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SUMMARY

A fourth-order box method is presented for calculating numerical solutions
to parabolic, partial-differential equations in two variables or ordinary dif-
ferential equations. The method, which is the natural extension of the second-
order box scheme to fourth order, is demonstrated with application to the incom-
pressible, laminar and turbulent, boundary-layer equations. The efficiency of
the present method is compared with other two-point and three-point higher order
methods, namely, the Keller box scheme with Richardson extrapolation, the method
of deferred corrections, a three-point spline method, and a modified finite-
element method. Por equivalent accuracy, numerical results show the present
method to be more efficient than the other higher order methods for both laminar
and turbulent flows.

INTRODUCTION

Some of the recent effort in the application of numerical methods to the
boundary-layer equations has been directed toward finite-difference methods
which have truncation errors that are of higher order than the second-order
methods in use today. The term higher order refers to the truncation error in
the coordinate normal to the body surface. The truncation error in the tangen-
tial coordinate is second order in all the methods discussed in this report.
The advantages of higher order methods are twofold. First, they can be used to
obtain a numerical solution as accurate as a second-order method with less com-
puter time and storage; alternatively, they can be used to produce a signifi-
cantly more accurate solution with the same amount of computer time and storage
as a second-order method.

The higher order methods can be either composite or intrinsic. Composite
methods rely on one or more second-order calculations to achieve their higher
order accuracy. Richardson extrapolation and the method of deferred correc-
tions, both discussed by Keller (ref. 1), when applied to second-order methods
are examples of composite methods. Intrinsic methods solve a single set of
governing difference equations which have a truncation error smaller than
second order and whose solution does not depend on a previous second-order
calculation.

The higher order intrinsic methods proposed for the boundary-layer equa-
tions consist of finite-difference schemes which involve two or three grid
points. The three-point schemes fall into two classes. The first class con-
sists of procedures which are fourth order for uniform grids. These procedures
treat the functional value and certain derivatives as unknowns at three colloca-
tion points and can be derived via Taylor series or polynomial interpolation.

In this category are the Pade approximation of Kreiss (ref. 2), or the so-

called compact scheme (ref. 3), the Mehrstellen formulation (ref. 4), and the
formulation of Peters (ref. 5). The second class of three-point schemes con-
sists of methods for variable grids such as the spline collocation methods of



Rubin and Graves (refs. 6 and 7) and Rubin and Khosla (refs. 8 and 9). Adam
(refs. 10 and 11) and Kordulla (private communication) have extended the com-
pact and Mehrstellen schemes, respectively, to variable grids. The two classes
of three-point schemes are similar in that the resulting finite-difference equa-
tions involve three nodal points but are different in that the first class is
restricted to uniform grids whereas the second class is applicable to variable
grids. The emphasis in this study is on methods applicable to variable grids.

One disadvantage of higher order intrinsic methods involving three nodal
points is that the usual boundary conditions for incompressible flow (i.e.,
no slip and no injection at the surface and the tangential velocity component
approaches the edge value as the boundary layver merges with the mainstream) are
no longer sufficient, since the resulting general system of finite-difference
equations contains more unknowns than equations. This difficulty is usually
finessed by inventing one or more additional boundary conditions at the outer
edge of the layer and by applying an additional equation at the surface bound-
ary. The choice of which additional boundary conditions to use is not clear.

Another disadvantage of some higher order intrinsic methods is the com~
plexity of the resulting nonlinear, finite-difference equations and the associ-
ated difficulty in solving them efficiently at each column. For example, the
spline 4 method of Rubin and Khosla (refs. 8 and 9) would seem to require the
solution of a 5 X 5 block-tridiagonal matrix to solve the fully coupled, incom-
pressible, boundary-layer equations. A simpler solution scheme, which lags the
continuity equation one iteration behind the momentum equation, is reported by
Rubin and Khosla (ref. 8). Since the equations in this scheme are solved uncou-
pPled, the errors diminish in a linear manner with each iteration. 1In contrast,
the better second-order methods, such as the Davis coupled scheme (ref. 12) and
the Keller box scheme (ref. 13), solve the equations fully coupled with Newton
linearization, and thus, for laminar flows, quadratic convergence is achieved.
Hence, the advantages of some higher order methods, relative to second-order
methods, may be reduced or lost entirely in practical engineering calculations
because of slow convergence of the nonlinear system.

The main purpose of this report is to present a fourth-order intrinsic box
scheme for obtaining numerical solutions to parabolic, partial-differential
equations or ordinary differential equations, with application here to the
steady, two-dimensional, incompressible, laminar or turbulent, boundary-layer
equations. The method has the following features: (1) It results in finite-
difference equations that involve only two nodal points and therefore is for-
mally fourth-order accurate on all grids, (2) it results in a 3 X 3 matrix of
unknowns at each nodal point when the equations are solved in a coupled manner,
(3) it utilizes Newton linearization and demonstrates gquadratic convergence for
laminar flows, and (4) it requires only the standard incompressible boundary
conditions given previously. In short, the method is the natural fourth-order
extension of the second-order box scheme. It is an example of a general class
of high-accuracy, two-point methods examined by White (ref. 14) and discussed
briefly by Keller (ref. 15). Keller offers an operation-count analysis that
suggests that such methods may be superior to the well-known Keller box scheme
(with Richardson extrapolation) to achieve acgcuracy less than or equal to six

order.



The second purpose of this report is to compare the present fourth-order
box scheme with other proposed or existing higher order methods, including a
second-order method with Richardson extrapolation, the method of deferred cor-
rections, a three-point spline scheme, and a modified finite-element scheme.

SYMBOLS
Apn,B; 3 x 3 matrices defined by equation (27)
aj 5 i,jth element of Ap
bij i,jth element of Bj
C constant in equation (37); also 3 x 3 matrix given by equation (B2)
c constant in equation (38)

1

Ce surface skin-friction coefficient, T¥ <;-D;q;a
C0.,C1 constants in grid-stretch function (see egq. (35))

€1,¢2,¢3 constants in finite~-difference expression for 9d( )/3df terms

(eq. (A1))

Dp 3 x 3 matrix given by equation (B8)

d('|) (2) d(3) . . . . : :

n ¢9n +9n coefficients in finite-difference solution technique

1) (2) (3) (see egs. (B3) to (B5))

€n +©n 1&n

Er absolute numerical error in the wall shear, percent

E%* absolute numerical error in boundary-layer displacement thickness,
percent

F damping factor (see egq. (10c))

£ normalized boundary-layer velocity component in x-direction, G/Ue

g represents any sufficiently differentiable quantity

h step size in n-coordinate, equal to Anp.j

I number of intervals across boundary layer

k Von Karman constant, 0.41

L* reference length



Pnr9nrtn

scale length measured in Y-coordinate
scale length measured in n-coordinate

=1 +€

number of grid points across boundary layer
components of vector ;n {(see eqg. (26))
correction term (see eq. (33b))

Reynolds number based on L*, PXUXL* /X
Reynolds number based on x*, pXUXx*Ai%

= 9 £/9n

central-processor-unit time

defined by equation (10b)

inviscid flow velocity in x-direction

= U*/U;

time-averaged viscous flow component in x-direction

= G*/U;

friction velocity, \,IT‘*,I/Q;

time-averaged viscous flow component in Y-direction

= V-RTLV* ;

transformed viscous flow component in y-direction (see eq. (7))

vector defined by equation (26)

position coordinate measured along body surface from leading edge
or stagnation point

= x*/L*
stretched normal coordinate, WRLY

physical distance normal to body surface, y =0 at surface

= y*/L*



y* law-of-the-wall coordinate, u%y*/qz

>
Zn vector defined by equation (25)
o exponent in grid-stretch function (see eq. (35c))

&],&2,...,&9 coefficients used in appendix A in finite-~difference equations

B8 pressure~gradient parameter (see eqg. (8))

