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FOREWORD

Sikorsky Airéraft, a Division of United Technologies Corporation, has
developed programs for use in a hand-held computer that enable a CH-53 heli-
copter pilot to determine optimum flight conditions for minimization of fuel
consumption or takeoff and landing noise., The work was accomplished under
contract NAS1-14980 for the National Aeronautics and Space Administration dur-
ing the period from July, 1977 to June, 1978.

A portable, programmable, printing calculator with magnetic card inputs
of the developed programs was delivered, with this report, in fulfillment of
the contract.

NASA technical representatives were Mr. Jerry Keyser and Mr, William
Snyder. The author acknowledges the specilal efforts of Sikorsky engineers
Phillip Gold, who was responsible for the programming and user documentation,
and Larry Levine and Anthony Belloli, who performed the takeoff and landing
noise analyses.

idii



SUMMARY

The objective of this project was to take advantage of currently avail-
able, low-cost computer technology to demonstrate the feasibility of providing
the helicopter pilot with onboard capability to rapidly establish optimum
flight conditions for minimization of fuel consumption or takeoff and landing
noise., Programs for this purpose were developed specifically for the CH-53
helicopter and the Hewlett Packard HP-9T7 calculator, but the concepts have
general application.

Eight individual programs were developed, this number being the best com-
promise between the handling convenience of few and the accuracy and input/out-
put simplicity of many. These programs determine: (1) power required, (2) fuel
flow, (3) best range conditions, (4) best range performance, (5) best endurance
conditions and performance, (6) maximum sustained speed, (7) minimum noise take-
off conditions, and (8) minimum noise landing conditions.

Typical program inputs are gross weight, temperature, and wind. Typical
outputs are optimum airspeed, optimum altitude, optimum rotor rpm, and the
corresponding optimized performance.

Up to fifty percent fuel savings can be achieved by operating at optimum
flight conditions, the exact saving depending on the initial, non-optimum con-
ditions and on applicable flight envelope restrictions. Most of this saving
is due to altitude and airspeed optimization, with up to 5% contributed by
optimizing rotor rpm.

Takeoff noise is minimized by climbing at low rotor rpm and maximum
achievable climb angle. Landing noise is minimized in autorotation at low
rotor rpm and a descent angle of about eleven degrees. Noise reductions of 10
dB EPNL can be realized compared to typical non-optimum climb and descent
procedures,

Optimum flight conditions are defined without constraining them by CH-53
flight envelope restrictions. This approach was taken in order not to penalize
performance potential by constraints that may change or that may not apply in
selected situations. The impact of current CH-53 flight envelope restrictions
is discussed.
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INTRODUCTION

As the helicopter continues to mature into an important element of the
world transportation system, it faces increasing demands for safety, economy,
energy conservation, and public acceptance. The National Aeronautics and Space
Administration has responded to these demands with an aggressive Civil Helicop-
ter Technology Program that has sponsored research in the areas of passenger
acceptance, noise and vibration reduction, gust suppression, fuel conservation,
improved handling qualities, and air traffic control,.

The Helicopter Mission Optimization Study described in this report is a
part of the NASA Civil Helicopter Technology Program. Its objective is to
demonstrate the feasibility of using low-cost, portable computer technology to
help a helicopter pilot optimize flight parameters to minimize fuel consumption
and takeoff and landing noise.

The wide operating envelope of the helicopter makes it particularly sen-
sitive to flight optimization. This envelope includes a speed range down to
zero and the variable of rotor rpm, neither of which is available to the fixed
wing aircraft.

The benefits achievable from optimizing helicopter flight parameters are
significant and relatively easy to identify. The more difficult problem is
how best to put flight optimization into practice. Methods for doing so range
from providing the pilot with charts of the type found in flight manuals, to
the ultimate of a full autopilot that senses ambient conditions and automati-
cally adjusts flight controls to achieve a specified optimization goal. Neither
of these extremes is practical, the former because continual in-flight reference
to a volume of charts is awkward, the latter because low-cost automatic systems
are not currently available nor compatible with present piloting or air traffic
contrcl procedures,

The approach taken in this study i1s a cost-effective compromise between
these two extremes. The pilot flies the helicopter and is provided with on-
board capability to quickly determine optimum flight parameters based on a few,
readily available inputs to a small, portable computer.



CONCEPTUAL PROGRAM DESIGN

Consistent with the objective of enabling the pilot to rapidly establish
and implement optimum flight conditions, program operation is kept as simple
and straightforward as possible. Inputs and outputs are limited to those with
a significant effect on performance. Inputs are readily available to the pilot
and outputs are easily put into practice. The resulting program logic is shown
in Figure 1.

Primary inputs are the desired optimization goal, gross weight, air
temperature, and wind. Primary outputs are pressure altitude, airspeed, rotor
rpm, and corresponding performance. Constraints can be imposed by specifying
one or more of the primary outputs as inputs. For example, pressure altitude
may not be an available option due to air traffic control restrictions. All
inputs are available to the pilot, from pre-flight information, instrument
observations, or communication with ground control.

Center of gravity was not included as an input because it has relatively
small performance impact (less than 2% on power required - see Assumptions and
Limitations) and also because it is not readily determined, particularly as
fuel is consumed or payload is redistributed.

Calculations and trending were performed using customary units of meas—
urement. Program inputs and outputs are expressed in customary units rather
than SI (metric) units to be compatible with CH-53 instruments and publications.
(The figures in this report are plotted with primary scales in SI units and
secondary scales in customary units, consistent with NASA report standards. )
True and indicated (calibrated) airspeeds are generally provided as alternative
inputs, and both are presented when airspeed is an output. Temperature can
generally be input either in degrees F or degrees C. Where possible, standard
ISA temperature at the specified pressure altitude is automatically provided as
an optional input. '

The optimization is divided into eight individual programs to simplify
input and output while providing acceptable accuracy within the 224-step pro-
gramming capacity of the Hewlett Packard HP-97. The eight programs are power
required, fuel flow, best range conditions, best range performance, best en-
durance conditions and performance, maximum speed, minimum noise takeoff, and
minimum noise landing.

Each program is defined by a maximum of two magnetic cards. After
loading in the computer, the title magnetic card is inserted in the face of
the computer to label input and output parameters. Inputs are keyed in and the
desired output is designated. Keyed-in inputs appear in che display for veri-
fication before entry and are recorded on paper tape after entry for future
reference. Outputs appear in the display and are also printed out on paper
tape.

