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ABSTRACT

An electron bombardment argon ion source was used to ion etch

Various metals and fluoropolymers. The metal and fluoropolymers

were exposed to	 5 to 1. 0) keV Ar ions at ion current densities of

(0.2 to 1. 5) mA/cm 2 for various e.&posure times. The resulting sur-

face texture is in the form of needles or spires whose vertical dimen-

sions may range from tenths to hundreds of micrometers, depending

on the selection of beam energy, ion current density, and etch time.

The bonding of textured surfaces is accon,pitshed by ion beam texturing

mating pieces of either metals or fluoropolymers and applying a bonding

agent which wets in anti al'OUnd the microscopic cone-like structures.

After bonding, both tensile and shear s'rength measurements were rude

on the samples. Also tested, for comparison's sake, were untextured

and chenjically etched fluoropolymers. The results of these measure-

ments are presented in this paper.
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INTRODUCTION

Many •Methods have been studied to improve the strength of adhe-

sive bonds to f luoropolymer!s. A niong the various methods investigated

include the modification of the polymer surface by chemical treatment, 1

rf sputtering processes, 2, 3, 4 glow discharges metal evaporation, 6 and
0	

others. ? Among these methods. the sodium etching method has been
a
W	 adapted industrially. Some researchers have investigated the sputtering

or surface texturing of f 1llUropo IN , tile rs using rf and ion bean] sputtering. 8

This investigation uses an ion beam to etch various metals and fluoro-

polymers for the purpose of improving the adhesive bond strength of the

materials when joined to themselves using all 	 resin. A nieasu: e-

ment of the tensile and shear strength of the epoxy -fluorop-)ly ill er inter-

face was use,J to characterize the bond strength. The results of this

study are presented herein.

APPARATUS AND PROCEDURE

A 30 cm argon ion source  was used to ion beam texture the fluoro-

polymers and metals. The source, developed from electric propulsion

technology, uses a hollow cathode to provide the ionizing current for the

ion beam source. Beam extraction is accomplished by a di.ihed, two-

grid ion ( , ptics system Neutralization of the beam is achieved by either

the use of a plasma-bridge neutralizer, 99 10 using an argon gas cathode,

or operating the source grounded and letting secondary electrons, re-

leased by ion bombardment of the vacu im facility walls, neutralize the

beam .

The vacuuia facility, 1. 5 m in diameter and 7.3 ni long, is sufficient-

ly large to minimize backsputtered facility material from contaminating
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the experiments. While the ion source is operating, a background pres-

sure of 4x10 -5 torr (5.3x10 -3 Pa) is maintained.

The ion source is capable of operating at beam eneeries between

300 and 1500 eV. For the fluoropolymer samples the source energy was

750 eV. The metal specimens were sputter etched at ion energies in thr

range 950 to 1200 eV (see table V. The fluoropolymers and graphite

samples were placed in a holder and the surfaces to be ion beans textured

were oriented normal to the ion beans at a location 23 cm from the source

grid plane. The nickel, stainless steel and titanium sample surface were

also placed in the same position as the fluoropolymers, however, an addi-

tional tantalum target was located above and at a 45 0 angle relative to the

metals to provide seeding and sustain surface texturing. 11

Four fluoropolymers, fluorinated ethylene propylene (FEP), polytelra-

fluoroethylene (PTFE), perNuoroalkoxy (PFA), and polychlorotrifluoro-

ethylene (CTFE) were first textured and than bonded to themselves using

TRA-CON, Inc. TRA-CAST BA-2114 epoxy resin. Target samples were

0. 635 cm diameter rod 4. 45 em lone; for FEP, 1.27 cm rod 4. 45 cm long

for PFA and 0. 635 cnl thick sheet for PTFE and CRFE samples. These

samples were tapered such that the bonded area was less than the cross

sectional area of the specimens themselves. The geometries for the

graphite samples (0. 635 cm carbon are rod) was similar to the fluoro-

polymers. Nickel, titanium (-6A t -4V), and stainless steel type 304 sam-

ples were made of flat stock 0. 317 cin thick. It should be noted that all

of the samples (fluoropolymers and metals) bonded together for this study

were bonded using the Tra-Cast « low viscosity epoxy resin. The sails -

ples were left to cure for the manufacturer's suggested '12 hours at room

temperature to attain maximum bonding strength.

i^
1
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Tensile and shear strength tests were used to characterize the

bonding strength of the textured surfaces. Measurements were made

using a Wiedemann-Baldwin tensile testing machine using a strain rate

of 0. 38 mm/minute. The load was applied until the ultimate strength of

the epoxy-material interface is reached.

All data presented herein are the average results of testing at least

three samples.

