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FOREWORD
 

The NASA Office of Energy Programs (OEP) is
 

presently conducting a study of the potential
 

utility of large Satellite Power Stations (SPS)
 

as a possible means to help meet our country's
 

demand for electric power. As part of this study,
 

JPL has been directed to perform an analysis of
 

potential impacts and benefits that would result
 

from the implementation of an SPS.
 

This report is concerned with the space and
 

earth based ends of the microwave power transmission
 

subsystem that delivers SPS energy to the electrical
 

utilities power grid on earth. The intervening propa­

gation medium near the earth is also considered The
 

report consists of three major sections dealing with
 

the major subsystem elements, spacecraft transmitting
 

array, propagation in the ionosphere and the ground
 

based rectenna Radio Frequency Interference
 

(RFI) aspects are discussed in all three sections.
 

The work is being performed under RTOP 775,
 

under the technical direction and guidance of
 

Mr. Simon Manson of the Solar Energy Division.
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ABSTRACT
 

The impacts and benefits to society of the microwave subsystem
 

resulting from the developing, construction and operating of a space solar power
 

to earth, electric power delivery system are presented and discussed. The
 

system consists of a fleet of geostationary spacecraft solar collectors and RF
 

converters linked via microwave power transmission beams to multiple ground
 

rectennas. The rectennas collect the microwave power radiated from spacecraft
 

antennas and convert it to dc. The rectennas dc output is further processed to
 

yield either higher voltage dc or ac for interfacing with the electric
 

utility grids.
 

In the SPS microwave subsystem, the primary benefit (usable energy) is
 

conveyed mainly in the fundamental frequency portion of the RF radiation beam that
 

is intercepted on the rectenna and converted to electric power output. The small
 

fraction of the microwave and other electromagnetic energy that does not end up in
 

the electric utility grid, yields most of the subsystem impacts.
 

The impacts range from harmonics and noise radiated by the transmitting
 

antenna, through potential interference with ionospheric communications and
 

navigation caused by the power beam heating the ionosphere, to the potential
 

large land area requirements for the rectennas and low level microwave radiation
 

around the rectennas.
 

Additional benefits range from a very low level of waste heat liber­

ated and lack of atmospheric emissions including noise while operating to having
 

no residual ionizing radiation from the rectenna when it is deactivated.
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SECTION I
 

SPACECRAFT TRANSMITTING ANTENIA
 

SUMMARY
 

The impacts and benefits of the transmitting
 
antenna portion of the SPS microwave subsystem are
 
presented and discussed The system benefits
 
generally appear on the earth end of the energy
 

transfer link. A number of significant impacts
 
occur or originate at the dc to RF conversion or
 
spacecraft end of the energy link The highly
 
nonlinear process of converting dc to RF power
 
with high efficiency, also leads to the generation
 
of electromagnetic radiation at both lower and
 
higher frequencies. The magnitudes and angular
 
distribution of these radiations are the subject
 
of this section. These impacts, in the form of
 
electromagnetic radiation throughout the spectrum
 
from very low frequencies on up to optical fre­
quencies and beyond, are most significant because
 
of the SPS spacecraft visibility from almost an
 
entire hemisphere of the earth.
 

The distribution of energy around the power
 
array is of concern as an occupational health
 
hazard during maintenance and repair. Also, the
 
dangers of accidental beam testing in low earth
 
orbit (LEO) and normal beam operation and testing
 
in geostationary orbit (GEO) are discussed as
 
potential impacts.
 

The development of high efficiency dc to RF
 
converters may benefit earth applications of
 
microwave power such as occur in consumer micro­
wave ovens and industrial process heating by
 
microwaves. 
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1.1. INTRODUCTION
 

The impacts and benefits to society from constructing and operating
 

the RF power transmitting portion of an SPS are to be discussed. The~trans­

mitter is a dc to RF converter and RF radiating antenna containing phase
 

steering and other electronics, that is linked to the solar collector
 

portion of the spacecraft via a rotary interface. A brief technical discussion
 

of the proposed operating concept of the transmitting array will be followed by
 

a description of the mechanization, from which the impacts and benefits may
 

be derived.
 

1.2. OPERATING CONCEPT
 

Because of the economies of scale in SPS and because of the need to
 

operate at relatively long wavelengths that are nearly lossless when propagating
 

through the earth's atmosphere, the proposed transmitting antenna is about 1 km
 

in diameter (e g., Ref. 1). The production of a highly efficient beam of energy,
 

(see Fig. 1-1 for nomenclature) at the contemplated design frequency of 2.45 GHz,
 

with low sidelobes and pointed toward the rectenna with high accuracy, requires
 

in effect that an accurate, uniform phased sheet of RF current be maintained over
 

the km aperature. The performance resulting from the likety state-of-the-art in
 

generating and maintaining the resulting surface figure required of a conventional
 

shaped reflector type of antenna of 1 km diameter would probably be severely
 

degraded, since the equivalent Root Mean Square (rms) surface error should not
 

exceed about 2mm' In addition, this figure would have to be maintained for the
 

typical electric power utility design lifetime of 30 years. This would be diffi­

cult and would be made more so by the thermal cycling due to eclipses that occur
 

annually during the equinoxes. However, by use of an array of many small RF
 

current sheet subarrays, the antenna may be mechanically arranged to periodically
 

relieve stresses at the interfaces between subarrays. Electronics (Ref. 2) can
 

then be used to compensate for the resulting RF phase path length errors due to
 

subarray structural deflections and other RF errors. (Fig. 1-2)
 

An array composed of small diameter reflector antennas is unsatis­

factory because the individual tapers across the apertures, combined with the
 

interstices, lead to a partially filled array with loss of main beam efficiency
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due to the inevitable grating lobes. Grating lobes are spatial repetitions of
 

the main array pattern that occur because there are a multiplicity of angular
 

directions off axis of the array wherein the phase contributions from each of
 

the subarrays add up. The levels of the grating lobes are determined by their
 

order or position from the main beam axis, which is a function of the subarray
 

pattern and subarray aperture efficiency, the subarray spacings, and the
 

electronic scan angle of the array. Grating lobes will be present even with the
 

beam electronically set for pointing on axis, due to the angular tilt and dis­

placement of each of the subarrays as stresses are relieved in the overall array.
 

The beam efficiency of the overall array is reduced by the ratio of the filled
 

to the available aperture areas
 

Thus, an array of flat planar subarrays which tile the antenna plane 

and possess fixed or quantized power levels, is proposed as the technique for 

generating the desired tapered aperture distribution necessary for high beam 

efficiency and low sidelobes and grating lobes. Figure 1-3 shows the optimum RF 

power density distribution or "taper", across the array aperture that is required to 

achieve a certain design level of beam transmission efficiency. However, it may be 

necessary to employ a more severe taper in order to reduce the level of side­

lobes in the array pattern (Fig. 1-4). This would result in a larger than 

optimum diameter rectenna for the same beam transmission efficiency due to 

the wider main beam width. 

Each of the subarrays must be individually phase controlled with
 

precision in the range of 10 degrees rms or less in order to achieve the
 

desired beam forming and pointing resulting from an equivalent continuous
 

uniform-phase sheet of RF current. This is to be achieved by use of a pilot
 

beam low level RF signal launched from the earth near the center of the rectenna.
 

The pilot beam signal is received at each of the thousands of RF
 

power radiating subarrays on board the satellite. The arrival time of the pilot
 

signal at each subarray is compared to an internal reference signal. The
 

reference signal is distributed via a special phase-compensated, path-length
 

correction scheme throughout the array. The compensated reference distribution
 

system is required to assure that each of the subarrays radiates its power beam
 

contribution with the same effective static phase (modulo 2Tr ) as the central
 

reference subarray. A phase trim sequence for each individual subarray will be
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required to initially set and then to periodically check the maintenance of the
 

required condition of "identical" static phase at the rectenna. The frequency
 

and accuracy required of this action is unknown at present, and depends upon
 

system requirements and component capabilities. The static phase reference
 

distribution scheme must be independent of path length changes such as are
 

induced by structural deflections or thermal changes and aging of transmission
 

lines. This requirement is the most significant change from previous retro­

directive array practice, in that up until the magnitude of array size and order
 

of precision of this requirement, the relatively small phase reference
 

transmission-distribution lines could be maintained with brute force methods ­

lots of steel, concrete and air-conditioning. New lightweight techniques are
 

required for the spacecraft.
 

Any resulting phase differences between the received pilot signal at
 

each subarray and the reference signal at each subarray (which may be due to
 

spacecraft station keeping moYrons, structural flexing or thermal changes in the
 

array figure, attitude control limit cycling or internal electrical RF path
 

length drifts) are adjusted to correct the individual phase of the RF power
 

beam radiated from each subarray. The phase comparison and phase correcting
 

process is termed phase conjugation, in that received phase lead errors, which
 

occur when the pilot signal is compared to the reference, are turned into phase
 

lags (the conjugate) or vice versa, which are then applied to the retransmitted
 

power signal.
 

In order to prevent the array electronics from self oscillating, the
 

pilot and power signals must be separated in frequency. The location of the
 

frequency separation or diplexing filter point should be as far downstream or
 

deep into the subarray RF section as possible. This is because of the extreme
 

phase precision required of the array. As much as possible of the same common
 

RF plumbing-antenna radiator, power distributing waveguides, harmonic
 

suppression filters, switches, etc - should be traversed both by the low level
 

pilot signal upon reception, as well as by the high-power beam signal, so as to
 

track out all common path length "electrical" as well as"mechanical" phase
 

changes. Feedback type phase comparison and phase shifter controlled compen­

sation loops will more than likely be required to be placed around all of the
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high-power dc to RF converters to assure that the output RF phase is maintained
 

(modulo 27r) relative to the desired conjugated phase throughout the devices
 

lifetime in orbit.
 

Since most RF components tend to have slightly different character­

istics at different frequencies (dispersion) it is desirable to have the
 

frequency of the pilot signal close to the power signal frequency, so as to
 

reflect consonant path length phase changes when they occur. However, because
 

of noise generated by the dc to RF converters along with the power signal, the
 

pilot signal-to-noise ratio is degraded in-close to the carrier. Additionally,
 

the pilot beam signal must be coded with modulation to prevent any potentially
 

adverse adaptation of the SPS or to prevent surreptious diversion of RE power
 

output in order to avoid paying the utility charge. The modulation requires
 

a finite bandwidth around the pilot tone and it must be separated from the power
 

converter noise. The resulting engineering design compromise will be difficult
 

to resolve. Additionally, certain mechanizations of the retrodirective scheme
 

will squint the power beam relative to the pilot beam received direction (that
 

is an angular separation or offset in pointing), while others will not.
 

In summary, the operating concept of the SPS transmitting antenna is
 

one of an array of flat subarrays tiling a plane 1 km in diameter. By use of a
 

pilot beam from the rectenna to steer and phase the retrodirective subarrays, an
 

effective uniform phased, sheet of RF current with a tapered distribution of
 

amplitude across the circular disk is obtained, that is somewhat independent of
 

the first order supporting structure deflections.
 

1.3. ARRAY MECHANIZATION
 

Current concepts of the array tend toward low power, 5 to 50 kW
 

passively radiation cooled dc-RF converters, either amplitrons or klystrons,
 

respectively. The RF radiating antennas are slotted waveguides. A subarray,
 

that is a uniphase assemblage of converters and RF radiating antennas fed from
 

one pilot receiver and phase conjugator, is 10 to 18 m square. The dc supply
 

voltages from the rotary joint power processor interface range from 20 to 40 KV.
 

Aperture amplitude tapers of 5-10 dB and pilot beam frequency separations from
 

the power carrier of 10-100 Miz are considered. The array back-up support
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structure ranges in depth of section up to 40 m. The RF current radiators are
 

excited by applying the dc distribution voltage (and RF drive in the case of the
 

amplitrons) to banks of subarrays in a sequenced fashion
 

1.4 
 IMPACTS AND BENEFITS OF THE TRANSMITTING ARRAY
 

1.4.1. Electromagnetic Radiation 

Figure 1-5 is an idealized and simplified characterization of the
 

distributions of electromagnetic radiation, throughout the spectrum, around the
 

SPS spacecraft transmitting array. The actual angular distributions and
 

absolute magnitudes are obviously a function of the detailed system design and
 

configuration. The spacecraft antenna is a wide spectrum source, and because of
 

its visibility from nearly a hemisphere, the potentially impacted populace and
 

equipment are enormous (Fig 1-6).
 

The potential impact sources are current distribution switching
 

transients, the desired power beam, the undesired harmonics and noise, the
 

waste thermal infrared heat, sunlight reflections, and the X-rays produced by the
 

deceleration impacts of RF and dc accelerated electrons in the converter elec­

trodes or structure. Those impacted by the extraneous radiation are other
 

spacecraft, earth based communications, the biosphere, astronomers, nocturnal
 

navigators and support or maintenance personnel and equipment. Obviously, the
 

RFI distribution changes depending upon the quantity of subarrays turned-on as
 

well as whether or not they are phased and with what degree of accuracyt Hence
 

the antenna pattern variations that occur during turn-on and with subarray
 

failures and during turn-off will create impacts as will the transients
 

associated with switching such large magnitudes of current, which tend to excite
 

portions of the spacecraft structure.
 

Due to the high level of biasing of metal-oxide-metal nonlinear
 

3unctions by the power beam, additional RF frequency signals such as the pilot
 

signal and any command and telemetry signals, can generate intermodulation
 

products (IMP), whiLh are new frequency signals resulting from mixing (Ref 3).
 

Although the IMP levels are low due to the inefficiency in their generation,
 

they may be radiated from a platform with a distinct positional advantage in
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terms of impact RFI potential. IMP impacts can occur both on the spacecraft
 

and on the ground.
 

In addition to the arcing that will occur during switching of dc,
 

there will probably be arcing in the waveguide assemblies due to multipacting
 

breakdown upon initial turn-on of the array and subsequently. Figure 1-7 shows
 

the approximate rms initiation breakdown voltage for various products of
 

frequency and electrode separation, for parallel plate electrodes. Although the
 

fringing fields in slots can withstand a somewhat higher voltage before break­

down, Fig. 1-7 shows that wide slots will be necessary to minimize this
 

RFI contributor.
 

1.4.2 Microwave Beam Radiation Pattern Characteristics
 

The purpose of this part of the impact and benefit investigation is to
 

describe with reasonable accuracy the microwave radiation pattern of the SPS
 

antenna array with the following assumptions. 

Diameter 

Frequency 

Power 

Distribution 

1 KM 

2450 MHz 

6500 MW 

Gaussian, 10 dB taper 

For certain calculations, it was further assumed that the practical imperfections
 

consisted of an amplitude error of 1 dB independent of failures, 2 percent
 

random failures of the individual 10 meter subarrays, and a phase error of 10
 

degrees RMS (Ref. 1).
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Under these conditions the near field of the array is shown in
 

Fig. 1-8. Here, the first curve describes the axial power density, with a taper
 

that closely approximates the true Gaussian It is seen that the power density
 

oscillates about the aperture density of about 21 KW/M2 until it exceeds this
 

value by some 60 percent. It then decays rapidly and falls into the inverse­

square law curve at the far-fLeld distance of 16,000 KM.
 

