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1.0 INTRODUCTION AND SUMMARY OF RESULTS 

This report presents summaries of the analytical efforts and system stud

ies conducted under Contract No. NAS6-2621, in connection with the GEOS-3
 

radar altimeter program. The main investigative areas reported herein are in
 

sea state estimation and data processing related topics.
 

Section 2.0 discusses significant waveheight (H1 /3) estimation and the
 

deconvolution of the waveheight probability density function (PDF). The al

gorithm presented herein differs from other estimators known to the writer in
 

that the waveheight probability density function is not constrained to -be a
 

Gaussian. The algorithm shows good agreement with other H1/3 algorithms, how

ever, the ensuing density functions are at times found to be highly non-Gaus

sian. This result applies both to use of the standard GEOS-3 waveform data
 

and use of time-realigned waveform data. The departures from Gaussanity are
 

generally of the bimodal nature and, as such, cannot be adequately charact

erized by terms such as skewness or kurtosis. The bimodality resembles the
 

theoretical solution given by Longuet-Higgins for a long-crested sea.
 

Section 3.0 examines the general problem of significant waveheight esti

mation and presents an analysis of the resolution available from any (unbias

ed) risetime-based estimator. This analysis shows the H1 /3 algorithm pre

sented here and the one currently in use at Wallops Flight Center (WFC) pro

vide performance which is close to the theoretical resolution limit. The
 

principal inference of this iesult is that a sophisticated (waveform based)
 

H1/3 estimator does not exist which will yield significant improvement in res

olution over the algorithm presently in use at WFC (developed by Hayne). This
 

analysis also quantifies the increase in performance achievable with the WFC
 

estimator when it is coupled with the time-realignment technique developed
 

by Walsh. It should be emphasized that the performance analysis given in
 



Section 3.0 pertains to estimators based on changes in the leading edge of 

the waveform as a function of sea state. The '1/3 performance analysis work 

given in Section 3.0 also leads to the deveiopment-of a totally different, 

low waveheight, estimator termed the variance-based Hi/3 algorithm. This 

estimator is felt to offer potentially higher resolution in the-low waveheight 

range compared to other waveform estimators since use of the variance behavior 

of the H1/3 estimates introduces an additional modeling element into the prob

lea. This estimator is presently being compared with buoy data - the results 

will be given in a later report. Appendix B contains information on another 

H1/3 estimator which was investigated. In it, the autocovariance-of the wave

form plateau region was used as a wave-height sensitive parameter. The re

sults were negative in that the covariance was found to be only weakly -sensi-. 

tive to sea-state changes. 

Section 4.0 presents a discussion of GEOS-3 backscatter data for periods
 

in which the radar cross-section (a*) appears to increase markedly. These
 

periods were observed early in the GEOS-3 program and were initially thought
 

to be due to anomalous scattering conditions. Comparisons oftheoretical.and
 

measured a'values indicate that these periods represent relatively-calm or
 

swell-dominated sea conditions. This section also discusses the data periods
 

in-which increases in the attitude/specular gate have been observed. These.
 

increased values are shown to be due-to ocean surface inhomogeneities. Com

parisons between published a' and those derived from the two available AGC
 

calibrations are given. These comparisons show the "clutter" calibrations to
 

be in considerably better agreement with published and theoretical values,
 

Section 5.0 covers work relating to system-and data processing considera

tions. The items discussed comprise altitude data editing, sea state altitude
 

bias effects, precipitation sensitivity of the radar altimeter,-waveform sam

pler corrections, and tracking jitter correlation properties.
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2.0 	ESTIMATION OF SIGNIFICANT WAVEHEIGHT AND DECONVOLUTION OF THE WAVE-


HEIGHT DENSITY FUNCTION
 

The GEOS-3 average backscattered waveform can be modeled as a repeated
 

convolution of three functions, two of which describe the ocean surface fea

tures with the third representing altimeter effects. In mathematical form,
 

the preceding may be written as follows:
 

y(t) 	= h(t)*p(t)*f(t) (1)
 

where
 

y(t) represents the GEOS-3 average return waveform,
 

h(t) stands for the ocean surface roughness function,
 

p(t) is a function which incorporates altimeter wave

shape and tracking jitter effects on the return
 

waveform, here called point target response,
 

f(t) represents the ocean flat surface function,
 

and * denotes convolution.
 

Combining p(t)*f(t) into the single function u(t) leads to the expression
 

y(t) 	= h(t)*u(t) (2) 

Given 	y(t) and a model for u(t), the problem is to estimate h(t), the sea sur

face roughness function, by performing the deconvolution specified by equation
 

(2). Determination of h(t) is encumbered by the fact that y(t) is available
 

only in terms of sixteen noise-perturbed samples with nominal 6.25 nano sec.
 

spacing and because u(t) is not precisely known. Given the surface roughness
 

function h(t) it is possible to deduce significant waveheight, H1 /3, by inter

preting h(t) as a surface roughness probability density function.
 
t 

An attempt has been made to formulate and solve this problem in a general
 

manner. To this end the following developmental guide lines were followed:
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.1 

(a) Points in time at which y(t) is saipled are ndt constrained 

(b) The only restriction placed upon h(t) is tat ts Lapltace trans

form, H(s), be rational in~s. - "'- -- -: :,. 

In the sequel the following steps will be tal~en sd that, using the model aa

fined by equation (2), h(t) may be determined from experimental- data: 

(a) Apply the Laplace transformation to equation (2) and linearize
 

the resulting expression using quasilinearization.
 

(b) Inverse transform the linearized model and discretize the resulting
 

time-domain equation in order to account for the sampled nature of
 

the problem.
 

(c) Develop equations which enable specification of the constants in 

the rational function H(s) from measurements of y(tk). 

(d) Utilize h(t) to compute significant waveheight.
 

2.1 Linear System Model and Algorithm for Determination of h(t)
 

As already mentioned it is necessary to approximat6 u(i) which'is used
 

to model the effects of the GEOS-3 altimeter point target response and the
 

ocean flat surface function. In the present study, the ocean flat surface
 

function is represented by a unit step function with transition at the time
 

origin. On the other hand, the GEOS-3 altimeter point target response, which
 

has, roughly speaking, a Gaussian shape, is approximated with a truncated,
 

raised cosine function. Thus
 

U(s).= L[u(t)]
 

s l 2T 

where
 
T 

4-4 



T = one half the pulse width of the altimeter point
 

target function
 
1
 - represents the transform of the ocean flat surface 
S 

response function, and
 

1 1[ s12 es2T 

is the transform of the point target function approximation. The general
 

shape of u(t) is illustrated in Figure 2.1. In equation (3), T is selected
 

so as to reflect the entire altimeter point target response function, includ

ing jitter, according to the expression
 

apt = 0.362 T 

where a is the standard deviation of the altimeter point target function.
pt
 

Taking the transform of equation (2), the time-continuous GEOS-3 return
 

waveform can be expressed as
 

Y(s) = H(s) U(s) 

= (N(s)/D(s)) U(s) (4) 

n n-i
 
where N(s)= aos + als +...+ an
 

D(s) = sn + bsn-i ++ 
.1 n
 

The problem is to determine {a.,bj} . In order to obtain a computational al-
J :
 

gorithm for solution of this problem, it is convenient to convert the highly
 

nonlinear form represented by equation (4) into an iterative linear problem.
 

Applying quasilinearization [1], a Taylor-series-like functional expan

sion, to equation (4) results in the following relation
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Figure 2.1. 	Illustration of general shape of
 
system model input function.
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yi+l(s) Y'(s) + (Ni+l(s)/Di(s)) U(s) - (Di+l(s)/Di(s)) Y(s) (5) 
mm m 


where
 
-
Ni(s)=as n - + as n +...+ an
i n-i in-2i
Nia 


1 2 n 

n + bs I bi
 
D (s) s +.. 


I n
 

Y (s) = model of GEOS-3 average return waveform
 m
 

determined for ihiteration
 

i = iteration number = 0,1,2,...
 

As shown in reference [2], the model response function Yi+ (s) can be express

ed in the time domain, using vector-matrix notation. For example, applying
 

the referenced procedure to equation (4) leads to the following result
 

x(t) = Ax(t) + Bu(t) 
t(6) 

y(t) =Px(t) + a u(tJ 

where
 

01
 
-bn n-i
 

B =(0,0,...,I)'
 

Pp= [(an-bnao), (an - bn-ao),.-.,(al-blao)]I 


In-I = (n-l)x(n-i) identity matrix 

x(t) = time derivative of system state vector, 

and prime denotes matrix transposition. 

In developing equation (6) from equation (4), initial conditions are assumed
 

to be zero. Applying to equation (5) the above procedure which led to
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equation (6) results in the following representation of model output:
 

i+l+ i+l
Ym XI(t) Pa + x1I(t) b - X t (t) P (7) 

with Pi+l i i ii+l i+l
 
a n ...
n-i' )'1 


p -i+l il i+l . i+l.,
 
bbn -m-l" ' 1
 

xi(t) = state vector corresponding to HI(s) = Ni+l (s)/Di (s) 

xii(t) = state vector corresponding to H1i(s) = Di+l(s)/Di(s) 

Denoting the average observed (i.e. experimental) GEOS-3 return waveform 

by Yo(t), the error between model and observation can be written as 

i+l i+l 
t) = Yot) - Ym (t) (8) 

which can be interpreted as shown in Figure 2.2. From the figure it is noted 

that HI(s), corresponding to xI(t), is forced by U(s) while Hll(s), correspond

ing to xl1 (t), is forced by Y'1(s) . Selecting an index of performance for
i+l 

objectively evaluating the goodness of fit provided by ym(t) to Yo(t) and 

solution of the resulting optimization problem enables one to determine the 

faj,b} . In obtaining the solution note that at convergence (i.e. i+l-I[ 0) 

equation (7) reduces to 

Ym(t) = xl(t) P. 

Thus at convergence HI(s) represents the desired system function while the
 

effect of H1 (s) vanishes from the model.
 

Since yo(t) is known only for t tk (k=1,2,...,16), discretization of
 

equations (7) and (8) is required. Thus
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U(s) Unknown Noise Y(s) - Observed 

H~s)'Output 

0H [(s) = NiH (s)HI s) 

Di(s) ___ 

~~Error, Ei + 

D'(S) 

Figure 2.2. Block diagram interpretation of iterative equations.
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9 
i+l (t ) = k Ppi+l + ,Xil XI )P 

YM k a I'' k (9)(tk) 

S1 e1 (t (10) 

k = 1,2,...,16 

Assuming that u(t) and ymi(t) change linearly between and t, it can 

be shown that xI(tk) and xil(tk) in equation (9)can be written as follows: 

xI(tk+1) = i(Ak)xI(t k ) + O'(A )B u(tk) 

+ (A) [et'(A~ - Ak] B [u(tk+1 ) -u(tk)l 

(11) 
i t1
 

Ak (12) 
xII(tk+1) = Pi(A xIItk) + E'(Ak) BYf(tk)1 

+ (Ai)-1 [0sic(k) - AkI] B [ym(tk 1) - Ym(tk)] (12) 

where 

Ak = tk+1 - k 

3i(Ak) = 
state transition matrix corresponding to
 

i+1 i
HI(s) = N (s)/D (s) 

0 ( = (A)- DAk -

A' -hi- - -b
 

n-i
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and B is as previously defined. Note that the assumption of linear variation 

of Ym(t) between tk+l and tk , while it might affect convergence rate will 

not influence the approximation of yo(t). -

Combining equations (9) and(10) results in'the tector error exprasslon 

i+l y pi+l (13) 
-o0 - 

where
 

Yo(t) xx (t1 ) P 

X (tl6) xItl) 

= b 

° o (t6)+ (16 ) Pi 

i+l 
and E is a column vector of errors between observation and 

model. 

Selecting the performance index as minimization of the sum squared error, 

(si+!)' i+)1 , results in the'parameter estimate 

i+-1 (x'x)+x' Y (14) 
-0 

where P = 

Given initial values for {b?} , it is feasible to evaluate equations (9) and 

(10), using (11) and (12), and to update the starting estimate of thd unknown 

parameter vector, P , by evaluating equation (14). 
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The computational algorithm for evaluating equation (14) can be initi

alized by specifying {b?} and y0 (t ) or, equivalently, by specifying {a.,bof.
 

The initialization procedure that was used to compute the results presented
 

in paragraph 2.4 consists of setting {b0 . equal to coefficients which define
 

the all pole maximally flat, unit delay approximation discussed in [3]. Also
 
i+lt

since ym k) must approximate y (t ), the iterations are started under the
tko
 

conditions Ym(tk) = Yo(tk) until the computation stabilizes at which time use 

of Ym(tk) can be made for the (i+l)th iteration. Stopping criteria for the
 

algorithm described above are readily formulated. A simple stopping criteria
 

would be
 

4
I (e_)t'i (6 ), i 	> , continue 

< , stop iterations 

where 6 is an appropriately chosen small positive number.
 

2.2 	Alternate Interpretation of Model
 

By manipulating equation (3) the model developed in'paragraph 2.1 can
 

be modified such that id&al altimeters (i.e. point target response equal to
 

the Dirac delta function) may be represented:. Consider the limit of equation
 

(3) as T O , i.e. 