An step size in N-coordinate, An,.7 =nN, - Np

A% step size in £-coordinate, Af,_1 = &5 - &1

5* boundary-layer displacement thickness measured in N-coordinate

(see eq. (34))

€ nondimensional eddy viscosity (see eq. (10a))

Tn parameter in grid-stretch function defined by equation (35b)

n transformed normal coordinate (see eq. (5))

0 parameter determining where differential equation is evaluated in

E-coordinate, © = 1/2 for Crank-Nicolson scheme and 0 =
three-point backward difference scheme

A mixing length (see eq. (104))

u* molecular viscosity

V¥ kinematic viscosity, W*/p*

£ transformed surface coordinate (see eqg. (5))
p* density

ou*
wall shear, H*
y=0

™% By*

w coefficient denoting truncation error (see eq. (37))
Subscripts:

e " inviscid flow conditions at y = 0

exact value obtained with 640 intervals across boundary layer

m grid index in E-coordinate for finite-difference formulation

1

for



n grid index in TMcoordinate for finite-difference formulation

w viscous flow conditions at y =0
o free-stream conditions
Superscripts:

i present iteration

' differentiation with respect to N-coordinate

~ quantity evaluated outside main iteration loop
* dimensional quantity

-1 inverse of matrix

- vector

T transpose of a matrix (or vector)

Acronyms:

B4S fourth-order box scheme

CKBS conservative Keller box scheme

CKBSRE conservative Keller box scheme with Richardson extrapolation
DCS Davis coupled scheme

KBS Keller box scheme

MDC method of deferred corrections

MFE modified finite-element method

RKS]1 Rubin-Khosla S!(4,0) spline method

FOURTH-ORDER BOX SCHEME (B4S)
Governing Equations

The present method is demonstrated with application to the steady, two-
dimensional, incompressible, laminar or time-averaged turbulent, boundary-layer
equations (ref. 16, p. 545) which are expressed here in Gortler variables
(ref. 17):
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F=1- expl— (10c)
26
A k ¥
— = 0,085 tanh - (k = 0.41) (104)
l 0.085 }

Note that the variables in equations (1) to (10) are all nondimensional.

Method of Solution

The finite-~difference expression around which the present method is formu-
lated is given by

h ] ] h2 " n 5
9p = 9p-1 - ;(gn + gp-1) + 1—2(9,, - gp-1) + O(hd) =0 (11)

where g represents any sufficiently differentiable quantity, h 1is the vari-
able step size in the normal coordinate N (i.e., h =70, - N, 7), and the
primes denote differentiation with respect to TnN. BAs mentioned previously,
equation (11) is not new. Liniger and Willoughby (ref. 19) analyzed the sta-
bility of equation (11) as an implicit method for solving initial-value prob-
lems for stiff systems of ordinary differential equations. Equation (11) is the
fourth-order member of a general class of high-accuracy, two-point equations
discussed by White (ref. 14) and Keller (ref. 15). Hirsh (ref. 3) used the
expression to formulate boundary conditions for the three-point compact scheme
applied to the incompressible driven cavity problem.

A key step in the present procedure, as in the second-order Keller box
scheme, is to reformulate the problem in terms of a first-order set of partial-
differential equations. This is done by defining s = 9f/dn and rewriting
equations (1) and (2):

) 9f2
—(@s - vf) = 26 —+ (1 +B8)£2 - B (12)
an o9&

af :
— =5 (13)

an

v of .
— = -2k — - f (14)

an o9&
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If a vector g 1is now defined as

Ls = vf (15)

>
g = £ (16)
v (17)

>
then g' is the right-hand sides of equations (12) to (14) and a", their
derivatives with respect to the Nn-coordinate:

~ N

28 a7 + (1 +B)F2 -8B (18)
ag

>
g =ﬁ s $ (19)

3¢
-2k — - f (20)
.13
k J
r w
o2t 2590 L g sope (21)
+
TS s
3f2 g
;" = <(22, - 'I)‘]I:vs +B(£2 - 1) + & 'a—g—— - t']sls:] (22)
2F o (23)
5 °© )
.

where equation (1) has been used to express s' in terms of the dependent vari-
ables f, s, and v (eq. (22)). Substitution of equations (15) to (23) into
equation (11) leads to three, nonlinear, finite-difference equations. The

3( )/9% terms in these equations are written so that they may be approximated
either by a two-point central-difference quotient (the Crank-Nicolson scheme)

or by a three-point backward difference method; in either case, the equations
are second-order accurate in the {-coordinate and fourth-order accurate in the
N-coordinate. These nonlinear equations are then linearized by Newton's method,



with the exception of the term t'Isfs in equation (22) and the quantities 1
and sy which are used to compute A and y*. Application of Newton's method
to linearize the eddy viscosity terms was found to particularly accelerate con-
vergence for the turbulent similarity cases. Newton linearization yields three,
linear, finite-difference equations which can be expressed as

> > ->
Apnz2n-7 + Bpzp = wp (24)
where
. . . T

> 1 1 1

Zp = (?m,n'fm,nlvm,n> (25)

<>

Wnp < (pnlqnlrn)T (26)
aj] a2 a3 byjy  bj2  by3

A, = (a1 azz2 a3 | By b21 by2 b23 (27)
az1 a3z as3 b3y b3z b3zz

The superscript 1 in equation (25) denotes the present iteration value and
the subscripts m and n are grid indices in the £- and n-coordinate, respec-—
tively. The matrices A, and B, and the vector 'Wn are functions of the
dependent variables evaluated at the 1i-1 iteration and/or at the previous
f-stations. Equations (24) must be solved repeatedly until an acceptable level
of convergence is obtained.

Although the double subscripted matrix elements aj§ and bij change
values with the index n, it is suppressed for simplicity. Superscript i
and subscript m will also be suppressed for the same reason. Appendix A
shows how A, By,, and W, are obtained.

The boundary conditions are
f1 = vy =0 (no slip, no injection) (28a)
fy =1 {28b)
It is noteworthy that, since equations (24) can be applied at the outer
boundary, the total number of finite-difference equations exactly balances the
total number of unknowns. In contrast, a three-point method formulated in
terms of f, s, and v could not be applied at the ocuter boundary and would

result in more unknowns than equations; hence the method would require addi-
tional boundary conditions and equations applied at the boundaries.

10



The solution of the resulting linear system of finite-difference equa-
tions (24) has been given before; see Cebeci and Smith (ref. 20). The method
used here is given in appendix B.

HIGHER ORDER METHODS WITH WHICH B4S IS COMPARED
A classification of the higher order methods examined in this study is

given in table I. The methods in the table are described in the following
sections.

TABLE I.- CLASSIFICATION OF HIGHER ORDER METHODS

W( Number of grid Formal accuracy with -

points in

Method Type finite-difference Uniform Variable
equations grids grids

B4S Intrinsic 2 Fourth order Fourth order

RKS1 Intrinsic 3 Fourth order Third order

MFE Intrinsic 3 Fourth order Third order

CKBSRE Composite 2 Fourth order Fourth order

MDC Composite 2 Fourth order Fourth order

Intrinsic Methods

Three-point spline methods.- Two three-point spline methods were examined
in this study. Both methods are formally fourth-order accurate for uniform
grid spacing and can also be shown to be fourth order for analytical variable
grid stretchings. They are the spline 4 method of Rubin and Khosla (ref. 8),
which solves the momentum and continuity equations in an uncoupled manner, and
the spline S1(4,0) method, which solves the equations coupled. The equations
for the S1(4,0) method were given by Rubin and Khosla (ref. 9) without applica-
tion. However, since this method is easily applied to solve the coupled momen-
tum and continuity equations with dependent variables f, s = f', and v and
thus achieves quadratic convergence for laminar flows, the three-point spline
method used for comparison here is the S1(4,0) method. Numerical results
obtained with the spline 4 the S1(4,0) methods were virtually identical.