The second curve is an attempt to illustrate the behavior of the
 

nearfield at the edge of the main beam. Here, uniform illumination has been
 

assumed to show that the ripple is greatly reduced and that the edge density is
 

lower even without taper. If the 10 dB Gaussian taper were factored into this
 

curve, the density would be very low compared to the beam axis. Thus, the
 

near-field pattern of the antenna is not quite the "tube" of flux that is
 

frequently pictured. Instead the power density increases rapidly but smoothly
 

as one crosses the "edge" of the main beam, with the axial peak strongly
 

dependent on the exact distance from the array if within about 4000 KM of
 

the antenna.
 

Turning to the far-field characteristics, the pattern of the array is
 

plotted in Fig. 1-9 to present all the major features of the pattern and to
 

compare them with the generalized International Radio Consultative Committee
 

(CCIR) radiation pattern applying to large reflector antennas (Ref. 5). Except
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for the grating lobes, the SPS pattern falls everywhere below tne CCIR pattern.
 

The latter cannot be used to describe in a simple manner the safe sidelobe
 

envelope of the SPS pattern because of the grating lobes.
 

Note that this type of plot clearly shows that the gain of the
 

antenna represents radiated energy that is "borrowed" from the region between
 

20 and 180 degrees from boresight. On the graph this is a very small area; in
 

space it is the majority of the solid angle surrounding the antenna. Another
 

way of describing it is that out to some 10 degrees, depending on the exact
 

sidelobe structure, the antenna still has gain Past this point, the radiation
 

is below that of an isotropic radiator.
 

The 	major features shown in the curve are:
 

1. 	 The main beam (to about 0 01 deg);
 

2. 	 The near sidelobes (to about 0.07 deg);
 

3. 	 The null filling (Ref. 6) due to subarray phase errors (to
 

about 0.2 deg);
 

4. 	 The subarray pattern that allows the sidelobes to decay once
 

more (to 0.7 deg);
 

- 5. The far sidelobes (past 0.7 deg) and grating lobes. 

The null filling in the region of 0 2 deg is intended to be repre­

sentative. The actual antennas will have somewhat individual structures in this
 

region depending upon their precise errors. Also, no attempt has been made here
 

to calculate the radiation pattern beyond a level of -80 dB from the peak gain.
 

At this level, the exact structure of the pattern will be highly dependent upon
 

a number of details such as the exact subarray size and slot design, the cross­

polarization characteristics, harmonics, the degree of surfacewave and edge
 

current control, and varying reflections off the SPS solar panel structure.
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Figure 1-10 shows the focused array beam power pattern distribution 

characteristics for the array at GEO and the considerations relative to LEO 

Dotential characteristics of the beam if it were accidentally or adversely 

adapted to turn-on and be pointed toward the earth from an altitude of 500 km 

In LEO, the unfocused beam will spread the peak flux density down to about 18 

mW/cm 2 . Were the subarrays to be provided the proper pilot signal or some other 

accidental focusing stimulus, the peak flux density could reach about 24 W/cm2 , 

which is the approximate limit determined by atmospheric breakdown at about 

45 km altitude. (Without the upper atmosphere breakdown limit, the peak flux 

density at the earth's surface could approach 240 W/cm 2 . At the earth's surface 

for standard temperature and pressure, the theoretical breakdown limit is 1 2 

NW/cm 2!) Thus, the impacts of accidental or adverse adaptations of the SPS 

transmitting array are potentially enormous in LEO. From GEO, the array cannot
 

be focused any finer on the earth's surface, thus the peak flux density for one
 

.
SPS array in GEO will not be able to exceed the designed 22 mW/cm2 

The ability of the SPS to overcome one potential hazard associated
 

with LEO turn-on, that of ionospheric saturation was determined. Because the
 

near-field power density is so high (refer again to Fig. 1-10), LEO turn-on in
 

a focused mode would not appear feasible because of ionospheric breakdown
 

Ref. 7). Thus it is prodent to ask what might be done to the beam to allow
 

full power radiation.
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Techniques for beam-broadening might involve mechanically tilting the
 

subarrays so that each points in a slightly different direction. This can also
 

be accomplished electrically by introducing progressive linear phase slopes over
 

the subarrays. Also, if a curved phase front across the array can be
 

sufficiently well approximated, the radiation can be made to appear as though
 

it came from a curved array. Such a curved array can nroduce a relatively broad
 

beam without a severe loss in efficiency. Let us assume that we wish to lower
 
2


the power density to about 23mw/cm , which we know can penetrate the ionosphere
 
2 2Then we wish to decrease the near-field power density from 21 KW/M to 23mW/cm
 

or a factor of approximately 100. Thus, the beamwidth must be increased 10
 

times or from 0.008 deg. to 0.08 deg. If the beam can successfully be broadened
 

by this much, then we can obtain any intermediate power density that is desired,
 

up to the limit of the ionosphere for a given set of transmission criteria.
 

The approach taken was to calculate the pattern resulting from the
 

array when the apparent phase center is some finite distance behind the array.
 

Thus in Fig. 1-11 we imagine a phase-control source located behind the array so
 

that the array subtends a full angle of 0.08 deg. (Imagine that the array has
 

detectors over its rear surface which supply the signal to the amplifiers for
 

re-radiation off the front of the array. In practice, the resulting hyperbolic
 

phase distribution across the planar array would be internally generated by
 

appropriate phase delay devices in the pilot beam receiving and control system).
 

The main beam for this particular case is shown in the Figure to have a half­

power beamwidth of 0.055 deg. with less than 2 dB ripple.
 

A larger phase angle, and thus a greater curvature of the phase front
 

produces a wider beam Thus in Fig. 1-12, with a phase angle of 0 10 deg.
 

the beam has been broadened to 0.074 deg. with only 1.5 dB ripple. This amount
 

of broadening is enough to allow the beam to penetrate the ionosphere regard­

less of range. Thus it appears certain that with proper phase control
 

mechanisms within the array, the beam can be efficiently controlled to any
 

desirable beamwidth from 0.008 deg. to at least 0.074 deg.
 

In summary, an overall view of the principal characteristics of the
 

microwave radiation pattern of the transmitting array has been presented. It
 

has been shown that it may be practical to control the width of the main beam so
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that full power transmission in LEO could be available. The ramifications of
 

this result should be explored in a future study.
 

Without extensive computer analysis it has not been possible to
 

examine the fine details of the radiation pattern. Since the exposure of
 

maintenance personnel in the vicinity of the satellite is dependent upon a
 

careful understanding of these details, future effort should involve extensive
 

computer time and expert programming assistance to permit the precise
 

calculations of far sidelobes and backlobes, taking into account structural
 

scattering, harmonics, polarization, surface wave effects, edge currents,
 

leakage, and various failure modes. Some consideration should be given to scale
 

modeling the array and experimentally verifying some of the calculations.
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1.4.3 RFI Considerations
 

The SPS operating frequency and conditions must be chosen to minimize
 

the RFI caused to existing services. Not only is this a matter of technical
 

desirability, but also of national and international regulation.
 

Currently, it is felt that advantage can be taken of frequency 

allocations made for industrial, scientific, and medical (ISM) use. These 

allocations are contained in the International Radio Regulations (IRR) of the
 

International Telecommunications Union (ITU), a specialized agency of the U.N.
 

These allocations could be modified at the 1979 World Administrative Radio
 

Conference (WARC) to include their use for beaming power from space to earth.
 

This modification would require the agreement of a majority of the nations of
 

the world.
 

The current wording of these allocations is:
 

The frequency 2450 MHz is designated for industrial, scientific
 

and medical purposes except in Albania, Bulgaria, Hungary, Poland,
 

Roumania, Czechoslovakia and the U.S.S.R., where the frequency
 

2375 MHz is used. Emissions must be confined within ±50 MHz of the
 

frequencies designated. Radiocommunication services operating within
 

these limits must accept any harmful interference that may be
 

experienced from the operation of industrial, scientific and medical
 

equipment.
 

The frequency 5800 MHz is designated for industrial, scientific
 

and medical purposes. Emissions must be confined within the limits
 

of ±75 MHz of that frequency. Radiocommunication services operating
 

within those limits must accept any harmful interference that may be
 

experienced from the operation of industrial, scientific and medical
 

equipment.
 

The 2 GHz band is shared with fixed and mobile communication systems
 

and with radars.
 

The 5 GHz band is shared with communication satellite uplinks, radars,
 

and fixed and mobile communication systems.
 

1-24
 

30 



900-800 

The Master Frequency List of the ITU contains station registrations
 

by the following countries for communcation purnoses:
 

2400 to 2500 MHz - England, West Germany, Holland, France,
 

Belgium, Czechoslovakia*, Austria, U.S.S.R.*, Yugoslavia,
 

Sweden, Turkey and Mexico.
 

5725 to 5875 MHz - West Germany, Poland, U.S.S.R., Sweden,
 

Italy, Czechoslovakia and Yugoslavia.
 

*Not an industrial band in these countries.
 

Some stations registered by England and Holland are troposcatter
 

stations, which have large antennae and are especially sensitive to interference.
 

The Master Frequency List usually contains only a small percentage of
 

the stations actually operating.
 

Despite the wording of the current allocations, it is not likely that
 

a service that may potentially illuminate about half the world would be given the
 

same freedom to cause RFM as is given to ground based ISM equipment.
 

The power spectral flux density (PSFD) limits of the earth's surface
 

that can be expected to cause RFI, and which would probably be imposed as
 

regulatory limits can be implied from parts of the IRR that apply to other
 

space transmitters.
 

Near 2 G1z an upper limit between -154 and -144 dBW/m2 in any 4 KHz
 

band is required, depending on angle of arrival at the surface of the earth.
 

Near 5 GHz the limits are -152 and -142 dBW/m2 in 4 KHz (Ref. A). These limits
 

were established to protect line-of-sight (LOS) microwave relay links (Ref. B).
 

Near 2 GHz an additional restriction is contained in the IRR to
 

protect troposcatter (TS) links. This limits the interfering signal at the
 

receiver terminals of a troposcatter link to no more than -168 dBW in any
 

4 KHz band. The limit was established in this manner because of the difficulty
 

in defining a generic antenna size (Ref. C).
 

The exact protection afforded to Radio Astronomy (RA) is not clear
 

(Ref. D), but in practice the U.S. has tended toward the recommendations of the
 

International Radio Consultative Committee (CCIR) of the ITU for RA antennae at
 

the isotropic level (Ref. E). This is -247 dBW/m2-Hz near 2 GHz, and
 

-241 dBW/m2.Hz near 5 0Hz.
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As for RA, no specific protection is afforded to deep space research
 

(DSR) in the IRR. However, the applicable CIR recommendation is not to exceed
 

-220 dBW/m2 "Hz at the ground receiver terminals for more than 5 minutes per day
 

(Ref. F).
 

The TS and DSR values can be changed to a PSFD by assuming antenna
 

types. The geometric mean of the TS antenna sizes mentioned in Reference C is
 

10 meters. The largest DSR antennas currently in use are 64 meters in diameter.
 

To protect these systems on the antenna boresight requires PSFD limits of
 

-185 dBW/m2 in 4 .KHzand -253 dBW/m 2 .Hz, respectively. For a DSR antenna at the
 

isotropic gain angle, the required protection would be -191 dBWfm2 .Hz.
 

Figure 1-13 is abstracted from Reference 4 and shows the estimated
 

magnitude of noise power spectral flux density from an SPS equipped xath either
 

amplitrons or klystrons, assuming certain noise and filter characteristics
 

(since such high efficiency, high power level devices have yet to be constructed
 

and tested).
 

The various PSFD limits are shown on the diagram. Note that they are
 

all expressed as dBW/m2iHz and that the TS and DSR limits contain the assumption
 

mentioned. Also, the limit for a 60 dBi RA antenna is shown.
 

Note that harmonics appear to pose an especially severe problem.
 

In addition, consideration must be given to the power signal itself.
 

For a transmitted power of 6500 MW (Section 1.4.2) and the antenna pattern of
 

Figure 1-9, the power flux density (PFD) near the edge of the earth seen from
 

the SPS would be about -65 dBW/m2 for a single SPS. The high level of the
 

power beam will tend to saturate and block the front end of many receivers,
 

leading to distortion and in some cases loss of desired signals in the affected
 

receivers. The power signal could probably be filtered, but existing equipment
 

is not so equipped.
 

As an example: at 2450 MHz, assuming an LOS antenna with RI entry
 

at the 0 dBi antenna gain angle, the interfering signal would be -94 dBW or
 

-64 dBm. This is sufficient to cause overloading interference effects even
 

when considerably removed from the LOS frequency of operation.
 

A common technique for reducing PSFD is spectrum spreading. If the
 

SPS power were uniformly spread in frequency it would have to occupy approximately
 

3200 GHz in order to meet the LOS protection criterion.
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The solution to these aspects of the SPS RFI problem can probably
 

be found in the international regulatory arena if international agreement can
 

be reached on the following:
 

1. 	A clear-channel or RFI acceptable frequency allocation to an
 

SPS service. No service operating in the SPS allocation could
 

claim protection from FI. This is like the current ISMI
 

allocation.
 

2. 	Acceptance of stringent regulation of the out-of-band emissions
 

of the SPS to much lower than those shown in Figure 1-13.
 

3. 	Responsibility of ground receivers, operating outside the SPS
 

band, for the rejection of the SPS signal in the SPS band.
 

In other words, the operating organizations would have to fit
 

their receivers with SPS band rejection filters.
 

1.4.4 Occupational Health Effects
 

Occupational health hazards of the high-power microwave array include
 

not only the direct microwave beam in front of the array, but also the leakage
 

around the array edges or due to stress cracked waveguides, open joints, missing
 

subarrays or components and RF energy scattered off the spacecraft structure,
 

other spacecraft or objects in the beam. Orthogonally intersecting plane
 

surfaces which can be present in the spacecraft structure and equipment, may
 

produce "effective" corner reflector antennas with resulting microwave flux
 

density concentrations of greater than 10 or 10 dB above the "free space"
 

ambient illumination, due to standing waves. The "hot spots" of microwave
 

radiation present an occupational hazard.
 

The 	known thermal effects of high-intensity microwaves (greater than
 

10 mW/cm 2) include heating and cataracts, "steam" explosions in trapped liquid
 

situations, combustion in oxygenated environments and other carbonizations. The
 

effects attributed to low level microwave radiation are controversial (Ref 8).
 

In addition to the microwave radiation, the power transmitting array
 

must also radiate approximately 1 GW of thermal, waste heat. Depending upon the
 

dc to RF converter type, the structure may be at temperatures upwards of 2000 C.
 

