General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



VASA Contractor Report 156844

Detailed Gravity Anomalies from GEOS-3
Sateilite Altimetry Data

(VASA-CR=156844) DRTAILED GRAVITY ANOM
‘ -Cr - 4 AILED GRAV NOMALIPS
FROM G20S-3 SATELLITE ALTINETRY DATA Final
“rport (Pattelle Columbus Labse., Ohio.)
U8 p HC AOIZMP AO1 CsSCL 08r

G3/4¢6

G.S. Gopalapillai and A.G. Mourad

October 1978

NASA

National Aeronautics and
Space Administraton

Wallops Flight Center
Wallops Island. Virgimia 23337
AC B04 924 341

N79- 12631

Unclas
38018




—

RN ST P N I e L b A
e v o e} ST T W . | N § | ol s l--—ct-n-:-t‘-—--o-b—--n ._‘Lv.a L

FORWARD

This invescigation was performad by Battelle's Columbus
Laboratories {(BCL) for the National Aeronautics and Space Administration
(NASA), Wallops Flight Center (WFC), Wallops Island, Virginia, under
Contract No. NAS6-2801. Mr. H. Ray Stanley served as the NASA Technical
Monitor.

The excellent cooperarion of Professor Richa~d H. Rapp of the
Ohio State University is gratefully acknowledged. As one of the GE0S-3
Principal Investirators, he provided all of the processed altimetry
data in the caliibration area, most of them even before publication., He
also made available the terrestrial gravity data and a few computer
subroutines. Mr. James Marsh of the NAS?/Goddard Space Flight Center
supplied the GEM-9 potential coefficients set,.

ii

)

.

}

A .



DN e TR ST RN (S (5 S TSRS N WS WS RO S — S

EXECUTIVE SUMMARY

The objective of this investigation was to develop merhods and pro-

cedures that could be used in establishing practical applications for the high

resolution altimeter capability of the GEOS-3 and future SEASAT satellite
missions. The geopotential model that has direct applications in several
areas of geophysics, mziine geodesy, oceanography, Earth resources, etc.,
is the free air gravity anomaly. The requirements for gravity anomalies

ia potential application areas such as oil and gas exploration are highly
demanding in terms of accuracy and resolution. Consequently, Battelle's
effort was directed toward development and test of a suitable technique for
deriving mean gravity anomalies from dense altimetry data to a resolution
that has not been achieved before. Obviously, the achievement of such a
resolution has to be approached on a non-global basis.

The procedure developed and applied in this study uses a combina-
tion of both deterministic and statistical techniques. The basic mathe-
matical mode) was based on the Stokes' equatiou which describes the
analytical relationship between mean gravity anomalies and geoid undula-
tions at a point; this undulation 1is a linear function of the altimecry
data at chat point. The overdetermined problem resulting from the
excessive altimetry data available was solved using Least-Squares prin-
ciples. These principles enable the simultaneous estimation of the
associated standard deviations reflecting the internal consistency based
on the accuracy estimates provided for the altimetry data as well as for
the terrestrial anomaly data.

Using GEOS-3 data in the calibration area, several test computa-
tions were made of the anomalies and their accuracy estimates for dif-
ferent combinations of:

(1) Four a priori weighting functions for anomaly

parameters

(2) Two anomaly parameter configurations

(3) Three data densities and distributions.

For "profile" type or low density data, the computed anomalies
were sensitive to the a priori weights. For such a distribution of data,
numerical anomaly auto- and cross-covariance functions can be used as
weighted constraints to obtain realistic estimates for anomalies and their

accuracies.
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Computed anomalies for 1° x 1° blocks were compared with terrestrial
estimates and also with a set of anomalies computed by Rapp using Least-
Squares Collocation procedures. The RMS differences were 8.7 mgal and 5.4
mgal, respectively, which were consistent with accuracy estimates associ-
ated with these sets (10 mgal for terrestrial data aud 7.3 mgal for Rapp's
data) .

The accuracy estimates for 1° x 1° mean anomalies that can be
obtained with the techniques used in this study are of the order of I mgal,
which {s at least about four times better than the estimates for the
terrestrial data and Rapp's data. Estimation of 30' x 30' anomalies can
be accomplished with accuracies of about 5 mgal using the techniques em-
ploved here. These accuracy figures are very eucouraging, indicating the
potential applications of the altimeter data in a variety of areas. As a
result of the lack of accurate ground truth data, proper verification of
the fine results obtained by the procedures developed and used here {s
not possible. This situation emphasizes the pressing need for a marine
test range where detailed and accurate ground truth gravity data would be
collected and made available to verify the results of GEOS-3 altimetry
data and alsuv of further improved data expected of the future SEASAT

satellite missions.
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DETAILED GRAVITY ANOMALIES FROM GEOS~3 SATELUITE ALTIMETRY DATA
by

G. S. Gopalapillai and A. G. Mourad

1. INTRODUCTION

This report covers activities performed by Battelle's Columbus
Laboratories (BCL) for the National Aercnautics and Space Administration,
Wallops Fii{ght Center, under Contract No. NAS6-2801. The primary objective
of these activities is the development and testing of a suitable technique
for estimating the fine structure of tke Earth's gravity field from the
high resolution altimeter capability of CEOS-3 and future SEASAT satel-
lite missions.

With the successful launch and operation of the Skylab and
GEOS-3 satellite altimeter systems, *the acquisition of detailied gravicy
data over the vast oceans of the Earth experienced a quantum jump in
speed and detail. Those data are directly derived from the altimetry
measurements in the form of geoid undulations which describe the separa-
tion of the geopotential level surface corresponding to the Mean Sea
Level (MSL) and the reference ellipsoid adopted as the closest analvtical

(1)*

surface representing the Earth. However, the geopotential model that

has direct applications in sevaral areas of geophysics, marine geodesy,
oceanography, Earth resources, etc.,, is the free air gravity anomaly.

The advantage of the gravity anomaly model over the undulation model is
its higher sensitivity to the various (anomalous) features on or near the
Earth's surface. Further, the direct observations of the gravity on the
Earth's surface lend themselves to the natural representation of the
anomalous geopotential field by free air gravity anomalies.