Program organization and operation is described more fully in the section
entitled Detail Program Design and in the appendices.
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PERFORMANCE ANALYSES

This section describes the methodology used to define the following
performance characteristics:

Power required

Minimum fuel consumption - range
Minimum fuel consumption - endurance
Maximum speed

Noise methodology

Takeoff noise

Landing noise



Power Required

CH-53 power required is programmed in a non-dimensional format that im-
proves accuracy and reduces the required number of computer steps compared
with a dimensional approach. In particular, it facilitates treatment of rotor
rpn variation. This format consists of main rotor power coefficient versus
advance ratio for a range of weight coefficients (Figure 2). Total power is
found by dimensionalizing Figure 2 at the appropriate gross weight, airspeed,
rotor rpm, and air density and multiplying the result by the compressibility
correction (k ) of Figure 3 and the tail rotor correction (k, ) of Figure k.
Constant accegsory power of 147 hp is added and an overall méchanical effi-
ciency of 99.5% is applied:

SHP = (Power from Figure 2 x k, x k _ + 147) x 1/.995

Correlation of the resulting power required with the data used to develop
CH-53 flight manual performance is shown in Figures 5 and 6.
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Minimum Fuel Consumption - Range

Flight conditions resulting in minimum fuel consumption for a given
range were developed by combining the output of the power required analysis
with the engine fuel flow performance illustrated in Figure 7. The trends
and relationships thus developed were then programmed using curve-fit tech-
niques.

Specific range was used as the measure of fuel efficiency for a given
range, This parameter is equal to unit distance per unit of fuel weight and
is expressed as kilometers per kilogram in metric units and nautical miles
per pound in customary units.

Specific range sensitivity to airspeed is illustrated in Figure 8 for a
range of gross weights and altitudes in zero wind. Optimum true airspeed falls
in the range from 66 to 68 m/sec (128 to 132 knots). With a headwind, best
range airspeed increases; with a tailwind, it decreases (Figures 9 and 10).

As shown in Figures 11 and 12, best range rotor rpm varies from 90 percent or
less at low altitude and gross weight to over 100 percent at high altitude and
gross weight.

Figure 13 shows the best achievable specific range as a function of
gross weilght and altitude for zero headwind and ISA temperature.
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Minimum Fuel Consumption - Endurance

Flight conditions resulting in minimum fuel consumption for a given en-
durance were developed by combining the output of the power required analysis
with the engine fuel flow performance illustrated in Figure 7. The trends
and relationships thus developed were then programmed using curve-fit tech-
niques.

Specific endurance was used as the measure of fuel efficiency for a given
endurance, This parameter is equal to unit time per unit of fuel weight and is
the reciprocal of total fuel flow. It i1s expressed as hours per kilogram or
hours per pound.

Specific endurance sensitivity to airspeed is illustrated in Figure 14
for a range of gross weights and altitudes. Optimum true airspeed (Figure 15)
ranges from 34 to 48 m/sec (65 to 95 knots). Unlike for specific range, head-
wind does not influence best endurance conditions except that it changes the
relationship between airspeed and ground speed. As shown in Figures 16 and 17,
best endurance rotor rpm varies from less than 80 percent to over 100 percent
depending on gross weight and altitude,

Figure 18 shows the best achievable specific endurance as a funection of
gross weight and altitude for ISA temperature.
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Maximum Speed

Maximum sustained airspeed is limited by one of three independent cri-
teria: power available, blade stall, or structural design.

Power limited speed occurs at the match of power required and available
normal rated power. It was defined by calculating power required versus air-
speed as a function of gross weight, altitude, and temperature, and super-
imposing the T6L4-413 power available defined in Figure 19. Two-engine opera-
tion is assumed. The CH-53D transmission limits per-engine continuous power
to 324k metric hp (3200 hp).

Blade stall manifests itself as increasing control system loads which are
registered on the cockpit cruise guide indicator. The onset of stall is a
function of the retreating blade angle of attack, which in turn depends on the
blade 1lift requirement (gross weight), retreating blade speed (airspeed and
rotor rpm) and air density (altitude and temperature). The relationship be-
tween these parameters can be approximated as:

Retreating blade angle a2 k x GW
air density x (tip speed - airspeed)2

where k is a constant for a given helicopter.
Solving for alrspeed and defining a new constant, ks representing the

onset of stall, results in: ts

v = tip speed - k GW 1/2
st st T T
density ratio
The constant, kg, is derived empirically from measured control system
load characteristics, For the CH=-53, k = 0.8978 for spéed units of meters/
second and weight units of kilograms. kSt = 1,17T45 for speed units of knots
and weight units of pounds).

Structurally limited speed, or red-line speed, is that corresponding to
the dynamic pressure for which the aircraft structure is designed and sub-
stantiated. Since it represents a constant dynamic pressure, red-line speed
is a constant indicated (calibrated) airspeed, which means that the correspon-
ding true airspeed varies as the inverse root square of the density ratio.

Power limited speed was defined as a function of gross weight, altitude,
temperature, and rotor rpm and the resulting trends were programmed using curve-—
fit techniques. Stall and structural speed limits were programmed analytically
using the above described relationships. The maximum speed program outputs the
lowest of the three speeds for the flight condition specified.

Typical maximum sustained speed capability is depicted in Figure 20 for
ISA conditions and 100 percent rotor rpm.
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Noise Methodology

Helicopter external noise arises from three basic sources: +the main
rotor, the tail rotor, and the engines. The relative dominance of a particu-
lar source depends on the helicopter configuration, the flight regime, and the
observer position.

Main rotor noise consists of rotational harmonics starting at the
fundamental blade passage frequency (18.5 Hz for the CH-53) plus a broadband
distribution at higher frequencies. Tail rotor noise has a similar signature
except that it is shifted up in frequency due to the higher rpm.

Engine noise 1s basically broadband in character, with levels peaking
between 200 and 500 Hz. For the CH-53 there 1s also a narrow angle forward of
the engine inlet where compressor tones can be heard at 8000 Hz.

Human hearing is most acute in the frequency range from 500 to 4000 Hz.
For the same pressure level, higher frequency noise is generally more annoying.
To measure annoyance, the observed noise pressure frequency spectrum is
weighted according to the sensitivity of the human ear. This results in units
of Percieved Noise Level, PNL. Annoyance is also a function of exposure time.
The time factor is accounted for by the Effective Perceived Noise Level, EPNL,
which is the PNL integral over the exposure period in 1/2-second intervals.
EPNL is the unit of noise measurement accepted by the FAA for aircraft certif-
ication. A complete discussion of EPNL and its method of calculation is
presented in Reference 1.

