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This report deals with the development of a one dimensional steady state

stratospheric aerosol viodel and the subsequent perturbations caused by

including the expected space shuttle particulate effluents in the model. Two

approaches to the basic modeling effort have been made: in one, enough

simplifying assumptions were introduced so that a more or less exact solution

I

to the descriptive equations could be obtained; in the other approach very

few simplifications were made and a computer technique was used to solve the

equations. The most complex form of the model contains the effects of

sedimentation, diffusion, particle growth and coagulation. Results of the

perturbation calculations show that there will probably he an immeasurably

small increase in the stratospheric aerosol concentration for particles

larger than about 0.15 j,m radius. The increase in very small particulates

(greater than .01 tine diameter) is potentially large but cannot be adequately

evaluated until the true natural background cf these small particles is

determined.
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Introduction

it is well known that a relative maximum exists on a global scale

in the aerosol mixinq ratio for particles having a diameter `0.3im avo—oxim.itely

10 km above the tropopause. The particles are composed of H 2SO4 (for the last

decade at least) with many of them containintt smaller solid inclusions. Followirrq

a large volcanic eruption the aerosol layer may experience a significant increase

in concentration; but during quiet periods of volcanic activity the layer in

principle could approach a quasi steady state distribution. It is the purpose

of this paper to present a one dimensional model describin g this quasi steady

state situation and to investigate perturbations of this state.

The Model

At the heart of the model is the assumption that a supersaturated layer of 11.1SO4
L

exists about 10 km above the tropopause. Although the model itself is riot

cone'er • ned with the chemistry of this layer's source, it could tie formed from

sulfur bearing gases such as SO., or CSO diffusing up through the tropopause and

after a series of chemical reactions eventually forming H ?504 ; o!• the source could

be continual small volcanic eruptions with the required effective injection

altitude. Since H 2 SO4 has a very low vapor pressure at stratospheric

temperatures and water vapor concentrations (Gmitro & 1'ermoulen, 1963) even

a very modest production rate of H 2 SO4 could p1°0d1Jc0 a large supersaturation.

The model further assumes that this saturated vapor condenses on any

particles that are present at a rate governed by the thermal flux of H2SO4

nkflecules onto the particle=.' surface. Renlenishmt.,nt of the particles comes

from diffusion of tropospheric aerosol upward and as an option ot lit , r

sources can also be included. The effect of coagulation is also taken into

account by the model.
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r	 in this present work evaporation of the particles is neglected. This

r
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is 11101-0 or less ,justifiable because such a process would eventually saturate

the entire stratosphere with H,SO 4 vapor providing there were no sinks for

the vapor. Under saturated conditions neither gi-ow6r nor evaporation would

take place. However at high altitude there may be a sink for H.,SO 4 due to

photodissociation by ultraviolet l i(iht. lender this circumstance the model

presented here should riot be considered entirely realistic above about 30

to 3f) kin. On the other• hand this is above the main region of interest and

should have little affect on the major results presented. The inclusion of

evaporation effects would increase to a considerable extent the complexity

and uncertainties in the model. The basic reason for- this is that the

particles cannot evaporate to a smaller size than that of their orig;mrl

core. Since individual particle identities are lost in the diffusion

process, the original core size is unknown.

As noted above.the H 2SU4 profile is treated as an adjustable parameter

►'ather than derivin g it from an appropriate chemical reaction nx0del.

111 t hough this approach at first may seam unrealistic and questionable,e, the

assumptions involved in present sulfur chemistry models (including the

matillitude and type of sources) are simp ly too uncertain to produce a reliable

H2SU4 vapor profile. Our inte1-pretation of a reasonable profile is ono which

has a relative maximum in supersaturation near the observed aerosol maximum, and

a concentration consistant with the over all sulfur • budget and transport pr•opertier

of the atmosphere. Fo ► • this reason ire have choson to make the H 2SU4 v.ipor

profile a parameter that can he adjusted to obtain a good model fit to the

observed aerosol profiles.	 It should be expected that similar ► • esults would

be obtained trom a more elaborate model containing the sulfur- chemistry provided

the It2 SU,1 vapor profiles in each case are the same. Such a comparison has been

made and will be discussed in a later section. Again it should be emphasized that

in out- opinion the present uncertainties involved in the saltu1-' chemistry make
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a more elaborate model (one containing sulfur chemistry) less fundamental than

the approach presented here.	 i
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Phi losophL af_one. Dimensional Models

In general the atmosphere should be treated as a 3 dimensional system

and the applicability of one dimensional models is open to considerable debate.

Under present circumstances the limited amount of detail that can be included

in 3 dimensional models severely detracts from their credibility. Thus

regardless of the number of dimensions used in a model, the applicability of

the results will be open to a certain amount of justified criticism. 	 In order

to overcome this dilerm;a it seems reasonable to make a working assumption that

one dimensional models can presently be used for a testing or a proving

ground of new ideas and concepts. If such ideas show promise they will naturally

kdlld eventuall y ) evolve into accurate multi dimensional models. Another

useful working assumption is that a good one dimensional model will capture

some of the main general features of the constituents of interest. In the

case of stratospheric aerosol this assumption is at least tflausible because it

is known from direct measurement that the aerosol does in fact have recognizable

features on a global scale. Obviously, in comparing one dimensional model

prediction ,, with actual field data, agreement between the aenoral character of

the profiles is more important than an exact absolute quantitative agreemk- '1t in

a limited region. This view will be adopted here in comparing model predications

with typical field measurements.

