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ABSTRACT

Forced flow of a Fermi liq uid is studied for a cell geometry consisting

of two planes with a separation on the order of the mean free path. An

approximate transport equation is used to derive an integral equation for the

velocity profile, which is solved numerically. Results for the total flux

through the cell, which determines the dissipation, are given as a function

of the Knudsen number z+. (ratio of cell thickness to mean free path.) Effects

of specular reflecticn at the boundaries are considered. It is found that the

dissipation has a minimum at P 1- ', and behave; linearly for x ? 3. Implica-

tions for present experimentation are ciscussed.
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I. Introduction

Recent experiments'Fi3ve provided precise :measurements of the transport

properties of the various phases of 3 He to below 1 aK°. In this temperature

reg i me the mean free path of the quasiparticles approaches or exceeds the

dimensions of the experimental apparatus. This means that quasiparticles

scattered from one boundary of the apparatus will not relax into local equili-

brium with the rest of the fluid before they reach another boundary. The mean

free path in the normal phase may approach 50 fin, and is much larger in the

i
superfluid phases , while Andronikashvili cells presently in use have a thick-

ness on the order of 100 =. In consequence, the viscosity can no longer be

related to measured quantities (e.g. drag forces) by the usual formulas of

macroscopic fluid or superfluid :mechanics. it is therefore necessary to under-

stand such finite oize, effects in order to inr.erpret present experiments.

This paper aims to shed some light on this problem by analyzing a parti-

cular case, namely Poisieulle flow, or forced flow of a normal fermi liquid

between stationary infinite planes. We will calculate the total flux through

the cell, which determines the rate of energy dissipation. In the Large-cell

limit this flux is inversely proportional to the viscosity, so the finite-cell

flux may be taken to be inversely proportional to an "effective viscosity" that

depends on the cell thickness. The ratio of this "effective viscosity" to the

true viscosity of the bulk fluid conveniently characterizes the effect from an

intuitive standpoint, although the dissipation is more closely related to

the measured quantities. Some recent experiments 
1,3 

will be considered in

the context of this theory, and possibe relevance to future experiments

discussed in the conclusion.

II. Choice of a Model

Consider a Fermi liquid flowing between stationary walls. The flow is

sustained by a static, uniform force and is taken to be in the x-direction.
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The cell is taken to be of infinite extent in the x- and y-directions and to

extend from z - -D/2 to z - D/2. (Sec., fig. 1) The system clearly has mirror

symmetry in the xy-plane.

We will consider the quasiparticle transport equation for this system.

The Landau interaction between quasiparticles 5 will be seen to cancel out of

this equation, and enters the prQb'em only through the quasiparticle lifetime

IF . We will treat th-- latter as a given quantity, since we are interested

in the compa_:ison of a finite and an infinite sample of the same fluid. If

we treaL particle-particle scattering in the same manner in both cases, the

deficiencies of the relaxation time approximation should not drastically affect

our basic results. We will see that T contains the entire temperature as well

as interaction dependence in the problem.

The simplest model which can he used for the scattering of particles from

a wall is that of completely diffuse reflection. This means that the particles

emerging from the wall after colliding with it possess a distribution which

is isotropic in the reference frame of the wall and which corresponds to local

equilibrium conditions at the point of collision. A more general model, which

we shall use, is to assume that a fraction ., of the particles are specularly

reflected , that is, the component of their momentum perpendicular to the wall

is reversed and the other components are unchanged by scattering from the aall.

This is certainly not the most general possible reflection proces3, but since

very little is known about the quasiparticle-reflecting properties of experimen-

tal surfaces, it should be sufficient for our purposes. We consider . as an

edjustable parameter; toe will see that the	 dependence of our results can

easily be separated from the other dependences.

III.	 Derivation of the Integral Equation

The nimiber of quasiparticles per unit phase volume with momentum p at a

hei.,,+t z in the cell is written np(z). In the absence of the applied force
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field this becomes equal to the global equilibrium distribution function,

which is written

n0 i	 1	 (1)
P	

e^ (' p ',)+ 1

Here	 1/It T, , 0	 p 2 /2m* wherz m* is the effective masc, and µ is the
P

chemical potential. We make the approximation that the temperature and

chemical potential remain constant and uniform 
8. 