The maximum noise produced by an overflying helicopter is observed
directly under the flight path (ignoring wind effects). Although overall
community noise impact depends on the total noise footprint, it is sufficient
for the purpose of establishing minimum nolse procedures to trend noise along
the flight path centerline.

A point on the ground 1158 meters (3800 feet) along the flight path
centerline from the takeoff (or touchdown) threshhold was selected as the
noise measurement point. This point corresponds to the observer position when
the helicopter is 122 meters (400 feet) overhead during a six degree climb or
descent angle, which is the current FAA criterion.

CH-53 flyover noise was predicted by the Sikorsky Generalized Helicopter
Noise Model described in Reference 2, This model calculates the PNL time
history and resulting EPNL generated by the combination of main rotor, tail
rotor, and engines.

Level flight and climb noise prediction 1s relatively straightforward.
Descent noise prediction is a greater challenge because of interaction between
the rotor and its own wake.
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During some descent conditions, the main rotor flies into its own wake.
The strong circulations present in the wake, particularly in the wound-up tip
vortices, induce high local blade angles of attack in portions of the rotor
disc, This in turn induces sharp fluctuations in blade section profile drag
which are observed in the far field as impulsive noise. To treat this
phenomenon, a rotor performance program was run with a variable inflow wake
representation, and the resulting profile drag force distribution was input to
the rotor noise model. Figure 21 illustrates the typical distribution of local
blade drag loading for descent angles of three, six, and nine degrees. It is
apparent that the six degree descent produces the greatest drag perturbations.

Figure 22 shows typical correlation of predicted level flight flyover
PNL with that measured during CH-53 flight tests at Wallops Island Flight
Center in August of 1977. Predicted noise is slightly higher, resulting in an
EPNL of 100 4B compared to the observed level of 98.5 dB. Climb and descent
measurements exhibited run-to-run variation due to difficulty in controlling
flight path (radar track data were not available for correction purposes).
However, the average measured six-degree descent EPNL was within one dB of the
predicted value.
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Figure 21,
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Blade Profile Drag Distribution at Various Descent Angles for
GW = 19050 kg (42000 1bv), Airspeed = 49 m/s (95 kt).
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Takeoff Noise

The noise produced by the CH-53 during takeoff climbout increases with
power level and decreases with distance to the observer. Steep climb angles
require high power but increase the observer flyover altitude. The distance
attenuation is more significant than the higher power, resulting in minimum
observed noise at maximum achievable climb angle (see Figure 23).

Minimum noise is also achieved with low rotor rpm., This sensitivity is
shown in Figure 24 in terms of advancing tip Mach number, which includes the
effect of temperature. The normal rpm range of 95 to 105 percent represents
an EPNL variation of about one dB.

Achievable CH-53 climb angle with 30-minute power is shown in Figure 25
as a function of gross weight and altitude. It ranges from about 8 degrees at
maximum gross weight and high altitude to about 18 degrees at low gross weight
and altitude. Because acceptable climb angle may be constrained to less than
the power-limited capability by passenger comfort criteria or air traffic
control considerations, the takeoff noise optimization program provides for
optional input of a specified climb rate., Optimum rotor rpm is pre-loaded as
a minimun of 100 percent; other values can be optionally input.

Climb angle is redefined in terms of the more readily controlled air-
speed and climb rate parameters for output to the pilot.
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Landing Noise

The noise produced by the CH-53 during landing descent remains relatively
constant for descent angles of up to about six degrees, beyond which it
decreases sharply with increasing descent angle (see Figure 26). The peak
noise level at six degree descent angle is the result of rotor-wake inter-
action.

The steepest descent angles are achieved in autorotation. However, auto-
rotation with the collective pitch setting at its lowest position results in
high rotor rpm. (At 19050 kg (42000 1b}, for example, trim rpm at minimum
collective setting is 117 percent.) Descent noise is sensitive to rpm, as
shown in Figure 27. The result is that minimum noise is realized at somewhat
less than maximum achievable descent angle by increasing collective pitch to
reduce rotor rpm. The sensitivity of noise to descent angle and the
corresponding trim rpm is shown in Figure 28.

Figure 29 shows the autorotative descent angle for minimum noise as a
function of gross weight for several altitude and temperature combinations. A
minimum normal rpm of 95 percent is assumed. Because acceptable descent angle
may be constrained by passenger comfort or air traffic control criteria, the
landing noise minimization program provides for optional input of a specified
descent rate and accounts for the appropriate power required to achieve it.
Optimum rotor rpm is pre-loaded as a minimum of 100 percent; other values can
be optionally input.

Descent angle is redefined in terms of the more readily controlled air-
speed and descent rate parameters for output to the pilot.
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DETATLED PROGRAM DESIGN

The basic design objective of the optimization programs is simplicity of
input/output combined with acceptable accuracy. The primary constraint is the
224h-step programming capacity of the Hewlett Packard HP-97 computer. These
factors resulted in the following design criteria:

1l. Subdivision of the overall optimization into eight individual pro-
grams, each requiring separate loading into the computer and with
its own unique input/output format.

2. Use of curve-fit techniques to model previously calculated perform-
ance trends rather than reliance on fundamental analytic methodology.

3. Elimination of variables that have relatively small effect on per-
formance.

The first criterion, division into eight individual programs, permits
achievement of a better-than-3-percent accuracy while keeping the input pro-
cedures for each program simple and logical, Its drawback is that card mani-
pulation is required to change from one program to another. While constantly
improving calculator technology would undoubtedly permit future concentration
of all the programs into a single program setup, thereby reducing the require-
ments for card manipulation, this approach would result in a more complex in-
put/output format to accommodate the same options and variables, Short of a
prompting feature, in which an alpha-numeric display could be used to guide
the pilot through the operating procedure, such an approach is felt to be less
desirable than the one developed for the HP-9T.

The second criterion, use of curve-fit techniques to model previously
calculated performance trends, greatly reduces the number of program steps
and eliminates inputs such as rotor geometry and parasite drag that would be
required for a purely analytical approach. Its drawbacks are that it re-
stricts the optimization to a given helicopter model and that configuration
variations such as external load drag cannot easily be treated. These draw-
backs might be eliminated when a more powerful computer becomes available, but
curve fitting is the only practical approach using currently available, low
cost computer technology with reasonable program subdivision.

The third criterion, elimination of variables with relatively small ef-
fect, minimizes both the programming requirements and the input complexity.
An example of an eliminated variable is center of gravity position. As dis-
cussed under Assumptions and Limitations, the full CH-53 center of gravity
range was found to account for less than a two percent variation in power
required, with an even smaller effect on optimum flight conditions. Input
variables are limited to gross weight, airspeed, rotor rpm, pressure altitude,
temperature, headwind speed, and climb or descent rate.
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The eight individual programs, labeled A through H, are listed below
with their inputs and outputs. Parentheses indicate optional inputs.

