General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
Rate Constant for the Reaction of Atomic Chlorine with Formaldehyde from 200 to 500K

November 1978

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771
RATE CONSTANT FOR THE REACTION OF ATOMIC CHLORINE
WITH FORMALDEHYDE FROM 200 TO 500K

J. V. Michael¹, D. F. Nava, W. A. Payne
and L. J. Stier²

Astronomy Branch
Laboratory for Extraterrestrial Physics
NASA/Goddard Space Flight Center
Greenbelt, Md 20771

¹. Visiting Professor of Chemistry, Catholic University of America,
Washington, D.C. 20017

². Adjunct Professor of Chemistry, Catholic University of America,
Washington, D.C. 20017
The absolute rate constant for the reaction of atomic chlorine with formaldehyde has been measured from 200 to 500K using the flash photolysis - resonance fluorescence technique. The results were independent of substantial variations in \([H_2CO]\), total pressure (Ar) and flash intensity (i.e., initial [Cl]). The rate constant was shown to be invariant with temperature, the best representation for this temperature range being \(k_1 = (7.48 \pm 0.50) \times 10^{-11} \text{ cm}^3\) molecule\(^{-1}\) s\(^{-1}\) where the error is one standard deviation. This result is compared with the only previous determination of \(k_1\) which was a relative value obtained at 298K. The rate constant is theoretically discussed and the potential importance of the reaction in stratospheric chemistry is considered.
INTRODUCTION

Accurate and direct measurements of the reaction of Cl atoms with hydrogenous species are of great current interest due to the possible modification of the earth's stratospheric ozone layer by chlorofluoromethane release\(^1,2\). Rate constants for the reactions of Cl atoms with the stratospheric species \(\text{CH}_4\), \(\text{H}_2\), and \(\text{H}_2\text{O}_2\), have recently been reported from this laboratory\(^3-5\). Though formaldehyde, \(\text{H}_2\text{CO}\), has not yet been identified as a stratospheric species, a preliminary determination of the rate constant for the reaction

\[
\text{Cl} + \text{H}_2\text{CO} \rightarrow \text{HCl} + \text{HCO},
\]

(1)
together with a one dimensional stratospheric modeling calculation, has indicated that reaction (1) should be considered in the chemical modeling of the stratosphere\(^6\). The argument for the inclusion of reaction (1) follows from the highly probable assumption that methyl radicals produced by the reactions

\[
\begin{align*}
\text{Cl} + \text{CH}_4 & \rightarrow \text{HCl} + \text{CH}_3, \\
\text{OH} + \text{CH}_4 & \rightarrow \text{H}_2\text{O} + \text{CH}_3, \\
\text{O}(^1\text{D}) + \text{CH}_4 & \rightarrow \text{OH} + \text{CH}_3
\end{align*}
\]

(2)-(4)

will subsequently yield \(\text{H}_2\text{CO}\) through oxidation. The formaldehyde will likely be formed in a one to one correspondence with the methane destroyed in reactions (2) - (4). Detailed consideration of the rate of reaction (1) from the work of Niki, et al\(^7\) and the preliminary
work from this laboratory\(^6\) shows that the rate constant is \(\sim 1600\) times larger than that for reaction (2) at 40 km where \(T = 250\)K. Thus, mixing ratios for H\(_2\)CO in the range of a few tenths of a part per billion can compete effectively with CH\(_4\) for Cl atoms. Consideration of the rate of methane destruction (and H\(_2\)CO formation) in a model calculation shows that such levels are obtainable. Furthermore, inclusion of reaction (1) indicates a decreased sensitivity for long term ozone perturbation by odd chlorine from the currently accepted value of 20\% down to 18.5\%.\(^6\)

The only previous determination of the rate constant for reaction (1) is by Niki, et al\(^7\) who determined the rate constant relative to Cl + C\(_2\)H\(_6\) at \(T = 298\)K. They report a value of \(k_{1}^{298K} = (7.8 \pm 0.6) \times 10^{-11}\) (cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). This study reports the details of our preliminary study and extends the determination from 200 to 500K. Thus, the stratospheric temperature regime is well overlapped.
EXPERIMENTAL

