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ABSTRACT

Forced flow of a Fermi liquid is studied for a cell geometry consisting
of two planes with a separation on the order of the mean free path. An
approximate transport equation is used to derive an integral equation for the
velocity profile, which is solved numerically. Rnsuiﬁs for the total flux
through the cell, which determines the dissipation, are given as a functicn
of the Knudsen nuuber # (ratio of cell thickness to mean free path.) Effects
of specular reflection at the boundaries are considered. It is found that the
dissipation has a minimum at % = %, and behaves linearly for » 2 3. Implica-

tions for present experimentation are discusse..
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2.
I. Introduction
Recent nxpcrimcn:}'ﬁlee provided precise measurements of the transport

properties of the various phases of 3

He to below 1 mK’. In this tempercture
rezime the mean free path of the quasiparticles approaches or exceeds the
dimensions of the experimencal apparatus. This means that quasiparticles
scattered from one boundary of the apparatus will not relax into local equili-
brium with the rest of the fluid before they reach another boundary. The mean
free path in the normal phase may approach 50 um, and is much larger in the
super fluid Phl&.ﬂa, while Andronikashvili cells presently in use have a thick-
ness on the order of 100 um. In consequence, the viscosity can no longer be
rvelated to measured quantities (e.g. drag forces) by the usual formulas of
macroscopic fluid or superfluid mechanics. It is therefore necessary to under-
stand such finite size effects in order to interpret present experiments.

This paper aims to shed some light on this problem by analyzing a parti-
cular case, namely Poisieulle flow, or forced flow of a nommal fermi liquid
between stationary infinite planes. We will calculate the total flux through
the cell, which determines the rate of energy dissipation. In the large-cell
limit this flux is inversely proportional to the viscosity, so the finite-cell
flux may be taken to be irversely proportional to an "effective viscosity" that
depends on the cell thickness. The ratio of this "effective viscosity'" to the
true viscosity of the bulk fluid conveniently characterizes the effect from an
intuitive standpoint, although the dissipation is more closely related to

1,3 will be considered in

the measured quantities. Some recent experiments
the context of this theory, and possible relevance to future experiments
discussed in the conclusion.
II. Choice of a Model

Consider a Fermi liquid flowing between stationary walls. The flow is

sustained by a static, uniform force and is taken to be in the x-direction.
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The cell is taken to be of infinite extent in the x- and y-directions and to
extend from z = -D/2 to z = D/2. (See fig. 1) The system clearly has mirror
symmetry in the xy-plane.

We will consider the quasiparticle transport equation for this system.
The Landau interaction between quasiparciclols will be seen to cancel out of
this equation, and enters the prob’em only through the quasiparticle lifetime
76. We will treat the latter as a given quantity, since we are interested
in the comparison of a finite and an infinite sample of the same fluid. If
we treai particle-particle scattering in the same manner in both cases, the
deficiencies of the relaxation time approximation should not drastically affect
our basic results. We will see that T contains the entire temperature as well
as inccrac;ion dependence in the problem.

The simplest model which can be used for the scattering of particles from
a wall is that of completely diffuse reflection. This means that the particles
emerging from the wall after colliding with it possess a distribution which
is isotropic in the reference frame of the wall and which corresponds to local
equilibrium conditions at the point of collision. A more general model, which
we shall use, is to assume that a fraction ¢ of the particles are specularly
reflected7, that is, the component of their momentum perpendicular to the wall
is reversed and the other components are unchanged by scattering from the wall.
This is certainly not the most general possible reflection process, but since
very little is known about the quasiparticle-reflecting properties of experimen-
tal surfaces, it should be sufficient for our purposes. We consider = as an
ed Justable parameter; we will see that the c-dependence of our results can
easily be separated from the other dependences.
III. Derivation of the Integral Equation

