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STRESS ANALYSIS FOR STRUCTURES WITH SURFACE CRACKS

by J. C. Bell

SUMMARY

Two original, basic forms of analysis, one treating stresses around

arbitrarily loaded circular cracks, the other treating stresses due to loads

arbitrarily distributed on the surface of a half space, are united by a

boundary-point least squares method to obtain analyses for stresses from sur-

face cracks in plates or bars. Calculations have been made for enough cases

to show how effects from the crack vary with the depth-to-length ratio, the

fractional penetration ratio, the obliquity of the load, and to some extent the

fractional span ratio. The results include many plots showing stress intensity

factors, stress component distributions neatr the crack, and crack opening dis-

placement patterns. Favorable comparisons are shown with two kinds of indepen-

dent experiments, but the main method for confirming the results is by wide

checking of overall satisfaction of boundary conditions, so that external con-

firmation is not essential. Principles involved in designing analyses which

promote dependability of the results are proposed and illustrated.



INTRODUCTION

The purpose of this investigation has been to provide stress analysis

which can aid designers of structures such as space vehicles or aircraft in

judging the significance of surface cracks. Presuming specific crack geometries

and loads, linear elastic fracture analysis has been used to evaluate stress

intensity factors of kinds commonly used to predict crack growth and also to

find many stress and displacement patterns around cracks. The significance of

this research lies not only in the specific results and what may be inferred

from them, but also in the considerable light cast on the extent to which it is

now possible to analyse stresses due to the presence of surface cracks.

The methods used for this analysis proceed from two basic forms of

theory, one describing stresses due to arbitrarily distributed normal and

tangential loads on a deeply embedded circular crack, the second describing

stresses due to arbitrarily distributed normal and tangential loads on the sur-

face of a half space. A description of both these theories has been provided

elsewhere in much the form in which they were first developed [ 1]*. In addition,

a more organized derivation of the basic analysis for the circular crack is

being published [2], and illustrative results from it for several simple cases

have been published already [3], This theory is a broad generalization of an

earlier one by Sneddon [4].

The use of the cited basic crack theory limits consideration to

planar cracks which have circular or part-circular fronts, but this limitation

is repaid by the great flexibility allowable in the load patterns. That flex-

ibility is very helpful in analysing cracks for which nearby or intersecting

body surfaces distort the effective crack loads substantially. The usability

of the theory depends on special methods that have been devised for evaluating

integrals of a seemingly formidable class that arise profusely in the expres-

sions for stresses and displacements. Those methods are successful enough to

change those integrals from a burden into an asset. A paper describing these

methods has been prepared for publication and should be available soon.**

* Numbers in brackets refer to entries in the References.

** J. C. Bell, "Evaluation of Integrals Involving Products of Bessel Functions

Having Application to Crack Stress Analysis".



In the crack stress theory, all the expressions for stresses and

displacements are double series with terms that are functions of the position

coordinates multiplied by coefficients (load constants) that are the same for

all the series. For the boundary stresses on the crack, the expressions

become Fourier series in the angular position, with each term multiplied by a
2

series of Jacobi polynomials with the argument (l-2p ), where p is a dimen-

sionless radial coordinate. Knowledge of the boundary stresses on the entire

circular crack would allow determination of all the crack load constants and

hence of all stresses and displacements throughout the body if it were infinite,

but such knowledge is obscured when there are nearby body surfaces. Thus analy-

sis of surface cracks is concerned mainly with the interplay of effects from

crack loads and surface effects.

The surface load theory used here is built on effects from elemental

loads acting on rectangular areas on the surface of a half space, but unlike

previous theories its elemental loads are essentially pyramidal in form, vary-

ing linearly in two directions from an interior peak to an unloaded boundary,

as shown in Figure 1. Use of arrays of overlapping elements with arbitrary

peak loads (surface load constants) permits representation of continuous load

distributions which are arbitrary except that they vary linearly in both direc-

tions over each rectangle on the surface. Such representations for surface

loads avoid the load discontinuities and artificially high local stresses that

would be implied by use of load elements with uniform profiles. This avoidance

of gross local distortion of stresses also allows performance of a vital check-

ing process as explained later.