Rubin-Khosla spline S1(4,0) (RKS1) .— The RKS1 method is shown here applied
to the momentum equation in similarity form which is obtained by deleting the
9( )/9% term in equation (1). To apply the spline method to turbulent flow,
the momentum equation is written in the following nonconservative form:

LE" + ' - V)E' - B(£2 -1) =0 (29)

11



In the RKS1 method, the f" derivative in the momentum equation is
replaced by a spline relation involving the dependent variables s and £
at three node points. The resulting finite-difference momentum equation is
then coupled with finite-difference expressions for the continuity equation
and an auxiliary equation which enforces spline continuity; both are obtained
via spline relations.

After linearizing the finite-—difference momentum equation by Newton's
method with the exceptions for eddy viscosity noted in the B4S, these 3 x 3
block-tridiagonal equations are solved simultaneously for s,, f,, and v
with boundary conditions,

f1 = vy =0 (no slip, no injection) (30a)
fiy = 1 (30b)

Since three-point finite-difference equations can be applied only at interior
node points, there are three more unknowns than equations. However, vy does
not appear in the finite-difference equations written in nonconservative form,
so that only two more unknowns than equations remain. The two additional equa-
tions needed are obtained by setting sy = 0 and evaluating sy by applying
equation (11) at n = 2 to the momentum equation (12).

Modified finite-element method (MFE).- The modified finite-element method
of Rubin and Khosla (ref. 21) differs from the three-point spline methods in
that the equations are solved in conservative form. The momentum finite~
difference equation is given by

h 1 1 1
9n+1 — 9n-1 — ; 09n+1 + (1 + 0)gp + gp-

h2 .
¥ ]—2[029§;+1 - ©2 - Dgp - gp1] = 0 (31)

where O = An,/An,_y and gp, gé, and g; are given by equations (15),
(18), and (21). The continuity equation is the same as the B4S finite-
difference expression (eq. (11)). These equations are coupled with an auxil-
iary equation which enforces spline continuity.

After linearizing the momentum equation with the exceptions for eddy vis-
cosity noted in the B4S, these 3 X 3 block-tridiagonal equations are rewritten
with dependent variables £, v, and M = f" subject to the boundary condi-
tions given in equations (30).

The coupled system of equations for f£f,, vph, and M, written in this
form is unstable when numerical solutions are attempted. However, a stable
system can be obtained by eliminating Vp47 and v,_7 from the momentum dif-
ference equation via the continuity equation. A computer code listing which
supplied details of this method was provided courtesy of Rubin and Khosla.

12



Since vy no longer appears in the difference equations, only two addi-
tional equations are required. The momentum equation is used to show that
M) = -B. A spline relation relating sy to My and fy was also used
(eq. (22a) in ref. 21).

Composite Methods

Two composite methods, or methods which rely on one or more second-order
calculations to achieve their higher order accuracy, were studied. They are
Richardson extrapolation and the method of deferred corrections applied to a
second-order method; both are discussed by Keller (ref. 1). The second-order
method used in the composite method was chosen from among the Keller box scheme
(KBS), the conservative Keller box scheme (CKBS), and the Davis coupled scheme
(DCS) . The CKBS was chosen because it provides more accurate results than the
DCS on a coarse grid and is more efficient than the KBS for laminar flows. The
three second-order methods are compared in detail in the section "Selection of
Second-Order Method."

Conservative Keller box scheme with Richardson extrapolation (CKBSRE) .-
Application of Richardson extrapolation to obtain higher order accuracy using
the second-order Keller box scheme for the boundary-layer equations has been
reported by Keller and Cebeci (ref. 22). Richardson extrapolation is applied
here to the second-order conservative Keller box scheme (CKBS), which is the
second-order method obtained when the higher order terms are deleted from the
B4S. The extrapolated solution f§ for a grid with I intervals is
obtained by the following relation:

1
£§(I) = fopu-7(2I) + S[fzn_~| (21) - fn(I)J (32)

where £,(I) 1is the solution on a grid with I intervals and f,(2I) 1is the
solution on a grid with 2I intervals. Identical extrapolations are used for
the dependent variables s,; and v, as well as for the transformed displace-
ment thickness 6%*. Keller (ref. 1) has shown that for second-order methods,
a single Richardson extrapolation should result in a solution with accuracy
o(1-4%).

Method of deferred corrections (MDC).- The method of deferred corrections
is combined with the CKBS by applying equation (11) in the form

h

9n = 9n-1 = 5(Gn * 9n-1) = Ry (33a)
where
h2 " " .
Rn = - T_Z'(gn - gn—-'l) (33b)

13



To obtain a solution with the MDC, a converged second-order solution is
first obtained with Ry = 0. The solution thus obtained is used to evaluate
R, using the functions for g" given in equations (21) to (23). A second
converged solution is then obtained for equation (33a) with R, fixed at the
value obtained from the first calculation.

This formulation of the method of deferred corrections requires only one
deferred correction to make the truncation error formally fourth order which is
consistent with the B4S. When applying the method of deferred corrections,
there are basically two approaches in approximating the higher order correc-
tions; both are discussed by Keller (ref. 1).

The usual approach is to approximate the derivatives g; and g;_1 by
three-point central differences; thus the values of gp41, 9, 9p-1, and
dp-2 are required to evaluate Rp. For uniform grids, the truncation error
of this approach is formally fourth order for one deferred correction, whereas
for a variable grid, the formal truncation error is increased to third order.
This approach also leads to difficulties at the boundaries, where gy;7 and
g_1 are required to compute Ry and Ry. Pereyra (ref. 23) avoided this
difficulty by using one-sided differences at the boundaries for the correction
terms. Keller discusses a simpler, and probably superior, procedure for treat-
ing the corrections near the boundaries: Extend the second-order numerical
solution beyond the boundaries to generate values for gy;7, 9y4+2, - « - and
9-1, 9-2, + « «, as needed for central differences near or at the boundaries.

An alternative approach for approximating the higher order correction
terms, and the one adopted here, is to differentiate the governing equations
to obtain g}, as a function of the dependent variables f,, s, and vj.
While this procedure loses its attractiveness when more than one deferred cor-
rection is made (i.e., accuracy greater than o(h4) is desired), it appears to
be more efficient for one correction because no modifications are needed at the
boundaries and it also has the advantage of remaining formally fourth-order
accurate for variable grids.

CALCULATION OF DISPLACEMENT THICKNESS

The transformed displacement thickness,
- (==}
§* =5 (1 -£) an (34)
0]

is computed for the higher order intrinsic methods and the MDC by using equa-
tion (11) where g' =1 - f and thus g" = -g., Egquation (11) is integrated

from the solid boundary, where g7 = 0, to the outer boundary, where gy = §*.

The displacement thickness for the CKBSRE is obtained in a similar manner with
the higher order terms omitted.

14



RESULTS AND DISCUSSION

The author carefully programmed each method with the same efficiencies to
obtain a fair comparison with respect to computer run times. The method used
to solve the 3 x 3 block-tridiagonal finite-difference equations was coded with
zero elements eliminated. Several model problems were solved with each method.
Comparisons between the second-order methods and between the fourth-order meth-
ods were made for laminar cases with B = -0.1, 0, and 1, and comparison between
the fourth-order methods was made for similar and nonsimilar turbulent cases
with B = 0 and 0.5. The same initial profiles were used with each method. The
initial profiles are given by £, =1 - e_ann, spn = a(l - £,), and v = -Ny
where a = 0.47, 0.47, and 1.23 corresponding to the three values of B for
the laminar cases and a = 2.75 and 3.42 corresponding to the two values of B
for the turbulent cases.

Since a closed-form solution to the governing equations is not available,
the "exact" solution was taken to be the B4S solution with 640 intervals
(641 grid points) across the boundary layer, unless otherwise noted.