UI(s) = lim U(s)
 
T O 

S! (15) 
s 

Therefore, all of the equations developed in paragraph 2.1 apply to the pres

ent'situation provided
 

u(t) 	= P(t), 

that is, u(t) is set equal to the unit step function i(t). This form of the model
 

has been 'usedand results from its application will be presented in paragraph 2.4.
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Another interpretation results upon combining equations (3) and (4) to
 

write 

Y(s) = H(s) [ FI e-s2T] 

2Th LS s2 2 

Assuming zero initial conditions 

dy~t) Ll [si(s)]
dt I 

H- 2((s) 

L ]ji~-T
- LiH(s) ~ 

2T [Ia 2 2 ~ -T 

By normalizing dy(t)Idt such that the curve defines unit area, this result
 

can be interpreted as the surface roughness probability density function (it 

is assumed that y(t) is monotone nondecreasing). A somewhat similar result 

follows if the altimeter point target response is approximated with a rec

tangular pulse.
 

2.3 Analytic Evaluation of Surface Roughness from H(s)
 

The function h(t) (or h(tk)) can be interpreted as the unnormalized sur

face roughness density function. Define 

hf(t) = - h(t)a 

where a =T h(t)dt
 

0
 

and Tg is the time expanse of the GEOS-3 waveform sampling gates.
 

Then
 

= m -2 2 (16)
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where
 
Tg
 

mk J h(t)dta 

In the context of paragraph 1.1
 

pTI-1 
Ba 	 2 

=2 a (Tg)Tg - 2TgA7'( (Tg) 

+ 2A-1o(Tg)) B
 

and
 

pA-1 

m 	 a 0 (Tg)Tg - (Tg) B 

2.4 	Computer Implementation and Simulated Results
 

The algorithm for determination of H(s), presented in paragraph 2.1, has
 

been programmed and tested using GEOS-3 frame-averaged gate data. Details
 

relating to use of the computer program are contained in Appendix A. Appli

cation to computation of surfabe roughness density, h(t), is the topic con

sidered in paragraph-2.4.1 while.its use as an estimator'of H1/3 is treated
 

in paragraph 2.4.2.
 

2.4.1 Computation of Surface Roughness Density Function
 

The algorithm developed in paragraph 2.1 computes h(t), the surface 

roughness density function, given the frame-averaged GEOS sample gate data. 

This is an inverse problem for which numerical computations can be unstable 

due to noise and modeling error effects in the solution technique employed. 

The method used herein avoids explicit numerical deconvolution since h(kT), 

k0,1,2,...,N, is not computed directly in terms of the measured or experi

mental data. Rather, h(t) is obtained (in terms of a small number of parameters)
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by applying system identification techniques.
 

Typical results obtained from applying the algorithm will be presented
 

at this time. All-results shown were obtained with u(t) (see equation (2))
 

defined as a linear ramp starting from zero at gate one, extending over four
 

gate intervals, and equal to unity thereafter. Figure 2.3 shows the sampling
 

gate waveforms for three consecutive frames of Rev. 6893. In this figure,,
 

the vertical scale reflects the measured values of frame 103 and frames 104
 

and 105 were adjusted such that their normalized response asymptotes (see
 

discussion in Appendix A ) were equal to that of frame 103. This enables a
 

relative comparison of the rates at which the three response curves rise.
 

The deconvolved surface roughness probability density functions corresponding
 

to the return waveforms of Figure 2.3 are shown in Figure 2.4. Note that the
 

tendency of frames 104 and 105 to rise early relative to frame 103 is reflect

ed in the probability density curves of Figure 2.4. In particular the two

step shape of frame 105 (Figure 2.3) results in a bimodal density function.
 

The HI/3 values shown in Figure 2.4 were computed using Hayne's [4] algorithm.'
 

H /3values computed from the probability density curves shown are placed in

side parentheses.
 

Bimodal densities have been observed in a number of instances for large
 

sea state conditions (H1/3 > 7.0 meters). It is natural to question whether
 

or not this shape might be due, at least partially, to tracking loop jitter
 

effects. Figures 2.5 and 2.6 present results obtained from processing both
 

time realigned (dashed curves) and unrealigned data (solid curves). In the
 

case of Figure 2.5, time realignment resulted in the attenuation of the ten

dency toward bimodal behavior. In contrast, however, Figure 2.6 shows that an
 

approximately trapezoidal shape reverts to bimodal nature upon application of
 

time realignment. This result is interesting if it is noted that after time
 

realignment both the shape of the density function and the value of HI/3 are 
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Iroughness density functions illustrated in Figure 4. 
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Figure 2.4. Surface roughness density functions corresponding 
to the waveforms of Figure 4. 
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Figure 2.5. An illustration of the effect of time realignment on 
the surface roughness density function., 
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Figure 2.6. An illustration of the effect of time realignment 
on the surface roughness density function. 



more consistent with results from neighboring frame data than is the unre

aligned data.
 

In its present form the algorithm cannot cope with h(t) functions en

countered when H /3<4.0 meters. In this range of.'sea-state values h(t) be

gins to approach the Dirac delta function (in the limit as H /3+ 0 it is 

equal to the delta function) which cannot be approximated by a finite rational 

function. Figure 2.7 is an illustration of this effect. Note the increased 

tendency to oscillation displayed by the density function plotted. This be

havior is a result of the approximation problem mentioned above.
 

Another characteristic of the approximation technique is that the shape
 

of h(t) is dependent upon the order chosen for the approximating system. For
 

convenience let the respective orders of numerator and denominator polynomials
 

of H(s) be denoted by (m-l,n) where
 

0 < m-l < n 

l<n< 5 

Figure 2.8 illustrates the effect of model order upon the resulting probability
 

function. In this figure, the notation (3,4), (2,3) should be interpreted to
 

mean that the resultant curve was obtained as the arithmetic mean of two iden

tification procedures - one for which H(s) had polynomial orders (3,4) and
 

the other for which the orders were (2,3). The example in Figure 2.8 shows
 

that the average density produced by (3,4),(2,3) is somewhat different from
 

that realized when (2,3),(1,2) is used. All of the curves presented in this
 

section were computed as an average of two model fits to the sampled gates.
 

In all cases, either (3,4),(2,3) or (2,3),(1,2) combinations were used in
 

obtaining h(t). Use of the combination (m-l,n) = (4,5) frequently resulted in
 

highly oscillatory h(t) and experience indicates that it can only rarely be
 

used.
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Figure 2.8. 	 Illustration of the effect of model order upon approximation
 
to surface roughness density function.
 



2.4.2 Estimation of Sea State
 

The algorithm developed in paragraph 2.1 can, of course, be used to esti

mate sea state for all values of H1/3 if u(t) in equation (2) is made equal
 

to the unit step function. This redefinition of u(t) avoids the approxima

tion problem discussed in paragraph 2.4.1 as H1/30. Therefore, the results
 

presented in this paragraph were obtained under the following assumptions:
 

(a) 	u(t) is the unit step function
 

(b) 	Only frame averaged (3.2 second average) data
 

is to be processed
 

(c) 	(m-l,n) = (2,3) was used in obtaining all
 

results presented.
 

Given that u(t) is the unit step function in equation (2), H1 /3 may be comput

ed from the expression
 

'13 0.6 Ia a2ptsignum(a2CYa2t) (17) 

where 2 is given by equation (16)
 

and 2 = altimeter point target function.

Pt
 

(including jitter) 

A sample of the computational results obtained from simulations is pre

sented in Figure 2.9 where they have been compared, in the form of a scatter 

plot, with the results produced by Hayne's algorithm [4]. It is noted from 

the figure that for H 1/3
> 2.5 meters, the two approaches produce results that 

are generally in good agreement; however for smaller H1/3 the disparity is 

significant. 

2.5 	 Development of a Constrained Estimator of. Significant Waveheight
 

This paragraph describes a method which provides least square estimates
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of H113 under the constraint that HI/3 > 0. Development of the algorithm is 

made undr the assumption of Gaussian statistics. Utilizing notation intro

duced in paragraph 2.1, the model of the GEOS-3 average return wavefor can 

be expressed in transform notation as 

Ym(s) = H (s)T(s) (18) 

where 

) eH (s) = 1 by definition,
 

T = a time-domain shift parameter,
 
0 

T = parameter related to surface roughness., 

Here H (s) represents an n= order convolutional approximation to a Gaussian 

probability density function as discussed in [6] with n-1,2,... . The basic 

function used in generating the Gaussian density is a uniform density of width 

T nano sec. with leading edge displaced T0 from the origin. For U(s) as spec

ified in equation (3) of paragraph 2.1 and with n =3, the discretized model 

output in the time domain is given by
 

3P(z) zi3- 1 z.z?1 
Y(t) = Z T 24 -L .z6 


i=0 2T T
 

W2
il2T T3 24 6 W3 (i - Sn wid 

where
 

z. = t - T - it , t =0,1,2,...,15
1 0 

w. = t - 2T - T - iT 
1 0 

(') = unit step function 

7IT 
T
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and T is selected to approximate the-altimeter pqint..target response function.
 

Note that in the discretization specifiedin equation (19-) that the time axis
 

is scaled in units of 6.25 nano sec.
 

Defining the approximation error as
 
152
 

= (Y(t) _- Y(t)) (20) 

t-O 

C2
the problem is to find T and t which minimize such that T* > 0. 
0 

For this particular formulation it is straightforward to find approxi

mate T * and * by implementing an exhaustive two-parameter search procedure.
0 

Given T*, the standard deviation of surface roughness can be calculated as
 

a = 6.25 -) nano sec. 

Therefore, significant waveheight is given by
 

}11/3 = 6 cr
 

= 1.875 T* meters.
 

A computer program-based upon the procedure described above was written
 

and used to compute H1/3 from frame averages of GEOS-3 return waveforms. Be

fore computing T*, the return waveform was preprocessed as follows:
 

0 	 F, 
t=O
 

YO= 	 E, YO(t) /3 
t=14 
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where 4 is used to indicate a redefinition of y0 (t). This preprocessing is
 

performed so that the fitted function approximates a cumulative distribution;
 

but could.be avoided by introducing an unknown multiplier into equation (18)
 

and performing a three-parameter search.
 

Computational results from application of this algorithm are presented in
 

Figure 2.10 which again makes use of results obtained from applying the tech

nique described in [4]. So long as H1 /3, as computed using the method of [4],
 

is greater than about 2 meters the two results are in general agreement. Again,
 

for Hi/3 < 2 meters the correspondence is not good.
 

2.6 Summary and Conclusiond
 

The results obtained from application of the algorithms developed herein
 

lead to the conclusion that linear system theory concepts can be successfully
 

applied to significant waveheight estimation. If the estimated sea state ex

ceeds approximately 2.5 meters, both of the algorithms presented herein pro

duce results that are in satisfactory agreement with the method developed by
 

Hayne [4]; however, for HI1/3 less than 2.5 meters erratic performance of the 

estimators was noted. 'It will be shown in Section 3.0 that estimation of sea 

state for calm sea conditions (i.e. /3 + 0) is a very unstable problem for 

which the variance of any unbiased estimator can be very large, for data 

rates prescribed by GEOS-3 operational parameters. 

Attempts to determine surface roughness probability density functions 

has been succeshful provided that the associated H1/3 > 4.0 m. Since the 

algorithm can be extended so as to cope with instability encountered as
 

H1/3 0, the approach used appears to be capable of describing surface rough

ness probability density for a wide range of H1/3 values.
 

The algorithm of paragraph 2.1 has been used to compute HI/3 and com

parison shows good agreement with results obtained from an existing method
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[4] so long as H1/3 > 2.S m. " 

The constrained estimator of paragraph 2.5 performs satisfactorily and
 

is intuitively appealing since negative H1/3 is physically meaningless. How

ever, the important question of bias induced by this estimator is a matter of
 

concern. By resorting to Monte Carlo simulations, this question could be re

solved but such a study falls outside the scope of the present investigation'.-


This algorithm might be generalized to enabie fine structure identification
 

by utilizing the sum of Gaussian-shaped densities. In this more general set

ting it is doubtful if a multidimensional search approach as employed here
 

would remain a viable computational approach.
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3.0 	ASSESSMENT OF PERFORMANCE LIMITATIONS OF GEOS-3 SIGNIFICANT-WAVEHEIGHT
 

ESTIMATORS
 

A number of algorithms have been developed for estimating ocean signifi

cant waveheight by analysis of the GEOS-3 altimeter average return waveform.
 

The results of limited comparisons of three such algorithms is presented in
 

Section 2.0 of this report, from which it is concluded that acceptable agree

ment 	exists between the algorithms for 1l/3 greater than about two meters.
 

However, if the estimated H1/3 is less than two meters the estimators all
 

show that HI/3 resolution degrades rapidly as H1/3+ 0 (this result was antici

pated by Miller and Brown [1]). The purpose of this report is to evaluate the
 

performance limitations encountered by any estimator of H1/3 which uses the
 

GEOS-3 models for average return waveform and noise. The Cramer-Rao inequali

ty will be used to establish estimator performance bounds.
 

The objective of this study is to determine HI13 estimator performance
 

limitations and to qualitatively assess the degree to which the present GEOS-3
 

H1/3 algorithm [2] approaches the resulting bound. The Cramer-Rao bound is
 

selected for this investigation because (1) compared with other bounds (eg.
 

Baranken, Ziv-Zakai, etc.) it is easy to apply and (2) the resulting bound is
 

an upper bound on performance in that other tighter bounds show that this up

per bound cannot be achieved in practice (see Seidman [3]). In the above con

text, then, the Cramer-Rao bound represents a relatively easily applied, yet
 

severe, test of algorithm performance.
 

3.1 	The Cramer-Rao Inequality
 

Development of the Cramer-Rao inequality is readily available (see for
 

example [4], [5] and [6]) and states that any unbiased estimator must satisfy
 

the following relation
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E 6(O0)2] > 1 	 (21) 

where 62 =2() , a function of 6 

6 and 6 	 are unknown constants to be estimated from 

experimental data 

p(X1 ,X2,...xn 1 1,82 ) denotes the probability density
 

function of measured data Xlx 2 ...xn given
 

01 and E2 

o is an estimate of parameter e
 

and E denotes expectation.
 