Basic Model Equation

The basic equation descr • ibinq the time rate of change of the differential

size distribution n(r,z) at altitude z is

:?n = _ 2F _ ? rnl+C
It	 Dz	 r

where r is the radius, F is the particle flux (clue to sedimentation and eddv

diffusion), n is the crrowth rate,	 C	 is the coagulation term and n is the

particle number concentration.
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The Simi ► 1 ified Approach

Under certain conditions thr above equation can ht' .olved by %inrple

analytical methods. this is dune by usinll the ellui 1 ibriurn Condition

(m/,lt 0), takintl the eddy diffusion coefticient 1) to he constant

(!Nitro cm `s /sec in most cases). letting C=o ► usintl a A - function for G.

. ► pproxinlatinit the oravi tat ion,rl settlintl speed by a function that is 	 r

proportional to particle radius and inversel y proportional to air density anti

retluirintl an isotherilial stratosphere. 	 nithtlttttlt some of these simplifications

maysetm quite crude it will later be seen. after comparison with solutions
i

containinll more iTA istic detail. that this simple ,1pproach captures the

essential characteristics of the nlodc'1 ho^h qualitatively and tluantitively.
^.1

the houndary Condit ion-. are specified by a source of sintlle size "seed particles".

corl •t+sponding to condensation nuclei (cn). at the lower botindal v (tropopautie)

which diffuse ;p to the <S- function tlrowth lavol . , , ► sink for these 1 larticle-,-

for simpl icity the specific tiravit ,y of the sood particles i,, taken to he ,nt•

salllt' as t hat. of 11 2 so4' 	 l artler part icles are tol •111t,d at the tlr'owth laver and
I	 '

distribute themselves under the influence of eddy diffusion, sediva'nt.ltion. and 	 r

a sink at the tropop 'luse.	 A sc ►u'nlatic diatlritln Sununari: intl tlle •.t , proce-.ses tdIl
i

lit , found in Appendix I.

In this paper It is assumed that every molecule of 11 2So4
 that strike%	 a

I	 ,
an aerosol particle will stick and immediately 2 water vapor nlelt'cules are

taken on by the particle.	 This Dill result ill atVilt a 75", solution of 112SU4

for t ilt' st ratoSpllt,rlc atl rosol Which is in atirooment with IIIea%urenivnt (Ro`.on. 1971).

(tt't>wth dtle to Co l lisions betweell 11,SOQ Ilxllt,('lllt'ti has heell "ht1W11 10 ht` Moll I'll blt'

in the stratosphere (Nanli l 1 et ,Il . 1977) and has horn nooloctod.

With the ,lbove sinlplificatio.is the solution is matht'llotically very 	1

-.inli l,lr to that ohtailled by simply retluir • intl a iS- fund ion source at the

desired aerosol inii0munl, but with ont , import,lrlt addition:	 it provide-, tilt,

mechanism for lll'nt'ratintl a size distribution of stratospheric aerosol fr•onl
I

the sinolt' size seek particles diffusin g up from the tropopause.	 +
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The absolute concentration at thc aerosol maximum is in part determined

by the total number of N ISO4 molecules in the F-function growth layer and

the concentration of seed particles at the tropopause. In this modal the

flux of seed particles into the stratosphere is balanced by the flux of

all the larger particles out of the st-•itosphere. More detail concernin(i

the derivation of the analytical form of the solution is presented in Appendix I.

One minor and correctable short.cominq of this solution is tr,,3 requirement

of only one size particle at the tropopause when in reality an entire size

distribution should exist. This fault can he alleviated by summing the

solutions generated by a series of values for the seed particle sizes that

approximate the desired size distribution at the tropopause. The result of such

an approach will here be referred to as the quasi analytic solution and can be

made as accurate as desired by increasing the number of points needed to

approximate the size distribution at the tropopause.

Results

A comparison of solutions using one size for the seed particles at the

tropopause and using a complete size distribution at the tro popause is shown

in figure 1.	 The insert shows the actual two integral size distributions used.

Appropriate pararieters have been chosen to reproduce the general cha, •acter of

the observed aerosol profiles (as shown in figure 4). The particles referred

to as cn are actuall y the total number of particles present above a diameter

of .01 jam and the profiles that refer to aerosol are the total number greater

than 0.3 um diameter or those generally associated with the stratospheric:

sulfate layer. The remaining profile is the ratio of the concentration of

particles with diameter greater than 0.3 ^,m to the concentration of particles

greater than 0.5 o diameter
	

As can be seen, there is barely a significant

difference between the two examples and most of this can be attributed to the

i
difference in average size of the two classes of seed particles. In the cn

profile the particles associated with the smooth size distribution cannot 	 i

f
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diffuse to .1. hitch ,111 .1ltitude due to their lartter ,%wratle site and the con%etluent

theater influence lit sedirwntation.	 In the a'rosol I+rofile. particles a%sot'latetl

With the w ►tioth .l:e distrit ,ut,oll ,lr'e ftll'i' nulvivus because the y start out 'It a

l artier a yel'tNt , `, 1: t`. that 1 % . 1 ti t' a ,) 1 y ell ,11'lt+lait o f (Irowt h Iltol'1, o 	 t heal N 1 i i Peach