Selection of Second-Order Method

In selecting the second-order method to use with Richardson extrapolation
and the method of deferred corrections, three second-order methods were studied.
They are the Keller box scheme (KBS), the conservative Keller box scheme (CKBS),
and the Davis coupled scheme (DCS). The CKBS is the second-order method
obtained when the higher order terms are deleted from the B4S. It differs from
the KBS (ref. 13) mainly in the form of the momentum finite-difference egquation
which is written in conservation form while the KBS version is obtained from
equation (1) which is only partially conservative. The dependent variables for
both methods are f, s = f', and v. The DCS (ref. 12) uses a three-point
variable-grid scheme reported by Blottner (ref. 24) with the linearized finite-
difference equations for £ and v being solved with a modified tridiagonal
scheme. All three methods solve the momentum and continuity equations coupled
and are linearized via Newton's method.

As noted by Keller and Cebeci (ref. 22), the purpose of higher order meth-
ods is not to acquire more significant digits in the solution but rather to get
reasonable answers with relatively few grid points. With this purpose in mind,
the second-order method selected was the one which gave the best results with
the fewest number of grid points for model problems having favorable as well as
adverse pressure gradients.

The second-order methods are compared for laminar-flow problems only. The
governing equations for the model problems reduce to ordinary differential equa-
tions and are obtained by deleting the 3( )/9f terms from the governing equa-
tions and setting £ = 1. The problems were solved with the following numbers
of intervals across the boundary layer: 10, 16, 20, 32, 40, 64, 80, 128, 160,
and 320.

15



The grid size for all calculations varied across the boundary layer. The
equation used to generate the grid is given by

Cotn
Ny = ——— (35a)

a1+ C]Cn)a

where

(35b)

Cn =

and c] and O are arbitrary constants chosen here so that for N =11,

Any = 0.05, and the remaining points are distributed in a reasonable manner.

For the laminar calculations where TNy = 24.2538, ¢7 = -0.4, and Q& = 8.26.

The constant cg 1is obtained by applying equation (35a) at n = N. This type
of grid stretching was selected because all coarse grid points are also points
on the exact-solution grid (N = 641); thus, no interpolation between node points
was required to compute the norms of the f- and s-profiles which were examined
as a measure of the numerical error present in the finite-difference solutions.
The f~norm is defined as

1 N-1
!'f - fexact“ = N - 2 :E: lfn - fp,exact (36)
- n=2

with the s-norm being defined in a similar manner. The numerical errors in the
wall shear E;r and in the transformed boundary-layer displacement thickness
Eg* were also considered in determining the relative accuracy of the methods.
Figure 1 shows the percentage error in the wall shear versus the number of
intervals across the boundary layer, I =N - 1, for the CKBS, KBS, and DCS for
laminar, flat-plate (B = 0) flow. (The slopes indicated in the figures (2 to 1
in fig. 1) are the slopes of the lines on the logarithmic grid.) The figure
shows that as the grid is refined, the CKBS is the most accurate when accuracy
is measured solely by the percentage error in the wall shear. As the grid is
refined, the numerical errors for laminar flow have the following form:

E=CI™W as I-+» (37)

where w = 2 for second-order methods and ®w = 4 for fourth-order methods,
with E being the f-norm, s-norm, E;, or Eg*. The constants C were com—

puted for both B =1 and B8 = 0. Typical results show that the ratios of the
number of intervals to achieve an equivalent accuracy in the wall shear,
Ixps/Ipcs and Icgss/Ipcg, were 2.3 and 0.5, respectively, for B = 0 and 1.4
and 0.8, respectively, for B = 1.

16



To compute the relative efficiency of the methods, it was observed that,
as the grid was refined, the central-processor-unit time in seconds T could
be approximated as

T = iCI (38)

where C is a constant and i is the number of iterations required for con-
vergence. The efficiency of method A relative to method B is given by

Ta/Tp = (Ca/Cp) (Ip/Ig) = (EA/EB)(CA/CB)1A” (39)

where Ip/Ip is the ratio of the number of intervals to achieve an equivalent

accuracy in one of the errors. Because of the short run times, on the Control

Data CYBER 175 computer, special care was taken in determining the constants C
with the values used being the average over 6400/I calculations. Thus, for

10 intervals, the computer times were averaged over 640 calculations.

For comparison of the three second-order methods, the convergence criterion
required that

10-12 (40a)

A

lAflmax

where

max| £n - gl (40b)

IAfImax

Since all the second-order methods converged quadratically for laminar flows

and tnus required an equal number of iterations for the cases where time effi-
ciency was computed, it was not felt that this restrictive convergence crite-
rion penalized any method. Typical results showed that to compute an equivalent
accuracy in the wall shear, the relative times Tgpg/Tpcs and Tcges/Tpes

were 2.8 and 0.7, respectively, for B = 0. Similar results were obtained for

B = 1. However, the relative efficiency of the methods varied with the pres-
sure gradient parameter B and also with the different numerical errors.

Note from equation (39) that the relative time efficiency depends both on
the relative time to solve the difference equations, CKBS/EDCSI and the rela-
tive truncation error (CKBS/CDCS)1/m- As the number of intervals becomes
small, figure 1 shows the truncation error to deviate from its asymptotic
behavior with the DCS showing the greatest deviation. This is borne out in
table II where the f-profile obtained on a coarse grid (N = 11) is compared
with the exact solution.
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TABLE II.- COMPARISON OF SECOND-ORDER f-PROFILES WITH
EXACT SOLUTION FOR R = 0

{Laminar flow; N = 11]

f-profiles calculated with -
n
Exact CKBS KBS pes
0 0 0 0 0

.49975 x 10-1 .23468 x 10~1j .23426 x 10~'| .24727 x 10-1]| .24432 x 10-1

.14205 x 109 .66705 x 10-1| .66585 x 10~1| .70282 x 10-?| .69448 x 10-!

.30761 x 100 .14437 x 100 | 14411 x 109 | ,15208 x 100 | .15033 x 100

.60231 x 100 .28164 x 100 | .28113 x 100 | .29632 x 100 | ,29355 x 100

.11266 x 10 .51474 x 100 | .51364 x 109 | ,53817 x 100 | .53930 x 100

.20651 x 10 .83286 x 100 | .83263 x 100 | .85435 x 100 | .89294 x 100

.37657 x 10 .99552 x 100 | .10140 x 10 .10156 x 10 .10820 x 10

.69004 x 10 .10000 x 10 .99643 x 100 | ,99600 x 100 | .99698 x 100

.12809 = 102 .10000 x 10 .10032 x 10 .10036 x 10 .10687 x 10

.24254 x 102 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10
E7, percent . . . 0.179 x 100 0.537 x 10 0.411 x 10
Ec,, percent . . . .167 x 10 .334 x 10 .674 x 102

For a coarse grid, the CKBS is slightly more accurate than the KBS. Note the
very large error (67 percent) in the displacement thickness for the DCS. This
error appears to result from an approximate 8-percent overshoot in the f-profile
as compared with 1.5 percent for the CKBS and the KBS.

The solutions obtained with the three-point DCS on a coarse grid (N = 11)
showed a sensitivity to the pressure gradient parameter B that was not
observed with either the CKBS or the KBS. For B = 1, the f-profile for all
three methods showed negligible overshoot with errors in the wall shear and
displacement thickness that were comparable. However, for B = -0.1, the
errors in the wall shear and displacement thickness for the DCS were 45 and
185 percent, respectively, apparently because of a 21-percent overshoot in the
f-profile. For this same case, the CKBS and the KBS showed negligible overshoot
with the error in the wall shear and displacement thickness being 1 percent and
5 percent, respectively, for the CKBS.

On the basis of these laminar results on a coarse grid, the CKBS and the
KBS were judged preferable to the DCS for use with Richardson extrapolation and
the method of deferred corrections when solutions with only a few grid points
are desired. Since the CKBS was found to be more efficient than the KBS for
laminar flows, the CKBS was chosen to use with the higher order composite
methods.