The klystron collectors may run white hot, whereas the amplitron radiators
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are planned not to exceed 3000 C. Such hot objects represent a danger to
 

personnel and equipment. Conversely, when the spacecraft is well into the
 

longest eclipse period (about 72 minutes), the structure may chill down to
 

minus 2500C. Rapid heat loss may be experienced unless proper precautions are
 

taken before personnel contact exposed structure.
 

Depending upon the converters and their operating voltages, there
 

may be X-rays emitted from the decelerating electrons striking the collectors.
 

Also, the high voltages, conducting plasmas, and differential spacecraft charg­

ing represent hazards due to potentially lethal currents or distracting arcing
 

and RFI in communications channels.
 

The rotating interface between the antenna which must face the earth,
 

and the spacecraft solar collectors which must face the sun provides a bodily
 

hazard mechanically as well as a distracting, moving artificial horizon, which
 

may promote disorientation. Mechanically actuated "leveling" jacks on the
 

subarrays will also have exposed moving parts.
 

The antenna structure will block line-of-sight and hence communica­

tions and surveillance. Alternate relay techniques will be necessary to
 

monitor or stay in touch with personnel and equipment. The RFI of the beam
 

power and its harmonics will not simplify this problem.
 

The effects of sudden turn-on or turn-off of subarrays due to
 

normal eclipse or failure modes, may lead to localized sudden mechanieal-thermal
 

stresses in members, with subsequent deflections not ordinarily encountered.
 

Similarly, local unbalances in the magnetic fields surrounding heavy current
 

conductors may give rise to sudden unbalancing torques.
 

The eclipsing of portions of the array may lead to hazardous lighting
 

conditions for work crews.
 

In summary, the major occupational health effects attributed to the
 

microwave antenna are microwave radiation, thermal or infrared radiation and
 

high voltages.
 

1.4.5. Construction
 

Impacts and benefits to society during the construction phase of the
 

transmitting array are probably small, particularly if the antenna is not
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checked-out during LEO. The array will be made Lrom materials delivered to the
 

orbital construction site. The various communications required for use during
 

construction in order to control teleoperators, other data links, video, audio
 

and the laser links employed for alignment, all will have potential for
 

creating RFI and EMI on the earth and with other spacecraft.
 

1.4.6. Security
 

Terrorist acts or sabotage directed at the transmitting array will
 

more than likely arrive via the coded command and pilot signal receivers,
 

thus security measures must be applied to these channels. The concentrated
 

power transfer interface at the rotating joint betueen the array and the
 

spacecraft solar collectors probably also represents a vulnerable spot that is
 

worthy of security in some form. Obviously, the power beam off control must
 

be held inviolate in order to assure,that the ultimate beam safety condition
 

can be achieved.
 

1.4.7. Conclusions
 

First and foremost, in the near field of the antenna the microwave
 

beam is a lethal hazard because of the high flux density. Unprotected personnel
 

and equipment must be prevented from entering the beam near the array even when
 

it is unfocused Absolute safety can only be assured by being considerably in
 

the far, far field of the beam or else having the converters turned off.
 

Extreme care must be exercised in testing the antenna and in approach­

ing and moving about the antenna during operations and maintenance. Also,
 

security and safety in the beam control subsystems must be fail-safe.
 

Second, meeting the required design sidelobe and grating lobe levels
 

and maintaining them for 30 years lifetime will be quite difficult. (However,
 

not to do so would be to violate a safety requirement or to exacerbate an RFI
 

condition.) The lobe levels are determined by the array output power level,
 

amplitude taper, and the aperture phase and amplitude errors. Table 1. lists
 

the phase and amplitude error contributors for the proposed pilot beam steered,
 

retrodirective phased array mechanization.
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Table 1-1. Aperture Error Sources
 

Pilot beam steered, retrodirective, power transmitting phased array
 

I. PHASE
 

Initial Phase Trim Resolution
1. Pilot Beam Signal-to-Noise Ratio 	 4. 

and Stability
 

A. Pilot Carrier 
Level
 

a. Pilot transmitter output
 
A Instrumentation Resolution
 

b. Ionosphere multipath fading 

B. Phase Shifter Setability
c. Ionosphere storm de-polarization 

C. Thermal and Aging Stability
d. Excessive subarray tilt 


e. Pilot modulation - coding level
 
5. Propagation Path Stability
f. Spacecraft polarization attitude control 


g. Am to pm conversion A. Ionosphere Disturbances
 

B Spacecraft Structure Differential
 B. Noise in Pilot Receiver Bandwidth 

Doppler
 

a. Excessive converter noise
 

b. Waveguide arcs 	 II. AMPLITUDE
 

c. Intermodulation products from 
other communications channels 1. Taper Quantization 0 

82. Converter Failures
2. 	Converter Phase Control Feedback Loop Stability 


Excessive Subbarray Tilt
 A. Converter Output Stability and Noise 	 3. 


B. Reference Input Stability and Noise 	 4. Waveguide Arcs
 

C. Temperature
 
5. Converter Output Degradation
Phase Shifter and Phase Detector Stability
D 


A. Poor Power Supply Regulation
 

3. Phase Reference Distribution 	 B. Low Cathode Emission
 

C. Low RF Drive Level
A. Noise Added at Branches and Modes, 


Line Amplifiers
 
B. Aging Dispersion in Pilot and Conjugated
 

Signal Paths
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Third, the impacts and benefits of the microwave power transmitting
 

array are potentially very serious as regards interference with existing radio
 

communications systems because of the combined satellite visibility from the
 

earth and the tremendous power level. A detailed assessment of the various
 

radiation levels, frequencies, polarizations and spatial distributions must be
 

made in order to then determine the population of existing radio spectrum and
 

other spectrum users who will be affected.
 

1.4.8. 	 Recommendations
 

Beam safety control schemes need to be investigated and developed so
 

as to demonstrate that positive control can be exercised. Provisions for
 

alternate power levels for use in testing need to be investigated.
 

In view of the many phase error contributors and the desire for
 

long term-low level phase errors, analysis and simulation of the phase control
 

system approaches needs to be undertaken to prove the feasibility of such goals
 

as 10 deg. rms phase error for 30 years.
 

The safety aspects of operations and maintenance of the array should
 

be detailed.
 

Other uses of the SPS power beam should be looked into with the view
 

of adapting properties of the beam to perhaps supplant or provide superior or
 

more economical performance for some of the navigation functions it may
 

interfere with.
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SECTION II
 

MICROWAVE BEAM PROPAGATION
 

SUMMARY
 
A7EDING PAGg BLANK NOT F4 

The impacts and benefits of the propagating
 
microwave beam of the SPS are presented and dis­
cussed For the proposed S-band operating fre­
quency of 2.45 GHz, the major impacts occur in
 
the earth's ionosphere. Nevertheless, the micro­
wave beam existing between the spacecraft trans­
mitting antenna and the ground rectenna must pass
 
through various regions of the earth's blosphere.
 
The resulting energy deposits, conversions,
 
re-directions, etc are of concern as they can
 
potentially impact radiation shielding, other RF
 
communication signal propagation linearity and
 
security, generation of intermodulation signals
 
and harmonics, chemical processes, material trans­
port, heat balance, and other emissions. In the
 
extreme, the energy deposit via beamed energy
 
transport can sufficiently impact the ionosphere
 
to cause self impact on the energy transfer
 
process, such as pilot beam interference
 

Objects in the propagating media can lead to
 
impacts via absorption or scattering as from
 
meteors, meteorological elements such as hail,
 
rain or lightning, birds, insects and aircraft.
 
The beam energy distribution affects the rectenna
 
size and personnel exclusionary zone boundary as
 
well as impacting existing communications systems
 
directly via saturating receivers, or indirectly
 
via intermodulation product generation or mixing
 
harmonics.
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2 1 INTRODUCTION
 

The purposes of this study are (1) to evaluate existing analyses of
 

the ionospheric interaction with the Microwave Power Transmission Subsystem (MPTS)
 

beam and (2) to identify any additional impact areas which should be studied.
 

This report briefly describes the ionosphere in its natural and modified states,
 

describes the potential interactions of the ionosphere with the MPTS powet beam,
 

and estimates the magnitude of the potential impacts. These include environmental
 

and Lonospheric "user" impacts.
 

The major analytical effort has been done by Raytheon (Ref. 9-10)
 

and is based on their participation,in the ionospheric heating experiments at
 

Platteville, Colorado (Ref. 11-12). Since no direct measurements have been
 

made at the proposed power beam frequency (2.45 GHz), it is assumed that the
 

known heating effects at HF can be scaled to the power beam frequency (Ref. 13).
 

The four major impact areas are (1) the power beam effects on the ionosphere,
 

(2) the ionospheric effects on the power beam, (3) the ionospheric effects on
 

the pilot beam, and (4) the effects of the perturbed ionosphere on ionospheric
 

users". 

THE IONOSPHERE
 

The Raytheon analysis assumes that the ionospheric absorption causes
 

the power beam to be attenuated slightly "Although only a small fraction of
 

the power beam is absorbed, it is still significant compared to the natural
 

thermal input into the ionsphere" (Ref. 9). The power beam increases the
 

electron temperature, called "ohmic heating," which in turn causes changes in
 

electron density and increases the potential for thermal and plasma instabil­

ities. Since the impacts are different in the D-region (50-90 km) than in the
 

F-region (>150 kIn) of the ionosphere, the two regions are discussed separately.
 

In the F-region, the increase in electron temperature depends on
 

frequency, time, and ground site latitude. In the F-region, the most important
 

cooling mechanism is thermal conduction by the electrons along the (Earth's)
 

magnetic field. Although some heat is transferred to ions and neutral particles
 

at all altitudes, the amount of heat deposited near the peak of the F-region
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by the power beam is so large that most of it must be conducted down to lower 

altitudes near 200 km where collisions with neutral particles are frequent 

enough to cool the electrons" (Ref. 10). The high temperature electrons also 

move up the field lines many hundreds of kilometers above the beam because the 

collision frequency (v) decreases with altitude. Figure 2-1 show1s the night­

time region of increased electron temperature. Although the daytime electron 

temperatures are higher than during the night, a larger percentage increase in 

temperature results at night "because there are fewer electrons (decreased
 

density) to transport heat away from the dissipation region" (Ref. 10) (see
 

Figure 2-2).
 

The effects are site dependent because of the relationship of
 

electron temperature, the beam elevation angle, and the Earth's magnetic field
 

(Figures 2-3 and 2-4). Electron temperature increases are larger when the
 

beam and the magnetic field are more closely aligned, so the impacts are larger
 

at lower latitudes (the "Southwest site"). Thus, the large electron temperature
 

increase in the presence of the power beam can produce large changes in elec­

tron density and provides a great deal of potential energy to drive thermal and
 

plasma instabilities
 

The amount and rate of change of the electron density are primary
 

parameters of interest in the analysis. In the F-region, the presence of the
 

power beam results in a decrease in the electron density because of the thermal
 

expansion of the "electronic fluid." If there were no relative motion of the
 

ionosphere with respect to the beam, the electron density would decrease up
 

to 40% in a few thousand seconds (Figure 2-5). The largest changes occur at
 

night (lower cooling rate) and at lower latitudes (larger electron temperature
 

changes) However, the F-region ionosphere will move through the beam as a
 

result of the electrodynamic drift. The drift velocity can vary from 10 to
 

200m/sec with an average velocity of about 50 m/sec. A given volume of iono­

sphere will move through the beam in -200 seconds, with the beam-induced
 

heating causing a decrease in density. Once outside the beam, this volume will
 

increase in density back to its natural level in about the same amount of time.
 

Thus, there will be a downwind "wake" from the beam approximately doubling the
 

region of beam influence, but the average electron density reduction caused by
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the beam can be much less than the maximum value (see Figure 2-6) and will only
 

reach its maximum value when the drift velocity is near zero. The effect of
 

ionospheric drift on the electron temperature will be small because of the
 

short time constant (-10-30 sec) of electron temperature changes.
 

A major impact in the F-region is the potential for increasing
 

irregularities in the electron density of the region. The natural ionosphere
 

contains many irregularities which cause scintillations in satellite-Earth
 

links (Ref. 13) and result in disrupted ionospheric propagation. The MPTS will
 

have a large impact on scintillations because their natural levels are low at
 

midlatitudes where most of the ground sites will be located.
 

In the D-region of the ionosphere, the power beam increases the
 

electron temperature many thousands of degrees (see Figure 2-7). The electron
 

temperature increase occurs very quickly after the power beam is turned on.
 

The neutral gas density is much higher here than in the F-region, so "col­

lisions are so frequent that thermal conductivity can be completely neglected
 

(i.e., the heated electrons do not move out of the heating region); therefore,
 

the energy imparted to the electrons from the power beam is transferred to the
 

neutral gas at the same point in space at which it is absorbed (Ref. 10).
 

The result is that the electron density within the beam increases
 

significantly because first order density changes are proportional to electron
 

temperature. As the density increases, absorption also increases and the tem­

perature will in turn increase. However, the process is stabilized by the
 

various energy loss processes. The time dependence of the electron temperature
 

can be written as
 

e = kI . POWER DENSITY - k2 . r LOSSES 
at
 

where the major losses are due to:
 

(1) electron rotational excitation,
 

(2) oxygen fine structure transitions,
 

(3) vibrational loss due to N2, and
 

(4) elastic energy loss.
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The critical power density has been defined (Ref. 14) as the "power level above
 

which the losses due to (1) and (2), by themselves, are not sufficient to keep
 

the temperature stable, without including the losses due to (3) and (4)"
 

(Ref. 10). The critical power density is a function of altitude and has a
 

minimum value of about 15 mW/cm2 at 60 km Since the threshold is analytical
 

rather than physical, there appears to be some flexibility of the specification
 

of maximum power density.
 

In the D-region, the power beam effects are not confined to the beam
 

cylinder because atmospheric winds cause drifts on the order of 50 m/sec. The
 

winds will provide an additional "loss mechanism" to reduce the heating within
 

the beam, and they will cause a downwind wake similar to that in the F-region
 

Because the response time of the D-region density is relatively short, the
 

wake will probably not extend more than 10-20 km from the beam Temperature
 

changes in the D-region will be confined mostly to the beam region.
 

There is a very complicated interaction between the lower D-region
 

and the mesophere. This interaction involves the ionization of many molecules
 

as well as vertical and horizontal circulation patterns which continually mix
 

the ionosphere and the upper atmosphere. Since the mixing can cover large
 

areas, modifications of the lower D-region can affect lower altitude chemistry,
 

and have impacts on the ozonesphere, for example. In the upper mesosphere, the
 

concentration of ionic and polar molecules may be increased substantially.
 

This increase in turn can produce Raman scattering, i.e., radiation not at
 

2.45 GHz. This radiation could prove to be a substantial RFI source, and
 

calculations are necessary to evaluate this effect (Ref. 15).
 

