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SUMMARY

Diffusion calculations were performed to establish the conditions under
which concentration dependence of the diffusion coefficient was important in
single-, two-, and three-phase binary alloy systems. Finite-difference solu-
tions for each type of system were obtained using diffusion coefficient varia-
tions typical of those observed in real alloy systems. Solutions were also
obtained using average diffusion coefficients determined by taking a logarithmic
average of each diffusion coefficient variation considered. The solutions for
constant diffusion coefficients were used as references in assessing the effects
of diffusion coefficient variations. Calculations were performed for planar,
cylindrical, and spherical geometries in order to compare the effect of diffu-
sion coefficient variations with the effect of interface geometries.

Diffusion coefficient variations in single-phase systems and in the major-
alloy phase of two-phase systems were found to effect the kinetics of diffusion
as strongly as the interfacial geometry of the diffusion couple. Concentration
dependence of the diffusion coefficient in the minor-alloy phase of a two-phase
system was found to have only an initial transient effect on the diffusion
kinetics. In three-phase systems, the intermediate phase did not increase in
thickness if the diffusion coefficient of the intermediate phase was smaller
than the diffusion coefficient of the major-alloy phase. Under these condi-
tions, the three-phase diffusion problem could be treated as a two-phase problem.
However, if the diffusion coefficient of the intermediate phase was larger than
the diffusion coefficient of the major-alloy phase, the intermediate phase grew
rapidly at the expense of the major and minor phases. In most of the cases con-
sidered, the diffusion coefficient of the major-alloy phase was the key param-
eter that controlled the kinetics of interdiffusion.

INTRODUCTION

Solutions to the diffusion equation for a variety of initial and boundary
conditions have been reported in the literature (refs. 1 to 7). Most of these,
however, are restricted to planar geometry, are applicable only for infinite or
semi-infinite systems, or require that the diffusion coefficient be constant.
In treating diffusion in binary alloy systems, the assumption that the diffu-
sion coefficient is constant is not always valid. Diffusion coefficient data
for several single-phase and multiphase binary alloy systems show that an order
of magnitude variation in the diffusion coefficient within a phase is not
uncommon and in some cases, the diffusion coefficient may vary by as much as
two orders of magnitude (refs. 8 to 12). A determination of the relative impor-
tance of the types and magnitudes of the diffusion coefficient variations found
in real systems would provide an indication of the magnitude of the error asso-
ciated with treating the diffusion coefficient as a constant.

The present study was undertaken to determine the relative importance of
diffusion coefficient variations in single-, two-, and three-phase binary alloy



systems with planar, cylindrical, or spherical interfaces. Numerical solutions
to the governing diffusion equations were obtained for various concentration-
dependent diffusion coefficients as well as for two average (constant) diffusion
coefficients. Two different methods of averaging were considered to determine
the averaging method best suited for different types of diffusion coefficient
variations. Solutions were also obtained for planar, cylindrical, and spherical
geometries to compare the effects of interface geometries with those caused by
concentration-dependent diffusion coefficients.

SYMBOLS

A,B elements which constitute binary alloy system

C concentration of sample, atomic fraction of B

C average concentration of sample, atomic fraction of B

C1 initial-concentration of $-phase, assumed to be unity in this study,
atomic fraction of B

Co initial concentration of a-phase, assumed to be zero in this study,
atomic fraction of B

D chemical diffusion coefficient (concentration dependent), m /sec

DA' chemical diffusion coefficient of pure A, m2/sec

D chemical diffusion coefficient of pure B, m /sec

D t designates a type of log linear D variation, D increases going
away from interface, m2/sec

D 4- designates a type of log linear D variation, D decreases going
away from interface, m2/sec

D ->• designates a concentration-independent D whose value equals the
logarithmic average of D t or D ^ variations considered in this
study, m2/sec

<D> designates a concentration-independent D whose value equals the
integral average of D t or D -I- variations considered in this
study, m2/sec