Higher Order Methods Applied to Laminar Flows
Figure 2 shows the f-norm versus the number of intervals across the bound-

ary layer for the CKBSRE, MFE, -MDC, and RKS1 compared with the B4S values for
laminar, stagnation-point (8 = 1) flow.
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Solutions for model problems using the CKBSRE were first obtained on a
grid with 2I intervals and then on a grid with I intervals. The initial pro-
files for the I-interval solution were taken from the solution with 2I inter-
vals. The error norms for the CKBSRE are shown plotted versus the I inter-
vals. The starting profiles for the MDC calculation where Ry # 0 were
those obtained from the Ry = 0 solution. The exact solution (I = 640) used
to compute the f-norm for the RKS] method was obtained with that method, since
it required solution of a slightly different boundary problem (sy = 0).

For laminar flow, figure 2 shows all the higher order calculations with a
variable grid to be fourth-order accurate as the grid size is refined. The
f-norm for the CKBS is shown for comparison. As the grid is refined, the error
norms approach the form given in equation (37) with @ = 4, Numerical values
for the constants C for this case and the laminar, flat-plate (B = 0) case
were computed.

To determine the relative time efficiency of the higher order methods to
achieve equivalent accuracy, the central-processor-unit time in seconds was
expressed as in equation (38). The time efficiency was obtained in the same
manner as for the second-order methods (eq. (39)).

In a previous paper (ref. 25), the convergence criterion of
|Af| pax € 10712 was also applied to the higher order methods when computing
the relative time efficiency. Further studies have shown that this restrictive
criterion does in fact penalize the RKS1, MDC, and CKBSRE relative to the BA4S.

To obtain a fair comparison, it is necessary only to require that the con-
vergence error be less than the truncation error. This criterion was applied
by noting the minimum number of iterations required for the error to plot as
shown for I £ 128 in figure 2. Results for B = 0 are shown in table III.

TABLE III.-~ MINIMUM NUMBER OF ITERATIONS REQUIRED

FOR CONVERGENCE FOR B = 0

[Laminar flow; I £ 128]

Method Number of iterations
B4S 5

RKS1 4

MFE 5

MDC ag + 1
CKBSRE bs + 2

8The MDC required four iterations to obtain
the R, = 0 solution and one iteration with the
correction term added.

PThe CKBSRE required five iterations on the
fine grid and two iterations on the coarse grid.
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TABLE IV.- RELATIVE EFFICIENCY OF HIGHER ORDER METHODS FOR B8 = 0

{Laminar flowl

For equivalent accuracy in -
Relative times p
Wall shear §* f-norm
Tmpce/TB4S 2.3 0.9 1.4
TckBSRE/TBA4S 2.3 1.1 2.0
q&ﬂ?E/ﬂh34S 2.7 1.4 1.9
Trks1/TB4S 3.6 1.8 2.0

Table IV, which shows the relative time efficiency for this case indicates that
the B4S is the most efficient higher order method for laminar flows as the grid
is refined. Similar results were obtained for B = 1.

As the number of grid points is reduced, the truncation errors deviate
from their asymptotic behavior. Figure 2 shows the MDC and the RKS1 to deviate
the greatest for the coarse grid, N = 11. Tables V to VII show the f-profiles
obtained on this coarse grid along with the exact solution for laminar flows
with favorable as well as adverse pressure gradients (B =1, 0, and ~0.1).

TABLE V.- COMPARISON OF HIGHER ORDER f~PROFILES WITH EXACT SOLUTION FOR B8 =1

[Laminar flow; N = 11]

f-profiles calculated with -
n . S — -
Exact B4S CKBSRE MDC RKS1 B MFE
0 0 0 0 0 0 0
.49975 x 70~} .60350 x 10-1| 60359 = 10-1| .60350 = 10~ .60375 x 10-1| .60268 x 10-1| .60376 x 10~!
.14205 x 100 16503 x 100 | .16506 x 100 | .16503 x 100 | 16570 x 100 | .16480 x 100 ! 16510 x 100
.30761 x 100 33236 x 109 | .33242 x 100 | .33236 x 100 | .33251 x 109 | .33186 x 100 | .33254 x 100
.60231 x 100 56784 x 100 | .56795 x 100 | .56787 x 100 | .56813 x 100 ' .56683 x 100 | .56815 x 100
L11266 x 10 .82381 = 100 [ .82393 x 100 | .82399 x 100 | ,82400 x 100 | .82158 x 100 | .82432 x 100
.20651 x 10 .97721 = 100 | 97683 x 100 | ,97725 x 100 | _97588 x 100 | .96919 x 100 | .97409 x 100
.37657 = 10 , 99989 x 100 | .99904 x 100 [ _99948 x 100 { ,10029 x 10 99194 x 109 | 10016 x 10
.69004 x 10 10000 x 10 .99972 x 100 | ,10003 x 10 .10018 x 10 .99934 x 100 | _99965 x 100
.12809 x 102 .10000 x 10 .99984 x 100 | ,99985 x 109 | .98816 x 100 i .92008 x 100 | .10002 x 10
.24254 x 102 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10
Et, percent . . . 0.153 x 10°1 |o0.612 x 104 }o0.405 x 10-7 [0.132 x 100 0.443 = 107
_ . 0 0 2
fgflgfiifiﬁfg,,_g,,L,, L177 = 10 .104 x 10 .334 x 10 .129 x 103 .166 x 100
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TABLE VI.~ COMPARISON OF HIGHER ORDER f-PROFILES WITH EXACT SOLUTION FOR B = 0

[Laminar flow;

N

11]

.- _ . . .
f-profiles calculated with -
n STRTORR e ) _
Exact B4S CKBSRE MDC RKS1 MFE
0 0 0 0 ()} 0 0
.49975 x 10~ .23468 x 10~1| .23480 x 10~1| .23456 x 10-7| .19602 x 10-1|-.62017 x 10~3| .23478 x 10~}
.14205 x 109 .66705 x 10-1| .66738 x 10~1| .66671 x 10-1| .55715 x 10-1|-.17884 x 10~2| .66724 x 101
.30761 x 100 .14437 x 100 | .14444 x 100 | .14430 x 100 | .12060 x 100 |-.38729 x 10~2| .14445 x 109
.60231 x 109 .28164 x 100 | .28178 x 100 | .28149 x 100 | .23541 x 100 |-.75839 x 10-2| .28166 x 100
L11266 x 10 .51474 = 100 | .57498 x 100 | .51441 x 100 | .43191 x 100 |-.14194 x 10-7} .51517 x 100
.20651 x 10 .83286 x 100 | .83293 x 100 | .83278 x 100 | .71134 x 100 |-.26121 = 10-1| .83429 x 100
.37657 x 10 .99552 x 100 | .99616 x 100 | .99536 x 100 | .87000 x 100 |-,48672 x 10=-7| .99275 x 100
.69004 x 10 .10000 x 10 .99947 x 100 | ,10012 x 10 .91739 x 100 [-,11413 x 100 | .10003 x 10
.12809 x 102 .10000 x 10 .99983 x 100 | .99893 x 100 | ,83792 x 100 |-.34076 x 100 | .99871 x 100
.24254 x 102 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10
E;, percent . . . 0.500 x 10-V |0.496 x 10=1 [0.165 x 102 | ~~———mmmmmome 0.483 x 10~
Eg,, percent . . . .345 x 100 .714 x 100 .231 x 103 | cmmmmemmeeee .282 x 100
TABLE VII.- COMPARISON OF HIGHER ORDER f-PROFILES WITH EXACT SOLUTION FOR B = -0.1
[Laminar flow; N = 11}
r- - - T T T s ST
f-profiles calculated with -
n ; e
Exact B4S CKBSRE MDC RKSI1 MFE
0 0 0 0 0 0
.49975 x 10~ .16080 x 10~V .16092 x 10=1| .16083 x 10~-7] .14291 x 10-7|-.13682 x 10~2| ,16002 x 10~
.14205 x 100 .46360 x 10~1| .46394 x 10=1| .46368 x 10-1| .41276 x 10~1(|-.32351 x 10-2| ,46195 x 10~
.30761 x 109 .10289 =x 100 | .10297 x 100 [ .10291 x 100 | .91894 x 10-7(-.44593 x 10~2| ,10228 x 100
.60231 x 100 .20967 x 109 | .20981 x 100 | .20970 x 100 | ,18827 x 160 | .74425 x 10-3| .20937 = 100
.11266 x 10 .41286 x 100 | .41312 x 100 | .41284 x 100 | .37455 x 100 | .29807 x 10~1| .40926 x 100
.20651 x 10 .75159 x 100 [ .75173 x 100 | .75152 x 100 | .69731 x 100 | .15007 x 100 | .75645 x 100
.37657 x 10 .98964 x 100 | .99005 x 100 { .99217 x 100 | .94324 x 100 | .50546 x 100 | .98016 x 100
.69004 x 10 .10000 x 10 .99900 x 100 | .99980 x 100 | ,97997 x 100 | .79147 x 100 | .10000 x 10
.12809 x 102 .10000 x 10 .99971 x 100 | .99964 x 100 | .96007 x 100 | .82942 x 109 | ,99682 x 100
.24254 x 102 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10 .10000 x 10
Eg, percent . . . 0.743 x 10-1 |0.172 x 10-1 |0.112 x 102 0.109 x 103 0.563 x 100
Ec,, percent . . . .384 x 100 .864 x 1071 .538 x 102 .322 x 103 .129 x 100
IR - _— - — - - — _ [
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When both displacement thickness and wall shear are considered, table V
(B = 1) shows the accuracy of the CKBSRE, MFE, and B4S to be about the same,
while the MDC and RKS1 both show significant errors in the displacement thick-
ness., Note that the MDC and the RKS1 show large oscillations in the f-~profile.
Table VI (8 = 0) shows similar results for the MDC, while the RKS1 method gives
a nonphysical solution. Results for an adverse pressure gradient (8 = =0.1) are
shown in table VII where behavior similar to the other cases 8 =1 and B = 0)
is observed.