The average velocity of

the _fluid at height z, or "velocity profile", is given by

^.	 1

U(Z) s 7 vP np(z)

P

where v— 's the velocity of a quasiparticle with mc,,,entum p. Since the fluid
p

flow i; entirely in the x-direction, we may write

P
u(z) = a	 np(z)	 (2)

P m

we also define

bnp(z) _ n5(z) - n^ ,	 (3)

E P (z)	 gp + 7^ fpp , 6n—, (z)

P

where fPp,,is the Landau quasiparticle interaction function. We also define

the local equilibrium distribution function and the deviation of the actual

distribution from it:
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1
n	 (5)p z)	

e3(=p(z)-pYU(z)-u)+1
	

'
I
i
f

5;—
p

(z)	 nP(z)-npe (z)	 (6)	 j

We observe from (2), (5), and (6) that

pbnp (z)	 0	 (7)
p

The transport equation is given by

on-

3tP(z) + p 
-E 
P 

7r p (z) + Fp(z)•'7P p (z)	 I[np ' ]
	

(8)

where I[np ,] denotes the collision integral and the force FP (z) on a quasi-

particle with momentum p includes both the external field F and a ;Wean field

part:

-+	 w

Fp(z) - F - 7r ^ f pp, 5n-, (z)
p

We now assume that the system is in a steady state, and approximate the

collision integral by

6n-P (z)
I[nP,] _ -	 T

We also linearize in the quantities F, u, bnP, bnp, and use the fact that F

1

is in the x-direction while all spatial gradients are in the z-direction.
k

We find that the term containing pf p, which comes from the third term on the

left side of the transport equation (6) is cancelled by a similar term arising

from the second term in (6). The transport equation becomes

(9)

(10)

i

6



6.
*	 ^n 0

C- + 77) Snp(z) ' P X(L - 
Pe 

X^! -^	 (11)
z	 z	 p

This differential equation in z has the genftral solution

0

6n-'(z)	 exp (-m*z/p z T) i A— j dz'exp(m*z`/pzr)px	
F)\ -E)P	 -b/z	 Pz ^_p	 (12)

-
where Ap is an arbitrary function of p. When we apply boundary conditions

to (12) we will obtain an explicit expression for 5np-(z) as a functional

of u(z). Requiring that this functional satisfy (7) will then give us the inte-

3ral equation for u(z), from which the flux ^u(z)dz is determined.

we now consider the boundary conditions. If a fraction e of the quasi-

particles incident at a wall are specularly reflected, then the distribution

function at the lower wall obeys

,p	 21 ' (1 - ) 0 + :-'n-*(.  I, P > 02 z
	 (13)

where p* = (px,py)-pz). AC the upper wall the distribution function obeys

p(D^	 (1 - e) -0+ -r. p */D) , p z > 0
	

(14)

since nP is independent of the sign of p z . To express these conditions in

terms of the deviation from local equilibrium, we go back to the definition

(5) of the local equilibrium distribution function and expand to linear order

in the perturbation F:

^n0.n le( _ D) „ n0 + ((_^ f f-5tr II/ D\	 u`^ - D^
P `	 2 /	 p	 \;	 ;.	 '' ^ P p`	 P ` \ 2^	 Px \	 -E	 (1S)

	

Substituting n-"( L^\'	 nle^- D1 + cn_ - D\ into (13) and using (15), we find
	P\ 2/	 p \ 2/	 P^ 2/
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bnp(z) - :bnp*(z)	 ;1 "̂i - )PxuC- 	 + - P.fP*P,bnP,^- 

(16)

11PP 5n—, 21J
P

Consider the Fermi liquid interaction terms in (16). Although the;

are formally of the same order as the other terms, our model of what happens

at t:he boundaries is sufficiently crude that we can probably omit them without

making the description any lets accuran . Recall that : is a phenomenological

parameter that reflects the degree of correlation between incident and

reflected quasiparticles. We assume that the effect of the interaction terns

in (16) :nay be adequately approximated by choosing a different value of

than we would have done had no interactions been present. Even without this

assumption we have no way of calculatio b : for the surfaces of interest, and

retaining the interaction term would make the calculation much more difficult.