The number of quasiparcicles per unit phase volume with momentum ; at a

height z in the cell is written ns(z). In the absence of the applied force
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field this becomes equal %o the global equilibrium distribution function,

which is written

0 1

P
.ﬁ(ep".-l)+ 1

¥* s
Here 3 = 1/k31'. -:: = pzlh wher= m is the effective mass, and u is the
chemical potential. We make the approuximation that the temperature and
chemical potential remain constant and untforma. The average velocity of

the fluid at height 2z, or 'velocity profile", is given by

where ;; is the velocity of a quasiparticle with mcwentum ;. Since the fluid

flow is entirely in the x-direction, we may write

P
u(z) = % -E' n;(z) (2)
pm
we also define
Sn=(z) = n=(z) - no 3)
P P p '’

0
- = + -
EP(Z) EP E' f’P‘Eu bnp.(z) ’
where f;;f,ia the Landau quasiparticle interaction function. We also define
the local equilibrium distribution function and the deviation of the actual

distribution from it:
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-
n#z) .3(85‘(3)'9,‘“(2)'51)*_1 ’ (5)
Sae(z) ® no(s)-o® (s) )
p z P 4 P z .

We observe from (2), (5), and (6) that
5 PoA=(2) = 0 . ™
P
The transport equation is given by
—2 3. g — T l- - - '
(z) + ~ V;ﬂP(Z) + F;'(z) Vl';np(z) )Z[:nP B (8)

where I[np.] denotes the collision integral and the force F:(z) on a quasi-
particle with momentum ; includes both the external field F and a mean field

part:

-, Sn=,(3) . (9)

f
P 1 PP P

F=(z) = F - - =
p
We now assume that the system is in a steady state, and approximate the

collision incegral by

Sn=(z)
Ifn=] = = =2 , (10)
P T

We also linearize in the quantities F, u, Gn;, éﬁ;, and use the fact that F

is in the x~direction while all spatial gradients are in the z-direction.

We find that the tenncoutainingf;;. which comes from the third term on the
left side of the transport equation (6) is cancelled by a similar term arising

from the second term in (6). The transport equation becomes



0
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’ S — = u. N
& D a3 Bl

This differential equation in z has the genaral solution

0
z 3n
- 2 - \ - y 2, - l
5ﬂp(3) exp (-m*z/pzf){Ai;“-l.b/ zdz cx?(m*z/pzT)Px(%n ;E}(aep)j (12)

where A; is an arbitrary function of F. When we apply boundary conditions
to (12) we will obtain an explicit expression for 6n5(z) as a functional
of u(z). Requiring that this functional satisfy (7) will then give us the inte-
gral equation for u(z), from which the flux :u(z)dz is determined.

We now consider the boundary conditioms. If a fraction ¢ of the quasi-
particles incident at a wall are specularly reflected, then the distribution

function at the lower wall obeys

n;(- 32?-) - (1= -:)ng- + en;‘(- %) p, >0 (13)

where p* = (Py+P,»-p, ) At the upper wall the distribution function obeys

B & (1 ~ ¢)nnb grms D)

m(3) = @ - omrena(B) . p, >0 (14)
since ng'is independent of the sign of Py To express these conditions in
terms of the deviation from local equilibrium, we go back to the definition

(5) of the local equilibrium distribution function and expand to linear order

in the perturbation F:

0
3
D=2 (s s (- D - gl )

Substituting n;(- g) = nég(- g) + 653(- g) into (13) and using (15), we find
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bus(z) = cbnz, (2) = :—:a){(l-e)pxu(- H+eg

p P
(16)

Consider the Fermi liquid interaction terms in (16). Although the:
are formally of the same order as the other terms, our model of what happens
at the boundaries is sufficiently crude that we can probably omit them without
making the description any lecs accuratz. Recall that = is a phenomenological
parameter that reflects the degree of correlation between incident and
reflected quasiparticles. We assume that the effect of the interaction terms
in (16) may be adequately approximated by choosing a different value of ¢
than we would have done had no interactions teen present. Even without this
assumption we have no way of calculating £ for the surfaces of interest, and
retaining the interaction term would make the calculation much more difficult.

