTURED
 

FIGURE 6-12
 

HSHX WELD ASSEMBLY IN VARIOUS STAGES OF COMPLETION
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I1 

HSHX NO. 1 WITH SCROLLS WELD ASSEMBLED
 
AND PORTS TEMPORARILY POSITIONED.
 

HSHX NO. 1 DURING MACHINING OF INLET
 

AND OUTLET PORTS.
 

FIGURE 6-13 
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FIGURE 6-16
 

COMPLETED HEAT SOURCE HEAT EXCHANGER (HSHX) 
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6.3 SUPPORT AND MISCELLANEOUS HARDWARE
 

A majority of the HSA hardware components - other than the HSHX were fabri-
 I 
cated by vendors and subcontractors. A brief description of these are given
 

below.
 

6.3.1 HOUSING AND DOMES 
 i
 

The housing and two end domes constitute the outer envelope of the HSA and
 

provide the mechanical support interface with the BIPS support structure.
 

The housings and domes are machined from stainless steel (CRES 304L) and
 

plasma sprayed with a high emissivity Radifrax coating. In a flight sys

tem these components would be fabricated from beryllium to minimize weight.
 

Photographs of the housing and domes are shown in Figures 6-17 and 6-18.
 

6.3.2 END ENCLOSURE AND PRELOAD SCREW 

The end enclosures are machined from a titanium alloy (6-2-4-2) and plasma 

sprayed with the Radifrax coating. These interface with the housing and the 

heat source and provide the support and load path for the electric heat 

source. By means of the preload screw, a prescribed preload is applied to I 
this system. Photographs of the preload screw and enclosure are shown in 

Figures 6-19 and 6-20. 

I
 
i
 
i
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FIGURE 6-17
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FIGURE 6-18
 

STAINLESS STEEL DOME WITH GAS HANAMENT ASSEMBLY
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PRELOAD SCREW 
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TITANIUM END ENCLOSURE
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i 6.3.3 GAS MANAGEMENT ASSEMBLY 

The gas management assembly (GMA) provides the valving for both back-


I filling the HSA with inert gas for auxiliary cooling modes of operation 

I welded to the inlet/outlet duct on the opposite end. 


I 
and venting the inert gas for vacuum operation. 

GMA is shown in Figure 6-21. 

A photograph of the 

I 6.3.4 CONNECTORS 

Four connectors for thermocouple instrumentation and two electric heat 

I 
source power connectors are located in the end domes. A photograph 

of these two types of connectors is shown in Figure 6-22. 

I 6.3.5 BELLOWS 

A C-103 bellows provides the "seal" between the stainless steel housing 

I and the inlet and outlet ducts for the auxiliary cooling mode of operation. 

The bellows with a "C" seal is bolted to the housing on one end and 

The bellows allow
 

for lateral growth of the heat exchanger during heat up from room tem

perature. A photograph of the bellows is shown in Figure 6-23.
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6.4 	INSULATION
 

I-The multifoil insulation system consists of a large cylindrical blanket
I and two end caps which form a cylindrical enclosure surrounding the HSHX
t 

and two short cylindrical blankets which insulate the inlet and outlet
 

Iports. The large cylindrical blanket consists of 39 inboard layers of
 
0.00127 cm (0.0005 in) molybdenum foils followed by 20 layers of 0.00127
 

cm (0.0005 in) nickel foils. These foils are supported by a 0.076 cm
 

3 (.030 in) C-103 tube inboard of the blanket. A 0.0076 cm (0.003 in)
 

stainless steel outboard cylindrical sheet surrounds the blanket to aid
 

Iin handling. The end caps and short port cylindrical blankets consist of
 

60 layers of 0.00127 cm (0.0005 in) molybdenum foils. The foil on the


E end caps are sandwiched between two sheets of 0.038 cm (0.015 in) C-103 

I 	alloy. All of the foils are sparcely coated on the inboard surface with
 

zirconia. Five to six percent of the surface area is coated with zirconia
 

with a coating density of about 0.030 to 0.090 mg/cm2 . Photographs of
 

the instrumented large cylindrical blanket and end cap are shown in


I Figures 6-24 and 6-25 respectively. 