The requirements for gravity anomalies in potential application
areas such as oil and gas exploration are highly demanding in terwms of
accuracy and resolution., The unprecedented resolution and speed with
which the altimeter data have become available have resulted in the possi-

bility that the fine structure (short wavelength features) of the anomalous

References, denoted by superscript numbers, are at end of report in
Section 7.




geopotential could be determined. The determination of this fine struccture

hae a practical disadvantage where the number of geopotential parameters

to be determined is too large to handle, even with the largest computer

available today. Obviously, the possibilities for solution to this pro-

blem can only be achieved through v . of some form of non-global solution,
Several methods and procedures can be found in the literature

for determining gravity anomalies from altimetry data on a non-global

basis. Some of these are purely deterministic and some are statistical,

while others use a combination of these techniques. Examples of the

(2)

statistical techniques are Least-Squares Collocation

form solutionl(3). A direct determination of point anomalies from alti-

meter data using the inverse Stokes' equation(“) is an example of the

(1,5)

and Fourier trans-

deterministic approaches
The tecnnique preferred over the above and employed in the ensuing
study is a combination type using the analytical relationship {(Stokes'
(6)
)

equation between mean gravity anomalies and geoid undulation which 1is
linearly related to the altimetry observation. This technique has several
favorable features., The overdetermined problem resulting from the excessive
altimetry data available can be solved using Least-Squares principles. Any
a priori{ information available on the gravity anomalies being computed can
be incorporated simultaneously using weighted constraints. Further, any
systematic errors inherent in the altimetry data can be modeled and fil=-
tered out.

This method was developed and some simulation studies made
while the principal author was working on an Air Force contract. The
details of that work can be found iu Reference(l). 1In the current study,
essentially the same procedure, with minor modificaticns, is implemented
with real altimetry data from GE0S-3. For the sake of completeness, a
brief summary of the procedure is presented in Section 2, followed by a
short description of the various data sets (altimetry as well as terres-
trial gravity and potential coefficients) used (Section 3). In Sections
4 and 5, results are given for the 1° x 1° and 30' x 30' gravity anomaly
determinations. Conclusions from these results and recommendations toward

any future work in this area are presented in Section 6.



2. MATHEMATICAL MODEL AND PROCEDURE

As indicated earlier, the details of the technique and procedure
used in this study are fully docunntod(”. However, for the sake of com=
pleteness, the portions relevant to the mathematical model and the procedures

for {mplementing the same will be summarized here.

2.1 Mathematical Model

For practical i{mplementation, the Stokes' formula, genevalized to

any geocentric reference ellipsoid, can be written in the fon:(n
R
Np-Nui-“GziEJ .\;” Swu\ '\‘U X (1
where
Np = undulation at point p
N“ - scale consatant

R = average Earth radius
G = average gravity on Earth
Ag - free-air gravity anomaly

Ao = area of the block over which \g {s assumed constant

wlj = distance between P and Ao
i} - subscript tdentifving the block on a gridded tormac,
and S(wlj\ i{s the Stokes' function given ns‘h‘:
S(y,. ) = 1 - ox+l-5cos ¢, =3cos !n\x+x:\ (2)
1) x 1) 1) ' )

with

-

u.
X = gin (—71\

Equation (1) {mplies that Mg and Np are compatible with respect
to the flattening of the refererce ellipsoid, It also implies that Ag be
known in every block {f on the Earth, However, the behavior of the kernel
S(v) in Equation (1) is such that {t suppresses the effect of the gravity
anomalies {n the zones remote from the computation point so that only the
lower harmonics of the gravity field in these arveas contribute significantly
to NP. The lower degree harmonics are reasonably well known and may be

used to advantage to compute the contribution from the zones remote from N
p
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In view of the above, the undulation NP can be assumed to be

omposed of four components, No' Nl. N, and N] g£'.h that:

NP - No + N1 » N: + N3 ’ (3

here Nl' the lower harmonic contribution over the whole surface of the
arth, is given by:

“unx noo_ _ -
Nl = R z;* 1;5 (Cn-COI m \+Snml1n m \) Pnn(sina) v (&)
ith (#,)) = geocentric coordinates of P
Enn' Egn = fully normalized potential coefficients referred to the same

reference field to which NP in Equation (1) refers

Nnnx = maximum degree to which potential coefficients are used

Pnn(linO)- fully normalized associated Legendre function,

Then, N,, th: higher harmonic contribution from a cap centered at
he computation point is expressed as:

R J(./- =
N, & = 2 - YS(y
V. inG Jo - (Ag Ags S(v)do , (5
(™

ten'?

IIP cos m\ do
nm

A

+—§ lfj’i s{nm\dc]. (6)
nm A A nm

here the smoothing operator 3 is set to one.

i

max nor
g, = 62;‘ (n-1) 8 3;% [cnm .

The integrals in Equation (06)
ndicate that Ags is the mean gravity anomaly over the block of area A, ¢

Y

n Equation (5) implies that the integration is carried out w’ spherical

R
—




cap of radius wo. Then, the higher harmonic contribution from the area out-

N, -z%[_jm-a..)s(wac . (N
[

with L being the area of the remote zones.

side the cap is:

“3 would be the error in NP if the actual anomaly information in

the remote zones is replaced by anomalies implied by a spherical harmonic
potential coefficient set truncated at degree Nuau'

Neglecting ", Equation
(3) with Equation (5) can be written in the form:

. _s_j f
No= N+ N+ o g S(v) 4o , (8)

where g = Ag - Ag. . (8A)

which can be Interpreted as the mean anomalies referred to a reference
spherop of degree and order Nnax'

At this pnint we have the option of modeling any systematic errors

that may be inherent in the altimetry observations. However, the data we

used in this study have been preprocessed and corrected for any systematic

errors due to tides, orbit uncertainties, etc.(a). Consequently, it is

assumed that the data are free of systematic errors, other than the global

constant parameter No' which can absorb any bias, constant over the area
under consideration.

2.2 Procedure For Anomaly Recovery

The mathematical model expressed by Equation (8) forms the basis
for the computation of mean gravity anomalies from altimeter data which, at

this point, are assumed to be in the form of geoid undulations averaged

over the radar footprints. Every altimeter observation will result in an

equation of the type (8). Conceptually, a set of such equations will give
a meaningful solution when the uumber of observations equals or exceeds

the number of unknowns (anomalies and No).

S e -
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In order to incorporate the a priori information, if any, on some
or all unknowns, let al) the unknowns also be treated as observables with
a priori weights. Zero weights can be assigned to those unknowns for which
no information is available. In this case, Equation (8) can be interpreted
as a condition among observables. For consideration of redundancy, the
number of observations would be the sum of the altimetry observations and
the unknowns with non-zero weights. The resulting redundancy in the system
can be exploited in some type of adjustment technique.