A major area of concern for both D- and F-region interactions is
 

the possibility of plasma instabilities. There are many types of instabilities
 

which could be produced in the modified regions, especially since these regions
 

are so large (10 km diameter). Raytheon (Ref 9) has evaluated the self­

focusing instability, and Perkins and Robles plan to reassess this general
 

class of instabilities (Ref 15). However, there are many other types of
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instabilities which could be produced, and a complete systematic evaluation of
 

the potential for all instabilities should be made.
 

EFFECTS ON IONOSPHERIC USERS AND OTHERS
 

The effects of the perturbed ionosphere include reduced performance
 

of systems which use the ionosphere for propagation. These systems have been
 

identified, and the effects have been investigated (Ref 10) to obtain a quali­

tative level of the impact on three classes of systems: navigation, communica­

tion, and DOD radars. Tables 2-1 to 2-3 summarize the results of typical cases.
 

These systems use the ionosphere as a reflector to propagate over very long dis­

tances - thousands of kilometers in some cases. Therefore, an ionospheric dis­

turbance far removed from the user can cause degradations in system performance
 

"For example, a user located in the middle of the U.S. would be affected by
 

every power beam that is contained in the U.S." (Ref. 10). The prospect of
 

100-200 power beams makes the probability of interference relatively large.
 

Another class of communications systems can be affected by the dis­

turbed ionosphere. All communications links which pass through the ionosphere
 

can potentially be degraded by ionospheric irregularities, i.e., scintillations.
 

Earth-satellite links of spacecraft in low-Earth-orbits or geosynchronous orbits
 

and beyond can experience fading and reduced telemetry and tracking performance
 

in the UHF range. Even at higher frequencies, the scintillations can cause
 

errors in satellite range and position measurements, especially if the concept
 

of "power parks" is implemented, where the rectenna arrays are grouped in remote
 

areas. Tracking stations for deep space probes usually are located in these
 

remote locations, also. However, the measurement errors introduced will proba­

bly be small, but may be significant in some cases.
 

The potential for cross-modulation (or an effect like cross­

modulation) exists since the power beam is so intense. As strictly defined,
 

cross-modulation is the imposition of the disturbing signal's amplitude modula­

tion onto a desired signal passing through the same region. This interaction
 

results from ionospheric perturbations of collision frequency, ion chemistry
 

and electron density induced by the disturbing wave. Strictly speaking, a
 

truly CW power beam should produce no cross-modulation of AM signals passing
 

2-13
 



TABLE 2-1. IMPACTS ON IONOSPHERIC USERS: NAVIGATION SYSTEMS (FROM REF. 10)
 

SYSTEM 


OMEGA 


LORAN C 


NAVSTAR GPS 

(GLOBAL 

POSITIONING 

SATELLITE) 


1st SATEL-

LITE IN MAY 

1977 


SYSTEM CHARACTERISTICS 


o 	10.2 KHZ, CW 

o 	8 STATIONS, TDMA 


o 	SINGLE FREQUENCY 

HYPERBOLIC SYSTEM 

(PHASE COMPARISONS) 


o 	100 KHZ, PULSE 


o 	 GROUND WAVE (2000 KM) 
AND SKY WAVE (8000 KM) 

o 	 HYPERBOLIC SYSTEM 

a 	THREE-D LOCATION USING 
4 SATELLITES 

a 1200 AND 1600 MHZ (TWO 

FREQUENCIES ELIMINATE 

RANGE ERROR OF IONOSPHERE) 


* USE OF IONOSPHERIC MODEL 

FOR SINGLE FREQUENCY USER 


o DESIGNED FOR LOW GAIN 

OMNI-RECEIVE ANTENNA 


POWER BEAM EFFECTS 


o IONOSPHERIC EFFECT 

COULD CAUSE SUDDEN 

PHASE ANOMALIC 


.	 PHASE ANOMALIES COULD 
INCREASE LOCATION 
ERROR BY A FACTOR OF 5 
(1 TO 5 MILES). 

o 	NONE ON GROUND WAVE 

a 	FOR SKY WAVE USERS 
POWER BEAM COULD 

DEGRADE PERFORMANCE 

ALTHOUGH SKY WAVE 

USERS FAR REMOVED FROM 

DISTURBED REGIONS. 


o ELECTRON DENSITY 

CHANGES WILL NOT 

AFFECT TWO-FREQUENCY 

USERS. 


a ELECTRON DENSITY 

CHANGES INCREASE ERROR
 
BUDGET FOR SINGLE-

FREQUENCY USERS. 


a 	 IRREGULARITIES COULD 
CAUSE SCINTILLATIONS
 

WHICH COULD PREVENT
 
SYNC ACQ BY UNSOPHIS-

TICATED USER.
 

RECOMMENDATIONS
 

.	 THEORETICAL CALCULA-
TIONS OF POWER BEAM 
EFFECTS AND COMPARE 
WITH OBSERVED SPAs. 

a ESTABLISH SEVERAL
 
OMEGA LINKS WHICH PASS
 
THROUGH HEATED VOLUME.
 

o LIKELY NOT TO BE
 
SIGNIFICANTLY EFFECTED.
 

o SINCE LORAN C EQUIP-

MENT READILY AVAILABLE,
 
PARALLEL EXPERIMENTS
 

WITH OMEGA SHOULD BE C) 
CONSIDERED. 

o POSITIONING SYSTEM OF
 
THE 1980s AND ITS
 
IMPORTANCE MAKES IT
 
MANDATORY TO EXPERI-

MENTALLY DETERMINE
 
EFFECTS OF HEATING
 

o MONITOR PERFORMANCE OF
 
GPS, PARTICULARLY OVER
 
EQUATORIAL REGION
 



TABLE 2-2. IMPACTS ON IONOSPHERIC USERS: COMMUNICATION SYSTEMS (FROM REF. 10) 

SYSTEM SYSTEM CHARACTERISTICS POWER BEAR EFFECTS RECOMMENDATIONS 

HF o 3-30 MHZ 

a USES IONOSPHERE AS 
REFLECTOR TO PROPAGATE 
AT RANGES FROM 
400-800 KM 

o PROPAGATION OUTAGES 

o LOSS OF COMM LINKS 

o MANY USERS AFFECTED 

-HAM 
- MILITARY 
- CIVILIAN 

o ESTABLISH SEVERAL HF LINKS 
WHICH PASS THROUGH AND 

NEAR HEATING REGIONS DURING 
EXPERIMENT. 

AFSATCOM o u 260 MHZ 

,t340 MHZ 

o SATELLITE-TO-AIRCRAFT 
COMMUNICATION SYSTEM 

a FADING DUE TO 
SCINTILLATIONS 

o ASPECT SCATTER 
COULD CAUSE MULTI-
PATH DEGRADATION 

o SIMULATE WITH GROUND-BASED 
COMMUNICATION SYSTEMS. 

* FLY AIRCRAFT WITH COMM. 

SYSTEMS NEAR HEATING 
REGION. 0 

a MEASURE SCINTILLATIONS AT 
400 MHZ CAUSED BY HEATING. 

0 
C 

INTELSAT/ 
MARISAT 

1200 MHZ 
1600 MHZ 
6000 MHZ 
4000 MHZ 

MARISAT 

o FADING, IF SEVERE 
COULD BE 
SIGNIFICANT 

a MEASURE SCINTILLATION 
DURING HEATING EXPERIMENT. 



TABLE 2-3. IMPACTS ON IONOSPHERIC USERS: DOD RADARS (FROM REF. 10)
 

SYSTEM 


OTH 


SURVEILLANCE 

AND 

SPACETRAK 

RADARS 


a, 

SYSTEM CHARACTERISTICS 


o 	5-30 MHZ 


o 	USES IONOSPHERE AS 

REFLECTOR TO ILLUMINATE 

LARGE AREAS 


o 	SURVEILLANCE FOR CONUS 


o 	VHF-UHF 


a 	DETECT SLBMs AND 
SPACETRAK 

a'O 

POWER BEAM EFFECTS 


o COVERAGE SECTOR MAINLY 

OCEANS, SO EFFECTS 


LIMITED TO SIDELOBES 


* ASPECT-SENSITIVE SCATTER 

FROM IRREGULARITIES AND 

GROUND BACKSCATTER DOP-

PLER SPREADING IN SIDE-


LOBES MASK TARGETS
 

o 	IF IN MAINLOBE CAUSE 


- SEVERE TARGET 

FADING 


-	RANGE ERRORS 


RECOMMENDATIONS
 

o DURING EXPERIMENT A
 
SMALL-SCALE OTH RADAR
 

SHOULD BE BUILT AND
 
OPERATED (RADAR IS
 
ALSO USED AS A DIAG-

NOSTIC TOot FOR
 
EVALUATION OF IONO-

SPHERIC EFFECTS).
 

o GROUND BASED BACK-

SCATTER OBSERVATIONS
 
DURING HEATING
 
EXPERIMENT
 

0 
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through the perturbed region. However, amplitude variations of the power beam
 

are inherently present, due both to power source variations and to amplitude
 

scintillations either natural or induced by the power beam Since the induced
 

cross modulation is proportional to the power in the disturbing wave (Ref 16),
 

even minor variations in the power beam amplitude may produce large amounts of
 

cross-modulation The actual levels and specific conditions under which this
 

effect occurs should be studied in more detail.
 

There is a possibility that some of the power beam energy will be
 

reflected by the ionosphere. Even though the reflection coefficient may be
 

very small, a significant amount of power could be reflected The geometry dic­

tates that this energy would be reflected toward the polar regions, so the only
 

interference would be with satellites in highly-inclined orbits. Scattering
 

by the ionospheric irregularities could also produce interference outside the
 

beam.
 

Another impact on communications is the effect of the disturbed iono­

sphere on Space Shuttle-type communication links. In the MPTS era, many missions
 

are projected to be using the 200-400 km orbital region for construction of large
 

space facilities, like the MPTS. Thus, the Earth-space communication links for
 

these missions will potentially be degraded if the link frequency is below
 

1 GHz. Another related problem is that the disturbed ionosphere will also dis­

tort space-based RF measurements of the Earth's surface. Possible measurements
 

include RFI monitoring systems and radiometry to determine atmospheric states.
 

These measurements would be reduced in accuracy by the ionospheric disturbances
 

induced by the power beam.
 

2.4 POWER BEAM EFFECTS
 

The effects of the ionosphere on the power beam have been estimated
 

to be minimal (Ref. 9). The effects include power absorption, beam displace­

ment, Faraday rotation, dispersion and beam defocusing. Since the ionsophere
 

contains mobile electrons, it acts as a conductor with a finite amount of attenua­

tion (absorption). The maximum absorption will occur at about 70 km during the
 

-
daytime. On the average, the signal attenuation will be about 10 3 dB, with peak
 

attenuations of 10-2 dB occurring for an hour or less a few times each year.
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This loss is relatively insignificant. Beam displacement is the result of
 

refraction through electron density gradients at the various ionospheric levels
 

The average displacement will probably be less than 40 meters, with peak values
 

reaching 100 meters during severe ionospheric storms. These values are so
 

small compared with the beam diameter that the displacement will have no effect
 

on system performance.
 

Faraday rotation is the change in the beam polarization direction
 

The rotation occurs when waves propagate through a plasma in the presence of a
 

magnetic field. The amount of rotation depends on the total electron content
 

in the path length and on the orientation of the Earth's magnetic field with the
 

beam direction. The rotation will vary with time of day, season, and solar
 

activity because of the varying electron densities. The average rotation at
 

higher latitudes will be from 0' to 6', with a 10'-12o peak rotation occurring
 

for short periods a few times a year. With linearly polarized antennas (assumed
 

for the MPTS), Faraday rotation produces a direct polarization loss. This loss
 

can be as much as -0.15 dB for 10'-12' rotations, but the loss would be greatly
 

reduced if the MPTS antenna could be rotated to compensate for slow variations
 

(e.g diurnal) in the rotation angle. Even during strong magnetic substorms 

when peak rotations occur, the loss could be minimized if the rotation is 

sensed at the rectenna site and then compensated at MPTS antenna. Thus, 

Faraday rotation is not significant if it is considered during the system 

design. 

Dispersion is the change in the frequency spectrum of the signal as
 

it passes through the ionosphere. Since the power beam is essentially a CW
 

signal, there is no dispersion in this narrowband signal The power beam is 

slightly defocused as it passes through ionospheric irregularities This
 

results in beam spreading which will place slightly more power at the edge of
 

the rectenna array and cause slightly more loss than if no irregularities were
 

present. The major problem in this case is that the power beam induces the
 

offending irregularities, so the effects are not easily estimated because the
 

irregularity mechanisms are not fully known as yet. However, a power loss of
 

less than 1% is expected due to beam spread spillover at the edge of the
 

receiving array.
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PILOT BEAM EFFECTS
 

The ionospheric effects on the pilot beam will be nearly the same as
 

for the power beam. Absorption, displacement, Faraday rotation, and dispersion
 

will have negligible impact on the pilot beam performance. The only potential
 

problem could be produced by ionospheric irregularities, which can cause varia­

tions in the pilot signal when it reaches the power array. The Raytheon analysis
 

(Ref 9) indicates that only small scale (-50 meters) irregularities can cause
 

"phase noise" across the array, and the small scale irregularities are expected
 

to be weak. The phase noise will cause variations in the received pilot beam
 

signal at each subarray, and these variations will in turn degrade the coherence
 

of the power beam Small-scale irregularities in the natural state may be weak,
 

but it also has not been established that these irregularities will remain weak
 

in the presence of the power beam. The frequency of the scintillations is
 

important because the adaptive phase control system reacts immediately to
 

changes in received signal phase. If ionospheric changes occur between the
 

time the pilot beam passes through the ionosphere and the time the pouer beam
 

returns (-1/4 sec), the phase control system cannot compensate for the resulting
 

phase errors. The levels of degradation due to induced scintillations have not
 

been estimated, so some analytical work is necessary in this area.
 

Another potential problem area associated with the phase control sys­

tem involves pilot beam amplitude variations across the array. Small-scale
 

irregularities in the ionosphere induce amplitude variations across the pilot
 

beam wavefront. These amplitude variations can cause phase errors in the phase
 

control system. The "AM-to-PM" conversion problem is presently being investi­

gated, and the ionospheric effects should be included in this investigation.
 

There is an additional phase control system problem presently being
 

studied. Relative motion between subarrays and scattering off moving, turbulent
 

ionospheric irregularities causes "differential Doppler," which causes the pilot
 

signal frequency to be different from the reference frequency. Thus, the power
 

beam phase reference will be slightly in error. The ionosphere has been found
 

to produce variations in the apparent received frequency of trans-ionospheric
 

signals, and these variations have the same effect on the phase control system as
 

is produced by the "differential Doppler." The ionospheric spectral broadening
 

effect is expected to be a second-order effect, but it is a potential problem
 

which should be investigated.
 