H amount of B in 3-phase remaining at time t normalized to initial
value for two- and three-phase systems; or amount of B remaining
in original B-rich region at time t normalized to initial value
for single-phase system

diffusion flux, atoms/m2/sec



L total thickness or diameter of specimen, m

£ initial thickness or diameter of B-rich region, m

R normalized distance, r/(L/2)

r distance from center of B-rich region, m

s interfacial surface area of B-rich material, m

t time, sec

V* volume fraction of B-phase in specimen at equilibrium; other sub-
^ scripts have similar meaning

v volume of B-rich material, m^

Ct,B designations for terminal phases rich in A and B, respectively

y designation for intermediate phase

<Sft difference between solubility limits of 3- and a-phases, Cga - Co
(other double subscripts have similar meaning), atomic fraction
of B

QD temperature of interest, K

distance from center of B-phase to ctB interface in two-phase system,
positive superscript designates a side of interface and negative
superscript designates $ side of interface, m

distance from center of B-phase to BY interface in three-phase
system, positive superscript designates y side of interface and
negative superscript designates B side of interface, m

distance from center of B-phase to ay interface in three-phase
system, positive superscript designates a side of interface and
negative superscript designates y side of interface, m

Superscripts:

Ot A-rich phase

B B-rich phase

y intermediate phase

* denotes equilibrium value



Subscripts:

aB

ay

Ba

3Y

Ya

Y3

designates location in a-phase at aB interface of two-phase system

designates location in a-phase at ay interface of three-phase system

designates location in B-phase at aB interface of two-phase system

designates location in B-phase at BY interface of three-phase system

designates location in y~Pnase at ay interface of three-phase system

designates location in Y~Pnase at 3Y interface of three-phase system

MATHEMATICAL ANALYSIS

The relationships between the binary phase diagrams and concentration pro-
files produced by diffusion between pure A and pure B after annealing for
some intermediate time at temperature 6D in single-, two-, and three-phase
binary alloy systems are shown in figure 1. Figure 1 (a) shows a continuous
diffusion profile for a binary system A-B with complete solid solubility
between A and B. Diffusion in a two-phase system with limited solid solu-
bility produces a concentration profile (fig. l(b)) with discontinuity at the
ocB interface equal to the difference between the solubility limits of the B-
and a-phases (Co - C g) . Diffusion in a three-phase system (limited solid
solubility with intermediate phase formation) produces a concentration profile
(fig. l(c)) with discontinuities corresponding to the differences between the
solubility limits of the B- and Y~phases (CgY - Cyn) and the solubility limits
of the Y- and a-phases ™

Diffusion in these systems can be described by Pick's second law for each
phase and by a flux-balance equation for each interface. Pick's second law is
of the form

at
.
9r

(1)

where C is the atomic fraction of B, r is the distance from the center of
B-rich region, D is the concentration-dependent diffusion coefficient, and
m = 0, 1, or 2 for planar, cylindrical, or spherical geometries, respectively.
The interface-flux-balance equation for the aB interface in the two-phase
system is given by

(CBa ~ CaB) dt
_~ D dC,a

aB\dT - D
Ba dr (2)



where £/2 is the location of the a3 interface, with superscripts +
and - designating the a and 3 sides of the interface, respectively. Two
interface- flux-balance equations are required for the three-phase system. .
These are of the form

at the (3y interface and

/2) /a2

at the ay interface, where C^/2 is the location of the $Y interface with
superscripts + and - denoting the y and 3 sides of the interface,
respectively, and 2̂/2 i-s t^le location of the ay interface with super-
scripts + and - denoting the a and y sides of the interface, respec-
tively. The initial and boundary conditions (fig. 2) to be satisfied for all
three systems are

C = C1 (0 i r < £/2; t = 0)

C = C0 (£/2 < r ̂  L/2; t = 0)

^— = 0 (r = 0 and L/2; t ̂  0)
dr

In this study, C1 and C were assumed to be 1 and 0, respectively.