The mathematical model as given by Equation (8) can be rewritten

in a more general form as follows:
F(N, &g, No) =0, (9)

where F is a function of the altimetry observations N, the residual anomalies
referred to a spherop of degree Nunx' and the constant bias as expressed by
Equaticn (8)., In matrix notation, let xo denote the vector of a priori
estimates of the unknowns (&g, No) and NOB be the vector of observed values
of observables (N). If the adjusted values of these quantities are, respec-

tively, x* and Na. then:

, (10)

where Vx and V_ are vectors of residuals of the unknowns and observations,

N
respectively.
Linearizing Equa-ion (9), the resulting condition equation, in

matrix notation, {is:

+ + W=
VN AVx W=20 |, (11)
where A is the design matrix of partial derivatives of F with respect to
the unknowns. W is the misclosure vector obtained bv evaluvating F with
the values Xo and NOB'
unknowns (also considered observables) ave P and Px' respectively, then the

If the weight matrices for the observations and

Least-Squares solution for the residual vectors is:




V == (ATPA + P )"t ATPw (12)
x x

V" - - (AV‘ + W), (13)

and the covariance matrix can be estimated from:

T e olATPA + P )7L, (14)
x o X
where o: is the variance of unit weight estimated from

+vP v /DR (15)
X X X

2 T
oo (VNPVN
with DF being the number of degrees of freedom.

The adjusted values of the unknowns and the observations are

obtained by substituting the vectors Vx and V_ in Equation (10). The ad-

N
justed values of the anomalies are referred to the spherop of degree Nmax
If the anomalies need to be referred to an ellipsoidal reference field,
they "an be obtained by simply adding Ag. [Equation (6)] back [Equation

(8A) .

2.3 Non-Global Sclution

The discussion thus far has been on the general feasibility of
tecovering gravity anomalies from altimetry data. The application of the
above method for small regions of the Earth will be discussed here. In
fact, the insignificant contribution to the geoid undulation at anv point
from anomalies in the remote zones is the kev to this non-global solution.

Suppose that the anomalies within a given area, for example a
circle of radius y(I) centered at a point, Q, are to be determined. Then,
the altimetry data within an area of a concentric circle (II) of radius

(;+«0H) are necessarv to determine these anomalies so that the contribution

— . =




from alcimetry data outside this circle is less than a predetermined value

g Figure 1 illustrates this system. Further, the mathematical model

oM’
[Equation (8)) requires that the area of anomalies be extended to a further

distance of *os from Circle II to Circle III. This means there is no

observation equation for any cbservation within Circle II that will have a
cap extending beyond Circle III. At chis point, it should be emphasized

that although all the anomalies within Circle III will be treated as un-
knowns in this procedure, only for those within Circle I have all contributing
factors been taken into account. This means that the determination of only
those anomalies in Circle I can be totally reliable. The rest of the
anomalies will be poorly determined and their quality of determination

will deteriorate as the distance of these a2nomalies from Circle I increases.

MIDOLE ZONE

OUTER ZONE

FIGURE 1. SYSTEM OF OBSERVATION AND UNKNOWNS FOR
A NON-GLOBAL SOLUTION



Before proceeding further, we should define the angles wuu and Yos

which determine the size of the circles, wOH is the size of the cap where

the geoid undulations outside this cap have {nsignificant contribution to the
anomaly at the center of the cap to a glven accuracy level, This cap size
can be determined by considering a graph of the remote-zones contributions

to the anomaly through the Inverse-Stokes' formula for different cap
ll!.l.(l) Then, for a given error of commission due to neglect of the
remote-zone effects, the corresponding cap size can be interpolated from

the graph. Incidentally, the subscript M indicates the cap size wo for
Molodenskii's formula, Similarly, the subscript § in wos denotes the cap
size for Stokes' formula, and Vog can also be determined {n the same fashion

o WOH‘(I)

2.4 Evaluation of stokes' Formula

In computing the elements of the design matrix A [Equation (11)],
an average value of the Stokes' functiou as given by Equation (2) has to be
evaluated for every anomaly block {nvolved in the adjustment. Theoretically,

the average value S(y) 1is expressed by:

§lw! - —l—Jr];(w)dn ; (16)
Ao -
A0

Hovever, in practice, Equation (16) {s evaluated by computing one or several
values of S(¥) for different points in the birock in which the anomalv is
given and averaging the results., The accuracy of this average will depend
on the size of y and the number of valuaes computed. Slnce S(y) {s very
sensitive for small values of ¢, more points are required for an accurate
mean when § is small than when y is large. Rapp and Rummel have suggested

the following guidelines for subdividing a 17 x 19 block in evaluating

9
Equation (lh‘:( )

v & 2%  bHd asub=blocks
2 <y & 5% 16 sub-blocks

5° < v £ 10°: 4 sub=blocks

10° < v € 20°: 1 sub=block .

e
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However, this system of subdivision has a weakness when used with altimetry
data. That {s, when the computation point coincides with the center of the
sub=block (f.e., ¥=0), S(¢¥) wiil be singular. To overcome the singularity

in the sensitive range of ¢, an alternative technique developed by vanlloll(lo‘
is used, Here, the geodetic coordinates are transformed {nto Cartesfan
coordinates using Mercator prefection and the integration required for
averaging S(y) s carried out analytically, The details of this technique
can he found {n Reference (1).

The number of times the Stokes' function (s evaluated may be as
many as tens of thousands, considering the large number of altimeter
observations, the anomaly blocks (nvolved and the subdivision schemes used.
[t haa been -uggentud‘ll’ that {t {8 economical, with r1espect to computer
time, to do a linear {nterpolation {n a table of about 15 values of S(y)
rather than to evaluate them from Equaticn (J). However, the Stokes'
function {8 too senaf{tive for such (nterpolation {n the range of (0" to 20™)
tnvelved tn the study, This sensitivity problem could be overcome by
modifving the procedure as follows,

The function F() defined as:

Fo) = 0¥ g (7
{8 known to be stable for values of ¢ within the range under vouxllvrntlnn.‘h‘
Therefore, the values of F(y), {nstead of S(y), arve tabulated. Then the'
valua of F(¢) for a given value of y {s obtained by linearly interpolating
between the tabulated values, and the corvesponding S(y) is simply obtained
using Equation (17).
The values of F(¢) are tabulated as follows, with the values of

in degrees:

For 0.1 < ¢ < 1 at every hundreth of a degree
1 < ¢ < 5 at every tenth of a degree
¢ > 5 at every degree

& i 11)
v < 0.1 a constant value of 1,0007 s u:u-.!t 5

i i p——————
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3. DATA DESCRIPTION

The various types of data used in this study are described here.
These include:

(1) Altimetry data

(2) Terrestrial anomaly data

(3) Spherical harmonic potential coefficients set

(4) Numerical auto- and cross-covariances between

1° x 1° and 5° x 5° anomaly blocks with distance y.