Thus (l6) becomes

0
bl - 3) - etiz(- 2) (;;:)(l-e)pxu(- TR e 17)

The analogous equation for the other boundary is

0
P 5 an
o{B)- coif®) - (&) aonall) - .

To apply these conditions, we go back to the general solution (12) of
the transport equation and evaluate it a z = -%D and z = +%D, substituting
these results into (17) and (18) respectively. This gives us two equations
for the two unknowns A; and A;*. Putting the solution for A; into (12) gives

us éﬁs(z) for P, > 0: the solution for p, < 0 is found by exploiting the



mirror symmetry of the problem:

5n—(z) - 6n '+ (=2)

and

u(z) = u(-z) .

when we follow this procedure, the results are

e(l-e)ul 2 ¢ “«
saala) .-m*z/pzT (1 e)“(Z) g sexp ( m*D/ZpiT)
P ccxp(-u*DIszT)-cxp(m*D/sz?) aaxp(-m*b/szT)-exp(m*Dlzpzr)
D/2 z Bno
J dz'exp(m*z'/p ')(3— -i-\-i-j‘dz exp (m*z'/p ﬂ(a— L) J' x(\a_e?’ pz> 0
=D/2 -D/2 (21a)
-(l-c)u( B E
) » .-m*z/pzf (1 -)u(g) . exp ( m*D/ZEif) |
P ecxp(m*D/Zpiﬂ-oxp(-m*D/sz?) cnxp(mﬁD/szT)-cxp(-m*D/szT)
D/2 z anO
' ' L -E. \ L 4 - ..E..\} )
I dz'exp (m*z /pz Pz)+ dz'exp (m*z' :p )( ?szpx(aep)’ pz< 0.
-D/2 -D/2 (21b)

It will be noted  hat the distribution function is discontinuous at P, =0
This is because the particles which have just been scattered by a wall have
a substantially different distribution than those about to be scattered due
to the large change in momentum that occurs in scattering.
We can now impose be condition (7) that the average of the momentum
over the deviation from local equilibrium vanishes. The only component that

does not venish trivially is the x-component, thus the equation of interest is

0=[dp p bi=(z) (22)
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Inspection of (2la) and (21b) shows that (an:/acp) is the only factor

in 65;(:) that varies rapidly as a function of |p| near Pp+ Thus, as long
as T << ‘t',. we may replace it by -6(:p- er). When we integrate using spherical
coordinates in (22), the effect of this 5-function is to set |p| = Pp everywhere.
The p-integral is trivial, so that, defining | = cos® and the mean free path

L= pr'r/n*. (22) bec mes

1 __pe o ofleg) -D/244
0= j‘ Q(I“Z). ‘/Lui “(?') fh ce 7=
0 ‘cexp(-D/244)-exp(D/24)) cexp(-D/244)-exp(D/244)
D/2 z :
:dz'cxp(z'/u)(g%.- ;L)-bfdz'exp(z'/u)@%q- ;L}J
-D/2 % .p/2 ’
0 - (1-e)u( 2 exp (-D/244)
+ [ uPrexp -2/ )1, A2 +
-1 cexp(D/244)-exp\ D/244) cexp(D/244)-exp(-D/244
D/2
. % \
az'exp(z' /)22, - L)+ dz'expz'/a)( 2, - £} . (23)
-aiz (5{ Pz)-DIZ (az pz).l

We next integrate by parts wherever 3u/3z' appears. It is found after
some algebra that the surface terms from these integratlons cancel the terms

in (23) containing u(D/2). If we define a dimensionless velocity

m*u(z
U(z) = -_F‘TL}-

and divide by =-Fr/m* we have

1 cexp(-z/ A )exp(~D/244)

. 2 | D/2
0= Joq.;(lu )i ~2U(z)- J

Ll- " dz'exp(z'/4) (1+U(z"))
cexp(~D/244)-exp(D/244) -D/2

exp(z/44)exp(D/244) I:/Z
Jdz'exp(z'/4) (1+U/z"))

cexp(-D/244)~exp (D/244) “-012
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exp(-2'4) 2 exp(z' ) 12 \