For two- and three-phase systems, all interface compositions were assumed
equal to the equilibrium solubility limits of the phases. For a two-phase
system at aB interface,

C = C&a (r = r/2)

C = C-,0 (r = i '



For a three-phase system at By interface,

C = C6 (r = q/2)

C =

and at ay interface,

C = Cya (r = ?-/2)

C = Cay (r = +̂/2)

Finite-difference analyses and computer programs were developed to solve
the preceding equations. These solutions are applicable for planar, cylin-
drical, or spherical geometries with any size for the diffusion zone and any
continuous variation (within a given phase) .of the diffusion coefficient with
concentration. Special techniques were included in the analyses to account
for -differences in molal volumes, initiation and .growth of an intermediate
phase (three-phase system) , disappearance of a phase (two- and three-phase
systems) , and the presence of an initial composition profile in the specimen.
A major improvement in solution accuracy was achieved in the two-phase analysis
by employing a mass-conservation criterion to establish the location of the
interface rather than the conventional interf ace-flux-balance criterion. In the
three-phase analysis, computation time was minimized without sacrificing solu-
tion accuracy by treating the three-phase problem as a two-phase problem when
the thickness of the intermediate phase was less than a small preset value.
Three computer codes were developed to perform these analyses. Information
concerning the availability of these codes and the essential features of each
code, including a discussion of stability and accuracy, is found in reference 13.

Although the programs are general and can treat volume differences, the
molal volumes and atomic weights of atoms A and B were assumed to be equal
for the purposes of this paper. Thus, the concentration of B is the same
whether expressed as atomic, weight, or volume fraction.

All three programs treat concentration dependence of the diffusion coeffi-
cient. Although any continuous variation of D (within a given phase) can be
treated, only three types of D behavior were considered for this study:
constant D, log D linearly increasing with C, and log D linearly
decreasing with C. These cases were selected because of the experimentally
observed trend for the log D to vary linearly with concentration (ref . 11) .
The change in D within a phase was assumed to be one of the three types:
no change, one order of magnitude, and two orders of magnitude. Table 1 shows
representative diffusion coefficient variations for several single-phase and
multiphase binary alloy systems. The magnitude and variations of the diffusion
coefficients chosen for this study are typical of values observed in metallic



systems above about two-thirds of the absolute melting point (ref. 14). The
alloy phase thicknesses and exposure times were selected to yield concentration
profiles which are typical of real systems, and to illustrate the effect of
D variation on the diffusion kinetics.

RESULTS AND DISCUSSION

Single-Phase Systems

Effect of D variation.- Figure 3(a) shows the D variations studied for
the single-phase system. The diffusion coefficient was assumed to vary lin-
early, on a log scale, with concentration. Four D variations were considered:
(1) DB/DA = 0.01, (2) DB/D& = 0.1, (3) DB/DA = 1, and (4) D̂ /D̂  = 100,
where D and D are the chemical diffusion coefficients of pure B and
pure A, respectively. A summary of the conditions for which solutions were
obtained is given in table 2. In all cases the radius or semithickness (L/2)
of the couples was 150 pm.

Figure 3(b) shows the concentration profiles calculated for a cylindrical
sample with C = 0.111 using D of the form: (1) D̂ /D̂  = 100, (2) DB/DA = 1,
and (3) DB/D& =0.01 (cases 1, 2, and 3 of table 2). The exposure time shown
was selected to give an intermediate stage of diffusion where distinct differ-
ences in the concentration profiles due to the different D variations were
readily detectable. In the concentration region above 50 percent B, the con-
centration gradient dC/dr is largest for the D6/̂  = 0.01 curve and smallest
for the DB/DA = 100 curve. However, below 50 percent B the DB/DA = 100
variation curve has the largest gradient and the DB/DA =0.01 curve the
smallest. The concentration gradient tends to be largest where the diffusion
coefficients are smallest, as expected.

Comparison of geometry and D variation effects.- Figure 4(a) shows the
effect of D variation on the extent of diffusion for cylindrical geometry
with C = 0.333. The amount of B remaining in the original B-rich region, H,
is plotted as a function of time for DB/DA = 100, 1, and 0.01 (cases 4, 5,
and 6 of table 2). The curve for DB/DA = 0.01 approaches equilibrium value
fastest because the value of DA is higher than the DA for the other two
cases. In approaching equilibrium, the D values corresponding to composi-
tions near pure A are important because of the absence of compositions near
pure B for this high degree of homogenization. The time required to reach
H = 0.50 was twice as long for the DB/DA = 100 case as for the DB/DA =0.01
case.