0. .1 till diarleter thall tilt" k i t her il,lti\ t+ f vartic It , I.	 it %all he Ot I llt'1'ally colic itided
1

that the results are not \1"r\ deliendent till the e\at t seed particle ci:e M%trihut loll

t	 used ,11 the trolrol+ause (love ► ' boundary) and Ihat using a si:e distritaltioil 1 .It lit , r'
	 i

than a simile site is in most cases not worth the "ollsideratile e\tra effort and

cwnl+Iv\it,y.

j	 the C01111 1 1t"tt` Ni*e di%trit %ution at tilt` at, ro	 ,1\111111111 %I ( I ll t`1 *At Vd t`1 II\lntl

sint)le silo .01 micron dianx e ter >eed part icle% at the troitoliaus0 is shown

111 1 ittl re .'.	 roe co111par i still. roNw i t ti of t`\l ieril'lellt a i 1111`asllrt"lvilt I art` It i .t'

`hown in the fi(lure.	 This e\rt`ril'lental data has boon criticall\ discuswd In

%o4w Clot a i i 1 1 1• 1 1 ,11 . 1 . 1 N and Iii Iwn k 1 ` 76) .	 It i '• at + l ta rent t ha t t ho	 .;1't`t"'11	 ht't %well

t he % 11111` 1 e woIie 1 ,1rn1 t he t1,1 t .1 i s sul'l+r i s i lit)1 \ 000 '1 .1 11 d  wou i,1 t end t o ".ul i l iort t he

c red ihilit\ of the 111"d( I Iinti ' 11 , 11roac11.	 In addition, ;he 1'.1a`•'. flu\ of sulttit- lieetit'd

to sust "lin the IWSO w pol . ialt`1 , is ab kit It 3	 l0 t011`. \1'. acid i	 1',oltahl\'

t olm " toot with ( 1 t her e`t imates	 13 \ 10 	̂ %t'n`.'.0t1 h\ Crut: et'

( 1 1 1)6),	 A stlltur tlu\ of 1t \ 10	 It'll~ \1' Iv I1% ust`d 111 Crl1t:l`I1'\ I ll 11odt`i t`1

stl'atoNpllt ` I'I%	 W1'osols.

I'ert111 . 1`.1t it`ll

A%Nkk1!l1 nt1 	 that	 t h i % s illipi t`	 'IN 1 1 ,0ach to	 ,1	 %ol ut ion capt urt'`; the essence of

t ht`	 roil l	 tit 1 ',It o',1 + 11e1'1 c ,It`1'os(1 i .
	 it
	 1	 tlt %oiltl`	 l lit el'or t o

	 t, \,1111i Ili`
	 t Ili'	 t 

till, 
etIUt`I11 t`

1
tit	 tie%t`l • ,1 of	 lit , rtltl • h,,titin\. ichurl` t	 shows	 tilt" i't'•.l J It	 of	 a	 port urhation

cauNed	 h\	 ,1 not vorItic	 dust `.owIN'r	 anti	 a .;`.lit`	 `,hutlle All	 0	 particle	 ".ot11'te.
1

oil I v	 t ht`	 t' n pro I 1 1 t"	 i S : Ilt+ltll	 ht`c,ltJ.e	 the c hankit`	
Ili
	 t ht` .'	 _	 0.3	 ilm	 at`I',`.tt 1	 alld

1%ltlli prof il( I N 1t,1 •. 101111ti 10 lit , t+IIi\ ti t tlit, ol'oor of 10 11•.	 The'•," port lll'h,ltlonf.

ttt'1't' t,liculated lllltlt`1' Ilie	 t`iltilI1,`iI\ t'ta t't 1 !1`.t,lilt	 11t1111tier of f', 114 nxllt`l'u1t`^	 111

1

k
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the growth layer. It would also be of interest to perform the calculation" with

a constant source strength of the 11 2 so4 vapor in the g rowth layer. tinder this

latter condition the resulting perturbations due to growth would not he as large

because the number of H2 so4 molecules i- the growth layer would not be as great.

Thus the results shown in figure 3 were calculated under assumptions which would

produ;e the larqest effect.

	

I
	

Mathematically the meteoritic dust source is treated similarly as the

tropospheric source of seed particles. The upper boundary is taken high

enough so that only sedimentation and diffusion are important processes.

The meteoritic particle concentration is chosen to be consiste 	 with a

conservative meteoritic flux (in this case, 10 4 tons/yr with an average

radius of .04 microns and an average density of 2 gin/cm 3 ). Thus the growth

laver acts as a sink for both the tropospheric seed particles as well as

meteoritic particles and the net flux from both of these sources is the

rolevant quantity to be used in the Balance equations discussed in Appendix 1.

The space shuttle perturbation is dealt with as a superposition of

solutions. Each individual solution is that for a point source at the

desired altitude increment. Thus the net profile is a sum of a large

number of exact solutions. The absolute values of the injection rates

are the same as those used by Hofmann et al (1915).

For reference, the expected cn profile for the space shuttle only

(no growth iayer, tropospheric source or meteoritic source) is also shows

in figure 3.	 It is interesting to note that the space shuttle perturbed

profile is practically the sum of the profile obtained for the space

shuttle alone and the natural cn profile predicted by the model. T'Js

result along with the previously mentioned fact that the d _ 0.3 Jun aerosol

profile is practically unchanged tinder the illustrated perturbations suggests

that the equilibrium distribution of the space shuttle particulate effluents is

practically independent of the aerosol growth mode'
	

here. 711U5 it would

ippear that simple calculations neglecting the q 	 inics of the natural

	

L	 aerosol may be reasonably valid.
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It should also be noted that the basic parameters used in tilt , model

to generatt , figure 3 are not exactly the same as those used to generate figure 1.