Before proceeding further with a descriptiorn of each data set, it is neces-
sary to define the area selected for the anowaly recovery. The basic cri-
terion for the location of this area is the coverage of the altimetry data
available at the time the computer programs were being developed and tested.
This preprocessed data, free of systematic bias and orbit errors to within
(12) ¢ e Ohto State
Univergity., The best coverage of these data was in a 5° x 5° equal-areca
block whose latitude and longitude bounds are 40°-35° N and 291°-297° E,

78 c¢m, were made available to us by Professor Rapp

respectively. This block, which is approximately equivalent to a cap of
radius ¢ = 275 (Figure 1), is within the calibration area.

For v in Figure 1, a value of 3° i{s chosen, which corresponds

to a trunca:ionozrror of about 1.5 mgals on the anomalies to be computed.
This value is taken from the graph on page 23 of Reference (1) and cor-

responds to Standard Earth (SE)II(13)
degree 16. Considering the improved Goddard Earth Model (GEM) 91%) used

in this study, this error of 1.5 mgals should be a very conservative

potential coefficients truncated at

estimate.

In the case of the truncation cap angle, y,q. for the Stokes'
formula, a value of 22 degrees which corresponds to a truncation error of
just over 0.6 m is chosen.(l) Once again, this error corresponds to the
SE II potential coefficients truncated at degree 16. Consequently, the
outer circle (III) is of radius 2705; the radius of the middle circle is
575 at . that of the inner circle is 225. Assumirg for practical purposes
square arveas Instead of circular caps, terrestrial anomalies are required

over a 55° x 55° block and the altimetry data would be required over a
11° x 11° block.

2T Ca T R . .-
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3.1 Altimetry Data

These data are taken from a set of sea surface topography heights
ard their standard errors in the GE0S-3 calibratior area, supplied by lapp(a).
The data are derived from the raw altimeter data corrected for tides and
are free of bias and orbit errors to about 65 cm {n the calibration arol(a).
There are about 15,000 observations within the 11° x 11° area selected for
this study. However, the maximum number of observations used in this study
is 7475, taking every other observation. The geographical distribution
of these data is as shown in Figure 2. This data set also had geoid un-
dulations implied by the GEM-9 potential coefficients set truncated at

degree 20.

3.2 Terrestrial Gravity Data

The anomaly data used in this study consist of two sets. The
5° x 5° equal-area anomalies and their standard errors were taken from
Appendix A of Reference (7); the 1° x 1° (approximately) equal-area anomalies
and their standard errors were supplied by Rapp from his tape called
"August 1976 Tape"(7).

Svstem 1967(15).

These anomalies are referred to the Geodetic Reference

3.3 Spherical Harmonic Potential Coefficients

These data are a set of fully normalized potential coefficients

(14)

complete to degree and order 20 from the GEM-9 and referred to the

Geodetic Reference System 1967(15).

3.4 Numerical Autocovariance Model

The sizes of the blocks of anomalies involved in the recovery of
1° x 1° anomalies are 5 and 1 degrees. The autocovariance models for 1° x 1°

anomalies and 5° x 5° anomalies and their cross-covariances are computed

(10)

using the subroutine CGVA ,» which uses the assumption that bv varving
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the heights of the points P and Q {n the point anomaly autocovariance
function C(P,Q) points Ql and 02 can be found, for which anomaly covariance
C(Ql.Qz) gives a good approximation to any (say 1° x 1°) mean anomaly
covariance function. For example, Ql - Q2 = 10.4 km will give covariances
for 1° x 1° mean anomalies. Similarly, 5° x 5° mean anomaly covariances

can be approximated by C(Ql. Ql) for Q1 = 98.45 kn(IO). The cross-covariance

Poadosabud ol nalicd il wd Jododi | @l Biclod sdade

between the 1° x 1° and the 5° x 5° mean anomalies are computed by setting

Q1 = 10.4 km and Q2 = 98.45 km., A set of these covariances and cross-

covariances computed by COVA for various angular distances, ¥, are given
in Table 1 for Nmax = 20.

TABLE 1. MEAN ANOMALY COVARIANCES AND CROSS-
COVARIANCES FOR 1-DEG AND S5-DEG BLOCKS
1x1 Deg 1x5 Deg 5x5 Deg

y(deg) (mgal?) (mgal?) (mgal?)
0.00 654.41 208.81 103,64
.50 433.78 190.95 98.83
1.00 268,48 152.46 86,28
1.50 170.20 112.35 69.89
2.00 105.90 78.30 32.95
2.50 61.43 50,72 37.31
3.00 29.83 29.10 23.78
3.50 7.17 12.47 12.57
4.00 -8.95 -.06 3.59
6.00 -33.78 -22.18 -14.31
8.00 -26,93 -19.60 -14.08
10.00 -10.69 -8.55 -6.70
2.00 3.54 1.90 .90
14.00 10.72 T.52 5.24
16,00 10,48 7.68 5.61
18.00 5.41 4.15 3.17
20.00 -.81 -.38 -.13
22,00 -5.09 -3.61 -2.55
24,00 -5.98 -4.37 -3.19
26.00 -3.84 -2.89 -2.16
28.00 -.29 -.31 -.29
30.00 2.74 1.94 .38
35.00 2.02 1.33 Y13
40.00 =2.76 -2.01 =1.46
45.00 -.17 -.16 =-. 14
50.00 2513 1,57 1,15
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&, 1° x 1° MEAN GRAVITY ANOMALY RECOVERY

Since this study is a continuation of that reported in Reference (1),
4 brief summary of the previous results and conclusions may be helpful before
presenting the results of the current study. The previous study was based
purely on simulations where there were only one altimeter observation per
block (1°x1°) over a 30° x 30° area. Mean anomalies over 1° x 1° blocks
were recovered from these observations in a 10° x 10° area.

The highlights of the results were that:

(1) The recovery of 1° x 1° mean gravity anomalies
was feasible with the procedure outlined earlier
in this report

(2) A posterifori estimates for standard deviations
obtained from the density of observations used
(one per block) were about 19 mgal.

(3) Exclusion of the anomalies in the outer zone
(Figure 1) as unknowns resulted in modeling
errors (aliasing effect) being introduced in
the anomalies being recovered; however, the aliasing
effect on the a posteriori standard deviations was
not very significant

(4) When these anomalies were included, the system of
equations became unstable so that (a priori) wieghted con-
straints were necessary for any realistic results

(5) Minimum requirement for the densgity of observations
was one per block.

These results form the basis for this study.

The major difference between the two studies {s that the current
study uses very dense real data while the previous study was based on simu-
lation data which were very sparse. Consequently, the present study will
attempt to examine several issues raised at the conclusion of the last studv.
The Principal issues include:

(1) The performance of the technique and procedure
with real data
(2) The effect of the high density data on accuracy

estimates of the anomalies recovered
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(3) The use of mean anomalies of larger blocks in the
outer and middle zones (Figure 1)
(4) The use of numerical auto- and cross-covariances
for weighted constraints on the anomaly parameters.
It was hoped that answers to these issues would help in the formulation
of an optimum procedure for lmproving our krowledge of the geopotential
field using satellite altimeter data.