Figure 4(b) shows the effect of interfacial geometry on the extent of dif-
fusion for couples with C = 0.333 and DB/DA =0.10 (cases 7, 8, and 9 of
table 2). The effect is as expected with diffusion taking place fastest for
.spherical geometry and slowest for planar geometry. Comparison of the curves
in figure 4(b) with those in figure 4(a) suggests that the type of D varia-
tions observed in single-phase systems can be as important in determining the
kinetics of interdiffusion as is the geometry of the sample.



Figure 5 shows the effect of interfacial geometry on the extent of diffu-
sion for couples with C = 0.500 and 0.010 (cases 10 to 12 and 13 to 15 of
table 2). For high values of C (fig. 5(a)), diffusion proceeded fastest for
spherical geometry and slowest for planar geometry. For low values of C
(fig. 5(b)), just the opposite was true. An explanation of this switchover
behavior is provided by the calculations presented in figure 6. The ratio s/v
of interfacial surface area of B-rich material to its volume is shown for each
geometry. These ratios are expressed in terms of C and L which were held
constant in figures 5(a) and 5 (b) . The values of s/v are listed for
C = 0.500 and 0.010. As can be seen, planar geometry has the highest s/v of
the three geometries for C = 0.010 and spherical geometry has the highest
s/v for C = 0.500.

Two-Phase Systems

Effect of D variations.- The D variations shown in figure 7 were used
to determine the effect of a concentration-dependent diffusion coefficient on
interface motion and concentration profiles in two-phase systems. The D in
the major-alloy phase a was assumed to vary linearly on a log scale with con-
centration. An increase in the diffusion coefficient of a in going from the
interface composition to pure A has been denoted by D f and a decrease in
the diffusion coefficient of a by D 4-. This notation was adopted because it
emphasizes the fact that the diffusion coefficients near the interface exert a
greater influence on the diffusion kinetics than do the coefficients of the
material away from the interface.

Two averages of the diffusion coefficient in the a-phase were considered;
a logarithmic average Da->, and an integral average D̂a). These averages were
calculated as follows:

(D ->) = exp

/•» p
I aBJ.
u:

In DadC

dC

= 10~14 m2/sec (5)

<Da> =

P^ n\ DadC

= 1.236 x 10~14 m2/sec (6)

where Dao and DA are the diffusion coefficients corresponding to the compo-
sition of the interface Co and to pure A, respectively.



The combinations of D and Dp for which calculations were performed
are listed in table 3. The specimen geometry, initial radius (or semithickness)
of the 3-phase region, and average composition of the sample C are also tabu-
lated for each case considered. The diffusion coefficient in the minor-alloy
phase 3 was held constant. Also, the solubility limits of the $- and a-phases,
C6a an(^ Ca8' were nelcl constant.

A plot of the normalized thickness of the 3-phase versus square root of
the exposure time for C = 0.02 (cases 1, 2, 3, and 4 of table 3) is shown in
figure 8 (a). The fastest rate of interface motion occurred for Dai and the
slowest for Dat because the diffusion coefficient near the interface is high-
est for the Da4- variation and lowest for the Dat variation. The Da->- vari-
ation produced interface motion similar to the Dat variation, whereas the
<Da> produced interface motion more nearly like that of Da^. Thus, the best
average diffusion coefficient for a Dat variation is a logarithmic average
(eq. (5)), and for a Dai variation, an integral average is best (eq. (6)).

Figure 8(b) shows concentration profiles at \/t = 300 seĉ /̂  calculated
for cases 1, 2, and 4 of table 3. Saturation of the 3-phase occurs early
because the 3~Pnase is thin relative to the a-phase and the diffusion coeffi-
cients are approximately the same in each phase. After the 3-phase saturates,
it will decrease in thickness at a rate controlled by diffusion in the a-phase.
The concentration gradient in the a-phase near the interface is steepest for
Dat because of the low D o. The curves for Da4- and Dat crossover away
from the interface because, as the concentration tends to pure A, the diffusion
coefficients for Dat are higher than those for Da4-.