The principle difference is a reduction in the 	 icentration of particles at

	

I
	

the tropopause by a factor of 0.4 in tilt , latter figure. This change tends to
i

bring the absolute aerosol concert r • , ► t ion at the maximum into ketter• artreement

	

J

	 with the measurements(shown infidure0but the general character of the

prof i 1 cis rema i n  unr•hanged.

The result of this simple perturbation study indicates that tilt , space

1	
shuttle could change the high altitude cn concentration by a large factor if

1
metteoritic sources are not important. However even a small metes itic source

could chamle this conclusion. 	 In addition. hi gher values of the coefficient of

eddy „iffusivity than those used here 15000 cm 2/sec) would also reduce the effect

of the space shuttle at high altitude. At present. good ex perimental mt,asurt' Mnts

MT needed above "5 km to determine typical cn profiles. mitt unt il them,

measurements are mad: , it will not be { possible to determine the extent to which

the space shuttle activities will incrr,rse the cn, • oncentr•ation in the tihpt,r

stratosphere. According to the prediction of this simple model the effect of the

space shuttle on the	 d	 0.3 ;an aerosol profile a ppears to be quite ne,iligible.
r	 -

Computer Solut on A}►proach

Of all the approximations used to obtain a quasi analytic so1uti Lill . only

two may be questioned as not being realistic: the ,issumption of a 	 function

growth la yer and the neglect of coagulation. From the wort, of Hofmann et al (i976)

it is clear that. a fairly narrow source region would be required to successfully

e>,{ ► lain the observed stratospheric aerosol layer. The use of a -^-function to

descrihe the source renion is therefore net entirely unrealistic. Thus the

principle short coming of the quasimnalvtic solution is the complete neglect of

roa q ulA ion.	 In what fnl ha y s, a none ^jenera i and more complete solution to the

basic t , quatirnr will be obtained b y employin0 computer methods.

m	 AL

^l
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A finite difference ethod has been used to obtain a computer solution to

the basic equation. The altitude grid size for most cases was taken to be 1 km

and the radius grid points differed b y factors of essentially 2 1/3 . The method

of solution involved starting with initial conditions and letting the

differential equation develop in time until a steady state solution was reached.

in most cases, time intervalsof one day were used. Errors that develop in this

method due to finite grid size were investigated b y decreasin g the grid sizes ano

comparing the resultinq successive steadv state solutions.

The eddy diffusion profile used is shown in figure 4. The upper portion

is similar to that suggested by Hunten (Johnston et al, 1976) but the lower

portion has been modified to that of Chang (Johnston et al, 1976) which we feel

is consistent with a tropopause at 10 km. Recently other modelers have adopted

a profile similar to the one used here (Luther 1977). We have observed that

the resultinq particle profiles are not very sensitive to the exact nature of

the eddy diffusion profile and the use of a constant value of 5000 cm 2 /sec would

not change the character of the solutions whichwill be illustrated.

The gravitational settling velocities have been adolted from Kasten (1968)

by fitting his tabulated data to a curve that is proportional to the particle

radius and specific gravity and inversely proportional to the ambient air density.

A particle specific gravity has been used that is consistent with a composition

of about. 75 , H2 So4 and 25', H 2O. The vapor pressure profile of n 2 SO4 was taken

to be a gaussian function centered at 20 km and several kilometers wide. A

peak H2SO4 concentration of 2.75 x 10 11 nun Hg was chosen, a Value in considerable

excess of 100" saturation.

The cumulative size distribution at the tropopause was taken to be

inversel y proportional to the 3.5 lower of the radius and specified by an

absolute value that was consistent with field measurements of the aerosol.

A smooth lower cut off in the size distribution near .05 t.m radius was

1 ^	 ^	 I	 1	 ttllf	 ^	 ^	 ^	 ^
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ind necessary in order to obtain a(Ireement in the absolute values of ti ► e

Iculated an.i measured aerosol profiles. As will be seen this cut off leads

using snvtller values of the en concentration at the tropopau.e than are

tually observed. The si g nificance of this problem will he discussed in a

'er section.

The upper boundary was high enough so that the flux of particles across it

,ld he taken as Zero (if a meteoritic source was included then the flux was

• ived from the corresponding concentration at the level of the upper boundary).

Due to limited computer facilities an approximation to the treatment

coagulation was developed. A constant value of the coagulation coefficient

watt used (36 x 10 -10 cm3/sec) that was obtained by averaging over typical

ze d i stributions encountered.	 It should he pointed out that ill

a factor of two 
ill
	 definition of K has developed in the literature. We

 the notatio , .iw formulation of Walter (1973). The values reported by Fuchs

96-11) for instance are about a factor of two lower which can he attributed

a different definition of K.

An expression for the time rate of chanele of the size distribution due

c.oa,tulation (which is required in the hasic model equation) has been Oivml

N iter (1973).	 It was necessary to develop an approximation to this

iression consistent with the radius grid size. Since the details of the

luire,Li approximation are cumbersome and tedious, they will not be presented

T.	 in its place, a discussion of the overall 1110,101 consistence checks will

^	 1

i

	

1	 be n ►e Lit' .