4,1 Mean Anomaly Parameter Systems

With the cap sizes chosen (in Section 3) for a non-global solution,
the parameters will include all the equal-area mean anomalies within the
area of a 55° x 55° equal-area block. This will result in 3025 1° x 1°
equal-area mean anomalies, which is too large and expensive to handle for
several tests to be performed in this study. Consequently, 5° x 5° equal~-
area mean anomalies are considered for the outermost 20° of the outer zone
and 1° x 1° anomalies for the rest of the area, as shown in Figure 3, where
the extent of the altimeter data is shown with the rectangle with broken
lines. As a result, the total number cf anomaly parameters would be 337
(112 - 5° and 225 - 1°). 1In the other tests, 5° anomalies are considered
for both the middle and outer zones, in which case the number of anomaly
parameters 1is 145 (120 - 5° and 25 - 1°). In the ensuing discussions, the
system with 337 anomaly parameters will be referred to as System A, and
System B would be that with 145 anomalies. It should be noted that there
would be one error model parameter, No' to be determined in addition to

the anomaly parameters.

4.2 A Priori Weights For The Parameters

The a priori weight matrix Px in Equation (12) can be considered

to consist of two submatrices, given by:
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P o= | U8 , (18)

implying that correlation between the residual anomalies g and N, are zero.

There are several ways the weight matrix PG; for the snomaly
parameters can be defined, depending on the type of a priori information

available cn them. In the ensuing test for the mean anomaly comnutations,

(1)

(2)

(3)

(4)

is defined in four ways:

It is set to zero (PG. = 0), implying that we have
no information on them.

(7)

Using the estimates provided by Rapp for the standard

errors of the anomaly values determined from terrestrial
measurements, Pbsil defined as a diagonal matrix D-1
where the elements of D are the square of the standard

errors. That is:

P, =D", (19)

implying that the anomaly estimates are independent of
each other.
Assuming that the anomalies are stochastic quantities,
their weight matrix is defined using the auto- and
cross-covariances among them interpolated from the
values presented in Table 1. If the auto- and cross-
covariance matrix is C, then:

-1

P68 =C " . (20)

If the terrestrial estimates are assumed to consist of

(17)

signals and noise , then:
P, = (C+D)~} (21)
5g : ’

where C is the auto- and cross-covariance matrix and

D is a error covariance matrix assumed diagonal as

in Item (2) above.

P S
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For the purpose of determining the a priori weight for the
constant, N,, term, any error in Iq is considered to come from two major
sources:

(a) Uncertainty in the semimajor axis of the mean Earth

ellipsoid

(b) Uncertainty in the equatorial gravity.

The accuracy estimate for the semimajor axis is given by lnpp(ls) as
2.5 m. The error contribution from an uncertainty of 1 mgal in the

® Therefore, the error

equationu) gravity for a cap of 20° is about 2.6 m.
due to both sources is 3.6 m, which, rounded to 4 m is used for the accuracy

of No-term. Consequently,

Py = 1/16 el (22)
[+ ]

For a priori values of anomalies, the terreri:{al data described
in Section 3.2 are used when Psg is defined according to Equations (19) and
(21). Satellite anomalies as defined by Equation (6) are used when Pﬁg is
either 0 or C-l. However, in all the ensuing computations, the a priori

value for No is assumed to be zero.

4,3 Tests With "Profile'" Altimetry Data

At the time of the computer programs being modified/extended to
accommodate the real data, it was decided to test them with the only pre-

(12). These data, which

processed altimetry data available in the literature
wil) be referred to as the profile data, were supplied to us on computer cards
by Rapp. The distribution of these data (in the calibration area) is shown
on Figure 4. It can be seen from this figure that only five passes are
within the block where the gravity anomalies are sought.

The system of gravity anomalies assumed for these tests is System
B, shown on Figure 3, where the total number of unknowns is 146, Four tests
were carried out with the weight matrices P68 as described in the last
section.
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In the first test where Pd; was set to zero, the system of normal

equations was unstable. The results of the other three tesis are sum-

marized in Table 2, where the blocks in which there are no altimeter data

available are excluded. In this table, the average a priori standard
deviation and the average a posteriori standard deviation are self-ex-
planatory. The Root Mean Square (RMS) anomaly difference refers to the

difference between the terrestrial anomaly estimates and those computed

these tests., The results of Table 2 show that there i{s very little dif-

ference between the three weighting procedures. However, comparing the

recovered anomalies in each of these tests, we find that while the RMS
1

in

difference between the tests where 96' = (C+D)"" and Pég - C'l is only about

1 mgal, 1t {s about 12 mgal for the test where PGS - D'1 and each of the

other two. This indicates the strong possibility that the a priori relative

weights for the anomalies which are computed from terrestrial estimates
are incorrect.

How much of an improvement these anomalies obtain in their est
mates from the altimeter data is demonstrated in Figure &4, where the a

(16)

posteriori standard deviations corresponding to the case of P‘S -

{=

1

are given. These numbers show that the anomalies of blocks where there are

no altimeter data are very poorly determined. Their determination {s best

when the altimeter pass goes through the center of the block or when the

data are dense and uniformly distributed within the block.

TABLE 2. RESULTS OF ANOMa.Y RECOVERY
WITH "PROFILE'" DATA

Statistical Parameter P .= (c+D)-! P, = C-! P, = p-!

Average standard deviation (lo), mgal

A priori 28.1 26.3 10.0

A posteriori 8.l 8.4 Twik
RMS difference with terrestrial

anomaly, mgal 16.3 16.8 16.4
Variance of unit weight (éo) 0.86 0.85 1.08

Constant No' m -7.0

I+

l.4 -5.1 ¢ 1.2 -2,1
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4,4 Tests With Low Density Altimeter Data

The term low density refers to the set of 1496 data points which
is one of every five datu points shown on Figure 2. The difference between

this and the profile data as discussed in the last section is that the low-
density data are more evenly distributed in the area than the profile set.
In order to etudy the effects of these low-density data on this anomaly
recovery, three more sets of computations were made with the same System (B)
of ano:aly unknowns. Since the difference between using Pee " ¢! and Py ™
(c+D)”

three new dererminations would use:

is small, as ceen from the previous tests, it was decided that the

(a) Pd; =0 Q
(b) PG = (C+D)

8 Y
(e) ch =D .

The results of these determinations are summarized in Table 3.