Application of Higher Order Methods to Turbulent Flow

Similar calculations.- Figures 3 and 4 show the percentage error in the
wall shear versus the number of intervals across the boundary layer for calcu-
lations of a model turbulent problem. The governing equations for these cases
are obtained by deleting the 3 ( )/9f terms from the governing equations. The
Reynolds number Ry, = 1.88 x 106, £ =1, and Ug = 1, with the outer boundary
located at My = 60. The constants in the grid-stretch equation (35) are
c] = 0.05 and 0 = -~109 and were selected so that for N =11, Anq = 0,05
and the other points were stretched to Ny = 60 in a reasonable manner. The

scale length | = 24.5 for B =0 and 1 =15.8 for B = 0.5. The con-
vergence criterion for these calculations is given by equation (40a). To
achieve this convergence, the MDC required multiple iterations with the cor-
rection term added.

For B = 0, figure 3 shows the B4S, MFE, and the CKBSRE to be significantly
more accurate for the same grid than the MDC and the RKS1, both of which are
less accurate than the second-~order CKBS for I < 128. The converged solutions
shown for the RKS1 were obtained with underrelaxation (relaxation factor
r = 0.5). BAn exact solution (i.e., using 641 grid points) with RKS1 could not
be obtained, and thus, the numerical errors were computed using the exact solu-
tion obtained with the B4S.

For B = 0.5, figure 4 shows the B4S, MFE, and CKBSRE again to be more
accurate than the MDC. Converged solutions using RKS1 could not be obtained
for the grid sizes shown even with underrelaxation factors r as small as 0.5.
However, an exact solution with RKS] was obtained (r = 0.7). The exact wall
shear values computed with B4S and RKS1 agreed to six decimal places.

Because of the roughness of the error curves shown in figures 3 and 4, it
was not feasible to make time efficiency estimates similar to those for laminar
flows. The reason for this error scatter in the turbulent cases is not known.
However, similar behavior is evident in a plot given by Blottner (ref. 24).

The derivative f" was observed to be smooth for this case and all other cal-
culations with the B4S.

Nonsimilar calculations.- To determine the relative efficiency of higher
order methods for nonsimilar turbulent calculations, the B4S, CKBSRE, MFE, and
CKBS were applied to compute the incompressible turbulent boundary layer on a
flat plate. The £-grid is given by & = 0, 0.00086, 0.,0043, 0.0086, 0.043,
0.17, 0.26, 0.34, 0.51, 0.68, 0.86, 1.03, 1.28, 1.50, 1.71, and 1.88. The
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reference Reynolds number Ry =1 x 106 giving a local Reynolds number

Ry = 1.88 x 106 at £ = 1.88. The N-grid was given by equation (35) with
Ny = 24.2538. The constants ¢y and @ in the grid-stretch equation were
-0.4 and 8.26, respectively.

. Second-order solutions to this problem have been reported by Keller and
Cebeci (ref. 22), who also presented higher order results using Richardson
extrapolation (An + 0), and Blottner (ref. 24). Both of these calculations
were made using a two-layer eddy viscosity formulation and a grid-point distri-
bution such that &n_ /An,_y = Constant. The grid-point distribution used here
closely resembles that used in those previous calculations, that is, Any = 0.05
for N =11, while a single-layer eddy viscosity model is used for the present
solutions.

Figure 5 shows the percentage error in the wall shear versus the number of
intervals across the boundary layer at & = 1.88. At &£ = 0.00086, the Crank-
Nicolson scheme was used to approximate the d( )/9& terms, while at all other

stations the three-point backward difference scheme was used. The value of ]
was 15.8. Transition was at & = 0.00086.

The exact solution was obtained with 640 intervals across the boundary
layer with the §~grid given previously. Richardson extrapolation for Af + 0
was not made and, as such, the term "exact" means only as the An grid is
refined. The convergence criterion used to obtain the results shown in fig-
ure 5 is given by equation (40a). The only exceptions are for the MFE and B4S
where fully converged solutions at the downstream stations could not be reached
for I £ 20 for the MFE and I £ 10 for B4S.

For laminar calculations, the error norms are smooth and vary according to
equation (37) for W = 4., Thus, comparisons for relative time efficiency of
the higher order methods can be computed using equation (39) and the results,
shown in table IV, apply over a wide range of intervals (I < 128). However,
for turbulent calculations the error norms are not well behaved and, thus the
relative efficiency cannot be computed over a range of intervals as for the
laminar calculations.

For nonsimilar turbulent calculations, the efficiencies of the CKBSRE,
MFE, and CKBS relative to the B4S were computed for a specific accuracy at a
specific point, that is, for a 0.l-percent numerical error in the wall shear at
& = 1.88. The convergence criterion for these comparisons required that the
absolute change in 8* between consecutive iterations be less than 1 percent.
Shown in table VIII are the results where, to obtain this numerical accuracy,
I =12 for both the B4S and CKBSRE and I = 20 and 70 for the MFE and CKBS,
respectively. Both the MFE and B4S converged without trouble to this criterion,
requiring three iterations per streamwise station. For this example, the MFE
is a factor of 2 less efficient than the B4S. Note that the second-order CKBS
is less efficient than the B4S by a factor of 4.8.
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TABLE VIII.- RELATIVE EFFICIENCY OF HIGHER ORDER METHODS FOR

NONSIMILAR TURBULENT CALCULATIONS

Method Number of intervals Relative efficiencya
B4S 12 1.0
MFE 20 2,0
CKBSRE 12 and 24 2.5
CKBS 70 4.8

dRelative time efficiency with respect to B4S to achieve
0.1-percent numerical error in wall shear at & = 1.88,
R, = 1.88 x 10°,

CONCLUSIONS

A fourth-order box method for calculating numerical solutions to parabolic,
partial-differential equations in two variables or ordinary differential equa-
tions has been presented. The method, which is the natural extension of the
second-order box scheme to fourth order, has been demonstrated with application
to the incompressible, laminar and turbulent, boundary-layer equations. This
method has been compared with other two-point and three-point higher order
methods on variable grids for laminar and turbulent, incompressible flows. On
the basis of these numerical results the following conclusions were reached:

(1) For laminar calculations, the present fourth-order box scheme (B4S),
the conservative Keller box scheme with Richardson extrapolation (CKBSRE), the
method of deferred corrections (MDC), the modified finite-element method (MFE),
and a three-point spline method are fourth-order accurate with variable grids.