In this analysis P(xl,x2 ,...x,jle2) is assumed to follow the Gaussian law
 

since the experimental data from which significant waveheight is estimated is
 

obtained by linearly combining a large number of individual noisy return sig

nals.
 

3.2 Analysis 

For purposes of this analysis the ideal, normalized GEOS-3 average re

tuin waveform is assumed to be specified by [7]* 

v 

1 u 2/2y(t) = y(t,61 ,6 2 ) 2 e du 	 (22) 

where v = (t - i)/2 

o,= constant 

62 = a t + (H 1/ 3 /2c) 2 

a2 represents altimeter point target effects, 

tt 

*A similar analysis is given in [7], however, the Cramer-Rao bound relating
 
to rise-time not Hi13 was used.
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'11/3 is significant waveheight
 

and c is7 the speed of-light in units of meter/nanosec.
 

The time-averaged GEOS-3 return waveform at the output.of the sampling gates
 

is represented by the following model [7]
 

X(t) = y(tn,,2) + z(t n ) , n = 1,2, N(23) 

with 0Ct) = Var[z(t 1 Y(tn'el'62) +zn 
 n[ e (s)2] 

S/N = altimeter IF signal to noise ratio
 

F2 
= a system constant which for a 1-Aecond averaging
 

period is equal to 200
 

N1 = 16
 

x(t ) = observed signal at ath sample gate 

y(tn,0l,02 = observed signal in absence of noise 

z(t ) = additive, independent Gaussian noise 
tn+1 n = 6.25 nano sec, n = 1,2 ... N1 

In this model y(') represents the true received waveshape and z(') the noise
 

which arises mainly from the fluctuating nature of the received signal. For
 

substantial averaging periods z(-) is Gaussian by the central limit theorem.
 

The present study will be concerned only with the high signal-to-noise case
 

so the term (S/N)-2 in the noise model will be dropped.
 

For the above model assumptions, the likelihood probability function for 

observing x(t1),X(t2) ... x(tn) given 01 and H1 ,3 is, since the noise is inde

pendent and Gaussian distributed 
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N1 1 
 p FFctn)- y(tn)]
L(x!,x 2 , ... xll i3 K	7[i . ..
 
IC az (t) 2a2(tn)
,xp 

z* n-

Therefore, the likelihood equation is 

1 1 [x(t - y(t)2 

Z(xl'x 2 "*xnIl'Hl/ 3 ) = Y, -n Z n za(t ) n 2" (t (24) 

n=1 2a-t) z 


where K1 = knK = constant.
 

Taking the partial derivative of X with respect to model parameter q, 

(ql = q = H113) gives 

N1 1 Bo )
N 
 1 a(t
 

qi 	 Z az (t n ) qi
 

i=l
 

1 
(t 

2~ a2 (tn qiq 

z 

I-yn) (n)Ix(t 2[(t ) a:2(t 

[x( ) t q( ; i =1,2 . (25) 

a4 (t a q) 

After taking the derivatives indicated in equation (25), substituting for 

a2(t 	), squaring the result, neglecting all terms divided by F2 or F4 and
 
z n
 

taking the expectation there results
 

2] 
 -(); i=1,2 
 (26)
 
nL ( (tn) qi 

From 	section 3.1 the Cramer-Rao inequality states that
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where q =01 and q = {/3
 

Equation-(7)carb -*optimistic when more than one parameter must be dstiiated. 

For the case at hand both. I and H1/3 must be determined; therefore, as dis

cussed in [6] the Fisher's information matrix is appropriate and leads to the
 

following d finitlions 

J = (Ji) = Fisher Information mtrtx 

with elements
 

Ji EL 1,qj2 

In the multidimensional cast-:the Cramer-'Rao inequality takes the following 

form [6]:
 

• - 1 ii-; i=22 (28) 

With the aid of Leibnetz's rule the derivatives required for the Fisher in

formation matrix can be evaluated and are 

N 
r 2] LOM 

Jll = E = iE00 Y(tne'6,82) (29a)
 
n
n=1 


H__2 (tn-6) 2 e1 
J =E _ 32 j113 n 13

22 Dos. anLR 4 3, Q,, Y~ i2 1;3) ,J r(2c) 62 n1-- ~ el z~~ 2~ 
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N 
/ -25-H : 

= E J2l = -C-f6. y(tn,61; 2 ) (29c) 

2 n1 

where [2cctn-0i~ 2 
where w = 2 + H12 

For J1 2 # 0 (i.e. non-zero correlation between S1 and-Hl /3 ) it follows that
 

(see [6]) the variance of the estimator H1/3 satisfies the expression
 

2T i(2c)ea2 > 2 1 (30)100 2 (320-)HI/3 J22 i0HI/3 N11 Y(tn, l,0) e 

I Yt ,e ,e eV0)

nnl
 

As 11/3 -0, note the asymptotically unbounded nature of estimator variance 

i 2 . Thus for calm sea conditions, any minimum varianbe unbiased esti
1/3
 

mator can be expected to display poor performance. The three estimators dis

cussed in Section 2 of this report are characterized by erratic performance
 

as HI3+0. In Section 3.4 the Cramer-Rao bound for GEOS-3 H1/3 estimators
 

will be presented from results obtained via a numerical evaluation of the
 

inverse of Fisher's information matrix, equation (29).
 

3.3 Modeling Altimeter Tracking Loop Jitter
 

In the foregoing analysis the model employed in the development leading
 

to equations (29) did not consider altimeter tracking loop jitter effects.
 

Since this is an important effect the resulting Cramer-Rao bound must reflect
 

its presence. Brown [8] studied jitter effects on the Skylab S-193 altimeter
 

performance. In this section results from the analysis in [8] will be adapted,
 

using approximations, for use in the present study. In effecting this
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adaptation the goal is to achieve a closed form, easily evaluated result from
 

inductive arguments based upon assumptions.'
 

Tracking loop jitter manifests itself in two distinct ways:
 

(a) 	Introduction of a smearing effect on the average ideal
 

return waveform y(t,e1,82), and
 

2
 
(b) Enhancement of the altimeter noise process u (t)
 

With respect to (a), jitter will be modelled'as an effectively incredsed
 

point target function which combines in a-root sum squire sense.. That is,
 

with jitter included, the point target function is
 

t 
 + 	 ) nano sec. (31)
 

where a. = 4.0 as determined from experiment. 

Noise enhancement,' (b) above, as shown by Brown [8i], can.be- described 

by the ,following -convolutional sums (using notation of this chapter) 

-E[z(t)] K0° pmy(t+mT) 	 (32a) 

and

E[(t)]* 	 = 
2 P{Y(t+lT) + (-1 

+ y2 (t +m)z. 	 (32b) 

where K = a system constant
 0 

E is expectation operator 

Pm = probability masses of the discrete 

jitter probability density function 
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S/N = IF signal to noise ratio 

= 
t time quantization parameter of the 

altimeter tracking loop 

z(-) = average return waveshape with 

jitter included. 

Assuming for the moment that a hypothetical radar average return pulse is a
 

step function (i.e. transmitted pulse is the Dirac delta function), that time
 

quantization is small (i.e. T+O), and S/N+co equation (32) can be expressed
 

as follows
 

E[z(t)] = K° f p(v) y (t4-v) dv (33a) 

E[z2(t)] = of2m(v)y'(t+v) dv (33b) 

with y,,(') a unit step function. 

Thus the average noise effect of jitter, for the special case considered, can
 

also be described by a spreading effect on the average return waveform coupled
 

with a nonlinear combination. Assuming an identical phenomenological noise
 

effect in the non-ideal GEOS-3 altimeter results in an increased noise level
 

given by the relation
 

22
 

E[z2(t)] - [Ez(t)]2 a 
z Wt)
 

= 2y(t,0l,02) - y2 (t,8l,02) > 0 (34)
 

where now 02 = a~) +2(i 3 / 2 ) 
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3.4 Computational Results
 

To evaluate the Cramer-Rao bound a computer program was written and used 

to compute the elements of Fisher's information matrix (equation (29)). The
 

results are shown in graphic form in Figure 3.1 where three curves have been 

plotted with (1) jitter effects totally omitted, (2) partial jitter effects
 

resulting from effective increase in point target response, and (3) including
 

total jitter effects (i.e. both effects (a) and (b) of Section 3.3). It is
 

emphasized that the estimator performance curves plotted in Figure 3.1, under
 

the modei employed, 'define performance limits which cannot be surpassed by any
 

unbiased estimator. Also, the severe degradation of estimator performance for
 

L/ 3<3 meters is significant and has been observed in the analysis of GEOS-3
 

data.
 

In obtaining the data for use in Figure 3.1, 81 was used as a parameter
 

to verify that the resulting bounds were, for all practical purposes, not af

fected by the position, in the GEOS-3 sampling gate set, of the return signal. 

Figure 3.2, shown for comparison with Figure 3.1, illustrates two Cramer

Raq.,performance limits curves for H./3 estimator-g since jitter effects.itg§-, *f 

ignpred altogether..gnd it was further assumed, h(t,h y , !(,t0) ewas availahleo_
1'-2- aavlale.s 

in continuous form.. The dashed curve.of this figure is-an estimate ofper-_--,. 

formance achieved.by.he H/3 estimator presentlyused for GEOS-3 cqmputa-

tions [2]. Referring to Figure 3.1, it can be seen that the GEQS-3.H - esti
1/3
 

mator closely approaches the Cramer-Rao bound.
 

The GEOS-3 performance limit curve shown in Figure 3.2 was drawn from the 

relation 

^2 64r7T e4 e3/2 a2 

[(fz/3_-Hl/3\ H_2 (35 

N1/3 .. 3 

which following [4] was derived under the assumptions of continuous measurements
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perturbed by white noise with 0N = 0.06. SEASAT performance limitation was
 

obtained from equation (35) assuming a point target.standard deviation of
 

3.0 nano sec. and a pulse repetition frequency ten times that of GEOS-3.
 

3.5 Variance-Based H /3Algorithm
 

The above discussed bounds indicate an interesting paradox - variance of
 

the estimate appears to be a very sensitive parameter for HI/3 values between
 

0 -3 meters. This behavior suggests the possibility of merging an estimate
 

based on waveform data with one based on variance behavior. This possibility
 

is explored in the next few paragraphs.
 

Computation of waveheight data based on variance or standard deviation 

values was first suggested by the waveheight resolution analysis given in [1]. 

For this reason, the algorithm to be given is based on a curve-fit using the 

functional form
 

2 + .546 a3(7.66 Hb23 +T 2 ).042(7.66 H/ 3 +T2) 

=1 /3	 H1/3 Rt 

where
 

H1/3 = significant waveheight in meters
 

a. 	 = altitude tracking jitter in n.s. 

T = 3 dB post detection pulse width in n.s. 

t = smoothing interval in sec. 

R = variance reduction factor 

The above equation was written as HI/3 ersus variance and the R factor em

pirically determined by curve filtering to a scatter-plot of HI/3 values (as
 

determined bythe waveform algorithm) versus NOAA/SMG ground-truth data. The
 

numerical values of the parameters were a. =3 n.s. and T =10 n.s. The fitted 
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curve was pieviously shown in Figure 3.2.
 

Computation of waveheight values using the variance relationship involves
 

the following 'steps:
 

1. 	Six frame estimates of mean and standard deviation
 

are first computed using per-frame H numbers (in

1,13 

meters) as input values
 

2. 	The standard deviation (a) value is then tested to
 

determine if it is > .815; if not the 6 frame mean
 

values computed in the first step are used as H/3

values
 

3. 	If a> .815 the variance algorithm is used in the forph
 

1/2 

H)1/3 ((63.03 ao2 _20.72)~ (63.03 a2 -20.72 -370.59) 

A comparison of the H1/3 values obtained using the two algorithms is 

shown in Figures 3.3 and 3.4. In each figure, HI/ values obtained using the 

waveheight algorithm is shown as the solid line and values from the variance 

algorithm is shown as the dashed line; any discontinuities in the dashed line 

indicate that the computed waveheights exceeded 3.5 meters according to the 

condition a< .815. These figures also show NOAA/SMG estimates of waveheight; 

additionally, Figure 3.3 gives the H11/3 value measured by the laser profilo

meter. Examination of the data shown in these figures indicates the variance

derived estimate to be in better agreement with the available ground truth 

data: •The-rapid changes in the dashed urve near the end of the data-span in 

Figure 3.3 is thought-to be due to non-stationarity of input values rather 

than to real waveheight changes. Additional ground trtith data is needed to 

full]7'evaluate the ariance algorithm'-znote 'Ehat the one available measured'
 

value (from the profilometer) is in very good agreement with the algorithm.
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3.6 	 Conclusions
 

The GEOS-3 H1/3 estimator currently in use closely approximates the per

formance bound developed from the model presented. H computation is a

13,
 

highly nonlinear problem which for GEOS-3 is solved by conversion to a linear

ized model which is iterated to convergence [2]. It has been shown that such
 

linearized estimators, under-appropriate conditions, are unbiased [9,10].
 

This implies that the current GEOS-3 HI/ estimator, while a suboptimal one,
 

achieves near-optimal performance.
 

A significant result of the analysis is that under calm-sea conditions
 

(i.e. H1/ 3 + 0) the performance of any estimator of H/3 can be expected to 

exhibit marked degradation. Two obvious techniques for combating this prob

lem are (a) use of higher pulse repetition frequencies and (b) reduction of 

point target effects, att" Of course neither of these options is applicable 

to GEOS-3. 