	

^i	 Solution Checks

Since there are many opportunities for serious errors to develop in the

1
c omhut er ;olut inn (i , e. those due to approximat ions, cumulAt i ve errors and

hrog)• avuninel mistakes) it is essential to have some indepen0ent means of

^4
j1

^^	 1

s
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I	 verifying the over-all result-,. Conservation of mass was checked by comparintl

the nrass loss of 11 2 so4 vapor to the net mass loss of the particles eA ffusing

out of the stratosphere (it is necessary to make a correction to the latter

mass flux due to it:, partial water content as previously described). This

test is very sensitive to the accuracy of the treatment of coagulation. in

the limit of no coagulation the solution can be checked for particle conservation

because the flux of Seed particles into the stratosphere must be balanced by

the flux of larger particles out of the stratosphere when equilibrium i% established.

Also in this limit it is possible to judiciously choose the parameters so that a

direct comparison between the computer solution and the accurate quasi analytic

solution can be made. However, in this case good altitude resolution is needed to

reasonably approximate the 6-function H,SU4 vapor profile with a narrow gaussian

curve required b y the computer method. Results of these tests indicate th,lt the

overall accuracy of our computer solution is about 10%.

Results	 i

Typical computer generated profiles are shown in fiq„re 4 along with the

ren(le of actual measurt.,j values for a tropopau,.o near 10 km. The experimental

data was taken from Hofmann et al (1975), Rosen et al (1975), Pinnick et al

(1()76). and Rosen and Hofmann  (1977) .

The size distribution at the aerosol maximum associated with the profiIvs

shown in figure 5 is presented in figure 2 and is very similar to Lhat of the

J
['	 quasi analytic solution.	 The mass flux of sulfur, required to sustain the 112so4

1

	 i	 v.+nor layer, used in calculating the profiles of figure 5, is about 8 x 10 tons

per year ,rnd is in reasonable agreement with that obtained from the simple model

iilustratod in figure 1.

Even though the computer model ^-ontains the effects of coagulation and

I	 1

k	 Hit, quasi analytic model does riot, the two are in reasonable agreement. This

result can be attributed to the low particle concentration used at the tropopause

i
which sub%equently yields onl y slight coagulation affects. The influence of

„
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CoAtlulat Ion	 cAll nr most	 ea%I IV dt'(Nt te ` d	 ill	 tht'	 t 11	 prof I le Heal'	 (Ile	 Irt1pollAlI`.e.

l he	 .hal t ,`	 of	 t he t'll	 Ill'ofI le t .	 ill which coAtlulAt ton tit)Nt 	not itlaii, 	 A	 roIt'.	 I •.	 shown

ill	 f Iknir t 	I.	 It wi l l	 la`	 (toted that	 t he	 courul er 	 t lt • tle`1 •Ated vn	 I ► 1't ► f ile	 111	 f (,lure

In	 very	 similar	 to	 this IntilcatI11tl	 that, for	 the	 tholtet of paramptNr1, the

I,omputer	 c a lt ulat 11 1 11	 1% not	 ver%	 n e"M Ive I 	 coatlu Lit ion.
i

tItfurt` h show s A

t Atit •	Where	 t • oAtlll I At It'll doe%	 III a\	 .1	 ro I t' 111	 ( lit'	 t	 11	 Pro f	 1	 I t' I he	 tit'l l er.1 I 	 %1,11`1'

of this so c a lled %oaquiation profile has ,111AIVtitalIv tit` eribod (in An appro itti l le

ell .t 1 ^ tlp t l llll t lt' t't ,11	 !he lat ter 111\e%t IgAtor% u'•t'd A CoAtllllat itill prot 1 le

to r \1 1 1,1171 t Ile il' o1%vr \'e% 1 t'n concelltratlo"% save r the t ropopau\e.

the ttnnllllter IN14101 AIoml wIth the opt 1noun llaranlet e1 . % Ira. a%ed ttt e\aun1r ► e

( fe'l't urbAt io111 of the '.I rat owphe t ric aeronal . However, t ht' resul t 1 were Omi lar

to the p red Iktitill t • I the tlutt t. i altaI%tIt• % s lut Ion %how11 111 f Itlure I and I%it , 1haI

rim%on will not he di`:I•u%Ved furt lit , 1,

('olnlial , I -.on 141 t 11 Of ht t • Mode  ^,

I he t ollll I ittel . I'lodeI 1 1 11".t'llted here ht1S Itch t 011111A red tit the olit' tte`.t rItied

t►V l IIIt - o t • 1 AI ( MV) in whlt h a" t l It l rt wa% rlatle to Int hide the t llellli` • t 1 1 of

tlit , li,%0	 ► .111111' ft+1.111ati1 ► ll 31. ►tt'l l 	, 1 • .	 flit` effet t	 (if I lArt It It' e\'.11 1 0rAtioll,	 Chit:

l att er eff t`1't w111 he referred to as t he rink'% lwde I .	 Ile iv%wI1	 of the

comi 1 .11' 1'.o-1 the %iww" 111 I 1 qure P .	 Tie paraf tk't rix a%rd wert' nt 1 1 Iles e`.` ar 1 I \
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hitlhel' AltItkidt`•. and t Ill •. tlitterentt' t,lll he attritluted to the t'\.I11oratlolr

1'tler!% tollt.1111t't1 In the ,U,It 	 Ila ►del	 \t high altitude eval l tration would lend
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at 111101 .11 t 1tude,	 Oil t tie ot 11eI . 11,1111) evallorat ion wou ld

1 1 .11't Irlt", which e^Itlain% the lower values. of aerosol cat

model at h i till .r l t i l ude .