Thus (16) becomes

an
bnp^ 

2l - 
.SnP*\ 2^	 \a ^(1-:)Pxu^\ 2) , 	p  > 0
	 (17)

The analogous equation for the other boundary is

0
bn

(In	
(1 D- ebnp^D 

s a^/
(1 )Pxu\2l

To apply these conditions, we go back to the general solution (12) of

the transport equation and evaluate it a z = -^D and z = +'.D, substituting

these results into (17) and (18) respectively. This gives us two equations

for the two unknowns AP and App, . Putting the solution for Ap into (12) gives

us 6;—
p
(z) for p z > 0: the solution for p z < 0 is found by exploiting the

P

(18)

16
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mirror symmetry of the problem:

^np(z)	 Snp*(-^)

and

U(Z)	 - u(-z)

Alien we follow this procedure, the results are

*	 -(1-:)u(2)	 :exp(-m*D/2p,T)
Snp(z) a e

-m z /p z Tf	 2	 -

-exp(-m*D/2p z T)-exp(m*D/2p z -) :expl-m-D/2pz-)-exp(m*D/2pz-)

	

D/2	 z	
\	

an0

dz' exp (m*z' /p TqU - F)+Sdz'exp  (m*z' ; p )C^^ - F I,-p	 P",p > 0	z `c&z 	 z 41 z	 p 
z 
i^ x^aE p /	 z

	-D/2	 z -D/2	
(21a)

5n-'(z)	
e-m*z/pzT^	

-(1-'.)u M,	 +	 exp( -m*D/2pzT)

P -exp(M*D/2pz' -exp(-m*D/2pzT) :exp(m*D/2pzT)-exp(-m*D/2pz')

	

D/2	 z	 0

	

J dz exp (m*z' /PzT\az' 	
F )+: dz' exp (m*z ' p T)U u _ F \` p / owl p	 0

	p z	z	 z	 r z	x\aep /	 z

	

-D/2	 -D/2	
(21b)

It will. be noted hat the distribution function is discontinuous at p z = 0.

This is because the particles which have just been scattered by a wall have

a substantially different distribution than those about to be scattered due

to the large change in momentum that occurs in scattering.

We can now impose 1-e condition (7) that the average of the momentum

over the deviation fron local equilibrium vanishes. The only component that

does not vz.nish trivially is the x-component, thus the equation of interest is

0 i Id 3p px bnp(z)	 (22)
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Inspection of (21a) and (21b) shows that ()n0

in bnP(z) that varies rapidly as a function of Ipl

as T << TF ,	 mayay rep lace it by -b (s- p - . F) . When

coordinates in (22), the effect of this 5-function

/ y e p ) is the only factor

near p F . Thus, as long

we integrate using spherical

is to set Ipl - p  everywhere,

The ;p-integral is trivial, so that, defining 6A - cosi and the mean free path

2 = p F'/rr*, (22) bec-)mes

^1	
2) -z/1'	

-(1 ^ )u(
22J	 :e- D/2A4

0	 :exp(-D/2,6)-exp(D /2AA) :exp(-D/2,L)- exp(D /24A)

	

D/2	 z

a dz' exp (z' / dl)O, - ^1+''dz' exp (z'/ L \a ' pZ%f
	-D/2	 -D/2	

/
0	 2	 -(1-^)u(2\	 exp(-D/2,L

+ cL ( 1 -u )exp (- z /AA)l_	 +
-1	 :exp(D/2L)-expo D /24A)	 :exp(D/24r)-exp(-D/2.L

D/2

exp(Z'/Lq u - F)t dz'axp(z' /^)(
Tz
^u, - F^l	 !23)z	 pz -D/2 	 7) j,

-^/2

We next integrate by parts wherever bu /,̂z' appears. It is found after

some algebra that the surface terms from these integrations cancel the terms

in (23) containing u(D/2). If we define a dimensionless velocity

U(z) M m*u z
Fr

and divide by -FT/m* we have

^ 1 	 2	 exp(-z/$y )exp(-D/2^,j)	 1 D/2
0	 ^da(lu )'`-2U(z) 

.eYp(-D/'- a1) -exp (D/2,a,1) ^-Ji7/2dz'exp(t'/^)(1+U(z'))
o 

exp (z/ L )exp (D/ 2-L	 D/2

1 fdz'exp(z' /L)(1+U/z'))
.exp(-D/2L)-exp(D/2))L) 	 -D/2

F

L,
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axp( •2'^) zexp (z'L') ;z,
+	 I dz'exp (z'/^)(1+U(z'))+	 I dz'oxp (z'/ U)(1+U(z'))- .