(2) For laminar calculations on coarse grids, the B4S, MFE, and CKBSRE
give greater accuracy than the MDC and the three-point spline method.

(3) For laminar calculations, the B4S is the most efficient higher order
method.

(4) For turbulent calculations, the B4S, MFE, and CKBSRE are significantly
more accurate than the MDC or the three-point nonconservative spline method.

(5) For a nonsimilar turbulent calculation, the B4S showed a factor of 4.8
reduction in computer time to achieve the same accuracy as the second-order
conservative Keller box scheme, a factor of 2 reduction compared with the MFE,
and a factor of 2.5 reduction compared with the CKBSRE.
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(6) For practical two-dimensional, incompressible, turbulent boundary-
layer calculations (i.e., numerical errors of approximately 0.1 percent), the
B4S is the most efficient higher order method.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 14, 1978
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APPENDIX A

COEFFICIENTS FOR B4S

In this appendix, it is shown how to obtain the elements aj§ and bij
of the matrices A, and Bp and the components pp, d9n, and rp of the vec-
tor 'Wn, which appear in equations (24). Equations (24) are the matrix equa-
tions which result when equations (15) to (23) are substituted into the finite-
di fference expression (eq. (11)) and these finite-difference equations are
linearized.

The 9( )/9% terms in equations (18) and (20) to (23) are written in
finite-difference form as

a() - - ~
- =1 ()m,n - €20 )p-1,n * ©3( Im-2,n (A1)
9% |m-(1-6),n

where m,n are the grid indices in the &,n coordinates. The 3 ( )/9% terms
are written so that they may be approximated either by the Crank-Nicolson scheme
©® = 1/2) where
1
Abp-1

E] = 52 63 =0 (A2)

or by a three-point backward-difference scheme (0 = 1) where

3
¢y = (A3)
VU0 )M
c 2 (Ad)
= A
°2 A€m—2
- 2y -1 (a5)
C3 = A
3 0+ )82
with
Agm—'l
Yy = (n6)
AEm-z
Am-1 = &m = Em-1 (A7)
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The similarity form of the difference equations is obtained by setting
6 =1 with ¢ =83 =¢3 = 0.

Momentum Finite-Difference Equation

Equation (15) is written as

gn = e (le'nSm'n - Vm'nfm'n)l + (1 - e) (R‘m—1 'nsm—" 'n - Vm_] ,nfln-.l 'n) (AB)

where 1 denotes the present iteration. Nonlinear products such as
(Vm,nfm,n)l are linearized by Newton's method which can be shown to result in

: i-1 i i i-1 =
(Vm,nfm,n)1 = Ym,nfm,n * Ym,nfm,n - (Vm,nfm,n)1 ! (A9)

The linearized form of equation (A8) becomes

i-1 i i-1 i-1 i-1_i i i-1 { =
9n = e[<22m,n - ]>Sm,n - (zm,n - 1>sm,n - vm,nfm,n = Ym,nfm,n * Vm,nfm,n)* ]}
+ (0 -0)®@p-1,n5m-1,n =~ Vm-1,nfm-1,n) (r10)

The values of & and B are defined as

™y
L}

0Enm + (1 - 6)En (A11)

w
I

= 6By + (1 - 0)Bp-y (A12)

Equation (18) for g5 becomes
~ (.2 N1 . 2 ~ 2 2 \i
9n = 25[°1(¥m,m) - cofp1,n t °3fnr2,n] + (1 + B)l:e(fm,n)

+ (1 - 6)f£_1’n} - B (a13)

Now define

Gy = 2687 + (1 + B)O (A14)
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~2565 + (1 + By (1 - 6) (a15)

'gl
]

83 = 283 : (A16)

Y . L [1]
The nonlinear expressions for g, and g, become

9n

~ (.2 \i o, o~ 2 N 2
% {fm,n) *+ %fyp-,n + O3fg-2,n - B (A17)

and

In

2[&1(fm,n5m,n)1 + Gpfp-1,nSm-1,n + 623fm—2,nsm-2,n:] (A18)

After linearizing equations (A17) and (A18) via Newton's method, the lin-
earized expressions for g,, g, and gp are substituted into equation (11),
and the resulting equation is rewritten in the following form:

i i i i i i
a11Sm,n-1 * P118m,n + @12fm,n-1 * P12fm,n + 213Vm,n-1 * P13Vm,n = Pn (a19)
where

2
i-1 he  i-1
ai = “e<2£m,n-1 - 1) - o ®ifm,n-1 (A20)
2
i-1 he _  i-1
byy = 6<2Rm'n - 1) + . 1 fm,n (A21)
2
i-1 o _i-1 he i1
212 = Ovm,n-1 - WO1fm,n-1 - = O18m,n-1 (A22)
2
-1 ~ i-1 b i
b1z = ~Bvp,n - Moyfy,n + Fe ®1Sm,n (A23)
i-1
a1z = Ofp,n1 (A24)
b3 = Dfan (A25)
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i-1
Pn = 9[ (R‘m,n - Usp,n = Ym,nfm,n - (R’m,n-—l = sy, pn-1 + Vp,n-1 fm,n—]]

2

~ N/ 2 Vi-1 2 i-1 . h ‘_
-0 ;[(fm,n) + (fm,n—l) + Q9 E‘[(fm,nsm,n)1 1

(fm,n—1sm,n—1)i_1] + §n (A26)

~

Pp = -0 - e)[(Q'm-'l,nsm—‘l,n = Vm-1,nfm-1,n) - (Qm—1,n—15m-1,n—1
h. (2 2 ~ (2 2
- Vm—1,n-'lfm-1,n—'l):| + ;[0‘2<fm-1,n + fm—l,n—1> + 0‘3<fm—2,n + fm-2.n-1) - 23]
h2r

e a2 (fp-1,nSm-1,n - fm-1,n-15m-1,n-1)

+ &3(fm—2,nsm-2,n - fm—2,n-'lsm—2,n-'|):l (A27)
and (7) denotes quantities that are evaluated outside of the main iteration
loop.

Shear Finite-Difference Equation

For the shear equation, gp (eqg. (16)) and g; (eg. (19)) are written as
i
9p = efm'n + (1 - 6)fm_-|'n (A28)

gn = Osm,n + (0 = O)spoq,n (A29)
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To obtain a linearized expression for g;, equation (22) is rewritten in the
following form:

[9(22;,n - ]) + (0 -0)@&p,n - ])]9; = e(Vm,nsm,n)i + (0 = 98)(vp-1,nSm-1,n)

i
+ B[e(f,ﬁ,n) + 0 -0)E2 - 1]

i
~ 2 ~ 2 ~ 2
+ E[cl(fm,n) - c2fpoy,n + c3fm-2,n:,

- (0 - ®)tg1,nlsp-1,nlsm-1,n (A30)

Now define

&4 = EE] + 6B (A31)
dg = -£cp + (1 - 6)B (A32)
66 = EE3 (A33)

and

v ' ~ 2 ~ 2 B

¢n = (¥ - 8){Vvm-1,nSm-1,n = tm-1,n|Sm-1,n|5m-1,n) * @5fm-1,n + %6fm-2,n -

(A34)

30



Equation (A30) can be rewritten as

l:e(zzj,,n

APPENDIX A

N1
- ]) + (1 - 06) (Zlm_]’n - 1)}; =0 (Vm’nsm’n)l + &4<fr?|,n)

i-1
Sm,n| m,n * ®n

r

- eté,n‘ oot

(A35)