TABLE 3. RESULTS OF ANOMALY RECCVERY
WITH LOW DENSITY DATA

—
= ===

I

Statistical Parameter P, =0 P, = (C+4D)~' P, = p-!
Sg &g g

Average standard deviation (lo), mgal

A priori ® 28.1 10.0

A posteriori 3.7 6.0 6.1
RMS difference with terrestrial

anomaly, mgal 14.8 13.2 13.0
Variance of unit weight (60) 1.06 1.24 1.62
Constant No. m 0.7 £ 4.1 -3,6 £ 2.3 0.5 +1.0

Once again, on the average, there is very little difference between
results of tue various weighting procedures. Results in Table 3 indicate
that the a posteriori standard deviation estimates as well as the RMS dif-

ference between the computed and terrestrial anomalies have improved somewhat over
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those with the profile data. Also, the RMS differencas between the anomalies
determined with P, = (c+0)"! and P ® D! have dropped to 7.5 mgal compared

to 12 mgal with the profile data. In fact, the difference {8 less than 5
mgal for 19 of the 25 anomalies computed. However, the reasons for the
differences of greater than 10 mgal in the other six anomalies are not
clear at this time. It should also be noted that the system of normal
equations appears to be stable for PGR = (0 for the anomaly and altimetry

data systems under consideration.

4.5 Tests With High Density Data

In these tests, the altimeter data used are as shown on Figure 2,

(7475 data points) which {s five times denser than the low-density data
discussed in the last subsection, These tests are aimed at examining the
effect of high-density data on the accuracy estimates of the anomali{es being
determined., Here again we use the same weighting functions and the anomaly
parameter System B that were used with the low-density data. The results

corresponding to these tests are given in Table 4.

TABLE 4. RESULTS OF ANOMALY RECOVERY
WITH HIGH DENSITY DATA

Statistical Parameter P, =0 P‘R - (C¢eM=! p = p-!

Average standard deviation (lo), mgal

A priortd w 8.1 10.0

A posteriordi 2.0 B 2.1
RMS difference with tervestrial

anomaly, mgal 14.8 14.3 14,1
Varfance of unit weight (o ) 1.06 1.13 1,34

L&
Constant N‘. m 2.4 ¢ 3.5 4.8 ¢ 1.9 0.37 ¢ 0.8
.

o ————— ————
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This {8 again another example of the consistent agreement among
the various weighting algorithms. The dominance of the altimeter data can
be seen from agreement between the computed anomalies under the various
weighting procedures. The RMS difference for the cases P6 = 0 and Pd. -
(c¢-l))"l is 8.6 mgal. For the cases Pﬁl - (C+D)-l and PG. - D'l. this dif-
ference is only 4 mgal, Comparing the results of the high-density data with
those of the low-density data, the estimated standard deviation averaged for
the 25 blocks {8 just under half fo. five times inccease {n the density of

altimeter data. The RMS difference in the computed anomalies is oniy 4.6 mgal.

4.6 Tests With 1° x 1° Anomalies of System A

The anomaly System A (Figure 3) consists of 1° x 1° anomalies
extending 2 degrees bevond the middle zone (Filgure 1). The total number of
anomaly parameters in this svstem {s 337, of which 225 are 1* x 1° anomalies.
The number of observations corresponding to the high-density data {s 7475,
Computer timewise, {t would be vervy expensive to use the high-density data
with the system of 338 unknowns including the Ny=term, Corsequently, we
decided to examine the effect of extending the 1% x 1% anomalies bevend the
middle zone with the low-density data which has 1496 data points. The

weighting functions remained the same. The results are summarized in Table 5.

TABLE 5. RESULTS OF ANOMALY RECOVERY
FOR ANOMALY SYSTEM A

Statistic . " & tosnss) B i)
stical Parameter PSg 0 PSg (C+D) }5g D

Average standard deviation (lo), mgal

A priori w 28.1 10.0

A posteriori 23.4 R 1.9
RMS difference with terrvestrial

anomaly, mgal 19.0 11:2 10.5
Varfance of unit weight (6\! 0.72 0.82 0.93

3

constant N‘. m 0.1 £ 2.9 -4.8 * 1.6 -7.8 * 0.6
L
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Unlike with the anomaly System B, the system of normal equations
is unitable for zero a priori weights on the snomalies. The RMS difference
betwee.. the computed and the terrestrial anomalies s the lowest (about
11 mgal) among all the different sets of computations we have done in this
study.

The effect of extending the smaller anomaly blocks (1° x 1%)
beyond the middle zone can be best seen in a comparison {n Table 6 between
the resuits obtained with Svstems A and B. The weighting function used in

this comparison is (Cfb)-l.

TABLE 6. COMPARISON OF RESULTS WITH SYSTEMS A AND B

Statistical Parameter System A System B
Average a posteriori{ standard deviation (lo), mgal 4.4 6.0
RMS difference with terrestrial anomalv, mgal 11.7 13.2
RMS difference with Ps‘ = D=}, mgal 5.8 7.5

%

Variance of unit weight (So) 0.82 1.24
Constant No. m 4.8 + 1.0 -3.6 ¢ 2.3
RMS difference (A-B) 9.8 mgal

The results in this table demonstrats the overall {mprovement in
performance with System A when compared with Svstem B, Yet, the differences
are not dramatic. However, the anomalies recovered in both the svstems are
significantly different (RMS differencce = 9.8 mgal) but still consistent with
the accuracy estimates associated with the anomalies. Most of this dif-
ference could be attributed to the aliasing effect resulting from approxi-
mating the detailed anomalous gravity structure in the middle zone with
larger block anomalies.

The accuracy estimates (4.4 mgal) obtained with low-density data

are excellent considering the accuracy of the terrestrial data available
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today. This estimate can be further {mpruved to about 2-1.5 mgal with the
high-density data, as we have seen with the results with the anomaly
System B (Table 4),

4,7 Comparison With Rapp's Anomalies

In order to Jetermine how good these computed anomalies are, we
provide the following comparison {n Figure 5. Four candidate sets of
snomalies are selected for this comparison:

(1) Set 1 = This set corresponds to Svstem A, as

discussed ({n the last subsection, with a

1

priori weights P - (C+DY "', In this system,

[\
1° x 1° anomaly u:knoun- extended 2° bevond
the middle zone.

(2) Set 2 - This corresponds to System B with 5° x §°
anoma lies used for the middle and outer zones,
and high density altimetry data, Agatu, the
weighting function s (C*D\-l.