The flash photolysis-resonance fluorescence apparatus (FP-RF)\(^8\) and its application to hydrogen abstraction reactions by atomic chlorine\(^3\)-\(^5\) have been described previously so only those details specific to the present study will be given here. Cl atoms were generated by the flash photolysis of CCl\(_4\) at initial concentration levels ranging from \((1-5) \times 10^{11}\) to \((1-5) \times 10^{10}\) atoms cm\(^3\). In all of the present work, the photolysis wavelengths were determined by the absorption coefficient of CCl\(_4\) above \(\lambda = 105\) nm (LiF cut-off). Because of the relatively large source molecule concentration, [CCl\(_4\)], compared to reactant, \([\text{H}_2\text{CO}]\), the possibility of significant competitive formaldehyde photolysis was negligibly small.

As in previous studies chlorine atom resonance radiation was obtained from a microwave electrodeless discharge in 0.5 torr of 0.1% Cl\(_2\) in He. The resonantly scattered fluorescent photons were detected at right angles to both the photolysis and resonance light sources through a BaF\(_2\) filter (\(\lambda > 135\) nm), and they were recorded in repetitive flashes by a multichannel analyzer operating in the multiscaling mode.

Preliminary experiments with the ternary mixtures consisting of formaldehyde, carbon tetrachloride, and Ar, showed that small levels of formaldehyde had to be routinely measured due to the very fast reaction with chlorine atoms. We therefore elected to first prepare a fairly concentrated primary mixture of \(\text{H}_2\text{CO}\) in Ar, and then subsequently prepare the secondary reaction mixtures by dilution techniques. Such
a procedure increases the systematic error since two additional accurate pressure measurements are necessary to determine the formaldehyde concentration. However, the decrease in accuracy is not serious, the total uncertainty in concentration being \(\pm 3\% \).

It is well known that \(\text{H}_2\text{CO} \) tends to polymerize in the gaseous state, and initial values of the rate constant at \(T = 298\text{K} \) tended to be uniformly lower than that reported here by \(\sim 30\% \). Flow rate variation through the reaction cell showed that formaldehyde was lost in the reaction cell below a critical flow rate; however, above that flow rate the decay constants scaled linearly with the calculated concentration. The derived rate constants, even though they were highly consistent, were still lower than the value reported here. Subsequent preliminary experiments starting with several different primary mixtures gave higher values for the rate constant leveling off asymptotically to the reported value. Clearly, the initially obtained low rate constant values were due to initial loss of the formaldehyde in storage, and with subsequent exposure, the storage vessel walls eventually became pre-treated, with subsequent stabilization of the homogeneous mixtures to the concentration level determined from the pressure measurements. Only when this condition was reached (as shown by invariance of the rate constant in repeat determinations) were the kinetic experiments carried out. Substantial variations in flash energy (i.e., initial \([\text{Cl}]\), \([\text{H}_2\text{CO}]\), and pressure showed no additional complications due to secondary reactions or other initial primary photolysis products.
The observed pseudo-first-order Cl atom decay plots were strictly linear. The decay constants from such plots are composite consisting of contributions from reaction (1) and diffusion of Cl atoms from the viewing zone. Therefore, experiments were carried out with no formaldehyde present under exactly similar conditions in order to measure the diffusional contribution. These contributions were less than 10% for most of the experiments reported here. However, for some experiments at 500K, the contributions were as high as 35% of the total decay constant.

Argon (Matheson, 99.999%) and helium (Airco, 99.9999%) were used without further purification. Chlorine (Matheson, 99.5%) was further purified by bulb-to-bulb distillation at 195K, the middle third being retained. \(\text{CCl}_4 \) (Matheson, Coleman, and Bell, 99%) was subjected to bulb-to-bulb distillation at 233K, and the middle third was retained. Formaldehyde was prepared from paraformaldehyde by heating at 383K. The liquid \(\text{N}_2 \) trapped monomer was then bulb-to-bulb distilled at 193K with retention of the middle third. The sample was thoroughly outgassed at 113K in order to remove \(\text{CO}_2 \) and was stored at liquid \(\text{N}_2 \) temperature. Mass spectral analysis showed the sample to be 99.7% pure, the only measurable impurity being \(\text{H}_2\text{O} \).
RESULTS