It shouldhe 1 ►oi III ed out t flat a 1 , 1(jorous compell'I %on bet ween t it' t 1vo

1110deI% is not %tried% , ;loss ible because they do not re, ill lre iitontitaI

input Im1'.1111ete ► '%.	 %onle ,lutitlt'llwilt is retluire'd as to wh,lt	 exactly would

consti tut e a Illuttla i ly Cons i'. t ant ';et of l l aranleters ,	 Hills the res.0 l t s

shown in fioure t1 are not ell tirelv objet . tivv.	 However, within the rantle of

Ilossible itllt kill IIV Coll%iSt('nt Itaranlet ors • it is our vgwrience that the two

(111d1' I 	pr'lkilll't' pro f iiis 1 11.1t aro vt'1v Similar in Chdl'dl't 0".

Conclusion

	1ll thotit1h mans' I%pek tti of the	 1 01,0%011 are toll0- tent with

thk model, the predicted cn profile is. not in ctood dtireenu'nt with observation.

It	 i% 1 1 1 1• ,	 1 1) 1 t' t t, t' ► L111tit'	 I he	 1111 1 111	 11.1 1,411111t, (T% 	111 ' • llt'h d way SO ,I% 1 0 111' 1 I1ti t he

CIl 1 1 1"t1f ; 1t' iII10 t)t't ti l l' attl'I`emelll with I'1ea •.UIVIIII'llf	 (we i hill ► e is for e\a1111110

but this would rl^.u1t in ot her talacceptah le 1lrotile'; (i.e. the .1 - 0.3 11111 aero';ol

pro fiIv).	 Wo slid not Iind .1 reawli 'litle tiet of	 that wo:Ild brilm tilt,

model int c e •. •.enl is I i 1 , mill 1e i t , ,1,11'eei11enl wit h t he liwo"urenl'nt

illy ,iIti.1111'eelllonI betwo-en the prod icII'd and 1I1t'a%twed %11 lit-of lieti at 111tih

Atilude (Iitlure 1 and 1.1) is probath l) , not Serious..	 this dim rel"Ill(A Could he

,ol're, , te,t by u;ilit) hotter valid'~ of, elide (Iiffl%ioil at hi till altitude Vi a•• wall

,lone 111 i 1^n1re l,) t+ ► ' addintl a 11vte0l'it it' •,ourte, the effvct% of which .Ire

I l lu'.tr ' l(e t 111 1 inure ,z.	 lit' problem with the , n prof o nt'ar the

t r ollullau'.I'	 et'm •; t t 1 ht' more hati is :	 t it' mode l e 11111)1 y dot 	 not r'etIU i IT d 	 malty

CIl ,1% .1r'e 111ea • ' ll 'Vd.
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111 conclu1ion we fee`l tllat th!` model presented in t H S paper is cal"11,1v

	

1	 cif descr• ibinq most of the y features of the stratosphrr • ic aerosol but ce ► •t,11n1
1

shortconlino% indicate that the- Ilk) de I is not v11tirely correct or comp Ioty

If these shortctwOmyti dre overlooked and the , model is used to predict they

c haritle ill part i cu late content of the stratosphere eiue t o the Spak-v -,huttl e

A]
4 0 eftluents, then on]v a Slim 11 mid probably invivasurahle chanot , in the

concentrat i on of particles 1,1r,wr t11,111 0. 1	 ^	 ,1	 un1 eii,lnu te ►' ►ve^ul,i he a vtCte et t0

occur-.	 Although a potentially sielnifikmit awomt of smallel- 11.11•ticles

(d	 .01 oin) will hr raided to the stratosphere above 30 kill it is not

possible to determine if a measurable increase above natural levels wi l l

occur `imply beac• use the natural background in this size rmigv ,Ines alt itu,ie

	

i	 is unknown.
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FIGURE CAPTIONS

Figure I.	 A comparison of profiles usinq two types of size distributions.

The insert shows the actual cumulative size distributions employed.

The cn profile refers to particles larger than 0.01 jam diameter and

the aerosol profile refers to particles larger thin 0.3 ism diameter.

The ratio profile refers to the ratio of the concentration of por•ticles

with diameter greater than 0.3 tmm to the concentration of particles

with diameter greater than 0.5 gun.

Figure 2.	 A comparison of the size distributions at the aerosol maximum

derived from the quasi -analytic solution (thick solid line) and the

computer solution (heavy dotted liar) with the actual measure4iients.

The difference in the two types of solutions at smell radii is due to

the different choice of seed particle concentration assumed at the

tropopause. See table for key to references.

Figure 3.	 The cn profile obtained from thequasi analytic solution using

various assumptions: TS = tropospheric source (of seed particles).

G = ,S - function (mouth layer at 20 km present; MS = meteoritic source

(of seed particles) and SS = space shuttle source (of seed particles).

Figure 4.	 The eddy diffusivity profile used in the computer solution compared

with a profile suggested by Nunten.

