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Introduction

A precise geopotential model has become increasingly important as more

satellites, particularly those designed for geodetic and altimetey purposes,

require accurate orbital tracking to produce meaningful results from their

orbital data. The geoid model, the static part of the geopotential field.has

been rapidly improved using various data from satellite tracking and surface

gravity ii, terms of the order and degree of spherical harmonic expansion. Most

recent models may include NASA's Goddari Space Plight Center geoid based on the

work of Mara}1 and Vince t (1974), GEM 9 and 10 by Lerch et al (1977), and one re-

ported by Gaposchkin and Mendes (1977), the last two models having the degree

and order 10.

Most importantly, the geoid model cannot be significantly improved until we

know the distribution of the open ocean tides. Since tides are regarded as noise

in deriving a geoid model, the RMS error amplitude of the resultant geoid can

not be theoretically smaller than the RMS amplitude of tides. Those geoid

models having residual amplitudes less than a few meters may have already reached

this barrier. To break this barrier, we are inevitably led to consider a tech-

nique which is capable of simultaneously deriving both geoid and tides

from satellite altimeter data.

Satellite altimeter data consist of ocean elevation measurements with

respect to a reference spheroid along subsatellite tracks distributed more or

less randomi.y both in space and time. The mapping of the tides using these

data is considerably more difficult both mathematically and computationally

than that required for a static geoid and requires a far greater amount of

altimeter data with higher accuracy. This is not only because of the dynamic

nature of the tides, but also their relatively small amplitudes, 	 generally less

than one meter worldwide.

Zetler and Maul (19711; performed a study using simulated satellite alti-

meter data on the tidal analysis at a fixed location. They assumed that the

tidal height at a given time would be uniform over a 5° square area and that they

_1_

11

7
'

lj i



•	 tfi
T.

1	 ^	 ^

1	
Q

G^

could use the altimeter data whenever the satellite passed over the area. A

randomly sampled time series thus }venerated may be Salved for tides by the

least-squares harmonic werhod. Thev showed that it was possible to retrieve

major tidal constituents from the simulated data in the presence of random

noise which was larger than tFie signal.

Maul and Yanswwaav (1477) applied this method to CTOS-3 data obtained within

j	 a 5' x 5' square centered at 1 0°14 and 70'W (near Bermuda Island). Thev

regarded the data falling in this square as a time-series of a Single location

and applied a least-square harmonic analysis method which is regularly used

for conventional tidal anal y sis. 'I't,e results the y obtained showed that the

tidal amplitudes from the GF.OS-3 data were an order of magnitude higher than

those obtained from d,e MODE deep-sea tide ga uge. arul their solution did not

converge when the size of the square was changed. Therefore, 'hev concluded

that it was not possible to retrieve tides from GF.OS-3 data.

Won et al (1977) developed a similar least-square harmonic analysis method

which is designed to simultaneously extract both the oceanic geoid and tides

It	 for a surface (rather than for a single point) using satellite altimeter data. 	 r
In their case, both the geoid and tides within a region are represented b y a

set of two-dimensional functions. ny applying this method to sets of simulated

data in the northeastern Pacific Ocean, thev showed that tides whose amplitude	
1	 1

ma y be as small as 10 cm ma y be retrieved from the simulated data even when the

data are contaminated with '1 meter random noise.

Both studies described above assume that the error in the altimeter data

is random and has nu orbital drift. Ilowevet-, the most severe d i f t irulty

in using altimeter data for the tidal analysis stems from orbital bias error.

Marsh et al (1976) investigated the problem with the Skylab altimeter data, 	 tI

and found the error is position-dependent and is of long wavelength nature

(`100') with amplitudes on the order of several me-ters. 'llie orbital bias

error of GEOS-3 has been steadily improved since its launch and stabilized

.^.
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to less than a meter in the Calibration Area (H. R. Stanley, personal

communication, 1977).

Determination of ocean tides for the entire northern Atlantic may require

several hundred paths for a duration of a year or more, bhsed on the simulated

I %

study by Won et al (1977). Since available data on hand are limited, we

present in this paper the results of the oceanic geoid and four major tides,

M2 , 010 S 2 , and K1 , obtained along two linear paths of GEOS-3 as shown in

Figure 1. We shall briefly diNcuss the analytic method, results of a simulated

study to test the method, and finally the results of actual GFOS-3 data.