All of the reported experiments were carried out under pseudo-first-order conditions with $[\text{H}_2\text{CO}] \gg [\text{Cl}]$. Then the decay of $[\text{Cl}]$ is represented by

$$\ln [\text{Cl}] = -k_{\text{observed}} t + \ln [\text{Cl}]_0$$

with the pseudo-first-order decay constant given by

$$k_{\text{observed}} = k_1 [\text{H}_2\text{CO}]_0 + k_d.$$ \hspace{1cm} (6)

k_1 is the bimolecular rate constant for reaction (1), and k_d is the first-order rate constant for Cl atom diffusion from the viewing zone. k_{observed} is obtained by linear least squares methods from plots of the logarithm of accumulated counts against time. Accumulated counts are proportional to $[\text{Cl}]$. Typical results at 200K are shown in Fig. 1. Similar experiments are performed with $[\text{H}_2\text{CO}] = 0$ in order to obtain k_d at each condition of the kinetic experiments. Then a knowledge of k_d and $[\text{H}_2\text{CO}]_0$ with eq. (6) allows the determination of k_1. The results at 200, 298, and 500K are shown in Table I over substantial changes in flash energy, $[\text{H}_2\text{CO}]$, and pressure. The errors are one standard deviation values as determined from repeat determinations at the indicated experimental condition. The results show that k_1 has no temperature dependence for 200 $\leq T \leq$ 500K. The best representation for this temperature range is $k_1 = (7.48 \pm 0.50) \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$ where the error is the mean of the standard deviations from the determinations at each temperature in Table I.
DISCUSSION

The present value for \(k_1 = (7.48 \pm 0.50) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) for \(200 \leq T \leq 500\text{K} \) can be compared to the recent value of Niki, et al.\(^7\)

These workers determined the rate constant relative to \(\text{Cl} + \text{C}_2\text{H}_6 \rightarrow \text{HCl} + \text{C}_2\text{H}_5 \) by observing relative reactant destruction on photolysis. The concentration detection technique was Fourier transform infrared spectroscopy and a room temperature value for \(k_1 \) of \((7.8 \pm 0.6) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) was obtained. Comparison with the present room temperature value shows exact agreement within combined experimental uncertainties.

A related reaction with which reaction (1) can be compared is the reaction of \(\text{Cl} \) with \(\text{C}_2\text{H}_6 \). This reaction has been directly studied by Manning and Kurylo (FP-RF)\(^{10}\) and Lewis et al.\(^{11}\) (discharge flow-resonance fluorescence) who report respective rate constants of \((7.29 \pm 1.23) \times 10^{-11} \text{ exp}(-61 \pm 44/T) \) and \(8.1 \times 10^{-11} \text{ exp}(-126 \pm 33/T) \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). The reaction has been theoretically discussed by Johnston\(^{12}\) who shows that little, if any, effect of a potential energy barrier should be expected since the reactant zero point energy exceeds the barrier height. This is born out by the two cited direct studies where only a minimal energy barrier is indicated.\(^{10,11}\)

With regard to the present reaction, the relationship noted by Johnston is even more in favor of no measurable energy barrier since the zero point energy of reactants is very much higher than the potential energy barrier. This can be easily seen within the framework of the BEBO
method12 since the potential energy of activation is described in terms of single bond energies for R-H and HCl. Qualitatively, if the bond strength of R-H decreases, then the derived potential energy of activation will also decrease. Comparison of E^0_{CH} values for the series CH$_4$, C$_2$H$_6$, and H$_2$CO shows a decreasing trend from 103, 98, and 86 kcal/mole, respectively.13,14

It therefore appears that the rate constant for reaction (1) is totally determined by two factors, (1) the interaction rate constant and (2) the relative orientation of Cl and H$_2$CO. The interaction rate constant can be fairly accurately estimated from transport property data.15,16 Judeikis and Wun have reported a value for the diffusion coefficient of Cl atoms in Ar of (0.26 ± 0.05) cm2 s$^{-1}$ at 1 atm and 295K.17 Their value is consistent with Lennard-Jones parameters of $\sigma_{Cl, Ar} = 2.89\text{Å}$ and $\epsilon_{Cl, Ar}/k = 119K$. With combining rules, $\sigma_{12} = (\sigma_1 + \sigma_2)/2$ and $\epsilon_{12} = (\epsilon_1 \epsilon_2)^{1/2}$, and Lennard-Jones parameters for Ar, the corresponding values for Cl atoms are $\sigma_{Cl} = 2.34\text{Å}$ and $\epsilon_{Cl}/k = 119K$. Values for H$_2$CO are not available but are not expected to be much different than those for the isoelectronic molecule C$_2$H$_4$ (i.e.; $\sigma = 4.07\text{Å}$ and $\epsilon/k = 230K$).16 Then the Lennard-Jones rate constant can be calculated as15