Program Inputs Outputs
A. Power Required GW,ALT,T,TAS(IAS),NR SHP,Q
B. Fuel Flow SHP,ALT,T,TAS (IAS), NE,

Q, NR FF

C. Best Range Conditions GW,(ALT),T(ISA),HWIND ALT,TAS,IAS,NR
D. Best Range GW,ALT,T ,HWIND SPR
E. Best Endurance GW, (ALT),T(ISA) ALT,TAS,IAS,NR,FF,SPE
F. Maximum Speed GW,ALT,T(ISA),NR TAS,TAS
G. Minimum Takeoff Noise GW,ALT,T,(ROC),(NR) ROC,TAS,IAS ,NR,EPNL
H. Minimum Landing Noise GW,ALT,T,(ROD),(NR) ROD,TAS,IAS,NR,EPNL

Seven of the eight programs require the loading of two magnetic cards,
one for the program itself (A-1, B-1l,..) and the other for the necessary data
(A-2, B-2...). The exception is the Best Range Program D, which is complete
on a single card. The first (program) card in each case is labeled with input
and output locations and is inserted into the face of the computer after load-
ing. The cards are illustrated in Figure 30.

Detailed descriptions of each program, including equations, data constants,
and listings, are presented in Appendix I.

User instructions are presented in Appendix II in a stand-alone format
that does not require reference to other parts of this report.
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ACCURACY

Program accuracy is estimated to be generally within three percent. Of
this potential error, about half is due to simplifying assumptions in the
performance analyses and the other half to curve-fit approximations. The power
and fuel flow methodology is generally more accurate than the noise methodology,
which is a more recently developed discipline.

A three percent accuracy is more than adequate for the objectives of the
optimization programs. Because the optimal operating conditions tend to be
maxima or minima on performance trends, the three percent potential error in
flight condition generally represents a significantly smaller error in abso-
lute performance. For example, a three percent error in speed for best range
(about 2 m/sec or 4 knots) corresponds to only about 1/2 percent error in
achieved specific range (see Figure 8),

Accuracy could be improved by expanding the performance methodology or by
applying more complex curve-fit techniques. However, the increase in program
complexity and user workload that this would entail are not felt to be warran-
ted by an increase in accuracy that probably cannot be matched by pilot input
accuracy or control capability.
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ASSUMPTIONS AND LIMITATIONS

The performance analyses are subject to simplifying assumptions that are
based on a realistic compromise between complexity and accuracy.

No Sensitivity to Center of Gravity

The variance of CH-53 power required between maximum aft and maximum
forward center of gravity is less than two percent, varying typically from
about one percent at 52 m/sec (100 knots) to 1/2 percent at 77 m/sec (150
knots). For the analysis, the most adverse center of gravity is assumed,
consistent with flight manual data. '

Constant Parasite Drag

Aside from the variation of drag with speed, which is inherent in the
flight test data used to establish the non-dimensional power required, parasite
drag is assumed to be constant, representing a given aircraft configuration.

The power required to overcome parasite drag accounts for up to 40 percent of
total power at high speed. This percentage reduces to about 10 percent at best
endurance speed. Therefore, as much as a 10 percent drag change affects total
power required by only one to four percent. This tolerance more than covers
typical external configuration variation. Obviously for very large drag changes
such as for external 1ift of bulky cargo, the optimization data require
modification.

Constant Power losses

Accessory power requirements consistent with flight manual performance are
assumed. No penalty for additional avionics, air conditioning, or anti-icing is
assessed. Although potential additional power demands will degrade absolute
performance, they will not significantly change the flight conditions for best
performance.

No Sidewind Correction

Only headwind and tailwind corrections are accounted for. Sidewinds must
be treated by applying their headwind or tailwind component. The effect of wind
is limited to 1ts impact on the relationship between airspeed and ground speed.

CH-53 Flight Limitations

The flight limitations of the CH-53 itself must be superimposed on the
flight optimization, which is unconstrained. These limitations include the
following:

Maximum gross weight = 19,050 kg (42,000 1b)

Maximum ceiling: no absolute limit except as imposed by power
or by availability of oxygen equipment.
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Maximum sustained airspeed: as defined by Program F.
Allowable rotor rpm variation:

normal: 95 to 105 percent
maximum: 125 percent

minimum: Below 95 percent subject to acceptable degradation
of avionics and system torque limitations. Also
as may be considered acceptable for recovery follow-
ing loss of power.

Appendix III discusses the impact of current CH-53 flight limitations on
optimum performance.
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RESULTS

Programs were.developed for use with the Hewlett Packard HP-97 calcula-
tor that permit a CH-53 pilot to rapidly determine optimum flight conditions
to minimize fuel consumption or takeoff and landing noise.

The improvement in fuel consumption or noise achievable with flight op-
timization depends on the initial, non-optimum conditions. Typical improve-
ments are shown in the following table:

Typical Fuel Savings for 14512 kg (32000 1b) and ISA Zero Wind

Initial Condition: T7 m/sec (150 kt) at 610 m (2000 ft), 100% Ng
For Given Range:

Fuel saving from change to best airspeed of 66 m/sec (128 kt) 5%

Fuel saving from chanlge to best altitude of 3932 m (12900 ft) 12%
Fuel saving from change to best rotor rpm of 95% 3%
20%

For Given Endurance:

Fuel saving from change to best airspeed of Lk m/sec (86 kt) 32%
Fuel saving from change to best altitude of 3627 m(11900 ft) 8%
Fuel saving from change to best rotor rpm of 96% 1%

41%

As shown, for the .initial conditions assumed, a 20% fuel saving for
given range and a 41% fuel saving for given endurance are achievable with
flight optimization. Most of these savings result from airspeed and altitude
optimization, with the last few percent contributed by rotor rpm tuning.

Fuel savings achievable as a function of initial flight conditions are
shown in Figure 31 for ISA and zero wind. At light gross weight and initially
high speed, savings of over 50 percent can be realized.

At the same typical gross weight of 14512 kg (32000 1b), takeoff noise
can be reduced by seven dB EPNL by climbing at optimum rotor speed and climb
angle compared to a typical six degree climb at 100% rpm. Compared to a six
degree descent angle at 100% rpm, landing noise can be reduced by eleven dB
EPNL at optimum rpm and descent angle.