-D/2	 L.	 •D/2	 '

(24)

eLrther manipi,lations pot-nit us to cast this in the form

U(z) _	 li.(I ti:)	 1	 ^axp(-z /AA)LZ dz'exp(z'/La)(l+U(z'))--.e.xp(-D/L)
41 b1-:exp (-D% AA 	 D/ 2

z	 ^rz
dz'axp(z'/,A)(1+U(z')) +e c? z /L)I dz'axP(z'/ jj)(1+U(z'))-^.exp( -D1^)

D/'2	 =Dl

-z

dz'exP(z'/ 6)(1+U(z'))-^ .
	 (25)

D/ 2

We now define the Knudsen 9 number (ratio of cell thickness to mean free

path)

D m*D

Z	 1	 '
	

(26)
M

a dimensionless coordinate s - z/D, and redefine the functional dependence

of the dimensionless velocity U so that U(z)	 U(b). With a few more steps

we obtain

U(5) = 
3 	 ^,r(1 .y)	 1d^'e:cP(-^c^;-;' ^iu)(1+U(;')) 	 (27)

0	
exp-^

This is the integral equation for the velocity profile.

IV. Solution for Flow Rate

We have solved this equation numerically by doing z Gaussian integration 10

on,;, using a finite element method cc convert the integral equation into a

matrix equation, and _hen using an iterative technique. This gi"es a discretized

representation for the solution U(;) which we integrate numerically across

the cell. We then have the quantity

(18)
-x

6
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as a function of x and	 In order to see the ;t - dependence of (u) more

clearly, we divide (28) by x and plot the result for several values of : in fig.

2.

:ae resulting curves have several striking features. For a ;0 3 the various

values of : give a family of straight lines whose slope with respect to x is

close to the ratio 5/12. We shall see that this is the exact value required

to recover classical bulk fluid behavior in the limit of large A.: one can
0

also verify analytically that the solution of the integral equation (27) has

just this behavior. Thus, the only manifestation of a finite size effect for

K ^ 3 is the t-independent offset of these lines. 11

At small x the quantity (U)/-c diverges lcgarithmically. This divergence

arises from the rather artificial assumption that quasiparticies scattered

almost parallel to the wall hove slowly away from it and do not interact with

it any more. These particles will rake longer than most otters to cross the

cell, and hence will to acted upon by the driving field for a long time, giving

a Large contribution to the total current; however, these particles are the ones

most likely to scatter against other particles before reaching the other side.

A logarithmic divergence of (U)1% 4. with a. can be shown to result from this

situation. In a real cell, in ;which auasiparticles reflected parallel to a

wall will be re-scattered by surface inhomogeneities, we expect a large but 	 11

finite flux at x - 0. Suppose the inhomogeneities in the surface have typically

an amplitude a and a wavelength L. Then the minimum possible angle between

the wall and the momentum of a quasiparticle traveling away from the wall i3

0
approximately x/L. The quantity (U)/;^. will cease going as - in K when x y 'I/L;

instead, we expect it to go to a constant value of roughly vr..(L/x).`)

In the intermediate :t region we find that (U)/%t goes through a minimum

in the vicinity of >t _ ', and then approaches the linear behavior seen at large

X. If we extrapolate the high- x behavior down into the intermediate region,
C

V

G ..r ..,^.,.

0 U



A

12.

and find the difference between this linear function and the actual ( W.W., we

^.	 obtain a measure :)f the deviation from linear behavior. TELs deviation, which

we call b, is displayed in Table 1; it is seen to drop off rapidly as x ircreases.

The	 dependence of the .exults is also worthy of note. It can be well

approximated by an additive term independent of K. This implies that ,ur

choice of ? will not affect the qualitative structure of th, results. We note

that a very similar result has been found for the case of classical rarified

gas dynamics12.