I
I 

6.5 WEIGHT 

Table 6-2 presents calculated and actual measured weights. Additionally 

an estimate of a flight configuration is given. The latter assumes a 

I beryllium housing and domes as well as a weight optimized insulation 

I support configuration. 

I
 
I
 
i
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FIGURE 6-24 
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TABLE 6-2
 

HSA WEIGHT SUMMARY
 

GDS GDS Projected
 
Item Qty. Total Wt.(Calculated) Total Wt.(Measured) Flight Wt.
 

Kg Lb Kg Lb Kg Lb
 

HSHX 1 8.886 19.59 9.299 20.50 9.299 20.50
 
Housing Assy. 1 14.370 31.68 14.288 31.50 3.225 7.11 (Beryllium)
 
Insulation Cyl. 1 6.709 14.79 7.516 16.57 3.606 7.95
 
Insulation End 2 1.964 4.33 2.141 4.72 0.930 2.05
 
End Enclosure 2 1.950 4.30 i03.65 2.304 5.08 103-711.814 4.00
 
Preload Screw 2 0.218 0.48j Lb. 0.295 0.65 LB 0.295 0.65
 
Dome 2 10.414 22.96\ 9.095 20.05 1.207 2.66
 
Connector-Power 2 0.835 1.84i 0.703 1.55 
Connector-Instru. 4 1.669 3.68/ 1.402 3.093 -

Bellows 2 0.830 1.83 0.830 1.83
 
Gas Mgt. Assy. 1 0.476 1.05 0.476 1.05
 
Misc. Hardware 3.969 8.75* 2.663 5.87
 
(Seals, Screws,
 
Insul., etc.)
 

Subtotal 51.006 112.45 23.932 52.76
 

EHS 21.546 47.5
 
IHS - 18.824 41.50
 

Total Weight 72.552 159.95 42.756 94.26
 

*Including Bellows and Gas Mgt. Assembly
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e. Successful completion of a room temperature air flow test of the
 

first HSIIX unit fabricated to verify pressure drop. The tests
 

should be conducted at design pressure with the air flow adjusted
 

to match Reynolds numbers expected with the design working fluid.
 

A helium leak test of this unit shall be conducted as the last test
 

prior to delivery.
 

7.2 TEST FLOW PLAN
 

The sequential plan to accomplish the acceptance tests is depicted in
 

the flow plan given in Figure 7-1. It provides for acceptance testing
 

of the HSHX's prior to assembly in the HSA's. Since the final HSA
 

assembly was not required, those tests indicated in the figure for "HSA
 

Assembly" were not performed 

7.3 HSHX PROOF PRESSURE TEST
 

7.3.1 TEST CONDITIONS
 

The HSHX was tested at room temperature under a gauge pressure of 2.5 MPa
 

+ 0.07 MPa (360 psi + 10 psi) for a period of not less than 10 minutes. 

This pressure requirement is based upon a 1.5 safety factor over the 

design operating pressure and takes into consideration the increased yield 

strength of C-103 alloy at room temperature as compared to its yield 

strength at operating temperature as indicated in the equation: 

PT = k x -RT x PD 
(y-ET 
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where: 

PT = Room temperature proof test pressure - 2.5 lPa (360 psig) 

k Safety factor (1.5) 

-RT = Room temperature 0.2% yield strength - 275 MPa (40 ksa) 

C-ET = Elevated temperature 0.2% yield strength - 127 MPa at 1227K 
(18.5 ksi at 17500F) 

PD = Design pressure - 0.8 MPa at 1227K (115 psia at 17500 F) 
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7.3.2 TEST EQUIPMENT
 

Hydraulically pumped distilled water was used as the pressurizing medium.
 