Noise reduction achievable as a function of initial flight conditions is
shown in Figure 32.
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CONCLUSIONS

Currently available, low-cost computer technology can be used to provide
a helicopter pilot with the information necessary to achieve significant cruise
fuel savings and takeoff and landing noise reduction. For a nominal set-up and
input, the pilot-is provided with.optimum airspeed, altitude, and rotor rpm for
minimum fuel consumption, and optimum climb or descent rate and rotor rpm for
minimum noise. Depending on initial conditions, up to 50 percent fuel savings
and ten dB EPNL noise reductions can be achieved.

The computer programs developed in this study demonstrate the feasibility
of a cockpit computer approach to flight optimization. However, the inherent
limitations of the HP-97 make some of the required pilot manipulations more
cumbersome than may be acceptable in a production system., These limitations
will largely disappear with the availability of fast-developing small computer

technology.
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RECOMMENDATIONS

The feasibility of applying available, low-cost hand-held computer tech-
nology to help a helicopter pilot optimize performance has been established.
However, the limitations of the HP-9T7 computer impose some penalties in user
input redundancy and card manipulation that can be eliminated with the availa-
bility of fast-developing hand-held computer technology. In addition, this
technology will permit expansion of the optimization to other performance
categories and applications. Refinements that warrant further study include:

. Adaptation to more advanced hand-held computer technology to
simplify user input, including potential use of automatic
prompting.

. Expansion to include performance categories such as hover
and climb optimization.

. Automated input of selected parameters such as ambient
temperature and pressure altitude.

. Optimization to maximize dynamic component lives.
. Optimization to minimize vibration.

. Expanded noise optimization to include wind effects and
footprint characteristics.

. Addition of navigation options to optimize point-to-point
operation.

Most important, prototype systems should be placed in the hands of
helicopter pilots for evaluation. Their feedback should be used to incorporate
desirable changes in the prototypes before commitment to large-scale operational
status.
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APPENDIX I. DETATLED PROGRAM DESCRIPTION

This Appendix presents the equations, data constants, and listings for
each of the eight optimization programs. This information is sufficient to
permit reprogramming from scratch or to incorporate desired progrem modifi-~

" cations. Unless otherwise specified, paremeters are in customary rather than

SI units.

For detailed programming instructions, the reader should refer to the
Hewlett Packard HP-=-97 manual.
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STANDARD EQUATIONS USED IN HP-97 PROGRAMS

‘Temperature Conversion T (°F) = 1.8 * T (°c) + 32.
Standard Temperature TSTD OF = 59, - .00356 * ALT
0~ _
Terp C = 15. - .00198 * ALT
Density Ratio o= (459.7 +59 ) () _ hy )5°256
oo \750.7 + TOF 145366
or = 2132415 ) () _ hp 229
273.2 ¥ T0C TA5366
True Airspeed TAS = (8.0 + .914286 * IAS) (po/p) /2
- ~ ")
CAS
Speed of Sound C = 49.04 (459.7 + T°F) /2
Tip Speed R = 700. * © Np
100
Tip Mach Number M, = QB—éi—!fﬂil



POWER REQUIRED PROGRAM EQUATIONS

Advance Ratio p = IAS ;R1-687

Nondimensional Gross Weight

c = GW . GW
w 1 RZ p (QR)* ~ 4094.16 p (oR)?

Power Coefficient
Cp = ,0001473 + .0002462 u + .002733 u?
+ .04554 C + 5.892 sz - 6969 u C, + 1.339 u2 C
Compressibility Correction
ke =1+ 200. [/3 w3 ¢ 07 - 1107713
Tail Rotor Correction

KTR = 1.3634 - 12.31 Cy - .9245 y + 35.06 u Cw

Power Required

SHP

[ (Cp ) (KC) (KTR) ("RZ psggR)s ) + 147, ] Tg%?

7.4813 [ (Cp ) (KC) (KTR) ( p) (2R)3 ] + 148.

Q= SHP/(O.64*NR)
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Primary

.002378
459.7

hp

KC
7.481325
GW

145366.
.914286
4094.16
TAS

POWER REQUIRED PROGRAM STORAGE REGISTER CONTENTS

10
11
12
13
14
15

16
17
18
19

Secondary

.0001473
.0002462
.002733
.04554
5.892
-.6969

1.339

1.3634
-12.31
-.9245
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FUEL FLOW PROGRAM EQUATIONS

Uncorrected Fuel Flow

FF, = [374.9 + .002506 ALT - .1778x107° ALTZ + .64x10710 ALT3]
+ [.3193 - .1525x10"% ALT + .1949x1078 ALT? -.6833x107 13 ALT3 ] x
s
NE
+ [L1171x10°% + .2164x1078 ALT - .4926x107 1% ALT? + .1956x107'6 ALT3] x
shp 2
NE
+ [.2635 - .333x10"% ALT (ALT< 4950) or .097 (ALT> 4950)] x T
+ [.1354x1073 + .1399x10”7 ALT - .8309x10™'2 ALT? +
1773x10° 10 ALT3T X T x %ﬁ?
Airspeed Correction
KAS = 1.0 - .25x10~% TAS - .6238x10°° TAs?

Total Fuel Flow
FF = FFo x KAS x NE
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FUEL FLOW PROGRAM STORAGE REGISTER CONTENTS

Primary

FF
0.0
-.333x10”7
4950.
374.9

.2506x10"2

~.1778x10™>

.64x10”10
.3193

-.1525x10"%

10
11
12
13
14
15
16
17
18
19

Secondary

.1949x10™8

_.6833x10713

1171x107°

.4164x10"8

_.4926x10712

.1956x10718

3
7

.1354x10"

.1399x10°

~.8309x10" 12

.1773x10718

m © O W x>

SHP
hp

TAS
NE
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RANGE OPTIMIZATION PROGRAM EQUATIONS

ALTgpr = 35937.5 - .71875 G
Optimal Rotor RPM
NRppy = [-422.2 + .02595 GW - .3264x10"° aw?]

[52.68 - .002618 GW + .3297x10-7 Gwz] x In (ALT + 4000)

-+

+ .09722 (T - 59)

Optimal Airspeed (No Wind)

5 9

e[.1145x1o' + .3664x10°° T -

.9767x10" "1 T2 + .3708x107'2 137 x ALT

V0PT = [121.13 + .11222 T] x
Headwind Correction

x [.8426 - .1166x10"% GW] x
e[-.59x10‘4 + .10188x10°8 GW] x ALT

v

AV WIND

Tailwind Correction

p x [.6118 - .80125x107° GW] x

My = Vyrn 1 X
J[-.4137x107% + 514451077 6W] x ALT

Corrected Optimal Airspeed

A/Sopr = Vopr * &V
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RANGE OPTIMIZATION PROGRAM STORAGE REGISTER CONTENTS

Primary

Np
TAS

.1145x107°

.3664x1072

_.9767x10~ 1!