2-19
 



900-800
 

2.6 CONCLUSIONS
 

The MPTS will significantly alter the ionospheric electron temperature
 

and density within the power beam cylinder, and the effects will probably appear
 

at distances of 20-50 km from the beam cylinder due to drifts. F-region iono­

spheric irregularities will be greatly enhanced in the midlatitude regions
 

because the natural level there is generally low. The increased irregularities
 

will 	impact the coherence of the power beam, the accuracy of the beam phase con­

trol system, and the performance of both transionospheric and ionospheric-


For power densities of 10-20 mW/cm
2
 

reflected communication/navigation systems. 


in the ionosphere, power beam losses will be small if some compensation is made
 

for the expected variation in Faraday rotation.
 

2 7 RECOMMENDATIONS
 

The 	following recommendations are made:
 

1) 	 An investigation must be performed to determine the mechanisms
 

for and the extent of ionospheric irregularities which affect
 

the accuracy of the phase control system. The system accuracy
 

is presently being studied as a function of pilot beam amplitude
 

and phase variations across the array surface.
 

2) 	 A comprehensive study of plasma instability potentials should
 

be made to determine which instabilities are possible and their
 

probability of occurrence. Part of this work may have been done
 

already, but no documentation was found.
 

3) 	 A study of the interaction between the modified D-region and
 

the mesosphere must be made to estimate the mixing effects, the
 

potential for ozonesphere modification, and the potential for
 

Raman scattering The mixing and modification effects will
 

probably be difficult to analyze because little is presently
 

known about the natural-state interactions.
 

4) 	 Experimental heating studies at 2.45 GHz should be accelerated
 

when possible to verify the analytical/empirical estimates of
 

power beam impacts and to expose any potential unexpected
 

effects.
 

2-20
 

60 



900-800
 

5) A workshop should be organized within the next year to (a) expose
 

the MPTS design to the general community of atmospheric/
 

ionospheric scientists, comm/nav system engineers, and other
 

ionospheric "users," (b) solicit their estimates of potential
 

impacts in each specific area of interest, and (c) compile a 

list of analyses and experiments to be performed with priorities 

and a schedule 

6) Experiments should be developed to utilize the Space Shuttle
 

platform as an observation/transmission site in conjunction with
 

present and proposed ionospheric heating experiments (Refs. 10,
 

17). These experiments should also include pilot beam/phase
 

control system evaluations where possible. Suggested experi­

ments could easily be developed in the workshop mentioned above.
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SECTION III
 

RECTENNA ARRAY 

, ;NQ PAGE BLANK NOT F4i&i32 

SUMMARY
 

The Impacts and Benefits to society from
 
developing, constructing and operating the multi­
ple ground rectenna arrays are discussed. First
 
the functional description is given in relation
 
to a portion of the SPS energy transmission chain.
 
The adjacent links are the orbiting satellite as
 
input source and the electric utility power grid
 
as output load for the solar derived energy.
 

Next the detailed hardware description is
 
given for the elements, subarrays and array as
 
currently envisioned. This forms the basis for
 

abstracting the impacts and benefits.
 

Land use, radio frequency interference,
 
materials requirements, occupational health
 
effects, construction and security are among the
 
topics reviewed and discussed.
 

The most significant potential impact is the
 

land area requirement. The most controversial
 
topic is probably where the personnel exclusionary
 
boundary ought to be, if outside the rectenna
 
array edge.
 

The largest benefit when compared to present 
electric power generating practice, is in the 
very low level of waste heat liberated and lack 
of atmospheric emissions including noise, when
 
compared to the useful energy delivered.
 

Recommendations for further study relative
 
to better quantization and further reduction of
 
impacts are given.
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INTRODUCTION
 

The Impacts and Benefits (I&B) to society from constructing and
 

operating the power receiving portion (Ref. 18) of a Satellite Power System
 

(Ref. 19) (SPS) are to be outlined and discussed.
 

The receiving array elements arecurrently proposed to consist of
 

microwave semiconductor diode. rectifiers to convert the received RF energy to dc
 

output and antennas to capture the RF and conduct it to the rectifiers. Hence
 

the name rectannas.
 

The rectenna array is a part of a power transmission chain for import­

ing energy from solar powered satellites. A current system description and
 

previous studies are described in (Ref. 1). The chain consists of geosynchronous
 

satellites coupled via microwave beams to the receiving rectenna arrays located
 

on earth (Fig. 3-1). The array output interfaces with the domestic electric
 

utility grid.
 

Although there are other functions related to systems operations
 

located within the rectenna, the collection of the beamed microwave frequency
 

(2.45 GHz) radiation and conversion to electric power output are the primary
 

functions required of the receiving array. A 30 year design lifetime with
 

maintenance is assumed.
 

Whereas the microwave power transmission link model (20) and related
 

rectenna element engineering performance (21) are known, a detailed operational
 

concept rectenna array design has not been performed. Thus it was necessary to
 

develop a particular partial design in order to yield information on major sub­

systems that are common to all designs. The details will obviously change with
 

technology advance and more in-depth system tradeoffs.
 

The I&B derived by this approach should, however, be generally
 

applicable to subsequent array designs.
 

The rectenna array will first be described in more functional detail,
 

physical form and in operation in order for the various I&B to be derived and
 

discussed.
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THE RECTENNA ARRAY
 

3.2.1 Functional Detail
 

The rectenna array is similar to a ground based solar array in that
 

in the northern hemisphere its elements face south, receive energy from out in
 

space and convert it to electric power output. However, the recterna function is
 

not inhibited by clouds, dust or haze, smoke, nor is it limited to a fraction of
 

a day in its performance.
 

The microwave beam input is nearly continuous except for the 1% of a
 

year when the satellite is eclipsed, and the long wavelength (12 cm) radiation is
 

almost unaffected by weather, thus eliminating inefficient and expensive energy
 

storage.
 

The primary function of the SPS rectenna array is to collect the
 

beamed microwave energy and process it to a form compatible with the intended
 

loads. The loads are to mainly consist of the existing 60 Hz high voltage ac
 

grids in the U.S. However, the array output may be processed as high voltage dc
 

for transmission to urban load centers. Loads may also consist of dc, ac or
 

even microwave resident or captive power users shielded and integrated into or
 

near the rectenna.
 

Since most of the array output will be exported and in order to
 

achieve improved generation security with the existing ac grid, the 5 GW array
 

will be partitioned into 1 GW units. Thus a dispatch switching and internal
 

load managing switching complex will be incorporated into the array.
 

Satellite interface facilities will also be required. Multiple coded
 

pilot beam signals broadcast from near the rectenna center are used to enable
 

turn on and as a phase reference for the retrodirective array in pointing and
 

forming the power beam. A telemetry receiver and command and control trans­

mitters must be provided for controlling the satellite. These subsystems will
 

be incorporated in or near the rectenna site.
 

A resident maintenance facility will be provided.
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3.2.2 Physical Form
 

The typical SPS power receiver for northern latitudes is a large
 

elliptical outline array averaging 10.5 x 14.9 km at 38.90, for example. For
 

convenience in fabrication, construction and maintenance, the array is composed
 

of smaller units termed subarrays averaging 10 x 10 m Each subarray is composed
 

of an array of elements called rectennas which are the basic building blocks of
 

the array.
 

The rectenna element is shown in Fig. 3-2. The antenna element is a
 

half wave dipole approximately 6 cm or 2.5 inches long. This antenna is supported
 

approximately a quarter wavelength in front of an RF reflecting plane termed the
 

ground plane.
 

The low pass filters and the rectifier may either be parallel to the
 

ground plane reflector in front, or project through the ground plane such that
 

the dc collection buss occurs behind the ground plane. The foreplane dc buss is
 

perpendicular to the incoming RF electric field and thus offers a minimum pertur­

bation or shadowing of that field.
 

The antenna dipole join and the close spaced parts of the low pass
 

filters and diodes require shielding from standing water drops from dew or rain
 

or similar foreign objects. Some form of encapsulation is necessary to prevent
 

RF detuning effects.
 

The rectified output appears as a dc voltage between the dipole halves
 

or relative to ground which is the reflecting plane.
 

Because of the long RF wavelength, the reflecting plane can be either
 

partially optically transparent to promote sunlight penetration and visibility
 

or totally opaque to provide sunlight blockage.
 

The rectenna elements must face the downeoming RF beam whose angle of
 

incidence is a function of the rectenna array latitude. In northern latitudes
 

the subarrays can be disposed as shown in Fig. 3-3a. For more southerly loca­

tions, the subarrays may be supported as shown in Fig. 3-3b. Since the
 

rectenna's performance varies slowly with angle of incidence the rectennas can to
 

a degree follow the local terrain undulatons. Also, the loose tolerances
 

associated with the treated wooden supports are satisfactory.
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An open wiring form of current collection is proposed with voltages to
 

ground of less than 50 V in order to yield simplicity, safety and the small
 

amount of cooling required for the efficient converters.
 

DC to ac inverters will be located throughout the array to periodically
 

collect the subarray outputs. The inverters ac outputs will be further consoli­

dated at switchyards for auto transformation to yet higher voltages and condi­

tioned for collection and consolidation into the external utility ac or dc grids.
 

3.2.3 Operations
 

The rectenna is brought-on-line by first establishing communication
 

with the utility load grid and then with the satellite to prepare for handling a
 

throughput of power.
 

The coded pilot beam originating from near the rectenna array center
 

when received and properly decoded by the satellite allows it to begin phasing its
 

subarrays to focus the beam on the pilot transmitter.
 

If the spacecraft transmitter array were previously turned on and
 

awaiting the pilot beam, then with electronic speed the beam can be formed. Thus,
 

the rectennas must be provided with either matched loads or output voltage
 

limiters. That is because the sudden-inertialess rectification process can cause
 

a transient dc voltage level to be generated that could overvoltage the subarray
 

and destroy all the diodes at once. Thus proper transient protection is manda­

tory. Also, a sudden turnoff or loss of load could cause similar overvoltage
 

transieiits.
 

The rest of the ground system consisting of inverters and trans­

formers could probably not stand the instantaneous surge of dc output. Hence
 

either the transmitter must be brought up to power at a rate the inverters and
 

transformers can stand or the pilot beam system must be capable of controlling the
 

degree of coherence of the transmitter beam so as to yield a "slow" focus. The
 

latter can be accommodated by control of the pilot beam transmitter level or
 

transmitter modulation by design.
 

Once on line, the rectenna array instrumentation is sampled to deter­

mine the beam position and focus quality by monopulse techniques (Ref. 22).
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Given that the rectenna subarrays and spacecraft transmitters are
 

functioning properly, then the inverters can be initiated and the process of
 

applying the ac or dc EHV or UIHV output is programmed.
 

Once operating, the system is simply monitored to assure proper per­

formance by computer testing present output data against stored standards or
 

previous established conditions such as units down for repair oi maintenance.
 

The qualLty of performance of the transmitting subarrays can be tested
 

by electronically switching the pilot beam transmitter function from the present
 

position to the alternate positions within the array. By monitoring the result­

ing beam center position shift magnitude and direction, information about the
 

transmitter subarray phase accuracy can be derived. Similarly, the slight input
 

change that results can be used to obtain information relative to the rectenna
 

subarray operating quality by comparison to standard load-input performance
 

curves.
 

Shutdown of the system can be electronically swift due to the iner­

tialess response of the rectennas. If the pilot beam is suddenly removed, the
 

flux density drops by the square root of the number of spacecraft transmitter
 

subarrays (typically 104 subarrays). A slower controlled "grey-out" is possible
 

by design control of the pilot level or modulation.
 

In summary, the rectenna array may be a large collection of small
 

microwave antennas and associated rectifiers grouped into subarrays supported on
 

treated wooden supports. The subarray dc electrical outputs are collected into
 

ac inverters whose outputs are consolidated into transformed high voltages for
 

final conditioning as EHV or UHV ac or dc before feeding into electric utility
 

grids. The rectenna array physical plant also contains a maintenance facility
 

and interface equipment associated with the spacecraft and the utility grid.
 

This brief description has provided the background for more in-depth
 

discussions of rectenna array details wherein impacts and benefits will be
 

discussed.
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3.3 IMPACTS AND BENEFITS
 

3.3.1 Land Use
 

Like sunlight, the diffuse microwave radiation requires large
 

collecting areas to be effective The overall land use requirements of the SPS
 

rectenna will probably be determined by the applicable personnel flux density
 

regulations in force at the time of construction. The currently allowable
 

personnel continuous exposure limits for microwave radiation within the U.S. is
 

10 m11/cm 2 [ANSI C95.1 via OSHA].
 

For the current SPS designs having 5 GW rectenna output, the 10 mW/

2
 

cm flux density level is reached at a radius from the center of the rectenna
 

array at about 3 km. Economically useful rectenna collection occurs out to a
 

radius of about 5 km, depending on the transmitter aperture illumination taper,
 

in order to intercept about 95% of the beamed energy. Aperture taper refers to
 

the spacecraft transmitting antenna design practice of making the microwave flux
 

density in the center greater than at the edge in order to reduce the radiated
 

sidelobe levels. Figure 1-4 shows the effects of taper on the antenna patterns.
 

2
 
The flux density at the rectenna edge is on the order of 1 mW/cm
 

Thus, the rectenna edge flux density level is 1/10 the current U.S. allowable
 

continuous exposure. This is also the maximum allowable microwave emission
 

level, before purchase, 5 cm from the door of a consumer microwave oven (Ref. 23).
 

The sidelobes of radiation from the satellite transmitting antenna
 

which contain the remainder of the radiation, all fall outside the rectenna for
 

transmitting antenna aperture illumination tapers greater than 10 dB. Even with
 

uniform transmitter aperture flux density or 0 dB taper, the first sidelobe on
 
2


the earth is 17 dB below the peak radiation or 0.45 mW/cm . The current designs
 

of 10 dB taper yield a first sidelobe level of 0.085 mW/cm2 for example.
 

Some East European, Soviet countries have an even lower allowahle con­

tinuous personnel exposure flux density limit such as 0.01 mW/cm2 , and in all
 

probability the existing U.S. levels may be revised downward.
 

In case the level was set at 0.1 mW/cm2 , a factor of 100 lower than
 

at present, a taper of greater than 9 dB would be required to keep the first
 

sidelobe lower than that limit. The personnel exlusionary zone would then be a
 

radius of about 8 km from the rectenna center. For a 0.1 mW/cm2 constraint, then
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the boundary would be about 3 km beyond the rectenna edge since the main beam
 

narrows only slightly. Land requirements would thus be (8/5)2 or 2.5 times the
 

rectenna receiving array only requirements.
 

However, with the current design 10 dB taper, the sidelobe level is
 

reduced, the main beam widens only slightly and the 0.1 mW/cm2 contours receed
 

to only 5.8 km from the rectenna center or 0.8 km outside the rectenna edge.
 

Hence, for the 10 dB taper baseline case, the land requirement is only 35% more.
 