There is a theoretically optimum H1/3' in the sense that estimates of
 

this one particular value will have minimum variance compared to that of all
 

other values ofH1/3. For the GEOS-3 radar parameters, this optimum value
 

is within the 4.0 - 5.0 meter range and is characterized by a very broad mini

mum (Figure 3.2).
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4.0 DISCUSSION OF OCEAN BACKSCATTERED SIGNAL CHARACTERISTICS
 

This section presents a discussion and interpretation of GEOS-3 data for
 

cases in which the AGO values increase markedly for brief periods. These
 

abrupt AGC changes have been observed in a considerable number of passes;
 

Figure 4.1 shows the geographical distribution of occurrence of these AGC
 

changes noted in the examination of approximately 75 records. It was thought
 

that such a map might show a pattern, or grouping, in these occurrences (such
 

as near the Gulf Stream), however, the distribution shown in Figure 4.1 is
 

considered to essentially represent the geographic distribution of the under

lying data base. This result suggests that these comparatively brief eleva' "
 

tions in AGC values are the result of relatively calm ocean surface conditions,
 

and are not caused by anomalous conditions. This premise is examined in the
 

following paragraphs.
 

First examining the theoretically predicted values of a?; standard ref

erences give the appropriate form as
 

£2 
-2-tan 2 

S IR()I 2 4a 

0 2 k402 cos4 ee 
S 

where 	 R = Fresnel reflection coefficient, 

k = surface height correlation length, 

5 = rms surface height, and 

0 = off-nadir angle.
 

For the GEOS-3 case: cos0 1, sin28 = cT/h and assumingR 1
 

00 = ( e 
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Tabulated values for this equation are given below for T = 60 ns. 

£
Y(dB)
 
ao
 

3 3.52
 

5 7.96
 

10 13.97
 

50 27.9
 

100 33.75
 

500 42.2
 

The above value of T was used to provide numerical values applicable to 

the AGC gate region. Note that the angular displacement of the AGC gate lo

cation from the nadir point is - 0.27 degrees, for which the decay effect of 

the antenna pattern is -0.1 dB. The above tabulated & values indicate the 

values of a* observed during the AGC step-changes are entirely consistent 

with backscatter theory. These theoretical values indicate that the elevated 

AGC conditions correspond to very calm surface conditions or to swell-dominated 

seas.
 

Figure 4.2 shows computed waveshapes as a function of 9/a . These waves 

shapes show the expected decay in the plateau region between the leading edge
 

and the AGC gate, as a function of the ratio of surface correlation length (L)
 

divided by rms surface roughness (a ). This result suggests the possibility
 

of using attitude/specular gate and HI/3 data as a means of estimating domi

nant surface wavelength. This possibility is next investigated.
 

4.1 Attitude/Specular Gate Behavior
 

The change in the attitude/specular gate value as a function of i/aS 

may be computed using the previously given equation for a' and the known an

tenna pattern behavior. Taking 0 in this equation as -1.0 degree for the 

attitude/specular gate angular location, the antenna pattern effect to be 3dB 

49
 



1.07 

0.9i 

0.8 

5 

(D~0.7. 

-j
0 

0.6

0.5. 

p0.3

w
W 0.2

.5 

500 

0.1 

0 
o 0 J 203040 0 0 8010 20 io 46o io o 

t" (ns) 

Figure 4.2. Computed GEOS-3 video waveshapes as a function of the ratio of 

ocean-surface'correlation length to rms waveheight. 



and the AGC gate nominal value to be 100 my, the following attitude/specular
 

(A/S) gate values are obtained.
 

_ s A/S (mv) 

20 48
 

40 45
 

80 31
 

100 23
 

200 2
 

In order to calculate correlation length as a function of attitude/
 

specular gate voltage, V , a polynomial was curve-fitted to the above
as 

values. The results were
 

1= [54.33-2.27 Vas +.0587 V2 -6.79x10-V3H/3 

whee 3 4s as 

When this procedure was implemented and wavelength computed using mea

sured Vas values it was soon found that GEOS-3 attitude/specular (A/S) data 

shows the following pattern: V values tend to first increase above 50 my 

where 4a is in my.4ais in meters and V 


as
 

when an AGC step-change is encountered, to decrease in an expected fashion,
 

and to again increase above 50 my as the AGC feature is exited. This char

acteristic is shown in the data given in Table I, which was recorded over the
 

Gulf of Mexico, orbit 1164.
 

Since backscatter theory does not admit to an increase in energy with
 

off-nadir angle, this behavior was thought to be caused by the geometry of
 

the A/S gate. Figure 4.3 shows the relative spatial areas of the sampling
 

gates. Note that along-track signal level changes can be anticipated by the
 

A/S gate by -2 seconds (or -1 low data rate frame period). A computer pro

gram was written to simulate the effect of such AGC changes on the A/S gate
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TABLE I 

LATITUDE LONGITUDE cr AGC H AASG 
Degrees Degrees MMeters dBm Meters m.v. 

26.162 277.793 .47 -70.80 -2.95 49.2 
26.055 277.722 .53 -70.69 -1.78 48.4 
25.948 277.650 .60 -70.59 1.84 50.3 
25.841 277.579 .52 -70.15 -2.52 52.8 
25.735 277.508 .35 -69.09 .47 48.8 
25.628 277.437 .47 -69.28 -2.67 50.3 
25.521 277.366 .99 -69.21 -1.39 54.7 
25.414 277.295 .83 -67.89 2.14 48.8, 
25.307 277.224 .43 -68.42 1.38 50.3 
.25.200 277.153 .42 -68.22 -3.34 54.6 
25.092 277.083 .41 -68.26 -3.63 58.3 
24.985 277.012 .52 -66.42 -2.90 53.9 
24.878 276.942 .37 -66.97 -3.85 49.5 
24.771 276.872 .82 -67.63 1.45 62.0 
24.664 276.802 .55 -67.30 -1.75 75.1 
24.557 276.732 .54 -66.05 3.27 79.6 
24.449 276.662 1.06 -63.09 3.40 77.0 
24.342 276.592 .64 -60.76 3.04 71.1 
24.235 276.522 .68 -57.84 71.52 44.8 
24.128 276.452 .44 -58.26 t .46 44.8 
24.020 276.383 .60 -57.41 -2.70 40.8 
23.913 276.314 .38 -58.17 -3.28 36.4' 
23.805 276.244 .61 -59.20 -3.88 43.0 
23.698 276.175 .56 -58.68 -3.61 46.3 
23.590 276.106 .85 -5953 -3.45 40.1 
23.483 276.037 .57 -62'85 -3.03 63.8 
23.376 275.968 .47 -61..69 -1.54 55.0 

__0 23.268 275.899 .71 -62.65 3.94 49.6 

V23.53 
23.160 275.831 

27762 
.62 
.62 

-64.35 
-65.60 

-1.44 
-2.28 

45.5 
47.0 

22.945 275.693 .88 -67.54 -2.03 47.8 
22.838 275.625 :39 -68.33 -2.54 50.3 

o 22.730 275.557 .58 -69.24 -3.43 50.7 
22.622 275.488 .58 -69.64 -1.92 51.7 
22.515 275.420 .6-2 -69.58 -1.87 51.0 
22.407 275.352 .87 -70.12 1.70 52.1 
22.299 275.284 .28 -69.79 -1.35 51.0 



ASG R, = 13.3km. 
R2= 15.1 km. 

AGC 	 R, =3.8km. 
R2 =4.16km. 

GATE 16/ R =3.1kin. 

__..GATE 12 

R = 1.7km. 

"<-- - GATE 
10 

I 

-12 
I 

-8 
I 

-4 
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0 
t 

4 
t 
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Figure 4.3. R= inner radius and R 

12 

= outer radius of footprint. 

53 



behavior, for the case of ocean surface conditions which are homogeneous in
 

the across track direction. This program comprised the following operations:
 

1) AGC values al,a2,...anwere read in
 

2) these dBm values were converted to power values A.
 
n 

3) 	the simulated A/S level was calculated based on the AGC
 

power values one frame ahead and behind the nadir point, i.e.
 

A/S = A(n-l) + A(n+l) 
2 

4) these calculated A/S values were normalized to the nadir
 

value and to 50 m.v. using
 

A(n) 
A/S x 501. 

A typical result from this simple model'is shown in Figure 4.4. The low

er graph in this figure shows the AGC features which were recorded in the 

Mediterranean Sea near the island of Crete (orbit 3469),2 Note that there are 

two brief changes of -10 dB in AGC value whidhare not of sufficient dura- / 
tion to effect non-transitory conditions in the AGC and A/S gate footprints, 

The 	upper graphs in this figure show both calculated and measured A/S gatle
 

responses. These curves show that AGC disturbances alone can cause eldva

tions above 50 m.v. in the A/S gate value. Although the calculated and observ

ed A/S gate values are not in close agreement, the peaks and troughs and over

all characteristics are considered to be in sufficient correspondence to vali

date the postulated mechanism. The, lack of precise agreement.is attributed
 

to the (unknown) across-track variations in ocean backscatter.
 

The above results demonstrate that the analysis of waveform variations
 

inferred by A/S gate-data requires that the ocean surface be essentially
 

homogeneous over a spatial extent of tens-of-kilometers. Figure 4.5 shows
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a*and A/S gate data for one such record; these data were recorded over water
 

between Cuba and Florida. Note that the elevated G values in this record
 

persist for - 30 seconds. Measured significant waveheight during this period
 

was -1 meter; use of the above equation for correlation length gives k =33.7
 

0meters. Note that this HI/3 value coupled with the high a value argues that 

swell is dominant; also the observed a* value is in very good agreement with
 

the theoretical value for this k/as ratio. Using the approximation: wave
s
 

length X= 4k and the standard equation for wave period T,
 

T 1.56 

yields T = 9.3 seconds, which is a reasonable period for swell conditions.
 

The main uncertainty in the above calculations is in the HI value. A

1/3 I 

total of 10 per-frame HI/3 values were averaged to obtain the value quoted
 

above. The standard deviation in these 10 per-frame H1/3 values was -1.8 

meters. Based on these results, it is concluded that the present H13 al

gorithm is probably not sufficiently stable (at low waveheights) for use in 

estimating surface correlation length. The variance-based HI/3 algorithm, 

discussed elsewhere in this report, may prove to be adequate for this purpose, 

if surface correlation length estimates prove to be a useful parameter.
 

4.2 Spatial Variability of HI/3 Estimates
 

Figure 4.6 illustrates the autocorrelation function of frame averaged
 

H1/3 for two different averaging times. When the frame averaging time is
 

changed from five to three the decorrelation time is affected by more than
 

60 percent. This is a significant effect and indicates that a five frame
 

average of H1/3 values can significantly affect the statistics of a three
 

frame averaged '/3 process.
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Figure 4.6. Effect of frame averaging on H1/3 autocorrelation function.
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Figure 4.7 illustrates the effects of a five-frame average of H1/3 on
 

the autocorrelation function. The solid curve for the autocorrelation func

tion of unaveraged data clearly indicates the presence in the H1/3 data of
 

two uncorrelated processes. The first of these processes rapidly decorre

lates and is probably due to Rayleigh noise caused by return signal fluctua

tion. The second process is characterized by slow decorrelation and repre

sents sea state effects. Note, however, that in the average curve the two
 

processes have been smeared together so that they are essentially indistin

guishable. Based on these results it is concluded that care is required in
 

interpretation of results based upon filtered H,/3 data. The results of this
 

paragraph indicate that 1/3 can be significantly altered by filtering opera

tions.
 

4.3 	AGC Calibration
 

This paragraph gives results of a values computed using both the !'clean
 o
 

signal" and the "clutter signal" AGC calibrations. Figure 4.8 shows a* values
 

obtained under moderate waveheight conditions and Figure 4.9 shows a0 values
 

during a period in which the AGC values experience a brief step change of
 

-10 dB. As shown in Figure 4.1, such changes have been observed over a rather
 

wide range of geographic locations. Figures 4.8 and 4.9 show the clutter
 

calibration data to yield better agreement with published a0 values than do
 

the clean calibrations. For this reason, it is recommended that "clutter
 

signal" calibrations be used in all a' computations.
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5.0 ALTIMETER DATA PROCESSING CONSIDERATIONS
 

Experience with the GEOS-3 data has shown that preprocessing or data
 

editing is required before optimal filtering procedures can be applied. Auto

mated techniques have been developed which provide for wild-point interpola

tion and correction and for estimation of residual orbit bias and slope pa

rameters [1]. These parameters are obtained using statistical regression.
 

techniques.
 

Non linear characteristics of the GEOS-3 split-gate tracker have been
 

found to cause negative-asymmetries in the altitude data. Figure 5.1 shows
 

altitude data for orbit 2023 over the-Gulf of Mexico; this record displays
 

the characteristic negative (or downward) perturbations in the altitude data.
 

Figure 5.2 reproduces a section of the orbit 2023 data on an expanded scale
 

and containing threshold data. The threshold altitude algorithm is seen to
 

essentially remove the altitude disturbances and to indicate that they are
 

hardware-specific in origin. Based on this behavior, and because low data
 

rate telemetry data cannot use the threshold algorithm, computerized edit
 

procedures were implemented to interpolate through such periods.
 

5.1 Sea State Bias
 

The term sea state bias has been used to account for any systematic dif

ferences between mean value of the geometrical ocean surface and radar sensed
 

mean value. This type of bias is thought to arise due to either the trochoi

dal shape of ocean waves or the increased occurrence of capillaries on wave
 

peaks compared to wave troughs. Either of these factors-could cause an in

crease in radar cross section per unit area with increasing distance below
 

the wave crests. The direct measurement of this bias term under deep water,
 

long fetch conditions would be extremely difficult. It would require the ac

quisition of simultaneous waveheight and radar backscatter data of very high
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absolute and temporal accuracy in mid ocean, under high sea state conditions.
 