() Rapp's anomalies - computed using Least-Squares collocation
technlquun\:'lq). These anomalies correspond to
1 x 1° equiangular blocks., The difference be-
tween the equiangular and equal-area blocks (n
the area under consideration is that two equi-
angular blocks form an equal-avea block within
a 2% longitudinal band {n the middle of the
5% x 5" equal-area block, as shown in Figure 5,
Iv such cases, equal-area anomalies are derived
from averaging the equiangular anomalies and
accuracy estimates.
() Terrestrial anomalies - as described in Subsection 3,..
Quantitative differences among the varfous atomaly sets compared
are computed in the form of RMS differences and shown in Table 7. The larger
differences occur with Set 2 and the smallest one is between Rapp's and
ter estrial anomalies followed closely by Set | 'Rapp differences. In a

further look at the differences between Set 1 and Rapp's anomalies, it was

found that significantly large differences occur {n the blocks where the

gl sl sl sl od ] i . (i)l bl
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equiangular anomalies had to be averaged to get equal-area anomalies. Con-
sequently, we compared the two sets again excluding these five blocks, and

the agreement is significantly {mproved (5.4 mgal). Similar comparison

between Set 1 and terrestrial anomalies shows the same improvement (8.7 mgal).

The larger differences in these five blocks may perhaps b2 due to the fact
that the equal--area Llocks are not equal area at all and the equiangular
blocks are, In fact, equal area in a non-global solution. Consequently,

the 1° x 1° covariance function is improperly used for 1° x 2° blocks. How-
ever, this effect {s considerably reduced by the dominance of the high-
density altimeter data as we have seen with Svstem B,

An accuracy estimate of 2.5 mgal was obtained for 1° x 1° equal-

area anomalies with the high-density altimetry data. The corresponding

estimates for terrestrial data is 10 mgal and 7.3 mgal for Rnpp‘:(lg).

TABLE 7. RMS DIFFERENCES BETWEEN THE ANOMALY SETS

RMS Differences

Anomaly Set (mgal)
Set 1 - Set 2 9.8
Set 1 - Rapp 8.7
Set 1 - terrestrial 11.7
Set 2 - Rapp 11.4
Set 2 - terrestrial 13.2
Rapp - terrestrial 7 )
Rapp - Set 1 (20 equiangular blocks only) 5.4
Set 1 - terrestrial (20 equiangular blocks only) 8.7

e Jgp—
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4.8 Summery of 1° z 1° Anomaly Kecovery

As outlined at the outset of this chapter, we examined three

aspects of the determination of gravity anomalies from real altinetry

data:
(1)

(2)

(3)

The effect of data distribution on the accuracy of
the anomalies determined

The effect of substituting snaller blocks for the
larger blocks within the middle and outer zones
Use of auto- and cross-covariances for gravity
anomalies as a priori welghting functions.

The results can be summarized as follows:

(1)

(2)

(3)

(4)

It ha. been demonstrated that the technique and
procedures used here can be used effectively with
real altimetry data in the recovery of 1° x 1° mean
gravity anomalies.

Realistic estimates for these anomalies can be
determined with varying degrees of accuracy depending
on the density and distribution of the altimetry data
When the density of observation is low or if only a
few profiles of altimeter data are available, the use
of auto- and cross-covariance functions as a priori
weights can result in improved anomdaly estimates.
However, the anomaly blocks should have at least one
profile passing through for any significant improvement
in the anomaly estimates from altimetry data.

The use of larger anomaly blocks in the middle and
outer zones to reduce the number of parameters
results in significantly large aliasing effect/model
ervors introduced in the anomalies beirg sought within
the inner zone. However, the use of 1° x 1° blocks
to at least 2 to 3 degrees beyond the middle zone and
5% x 5° blocks in the rest of the out . zone may be

optimum in the sense that the number of parameters would
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be small enough for practical purposes and at the
same time the resulting aliasing effect would be small
enough %o be neglected.

(5) 1°* x 1 mean anomalies can be recovered to about 4.4
mgal accuracy with low-density data (one of every five
observations shown in Figure 2). This accuracy can be
increased to 2-2.5 mgal with high-density data (all
data points shown on Figure 2).

(6) The anomaly set considered to be the most realistic of
those computed in this study compares very well with
Rapp's estimates and with the terrestrial estimates.

The accuracy estimates cbtained both with low- and high-

density data show considerable {mprovement over Rapp's

as well as those of the terrestrial estimates.

These comparisons, however, are meaningless unless we have
ground truth data with an accuracy better than the 2-2.5 mgal accuracy
claimed in this study to verify the validity of chese claims. Until then,
we can only say that the results obtained {n this study are comparable with,

if not superior to, the best estimates available todav.

i
1
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5. 30' x 30' MEAN ANOMALY RECOVERY

It may be recalled that the objective of this study is to develop
practical applications for the high resolution altimeter capability of
GEOS-3 and future SEASAT satellite missions, with the primary effort being
the development and test of suitable techniques for gravity anomaly deter-
mination in the marine area which is one of such applications. We have

effectively demonstrated the Least-Squares technique in recovering 1° x 1°

equal-area mean anomalies from both the low and high density altimetry data.

Now, it remains to be seen whether this technique can be used to resolve
finer structures of the gravity field from the high density altimeter data.
In the ensuing discussions, we will present some preliminary results of a

30' x 30' mean anomaly determination.

5.1 Parameter System For The 30' x 30' Anomaly Recovery

The high density data were used in determining the 30' x 30'
mean anomalies. In order to keep the number of data points and the number
of parameters in the system low for econ~mical reasons, we decided to re-
cover 36 30' x 30' approxima.:ely equal-area mean anomalies in a 3° x 4&4°
block bounded by latitudes 36°-39° north and longitudes 292°-296° east
(Figure 6). These blocks were subdivided from nine 1° x 1° equal-area
(approximate) blocks which were used in the 1° x 1° anomaly recovery. High
density altimeter data from a 5° x 5° equal-area block (1858 data points)
are used for this computation. As can be seen from Figure 6, these data
extend 1 Jdegree beyond the inner zone in which the anomalies are sought.

In the middle zone, which is a band of 1 degree around the inner
zone, 1° x 1° anomalies are used with another 20-degree band of 5° x 5°
anomalies in the outer zone. This system results in 132 anomaly parameters

and one error model parameter Ng,.

5.2 A Priori Information On The Anomalies

Since terrestrial estimaces for the 30' x 30' blocks were not

readily available, the terrestrial value of the 1° x 1° block of which the
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30" x 30' blocks were subdivisions were used for all the four subdivisions.