The high pressure water supply was connected by means of high pressure
 

tubing to the HSHX through a control valve, particle filter and a cali

brated pressure gauge; connections at the HSHX was made using expandable
 

neoprene rubber plugs. The HSHX was filled with water in such a manner
 

as to minimize the possibility of entrapment of air pockets with the test
 

system. Figure 7-2 shows a schematic of the test set up.
 

7.3.3 PRESSURE TEST PROCEDURE
 

The pressure was increased slowly in five approximately equal pressure
 

increments holding for a minimum of 10 seconds at each of the four pres

sure increments and for a minimum of 10 minutes at the 2.5 MPa + 0.07 MPa
 

(360 psig + 10 psig) maximum pressure. After completion of the test the
 

pressure was slowly released in five successive approximately equal incre

ments holding for a minimum of 10 seconds at each of the four pressure
 

increments.
 

7.3.4 TEST RESULTS
 

All three HSHX units successfully passed the proof pressure tests without
 

any visible effects and without any indication of leaks or degradation of
 

welds as indicated by subsequent leak tests, and radiographic and ultra

sonic inspection.
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7.4 HSHX PRESSURE DROP TEST
 

7.4.1 TEST CONDITIONS
 

HSHX flow conditions required bv design parameters are as follows:
 

Temperature 1061K (14500F) (mean)
 

Pressure 0.243 MPa (35.3 psia)
 

Maximum Pressure Drop 0.0015 MPa (0.22 psia)
 

Flow Rate 0.057 Kg/sec (0.126 ib/sec)
 

Fluid 83.8 Molecular Weight (ne/Xe)
 

In order to retain equivalent Reynolds number flow conditions using
 

air in a flow test at room temperature, the following conditions were
 

utilized:
 

Temperature R.T. - 300K (800F)
 

Pressure 0.243 MPa (35.3 psia) or (20.6 psig)
 

Maximum Pressure Drop 92.4 Pa (0.0134 psia) or 0.37 inch H20
 

Flow Rate 0.0158 Kg/sec (0.0348 lb/sec) or 2.09 lb/min)
 

Fluid Air
 

7.4.2 TEST EQUIPMENT
 

The HSHX was connected to a pressurized air supply through a pressure
 

regulator, flow control valve, pressure gauge and air flowmeter as shown
 

in Figure 7-3; a throttling valve was installed down-stream of the HSHX
 

exit port to maintain system pressure at the HSHX inlet and a water
 

manometer was installed to read the pressure differential between the HSHX
 

inlet and outlet. For flow stability purposes a ten diameter length of
 

3.81 cm (1-1/2 inch) ID tubing was connected to the inlet and outlet ports.
 

Pressure gauge and water manometer connections were made in these test duct
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extensions as near as practical to the inlet and outlet ports of the HSHX.
 

Temporary butt joints were made between these test ducts and the HSHX
 

inlet and outlet ports by means of hose clamped rubber sleeves over the
 

butt ]oints.
 

7.4.3 TEST PROCEDURE
 

At least six air flow tests were performed at 0.243 MPa (35.3 psia or
 

20.6 psig + 0.1 psig) at flow rates from below 0.0158 Kg/sec (0.0348 lb/
 

sec) to approximately 0.0454 Kg/sec (0.1 lb/sec). Flow rate and pressure
 

were conducted by regulating the inlet and outlet air control valves and
 

the water manometer was read when required test conditions were established.
 

7.4.4 TEST RESULTS
 

Although pressure drop tests were required only on one HSHX, tests were
 

conducted on all three HSHX's. Test results are shown in Figure 7--4 along
 

with the results scaled to the pressure level 0.445 MPa-(64.6 psia) and
 

flow 0.05 Kg/sec (0.11 lb/sec) at operating temperature required for the
 

1.3 KW BIPS. The results indicate that HSHX No. 1, No. 2 and No. 3 exceed
 

the required pressure drop by 21%, 24% and 10% respectively. The BIPS
 

system requirements however differ from the HSA contract requirements.
 