The only known instance in which direct measurement has been attempted is the
 

work of Yaplee, ee:al., reported in 1971 [2]. These measurements, conducted
 

from a tower located off the coast near Norfolk, Va., showed a bias toward
 

the wave troughs of magnitude
 

At = .17 '1/3- .31 

where At is the time bias in nanoseconds and H1 /3 is the significant wave

height in feet. The empirical relationship shows a bias change of -8 cm 

for a waveheight change of '1 meter. This degree of bias will be shown to be 

in -general agreement with the bias results to be discussed. 

In contrast with the results reported in [2], the sea state bias results
 

to be given below relate to instrument-induced biases as well as ocean sur

face effects. These instrument biases are primarily caused by changes in the
 

tracker equilibrium point which are in-turn induced by any changes in the
 

received waveshape. Such waveshape changes are caused by variations in:
 

a. received signal-to-noise ratio, and
 

b. significant waveheight. 

Experimentally measured values of altitude bias as a function of signal-to

noise ratio are in the range of 2.0 ns, see [3]. Bias effects due to pointing 

angle and significant waveheight cause corresponding changes in the split 

-gate tradker equilibrium point; these effects have been analyzed in [4].
 

The seka state biases reported here are based on analysis of data from
 

near-overlapping satellite passes. Altimetric data for such passes is first
 

examined and, if necessary, edited to remove data discontinuities and then
 

filtered using a Wiener convolutional algorithm [5]. The ensuing data from
 

several passes is then adjusted in absolute altitude vale to provide over

lap for the low sea-state portions of the passes., Figure 5.3 shows raw
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altitude data (10/see) for two passes; orbit numbers 1633 and 6893 for a
 

North Atlantic segment over the latitude and longitude limits shown on the
 

abscissa. Orbit 6893 data comprised the high sea state pass and the data is
 

considerably noisier than orbit 1633 data; however,-the permanent geoidal
 

characteristics are seen to exhibit very good repeatability. Figure 5.4
 

shows both the filtered sea surface.height and the sea'state data relevant to
 

these data periods. Note in the lower figure that the:'passes (which have been
 

offset by - 2'meters) show a system-atc departure which correlates with the 

high sea state period shown in the upper figure.
 

The above analysis technique has been used witha total of five orbits
 

to produce the results shown in Figure 5.5. These results show the altitude
 

measurement to be increased by the presence of high seas; that is, the measur

ed mean-sea-level value is depressed downward duetto high seas. Based on the
 

results shown in Figure 5.5, the bias effect increases with increasing sig

nificant waveheight (Hl 3) and is in the order of 10 percent of the H
/3 1/3
 

value for 10 meter seas.
 

5.2 Precipitation Sensitivity
 

Figure 5.6 gives calculated values of 1) single pulse signal levels and
 

2) signal-to-noise ratio for one second post detection averaging, both as a
 

function of precipitation level. These results indicate that moderate to
 

-
 tai mode Other-consid-

erations, however, indicate that hardware changes would be necessary to im

plement this capability; the present noise gate is an a-c coupled circuit
 

that does not provide a direct measure of noise power. In the event that the
 

GEOS-3 backup system is used, simple changes in the noise or sampling gates
 

and the AGO loop would permit observation of precipitation return.
 

-heavy- precipitation should -be dofttabile-in- theG -
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5.3 Waveform Sampler Corrections
 

The following paragraphs summarize our efforts toward deriving correc

tions for the sampling gates. The initial approach to this problem was to

use BIT/CAL data to identify offset and gain differences between samplers.
 

As discussed below, this approach was not feasible because BIT/CAL offset
 

values did not correlate with data acquisition offset values. The bias-test
 

portion of the BIT/CAL data also showed waveform changes, especially in the
 

th
12t- gate ,values. It is not known whether these were due to sampler effects
 

or changes in transmitter leakage.
 

The second approach comprised the extraction of offset corrections from
 

fitting an error function to the waveform and gain corrections from the stan

dard-deviation waveform. Two difficulties were experienced in this approach:
 

a-study of gate-to-gate covariance indicated that timing differences were
 

also present.' In addition, offset corrections derived from the on-board
 

averaged waveforms and the software averaged waveforms were not in agreement.
 

At this point it was decided that gain corrections could not-be obtained for
 

the low~data rate case; and the approach taken was to obtain offset correc

tions from the error function fit ad timing cQrrections from the covariance
 

calculations. Shortly after this approach was taken it was learned that E. J.
 

Walsh of WFC' had obtained pre-launch timing corrections from G. E. and had
 

derived offset corrections, both of whidh generally agreed with our results.
 

Our activities were discontinued at this point.
 

As the results given below show, empirically derived offset corrections
 

appear to be valid to within -2 m.v. The 2 m.v. uncertainty derives from
 

short term drifts in the offset values.
 

Figure 5.7 shows graphed values of BIT/CAL-and backscattered waveforms
 

for Pass 217. Data from other passes have also been examined and the BIT/CAL
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waveforms were found to be similar to those shown in Figure 5.7. In this
 

figure the baseline is displaced upward one division for each of the wave

shapes shown. The following comments pertain to the data shown in Figure 5.7.
 

1) 	The unevenness of the ocean scattered waveshape is much
 

larger than the expected statistical uncertainty. The
 

6-frame averages contain approximately 1900 samples, there

- fore, the one-sigma confidence bound should be approximately 

2%. 

2) There .isno clear cut relationship between the noise region

sample values for the Bias Test and the experimental waveform. 

3) 	The fact that the IF and video waveforms are locally uneven
 

and the differences between the voltage and standard devia

tion relative waveshapes suggest that dc biases and gain
 

differences both exist.
 

Figure 5.8 shows a time-sequence graph of several "noise" or early gates;
 

these results partially explain the lack of agreement in bias values noted
 

above. The upper curve-shows per-frame values for ARS-4, which represents
 

the-on-board averaged values for the fourth gate% The next three curves
 

show the software averaged values (AW) for gates 1, 2 and 4. These three
 

curves are rather surprising for two reasons: The apparent correlation be

tween gates 2 and 4 is striking; and the correlation with-gate I i's higher'
 

than expected. The rate of fluctuation is also much greater than expected;
 

if these off-sets were due to d-c drift, temperature, etc., the fluctuations
 

would be much slower. The lower graph shows AGC values and the largest gate
 

excursion is seen to coincide with the highest AGC value; thus the noise gate
 

values are seen to increase during a period in which they would be expected
 

to show a decrease. The level of correlation present in the gate values
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indicate that the changes are due to system variations rather than signal 

information. The per-pulse values for one frame were etamined and quantiza

tion effects were strongly in evidence. The data showed typically 3 step or 

transition values of - 7 m.v. Inspection of the variances of the per-frame 

values shows that -the quantization distribution is not uniform. Thus the 

step changes appear to be a slowly-varying effect. 

Figure 5.9 shows the computed covariance for the first five gates based
 

on use of the per-pulse values. The signal variability in these gates are
 

lArgely due to offset drift as depicted by the - 7 m.v. quantization. This
 

figure shows gates 2 and 3 to be much more highly correlated than gates 1 and
 

2. This implies a wider gate separation in the latter case. Figure 5.10
 

shows the covariance in the plateau region for-two cases. Since gate 14 was
 

selected as the reference gate, -the right-left asymmetry in the covariance
 

function is indicative of sample timing differences.,
 

A set of gatespacings were derived by least-squares fitting a Gaussian
 

covariance model to the experimental data; the fit was constrained to re

quire that'the sum of-the gate spacings approximate the design value (4x6,25
 

n.s.). The fit obfained is shown in Figure 5.11 and the derived gate spacings
 

were 

Gate No. 12 13 14 i-5 16
 

Sp~cin _ .. ..-5- .@}_ . 9-. . -6-6.5-. 

With the exception of the gates 12-13 spacing, these results are in good
 

agreement with Walsh's results (Figure 5:12).
 

5.4 Tracking Jitter Correlation Properties
 

Autocorrelation and tracking jitter probability density functions were
 

extracted from the orbi'.578 data Figure 5.13 shows the pre-launch measured
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tracking jitter correlation coefficient. Figure 5.14 shows (1) the computed
 

correlation for orbit 578 and (2) the over land correlation for orbit 2236.
 

The agreement between-the orbit 578 data and the pre-launch data is quite
 

good; this over-ocean experimental result shows the loop bandwidth to be in 

the neighborhood of 5 Hz, based on the correlation period shown. The over
 

land result for this data-span shows that the very different mean waveshapes
 

encountered cause the time discriminator characteristic and thus the loop
 

bandwidth to differ substantially from the over ocean values. It should be
 

noted that waveform data for the overland segment of 2236 [2] shows consider

able saturation and the tracking loop may be operating non-linearly.
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6.0 CONCLUSIONS AND RECOMMENDATIONS
 

Comparisons between the deconvolution sea state algorithm and the WFC 

algorithm show good agreement and it is concluded that the WFC algorithm is 

entirely adequate for GEOS-3 sea state computation. Use of the deconvolu

tion algorithm has,shown that extraction of the radar inferred.waveheight 

density function from GEOS-3 data is possible under high sea state &~nditions. 

These densities suggest that shorter pulse, higher.data-rate sensors (such 

as the SEA. SAT altimeter) will be able to resolve theunderlying,densities 

in the low to moderate sea,state range. It is recommended that hhe.,acon

volutioin algorithm given herein be utilized with SEA SAT data to investigate 

the possible improvements in accuracy of sea state estimation compared to al

gorithms that assume that the received waveshape is strictly an error func

tion form. (Time sidelobe effects on the SEA SAT data should also be con

sidered.) 

Both the Cramer Rao error analysis and examination of sea state spatial
 

variability have shown that the achievable sea state resolution is bounded 

by either Rayleigh noise or by ocean surface inhomogeneity. An averaging 

period of - 20 seconds is considered to be near-optimum for GEOS-3 data pro

cessing. 

Comparisons between theoretical ao values and GEOS-3 observed values
 

have been found t&-be highly consistent. The "step changes" sometimes ob

served in a0 data, in.arias such as the Gulf Stream, were found to corre

spond to theoretical values for which theZrms surface slope is small. Since
 

surface slope is dominated by waves in the capillary range, such calculations
 

indicate that these a' changes will occur over either very calm or swell domi

nated seas. Based on: the comparisons given, it is recommended that the "clut

ter" AGC calibration-be used in calculating a' values.
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Data analyses reported herein show a systematic change,, or bias, in in

dicated sea surface height as sea state increases. This change is generally
 

less than 10 percent of the significant waveheight and, as such, is consider

ably less than orbit errors. Should orbit errors dramatically improve in
 

future systems, this error source should be re-examined.
 

The presence of d-c biases in the waveform samplers have been found to be
 

a source of difficulty in waveform data processing.- Especially frustrating
 

is the apparent inconsistencies between the calibrate and data acquisition
 

indicated biases. In future systems, it is recommended that laboratory studies
 

be conducted to resolve these differences and that use of chopper stabilized
 

circuits be considered.
 

The GEOS-3 system has proven to be a reliable and versatile satellite
 

system and sensor; consideration should be given to possible use.of the back
 

up hardware system in other remote sensing investigations. Some of the poten

tial uses are as follows:
 

1. 	With modifications to the pulse length and repetition rate ( -6 ns 

and 500 per sec.) the sea state resolution, could be increased by a 

factor of 5. With these comparatively inexpensive changes the sys

tem could be orbited in conjunction with other Shuttle launches to 

provide a denser grid of sea state and surface wind data compared 

to that available from the SEA SAT altimeter. Experience with GEOS-3 

has shown that the principal limitation to its sea state measurement, 

capability is in the coverage provided by a single (nadir) sensor.
 

2. 	With primarily altitude tracker and AGC modifications the system
 

could be optimized for data acquisition over ice and land areas.
 

Other studies [1] have discussed the usefulness of global ice boundary
 

data and ice sheet topography measurement to NASA climate programs.
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3. 	The addition of a multiple feed structure and-possibly a larger an

tenna would provide wind data over perhaps ± 100 km off nadir. This
 

would yield useful information on surface wind homogeneity and, to
 

some degree; wind direction.
 

4. 	All of the above sensor concepts pertain to capabilities of the -

Intensive Mode. Analyses summrized -in this report indicate that
 

minor modification of the Global Mode would permit the acquisition
 

of'precipitation data. This capability would thus be incorporated.
 

with any-of the above system modifications. 	 