$$ z_{\text{LJ}} = \sigma_{12}^2 \Omega^* (2,2) (8\pi kT/\epsilon)^{1/2} \tag{7}$$

All quantities have their usual meanings, and $\Omega^* (2,2)$ is a tabulated integral.16 The calculated values from $200 \leq T \leq 500K$ range from 2.4 to 2.7×10^{-10} cm3 molecule$^{-1}$ s$^{-1}$. Because of uncertainties in
potential parameters, the hard sphere values have also been calculated, and these range from 1.6×10^{-10} cm3 molecule$^{-1}$ s$^{-1}$ over the same range of temperature. Comparison of the present value of k_1 (i.e., $(7.48 \pm 0.50) \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$) with these estimates of thermalized collision rate constants suggests a value for the steric factor in the range of $0.3 - 0.5$. We note that the most naive estimate of the steric factor would be 0.5. The point to this discussion is to indicate the simplicity of reaction (1) and to illustrate that the use of even the simplest theoretical formalism is sufficient to predict the rate constant within a factor of 1.7.

As indicated in the Introduction, reaction (1) is also important in the stratosphere. H$_2$CO is thought to be produced in a one to one correspondence from the product methyl radicals in reactions (2) - (4). However, this assumption is clearly an oversimplification since initially the methyl radicals are destroyed by

$$\text{CH}_3 + \text{O}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2 + \text{M} \quad (8)$$

and/or

$$\text{CH}_3 + \text{O}_2 \rightarrow \text{H}_2\text{CO} + \text{OH} \quad (9)$$

Baldwin and Golden doubt the existence of reaction (9), and this ambiguity suggests the need for further study. If reaction (8) dominates then methyl peroxy radicals can be removed in the stratosphere by

$$\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2 \quad (10)$$

$$\text{CH}_3\text{O}_2 + \text{HO}_2 \rightarrow \text{CH}_3\text{O}_2\text{H} + \text{O}_2 \quad (11)$$

$$\text{CH}_3\text{O}_2 + \text{NO}_2 (+\text{M}) \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 (+\text{M}). \quad (12)$$
Methoxy radical (CH$_3$O) oxidation possibly by O$_2$, HO$_2$, NO, or NO$_2$ can yield formaldehyde, but methanol (CH$_3$OH) may also result. By direct analogy with the reaction between HO$_2$ and NO$_2$ giving peroxy nitric acid,28-30 we have also included reaction (12). This reaction is favorable since CH$_3$O$_2$ has a large number of degrees of freedom and the temperature is low. Thus, in the context of RRKM theory, the vibrationally hot adduct should have a long lifetime, and reaction (12) may be near its high pressure limit even stratospheric densities. The above scheme suggests the probability of several compounds which contain the methoxy group. We note that Cl atom reactions with such compounds would have similar rate constants as Cl + H$_2$CO. Lastly, the radicals produced from such reactions will likely yield H$_2$CO so that the noted decreased sensitivity to odd chlorine6 may be as much as doubled.

ACKNOWLEDGMENT

J.V.M. acknowledges the support of NASA under Grant NSG 5173 to Catholic University of America.
REFERENCES