The extent of interdif fusion for a cylindrical couple with C = 0.20 is
shown in figure 9 where £/£ and H (normalized amount of B in the 3-phase)
are plotted as a function of \ft. Both plots show essentially the same behavior
with equilibrium being established at a £/£ value of 0.598 and an H value
of 0.304. Both a- and 3-phases are present in the sample at equilibrium
because C = 0.20 lies in the a + 3 region.

Comparison of geometry and D variation effects.- A comparison of the
effects due to differences in geometry and in D variations for a two-phase
system is shown in figure 10. The results indicate that typical Da varia-
tions can have a greater influence on the kinetics of interdiffusion than the
geometry of the interface. Comparison of the results of figure 10 for a two-
phase sample with the results of figure 4 for a single-phase sample reveals
that D variations in two-phase systems can be as important as D variations
in single-phase systems .

Three-Phase Systems

The type of diffusion behavior observed in three-phase systems is depen-
dent on solubilities of each phase, rates of diffusion in each phase, and
initial thicknesses of the a- and 3-phases, and therefore the average composi-
tion of the diffusion couple C. If C lies in one of the single-phase



regions, only that phase will remain at equilibrium. If C lies in the a
region, the equilibrium volume fractions of Y~ ar>d a-phases are given by

C - C
V* =
Y C - C

and

In this study, C was chosen to be in the a region or the a + Y region.

Concentration profiles.- The principal effects of the solubility limits
and C are, to a large extent, predictable from the equilibrium phase diagram.
However, the effects of unequal rates of diffusion in each phase and variations
in the diffusion coefficient within a given phase are not discernible from the
phase diagram. For this reason, the primary emphasis of this study was placed
on characterizing the effect of the different diffusion coefficients and their
variations on the dissolution characteristics. The D variations investigated
in this study are illustrated in figure 11. The different D combinations con-
sidered are listed in table 4 along with C and the solubility limits. These
cases were selected because they represent typical parameters for real systems.
The designations for D variations (D ->-, D f, D 4-, and <D>) are the same as
the ones discussed for two-phase systems.

The concentration profiles calculated for a cylindrical couple with
C = 0.02 (case 1 of table 4) are shown in figure 12. The three profiles
illustrate the major concentration and phase changes occurring during the
initial and intermediate stages of diffusion. Because the 3-phase is thin
relative to the a-phase, diffusion proceeds to the center of the 3-phase early
in the diffusion process resulting in a reduction in the concentration gradient
in the 3-phase. The intermediate Y~Pnase does not significantly increase in
thickness until the concentration gradient in the 3~phase approaches zero.
From this time on, the Y~Pnase grows at the expense of the B~phase until the
3-phase is totally consumed. The Y~phase will then decrease in thickness and
disappear with only the a-phase remaining at complete homogenization. The
sequence of events is controlled by solubilities, initial volume fractions, and
diffusion coefficients. The effect of each of these variables on the diffusion
process will be discussed in the following sections with primary emphasis
placed on the effect of diffusion coefficient variations on the motion of
phase boundaries.

Effect of relative magnitude and variation of D in the major-alloy

phase.- Solutions were determined for D 4-, Dt, D -»-, and \D / assuming D

and D^ to be constant and equal to Da-> (cases 1, 2, 3, and 4 of table 4) .
The results for the normalized thickness of the 3-phase are shown in figure 13
as a function of \ft. The curves in this figure have the same general behavior
as those presented in figure 8(a) (same C, geometry, D variations, and
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terminal phase solubilities) for the two-phase sample. The principal differ-
ence in the two sets o:f curves is that, in the three-phase system, the 3-phase
disappears in a shorteir time and the spread between the D variation curves
is not as large. The faster rate of loss of 3 in the three-phase system is
due to its low solubili'ty gap (5gY = 0.85 - 0.51 = 0.34) when compared to the

two-phase value (6ga = 0.85 - 0.15 = 0.70), requiring less material transport
for the 3 to Y transformation with respect to 3 to a transformation.
The spread between the .D variation curves in a three-phase system is smaller
because the intermediate "y -phase damps the effect of the Da variation. This
damping effect coupled with lower solubility limits makes the Da variations
in three-phase systems less important than in two-phase systems.