Analysis of Linear Satellite Data for Oceanic Geoid and Tides

The conventional tidal analysis technique requires a long time -er'es

obtained at a fixed point to obtain its tidal spectrum. Since the al imeter

data are obtained more or less randomly in time and space, this method is not

applicable. The following method follows closely that by Won et al (1977)

originally developed for a two dimensional tidal analysis.

Let us consider H(x,t) the ocean height with respect to a reference

spheroid at a distance x away from an arbitrary origin along the ground path

of a satellite. Neglecting transient sea surface changes, we write

H(x,t)	 c' o (x) + L Ai (a) cCEI {wi t + K 1 (x)}	 (1)
i

where Co (x): constant ocean height, i.e., ocean geoid.

Ai (x), K i (x): amplitude and phase of i-th tidal component,

m i : frequency of 1-th tidal imponent, and

t: tir.,e after the start of measurement

Since K i (x) is continuous only in the interval of 0 to 27, we use instead

C
i	i

(X)	 COS K (X)

= A (x) 	 (2)
S i (x)	 i	 sin K  (x)

ORIGINAL Ph(; ""''	 i
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Figure 1. Locations of the two strips of data in the GEOS-3 calibration
area used for the analysis. The origin for counting linear
distance is shown as a solid circle for each strip. The width

of the strips is approximately 265 Km at 30'N latitude.
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land les t C i and S i .tespectively.be rep rrne • itted by a pit lvmemi. ► t sertes -4 tie 	 that

C i (x) -	 ck T (x)
S 1 (x)	 k	 la k 	 k	 (^)

t	 where t(x) to nuv elementary tunctton of order k in x.

'	 For it given set of N rtltimetec data Kx i .t I ); 1 - 1,2 . . . . . N. we

W11111 to find the heNt fit ttlig N(x , t) y e. that the gnnnttty

	

N	 1

	

S - I	 I (x ' ,t i ) - 11(x l .t j )t ` 	(4)
J-1

he Intnlmt zed with respect to ck and elk.

When t:he geoid and tides, respectivel y. are approxim.tted by N and N order}:	 t

funettons and 1. intie ve • ntle • nt tidal components are sought. the eguat ton (4)

generates a positive-deft n i t e svmmet rto nett rtx o f order N
)! + 

?N t 
L.

There are twit ttertetus yotarces of menotitemem error (Brown et ^Ll 1076)

which can completely invalt:iate the scheme presented here. nit . first source

iii, of course. the randottt mvit Comment error of instrument. However. as shown

Sv Zet ler and Matti (1971). Won et al (1 9 77). Maul (1977). nttd to tht.-e report

this error can be , overcome its long, as tt is random.

The second error source, mut • h more r;ertotim and st • rmt ng l v un1 4-401 vnh 1 e , is

that caused by the uncertainty of satellite orbit. frequently referred to as

orbital thus error. Fot example. the resintrc te,lut • ed trout ill, , GFOS-1 alt imete ►

data to the ('al ihr:tt ion Area shtw th:lt the se» surface heights along it given

ground path, when 4- ompared with it ne."ie l geoid. deviat a as mue • tl its ?0 meters.

In addition, line.lr drift is t%ptcally shout A meters per 1000 km along a

ground p.it ll. The errors ;ire In;ltnl y at trthw ed to emot-rt M nt ies (it ge'opot e nt iAl

models w-ted for atell1te tricking.

'rile crtttcal problem in tidal analv y is is that the y ►' oil , ital blas error-:

will he al t.loed into .InV t itt.l l "pect rant.	 The problem con lee more Ker lot ► : it

the orbital pertod of a satellite . Is in reson.tncc With anv tidal Iseriod. 	 tine

►
e
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possible method is incorporating the orbital bias error into equation (4) by as-
suming that the bias is represented by a polvnomial for each path. In other

words, instead of (4), we minimize

S , - 
P	

[F(x',t') - {H p (x j .t 1 ) + m am►►x 	 112	 (5)

where the subscript p denotes quantities in the p-th path only.