- dz'axp(z'/ Q) (1+U(z"))+ o dz'exp(z'/ Q) (HU(2")) > .
A -b/2 L -D/2
(24)
Further manipulations permit us to cast this in the form
AP 1 ' % .
U(z) = '}z (=) ',axp(-z/u.)L dz'exp(z'/ Q) (1+U(2"'))=<exp(-D/ L)
“wy B l-cexp(~D/4 b/2
z 1 , :
Jdz'exp(2' /W) (1+U(2")) | +exp(2/ )| dz'exp(z'/ Q) (1+U(2"))-cexp (-D/ )
D/2 g D/2
-: !
[ dz'exp(a' /) (")) |} (25)
D/2
We now define the Knudsang nunber (ratio of cell thickness to mean free
path)

K.%.m (26)

D
=)
.

-

a dimensionless coordinate [ = z/D, and redefine the functional dependence
of the dimensionless velocity U so that U(z) = U(C). wWith a few more steps

we obcain

] ,
b atexp (0 (G2 ) (14U(C')) (27)

1l
UE) = vt )
- 1'€le(*K/h)_,,

This is the integral equation for the velocicy profile.
IV. Solution for Flow Rate

We have solved this equation numerically by doing 2 Gaussian in:cgrl:ionlo
on 4, using a finite element method to convert the integral equation into a
macrix equation, and then using an iterative technique. This gives a discretized

representation for the solution U(]) which we integrate numerically across

the cell. We then have the quantity

¥
; pluw)

JUG)E = (1) = LI CV A i (28)
L P )
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as a function of x and ¢. In order to see the x-dependence of (u) more
clearly, we divide (28) by » and plot the result for several values of ¢ in fig.
2.

.ae resulting curves have several striking features. For » 2 3 the various
values of ¢ give a family of straight lines whose slope with respect to x is
close to the ratio 5/12. We shall see that this is the exact value required
to recover classical bulk fluid behavior in the limit of large »: one can
also v;rify analytically that the solution of the integral cquationq(27) has
just this behavior. Thus, the only manifestation of a finite size effect for
“ 2 3 is the #-independent offset of these linos.ll

At small % the quantity (U)/x diverges lcgarithmically. This divergence
arises from the rather artificial assumption that quasiparticles scattered
almost parallel to the wall move slowly away from it and do not interact with
it any more. These particles will take longer than most others to cross the
cell, and hence will te acted upon by the driving field for a long time, giving
a large contribution to the total current; however, these particles are the ones
most likely to scatter against other particles before reaching the other side.

A logarithmic divergence of {U)/# with x can be shown to result from this
situation. In a real cell, in which quasiparticles reflected parallel to a

wall will be re-scattered by surface inhomogeneities, we expect a large but
finite flux at « = 0, Suppose the inhomogeneities in the surface have typically
an amplitude @ and a wavelength L. Then the minimum possible angle between

the wall and the momentum of a quasiparticle traveling away from the wall is
approximately .a/L. The quantity {U)/x will cease going as - /n * when » =2/L;
instead, we expect it to go to a constant value of roughly an(L/2).

In the intermediate » region we find that {U)/x goes through a minimum

in the vicinity of » = %, and then approaches the linear behavior seen at large

#. If we extrapolate the high-x behavior down into the intermediate regiom,
¢

r"™
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and find the difference between this linear function and the actual (U)/x, we
obtain a measure nf the deviation from linear behavior. This deviation, which

we call 5, is displayed in Table 1; it is seen to drop off rapidly as » increases.

The ¢-dependence of the results is also worthy of note. It can be well
approximated by an additive term independent of x. This implies that ‘ur
choice of ¢ will not affact the qualitative structure of t©'y results. We note
that a very similar result has been found for the case of classical rarified
gas dynlnicolz.