The flow and allowable pressure drop for the two HSA (1.3 KW) and three
 

HSA (2 KW) system configuration are shown in Table 7-1 below.
 

TABLE 7-1
 

BIPS SYSTEM FLOW REQUIREMENTS
 

2 HSA System 3 HSA System 
Flow, Kg/sec (lb/sec) each HSA 0 U5028 (0.11085) 0.05062 (0.1116) 
Pressure, MPa (psi) 0.445 (64.6) 0.6877 (99.74) 

A P/P 0.003 0.002 

AP, MPa (psi) 0.001336 (0.1938) 0.001376 (0.1995) 
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Scaling the test data to the two and three HSA conditions results on the
 

following pressure drops for the two assemblies tested.
 

TABLE 7-2
 

HSA SCALED PRESSURE DROP TEST DATA
 

BIPS 2 HSA System BIPS 3 HSA System 

HSA #1 AP, KPa (psi) 0.7963 (0.1155) 0.5240 (0.076) 

HSA #2 AP, KPa (psi) 0.8156 (0.1183) 0.5350 (0.0776) 

HSA #3 AP, KPA (psi) 0.7239 (0.1050) 0.4744 (0.0688) 

Comparing these values of A P to those in the preceding table indicates
 

that the scaled test pressure drop is only 60% of the maximum allowable
 

pressure drop for the worst case (2 HSA System).
 

It is, therefore, concluded that HSA's No. 1, No. 2, and No. 3 more than
 

meet the pressure drop requirements for the BIPS 1.3 KW and higher power
 

configurations.
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7.5 HSHX LEAR TESTS
 

Leak tests were conducted on the completed HSHX's using a helium mass
 

spectrometer leak detector to verify that the overall leak rate did
 

not exceed specification limits. Tests were conducted both before
 

and after proof pressure tests with the leak test being the last test
 

in the acceptance test sequence. The results of the final leak tests
 

indicated no detectable leaks within the sensitivity of the leak
 

detector. For the three leak tests this sensitivity (minimum detectable
 

leak of the leak detector) ranged from 1.27 x 10- 8 to 0.91 x 10-9 std
 

cc Helium per second.
 

7.6 HSA PROOF PRESSURE TEST
 

This test would be conducted on a complete HSA assembly (excluding the
 

HSHX fluid loop). The HSA would be proofed at room temperature at
 

0.28 MPa (40 psia) internal pressure for ten (10) minutes.
 

7.7 HSA PRESSURE DECAY TEST
 

This test would be conducted on a complete HSA assembly. The HSA unit
 

(excluding the HSHX fluid loop) would be pressurized to 0.17 + 0.003 

MPa (25 + 0.5 psia) of argon and a minimum of five pressure readings 

taken over a 48 hour period. The requirement for acceptance will be a 

HSA leak rate of less than 0.0125 MPa (1.81 psia) over the 48 hour period 

at ambient conditions. 
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SECTION 8
 

CONCLUSIONS AND RECOMMENDATIONS
 

The development of a light weight diffusion welded refractory alloy
 

(C-103) heat exchanger for space power applications represents an
 

advancement in the state of the art. The Battelle Columbus Laboratory
 

autoclave which was modified for this program to provide the capability
 

of hot isostatic pressing (HIP) at 1810K (28000 F) and 69. MPa (10,000
 

psi) is currently the largest known autoclave in the world with this
 

temperature and pressure capability. The superior diffusion welds
 

resultant from this HIP process, exhibited excellent grain growth across
 

the original weld joint interface. Metallographically, there was no
 

evidence of the original joint interface, suggesting that the mechanical
 

properties will be characteristic of the parent C-103 alloy material.
 

The use of C-103 for the heat source heat exchanger permits high working
 

fluid temperatures for the Brayton Isotope Power System (BIPS). This
 

temperature capability provides growth potential beyond the current
 

design specifications for flight systems with high cycle efficiency.
 