Terrestrial estimates were used for the 1° x 1® and 5° x 5° blocks.
Equation (19), PG' «p!

alies where the elements corresponding to the 30' x 30' blocks were set to

model, was used for weighting the anom-

zero. Auto- and cross-covariance models were not used since they were not

readily available. However, an approximate model could be computed with

the subroutine COVA‘lb, employing the approach used by Tscherning and

Iapp(ls). This approach uses the similarities between the smoothing

R t+2
operator 8 and 2 , where R 1s the average Earth radius and h_,
L R +hQ e

o Q

the height of a point above the Earth such that a point covariance function

C(Q,Q) will adequately approximate the covariance function of 8° x 8° block
anomalies.
Bt can be expressed in terms of the radius . of a circular cap

as:

- 1 1 - - . o
B¢ l-cos v, 2041 [P:-l(L°' Wo) PE+1(Los wo)] , (23)

where Pi is the Legendre Polynomial of degree i. Now, v, can be approxi-

l,.‘0

mated equating the area of circular and square caps; that is, w; - =
¥

For 30' x 30' blocks, € = 0?5, Thus, knowing the values of Bi' a value of

hQ could be found such that:

R i+

8, = R:h (24)
e Q

for all t. Then hQ can be used as an input for the subroutine COVA to
compute the numerical auto- and cross-covariance model. Because of
limitations of time and resources in this project, however, computations

of these covariances could not be accomplished.

I
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5.3 Results and Discussion

The 30' x 30' mean anomalies as computed with high density alti-
meter data are presented in Figure 6., Their average standard deviation
(lo) was 5 mgal with the estimate of the variance of unit weight being 0.6,
The error model parameter No was estimated to be - 1.76 ¢ 0.5 meters.

These numbers look very realistic except in the upper right
corner of Figure 6, where unusually high and low(=69 and 28) values are

noted in the adjoining blocks. A closer look at Figure 2 indicates that

this block has poor "across the track" data coverage. These values may be

due to that; on the other hand, they may be reasonable. Only good ground
truth data capr resolve such questions.

As we mentioned earlier, the terrestrial estimates for these
anomalies were not readily available for comparison at the time this
report was written. lHowever, 1° x 1° mean anomalies are averaged from
these 30' x 30' anomalies and compared with those from Figure 5 correspond-
ing to Set 1, Rapp's, and the terrestrial sets, The results of this com-
parison is provided in Table 8 in the form of RMS differences. In the
comparison with Set 1, the larger blocks, where unusually larger differences

due to improper covariance function were noted, were excluded.

TABLE 8. COMPARISON WITH OTHER ANOMALY SETS

RMS Differences

Averaged 1° x 1° Anomaly Minus (mgal)
Terrestrial 6.7
Rapp 4.4
Set 1 (Figure 5) 4.8

These comparisons are very good considering the standard devi-

ations associated with them., However, this agreement is not an indication



s

that the individual 30' x 30' mean anomalies obtained in these computations
are resolved with good accuracy, but it certainl. indicates that the esti-
mates are very realistic. Accurate ground truth data are required to
verify these estimates.

The accuracy of 5 mgal for the 30' x 3J0' anomalies {s excellent
considering the data distribution, which i{s poor {n the direction across
the track (satellite pass). It would be informative to see how the more
uniformly distributed data expected from the SEASAT missions will affect

these accuracy estimatas,.
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6., CONCLUSIONS AND RECOMMENDATIONS

results of the study presented in Sections 5 and 6 of this

the following conclusions:

The technique and procedures dev~loped and used

in this study are very effective in the determination
of detailed mean gravity anomalies to the extent of

1°* x 1° and 30' x 30' blocks.

The accuracy estimates for the computed anomalies are
highly dependent on the density and distribution of
data points.

The anomalies computed are sensitive to a priori
relative weights usud as constraints. This sensitivity
reduces with incressed density and uniform distri-
bution of the data points.

The use of the accuracy estimates given for the
terrestrial anomalies for a priori weight comnstraints
results in poor relative weights among the anomalies.
The use of auto- and cross-co.ariance models for
anomalies as a priori weight constraints is very
effective in determining realistic anomaly estimates
when the density of data points is low or if only a

few profiles of altimetry data are available in the area.
A block should have at least one profile passing
through it for any significant improvement in the
estiuate of its value.

Approximation of small blocks by larger blocks in the
middle and outer zones reduces the unknowns and in-
creases the stability of the normal equation system.
However, this introduces significant model errors/
"aliasing" effect on the anomalies to be determined. As
a compromise, the use of the small blocks in at least
the middle zone results in a reasonable size of the

parameter system and small modeling errors. In fact,

A PN e
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the small blocks were extended 2 degrees beyond the
middle and into the outer zone in this study,

When the auto- and cross-covariances are used for a
priori weighted constraints, ideally the blocks

where the anomalies are determined have to be truly
equal in area., In a non-global sclution, equiangular
biocks would be approximately equal area. The equal-
area subdivision, as used in this study, where some
blocks are double the area of the others, results in
improper relative weights. However, this needs to be
examined further.

With the low density data (1496 data points over a

11* x 12° block), 1° x 1° mean anomalies can be de-
termined with an accuracy of about 4 mgal., Indications
are that this rigure can be {mproved to about 2 mgal
with high density data (7475 data points). A prelim-
inary determination showed that 30' x 30' mean
anomalies can be estimated with an accuracy of about

5 mgal with the high density data.

Computed anomalies compared well with those computed by
Rapp using Least-Squares Collocation techniques and with
terrestrial estimates; the accuracy estimates obtained
in this study are significantly better, However, due
to the lack of accurate ground truth data, we cannot verifvy

how good each of these determinations is.

Even though significant results have been obtained considering

(1)

the available time and resources in this study, there are several areas

that need further examination. Some of these are listed below:

Some of the equal-area blocks used here are larger

than the other blocks due to the subdivision scheme
used. The 1° ¥ 1° autocovariances used for a priori
weight constraints appear to have urfavorable effects on
the anomaly estimates. These effects need to be examined
by using either truly equal-area blocks or equiangular
blocks.

——— i~
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The 1° x 1° anomalies must be recomputed using high
density data with Parameter System A, where the 1° x 1°
anomaly parameters are extended 2° beyond the middle
zone. This computation was not done in this study due
to the limitations of time and resources.

The data distribution in Figure 2 shows poor cross-
track coverage. It would be instructive to see the
effect of more uniform data coverage on the computed
anomalies and their accuracy estimates.

The anomaly parameter system used for the 30' x 30'
anomaly determinations must be reexamined to see
whether any improvement to the anomaly and their
accuracy estimates could be made.

The possibility of resolving mean anomalies over

still smaller blocks (e.g., 15' x 15') must be examined.
However {mproved the anomaly and the accuracy

estimates may be, theyv are meaningless unless we can
verify them with proper ground truth data. The ground
truth data presently available are totallv inadequate

with respect to coverage and accuracy. There should

be a concerted effort on the part of the agencies respon-

sible for geodesy to establish a marine calil-ation

range where proper ground truth data could be established

for verifying the high resolution altimeter data and

their derivatives.

——
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