RESULTS AND DISCUSSION

Fluoropolymers

Shown in figure 1 are the tensile and shear strengths of bonded PTFE

using an epoxy resin after the surface for bonding was prepared in differ-

ent ways. The weakest bond was, of course, that of the untextured or

untreated samples. PTFE was also chemically etched using sodium/

napthalene (Matheson's Poly Etch) The results of bonding the PTFE

after a chemical etch are also shown in figure 1. The duration of chem-

ical etch and the delay between etching and bonding significantly affects

the oond strength as shown in figure 1. The bond strength of PTFE, ion

beam textured for 30 --ninutes prior to bonding, is also shown in figure 1.

Since the change in the surface structure of textured PTFE allows a pre-

dominatly mechanical rather than a chemical bond 3, 12 there should be

negligible time dependance on when the bonding takes place. In this case

the ion beam textured surfaces were bonded together 20 days after they

were ion beam textured. As shown in figure 1 the tensile and shear

strengths of the epoxy resin ion beam textured surface are 46 and 100

percent stronger than those of the respective chemically etched surface.

Figure 2 shows the tensile and shear epoxy bond strengths of four

different types of fluoropolymers after ion beam texturing at the same

kkw	 --	 ---	 -	 -
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conditions. PTFE, FEP, and PFA exhibit about the same shear and

tensile strengths when bonded with the epoxy resin. CTFE exhibited

the highest bond strengths. As can he seen in the scanning electron

photomicrographs of figure 3, the surface structure of ion beam textured

CTFE shows more widely spaced cone like structure than do the other

ion beans textured fluoropolymers, which exhibit closely spaced grass

like structure.

To investigate the effect of ion beam exposure time on the tensile

strength of fluoropolymers PTFE samples were exposed for various

durations. The results of these exposure times are shown in table I.

Short exposure times were found to result in a vast improvement over

the untextured PTFE tensile strength. The maximum tensile strength

occurred with an exposure of 30 niiuutes. The shortest duration exposure

(5 sec at 1200 eV, current density of 1. 3 niA cni 2 ) resulted in epoxy-

material bond tensile strengths of 1060 psi. Scanning electron photo-

micrographs shown in figure 4 for (lie various exposure times indicate

a change in surface structure and the formation of cones for in exposure

time as short as 15 seconds. Whether or not the improved bonding is

strictly due to a structural change at the surface or is accompanied by

some changes in the surface chemistry 12 warrents further investigation.

The ion beans textured fluoropolymers exhibit properties useful for

other potential applications. Some of these applications include the capa-

bility of writing on the surface with a pen or pencil, printing on the tex-

tured fluoropolymer, decal applications or bonding using adhesive tapes.

Another application, which is presently being evaluated, is the use of

textured fluoropolymer filins as encapsulants for a solar cell rising sili-

cone adhesives.
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Metals

Nickel, titanium (-W-4V), stainless steel type 304 and graphite

acre vxposed at the beam energies and current densities shown ill 	 I.

To obtain some surface structure oil 	 metals by texturing, it was nec-

essary to expose the metals fo, • periods of three to four hours. For nickel

or tit:uliunl, the structure forincd ;after four hours of texturing was not

sufficiently large or of the proper roughness to produce ali increase in

bonding strength over Ilntestured nickel or titan1Ul11 (see fig. 5). Texturrd

stainless steel and graphite showed large increases in shear strength far

stainless steel and equally large increases ill 	 strength for graphite

when compared to Ulltextured sampivs. These Vallles are shown ill

 5. The shear strength of the textured stainless steel bond improved

by a factor of 3 over untextur• ecl stainless steel. Shown in figure 6 is a

scanning electron photo ill icrog I' l l ph of the textured graphite and stainless

steel surfaces. 'Though tile structure of each textured surface appears

to be different, apparently there are enough undulations generated by tex-

tu ► • ing to cause an improvement ill 	 strength.

CONCLUDING REMARKS

All lase fluoropolyn)ers tested showed that ion heals) texturing produced

superior bond strengths, tli um could be achieved with conventional surface

treatments. CTFF having a widely spaced structure after texturing had

the best bold strc-ngths when compared to the other fluoropolymers. Wkten

the bond strength of textured PTFE was compared to the bond strength of

a sodiutiijnapthalene surface treatment, ion beam lextui • ill" was fouled to

produce a superior epoxy bond. It was also shown that ion beam textured

surfaces cal) be stored for extended periods of time prior to bonding with-

out the loss of bond strength typically with chc mical etch,-lets.

V-_
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Textured fluoro ►polymers provide a rough surface which may be use-

ful for other applications which include writing or printing, decal appli-

cations or bonding using tapes, and as a banded encapsulant for solar

cells.

Textured stainless steel and textured graphite were found to have

superior bonding strengths when compared to untextured stainless steel

and graphite. Exposure to an ion beam did not sufficiently texture nickel

or titanium (-6A1-4V) and therefore did n o t change the bend strength of

these metals.
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