<table>
<thead>
<tr>
<th>T</th>
<th>[H₂CO]</th>
<th>[CCl₄]</th>
<th>[Ar]</th>
<th>Flash Energy</th>
<th>No. of Expts</th>
<th>kᵇ₁ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.11</td>
<td>13</td>
<td>25</td>
<td>20-81</td>
<td>4</td>
<td>7.44 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>13</td>
<td>25</td>
<td>23-81</td>
<td>4</td>
<td>7.72 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>25</td>
<td>50</td>
<td>20-81</td>
<td>4</td>
<td>6.97 ± 0.40</td>
</tr>
<tr>
<td></td>
<td>0.29</td>
<td>25</td>
<td>50</td>
<td>20-95</td>
<td>4</td>
<td>8.02 ± 0.67</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>38</td>
<td>75</td>
<td>20-81</td>
<td>4</td>
<td>7.04 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>0.44</td>
<td>38</td>
<td>75</td>
<td>20-95</td>
<td>4</td>
<td>7.77 ± 0.77</td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td>50</td>
<td>100</td>
<td>20-81</td>
<td>3</td>
<td>7.49 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>50</td>
<td>100</td>
<td>36-81</td>
<td>3</td>
<td>7.72 ± 0.86</td>
</tr>
<tr>
<td>298</td>
<td>0.18</td>
<td>13</td>
<td>25</td>
<td>20-81</td>
<td>4</td>
<td>7.52 ± 0.42</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>13</td>
<td>25</td>
<td>20-81</td>
<td>4</td>
<td>7.10 ± 0.37</td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>17</td>
<td>25</td>
<td>56-81</td>
<td>2</td>
<td>7.46 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>25</td>
<td>50</td>
<td>20-81</td>
<td>4</td>
<td>7.48 ± 0.80</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>25</td>
<td>50</td>
<td>20-81</td>
<td>4</td>
<td>7.17 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>0.47</td>
<td>34</td>
<td>50</td>
<td>20-81</td>
<td>4</td>
<td>8.03 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>0.53</td>
<td>34</td>
<td>75</td>
<td>20-81</td>
<td>4</td>
<td>7.65 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>38</td>
<td>75</td>
<td>20-81</td>
<td>4</td>
<td>7.17 ± 0.54</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>52</td>
<td>75</td>
<td>20-81</td>
<td>4</td>
<td>7.73 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>50</td>
<td>100</td>
<td>20-81</td>
<td>3</td>
<td>7.68 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>50</td>
<td>100</td>
<td>20-36</td>
<td>2</td>
<td>7.21 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>69</td>
<td>100</td>
<td>20-127</td>
<td>4</td>
<td>7.24 ± 0.22</td>
</tr>
<tr>
<td>500</td>
<td>0.29</td>
<td>13</td>
<td>25</td>
<td>56-95</td>
<td>3</td>
<td>7.28 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>0.47</td>
<td>25</td>
<td>50</td>
<td>36-127</td>
<td>3</td>
<td>7.52 ± 0.48</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>25</td>
<td>50</td>
<td>95</td>
<td>1</td>
<td>6.95</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>38</td>
<td>75</td>
<td>36-110</td>
<td>3</td>
<td>6.66 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>0.88</td>
<td>38</td>
<td>75</td>
<td>36-95</td>
<td>4</td>
<td>6.89 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>50</td>
<td>100</td>
<td>36-95</td>
<td>4</td>
<td>7.53 ± 0.35</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>50</td>
<td>100</td>
<td>56-95</td>
<td>2</td>
<td>7.64 ± 0.08</td>
</tr>
</tbody>
</table>

a. Error limit is the standard deviation.

b. Average kᵇ at that temperature
FIGURE CAPTION

Fig. 1: Typical first-order plots for the reaction, Cl + H₂CO → HCl + HCO at 200K. The lines are determined from a linear least squares analysis of the data, and errors in decay constants are one standard deviation. ⋄ - Pₜ = 25 torr, Pₐ₄ = 12.5 mtorr, P₂HCO = 0.11 mtorr, flash energy = 56J, and k_{observed} = 46 ± 14 s⁻¹;

⋄ - Pₜ = 50 torr, Pₐ₄ = 25 mtorr, P₂HCO = 0.23 mtorr, flash energy = 56J, and k_{observed} = 881 ± 53 s⁻¹;

◆ - Pₜ = 75 torr, Pₐ₄ = 37.5 mtorr, P₂HCO = 0.34 mtorr, flash energy = 56J, and k_{observed} = 1215 ± 39 s⁻¹;

♦ - Pₜ = 100 torr, Pₐ₄ = 50 mtorr, P₂HCO = 0.46 mtorr, flash energy = 36J, and k_{observed} = 1678 ± 56 s⁻¹.