The flow rate (u) through the cell determines the rate at which the applied

force F does work on the system; this dissipation is what will usually be

measured in an experiment. One way to characterize the finite size effect is

to say that the fluid behaves as if it had a different viscosity than would

an infinite sample of the same fluid. We define this "effective viscosity"

to be that which would give the correct flux (or dissipation) of the actual

W

cell when substituted into the equations of hydrodynamics. In the classical

theory the flux is	 0

0

'	 (u)	 D2Fn
12r,

O
O

where n is the ntm►ber density in the fluid. For the finite cell we define

a	 u	
o°

flfl	
D2 Fn

	

.a c	

o
f 	 1-2-Mu	 O	

(3U)

0	 o	 e	 p
n

We now divide both sides by the viscosity of the bulk fluid, using ( 28) and

the relation
a

R
O

o

: o 	 ^Bt^.lk 3 5 PFvEAT	 '"	 (31)

and obtain	 C

rieff	 5	 x2
(32)

r'Bulk	
12 7

0

(2 9 )

0
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This ratio must obviously approach unity at large -: the asymptotic behavior

mentioned above for the ratio (U>/K clearly insures that this, will be the case.

The quantity (32) is plotted in fig. 3 1 a function of K for several values

of ..

V. Application to Experiments

These results have been applied to the interpretation of some experiments

performed by Parpia 1,3 and Archie 2 . In these experiments, a disc-shaped

cavity in an .epoxy cell

about its central axis.

constant amplitude with

voltage is proportional

which is the sum of the

associated only with th

is filled with 3 H and caused to vibrate torsionally

The drive voltage which is required to maintain

chancing temperature iz then measured. The measured

to the total rate of energy dissipation in the cell,

dissipation in the liquid and a "nuisance damping"

e apparatus.

Some results of these experiments are given in fig. 1 of reference 1. The

effective viscosity, obtained from the driving voltage required to maintain con- 	
i^

stant amplitude, is plotted as a function of T 2 ; it is linear above about T

3.5 mK , and shows an upward curvature from this temperature down to the transi-

tion temperature (below which it jumpy sharply upward.) The present calculation

-was originally unaertaken in the hope of understanding this curvature.

To apply the results of the previous section of this paper, we make

several observations: (i) the frequency in these experiments is less than

1 KHz, permitting a steady-state analysis, (ii) the cavity radius is about

forty	 times it! thickness, permitting an element of the cell to be mated

as an element of an infinite slab executing transla^ional vibrations with an

amplitude of r9 0 , where r is the distance of the actual element under considera-

tion from the axis of the cell, and 9 0 is the amplitude of the tczsional vibra-

i

	 (iii) Edge effects may also be neglected, (iv) the vibrational amplitude

is very small in these experiments (less than 10
-b
 radians) so that a '_nearized

theory is well justified.

hL^....
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It is easy to relate our parameter x to the Amperature. We have , - DA

D/vFT, and in the no.mal phase the relaxation time is inversely proportional

to the square or the temperature. 5	Writing

- M Az
-2 	 (33)

we have

DT 
v F A	 (3w)

Since v  and A depend only on the pressure, we see that: the Knudsen number is

proportional to the square of the temperature for c ,:nstant D. The constant

of proportiorality is found from experimental data; see Table 2.

We must now relate the dissipation to the dimensionless flow rate found

in the previous section. In the frame of reference of the wall, there is

a fictitious force of -ms per particle, where a is the instantaneous accelera-

tion of the wall in the laboracory frame. We use our static theory to obtain.

the response to this force; the relative error involved in doing this will

be of order l)T	 10 -3 in our case. The dissipation in an element dA of the

cell is

di = -nma(u)Dd a = n(ma)]U) D 2 dA	 (35)

^	 F

Now we replace the square of the acceleration by its time average over a

complete cycle of the motion:

2 2 4
9 r ^

(a2)time' Qn.0ru2cosut)2) 
tLne s 02	

(36)

We note that the dissipation, being proportional to the entropy production,

must be frame-independent, so that the value calculated in the instantaneous

reference frame of the wall may be taken ever to the laboratory frame without
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change. Using (35) and (36), and integrating over the area of the entire cell,

we ge t

' ^	 '

	

D2m2n6 
4

2	 U	 R 3

E _	

,	

O2rr^ r dr	 (31)

where R is the rar:ius of the cell; we then have

2 2 4
22m2	

M a

	

n	 9 2 4 R4 U) = 1	 e 	 LT)	 (38)
p F	 e	 A	 64-r np F	 At

where 4 is the total mass of the fluid in the cell.