If the personnel exclusionary zone around the rectenna were required
 

to be 0.01 mW/cm2 (1000 times below current U.S. limit), then for the current
 

10 dB taper case, the boundary would be at a radius of about 14 km or 9 km beyond
 

the rectenna edge, requiring 8 times the rectenna area! A greater than 15 dB
 

taper in the transmitter could move the zone boundary into the first sidelobe at
 

about 9 km radius where the land use would be slightly more than three times the
 

rectenna area. The higher taper leads to elevated waste heat concentration on
 

the spacecraft transmitter array however, and thus requires a system design
 

tradeoff.
 

Three times the rectenna area is considerable land area in the
 

U.S. for the scenario of 224 each rectennas in the U.S. from 112 satellites.
 

The basic rectennas are elliptical in outline due to the northerly latitude
 

locations and the equatorial orbit spacecrafts. Assuming an average 450
 

angle of incidence on the rectenna which occurs at about the latitude of St. 

Louis for example, the average rectenna eclipse of 5 x 7 km radius would have an 

area of 110 km2 . Two hundred twenty-four each would be 2.464 x 104 km2 or 

0.26% of the land and water area (0.368 x 106 km 2 ) of the 48 United States. An 

area slightly more than Vermont for the basic rectennas in the proposed scenario. 

If the rectennas were distributed such that no sidelobe overlap of
 

consequence occurred, then for the case of 0.1 mW/cm 2 exclusion boundary, the 224
 

sites would be 35% more or about 0.35% of the U.S. land and water area.
 

- The 15 dB taper, 0.01 mW/cm 2 case, under similar restrictions, would 

require approximately 0.8% of the U.S. area or slightly less than So. Carolina or 

Maine in area. 
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If overlap of sidelobes were to occur, as for example if rectennas
 

were to be grouped into "power parks," then the superposition of sidelobes would
 

be such as to require more land than individually. Their superposition would not
 

be appreciably more for a high flux density regulation, but would be for a low
 

level requirement. For example, two 15 dB taper beams overlapping at a common
 

point at 17 km radius, in the third sidelobe, could raise the flux density to the
 

0.01 mW/cm2 level, whereas individually that level would normally be reached at
 

only 9 km radius This is the extreme ratio case and many closely packed
 

rectennas would not create such long range effects, but the net result is still
 

that grouping rectennas does require slightly more land use than individually.
 

It is instructive to consider another extreme but interesting case
 

wherein all the rectennas are grouped together. Away from the main beam and close
 

in sidelobes, because of transmitting array operational phase errors, failures
 

and amplitude errors in the subarrays, the transmitting antenna pattern,sidelobe
 

level will fill into an average error level until the basic subarray pattern
 

envelope further reduces the sidelobe level.
 

If many beams were put into close proximity, then the superposition of
 

this average error level could exceed perhaps the 0.01 mW/cm2 flux density level.
 

For example if 25 beams, each of which had 100 rms phase errors, ±1 dB amplitude
 

errors and 2% random subarray failures were within 100 km radius of each other,
 

the combined flux density could exceed the 0.01 mW/cm2 limit throughout a 200 km
 

diameter circle. That would represent an area 11 times the rectenna combined
 

areas. All 224 beams in a 300 km radius would exceed the 0.01 mW/cm2 limit.
 

Figure 3-4 indicates the range of land usage from the basic rectenna
 

array to the 0.01 mW/cm2 exclusionary zone as a function of the clustered
 

rectennas. An exclusionary limit higher than the 0.01 mW/cm2 figure would yield
 

maximum land usage requirements that are much closer to the basic rectenna land
 

usage.
 

Thus, the rectenna land use requirements are closely coupled to the
 

exclusionary zone flux density limits, tThe degree of clustering, the quality of
 

the transmitting arrays and the aperture illuminatioln taper in the transmitting
 

array.
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A fenced guard ring may exist around the rectenna array collectors
 

either for physical plant protection or for assistance in maintaining the
 

microwave flux density personnel exclusion. However, the guard ring land could
 

also have dual use in that it may be pastureland or for other agricultural use
 

or as a wildlife sanctuary. A portion of the utility grid interface equipment
 

and perhaps the shielded maintenance facilities could also be in the guard ring
 

along wi3th shielded captive load industries.
 

These dual land uses tend to mitigate the spacious SPS land use, but
 

the fact remains that large land areas are necessary for a rectenna derived
 

electric pouier supply system.
 

The tradeoffs involving rectenna array and transmitting array size vs
 

the beam power transfer efficiency are shown in Fig. 1-3. For a desired beam
 

transfer efficiency, the product of the area of the arrays at the two ends of the
 

link is a constant if the wavelength and range are fixed. Figure 1-3 also shows
 

that in order to achieve the optimum beam efficiency, the microwave energy must
 

be distributed across the transmit and receiving array in a prescribed aperture
 

taper.
 

In the ideal case, the radiated beam energy distribution can be
 

described as contained within a conical cylinder extending from the satellite to
 

the rectenna. The conical angle of the cylinder is a function of the size of the
 

transmitting array in wavelengths and hence determines the size of the rectenna.
 

In the overall system design tradeoffs, the ground array is made larger than the
 

spaceborne array in order to minimize the spacecraft weight and thus cost.
 

The rectenna array has also to be large enough to capture most
 

of the microwave beam as it moves about on the ground due to system pointing
 

errors. Although in the case of the pilot beam steered retrodirective array the
 

beam center movements are expected to be less than 40 to 50 meters.
 

Thus the land use requirements for the rectenna collector arrays alone
 

are large and other regulatory boundaries are particularly sensitive to the
 

allowable flux density levels set for continuous personnel exposure.
 

Shared or multiple land use is feasible for certain enterprises both
 

within the rectenna field and in the personnel exclusionary zone or guard ring.
 

These uses will be discussed in connection with the rectenna subarray impacts.
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In order to locate rectennas close to urban centers and to accommodate
 

the land area required in the 112 SPS scenario it could in some instances be
 

necessary to displace people or to provide them with an RF shielded existence
 

However, as 2/3 of the people in the U.S. are currently located in the 1/3 of the
 

U.S. east of the Mississippi, it would probably be better to locate most of the
 

rectennas in the west where the land is, and then export the electric power east
 

via HVDC lines like the present pacific intertie.
 

The more abundant western sunshine and land shadowing subarrays may be
 

a beneficial impact in some agricultural cases, but the fact remains that the
 

system total land use is the largest rectenna impact.
 

It is not yet known whether airspace restrictions will be required.
 

The transient aircraft passage may be impacted via increased noise in their
 

avionics subsystems. The loitering canvas sailplane or plastic bubble helicopter
 

should be excluded from the beam center due to possible personnel dehydration for
 

long exposures.
 

3.3.2 Radio Frequency Interference
 

Aside from land use impacts, the other significant impacts relate to
 

the RF energy that is not collected either by design or other causes. The
 

uncollected energy may affect biological safety but it particularly represents an
 

RFI impact via receiver saturation or intermodulation product generation.
 

Uncollected RF energy results from rectenna spillover by design
 

(uneconomical to process), beam reflections, beam misdirection or harmonic
 

reradiation. The conditions that lead to reflected energy arise both from
 

natural causes and nonstandard operation of the transmitter, rectennas, or load.
 

Proper optimization of the rectennas subsystem design is required
 

to minimize the RFI impacts. The applicable parameters can best be understood
 

by a detailed discussion starting with the beamed power system.
 

3.3.2.1 Beam Pointing. The system source input to the rectenna array is the
 

microwave energy beamed from the power transmitting array aboard the satellite.
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One function of the satellite interface equipment in the ground array and
 

another potential source of the SPS Microwave subsystem RFI, is the provision
 

for transmission of a coded pilot beam
 

The pilot signal is received by the subarray receivers of the satellite
 

retrodirective phased array and is phase processed in order to derive the array
 

beam pointing information. The pow1er beam is automatically, electronically
 

steered to focus on the pilot beam transmitter.
 

Coding is employed to deter theft or misdirection of the power beam
 

by unauthorized transmitters. The degree of difficulty in pursuing the latter
 

course is a function of the spaceborne receiver design. The "ante" to get into
 

the game can be made quite high in terms of the pilot beam pointing accuracy,
 

signal absolute power level, and the complexity of coding modulation and
 

demodulation.
 

The power level of the pilot beam transmitter is a rectenna RFI impact,
 

and in the extreme case, a very powerful pilot beam transmitter could be cause
 

for any added airspace restrictions. Multiple pilot transmitters are desirable
 

and diversity switching could reduce such airspace impacts.
 

Figure 1-4 shows the cross section of the distribution of flux density
 

within the incident microwave beam for the baseline design. On the average, the
 

flux density will be distributed over the rectenna as in Fig. 1-4. The center of
 

the the beam will fall on the center of the array most of the time. However,
 

due to the environmental factors and because of most of the engineering limita­

tions as shown in Fig. 3-5, the center of the beam will move about the center
 

of the array.
 

The current design constrains this beam wander or dancing to on the
 

order of 40-50 m. This is fine pointing for something originating 37,000 km
 

away' The fine pointing is achieved by use of the pilot beam steering retro­

directive array technique mentioned previously.
 

3.3.2.2 Propagation Conditions. Propagation conditions play a part in deter­

mining rectenna impacts. Large scatterers in the beam will cause increased RFT
 

on-the ground and in air and space about a rectenna. Such scattering sources
 

could be meteors, other spacecraft, inospheric storms, aircraft, lightning,
 

flocks of birds and insect swarms (radar "angels").
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Severe weather conditions can lead to large precipitation forms such as
 

wet hail that can cause scattering and absorption of microwave energy Due to
 

the rather long (12 cm) wavelength, normal raindrop sizes do not lead to sig­

nificant scattering or absdrption. The rapid refractive index gradients
 

associated with severe weather fronts provide some scattering. However, the
 

above effects are rather infrequent and the magnitudes of scattering or loss rarely
 

exceed 5%. Negligible for biological concerns, but not for RFI impact
 

considerations.
 

Depolarization of the power beam is a system performance as well as
 

an RFI impact. One natural cause is solar storms, whose charged particles and
 

trapped magnetic fields alter the earth's magnetosphere and ionosphere (Ref 24).
 

This in turn affects the state of polarization of the microwave power beam and 

pilot beam and leads princ:pally to other than optimum received polarization at
 

the rectenna (unless successfully tracked out by orienting the spacecraft) That
 

fraction of the RF energy that is incorrectly polarized is reflected and radiated
 

back into space by the rectenna.
 

The interaction of the pilot and power beams in the RF heated inosphere
 

represents a potential impact on the beam pointing system accuracy The heated
 

ionosphere is an impact on other RF signals traversing that region Modulation
 

transfer and harmonic mixing can occur. This can impact other ionosphere users
 

as well as the SPS command and telemetry signals.
 

3.3.2.3 Conditons at the Rectenna. The RFI impacts of the rectenna per se are
 

principally due to rescattered incident radiation and harmonic generation and
 

radiation. A portion of the incident radiation is rescattered that depends
 

upon many factors First is the state of polarization of the incident wave as
 

affected by the spacecraft alignment, the ionosphere and the rectenna array
 

construction and maintenance accuracy.
 

Thus, if the incident wave polarization is mismatched to the rectenna 

receptors, some energy will be rescattered. The direct and crossed polarized 

rescattering patterns are unknown at present. 

The state of the effective RF load presented by the rectenna affects
 

the amount of reflected energy. Thus, if the incoming flux density is less or
 

more than designed for, the diode effective impedance is varied and the RF match
 

is improper.
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Incorrect incident flux density levels such as may be caused by
 

transmitter failures, the slight system beam mispointings, or trash blowing
 

across the rectennas such as leaves, tumbleweeds, paper, etc., can also
 

diminish the amount of RF energy reaching the rectenna. Though small in terms
 

of the output electric power, the scattered energy represents RFI potential
 

impacts.
 

Even with properly polarized and pointed and correct level RF energy,
 

there may still be reflections due to improper RF impedances caused by load
 

variations. Figure 3-6 shows the magnitudes of some of the factors affecting
 

rectenna re-radiation RFI levels.
 

Conditions that affect the RF impedance match can also be cause for
 

reflected power. If significant dust or water layers or insect nests, bird
 

droppings, weeds, leaves, seeds, etc exist near the tuned antenna elements or
 

RF filters, then the added stray capacities can cause an RF impedance mismatch
 

which will lead to reflected energy. Bent elements due to hall impacts or bird
 

or animal curiosity or nesting; mis-oriented subarray panels due to wind, earth
 

movement or setting, or massing rectenna due to terrain defiles can also cause
 

reflected energy. Deposited leaves, twigs, tumbleweeds, vine overgrowth, wet
 

snow, hail, resting or nesting birds, animals or insects can also cause detuning
 

of rectenna elements that result in reflected power.
 

The exact pattern of energy reflected from the rectenna array is
 

currently unknown. However, the energy is expected to be somewhat uniformly
 

distributed throughout the basic rectenna dipole pattern. Thus, a majority of
 

the energy will be reflected back toward the spacecraft. Nonetheless, there
 

will be significant radiation directed toward the southern horizon.
 

The rectenna elements in a subarray are wired in parallel to promote
 

self-clearing of faults (shorted diodes) by fusing open the small bond wire to
 

the diode chip. Thus, if a diode faults, it is automatically cleared via the
 

Combined short circuit currents of the paralleled diodes. Nevertheless, some
 

incident RF energy is now reflected from the cleared fault antenna. Thus, the
 

state of maintenance can affect the amount of reflected power and thus RFI
 

impact. Also, when subarrays are removed from service for repair or maintenance,
 

and they are in either a no-load or short-circuited condition, then the
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reflected energy density above the subarray can be locally quadrupled due to
 

constructive interference near the subarray caused by the incident and almost
 

totally reflected field strength.
 

During the transient conditions associated with turn-on and turn-off
 

of the system, the rectenna will reflect the low level incident radiation.
 

3.3.2.4 Harmonic Reradiation. In addition to the fundamental energy at
 

2450 bMz, the rectenna will also radiate harmonics Current rectenna harmonics
 

are 2nd - 25 dB down from the fundamental, 3rd - 40 dB down, 4th and higher
 

greater than 70 dB down. The harmonics are caused by the nonlinear current flow
 

in the diode. The harmonic currents are trapped by the rectenna low pass filters
 

(Fig. 2), LPF, in order to promote high conversion efficiency. However, there
 

is a system tradeoff relative to keeping the LPF fundamental insertion loss low
 

which tends to limit the number of filter sections for harmonic rejection
 

The angular radiation pattern of the rectenna harmonics is currently
 

unknown also. The harmonics can potentially impact both ground and space users
 

of the spectrum.
 

3.3.2.5 Other RFI Sources. The dc to ac inverters with their switching
 

harmonics are a potential source of RFI impacts unless properly filtered The
 

subarrays and collection lines can become potential arrayed, low frequency
 

antennas with the potential for sharp angular lobed patterns unless the
 

harmonics are suppressed or purposely dephased.
 

In addition to the pilot beam signal and the subarray line carrier
 

instrumentation, the command and control transmitters are potential RFI sources.
 