In'addition to these hardware-specific suggestions, the CEOS-3 program, in..-: 

proving the topographic and sea state measurement capabilities of- short pulse' 

altimetryhas, demonstrated the greatest deficiency to be that of.areacover

age. Since finite-swath altimeter concepts have not been forthcoming (for., 

pradtical Antenna-sizes), the obvious solution appears to be use'of multiple' 

satellites. For sea state measurement only, considerationshould be given-tot 

sensing techniques other than those requiring-short pulse-lengths. Additiofial 

studies are needed in these areas. 
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Appendix A
 

Computer Program Listing
 

The results presented in paragraph 2.3 were obtained using the Fortran
 

program which will be described in this appendix. In the attached listing
 

Fortran statements often appear to begin in position 9 rather than the stan

dard position 7. This is a result of the TAB key feature supported by the
 

RTI TEST EDITOR in DEC's LSI 11/03 computer. If storage space is-.a problem,
 

an overlay structure can be used as illustrated,in Figure A.l. Such a struc

ture has been used under RT-11 for which TTY I/0 is designated by devices
 

5(input)/7(output) respectively in the listings contained herein. The list

ing presented in this appendix was used to obtain the results of paragraph
 

2.4.1; therefore, the attached listing can be used in its present form to
 

obtain HI13 and h(t) if H1/3> 4 m. To use the code as described in para

graph 1.4.2 two changes are required:
 

(a) 	In subroutine Hl3MSR the instruction DATA UI/30*1.0 

should be used in place of DATA U1/0, .25, .5, .75, 26*1./ 

(b) 	In.subroutine WAVEHT change statement marked with * 

(immediately after statement label 90) to read as follows: 

SWH=DABS(SWH)*SWH -57.0 

An example of executing the code immediately follows the FORTRAN listing 

and will be described at this time. The input command R H13TST causes the 

executable code corresponding to the source program to be loaded. The pro

gram then requests that NNUN , NDENOM , NINP be input in format 313. NNUM = 

m-l (where m = order of H(s) numerator polynomial), NDENOM = order of H(s) 

denominator polynomial), and NINE is an integer which specifies the number of 

sample gate values which will be input (usually this will be 16 for GEOS-3). 

Normalized gate samples are printed next. These values are computed from the 
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gate 	samples input earlier as follows:
 

(a) 	The average of the first four samples is subtracted
 

from all gate values in order to remove offset effects.
 

(b) 	The input set of samples is expanded in number to 25
 

by padding from NINP to 25. The value inserted is
 

specified by the average of input samples NINP , NINB-l,
 

and NINP-2. This is done in order to enhance the sta

bility of the H(s) identified by the algorithm.
 

After the identification algorithm has executed successfully, the pa

rameter vector is printed. The parameters are listed in the following order:
 

a1 , a2 , ...a ; -bl, -b2,...,bn. Next probability density is output; the
 

numbers printed must be divided by 10. Significant waveheight (SWH), m2 (AT2),
 

m1 (AT), and A(a) are printed on the next line (see paragraph 2.3 for defini

tion of these quantities).
 

Residuals are defined as input gate values minus model output resulting
 

from identification procedure. The final output is the sum squared error,
 

SSQER.
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c
 

o 	 MAIN PROGRAM
 
C 	 1.
 

DIMENSION Z(64),TR(6)JTH(64)
 
DIMENSION COV(144),COVI(144)
 
DIMENSION XH(350),XHT(350)
 
DOUBLE PRECISION ZSpTR, THCOVCOVI,XHXHT
 
WRITE(7 501)
 

501 FORMAT(' INPUT NNUMNDENOM,NINP-FOHMAT 313')
 
READ(5,500) NNUMER,NDENOMNINP
 
NDATA=25
 

500 FORMAT(313)
 
C NNUMER=ORDER OF N(S)=ZERO IF ONLY CONSTANT IN NUMERATOR\
 
C NDENOM=ORDER OF DENOMINATOIMAY BE 2,3,4,0- 5 ONLY
 
C NDATA=NO. OF DATA POINTS TO BE PROCESSED
 
C 	 NINP'=NO. OF GEOS-3 INPUT SAMPLES
 

NN=NNUMER
 
ND=NDENOM 
NDAT=NDATA
 
NPR=NNUMEH+NDENOM+I
 
NPR=NPR+0
 

o 	 ZTftTHXHXHT,COVCOVI ARE STORAGE AREAS FOR I13MSR
 
CALL.HI3MSR(Z,TR,THsXHXHT,COU,COVI,NN,MD,NDAT,NPR,NINP)
 
STOP
 
END
 
SUBROUTINE HI3MSR(ZETATHMAT,THETAXHATsXHATTCOVCOOI,NNUMERNDEN,
 

COMNDATA,NPAM,NINP)
 
C ZETAPMATRIX:(A**(-I)*(THETA-TSTEP*I))
 
C THETA=MATRIX:(A**(-))4 (PHI-I)
 
C PHI=RMAT=STATE TRANSITION MATRIX 
C XHAT=MATRIX OF PREDICTED STATE VECTORS 
C XHATT=MATRIX TRANSPOSE OF XHAT 
C THIS PROGRAM ESTIMATES H1I/3 FROM 16 GATE SAMPLES 



DIMENSION P1(8,4),YO(30),YM(30),U(30)
 
DIMENSION X1K(8),X1KP1(8),X2K(8),X2KPI(8)
 
DIMENSION PBACK(8),XII(30),BIGY(30),ERSJ(30),P(12),YSOL(12)
 
DIMENSION COV(NPRAM,NPRAM),COVI(NPRAM,NPRAM)
 
DIMENSION THETA(NDENOMNDENOM),ZETA(NDENOM.NDENOM)
 
DIMENSION TRMAT(NDENOM,NDENOM)
 
DIMENSION DI(64),ID2(64),D3(64)
 
DIMENSION Y(30),U1(30)
 
DIMENSION PROB(30)
 

C D1,D2,D3 ARE TEMP. STORAGE FOR MATRICES COMPUTED IN SUB-ROUTINES
 
C THETAS USES C=DI,AINV=D2
 
C MATEXP USES DM=DI,FM=D2,XMAT=D3
 

DIMENSION XHAT(NDATA,NPRAM),XHATT(NPRAM,NDATA)
 
DOUBLE PRECISION ZETA,TRMAT,THETA,XHAT,XHATT,COVCOVI
 
DOUBLE PRECISION YO,YM,U,XIK,XIKPIX2KX2KPIPBACK,XII
 
DOUBLE PRECISION BIGYERVP,YSOL,D,D2oD3,YBARSSQER
 
DOUBLE PRECISION SSQERB,TSTEP, EPS1,EPS3,FAC
 

Ir DOUBLE PRECISION ERCHK,DU,DY
 
Ui DOUBLE PRECISION XEXP,YHI
 

DOUBLE PRECISION SWH,AT2,AT,A
 
C SET UP INPUT FUNCTION
 
C DATA U1/0.,-0288,.1955,.5000,.8045,-9712,24*1./
 
C DATA UI/30*1.0/
 

DATA Ul/0.,.25,.5,.75i26*1./
 
C DEFINE INITIAL ESTIMATES OF PARAMETER VECTOR
 

DATA PI/3.,3.,6*0.,15.,15.,6.,5*0.,105.,105.,45.,10.,4*0.,945.,945

+.,420.,105.,15.,3*0./
 

C READ GEOS GATE SAMPLES 
WRITE(7,500) 

500 FORMATC' INPUT GATE SAMPLES'/5(' *)) 

READ(5,501)(Y(I),I=1,NINP) 
501 FORMAT(5FI0.5) 

DO 5 I=1,NDATA 
5 U(I)=DBLE(UI(1))
 

DO 6 I=1,NINP
 



6 

C 


C 


10 


11 


800 


801 


C 


C 

C 


12 

C 


YO(I)=DBLE(Y(I))
 
PREPROCESS INPUT DATA SAMPLES
 
YBAR=yO(i)+YO(2) YO(3)+Y0(4)
 
YBAR=YBAR/4.
 
SUBTRACT OUT YBAR
 
DO 10 I=IJNINP
 
YO(I)=YtO(1) 2YBAR
 
CONTINUE
 
YHI=Yd(NINP)+YO(NINP-1)+YO(NINP-2)
 
YHI=YHf/3.
 

NINPI=NINP+1
 
DO 11 I=NINPINDATA
 
YO(I)=YHI
 
WRITE(7,800)
 
FORMAT(' NORMALIZED GATE SAMPLES
 
WRITE(7,801)(YO(1),I=1,NDATA)
 
FORMAT:(SFS.4)
 
YO(NDATA+I)=YO(NDATA)
 
YO VALUES NOW REPRESENT UN-NORMALIZED PROB - DISTRIBUTION 
SSQERB=0. 
TSTEP=41 
NMODE=20 

EPS1=1.D-13 
EPS3=I.D-13
 
APPLY SCALINGS TO SELECTED P-VECTOR AND INITIALIZE ESTIMATE
 
VECTOR'
 
FAC=2.
 
DO 12 I=I,,NDENOM'.
 
IEXP=NDENOM+1-I I
 

INDX=NNUMEh+1+I
 
ININDX=NDENOM-1
 
P(INDX):=DBLE(PI(I,ININDX))*E((FAC)**IEXP)
 
P(INDX)!=-P(INDX)
 
IF(I*LS.NNUMER+1) P(I)=.
 
CONTINUE
 
INITIALIZE BACK-VALUED P-VECTOR
 



DO 36 I=1,NDENOM 
II=I+NNUME.+I 
PBACK(I)=PCII) 

36 CONTINUE 
C TEST FOR MONOTICITY OF YO 

NOSW=0 
DO 15 I=6,NDATA 
IF(YO(I).GT.YO(I+1)) NOSW=NOSW+1 

15 CONTINUE 

C NOSW=No. OF TIMES THAT CURVE WAS DECREASING 
ITERNO=0 

C *********THIS IS MAIN LOOP POINT********** 
DO i50 ILOOP=.1,16
 

ITERNO=ITERNO+1
 
C 	 DECIDE IF MODEL (YM) OUTPUT OR EXPERIMENT 


C 	 BE USED IN COMPUTATIONS
 
IF(ITERNO.GE.NMODE) GO TO 30
 

C DON'T USE MODEL OUTPUT YET
 
NDATPI=NDATA+I
 
DO 25 I=INDATPI
 
YM(I)=YO(I)
 

25 CONTINUE
 
30 CONTINUE
 

C DO 35 I=INDENOM
 
C XIK(I)=0.
 
C 	 XIKP1(I)=0.
 

C 	 X2K(1)=0.
 
C 	 X2KP1(I)=0.
 
C 35 	 CONTINUE
 

C 	 COMPUTE TRANSITION MATRIX
 

CYO) OUTPUT SHOULD
 

C 
CALL MATEXP(TRMATPTSTEPNDENOMNNUMERNPRAMDID2,D3) 
COMPUTE THETA FOR H(S)' SUB-I 

1 

C 
CALL THETAS(THETA,P,TRMAT,NDENOMNNUMERNPRAMD1,D2) 
COMPUTE ZETA FOR HCS) SUB-I 
CALL ZETAS(ZETA,P,THETATSTEPNDENOM,NNUMERNPRAMD1,D2) 
JXK=1 



C SKIP:PROPAGATION AFTER 1ST 'ITERATION 
IF(ITEHNO.GT.1) GQ TO 39 

C NOW CALL VECPRP 70 PkIOPAGATE STATE AND FORM XHAT 
C'ALL 'VECPRP(XHATBIGY,X1K$XSK,X1KP1,X2KPI,TRMATDTHETAZETAU*YM,YO 

+, TSTEP,XI I,PNNUMtERNDENOM;,NDATA) 
39 CONTIiNUE 
C, NOW-AAVE X-OVERBAR,UNDERBAH AND YO+ X-SUBII VECTOR 
C SOLVEI FOR UPDATED P-VECTOR
 
C LEAST, SQ. FIT FOR P-VECTOR
 
C TRANSPOSE XHAT
 

dALL MTRANS(XHATT,XHAT,NDATA,NPRAM) 
C COV=XATT*XHAT 

CALL !ATMUL(COV,XHATT,XHAT,NPAM,NDATA,tPRAM) 
C COVI= iNVERSE(COV) 

CALL MATINO(NPRAMCOU,EPSI,EPS3,COVI) 
C XHAT*BIGY REQUIRED TO GET PtVECTOR 

CALL MATMUL(YSOL,XHATT,BIGYNPRAMNDATA, JXK) 
C NOW READY FOR P-VECTOR 
C 	 SAVE P-VECTOR IN PAC4 BEFORE GETTING NEW P-VECTOR
 

DO 4.1 ;I=I,NDENOM
 
II=I+NNUMER+ 1
PBAC(JI)=PC II) 

41 CQNTINE 
CALL MATMUL(PCOVI,YSOL,NPRAM,NPRAM, JXK)
 

C bOM'PUTE- ERRORVECTOR(ERV),AND SUM SQ. ERROR(SSQER)
 
C NOW PREPARE TO COMPUTE MODEL OUTPUT ,YM-USE NEW P-VEC
 

CALL MTEXP(TRMAT,P,TSTEPNDENOM,NNUMER,NPRAM,DI,D2,D3)
 
CALL.TETASS(THETA P,TRMATNDENOM,NNUMERNPRAM,D,D2)
 
CALL ZETAS(ZETA,P,THETA,TSTEP,NDENOM,NNUMER,NPRAM,D1,DS)
 

C NOW:USE VECPRP TO GET XHAT
 
b'ALL VECPRP('XHAT,BIGY,X1K,X2K,X1KP1,X2KPI,TRMATTHETA,ZETA,U,YM,@
 

+,TSTEP,'XIIIP,NNUMERNDENOM,NDATA)
 
C COMPUT'EYM FOR POSSIBLE USE ON NEXT ITERATION
 

DO .90'K=.,NDAtA
 
YM(K) =.
 
DO 100 I=INPAM
 



YM(K)=YM(K)+XHAT(K,I)*P(I)
 
100 	 CONTINUE
 

DO 110 I=1jNDENOM
 
II=NNUMER+I+1
 
YM(K)=YM(K)-XHAT(K,II)*PBAC(1)
 

110 CONTINUE
 
90 CONTINUE
 

YM(NDATA+I)=YM(NDATA)
 
C 	 COMPUTE SUM SQUARED ERROR
 

SSQER=0.
 