This relation connects the function (U)/K which was calculated in section

III and plotted in fig. 2 with ~he dissipation in the disc of fluid, the

latter being proportional to the drive voltage, modulo a constant. The propor-

tionality of (U)/;+. to this voltage enables us to see what the theory implies

about the experiments. For purposes of comparison let us define 4 as that

value of ti for which the derivative of (U)/x with respect to ;'. has halt of

its large-x asymptotic value. Similarly we define T 2 as that .alue of T 2 for

which the derivative of the drive vo y age with respect to T 2 has half of its

limiting value. By expressing this T 2 as a Knudsen number, we can determine

whether the curvature in the experimental p lot falls in the right temperature

range to be the mean free path-finite size effect.

In fact it does nor. We find that K ; 1 for all values of	 On the

other hand the temperature T, corresponds to values of k --! 36 for p = 29 bar

and :t	 7 for p = 0. Furrhermore, we see from Tablet that for a cell of the

size used at Cornell, the curvature predicted by the theory should only be seen

at pressures of a few bar, but the experimental curvature is seen at high pres-

sures as well. We conclude that the curvature in the drive vs. T 2 plot is not

due to the mean free path effect explored in this paper, and its explanation
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must be sought elsewhere, perhaps in the thernumetry; the effect calculated here

is being masked by this other, unknown effect.

There are three courses of action that might be followed to actually see

the mean free path effect. (i) Identify the cause of the curvature in the

experimental plot, and remove it; this should unmask the upward curvature due

to the mean free path effect, which should be noticeable at low pressures.

(ii) Remove the nuisance damping, so that the e-dependent vertical translation

of the curves in fig. 2 can be determined experimentally; this part of the

effect is significant even when the curvature is too small to be seen. (iii)

Repeat the experiment in a thinner cell, so that a given value of x will corres-

pond to a higher temperature.

Finally, we note that in the superfluid phases the mean free path is

expected to become very large , so that almost all experimental cells will

have dimensions of similar or smaller magnitude. The calculation given here

applies only to the normal phase, but the method should be readily extensible

at least to the 3-phase14 We hope to treat this problem in a future publication.
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p, bar 

0 
3 
6 

12 
18 
24 
30 

0. 2 
0.4 
0.6 
O.S 
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1.2 
1.4 
1.6 
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Tabl. 1 

.5869 

.3401 

.2266 
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.1176 

.0868 
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. 0469 

.0330 

.0225 

Deviation 6 of the function <u)/~ from its linear 
behavior at high ~ . 

Table 2 

Tc' rnK A, \JIll ~ , O-95iJ111 

1.0 68.0 1.40 
1.4 29.2 3. 25 
1.6 19.5 4 .87 
2.08 9 . 36 10 . 1 
2.31 6.26 15.2 
2.45 4.65 20 .4 
2 .. <;6 3 . 64 26 . 1 

~ , o-lD!.Jm 

0.295 
0.684 
1.03 
2.13 
3.20 
4.29 
5.49 

The mean free path and Knudsen number evaluated at the 
transition temperature for several pressures, and for two 
cell thickness. We have used data from Wheatley . l) In the 
last column, the deviation 6 is evaluated at ~he transition 
temperature, for a cell width of 20 iJIII . It is negligible 
at pressures above about 12 bar. 

6 

.4434 

.1959 

.1126 

.0174 
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Figure Captions

Figure 1	 Sketch of the idealized viscometer cell, showing an example of the

velocity profiles found in the calculation. he curves represent

ux (z) for :t - 3 and	 0, 0.2, 0.4 and 0.6; each :nark on the

horizontal axis represents 3F T /m .

Figure 2	 The quantity (U)/x. as a function of x for several values of :.

We have (U)/^t = p F(u)/FD where (u) is the flow velocity averaged

across the cell, F is the driving _force per particle, 0 is the

cell width, and p F is the Fermi momentum.
F

Figure 3	 The ratio of the "effective viscosity" to the true shear viscosity

of a Sulk sample of the fluid, as a function of :4., for several

values of ;.
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