High voltage corona noise is a potential RFI impact source as well as
 

an acoustic noise source.
 

The small amount of waste heat liberated by the rectennas, inverters,
 

transformers and transmitters appears as infrared (IR) radiation RFI
 

Reflected sunlight from the field of subarrays is also an RFI impact
 

as it may affect spacecraft optical sensors or aircraft pilot visibility.
 

Reflected moonlight from such a large surface may make an impact on
 

migrating waterfowl if they misinterpret the shiny subarray surfaces as a large
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body of water during restricted visibility conditions or otherwise
 

In summary, the beam incident on the rectenna and the rectenna itself
 

are sources for scattered and originated microwave radiation whose RFI potential
 

can affect ground, aircraft and spacecraft receivers at a number of frequencies.
 

The strongest are the pilot and power beams and harmonics. Their level and
 

impact is to a degree a function of the rectenna maintenance.
 

The actual impact details are obviously a function of where the
 

rectenna is located. If trees can be grown around the rectenna perimeter, it
 

may be possible to absorb much of the horizon directed microwave radiation
 

for example.
 

3.3.3. Materials Requirements
 

The various types and quantities of materials required for a rectenna
 

are obviously a function of the design The JSC (1) scenario design simply
 

assumed aluminum and concrete for the rectenna support. However, the resulting
 

absolute magnitude of each is quite large. Thus, this report turned to an
 

alternate renewable resource for its rectenna support that generally does not
 

require footing preparation.
 

In this report, treated wooden poles are assumed to support the sub­

array reflectors, and for the case of an opaque subarray, the metallic film ground
 

plane is assumed to be deposited on a laminated, pressed formed wood backup
 

structure. Thus, the aluminum is reserved primarily for the rectenna elements
 

and dc and ac collection lines. Hence, the rectenna requirements for non-renewable
 

resources such as metals and concrete can be quite reasonable by proper design.
 

The wood can be treated for fire retardation and preservation against insects and
 

fungus.
 

The thin film ground plane subarray version requires two wire
 

collectiJn of current, whereas the perforated or wire mesh screen version can
 

use the ground screen reflector as one buss for the collection of current from
 

rectenna elements.
 

For effective RF performance, if the ground plane is composed of
 

wires in a grid or holes or other perforations, the openings can represent up to
 

about 75% optical transparency at normal incidence before the RF leakage to the
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back side approaches 1/2%. The dipoles and dc collecton buss further reduce
 

the optical transparency to ,60%.
 

The opaque ground plane can be a very thin metallic film Only
 

enough material is required that the RF wave impedance msmatch be sufficient to
 

achieve significant reflection. Vacuum deposited metallic films of 1/60 skin
 

depth thickness can yield up to 99.6% reflectance (25). For aluminum at 2.45
 

GHz, the corresponding thickness is 275 Angstroms.
 

A further detailed discussion of the rectenna and power collection
 

scheme will serve to bring out the various material requirements so that resource
 

impacts may be evaluated. The auxiliary facilities, alternate loads and main­

tenance plans will also shed further light on materials requirements.
 

3.3.3.1 The Rectenna Element and Instrumentation. The rectenna element
 

consists of aluminum conductors, low-loss dielectrics, Gallium-Arsenide-Tungsten
 

Schottky barrier diodes and aluminum or galvanized steel wire mesh ground planes
 

and current collecting lines. The collection voltage is designed at no more
 

than 50 V to ground in order to allow open wiring for simplicity, cost effective­

ness, safety, and the small amount of cooling required for the efficient
 

converters. Higher voltages would require shielding of switching and placing
 

the collection lines in conduit and personnel restraint from the antennas, for
 

a much more non-renewable material intensive design.
 

Since there is a range of over 20 to one in incident power flux
 

density over the array, there will be techniques for accommodating the variation.
 

The rectenna element low pass filter and diode impedance matching filter will be
 

designed to be set ad3usted at assembly to transform the low intensity microwave
 

voltage to a load to yield 50 V output Thus, all rectennas have the same
 

amount of material.
 

The RF sensitive portions of the rectenna element will require
 

weatherproofing. Standing water drops due to rain or dew on the bare antenna
 

and filter elements will detune the circuit and increase the reflected power
 

and losses. Dry snow will have a lesser effect until it begins to melt. Thus,
 

some form of encapsulation is necessary around the sensitive filter-diode part
 

of the rectenna. The antenna dipoles must remain exposed in order to effi­

ciently intercept the beamed radiation. A combination of aluminum and low loss
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dielectric encapsulant will add to the rectenna materials list. Conformal
 

coating at the junction of dissimilar metals may be required.
 

3.3.3.2 The Subarray Subarrays are the next larger rectenna building 

blocks after the elements. The subarray is a large collection of rectenna 

elements grouped into a convenient size determined by fabrication shape, current 

conductor diameter latitude and other similar requirements. The subarrays are 

designed to be supported on treated wooden supports (laminated columns or poles) 

with a height limitation of about 10 m so as to fall within simple construction 

code practice, to use normal electric utility techniques and hardware, and to 

maintain a reasonable growth time for the trees from which the supports are to 

be processed so as to limit the renewable resource impact. 

The electric utility industry used approximately 3 million unlam­

inated poles in 1975 (Ref. 26) at a cost of $40 each. A rectenna would require 

approximately 2 mission supports. However, laminated columns can effectively be 

made with shorter discontinuous timber products. The collection of rectenna 

elements can be disposed as shown in Fig. 3-3. The stair-step configuration 

of Fig. 3.3a in the opaque ground plane version is provided with lateral 

stiffness due to the "pleated" shape. Thus long spans can be supported. The 

limit to span length is about 35 m due to thermal expansion considerations. The 

transparent screen version will probably require intercostals to make 10 m 

separations.
 

The current collection buss wiring will be tailored to handle the
 

accumulating current. Diagonal interconnections of paralleled diode outputs
 

will promote convective air cooling. The minimum collecting wire size is No. 18
 

in order to provide adequate rectifier diode cooling, but larger sizes are
 

necessary as added strings of outputs are paralleled.
 

The transient overvoltage protection device or circuit will probably
 

be placed at the common output of each subarray where the current is gathered
 

for bussing to the inverters. This junction will also contain the subarray
 

voltage and current monitoring instrumentation. The data will probably be
 

modulated on a carrier frequency on the current collection lines and assimilated
 

at the EHV conditioning equipment sites.
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The subarrays can follow the undulation of terrain at an array site
 

by use of various height and spacings of supports. The occasional misalignments
 

of the rectennas can be tolerated due to the low angular pointing sensitivity of
 

the dipole antenna element. This also accommodates the satellite station keeping
 

Thus, rolling or gently sloping land is suitable, but severe terrain would lead
 

to inefficiencies or the use of longer length structural supports to tile the 

projected plane from the spacecraft beam 

RF "shadows" in which to place auxiliary equipment such as trans­

formers or switches or to provide access, can be produced by the use of extra
 

tall subarrays, perhaps supported on the overhead high voltage ac collection
 

line towers.
 

The rectenna absorbing panels could be installed off the ground to
 

allow communicating access among the poles for certain animal husbandry or
 

agricultural operations in dual land use schemes. The low dc collection voltage
 

on the subarrays is compatible with such activities. Either taller supports or
 

closer spacings could accommodate the raised lower edge of the subarray required
 

for tractor or horn height clearance. Noncontinuous, but occasional clearance
 

access schemes could also be designed to allow the majority of subarrays to
 

come within 1 m of the ground. One meter minimum ground clearance is necessary
 

for maintenance activities and damage minimization.
 

Sunlight penetration can either be promoted or arrested, depending
 

on the type of ground plane and in the case of the partially transparent ground
 

plane, the sunlight scattering qualities of the subarray rear face are important.
 

The roofed over subarray configuration of Fig. 3-3b will be more
 

desirable in those cases wherein maximum RF shielding effectiveness is desired,
 

as some small amount of RF will filter through the cracks in the separated
 

subarrays due to edge diffraction and also there will be some small rescatter
 

into the area between separated subarrays due to load, polarization or input
 

intensity mismatch.
 

The wire grid or perforated metal reflecting plane subarrays desired
 

to promote insolation will require periodic support frames. It is proposed that
 

these frames also be of that renewable resource, laminated wood, rather than
 

aluminum or steel.
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Terrain blending colors could also be incorporated into the opaque
 

subarray surface if the proposed location is such as to be in high visibility
 

Also, particular surface finishes or treatments may be desirable to promote a
 

thermal net balance for the overall array by modifying the local albedo to
 

promote infrared radiation.
 

The usual utility pole hardware is proposed to fasten the subarrays
 

to the supports. Except in marshy locations, there is no requirement for
 

additional treatment of the post holes.
 

3.3.3.3 Auxiliary Facilities and Alternate Loads The subarray outputs
 

will be periodically collected on a current buss leading to dc to ac inverters
 

The inverter outputs will be collected on a higher voltage buss leading to
 

transformers wherein the collection-transformation process is repeated again
 

until the ultimate transformers and converters which are used either to output
 

60 Hz high voltage or directly to the EHV or UHV grid or where ac to dc con­

verters are used to output HVDC to a dc EHV grid
 

The internal transformer voltages may be as high as 230 kV and still
 

use a wood-pole and timber-structure configuration (Ref. 27).
 

Also, by holding the first, lower voltage collection levels to below
 

34 kV, the equipments can be simply "hot stick" switched out for maintenance or
 

repair.
 

The very heavy switches and transformers will require concrete foun­

dations. Crushed rock and railroad rail supports for some of the smaller
 

apparatus is feasible, however. The tall transmission towers at UHV or EHV
 

connecting SPS power to urban loads will be of steel or aluminum with concrete
 

footings. Applicable substation design materials listing and costs exist for
 

amassing materials impacts (Ref. 28). A minimum materials optimization has not
 

been done in this limited effort, however the results should yield an advanced
 

view of the total relative to the JSC scenario.
 

The subarrays will require maintenance and a resident maintenance
 

facility for housing personnel, vehicles, supplies and spares will probably be
 

located near the rectenna edge.
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The array will also contain a telemetry receiving and command ana
 

control transmitter complex for interfacing with the satellite. These major
 

sub-system areas are shown in Fig. 3-7. The redundant pilot beam transmitters
 

antennas can be integrated into special rectenna buildings near the array center
 

with sloping sides or roofs. They may be further diplexed to receive the tele­

metry and to radiate the commands, also.
 

Similar sloped sided or roofed buildings may be used by any of the
 

captive or integrated ac, dc loads within the array, either for rectenna
 

complex power requirements or for leased revenue producing loads.
 

For those site integrated loads that use microwaves directly (Ref. 29)
 

as process heat in noncontacting operations, a different form of microwave
 

collector is necessary to introduce the rather diffuse energy into a waveguide
 

in order to have concentrated high intensity microwaves for industrial process
 

applications. More than likely, a parabolic trough collector of wire mesh with
 

a slotted waveguide collector feed would suffice.
 

The captive loads that require higher voltage dc may have special
 

rectenna subarrays wired to place most of the elements in series in order to
 

achieve the high voltage. The normal small spacings of the rectenna element
 

parts will limit the maximum dc voltages to several kV before breakdown.
 

However, the inefficiencies associated with the dc to ac to dc inversion­

conversion process may be bypassed in this scheme, with perhaps some materials
 

savings.
 

As was mentioned previously, the rectenna array export power will be 

partitioned into perhaps I GI sections in order that the utility grid into which 

they feed can manage the size of the block of power. The switchyard and
 

breakers associated with the design for flexible routing must be accommodated
 

within the total rectenna physical plant along with the microwave and carrier
 

communication terminal equipment associated with dispatch and fault control.
 

Power must be imported to the rectenna site during outages caused by
 

eclipsing of the satellite or other outages. This standby power is necessary to
 

maintain control and data processing communication channels, switching power and
 

the pilot transmitters in order to restore satellite transmission. The impact
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of this power requirement is small as it can be accommodated via the existing
 

rectenna export power lines.
 

The overall rectennas will be provided with an instrumentation system
 

to allow collection of subarray and inverter performance data. Also, the status
 

of various switches must be logged or monitored, and methods of control must be
 

made available to accommodate loading patterns and scheduled maintenance or
 

repair removal of subarrays or sections from service.
 

The data on power output from various areas of the array can be
 

processed in a monopulse fashion to very accurately indicate the centroid of the
 

incident microwave beam.
 

The impact of the instrumentation is to require more expensive
 

electronics and create added RFI potential as the carrier line data may be
 

radiated.
 

3.3.3.4 Maintenance. Because of dust and debris accumulation the sub­

arrays will require periodic cleaning for foreign object removal. Air blown or
 

vacuum removal may be adequate for most cleanings, but periodically water wash­

ing will be necessary if rains are not satisfactory. Snow drifts may need
 

leveling. Hence, the array must have provisions for vehicular mounted
 

maintenance gear to traverse the area. If the joint tenancy is with agricul­

tural operations, the cleaning and irrigation functions may be combined.
 

Other surface maintenance requirements such as painting, etc., for
 

albedo absorbivity and reflectivity, color blending, or insolation maintenance
 

will have to be factored into the overall maintenance schedules and plans.
 

Weed, brush, tree and vine trimming around the subarrays and high
 

voltage ac equipment will be necessary periodically. Depending upon location,
 

tumbleweed removal may be necessary.
 

3.3.3.5 Materials List. See Table 3-1 for the support structure wooden
 

materials required in a worst case snow, ice and wind load design rectenna
 

array. Also note that the renewable resource approach does not require any
 

footings except in marshy terrain.
 

3-29
 



Table 3-1. Wood Rectenna Support Structure
 

Per 40' x 40' Array
 

Number BD Ft/Ft2 PSF Subarray (582,531 Subarrays)

Structural Element 	 Nme DF/t PF______
 

Lengths BD Ft/Ft P/r BD Ft lbs BD Ft Lbs tonnes
 

3/8 in. Plywood 4' x 8' exterior 27 5 shts 0 375 1 151 330 1013 1 9224E08 5 901r08 267,667
 

3 x 6 Glulam Joists x 40' 21 2.0 4 0 1680 3360 9 7865E08 1.9573E09 887,819
 

(4 LAM)
 

2 x 6 Blocking 8 x 34-3/4' Equiv 1 0 2 2 278 612 1 6194E08 3 5651E08 161,710 

10-3/4 x 13-1/2 Glulam Beam 2 x 40' 16 125 34 1290 2720 7 5146F08 1 5845E09 718,711 
(9 LAMs) 

3 x 4 nom kickers to col 6 x 8' 1 0 2.3 48 110 2 7961E07 6 4078E07 29,066 

8-3/4 x 9 Glulam Long 2 x 36' 8 75 19 7 630 1418 3 6699E08 8 2603E08 374,681 0 
0columns (6 LAM) 


O to 
6 x 6 Glulam Short columns 2 x 17' 4.0 9.0 136 306 7.9224E07 1 7825E08 80,855 0 
(4 LAM) - - - _ 

Subtotal Wood Support 4392 9539 2 5585E09 5 5568E09 2,520,508 

Legend 

BD FT = "Board Foot" (A Volume of Wood 1 Foot Long by 1 Foot Wide by 1 inch Thick) 

EOX = iox, an Exponent of 10. 