DO 120 K=1,NDATA
 
ERV(K)=YO(K)-YM(0')
 

120 	 SSQEH=SSQEH+ERV(K)*ERJ(K)
 
C 	 WRITE(7,990)((P(I),I=1,NPRAM)oSSQER)
 

NOINT=NINP- 1
 
CALL WAVEHT(SWH,AT2,ATA,PTSTEP,NOINT.TRMATTHETAD2,ZETA,D,D3,P
 

+ROBNNUMERNDENOM,NPRAM,NDATA)
 
C WRITE(7,505)(SWH,AT2 AT,A)
 
505 FORMAT(4F15.8)
 
990 FORMAT(6FI2.4) 
C *********TEST FOR STOPPING CONDITIONS ********** 
C STOP WHEN SSQER BECOMES CONSTANT OR WHEN ITERNO>16 
C FIRST CHECK FOR CONVERGENCETHEN FOR ITERATION LIMIT 

ERCHK=SSQER-SSQERB
 
ERCHK=DABS(ERCHK) 

SSQEID=SSQE 

IFCERCHK.LE.1.D-03) GO TO 200
 
IF(ITERNO.GT.15) GO TO 250 


150 CONTINUE
 
200 WHITE(7,400)
 
400 FORMAT(/' H(S) PARAMETER VECTOR')
 

WRITE(7j401)(P(1),I=1,NPRAM)
 
401 FORMAT(6FI2.4)
 

WRITE(7,989)
 
989 FORMAT(' PROS. DENSITY ')
 

WRITE(7990)(PROB(),I=INDATA)
 

0
 
5R
 

) 

http:IF(ITERNO.GT.15


WRI E(7o988)
 
988 FORMAT(t SWH=AT2=YAT=,A ; 1)
 

WRIITE(7,505').(SWH, AT2oAT,A)

WRITE(7 402)
 

402 FIORMAT(//' RESIDUALS )
 
WRITE(7, 401)(ERU(I),I=INDATA)
 
,WRITE(7,L403) SSQER
 
GO TO 450
 

403 FORMAT(//' SSQER='F12.8)
 
250 WhI'IE(7A410) 

GO. TO 450 
420 WEITE(7,503)' 
503 FOHt4AT(///' CHECK INPUT DATAH13 COMP 

410 "FORMAT(//- *****DIVERGENCE*****')
 
450 CONTINUE
 

RETURN 
END
 

NOT ATTEMPTED')
 



C 

C 

C 


5 


o 


5 


C 

C 

C 

C 


SUBROUTINE MTHANS(B,A,IRAICA) 
RETURNS TRANSPOSE(A) IN B 
IhA=#ROWS IN A 
ICA=#COLS. IN A 
DIMENSION A(IRA,ICA),BCICA, IRA) 
DOUBLE PRECISION A,B 
DO 5 I=1,IRA 
DO 5 J=I.ICA 
B(J,I )=A(IJ) 
CONTINUE 
RETURN 
END
 
-SUBROUTINE SKLMUL(B,AFACTOR,IRA, ICA)
 
MULTIPLY A BY SCALAR=FACTOR,ETURN-IN B
 
DIMENSION B(IRA.ICA)sACIRAICA) 
DOUBLE PRECISION BAiFACTOR 
DO 5 I=IIRA 
DO 5 J=IsICA
 
B( I, J)=FACTOh*ACI,J) 
CONTINUE
 
RETURN
 
END
 

SUBROUTINE MATMUL(C,AB,IRA,ICRAB,ICB)
 
THIS ROUTINE COMPUTES A*B AND RETURNS IN C
 
IRA=ROWS IN A
 
ICRAB=#COLS. IN A,# ROWS IN B
 
ICB=# COLS. IN B
 
DIMENSION A(IRA,ICRAB),B(ICRAB,ICB),C(IRA,ICB)
 
DOUBLE PRECISION A,B,C
 
DO 5 1=1, IRA
 
DO 5 J=1,ICB
 
CCI, J)=0-

DO 5 K=,ICRAB
 
C(I, J)=C( I, J)+A(I,K) *BK, J) 
CONTINUE
 
RETURN
 
END
 

5 



C 

C 


5 


C 


C 


S 


SUBROUTINE ZETAS(ZETA,P, THETA,TSTEP,NDENOM,NNUMER,NPRAM,CAINV)
 
THIS ROUTINE COMPUTES ZETA=AINV*CTHETA-TSTEP*I)
 
DIMENSION THETA(NDENOM,NDENOM),P(NPRAM),ZETA(MDENOMNDENOM)
 

DIMENSION C(NDENOM,NDENOM).AINV(NDENOMNDENOM)
 
DQUBLE PRECISION ZETA,PTHETA,TSTEPC,AINV
 
NDENO=NDENOM 
DO 5 I=1,NDENOM 
DO 5 J=1.,NEOM
 
CCItJ)=THETA(I,J)
 
IE(I ,EQ.J) C(I,J)=C(I,J)-TSTEP
 
SIET UP AIRV FROM P-VECTOR
 
AINV(IJ)=,o
 
IM=I-1
 
IF,(IM.EQ.J) AINV(IJ)=1.
 
NPICK=NNUMER+1
 
NSEL=NPICK+J+1
 
IF(J.EQ.NDENOM) GO T0 5
 

IFCI.EQ.1) AINV(I,J)=-P(NSEL)/P(NPICK+I)
 
CONTINUE
 
AINV(-iNDENOM)=1./P(NPICK+)
 

NOW COMPUTE ZETA
 
CALL MATMULCZETA,AINV,CNDENO,NDENONDENO)
 
RETURN
 
ENb
 

SUBROUTINE MATADD(C,ABIRA,ICA)
 
ADD A TO BSRETURN IN C
 
DIMENS ION A(IRA,ICA),B(IRA,ICA),C(IRA, ICA)
 
DOU BLE.PRECISION C,A,B
 
DO 5 I=IIRA
 
DO 5 J=i,ICA
 
CCI, J)=A(I, d)+B(.I,J)
 

CONTINUE.
 
RETURN '
 
END
 



C 

C 

C 


C 

C 

C 

C 


rDM(IoJ)=TRMAT(I,J)

HFM(I,J)=O.
 

"5 


C 

C 


15 


C 


SUBROUTINE MATEXP(TRMAT,PsTSTEPNDENOMNNUMERNPRAMDMFMXMAT) 
THIS ROUTINE COMPUTES MATRIX EXPONENTIAL-(A*TSTEP) 
TSTEP=TIME STEP SIZE 
NDENOM=OiDER OF SQUARE MATRIX 
DIMENSION TRMAT(NDENOM.NDENOM),P(NPRAM) 
DIMENSION DM(NDENOMNDENOM),FM(NDENOMNDENOM) 
DIMENSION XMAT(NDENOMNDENOM) 
DOUBLE PRECISIONITHMATPTSTEPDMFMXMAT,TSPRME,DIVFAC 
INITIALIZE AS FOLLOWS! 
TRMAT TO IDENTITY MATRIX 
DM = TRMAT 
FM = FORMED FROM DENOMINATOR TERMS IN P-VECTOR 
TSPRME=TSTEP/256. 
DO 5 I=INDENOM 
DO 5 J=1,NDENOM 
IF(I.EQ.J) TRMAT(IJ)=I. 
IF(I.NE.J) TRMAT(I,J)=O. 

JJ=NNUMER+I+J 
IPI=I+1 
IF(I.EQ.NDENOM) FM(IJ)=P(JJ)*TSPRME 
IF(IPI.EQ.J) FM(I,J)=TSPRME 
CONTINUE 

NDENO=NDENOM 
COMPUTE POWERS OF ARGUMENT MATRIX FM AND ACCUMULATE INTO TRMAT 
RECAL THAT TRMAT IS INITIALIZED TO I-MATRIX 
DO 10 1=1,10 
CALL MATMUL(XMAT, DM,FM,NDENONDENMDENO) 0 
DO 15 II=1,NDENOM 
DO 15 JJ=I,NDENOM 0 
DM(IIYJJ)=XMAT(II,JJ) 
CONTINUE 
TEMP=FLOAT(I) 
DIVFAC=I./DBLE(TEMP) 
MULTIPLY DM BY DItFAC 



C 


10 

C 

C 


C 

20 

C 


C 


C 


5 

C 


CALL SKLMUL(DM,DM,DIVFACNDENONDENO)
 
ACCUMULATE INTO THMAT
 
CALL MATADD(TRMAT,TRMAT, DMNDENONDENO)
 
CONTINUE
 

NOW RAISE TO POWER (TO CANCEL TSPRME EFFECT ABOVE)
 

USE DM AND FM FOR TEMP. STORAGE
 
DO P0 1=1,4 '
 
CALL MATMUL(FM,TRMAT,TRMAT,NDENO,NDENO,NDENO)
 

NOW REPEAT TO GET TO CORRECT POWER
 

CALL MATMULCTRMAT, FM,FMNDENO;NDENONDENO)
 
TRMAT
TRANSITION MATRIX NOW STORED IN 


•RETURN'
 

END
 

SUBROUTINE THETAS(THETA,P,TRMAT,NDENOM,NNUMER,NPRAMC,AINV)
 
THIS ROUTINE COMPUTES THETA=INV(A)*(TRMAT-I)
 
DIMENSIO.N THETACNDENOM,NDENOM),P(NPRAM),TRMAT(NDENOMNDENOM)
 
DIMENSIPN C(NDENOM,NDENtOM)AINV(NDENOMNDENOM)
 
DOUBLE PRECISION THETA; P,TRMATAINV, C
 
NDENO=N DENOM 

DO 5 I=INDENOM
 
DO 5 J=:1,NDENdM
 
C(I,J)=TRMAT(ftJ)
 
IF(I.EQ.J) C(I,J)=C(IJ)-1.
 
SET UP AINU FROM P-VECTOR
 
AINV(I,J)=0-"
 

IM=I-1"
 

IF(IM.EQ.J) AINV(IJ)=1.
 
NPICK=NNUMER+I
 
NSEL=NPI Cf+J+ 1
 
IF(J.EQ.NDENOM) GO TO 5 
IF(I.E. 1) AINV(.I,)=-P(NSEL)/P(NPICK+1)
 
CONTINUE' 
AINV(I,MDENOM)=I.'/P(NPI.C<+I)
 
NOW COMPUTE THETA
 
CALL MATMIJL(THETAAINV,C,NDENO,NDENONDENO)
 
RETURN
 
END 



bUBE-UUilIN VIUPHP(XHA'f'TIGYXIKX2KXITPI1X2KPITRiMATTHETAZETAU 
+,YM,YO,TSTEPXII,P,NNUMERNDENOM,DATA) 

C THIS ROUTINE PROPAGATES INITIAL STATE VECTOR THROUGH 
C ENTIRE INPUT FORCING FUNCTION 

DIMENSION XHAT(NDATAsNDATA)sBIGY(16),X1K(8),X2K(8),XIPI(8) 
DIMENSION X2KPI(8),TRMAT(NDENOMNDENOM),THETA(NDENOM,NDENOM) 
DIMENSION ZETACNDENOMNDENOM),U(17),YM(17),YO('17),P(12) 
DIMENSION XII(16)1 
DOUBLE PRECISION XHATBIGYXIKX2KXIxP1,X2KPI 
DOUBLE PRECISION TRMAT,THETAsZETA,UYMsYOPXII 
DOUBLE PRECISION TSTEPJDUiDY 
JXK=! 

C INITIALIZE VECTORS FIRST 
DO 35 I=INDENOM 
XIK(I)=0. 
x1HP1(I)=o. 
X2K(I)=0. 

35 
X2KPX(I)=0, 
CONTINUE 

DO 60 K=1,NDATA 
C COMPUTE STATE VECTOR FOR H(S) SUB-I 
C FIRST GET TRANSIENT COMPONET 

CALL MATMUL(XIKPI,TRMATXIK{,NDENOMNDENOM,JXK) 
C NOTE:XIKP1=XIK UPDATED ONE STEP BY STATE TRANSITION MATRIX 
C NOW ADD FORCING TERM 

INUMP1=NNUMER+ 1 
DO 40 I=1,NDENOM 

61 X1KPI(I)=XIKPI(1)+THETA(INDENOM)*U(K) 
DU=U(K+1)-U(R) 
DU=DU/JTSTEP c 

64 XIKPI(I)=X1KPI(I)+ZETA(I,NDENOM)*DU 
XHAT(K.I)=XIX() 

C NOW SAVE XIKPI FOR NEXT PASS THROUGH(K+I) 
XKCI1)=X1HPI(I) 

40 CONTINUE 
C ***********NOW COMPUTE STATE FOE H(S) SUB-If 

CALL MATMUL(X2KPITRMAT X2KJNDENOM,NDENOM. JX) 



XII (M=0.
 
BIGY(K)=0.
 