Results of Analysis of Simulated Data

To construct a realistic ocean surface as a function of space and time, we

used a satellite geoie to the degree and order 20 by Ram (1974) and amplitude

and phase maps of M 2 and 
01 

tides b y T1_I4 tn ct a l (1967) in the northeastern
Pacific Ocean. We arbitrarily chose one path similar to that of GFOS-1 and

reconstructed the sea surface height data along this path. The geoid undula-

tion along this path amounts to about 10 m, while the tides are less than lm
i

everywhere. For the given GEOS-3 orbital period (102 minutes) and inclination 	 1

(65'), the data are collected whenever the mathematical satellite passes over

within 2° in longitude on either side of the equator crossing of the 	 t
L	 ,

designated path. Sampling time was chosen to . 3.2 seconds, (approximately 22 km

in distance) similar to that of GF.OS-3. one data set thus generated is comprised

of 2000 altimeter data point:: from 16 paths, each path about 30n(' km long, 	 i

I

covering 29.2 days.

A random series having a two meter peak-to-peak amplitude range is then

generated in order to artificially contaminate the simulated data. The white

noise series has :i mean of near zero and an RMS amplitude of 58.4 cm. The

series is then piecewise added to each path on a point-by-point basis.

When the noise was not added to the data, the reproduced geoid and tidal
i

profiles were almost identical to the prescribed ones as shown to solid lines
I

In F'irure 2. '11 ► e figure also shows results when the data were duhbed with 1

meter (dashed lines) and 2 meter (broken lined noise.

T 
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In all cases, the reproduction of the geoid is nasured. '.mile tidal

signals are mostly well belo-. the RMS noire amplitude, their recovery is

reasonably good. Several factors contribute to the successful recovery:

(1) the added noise is Caussian, (2) no artificial drift within each pAth

(such as the orbital bias error) is allowed, and (3) tidal frequencies are

precisely known.

Description of the GFOS-T Data Used for the Analysis

Two sets of GF.OS-3 altimeter data confined in two narrow strips (Figure 1)

are chosen for +resent analvNiA.One strip, starting at Newfoundland and ending

at Cuba, consists of 28 south-going paths whose equator crossings. are between

99.64'F and 102.46'F.. The width of one strip is about 284 km at the equator

and narrows somewhat toward higher latitude. The other strip, starting from

near Puerto Rico and ending at the North Carolina coast, consists of 26 north-

going paths whose equator crossings are between 53.54'W and 56.36'W. The data

duration for both paths is about 17 months,starting April, 1975.and represent

about 70% of the total available data within these two strips during that

period.

Me first two graphs of Figures 3 and 4 show the original altimeter sea-

surface height data along with geoid heights computed from the Goddard Space

Flight Center	 Ma ,.sh-Vincent geopotential model. It is evident that the

orbital bias error islarge, compared with the computed geoidal height

frequently exceeding 10 m or more.

'I1ie initial data preparation for each strip proceeds as follows:

Step 1. Select a hypothetical reference path through the middle of the strip

and project each data point onto the reference path along a line on

which the distance between the data point and the reference path is

minimum.

-ti-
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Step 2. Assign an arbitrary origin ou the reference path A. compute the great

circle distance for each data point with respect to this origin. This

step assiLilates the original altimeter data into a single set of

linear data as a function of distance.

•	 Step 3. Remove bad data poirts.

Step 4. For data which fall in a specified interval distance, compute and
T ^

remove a best-fit::ing linear function for each path. The results are

shown in the third graphs of Figures 3 and 4.

It should be pointed out teat during the last step any geoidal nr tidal

fluctuation whose wavelengths are longer than the spatial length is irretriev-

ably lost. Furthermore, any nonlinear orbit drift is not removed and will

affect the - ubsequent analysis. While any geoidal fluctuation whose wavelength

is greater than about 1200 km is supposedly included in the Marsh-Vincent geoid,

similar argument may not hold for the tidal fluctuation.

The characterietics of the GEOS- 3 data used for this analysis are

summarized in Table 1. The locations of the reference paths are also shown

in Table 1 as well es in Figure 1. The final data set resulting from this

preliminary preparation is then used for 	 the least -square space - time har-

monic analysis as described in the previous section in order to simultaneously

obtain the tides and the residual ocean geoid.



SOUTH-GOING STRIP

May 1975-Aug 1976

45 1) 1
(Newtoundlaud-Cuba)

94.b4°E-102.46'F.