Note
 

Material quantities are given for one 10 x 14 Km rectenna. The quantities are independent of
 
the rectenna output power level.
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3.3.4 Occupational Health Effects
 

The potential continuous exposure to low level microwaveradiation is
 

the most obvious potential health effect (Ref. 8). Figure 3-8 illustrates some
 

factors affecting the rectennd flux density- If indeed the only serious, non­

reversible problems-related to human microwave exposure are thermal in nature,
 

then protective microwave radiation shielded suits (Ref. 30) would probably not
 

be required for most of the maintenance functions. The greatest concern for
 

high intensity field would occur when working above a subarray that was
 

unterminated or shorted. Under those conditions the combinations of incident
 

and reflected fields would lead to standing waves of alternating low and high
 

intensity with peak flux density of four times the incident power flux density.
 

Thus, at the center of the array the additional proximity of large reflecting
 

surfaces near a human operator could lead to additional standing wave enhance­

ment that may yield dangerous flux densities. These infrequent conditions could
 

be cause for hazards to personnel and thus should only be performed by properly
 

shielded, microwave trained technicians.
 

Servicing the all-microwave collector for a captive load application
 

will obviously require microwave protective gear and equipment. Temporary
 

shields may have to be erected in that case.
 

If long term exposure to low level microwave radiation is determined
 

to cause other physiological effects that are harmful, then all personnel in
 

residence at the site would have to wear protective gear or employ a strategy
 

of seeking screening shelter whenever their personal body carried alarm
 

indicates a pre-set level of incident flux density.
 

Transient visits by other personnel or incidental exposure at low
 

levels to infrequent workers may be tolerated. The shared land use personnel
 

that stay mainly in shielded buildings or other equipment may not need
 

protective gear.
 

However, those who are mainly outdoors or in certain agricultural
 

pursuits beneath or among the rectennas or in the guard ring, if necessary,
 

may require protective gear or vehicles.
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Besides the microwave potential hazard, the high ac or dc voltage
 

conditioning equipment represents potential lethal voltages to maintenance
 

personnel required to repair or service that equipment.
 

The heights of the various equipments represent an occupational
 

hazard relative to falls or tool droppage. Also, Lightning strike potential is
 

affected by the heights, conductors and array size.
 

The potential for wind driven projectiles is a remote hazard. Boredom
 

brought about by the currently projected minimal maintenance activity associated
 

with the mostly passive devices and static equipment, may be a potential hazard.
 

Perimeter or internal lighting is not felt to be necessary due to the
 

low voltage and raised lower rectenna subarray edge location.
 

3.3.5 Construction
 

As currently envisioned, the construction phase of rectenna install­

ation could involve the following scenario. First, select a construction base
 

headquarters site which will later become the maintenance and operations workers
 

housing and facility.
 

Grading of additional sites for the communication stations, major
 

switch-gear and transformers would be next. After surveying and selecting the
 

subarray pole lines, then any additional earthworks would be performed to allow
 

service vehicle passage, promote proper drainage, or facilitate dual land use
 

such as agricultural terracing, etc.
 

Any captive load industries known at the time would have their leases
 

graded and utility connections made to the required edifices. Transformers
 

would be emplaced.
 

While rectenna elements are being assembled into subarrays, the
 

treated woooden supports would be drilled and fitted with hardware. The pilot
 

beam transmitter facilities in the center of the array would be installed and
 

connected to the standby service drop
 

As the pole diggers dig the holes and place poles, a "land train"
 

would follow carrying poles, assemblecsnbarrays and inverters whmcb had been
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previously marshalled at the construction headquarters. Current collection
 

lines would be attached next and connected to the transformer busses as they
 

are installed The rectenna element testing technique of "sniffing" (Ref. 31)
 

can be used to test the installed subarrays
 

The carrier instrumentation would be connected and tested after the
 

transformers are connected.
 

Meanwhile, the security fences would be installed and the remaining
 

utility grid lines are brought into the site and connected to the protective
 

disconnects and dispatch switch gear.
 

Agriculture or herding operations could commence as soon as the
 

inverters are installed and connections made to the intermediate ac power 

collection points and tested.
 

The main impacts during rectenna construction are the creating and
 

phaseout of the rectenna array support and assembly operations, the grading
 

and facility construction§ operations and the visual aesthetics change. The
 

transportation facilities for material reception will not be inconsequential ­

particularly for the quantities of element parts, poles and the large electrical
 

apparatus. Rail lines may be desirable.
 

More than likely the rectenna would be scheduled to be completed and
 

ready for operation before the SPS satellite is on station so that there is no
 

delay in commencing power handling.
 

New labor categories are not envisioned at this time. The existing
 

construction and electric utility trades and practices are adequate. The only
 

different wrinkle is with regard to RF protective gear checkout and use.
 

I Obviously there will be those in the rectenna community, township, 

county or parrish who will welcome and those who will damn the land use change
 

and the temporarily enhanced regional economy.
 

3.3.6 Security
 

Because of the diffuse nature of the microwave radiation and its
 

collection scheme in the SPS, tight security will only be required around the
 

concentrated energy portions of the facility. Both to protect life from high
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voltage hazards or to prevent or frustrate terro:ists acts or sabotage. The
 

additional area requiring a degree of control would be the transmitter and its
 

control functions associated with the pilot beams and interfaces with satellite
 

commands or telemetry data. A degree of isolated redundancy in these areas as
 

regards alternate transmitters, receivers, power and communications lines may 

be in order depending upon the state of society at the time of implementation.
 

Warning signs and/or fences for the guard ring perimeter if required
 

are a possibility depending upon applicable regulations.
 

Warning lights on the EHV transmission towers may be required depend­

ing on the proximity to aircraft operations.
 

Obviously dual land and captive load operations may permit consider­

ably more potential entry opportunities to areas requiring security. Guards, TV
 

monitored surveillance, illumination and fences with vibration alarms may then
 

be in order for sensitive areas.
 

Hence the terrorist threat potential is effective only so far as
 

service disruption or material damage and thus the degree of security is appro­

priately lessened for rectennas as compared to nuclear sources of electric
 

power.
 

3.3.7 Miscellaneous
 

As birds and squirrels can bend the rectenna elements of a subarray,
 

it is recommended to minimize this potential impact that the antenna dipoles be
 

placed in a vertical plane so as to present a minimum attractive perch
 

New symbiotic arrangements may be feasible because of the constant
 

shade and elevated position of the rectenna.
 

Vines may be given opportunity to grow in abundance given the "grape­

stake" format of the subarray support scheme.
 

Installing any structure in the desert out west away from constant
 

habitation makes it a potential target for all manner or projectiles, 

particularly rifle launched. In a similar vein, hail can wreak havoc with the
 

rectenna elements, creating employment for straightening and some replacement
 

after an episode.
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A large fenced rectenna array area will present an impediment to
 

land migration.
 

An analysis will need be made of the effects of wind channeling by
 

the E-14 parallel rows of subarrays Venturi effects could increase velocities,
 

whereas flow disturbance may increase lift. The vortex shedding doqnstream at
 

the edges may cause leaf stripping of screening vegetation, etc. Any humming
 

from resonating the dipole elements may be a sound impact.
 

The corona crackle and hum along with the ozone odor when carried to
 

the ground from the EHV lines may be an offensive impact in downdraughts
 

For certain mechanizations of the SPS it may be advantageous to
 

perform load following over two rectennas that are in close proximity to time
 

zone boundaries. If the transmitting spacecraft subarrays are small enough to
 

encompass both rectenna arrays within the subarray beamwidth efficiently (as
 

regards transmit array scan loss), then by the use of controlled level, coded
 

simultaneous pilot beams from both sites in conjunction with a sympathetically
 

designed pilot beam receiver scheme on the satellite, the power transmit array
 

output can be made to split into ttio beams whose individual intensities can be
 

set to split the total satellite power in any ratio - simply as a function of
 

pilot beam ratios.
 

Another system flexibility has to do with supplying power to a single
 

rectenna simultaneously from more than one spacecraft. If only two beams are
 

used, they will interfere constructively and destructively so that the standing
 

waves (or moving beat frequency pattern if different frequencies are used)
 

yield over stressed and underutilized rectennas which would be inefficient.
 

However, if for example three, four or more transmitters, all at different
 

frequencies were used, then the "average" effective rectenna utilization could
 

be high and stresses lower.
 

Visually, the basic rectenna array appears as a mottled surface of
 

regular sharp outlined panels of aluminized color when viewed from the south.
 

The mottled surface is due to the shadows cast by the dipoles. There are big
 

shadow breaks when viewed from the east or west due to the stair stepped
 

arrangement of the panels caused by breaking the surface into segments in order
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to restrict the support heights and to accommodate tilting the panels relative
 

to the earth's horizontal in order to be perpendicular to the beam coming from
 

the satellite.
 

When viewed from the north, the rectenna appears as a grouping of
 

spaced parallel lines running east-west. Depending upon the observers elevation,
 

one can see the terrain between the subarrays if the "vertical" suspended
 

subarray is used.
 

The ultimate visual impact is the iesult of several competing
 

factors. The albedo balance array would have a "heat island" shimmer effect.
 

The weather modification potential should be analyzed for the particular
 

location.
 

Screening or RF absorbing trees to lessen the RFI effects will alter
 

the visibility of the rectenna array.
 

3.3.8 Deactivation
 

Deactivation of the rectenna site, if it should be desirable at some
 

future time, is straightforward as there is no residual ionizing radiation.
 

With the microwave beam off and the utility interconnection broken, the equip­

ment is inert and contains no residual energy other than perhaps charged
 

capacitors in the inxerter inputs. These are readily discharged. Cooling
 

fluids should be carefully drained from the large transformers and switches.
 

Attractive nuisance towers that may be climbed should probably be
 

dismantled.
 

Thus the rectenna array unlike a nuclear facility presents no sig­

nificant hazard to dismantling or deactivation. Long term isolated storage of
 

components is not required.
 

3.4 CONCLUSIONS
 

The major impact of the rectenna facility of an SPS is the large
 

land area required. In part this is a result of the low peak flux density which
 

is also a safety measure.
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The impact is mitigated to a degree by the fact that dual land use or
 

shared occupancy is permissible Captive or on-site electric or microwave power
 

users are possible.
 

The major benefit is the very benign operational characteristics of
 

the rectenna system. Other than the RFI production, the electric output comes
 

unaccompanied by noise or great amounts of waste heat or atmospheric pollution
 

(at least as far as the rectenna portion of the system is concerned )
 

The low level microwave flux density hazard questions are not yet
 

satisfactorily resolved. If major effects are thermal in nature, then the
 

consequences are almost nil If not, then appropriate additional land area and
 

fences will be required of the system
 

The assembly of the rectennas may be capable of being socially
 

engineered as a "cottage" industry and the assembly and to a lesser degree the
 

fabrication, construction, maintenance and operations of the rectenna may pro­

vide a lift to the local economy in the area where the rectenna is built.
 

Captive or integrated load industries could smooth this temporary economic impact
 

upon phaseout of assembly.
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The large use of wood as the primary stiuctural material lessens the
 

drain on non-renewable resources.
 

The 	low dc collection voltage may at first appear to be material
 

intensive due to large conductor sizes required to accommodate the currents.
 

However, the shielding, enclosures, and insulators required of a higher voltage
 

system would require much more material.
 

The lack of inertia in the rectenna response time may be of value to
 

utilities The absence of any residual, or otherwise significant ionizing radia­

tion is a plus for long term benefit considerations.
 

3.5 RECOMMENDATIONS
 

1. 	 Long term biological experiments relative to low level microwave
 

radiation effects should be undertaken.
 

2. 	 Ionosphere effects on the pilot and power beams should be better
 

defined through better analysis and experimentation.
 

3. 	 Methods of efficiently directly producing ac output out of the
 

rectennas should be investigated in order to eliminate the
 

inverters.
 

4. 	 Harmonic radiated and fundamental direct and cross-polarized
 

rescattered radiation distribution pattern of elements and sub­

arrays should be calculated and measured
 

5. 	 Weatherizing of the rectenna elements should be tested and
 

further refined. Dust and moisture tolerance levels and
 

margins should be determined
 

6. 	 The SPS depolarization accommodation scheme should be developed
 

and optimized
 

7. 	 The constant voltage output-selectable variable flux density
 

input rectenna element design should be accomplished to allow
 

optimizing the cottage assembly industries.
 

8. 	 The rectenna subsystem transient analysis should be performed to
 

allow proper characteristic impedance design and optimum over­

voltage protective scheme development.
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9. 	 The ground plane design configuration for optimum insolation
 

with maximum conversion-collection efficiency and RF shielding
 

effectiveness should be researched and developed.
 

10. 	 Minimum conductor designs for the opaque rectenna version
 

should be developed along with the color blending for visual
 

aesthetics.
 

11. 	 Repair, cleaning and other maintenance techniques and equipment
 

should be developed.
 

12. 	 Bird, animal and insect nesting studies should be performed
 

along with vegetation intrustion effects investigations
 

13. 	 Subarray edge diffraction effects studies should be performed
 

to determine optimum edge shielding and minimum interference
 

edge conditions.
 

14. 	 The stair step design details should be investigated to deter­

mine the optimum "tread" width and "rise" vs. latitude.
 

15. 	 The optimum partitioning of the array should be investigated
 

to promote maximum effectiveness in the utility intertie
 

16. 	 Minimum material backup support structures for the transparent
 

or opaque ground planes along with wood support techniques
 

should be developed to fit various climactic environments and 

soil types. 

17. 	 Optimum pilot beam transmitter redundancy and location geometry
 

should be researched
 

18. 	 Techniques for growing and treating long wooden poles need to be
 

further developed to yield the abundance required for subarray
 

support poles
 

19. 	 The land train for installation of subarrays needs to be further
 

detailed relative to traction and motive scheme, power supply
 

and subarray and pole resupply material handling schemes
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20. 	 Albedo modification and control schemes need to be analyzed,
 

modeled and surface treatments investigated.
 

21. 	 Additional dual uses of the ordered conducting subarrays such as
 

in a low frequency radio telescope array need to be investigated
 

22 	 Quantitative calculations of RFI flux density and spectral dis­

tribution along with receiver susceptibility need to be performed.
 

23. 	 Weather and wind modification effects need to be analyzed
 

24. 	 The interarray voltage transformation optimum levels need to be
 

developed
 

25. 	 Dual land use and shared occupancy candidates need further
 

investigation.
 

26. 	 The losses associated with constructing the rectenna array in a
 

flat, un-tilted format should be assessed to compare against
 

the broken, perpendicular surface approach.
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