.3708x10” 12

-.71875
35937.5
.02595
-422.2

10
11
12
13
14

15
16
17
18
19

Secondary

-.002618

52.68

-.1166x10~%

.8426
-8
.10188x10

-.59x10~%

-.80125x10"

.6118

.5144x10™2

-.4137x107%

5

m o O oo >

GW
ALT
T
WIND

Intermediate
Values
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BEST RANGE PROGRAM EQUATIONS

Uncorrected Specific Range

SPR. = .09436 + .4198x10"

(o]

- .8154x107®

Wind Correction

5

GW - .7651x107)

0

ALT + .31x10710 A T2

ALT GW -.2966x10"

4

2

ALT™ GW

ASPR, = Vgg“d x [.01529 + .3935x10°® ALT + .1864x10°10 ALTZ
-6 -1 -15
- .1405x107° 6W - .5359x70"') ALT GW - .837x10°1° ALT

Temperature Correction

ASPR; = (593%41 ) x [-.0023 + .5469x10~ GW

v .301x1073 ¢-000122 ALT,

Best Specific Range

SPR = SPR + ASPR, + ASPR;

80
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BEST RANGE PROGRAM STORAGE REGISTER CONTENTS

10
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ENDURANCE OPTIMIZATION PROGRAM EQUATIONS

Optimal Altitude
ALTOPT = 38138.- .81875 GW
Optimal Rotor RPM '

Meopr - Minimum of (40.23 + .001649 ALT + .001275 GM)
or (98.5 + .509x10°% ALT + .5146x107"
.1929x10°8 ALT &W)
+ (T - 15.) x ,1944
Optimal Airspeed
A/Sgpp = Minimum of (37.7 + .001475 ALT + .001094 GH)
or (80.43 + .387x1073 ALT + .261x1073
.4537x10°8  ALT GW)
+ (T - 15.) x .18
Uncorrected Fuel Flow
FF, = 469.6 - .0267 ALT - .1603x107° ALT? + .02956 GW +
.2183x107% ALT e + .88x107 10 ALT? aW
Temperature Correction
aFFp = (d 205 ) x [-2.193 - .002384 ALT - .2754x107% ALT?
+ .001804 GH + .2597x1077 ALT GW + .1619x107'0

Best Endurance Fuel Flow

FF = FF, + AFFp

GW +

GW -

ALTZ GW]
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ENDURANCE OPTIMIZATION PROGRAM STORAGE REGISTER CONTENTS

Primary
-.1603x107°

.8797x1o’10

_.2754x10"0

.1619x10710

98.5

.509x10~%

.5146x10™%

.1929x10™8

80.43

.3869x1073

10
11
12
13

14
15
16
17
18
19

Secondary

.2612x10”
-.4537x10
469.6
-.02668

.02956
.2183x10°
-2.193
-.002384
.001804
.2597x10"

3

6

7

8

O O W >

GW
T
ALT

Intermediate
Values
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MAXIMUM SPEED PROGRAM EQUATIONS

Power Limited Velocity

v [(474.65 - 2.611 N,) + (-.00534 + .42x10"% N,) x GW]
MAX R R
power
+ ALT x [(.31e7"05135NRy 4 (_ 635x10™° + .1234x1070Np -
.6044x107° NR%) x GW]
+ ALTZ x [ (-.3176x1073 + .2727x107° Ny - .1335x1077 M) +
N _
Ng < 100 Ny > 100 “\("7
(-.18196 + .000778 Ny or -.10416) x ( ) x In (6H)]
v 18x(T-Tero) x [(.44x107% e 98912 Mgy o (_1758x1073 +
:3611x10™* Tn (Ng) ) x GH]
-2 -4 -6, 2
b 1.80(1-Tgp) 2 x [-.002 o=+ 3282X107 4465107 N 3197107 g
Red-Tine Velocity
v = 170 kts (CAS)
MAX
Stall Limited Velocity
172 172
o GH Po
Vstal1 = Tooa7 LR - 42.75 (g55.3) x () ]
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MAXIMUM SPEED PROGRAM

STORAGE REGISTER CONTENTS

Primary

Vvax'S
-145366.0514
272.914286
.

469.08512

Tstp
(p%ol/z

-2.611

474.65

.42x10~"

10
11
12
13
14
15
16
17
18
19

Secondary

-.00534
-.6044x10
.1234x10°
-.6351x10
-.1342x10
.2742x10°
-.1384x10
-.3197x10
.6499x10”
-.003282

6

5

4

9

5
7

3
6

O O @ >

GW
ALT

1.8 (T-TSTD

Nr

170.003566
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MINIMUM TAKEOFF NOISE PROGRAM EQUATIONS

Uncorrected Optimal Rate of Climb
ROC hcor = 4628. - .06677 GW + .03441 ALT
- .3119x107° G ALT - .1311x107° 6w ALT?
Temperature Corrected Rate of Climb
ROC = ROC ,cor ~ 29-08 (T (°C) - 30)
+ .003263 x ROCuncor x (T (°C) - 30)

Climb Angle

1 R '
v = TAN (ng :pﬁ ) where TAS = 95 kts = 9615.9 fpm

Effective Perceived Noise Level

EPNL = 88.58 - 2.369 v + .1249 vy2 -.002684 v3

4

+ 1.862x10° " GW + 16.667 Mt
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MINIMUM TAKEOFF NOISE PROGRAM STORAGE REGISTER CONTENTS

Primary

-.06677
.03441
-.3119x107°
.003263
459.7
145366.
9615.914286
.1862x10™°
CLIMB ANGLE

-.1311x107°

10
n
12
13
14
15
16
17
18
19

Secondary

0.0

0.0

m © O W™ >

GW
ALT

ROC
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MINIMUM LANDING NOISE PROGRAM EQUATIONS

Optimal Descent Angle

y = 4.116 + .7205x10"% 6w + .4821x10°8 u?
3P p
- .4362x107 6 & + 13,40 £

Rate of Descent

ROD = TAS (fpm) TAN y = 9615.9 TAN vy
Effective Perceived Noise Level

EPNL = [100.84 - 2.766 v + .2955 y2 ] ~yg< 6°
[126.64 - 7.068 vy + .298 2 ] y> 6°
+ .001955 GW

+ [17.8 (W, - .74) + 376.1 (M, - .78)2] M, > .74

+ 0 My < .74
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MINIMUM LANDING NOISE PROGRAM STORAGE REGISTER CONTENTS

Primary

L.
0o ° GW, v

EPNL
o)

——

po

459.7
9616.000196
145365.9143
5.256
376.1
13.44

-3
-.4362x10

10

11
12

13
14
15
16
17
18
19

Secondary

0.0
.4821x10°8

.7205x10~4

4.116
.2955
-2.766
100.84
.298
-7.068
126.64

GW

ALT

Np» (Mt - .74)
DESCENT ANGLE
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APPENDIX IT., PROGRAM USER INSTRUCTIONS

This Appendix is a user's guide for the mission optimization programs.
It contains general instructions for loading the programs into the HP-9T7 via
the magnetic cards, and specific instructions for exercising each of the
eight programs. A list of card symbols and units is included.