The use of a melting/fusing foil insulation to effect emergency cooling
 

is a simple, passive and reliable system. It does however require veri

fication by full scale tests. Such a test program is strongly recommend

ed. Additionally assembly of the two HSA's should be accomplished as soon
 

as feasible. A ground demonstration system test employing the refractory
 

alloy HSA's along with the other suitable components of the BIPS should
 

be a goal in the further development of this versatile power system for
 

future space missions.
 



9-1 

SECTION 9
 

REFERENCES
 

1. 	"Standard Method of Test for Thermal Conductivity of Materials
 

by Means of the Guarded Hot Plate", ASTM-C177-63 (reapproved
 

1968), American Society for Testing Materials, Philadelphia, Pa.
1 

2. 	J. Crank, Mathematics of Diffusion, Oxford University Press,
 

London (1967) p. 34-5.
 

3. 	I. I. Kornilov and E. N. Pylaeva, Izv. Akad. Nauk SSSR,
 

Metally 1966(5) 132-6(Russ).
 

4. 	I. J. Duerden and W. Hume-Rothery, J. Less-Common Met. 11,
 

381-7 (1966).
 

5. 	A. S. Bulatov et al, Chem. Abstracts 71, 15458v (1969) and
 

Zh. metal. metalloved., 23, No. 2, 380, 381 (1967)
 

UDC.669.24:548.7.
 

6. 	L. S. Birks and R. E. Seebold, J. Nuclear Mat. 3, 249-59 (1961).
 

7. 	R. P. Agarwala and Ken-ichi Hirano, Trans. J. I. M. 13,
 

425-7 (1972).
 



9-2 

8. 	GE Report TIS No. R66FPDl71, "Snap - Improved Computer Program
 

for the analysis of shells of revolution with Axisymmetric
 

-l-Fading", L. Beitch.
 

9. 	NASA CR-121223, VOL I, Final Report Mini-Brayton Heat Source
 

Assembly Design Study, Dec. 1973
 

10. 	 Heyda, J. F. and Fulton, C. D., Discussion of "Inlet and
 

Exit Header Shapes for Uniform Flow thru a Resistance Parallel
 

to the Main Stream", by Morris Perlmutter (ASME Paper No.
 

60-WA-160).
 

11. 	 GE Document: PIR-5983, "Transient Temperature and Stress
 

Analysis of Heat Source Assembly", C. E. Kelly, G. R. Ambrose,
 

7/19/77.
 



A-I
 

APPENDIX A
 

ACRONYMS
 

ACS Auxiliary Cooling System
 

BIPS Brayton Isotope Power System
 

BMI Battelle Memorial Institute
 

bcc body centered cubic
 

BCL Battelle Columbus Laboratories
 

BRU Brayton Rotating Unit
 

DOE Department of Energy
 

EB Electron Beam (welding)
 

ECS Emergency Cooling System
 

EHS Electric Heat Source
 

ERDP Energy Research Development Agency
 

FPI Fluorescent Penetrant Inspection
 

GFE Government Furnished Equipment
 

GTA Gas Tungsten Arc (welding)
 

HIP Hot Isostatic Pressing
 

HS Heat Source (identical to "Isotope Heat Source")
 

HSA Heat Source Assembly
 

HSHX Heat Source Heat Exchanger
 

HSIS Heat Source Insulation System
 

IHS Isotope Heat Source (identical to "Heat Source")
 

IPM Inches Per Minute
 

LES Lincoln Experiment Satellite
 

MHW Multi-Hundred Watt
 

MINI-BRU Mini-Brayton Rotating Unit (identical to
 

"Brayton Rotating Unit")
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NDT Non Destruction Test 

PIcs Post Impact Containment Sphere (Iridium fuel clad) 

RTG Radioisotope Thermoelectric Generator 

SFM Standard Feet Per Minute (machine cutter speed) 

T/C Thermocouple 

TECO Thermo-Electron Corporation 

We Watts, electrical 

Wt Watts, thermal 
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