Fikiure 5.	 A typical computer solution (solid lines) compared to the range

of actual measurements (dashed lines). The cn profile refers to

particles larger than .01 ^,m diavreter and the aerosol profile refers

to particles larger than 0.3 jrm diameter. The aerosol ratio refers

to the ratio of the concentration of particles with diameter greater

than 0.3 on to the concentration of particles with diameter greater

than 0.5 , m.
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Figure 6.	 A comparison of the Ames Modal (dashed lines) and thi s Wvominq
i

Model (solid 1 ines) using simildr• input 11,11-Mx-ters.	 See text for

explanations of differences. The cn profile refers to particles

larger than .Ul ;.m diameter and the aerosol profile refers to particles

larder than 0.3 i sm diameter. The ratio profile refers to ratio of the

i
concentration of particles with diameter g rrater• than 0.3 um to the

	 i

concentration of particles with diameter greater than 0.5 um.
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Fiqure ? Reference Code

Code _ _ 	 Reference

B^ Bigq (1975)

BFT	 Brownlee, Ferry, ,e Tomendl (1976)

F	 Friend (1966)

FL	 Ferry R Lem (1974)

1	 Ivlev (1976)

JCM I Jun g e, Chagnon, C Manson (1961)
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Mossop (1964)
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Miranda R Dulchinos (1975)
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Miranda, Dulchinos & Miranda (1973)
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Wvominu Results (Pinnick et al 1976)

Type of Measurement1Comrr_►ents

Impactor

Impactor for i,irge particles

Impactor

Impactor

Impactor/Data from Aug. 1975

Impactor/Data from 26 Anti. 1958
(3 18.4 km

Impactor/Data from 7 April 1967

Photoelectric Particle Counter

Photoelectric Particle Counter

i Photoelectric Particle Counter i^
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Appendix I

The method of obtaining a solution to the simplified sedimentation -

diffusion - growth equation, as discussed in the main text, can be easily

understood by referring to figure A-l. The ,^-function growth layer acts

as a sink for the seed particles that originate at the tropopause. The

flux of these particles to the growth layer is therefore easily found to

be (see example 1,Appendix 11):

,t ill = P(z o ) ur I's a-rs/gm	 (1-e-rs/9111)-1

where

P (zo ) = density of air at the tropopause.

u= constant in the sedimentation velocity equation: v = urez/Il

r	 - radius of particles

I' s 	= mixing ratio at tropopause of Need particles.

IA (ezm -1) O/D
m

H	 = scale height of atmosphere.

D	 = eddy diffusivity (constant)

z
nI
	 = height of d-function growth layer above tropopause.

r s	 = radius of seed particles.

i
'	 Consider the particles in the growth layer itself. 	 In each size interval

f	 there will be a gain in concentration due tc, smaller particles growing larger,
i

loss due to particles growing out of the size range and a loss due to sedi-

mentation and diffusion to the tropopause. The growth can be treated as a

"flux" of particles through the size distribution given by Gn where G is the

growth rate (in radius units/time) and n is the differential number concentration
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(cm-3 um -1 ). The "divergence" of this "flux" must therefore be the loss by

sedimentation and diffusion to the troposphere.	 From the arguments given

in Appendix II (see example 4) this loss term is found to be:

dSout = Y(z nr , r ) pour (1-e-r/gin)-1

where 4(zm ,r) is the equilibrium differential mixing ratio in the growth layer.

On the other hand the loss term from the "divergence" of the "flux" of particles

through the size distribution is

(Pg =3
	

(Gn)

Under present circumstances G is due essentially to the thermal flux of H 2SO4	i

onto the particles. This is given by G = '., N v th V
0
 where N = the concentra-

tion of H
2
 SO

4
molecules, wi th = the effective velocity of H 2SO4 molecules and

V e is the effective volume of 1 H 2 SO4 and 2 H q0 molecules. The units of ^q

I
are number of particles per unit volume in size interval dr being lost per

second. Thus the losses of a given size particle can be found by integrating

over the altitude range of the layer itself. Since the layer here is a

6-function the result is

C'g = '4p(zm ) wi th Ve A ^r Y(zm'r)

where A = total number o-^" H 2SO4 molecules in the layer.

The total flux of particles out of the stratosphere can be found by integrating

the expression for 
flout 

over all size ranges; this quantity will be referred

to a s `)out .

By equating 4, 
out 

to s  a simple differential equation is obtained which

yields a relative size distribution in the growth layer (i.e., at zM).

1

I

1\

1^
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By equating 
rout 

to s in the absolute size distribution is obtained (that is,

Y(zm ,r)). The value of Y at other altitudes is obtained by simply treating

the growth layer as a source (with a fixed mixing ratio y(z nr ,r))and using

sedimentation-diffusion equations to determine the spreading (see Appendix II).

The results of this calculation are as follows:

At the aerosol maximum the mixing ratio is given by

Y(zm' r ) = fI's e
- [ar + br2 + cr 3 + ......]

where
-1

a = 4D/(v t V  AH) [1-e

-zm/H]

b - a uH [ e
zm/li 

-1 ]
4 D

0.4b2
C _ -- a

-4r b/a	 -4r b/a -1
f = 4r s b e	

s	
(1-e	

s	 )
	

el .12* rsa

f' s= mixing ratio of seed particles at tropopause.

r s = radius of seed particles.

*Approximate value for range of values of r s , a and b expected in the

stratosphere.

Only a few terms are needed in the exponent describing -y(z i,,,r) and in

fact including only the first term is generally adequate for the size ranges

in which the concentrations are high enough to easily measure. This result

shows that a stratospheric aerosol generated by a growth process is probably

better described by an exponential size distribution than by a power law size

distribution.
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a
A sample calculation using parameters involved in generating the profiles

shown in figure 1 is given below.