The sensitivity of the diffusion process to large differences in the value
of Da (with respect to D^ and D^) is illustrated in figure 14. The con-
ditions for these calculations are summarized in table 4 (cases 5, 6, and 7) .
When Da was high ((Da->-) x 100 J, the thickness of the 3-phase decreased rapidly
until the a-phase saturated (fig. 14 (a)). The concentration profiles shown in
figure 14 (b) indicate that at \ft = 50 sec ' , the a-phase is saturated for the
(Da-»-) x 100 case. Once the a-phase saturates, the kinetics are primarily con-
trolled by diffusion in the y-phase because the solubility of 3~phase is only
1 percent.

Effect of relative magnitude of D in minor-alloy phase.- Because D
variations in the minor-alloy phase are less important than in the major-alloy
phase and would, in the worst case, have only an initial transient effect, only
order of magnitude changes in the diffusion coefficient of the minor-alloy
phase were studied (cases 1, 8, and 9 of table 4) . The normalized thicknesses
of the 3- and Y-Pnases are shown in figure 15 as a function of \ft. The change
in thickness of the Y-phase, (£2 - ?̂ )/̂ » was not significantly affected by the

3 3value of D . The value of D has only an initial transient effect on the
thickness of the 3~phase, (̂ /̂£) . Once the 3-phase saturates, the value of D^
is unimportant because D and Da then control the diffusion process.

Effect of relative magnitude of D in the intermediate phase.- Because
intermediate phases in binary alloy systems generally have small solubility
ranges (less than 0.05, atomic fraction B) , concentration dependence of dif-
fusion coefficients in these phases is not significant. Therefore, in studying
the effect of the diffusion coefficient of the intermediate phase D^ on the
diffusion kinetics, only order of magnitude changes in D^ were considered.
Figure 16 shows the results for cases 1, 10, and 11 of table 4. When oY was
low ( (oY->)/loo), the Y-phase did not grow in thickness, and the rate of loss
of 3-phase was less than for D'-*-. Under these conditions, computation time is
minimized (without sacrificing solution accuracy) by analytically treating the
three-phase problem as a two-phase problem. When D^ was high ((DY-»-) x 100),
the Y-phase grew rapidly at the expense of both a and 3; this resulted

in a rapid decrease in the 3-phase thickness. Concentration profiles for
\/t = 50 sec ' are shown in figure 16 (b) for all three D^ values. The pro-
file for (DY-J-) x 100 shows that the Y-phase grew into the initial 3-phase
region much faster than into the a-phase because of the early saturation of the
3-phase. The Y~phase will increase in thickness until 3 disappears and then
decrease in thickness until it disappears leaving only a-phase in the specimen.

11



Figure 17 shows the results for C = 0.40 (cases 5, 12, and 13 of
table 4). Although C and solubilities are different from those used to cal-
culate the curves shown in figure 16, the same general behavior is observed.
If DY is less than or equal to Da and D^, the kinetics are primarily con-
trolled by diffusion in the a-phase. However, if D^ is larger than Da

and D^, the kinetics are dominated in the early stages by the growth of the
y-phase. Therefore, intermediate phases in three-phase.systems are unlikely to
act as suitable diffusion barriers between the terminal phases.

CONCLUDING REMARKS

Diffusion calculations were performed to establish the conditions under
which concentration dependence of the diffusion coefficient was important in
single-, two-, and three-phase binary alloy systems. Finite-difference solu-
tions for each type of system were obtained using diffusion coefficient varia-
tions typical of those observed in real alloy systems. Solutions were also
obtained using average diffusion coefficients and used as reference in assessing
the effects of diffusion coefficient variations. Calculations were performed
for planar, cylindrical, and spherical geometries in order to compare the effect
of diffusion coefficient variations with the effect of interface geometries.
Based on the results obtained, the following conclusions were drawn.

Single-Phase Systems

1. Concentration dependence of the diffusion coefficient in single-phase
systems was found to affect the kinetics of diffusion as strongly as the inter-
facial geometry of the diffusion couple.

2. The influence of geometry and average composition of the couple
(C, atomic fraction B) on diffusion kinetics is related to the ratio of inter-
facial surface area of B-rich material to its volume.

Two-Phase Systems

1. Concentration dependence of the diffusion coefficient in the major-
alloy phase of a two-phase system affects the kinetics of diffusion as strongly
as the interfacial geometry of the diffusion couple.