The optimization programs can be used by referring to this Appendix
alone, It is recommended, however, that the user review the body of this
report to become familiar with the background, technical approach, and
assumptions. The HP-97 manufacturer's manual should also be studied before
using the computer.
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GENERATL, INSTRUCTIONS FOR LOADING HP-97 PROGRAMS

Select the desired program card and associated data card from the card
holder,

Ensure that the PRGM-RUN switch is set to RUN. PRGM WETIID R
__TRACE
Set the Print Mode switch to MAN. Mar IR = ] norM

Slowly insert side one of the program card, printed side up, into the card
reader slot on the front left of the calculator. When the card is about
half way into the slot, a motor engages and draws the card through the
calculator and out the back. Let the card slide freely.

The calculator display should read {CRD ] to prompt you that side
2 of the card must be read in.

Now pass side 2 of the card through the calculator, again face up.

If after either pass of the card through the card reader, the display
shows |ERROR ,» that side of the card did not read properly.
Press |CLX] , then pass that side of the card through the card reader
again.

When both sides of the card have been read properly, insert the program
card into the window slot above the left register. The markings on the
card should be directly over the keys marked [A J[BJ[CI[DI[E] .
The markings on the card now identify the function of each of these
five keys.

To load the data card, repeat steps L4, 5, and 6.

You are now ready to use the program.
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Card Symbols and Units

P

ALT Pressure altitude, feet

A/S Airspeed, knots

EPNL Effective perceived noise level, 4B

FF Total fuel flow, pounds per hour

GW Gross weight, pounds

H WIND Headwind speed, knots (negative for tailwind)

IAS Indicated airspeed, knots

NE Number of engines operating

NR Rotor speed, percent (100% = 185 rpm)

OPT Optimum

Q Engine output torque, percent (100% = 3200 SHP per engine at
100% Ng)

ROC Rate of climb, feet per minute

ROD Rate of descent, feet per minute

SHP Total engine shaft horsepower

SPE Specific endurance, hours per pound of fuel

SPR Specific range, nautical miles per pound of fugl

STD International standard atmosphere (ISA)

T Outside ambient temperature, °c or °p as specified

TAS True airspeed, knots

Vmax Maximum airspeed, knots
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Program A: Power Required

This program calculates total power required for steady state level
flight and specified gross weight, airspeed, rotor rpm, pressure altitude,
and temperature.

1. Key in gross weight in pounds, press . The input is printed.

2. Key in pressure altitude in feet, press . The input is printed.

3. Key in outside ambient temperature. If in degrees Fahrenheit, press

3y if in degrees Centigrade, press . Degrees Fahrenheit
is printed.

L. Xey in percent rpm, press @ . The input is printed.

5. Key in airspeed in knots. If true airspeed, press 3 if indica-
ted airspeed, press . True airspeed is printed.

6. Press . Power required is printed, and then percent torque
is displayed and printed.
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Program B: Fuel Flow

This program calculates total fuel flow for specified power required or
NR/torque combination, pressure altitude, temperature, airspeed, and number of
operating engines.

1. If available, key in total horsepower, press « The input is
‘printed. Or, key in NR, press » then key in Q, press .
The inputs are printed, then total horsepower is calculated and
printed.

e e vt SRS S T
e R ) el -

_44

2. Key in pressure altitude in feet, press @ . The input is printed.

s
b

3. Key in outside ambient temperature. If in degrees Fahrenheit, press
3 if in degrees Centigrade, press . Degrees Fahrenheit 1s
printed.

4, Key in airspeed in knots. If true airspeed, press'@ . If
indicated airspeed, press @ . True airspeed is printed.

5. Key in number of operating engines, press IEI The input is printed.

6. Press . Total fuel flow in pounds/hour is displayed and
printed.

99




Program C: Best Range Conditions

This program calculates the cruise flight conditions that result in maxi-
mum specific range (nautical miles per pound of fuel) for specified gross
weight, temperature, and headwind.

1. Key in gross weight in pounds, press . The input is printed.
The optimal pressure altitude in feet is automatically calculated
and displayed.

2. If the optimal altitude displayed is accepted, press . If a
different altitude is desired, key it in first (in feet) and then
press . The input is printed. The ISA temperature in degrees
Centigrade at the input altitude is automatically calculated and
displayed.

3. If the ISA temperature displayed is accepted, press . If a
different temperature is desired, key it in first (in degrees
Centigrade) and then press . The input is printed.

4. Key in headwind (+) or tailwind (-) in knots, press . The input
is printed.

5. Press @ . Optimal percent rotor rpm is displayed and printed.

6. Press . Optimal airspeed in knots, true followed by indicated,
is displayed and printed.
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Program D: Best Range

This program calculates the best achievable specific range(nautical miles
per pound of fuel) for conditions of optimal airspeed and rotor rpm as defined
by Program C and specified gross weight, altitude, temperature, and headwind.

1. Key in gross weight in pounds, press . The input is printed.

2. Key in pressure altitude in feet, press . The input is printed.

3. Key in temperature in degrees Centigrade, press . The input is
printed.

4. Key in headwind (+) or tailwind (~) in knots, press @ . The input
is printed.

5. Press . Best specific range in nautical miles per pound of fuel
is displayed and printed.

S e e T 3 A oror .

NOTE: With the specific range displayed in the last step, actual
range available can be quickly calculated by inputing fuel
remaining and multiplying.
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Program E:

Best Endurance

102

_ This program calculates the best achievable specific endurance (hours
per pound of fuel) and the associated optimal cruise flight conditions for
specified gross weight and temperature.

ll

Key in gross weight in pounds, press . The iInput is printed.
The optimal pressure altitude in feet is automatically calculated
and displayed.