—	 4	 o	
I	 f!I

v	 =	 KT mn = 2,15 x 10 cm/sec (T = 216 K and m = mass of
th	

H2SO4 molecule)	 ^±

V 
	 = 1.3 x 10-22 cm3 (approx. 75/ 11 2504 + 25% H20)

A	 = 1.47 x 10 11 H2SO4 moluecules/cm2 (Compare this value to 3 x 1011

used in the Computer Model

results in figure 5)

vs = 8.9 x 10 3 r ez/H , (r in um)

H	 = 6.3 km

D	 = 5000 cm2/sec

zrTI
	 = 10 km

r 	 = .01 ^Im

_3	 H

P (z) = 4.127 x 10	 a	 (z = distance above tropopause)

1' s = 1.21 x 10 5/gm (or 50/cm3)

With these parameters the following results were obtained: 	 j

a	 I	 9.71	 um -1

b	 10.59	
pm-2

c	 4.62	 um- 3

t
f	 10.63

N(.15) at z 	 1.32	 cm-3
i

N(.15)/N(.25)	 i	 5.0

The complete profiles are shown in figure 1. N(.15) and N(.25) refer to

the concentration of particles larger than .15 dim radius and .25 om radius 	 j

respectively.
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Appendix II

Library of Profiles for Simple Diffusion-

Sedimentation Equilibrium.
I

It is often quite informative to refer to simple one-dimensional eddy

diffusion-sedimentation profiles of aerosol in order to gain an approximate

understanding of the spatial distribution of this contituent. In addition,

complex profiles can often be viewed as a combination of several simple

profiles.

Under equilibrium conditions the flux of particles of radii between r,

and r+dr • and at altitude z is given by

,r (z, r ) _ - p ( z ) v(z, r ) )(z,r) - r,(z) D(z) 3 3211

a n d ^_- az ti^ = 0

where

P(z) = air density

v(z,)') = fall velocity

-y(z,r) = mixing ratio

D(z) = eddy diffusivity.

These equations can be solved exactly for • the following conditions which

are fairly realistic.

p(z) = 'lo e- 
Z/11
	 = atmospheric scale height)

v(z,r) = urez/H (u = constant)

D(z) = constant

^	 ':



,t % i,
	

Ily
4

*I	 Under these conditions a general solution is:

y (z, r ) = y  f(z ' r) + Yb

where ya and Yb are constants determined by the boundary conditions and

f(z,r) = exp[-(e z/H -1) Hur /01 = e-r/9 (z)

when the lower boundary is at z=0,

and

'i	 f(z,r) = exp[-(e z /H -e
zm/H

) Hur/D	
e-r/y,(z)

when the lower boundary is at z = z	 0.
m

j By definition

1/g(z)	 (ez/H-1) uH/D

z

1/g'(z)	
(ez/H -e m/H) 

uH/D

Some useful , imples of solutions follow.

1.	 Source at z = 0 and sink at z = z,, > 0.

- r/9( z )	 -r/g(z )	 -r/y(z )	 1

D = constant = p(z 0 )ur y (o,r) e-r/g(zrn ) (1-e-r/g(zm)}-1

Z 	 SINK AT Z = Zm

N

FLUX
J
Q

S0UR';E AT Z=0
Y(o,r)

MIXING RATIO (r)

l
1



2.	 Source at z-0 and sink at z=,U.

Y(z, r ) = y(o,r)e-r/g(z)

s=0
01KIV nr 7 - m

r(o,r)

MIXING RATIO (y)

,,	 I

N

J

Q

SOURCE AT Z = 0

I
i

n,

r'

1

t

1

I

3.	 Source at z = z and sink at z=u•.
to

Y(z, r ) = Y(zm , r ) e -r/g,(z) ; y(zm ,r) given

4^=0

SINK AT Z=CO

FLUX

N
i

Zm ---------- I SOURCE AT Z=ZmJ
a	 '

y ( Zm, r )

MIXING RATIO (y)

,r
i^

I^

Ii

a



N Zm

J

Q

T Z =Zm

SINK AT Z = 0

1

t

4.	 Source at z-z ni and sink at z=0.

)(z. r ) - Y(^m'r') (1-e- r/g(z)) (1-e r/g(znr))-1

it - - Y(z nr , r ) pour (1-e-r/g(znd

y

r•

,

y( Zm, r )

MIXING RATIO (y )
s

1

5.	 Source at z 1 and sink at z=zn,.

(0-z 1 	'zm)

)(z. r ) ' I(z1• ►
') (e-r/g'(z) _e-r/g'(zm)) (1-e-''/g'(zni))-1

s = (z	 V-) , your e
-r_ /gl(zm)

fV Z m f— -- SINK AT Z = Z mv	 ^ ,

J
Q	

— — — — —	 SOURCE AT Z = Z
k

^	
II

J	 ir(Z l , r)	
I

MIXING RATIO (y)

I,



Zm

,i	 i	 1
	

1	 ^

	

_1 __. I	 J

6.	 Source at z 2 and sink at z-zm .	 ( zL >
L.
	 •0)

Y( z , r ) s Y( z 2 , r ) (1-e -r/9,(Z) ) (1-e-r/g,(z2))-
1

= - y(z 2 ,r) vour(1-e-r/g z2 )-1

Z 2 ------------ --*—SOURCE ATZ=Z2
I

^	 N	 II..r	 I
J Zm-SINK ATZ= Zm	 I
Q	 I

I	 r(Z2,r )

MIXING RATIO (y )

1.	 Source at z = +- and sink at z..

Y(z, r ) = Y( - , r ) (1 - e - r/g(z) ): y'-,r) given

(V = constant = -y(-,r) p
0 ur

SOURCE AT Z = QO

N

t--

Q
.SINK AT Z=Zm

y(CD,r)
of

MIXING RATIO (y )

If

I' 1

I^
1

i
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