The flow rate (u) through the cell determines the rate at which the applied
force F does work on the system; this dissipation is what will usually be
measured in an experiment. One way to characterize the finite size effect is
to say that the fluid behaves as if it had a different viscosity than would
an infinite sample of the same fluid. We define this "effective viscosity"
to be that which would give the correct flux (or dissipation) of the actual

cell when substituted into the equations of hydrodynamics. In the classical

theory the flux is

2
(u) = P08 (29)

o

where n is the number density in the fluid. For the finite cell we define

~

2

We now divide both sides by the viscosity of the bulk fluid, using (28) and

the relation

.1
Tgulk = 5 Pp'PRT o (3L
and obtain
:].!.f.i w7 "'2 (32)
MBulk 12 W



13.
This ratio must obviously approach unity at large %: the asymptotic behavior
mentioned above for the ratio (U)/x clearly insures that thi, will be the case.
Tha quantity (32) is plotted in fig. 3 + a functfon of » for several values
of ¢.
V. Application to Experiments
These results have been applied to the interpretation of some experiments

1,3 and Axchiez. In these experiments, a disc-shaped

performed by Parpia
cavity in d4n apoxy cell is filled with 3Hn and caused to vibrate torsionally
about its central axis. The drive voltage which is required to maintain
constant amplitude with changing temperature i: then measured. The measured
voltage is proportional to the tctal rate of energy dissipation in the cell,
which is the sum of the dissipation in the liquid and a "nuisance damping'
associated only with the apparatus.

Some results of these experiments are given in fig. 1 of reference 1. The
effective viscosity, obtained from the driving voltage required to maintain con-
stant amplitude, is plotted as a function of Tz; it is linear above about T =
3.5 mK , and shows an upward curvature from this temperature down to the transi-
rtion temperature (below which it jumps sharply upward.) The present calculation
was originally undertaken in the hope of understanding this curvature.

To apply the resulcs of the previous section of this paper, we make
several observations: (i) the frequency in these experiments is less than
1 KHz, permitting a steady-state analysis, (ii) the cavity radius is about
forty times its thickness, permitting an element of the cell to be treated
as an element of an infinite slab evecuting transla.ional vibrations with an
amplitude of :eo. where r is the distance of the actual element under considera-
tion from the axis of the cell, and Bo is the amplitude of the tcrsional vibra-
ticu, (iii) Edge effects may also be neglected, (iv) the vibrational amplitude
is very small in these experiments (less than 10'6 radians) so that a "_nearized

theory is well justified.
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It is easy to relate our parameter » to the ' :mperature. We have x = D/} =

D/vrr, and in the notmal phase the relaxation time is inversely proportional

to the square of the ttﬂpltltut..s Writing
-2
T = AT, (33)
we have
2
x o B :
VA (34)
Since Ve and A depend only on the pressure, we se2 that. the Knudsen number is

proportional to the square of the temperature for ccnstant D. The coustant
of proportiorality is found from experimental data; see Table 2.
We must now relate the dissipation to the dimensionless flow rate found
in the previous section. In the frame of reference of thz wall, there is
a fictitious force of -ma per particle, where a 1is the instantanenus accelera-
tion of the wall in the laboracory frame. We use our static theory to obtain
the response to this force; the relative error involved in doing this will
be of order yrt = 10"3 in our case. The dissipation in an element dA of the

cell is

2

dE = -rma(u)pds = 2502 Q}- p%dA (35)
Pp "

Now we replace the square of the acceleration by its time average over a

complete cycle of the motion:

Bgrzua

2cos.uc)z) S S, (36)

2
(S
(a >timo- (€ o™
We note that the dissipation, being proportional to the entropy production,

must be frame-independent, so that the value calculated in the instantaneous

reference frame of the wall may be taken cver to the laboratory frame without



change. Using (35) and (36), and integrating over the area of the entire cell,

we get

1R 3
2m) ridr (a7
0

2 2 Hzaz “
&.'TD...'!__‘!._.BZ"R“QL. : 0» SLJ}. (38)
Pp A 64T app H

where M is the total mass of the fluid in che cell.