If the optimal altitude displayed is accepted, press . If a
different altitude is desired, key it in first (in feet) and then
press . The input is printed. The ISA temperature in degrees
Centigrade at the input altitude is automatically calculated and
displayed.

If the ISA temperature displayed is accepted, press . If a
different temperature is desired, key it in first (in degrees
Centigrade) and then press . The input is printed.

Press . Optimal percent rotor rpm is displayed and printed.

Press @ . Optimal airspeed in knots, true followed by indicated,
is displayed and printed.

Press . Fuel flow in pounds/hour and specific endurance in
hours/pound of fuel are successively displayed and printed.

NOTE: With the specific endurance displayed in the last step, actual

endurance available can be quickly calculated by inputing fuel
remaining and multiplying.



LT

Program F: Maximum Speed

This program calculates maximum sustained level flight airspeed as limi-
b ted by power, stall, Or structure for specified gross weight, altitude, tem-
s perature, and percent rotor rpm.

l. Key in gross weight in pounds, press . The input is printed.

2. Key in pressure altitude in feet, press . The input is printed.
The ISA temperature in degrees Centigrade at the input altitude is
automatically calculated and displayed.

3. If the ISA temperasture displayed is accepted, press . If a dif-
ferent temperature is desired, key it in first (in degrees Centi-
grade) and then press . The input is printed.

Lk, Key in percent rotor rpm, press @ . The input is printed.

5. Press . Maximum airspeed in knots, true followed by indicated,
is displayed and printed.
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Program G: Minimum Takeoff Noise

This program calculates the optimum rate of climb for minimizing ground
observed noise. Climb airspeed is 95 knots true; the corresponding indicated
airspeed is calculated for the specified ambients. Rotor speed is 100% Ng.
EPNL noise level can also be calculated for specified rate of climb and NR.

1. Key in gross weight in pounds, press . The input is printed.

2. Key in pressure altitude in feet, press . The input is
printed.

3. Key in temperature in degrees Cent igrade, press . The input is
printed.

4, Press . Optimal airspeed in knots, true followed by indicated,
is displayed and printed.

5. Press [:] . Optimal rate of climb in feet/minute is displayed and
printed.

6. If a different rate of climb is desired, key it in (in fpm) and
press E] . The input is printed.

7. Press . Rotor rpm (100%), then noise in EPNL dB are displayed
and printed.

8. If a rotor rpm other than 100 percent is desired, key it in and press

[£][E] . The input followed by the associated EPNL in dB is display-
ed and printed.
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Program H: Minimum Landing Noise

This program calculates the optimum autorotative rate of descent for
minimizing ground observed noise. Descent airspeed is 95 knots true; the
corresponding indicated airspeed is calculated for the specified ambients.
Rotor speed is 100% Nr. EPNL noise level can also be calculated for specified
rate of descent and NR.

1l. Key in gross weight in pounds, press . The input is printed.

2. Key in pressure altitude in feet, press . The input is
printed.

w

iz

Key in temperature in degrees Centigrade, press . The input is
printed.

Rmmn e
=
[ )

Press . Optimal airspeed in knots, true followed by indicated,
is displayed and printed.

L RS

5. Press @ . Optimal rate of descent in feet/minute is displayed and
printed.

11

6. If a different rate of descent is desired, key it in (in fpm) and
press @ . The input is printed.

7. Press . Rotor rpm (100%), then noise in EPNL dB are displayed
and printed.

8. If a rotor rpm other than 100 percent is desired, key it in and press

. The input followed by the associated EPNL in dB is display-
ed and printed.
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APPENDIX ITI. IMPACT OF CURRENT CH-53 FLIGHT RESTRICTIONS

The performance optimization programs developed under this contract define
optimum altitude, airspeed, and rotor rpm without regard to flight envelope
restrictions that may change or that may not apply in selected situations. As
a result, applicable CH-53 flight restrictions must be superimposed on the
theoretical optimums, and otherwise achievable performance may be somewhat
degraded, particularly at extremes of weight and altitude. Flight demonstration
of performance optimization should not be attempted for conditions outside the
allowable operating envelope as defined in the appropriate Flight Manual, or as
dictated by local operating conditions.

The current CH-53A/D NATOPS Flight Manual defines normal rotor rpm range
as 95 to 105 percent. Theoretically optimum rotor rpm's less than 95 percent,
which occur at light weights and low altitudes, and particularly for maximum
endurance, cannot, therefore, be used. The result is about a one percent
reduction in theoretically achievable range and an 8 percent reduction in
theoretically achievable endurance. At normally heavier gross weights, the low
rpm limitation has no impact.

Acceptable combinations of airspeed and rotor rpm can also be constrained
by the ability to achieve successful entry into autorotation following loss of
power, Rotor rpm must be high enough, and airspeed low enough, to prevent
unacceptable rpm decay during the time it takes the pilot to react and to take
corrective action. Excessive rpm decay can result in high flapping, degraded
handling qualities, and the possibility of reaching the windmill brake state in
which increasing rate of descent begins to retard rather than to accelerate
rotor speed,

The most extreme (but highly unlikely) autorotative entry situation occurs
following simultaneous, instantaneous loss of power from both engines at high
cruise speed. The behavior of the helicopter and the rotor following abrupt
power loss 1s very complex, and depends on initial trim conditions, pilot reac-
tion time, and the precise corrective action taken. Analytical treatment is
difficult, but semi-empirical methods using flight simulation techniques have
made it possible to estimate boundary flight envelopes of gross weight, density
altitude, airspeed, and rotor rpm for this situation. These envelopes are shown
in Figure 33.

The impact of the low rotor rpm and autorotative entry constraints on range
and endurance is summarized in Figures 34 and 35 respectively. The low rpm
constraint degrades both range and endurance at combinations of light weight
and low altitude. The autorotative entry criterion degrades both range and
endurance at combinations of heavy weight and high altitude. For typical
weights and altitudes, there is no appreciable degradation since the optimum
flight parameters are within the operational flight envelope.
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The impact of the autorotative entry criterion on maximum cruise speed
is shown in Figure 36 for 100 percent rotor rpm. The apparent penalty at heavy
gross weights is significant; however, increased rotor rpm can be used to
recover much of the speed degradation (see Figure 33).

Tekeoff and landing noise minimization is generally unaffected by flight
envelope restrictions since altitudes and airspeeds are relatively low.
Optimum climb and descent are defined at a nominal rotor rpm of 100 percent.
Should a higher rpm be desired to provide additional recovery margin in the
event of power loss or flight path misjudgement, the noise penalty is only
about one dB EPNL.
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Following Abrupt Total Power Loss - Estimated.
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