C XII(K) ISUJSED TO TEMPORAIRLYH93D (X-SUB-II(TRANSPOSED)*PBACK)
 
DO 50 I=1,NDENOM
 
X2KPI(I)=X2KPI(I)+HETA(INDENOM)*YM(K)
 
DY=YM(K+I)-YM(K)
 
bY= Y/TSTEP
 
X2KPl(I)=X2KPI(I)+ZETA( tNDENOM)*DY
 
I2=NNUMER+I +i
 
XHAT(K,12)=X2K(I)
 
XII(K)=XII(K)+x2K(I)*P(12)
 
X21(lI)=X2xPl(I)
 

50 CONTINUE
 °'
 BIGY(K)=Y0(K)+kII(x)
 

60 CONTINUE
 
RETURN
 
END
 



SUBROUTINE WAVEHT(SWHiAT2,ATA,P,TSTEPNOINTTRMATTHETAD2,ZETA,D
 
+1,D3,PROBNNUMERNDENOM, PRAMNDATA)
 

DIMENSION P(NPRAM),TRMAT(NDENOMNDENOM),THETA(NDENOMNDENOM)
 

DIMENSION PROB(NDATA),DI(NDENOM,NDENOM),D(NDENOMNDENOM)
 
DIMENSION D3(NDENOM,NDENOM),ZETA(NDENOM,NDENOM)
 
DOUBLE PRECISION PTRMAT,THETA,DiD2,D3,ZETA
 
DOUBLE PRECISION SWH,AT2,AT,A,TSTEP,BTT,PARM
 

C THIS ROUTINE COMPUTES:
 
C SWH=H1/3=SIGNIFICANT WAVE HEIGHT
 
C AT2=E(T**2);E=EXPECTATION
 
C AT =E(T)
 
C A=INTEGRAL(H(T)=AREA UNDER PR0B.CURVE
 

X=FLOAT(NOINT-4) 
BT=TSTEP*DBLE(X) 
T=BT/16. 

C COMPUTE TRNAT 
CALL MATEXP(TRMAT,P T.NDENOMNNUMERNPRAM,D1S D2SD3) 

C RAISE RESULT TO 16TH POWER 
DO 5 I=1,2 
CALL MATMUL(D1,TRMATTRMATNDENOM,NDENOMNDENOM) 

5 CALL MATMUL(TRMATDI,D1,NDENOM,NDENOM,NDENOM) 
C NOW COMPUTE THETA 

CALL THETAS(THETA P,TRMATNDENOM,NNUMER,NPRAM,D1,D2) 
C NOTE:A(**-I) IS IN D2 FROM LAST CALL 
C 	 COMPUTE A: 0
 

NMUMPI=NNUMER+1
 
A=0.
 
DO 10 I=I,NNUMP1
 

10 A=A+P(I)*THETA(I,NDENOM)
 
C 	 COMPUTE AT
 

CALL SKLMUL(DI,TRMATBT,NDENOM,NDENOM)
 
CALL SKLMUL(D3,THETA,-I.,NDENOMNDENOM)
 
CALL MATADD(D1,DX,D3,NDENOM,NDENOM)
 

C 	 RECALL A**(-1) IS STORED IN D2 FROM THETAS CALL ABOVE
 
CALL MATMUL(D3,D2 lDiNDENOMNDENOMsNDENOM)
 
AT=0.
 



DO 20 I=lNNUMP1
 
20 AT=AT+Pr)*D3(INDENOM)
 
C COMiUTE AT2:
 

PARM=BT*BT
 
CALL SKLMUL (DITRMAT,PARM,[NDENOM, NDENOM)
 
PARIM=-2 * *BT
 
CALL SKLMUL(D3, D2,PARM,NDENOMNDENO0M)
 
CALL MATMUL(ZETAID3,TRMATNDENOMNDENOMNDENOM)
 
CALL MATAD1Y(D1,D1,ZETANDENOMNDENOM)
 
CALL MATMUL(ZETA,b2, THETA,NDENOM,NDENOMNDENOM)
 
CALL SKLMULCZETAZETA,2.,WDEOMNDENOM)
 
CALL MATADD(D1,ZET.ADi.1,NDENOMNDENOM)
 
CALL MATMUL(D3, D2,DI,NDENOM,NDENOM,NDENOM)
 
AT2=0.
 
DO 30 I=1;'NNUMP1
 

30' AT2=AT2+P(I)*D3(INDENOM)
 
F-" SWH=Ar2/A- (AT/A) * (AT/A) 
co IF(SWH.LT. 0.) GO TO 80 

SWH='DSQRTC SWH ) 
GO TO 90 

80 SWH=DABS(SWH) 
SWH=-DSQRT(SWH)
 

90 SWH=6.25*SWH/TSTEP

*SWH=DABS(SWH 	 )*SWH 

IF(SJH.LT. 0.) SWH=-DSQRT'(DABS(SWH)) 
IF(SWH.GE. 0.) SWH=DSQRT(SWH) 
SWH=0.6*SWH 

C 	 COMPUTE PROB. DENSITY-CURVE
 
C 	 COMPOTE TEMAT FOR PROB. COMPUTATION 

CALL MATEXP(TRMATP,TSTEPNDENOMsNNUMERNPRAMD ID2 D3) 
DO 40 I=1,NDENOM 
DO 40 J=1,NDENOM 
Dl (IJ)=0.
 

http:IF(SWH.GE
http:IF(SJH.LT
http:IF(SWH.LT


'hoI IF(I .EQ.J) DICI,J)=1. 

DO 50 K=I,NDtTA 
CALL MATMUL(D3,D,TlTMAT,NDENOM,NDENOM,NDENOM) 
DO 60 I=1,NDENOM 
DO 60 J=I,NDENOM 

60 DI(IJ)=D3(I,J) 
PROB(K)= . 
DO 70 b=1,NNUMP1 
PARM=P(I )*D1(I,NDENOM) 

713 PROB(K)=PROB(K)+SNGL(PARM) 
PROB(K)=PROB(K)/SNGL(A) 

5-, CONTI NUE 
I ETURN 
EN D 

ST U }* 



LT:=DKI 	:,DMINV.FOR
 
SUBROUTINE MATINV(NRA1,EPS1,EPS3,B1)
 

C MATINV COMPUTES THE INVERSE OF MATRIX A USING CROUT REDUCTION
 
C ANSWER RETURNED IN B
 
C EPS1=TOLEHABLE ERROR OF RESIDUES IN SUBROUTINE GROUT
 
C EPS3=TOL. RELATIVE EROR IN RESIDUES IN SUBROUTINE CROUT
 
C NR=NO. OF' ROWS IN MATRIX A
 

DIMENSION A(13, 13),B(13,13),C(13,13),X(12)
 

DIMENSION A1CNRNR),B1(NRNR)
 
DOUBLE PREC'ISION AIEPSIEPS3,B1,AB,CX
 
DO I I=INR 
DO 1 J=I,NR 

I ACI,J)=A1(I,J) 
NSTOP=0 
DO 2 J=INR 
DO 2 K=INR 

2 CC, K)=A(J,K) 
S'NRI=NR+1
 

Dd 6 K=1iNR
 
DO 4 J=1jNR
 

4 	 CCCJ,NR')=0.'
 
CCK,NRI)=. 

CALL CROUT(NR,C,EPS1,EPS3,X,NSTOP)
 
IF (N.STOP-EQ-2 GO TO 7 
DO'S J=INR 

5 BCJ,)=X(j) 
6 CONTINUE 

,.GO.,TO 10 
7 WRITE(7,500"). 
500 	 FOhMAT(////*SINGULAR MATRIX ENCOUNTERED')
 
10 	 CONTINUE"
 

DO 20 I=1,NR
 
DO 20 J=INR
 



20 B1CI,J)=BCIj) 

RETURN 
END 
SUBROUTINE CROUT(NRfB,EPSI,EPS3,T,NSTOP) 

C NR,BEPS1,EPS3 ARE NOT CHANGED BY THIS PROG-
C CROUT SOLVES FOLLOWING MATRIX EQ.:B(NRNR)*B(NR+I) 
C B(NRNR) IS TO BE INVERTED 
C B(NR+I) IS A KNOWN VECTOR 
C SEE MATINV FOR DEFINITION OF EPSIEPS3 
C INVERTED MATRIX IS RETURNED IN VARIABLE T 
C NSTOP IS FLAG FOR ZERO PIVOT ELEMENT 

DIMENSION A(C12* 1)2B(13,13),X(12),TC12),R(12),C(13) 
DOUBLE PRECISION AB,X,T,, C,EPSIEPS3, Q,XX, RR 
DOUBLE PRECISION TEST 

501 FORMAT(///'MATRIX CANNOT BE INVERTED - SINGULAR' ) 
KP=0 
NSTOP=0 
NC=NR+1 
NGO=NC+i 
IF(NR.LE.3) NGO=6 
NN=NR-1 
DO 2 I=1,NR 
R(I)=B(INC) 

2 T(I)=0 
3 DO 4 I=INR 

DO 4 J=INR 
4 A(IJ)=B(I.J) c z 

DO 5 N=INR f 
A(N,NC)=R(N) p 
C(N)=A(IN) 

5 CONTINUE 
C(NC)=A(INC) 1 
DO 9 L=1,NN 
LO=L+i 
Q=DABS(A(1,1))-DABS(A(LO,1)) 
IF(Q.GT. 0.) GO TO 9 



IF(A(I,1).EQ. 0.) 
DO 8 N=siNqC 
A( ,N)=.A(LON.)
S A(LO, .N=(N)
 

8 	 C(N.=A(-.,N):, 
9 	 CONTINUE , . 

DOll I-1,.NR-

GO TO 84
 

11 A(I,I+1)=A(1,It.l)/A(1s1)
 
DO -5 0I= 1.,NN
 
IS=I+1". "
 
NI =NR".I" 

DO ,30 K=I,NI
 
KI -j+I.
 
DO! 3-0. L=I,I 

30 AC.IL,IS)=A(KI, IS)-A(KI.L)*A(L, IS) 
DO 31 N= INC 

31 C(N)=A,(IS,N) 
LRN-NH- IS 
IFCLR.LE-0) GO TO 39 
DO.38 L=I,LR. 
LX=IS+L
 
Q=DABS ('A(IS,IS) ),-DABS A (,LX,IS))
 
IF('Q..GE. 0..,) GO TO '38 
D0,35 N=I,NC 
A(IS,N)=A(LXPN)
 
A(LX,.N)=G(N).
 

35 CCN)=A(IS,,N)
 
38 CONTINUE
 
39 	 CONTINUE 

IF(A(IS,IS).EQ. '.).GO TO .84
 
DO 45,J=,I:N,I
 
DO 40 M=II
 

IJ=IS+,J
 
140 	 ACIS-,,IJ)=A-( -S,I4.)-A(IS,M)*A(MIJ) 
45 	 A(IS,IJ)=A(ISIJ)/A(IS, IS)
 

http:IF(A(IS,IS).EQ
http:IF('Q..GE
http:IF(A(I,1).EQ


50. 

55 
60 

N 
Lo 

64 

68 

84 

86 

CONTINUE
 
X(NR)=A(NR,NC)
 
DO 60 RK=1,NN
 

LL=NR-KK
 
XX=0.
 
II=NR-LL
 
DO 55 JJ=1,II
 
MM=LL+JJ
 
XX=XX+A(LLMM)*X(MM)
 
X(LL)=A(LL,NC)-XX
 
KTEST=0
 
TEST=0.
 
DO 68 I=INR
 
T(I)=T(I)+X(I)
 
RR=o.
 
DO 64 J=INR
 
RH=RR+B(I,J)*X(J)

FCI)=R(I)-RR
 
IF(DABS(X(I)/T(I)).GE.EPS3) KTEST=1
 
IF(ABS(RCI)).GE.EPSI) TEST=1
 
CONTINUE
 
KP=KP+I
 
IF(TEST.LE. 0. .AND.KTEST.EQ.0 .OR.KP.GT.NGO) GO TO 86
 
GO TO 3
 
NSTOP=2
 
WRITE(7,501)
 
RETURN
 
END
 

http:OR.KP.GT
http:AND.KTEST.EQ
http:IF(TEST.LE


2 

.1R H13TST
 

INPUT NNUMWDENOMNINP-FORMAT 313
 
3 16
 

INPUT GATE "SAMPLES
 

.00 .04 .05 .06 .08 

.14 i;25 .32 .34 .50 

.68 .82., .85 .84 .85 

.84 

NORMALIZEDGATE SAMPLES
-0.0375 ,0025 0.0125 0.0225 0.0425 0.1025 

0.3025 0.4625. 0.6425 0.7825 0-8125 0.8025 

0-8058 0.8058 0.8058 .08058 0.8058 0.8058 

0.8058
 

H(S) PARAMETER VECTOR
 
60.1756 -7.8903 1.1367 -72.4544 


PROB. DENSIT'Y
 
0.2029 -0.-00,48 0.3686 0.9564 

1.7007 L.g41,87 0.9904 0.5327 


-0.2396 70. 2 3 72 -0.1539 -0-0375 

0.1716 0.1577 0.1155 0-0616 

-0.0438.
 

SWH=,AT2=,A'YA=,:,
 
9.06788551'' .0.36711901 0.51712578 


RESIDUALS
 
-0.0375 -0.0067 -0.0118 -0.0179 

0.0534 t0.039,0 -0.0726 -0.0438 

0.0225 0Sa0,5 -0.0179 -0.0190 

,0.0206 #.0201 0.0130 0.0017 
-0.0283 

0.2125 0.2825 
0.8125 0-8025 
0.8056 0.8058 

-36.7867 -5.7662 

1.4685 1.7331 
0.1432 -0.1195 
0.0708 0.1439 
0.0112 -0.0254 

0.84016753 

-0.0221 0.0029 
0.0146 0.0575 
-0.0005 0.0132 
-0.0105 -0.0210 

SSQERH 0.020t4843 
STOP -



Appendix B
 

Plateau Region Sea State Behavior
 

Theoretical analyses have shown that the plateau region, which contains
 

stationary statistics, is characterized by a covariance function which is
 

dependent on sea state [1]. A series of covariance calculations were made
 

under contrasting sea state conditions to test this sensitivity. Figure B.1
 

shows the results of these calculations; for the cases tested the change in
 

covariance with sea state was found to be less than the uncertainty in the
 

calculation. Based on this result, it-is concluded that sea state effects
 

are analogous to a linear system convolution concept only in terms of a mean
 

waveform effect and not in terms of the signal correlation properties.
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