NORTH-GOING STRIP

26

Apr 1975-Aug 197b

2929
(Puerto Rico-N. Carolln.t)

53.54'W-56.36'W

284km	 284ktn
265kn1	 265km

9.85m(SD+-4.::3m)	 -5.54m(51)+ 3.74m)

I%

TABLE 1. Characteriatice of G,F.0S-3 Data Urg ed for
Atlalwitm mid the Locations of Reference Paths

r,

,w5

.l. Number of paths ust-d

b. Duration

r. Total usable tlrtta
points (coverage)

d. R,u ► ge of equator
croes4tng anglers

e. Strip width
equator
30' latitude

f. Meat► offset from
geoid*

g. Me:u ► slope with
respect to geoid

It. Equator crorsestnr,
of reference grit h

i. Origin for 1 hwar
distance along, the
reference , path

i

-4. `)1 ►n/ 1000km	 1.000/ 1000knt	 +
(SD+-1 . 77m/ 1000kn ► )	 (SD+-1.39km/ 1000km)	 ts
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I
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55.280'°W	 62.1475'W	 I

	

49.238 7 °N	 12.8496°N
(Newfoundlaml)	 (N. of Trinidad)

* Kir-sh-Vincent Coddard Space F1 it;ht i'011t er geoid
+ Standard deviat tote
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Result of GEOS-3 Data Analysis

The present analysis teci.aique has a few arbitrAry yet important

variables which may produce different soli-tions for a given set of data.

These variables include (1) number of tidal constituents sought (in addition

to a geoid), ( 2) order of polynomial function representing s geoid as

well as tides, and ( 3) spatial length of data. While the first [tiro

variables are attributed to the usual convergence problem resulting from

incompleteness of both representation function and data, the third variable

is due to the removal of the orbital drift error as -lescribed in Step 4

in the previous section.

Since these varlables may significantly affect the convergence of the

solution, we allowed them to vary within limited range&.• $Qecifically,

analyses were performed for the following range of each variable:

1. Number of tidal constituents - 2 groups

1st Group: Geoid, M2 and O1 tides

2nd Group: Geoid, M2 O1 , S 2 , and K1 tides

2. Order of polynomJal - 4 groups

5th, 6th. 7th, ana 8th order .Chevychetv polynomials for both

geoid and tides

3. Spatial length of data

a) 4 groups for the south-going paths: 300 Km - 1,600 Km;

300 Km - 2,400 Km; 2,200 Km - 3,600 Km; and 300 Km - 300 Km

b) 1 group for the north-going paths; 1,000 Km _ 2,900 Km

In total, 32 different analyses were performed for the south-going paths,

and 8 for the north-going laths. An origin time for the entire data was

arbitrarily chosen to Le 00:00:00 GMT on January 1, 1975 so that all tidal

phases are referenced to this time.
i
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Incorporation of the orbital drift error into the normal equation (5)

was tested for both north- and sout'i-going data sets. When the orbital

drift for each path is expressed by a linear equation in distance, the

process generates additional 2N
i'	 P
unknowns where N is the total number of

paths used for analysis. The data preparation for this test, of course,

dial not include Step 4 described in the previous section. Test results

showed that the coefficients of the linear equation for orbital drift thus

obtained were almost identical to those obtained from Step 4. However, the

increased number of normal equations caused numerical instability for high-

order (7th and 8th order) polynomial representations of the geoid anti tides

I

due to the limited amount of input data. Therefore, this process was not

pursued any further.

It is impractical to present all 40 different sets of solutions in

this report; we present only a set of four different solutions for each

strip in figure-, 5 and 6. other solutions show similar tidal characteristics

without significant di f ferences. A statistical summary for all 40 solutions
,I

i

is shown in Table 2.

For a given spatial length of data it was found th.ir the geoid solutions
i

agree within 30 cm or less for all orders of polynomial and more or less

independent of the number of tidal constituents. Change in the spatial data

lengtl caused onl y "tilting" of the geoid, mainly because the length affects

the linear fitting (Step 4) during the data preparation in removing the

orbital drift errors.
i
j	 The residual geoids obtained from the analysis for both south- and north-

,	 going paths are plotted can the fourth graph of Figures 3 and 4. I:a:h soluti n	 `
ti

is compared with the simple arithmetic mean of the residual altimeter data.	 i

Ir both cases, the agreement appears to be reasonable.