2. The diffusion coefficients of the compositions close to the solubility
limits exert a greater influence on the diffusion kinetics than do the coeffi-
cients of the compositions further away from the interface.

3. The integral average gives a better representation of the major-alloy
phase diffusion coefficient Da when Da decreases in going from the inter-
facial composition toward pure material. The logarithmic average gives a
better representation of Da variation when Da increases in going from the
interfacial composition toward pure material.

12



Three-Phase Systems

1. Concentration dependence of the diffusion coefficient is significant
only for the major-alloy phase. The damping effect of the intermediate phase
makes the effect of diffusion coefficient variations on minor-phase thickness
less important with respect to the two-phase system for comparable conditions.

2. Two orders of magnitude change in the diffusion coefficient of the
minor-alloy phase for a sample with C = 0.02 had only an initial transient
effect on the kinetics of diffusion.

3. The diffusion coefficient of the intermediate phase D^ has significant
effect on the diffusion kinetics only when D^ is greater than the diffusion
coefficients of the terminal phases.

4. When D"^ is small relative to the diffusion coefficients of the termi-
nal phases, the intermediate phase remains extremely thin during the initial
stages of diffusion. Under these conditions, computation time is minimized
(without sacrificing solution accuracy) by analytically treating the three-phase
problem as a two-phase problem.

5. Intermediate phases in three-phase systems are unlikely to act as
suitable diffusion barriers between the terminal phases.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
August 25, 1978
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TABLE 1.- DIFFUSION COEFFICIENT VARIATIONS FOR SEVERAL

SINGLE-PHASE AND MULTIPHASE BINARY ALLOY SYSTEMS

System,
A-B

Cu-Ni
Ni-Pd
Cu-Pd
Nb-W

Ag-Cu
Mo-Ti

Ag-Zn
Fe-Al

Temp . ,
K

1173
1292
1173
2373

1023
1123

883
1123

Composition
range ,
atomic

fraction B

0-1.00
0-1.00
0-1.00
0-1.00

0-0.12 Cu
0.10-0.90 Ti

0.40-0.55 Zn
0-0.18 Al

Max. D
Min. D

100
17
25
100

10
10

20
15

No. of
phases

1
1
1
1

2
2

5
6

Reference

9
12 (p. 52)
8
11 (p. 679)

10
12 (p. 39)

11 (p. 674)
11 (p. 675)

16



TABLE 2.- CASES CONSIDERED FOR. SINGLE-PHASE SYSTEM

[L/2 = 150 urn]

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Geometry

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Planar

Spherical

Planar

Cylindrical

Spherical

Planar

Cylindrical

Spherical

(DB/DA)

100

1

.01

100

1

.01

.10

.10

.10

1

1

1

1

1

1

c

0.111

.111

.111

.333

.333

.333

.333

.333

.333

.500

.500

.500

.010

.010

.010

(V2) , pm

50

50

50

86.6

86.6

86.6

86.6

50

104

75

106.1

119.1

1.5

15

32.3
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TABLE 3.- CASES CONSIDERED FOR TWO-PHASE SYSTEM

[C3a = °'85' cag = °-15' L/2 =

No.

1

2

3

4

5

6

7

8

9

10

Geometry

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Cylindrical

Planar

Spherical

Da

^
D«t

fi°H.

<D«>

D̂

D«+

D°U

<Da>

Da->

^

^

D^

A

D^

D^'

D̂

A

D̂

D̂

D̂

D̂

C

0.02

.02

.02

.02

.20

.20

.20

.20

.20

.20

(£/2) , ym

20.0

20.0

20.0

20.0

62.6

62.6

62.6

62.6

28.0

81.9
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TABLE 4.- CASES CONSIDERED FOR THREE-PHASE SYSTEM

(cylindrical geometry, C g = 0.51, C = 0.49J

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

Da

D«+

D«+

D«t

<D«>

Da+

(Da->-) x 100

(Da+)/100

D«+

Da+

Da+

D01-,

Da+

D«H.

DB

' D0+

D^

D̂

D0H.