This relation connects the function {U)/# which was calculated in section
III and plocted in fig. 2 with the dissipation in the disc of fluid, the
latter being proportional to the drive voltage, modulo a constant. The propor-
tionality of {U)/x to this voltage enables us to see what the theory implies
about the experiments. For purposes of comparison let us define n& as that
value of x for which the derivative of {U)/x with respect to « has halt of
its large-x asymptotic value. Similarly we define Ti as that value of Tz for
which the derivative of the drive voliige with respect to 'r2 has half of its
limiting value. By expressing this Ti as a Knudsen number, we can determine
whether the curvature in the experimental plot falls in the right temperature
range to be the mean free path-finite size effect.

In fact it does nor. We find that "y = ] for all values of ¢. On the
other hand the temperature T¥ corresponds to values of » > 36 for p = 29 bar
and # == 7 for p = 0. Furthermore, we see from Table 2 that for a cell of the
size used at Cornell, the curvature predicted by the theory should only be seen
at pressures of a few bar, but the experimental curvature is seen at high pres-
sures as well, We conclude that the curvature in the drive vs. T’ plot is not

due to the mean free path effect explored in this paper, and its explanation
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must be sought elsewhere, perhaps in the thermometry; the effect calculated here
is being masked by this other, unknown effect,

There are three courses of action that might be followed to actually see
the mean free path effect. (i) Identify the cause of the curvature in the
experimental plot, and remove it; this should unmusk the upward curvature due
to the mean free path effect, which should be noticeable at low pressures.

(ii) Remove the nuisance damping, so that the :-dependent vertical translation
of the curves in fig. 2 can be cdetermined experimentally; this part of the
effect is significant even when the curvature is too small to be seen. (iii)
Repeat the experiment in a thinner cell, so that a given value of x will corres-
pond to a higher temperature.

Finally, we note that in the superfluid phases the mean free path is
expected to become very 11:3.4, so that almost all experimental cells will
have dimensions of similar or smaller magnitude. The calculation given here
applies only to the normal phase, but the method should be readily extensible
at least to the B-phaso}4 We hope to treat this problem in a future publication.
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Table 1

x

8

N~~~ 0000

CooPFnNnOOF P

5869
3401
+2266
.1609
1176
.0868
.0638
.0469
.0330
.0225

Deviation 5 of the function (U)/x from its linear

behavior at high u.

Table 2
p, bar T, mK A, um #, D=95um #, D=20um 8
0 1.0 68.0 1.40 0.295 4434
3 1.4 29.2 3.25 0.684 .1959
6 1.6 19.5 4.87 1.03 1126
12 2.08 9.36 10.1 2.13 0174
18 2.31 6.26 15.2 3.20
24 2.45% 4.65 20.4 4,29
30 2.56 3.64 26.1 5.49

The mean free path and Knudsen number evaluated at the
transition temperature for several pressures, and for two
cell thickness. We have used data from Wheatley.13 In the
last colunm, the deviation 5 is evaluated at the transition
temperature, for a cell width of 20 um. It is negligible

at pressures above about 12 bar.
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Figure 1

Figure 2

Figure 3

Eigure Captions

Sketch of the idealized viscometer cell, showing an example of the
velocity profiles found in the calculation. The curves represent
ux(z) for « = 3 and ¢ = 0, 0.2, 0.4 and 0.6; each mark on the

-
horizontal axis represents 5FT/m .

The quantity (U)/x as a function of x for several values of 2.
We have (U)/x = pF(u}/FD where (u) is the flow velocity averaged
across the cell, F is the driving force per particle, D is the

cell width, and Pr is the Fermi mumenctum.

The ratio of the "effective viscosity'" to the true shear viscoslity
of a bulk sample of the fluid, as a function of x, for several

values of =.
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