1

u
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Whon the residual geoid thus obtained to added to the original Kirsh-

Vincent geoid, we obtain an "improved" geoid containing short wave length

features which are not included in the original geoid model. The "improved"

geoids are shown on the fifth graph of figures 3 and 4, and compared with the

Marsh-Vincent ones.	 It is intere.iting to note somewhat better correlation of

the "improved" geoid with bathymetric profiles. For the north-going paths.

the geoidal correction amounts to as much as 6 lit near the Puerto Rican Ironkh.

However. this large deviation nuty he partially due to a relatively short

Spatial data length aloll ), these paths.

We note from Figures 5 at.d 6 that the four solutions for tidal amplitudes

agree within about 10 cm in most cases except neat' margins due to familiar

edge effect. Agreement on phases is somewhat poor although consistent trends

are mit iceab le in all cases.

Figure b also shows the tidal amplitudes obtitined from the MODE deep-sea

gauge ( 7.etler et al, 1975).	 While all tidal amplitudes are within :tit order
	

1
t

of magnitude not exceeding; 40 cm, the agreement with the MODE data is rather 	 t

poor particularly for M,, tide.	 It is disturbing to note that S 'j amplitude is
	 9

bigger than that of M,, in figures 5 and 6. Considering the tidal inducing

force, we expect M., to have creator anlplitutie th.ln S 2 miles:; there exists an

unusual spectral feedback between the two con.-aituents in the data are.t. 	 It

is more likely title to the insufficient quits(ity and i cLiracy of alt imeter data.

on the other hand, ane !;round truth data II'oln deep Sea meaSUrement .•,m

be incorporated in the normal eq%itions using; the l.acrrtngian imiltiplier tech-

nique (Wort et al. 1977).	 This technique was riot. applied in this analysis

mainl y hccallst` t ht' present pllt'poNe is to compare the Iwo d i l t e • rent s0 l lit iOlIS.

1

f



a	 ^

It is anticipated that as more data are accumulated from CEOS-3 and

future SFASAT series satellites with improved tracking technique, the dis-

crepancy will resolve eventually. The main emphasis here must be that the

analytic- method presented here does produce a consistently converging solution,

within expectation, in spite of limited quantity and quality of the altimeter

data.

1.	 Mapping the ocean tides and geoid using satellite altimeter data

is indeed possible in a large regional scale provided that a sufficient amount

of data and reasonable altimeter accuracy are attainable.

From the viewpoint of economy and available data density, the satellite

altimeter provides the most abundant and direct measurements. The satellite

altimeter data can best be utilized in obtaining a geopotential model when

the data are reduced simultaneously for a geoid and for a set of tidal surfaces.

Lar,ge residual errors which are present in available gravity models are mainly

attributed to: 1) exclusion of the tidal perturbation and, 2) ineffectiveness	

r

of the spherical harmonic expansion technique in describing; localized gravity

anomalies. These two factors, in addition to the measurement errors, essen-

tially dictate the upper limit of the residuals of a gravity model, which may
	 i

be on the order of a few meters or less. Some of the recent gravity models are

already approaching this limit.

Considering; the large number of tidal constituents, the regional treatment

of the altimeter data appears to be the best approach in deriving both the

static and the dynamic geopotential models. The entire ocean area may be

divided into about a dozen partially overlapping region. For each region,

geoid and tide models will be derived from the altimeter data by specifying;
1

a functional surface for each model whose resolution can he much higher t h.ln

those attainable b y the spherical harmonic technique.
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..	 The orerutl. • gr. • t.l :an hr t lilt , roved st t;nlf il'4tt, 1v thcough cl da l

snaIvetts.	 in a strict sense, ttie ocetut geoW ohtattied frt+ m tItr .eltt "kit air

data is .t ttnr • -ine • .tt'lnnt oct • xn surface toltogi-a tiv with tempect to the

spheroid.	 Me,efoet` the ocean goo td ,tote ierive,I, even aItvu ,1.141

corrections, tast y •till tit- :.tntamittatv.I by Iocaltred rlrv.ttt.tns created
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t
wo m4y hope` that its long - term effect on the gold would not be• sit;

ntficartt .	 tit addition, stn: e t tit , ,;oust rovitic current s occupy only .t

snu11 portion of the ocean. the overall residual amplitude of tt geotd cats

he .odu:t`.l ttt :i.;n ► tit'.tntIV IeS4 than 0110 nu • ter when tides are tulle

accounted for
i

r
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