After linearizing equation (A35) via Newton's method, the following linearized
expression is obtained for

where

9[v$_;

i

i=1
Sm,n * vm nSm,n ~

9n

(Vi

i=1] 4 gl 2gl-led (f2 o
,nSm,n) 4| 2fqm,nfm,n = \fm,n

- Ze[tm,nls%,n| - @p,n - 1)]S$-(1—6),n Hp

-1
H, = [e(z&éjl - 1) £ (1 = 8)(Ap_q,n - 1)]

Upon substitution of equations (A28), (A29), and (A36) into equation (11),
shear equation can be rewritten as

i i i i i i
a218ym,n-1 + b21Sm,n + a22fy,n-1 + b22fy,n + 223Vm,n-1 * P23Vm,n = 9n

where

h h2
== =0 -0 —
2 12

, i-1
1 - 2tm,n—1[sm—(1-9),n-1] Kn-{}

(A36)

{A37)

the

(A38)

(A39)
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h _ i-1 ' i-1
by =-20 +0 ——<Qvm,n - 2tm,n[sm—(1-6),n] Kn
h? i-1
agy = -6 +84 5 Hn-1fm,n-1
h2 -1
bop = © +OL4-6—anm n
h2 -1
a3z = -6 — Hp-1Sp,n-1 »
h2 .
i-1
b3 = 6 — Hpsp,n
h2 1 o~ (2 NS [
9n = = E Hp 'e("m,nsm,n)ln1 - 0‘4(fm,n) - etm,n‘ Sm,n| Sm,n

+

-©

3
+
&
<@

2 i-1
a4(?m,n—1> -9

+

an = -0 - e)[

with Kp = #1, having th

32

tn n—'llsm n—'llsm n-1 + 6n-1

i-1 : i-1
26(Q’m n-1 - 1) [Sm—ﬂ-e),n-l] + dp

h
fp-1,n - fm-1,n-1 - 'Z‘(Sm-1,n + Sp-1,n-1)

. i-1
e same sign as sy, n-

~ = i-
(’Lr%\,n - )[Sm—('l-e) n:l } - Hp-1 {—6 (Vm,n-15m, n—l)l -1

|

(A40)

(A41)

(A42)

(A43)

(A44)

(A45)

(A46)
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Continuity Finite-Difference Equation

Equations (17), (20), and (23) can be written as

9n = eV;,n + (1 - 8)vp_1,n (A47)
9n = ‘2€(E1f;,n - Cafp-1,n *+ E3fm-2,n) = efé,n - (0 =-9fp1,n (A48)
L ~ i ~ ~ i
9n = ‘2€(C1Sm,n - ¢25m-1,n * c3Sm-2,n) -0sp,n - (1 - O)sp-1,n (A49)
Define
87 = -26cy - O (350)
Gg = 2€6cg - (1 - 6) (A51)
Gg = -25c3 (352)

Then, substitution of equations (A47), (A48), and (A49) into equation (11)
yields the following equation:

ol i o hro (i i )
Ym,n = Vm,n-1) + (1 = 0) (Vg1 ,n = Vm-1,n-1) - 3 27\fm,n + fm,n-1

~ ~ hor. /3 i
+0g(fpey,n + fp-1,n-1) + Q09(fp-2,n + fm—2,n—1)] + ;E[a7(sm,n - sm,n—'l)

+ 8g(sp-1,n = Sm-1,n-1) + 89(sp-2,n - sm-2,n—1)] =0 (A53)

which can be written as

i i i i i i _
a31sm,n-1 + b31sm,n + a32fm,n-1 + b32fq,n + a33¥m,n-1 + P33Vm,n = In (A54)
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34

asq

b3y

azz2 =

b3y =

azs =

APPENDI

{

Q

-J
[ S

h
~(1 - 8) (Vm-1,n = Ym-1,n-1) + ;[aa(fmﬂ ,n t fp-1,n-1)

+ g (fyp-2,n + fm-2,n)] "1z

+ 8g(spe2,n - sm-z,n—l)]

XA

[&B(Sm-l (" Sm=1,n~1)

(A55)

(A56)

(A57)

(A58)

{A59)
(A60)

(261)

(A62)
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METHOD OF SOLUTION (B4S) OF FINITE-DIFFERENCE EQUATIONS

The linear system of finite-difference equations (24) can be solved in the
relatively simple manner which is presented in this appendix. If equations (24)
are applied at n =2 (n =1 being the surface and n = N locating the outer
boundary) and the boundary conditions f1 = vy = 0 are applied, three equations
with four unknowns are obtained. Thus, three of the unknowns may be expressed
in terms of the fourth unknown.

Since fy 1is known at the outer boundary, it is convenient to solve for
s1, s, and vy in terms of f£5, in anticipation of the general form of the
recursion relations to be derived subsequently. Thus, at n = 2, equations (24)
can be rewritten as

+
(52,51,v2)T = C-l[w2 - (b12,b22,b32)Tf2] (B1)

where

C=|b2y a21 b23 (B2)

b31 a3 b33

Next by applying equations (24) at n = 3 and using equation (Bl) to
eliminate s3 and v2 as unknowns, the result is again three equations and
four unknowns, namely, £33, £f3, v3, and s3. Thus, three of the unknowns may
again be expressed in terms of the fourth unknown; that is, solve for £f5, v3,
and s3, in terms of £33 (this order is dictated by the choice at n = 2 which
was made with the consideration of the outer boundary condition £y =1). If
this procedure is repeated for n =4, . . ., N, the following general form is
obtained for the three unknowns written in terms of the fourth:

sy = all) + el g, A | (B3)
fno1 = dno) + eéz’fng (n=3,4 ... N (B4)
=al® v e, (B5)

-/

where the superscripts 1, 2, and 3 in parentheses identify the coefficients
associated with the unknowns s, £, and v, respectively.
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2 (3
eé ) s )

, and e

r 14

déZ) 643)' eé])

The coefficients dé1), are given

by

1 2 3 ' ]
[dé ):dé ):dé )}T = Dn-][(Pnlanrn)T - (a11:a21,831)Td§-% - (a13:a23ua33)Td(3%]

(B6)
(1) (2) (3) B
[en t©n  r€pn ] = 'Dn-](bIZrb22:b32)T (B7)
with
i (1) 3) ]
b1y aj2 + ajjen-] + aijzen-1  by3
(1) (3)

D, = | b2y az2 + azjep-] + azzen-] b23 (B8)

(1) 3)
b3; a3z + azjep-1 + azzen-i b33J

Examination of equations (B3) to (B8) reveals that although the solution for the
dependent variables s,, £f,, and v, cannot be computed until the outer bound-

ary is reached where fj = 1, the coefficients dé1), déz), dé3), eé1),

eéz), and e£3) can be computed if the initial values d§1), d§3), eé]), and

eé3) are known. These initial values are found by comparing equations (B3)
and (B5) evaluated at n = 2 with equations (B1). The. initial values are

T
[651).¢,d§3)] = C‘](pz,qz.rz)T (B9)

T
[:e2(1 ) ,w,e;g_3)] . -c-1 (b'|2,b22,b32)T (B10)
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where ¥V and W are coefficients to compute s from

51 =V + wfy . (B11)

When the outer boundary is reached, equations (B3) to (B5) can be solved
for sy, fyn-1, and vy since the outer boundary condition fiy = 1 can be
applied. Next sy.y, fy-2, and vyN_1 can be computed since fy_7 is known;
and likewise all the values of s,, f,, and v, proceeding from the outer
boundary toward the solid boundary can be computed.
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Figure 1.- Accuracy of wall shear with second-order methods.
Laminar flow; B = 0; sq7 = 0.469599988 (exact).
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B = 1; sq = 1.232587657 (exact).
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Figure 4.- Comparison of higher order methods for model turbulent-flow problem
with B = 0.5. By = 1.88 x 10%; Cp = 3.530597 x 10=3 (exact).
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