D3+

D0H-

D̂

(D̂ ) x 100

(D̂ )/100

D̂

&

D̂

a*.

DY

DY.

DY.

DY->

Ŷ

D ' ->•

DY.

D ->•

rj 1 y

(DY -̂) x 100

(D̂ )/100

(DY->0 x 100

(DY -̂)/100

C3y
0.85

.85

.85

.85

.99

.99

.99

.85

.85

.85

.85

.99

.99

cay

0.15

.15

.15

.15

.20

.20

.20

.15

.15

.15

.15

.20

.20

C

0.02

.02

.02

.02

.40

.40

.40

.02

.02

.02

.02

.40

.40

( H/2) , ym

20

20

20

20

50

50

50

20

20

20

20

50

50

(L/2) , ym

140

140

140

140

79

79

79.

140

140

140

140

79

79
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Figure 1.- Phase diagrams and examples of concentration profiles produced by
diffusion between initially pure A and pure B at temperature 6D in
single-, two-, and three-phase binary alloy systems.
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Figure 2.- Average composition, initial conditions, and zero-flux (J = 0)
boundary conditions for different geometries.
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Figure 3.- Example of D variations in single-phase systems and associated
concentration profiles in cylindrical couple with C = 0.111 at inter-
mediate stage of diffusion (5 hr).
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Figure 4.- D variation and geometry effects on degree of
homogenization for couples with c" = 0.333 atomic
fraction of B.
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Figure 5.- Average composition and geometry effects on
degree of homogenization.

24



Planar Cylindrical Spherical

4/2-H h-

V

c =

s _
•v

S./2 x 1 x 1 7T

7T t X 1

X

2
C L

C =

s
v

s
V

C =

TT £

4/3 TT

(C)V2

(s/v) X L/2 = 1/C (s/v) X L/2 = 2/CC)1/2 (s/v) X L/2 = 3AC)1/3

.50

.01
2.00

100
2.83

20.0
3.78

13.9

Figure 6.- Dependence of s/v on geometry and C.
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Figure 7.- Diffusion coefficient variations in a- and 3-phases of
two-phase binary alloy system.
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(a) Change in thickness of 3-phase with diffusion time.
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(b) Concentration profiles at \ft = 300 sec1/2.

Figure 8.- Effect of Da variations in cylindrical couple with C = 0.02
on 3-phase thickness and composition profiles. Diffusion conditions
correspond to cases 1, 2, 3, and 4 of table 3.
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(b) Change in amount of B in $-phase with diffusion time.

Figure 9.- Effect of Da variations in cylindrical couple with C = 0.20,
Diffusion conditions correspond to cases 5, 6, 7, and 8 of table 3.
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Figure 10.- Geometry and D variation effects on degree
of homogenization. Diffusion conditions for D varia-
tion curves correspond to cases 5, 6, and 7 of table 3.
Conditions for different geometry curves correspond to
cases 7, 9, and 10 of table 3.
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Figure 11.- Diffusion coefficient variation in a-, 3~, and y-phases
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Figure 12.- Concentration profiles at different times in cylindrical
couple with C = 0.02. Diffusion conditions correspond to case 1
of table 4.
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Figure 13.- Effect of Da variations in cylindrical couple with

C = 0.02 on 3-phase thickness. Diffusion conditions correspond
to cases 1, 2, 3, and 4 of table 4.
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Figure 14.- Effect of Da variations in cylindrical couple with
C = 0.40 on Y~ and 3-phase thicknesses and concentration
profiles. Diffusion conditions correspond to cases 5, 6,
and 7 of table 4.
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Figure 15.- Effect of large changes in D^ on y~ and S-phase
thicknesses for cylindrical couple with C = 0.02. Diffusion
conditions correspond to cases 1, 8, and 9 of table 4.
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Figure 16.- Effect of large changes in D^ for cylindrical couple with
C = 0.02 on Y- and $.-phase thicknesses and concentration profiles.
Diffusion conditions correspond to cases 1, 10, and 11 of table 4.
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Figure 17.- Effect of large changes in D' on y- and 3-phase
thicknesses for a cylindrical couple with C = 0.40.
Diffusion conditions correspond to cases 5, 12, and 13 of
table 4.
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