The crack and body geometry considered in much of the research to be

described is illustrated in Figure 2. The body is a plate partly penetrated by

a crack perpendicular to the faces of the plate. A rectangular coordinate

system (x, y, z) is fixed by the front surface and the crack, and a cylindrical

coordinate system (r, 8,1) is fixed by the crack circle. (Note that the

letters z and a are to be distinguished, and that further local rectangular

systems may be associated with any plane face.) The crack radius a is used

as the reference length, so with p = r/a and t, = 3/a, the cylindrical coordi-

nates are often written as (p,8,C). The crack shape is defined by its depth-

to-length ratio A/2C and by its fractional penetration ratio A/T. The loads



a. A typical pyramidal element

b. A typical composite load represented by pyramidal elements

FIGURE 1. SURFACE LOAD ELEMENTS OF PYRAMIDAL FORM

FIGURE 2. NOTATION USED IN ANALYSIS, AS IT APPEARS FOR CRACKS
PERPENDICULAR TO THE SURFACE



considered here are related to a remote tension a , but they may be applied

obliquely at some angle g as shown. In the present work, the length of the

plate in the x-direction is always large, but for some of the cases the

plate has a finite width W, and then the parameter W/2C is also important.

The surface crack analysis takes as its assigned loads the stresses

which would exist at the location of the crack if no crack were there but

which cannot be transmitted with the crack present. It does not suffice merely

to fit such crack loads as one would if the crack were deeply embedded, for

loads on the crack induce spurious stresses on the surface or surfaces of the

enclosing body. To eliminate those surface stresses, freeing stresses are

applied to the body surfaces, but these induce spurious stresses on the crack,

and so on. In the present work, this chain of interactions is resolved in one

calculation for selecting crack and surface load constants simultaneously by

least squares fitting of the desired resultant boundary conditions at selected

points scattered over the crack and body surfaces, and this fitting determines

the load constants for both the crack and the body surfaces. In principle

this process is straightforward, but in practice it requires resolution of both

numerical and logical problems.

Treatments for the numerical problems of evaluating the influences of

crack and surface load constants and of finding a boundary-point least-squares

fit of selected boundary conditions have been assembled in a computer program

called FRAC3D and companion programs called LATTICE and MATSOL. FRAC3D incor-

porates an array of special methods for evaluating the integrals used by the

crack functions together with formulas for the influence each crack load

constant has on the stresses and displacements at any given point. Using

input generated by LATTICE to define the bases of pyramidal surface loads,

FRAC3D also calculates the influence each surface load constant has, including

considerable bookkeeping to avoid much otherwise repetitious arithmetic,

attributable for example to symmetries. It performs the necessary transforma-

tions of coordinates and stress components to make the many contributions

compatible in summing. It does this for load constants for as many as six

body faces (for a rectangular block shape) as well as for the crack, and the

crack can be arbitrarily deep and even tilted. In its "SOLVE" mode, FRAC3D

constructs a system of boundary condition equations to be solved for the many



load constants, but the actual solving for them is performed by the program

MATSOL which also computes stress intensity factors at many points along the

crack front. Then if stress or displacement calculations are desired also for

points anywhere in the body, they can be found from the load constants by

returning to the program FRAC3D, using it in its "RESULT" mode. The formal

processes for doing these operations are described in a User's Manual issued

as a supplementary report (NASA CR159401), but practical considerations

in doing that work are better understood if one considers the treatments given

to the various cases discussed in the present report.

The performance of surface crack analyses by the present computer pro-

gram involves many choices to be made by the analyst. He must design rectan-

gular latticework to define load bases for the surface-load theory, and he must

select the series terms to be used actively in the crack theory. These choices

are not trivial, and the results of the calculations often depend signficantly

on what choices are made. Pursuit of accuracy by great subdivision of surface

latticework or by enlargement of crack function series often proves to be

self defeating, for reasons to be discussed in connection with specific cases

later. Thus the analyst requires insight concerning choices that promote

good design of a surface crack analysis; and since the propriety of a chosen

design can not yet always be known in advance, he must also have a way to

decide whether the results that follow from it are proper for the case it was

chosen to treat.

The reason why a given calculation may not apply properly to the case

for which it was performed arises from the use of pointwise satisfaction of

boundary conditions. (It cannot arise from inconsistent treatment of internal

stress relationships in the body, since the functions arising from both of the

present basic theories satisfy all the conditions for elastic behavior exactly.)

Since only pointwise satisfaction of boundary conditions is enforced, it is

entirely possible for the satisfaction of proper conditions at non-fitted points

on the boundaries to be missed, often badly. Therefore, a policy has been

applied in performing the stress analyses here to check how well the proper

boundary conditions would be satisfied by a computed solution at many boundary

points not used in finding that solution. A computed solution is deemed



acceptable only when overall satisfaction of boundary conditions is achieved,

as judged from the results of this checking and the light of Saint-Venant's

principle.

It should not be thought that the need for caution in accepting

calculated stress analyses for surface cracks is a difficulty peculiar to the

current methodology, since analogous weaknesses due to pointwise fitting of

boundary conditions or approximation of field equations are common to all the

methods that have been used for this class of problems. Indeed, the present

method is probably the most advantageous of all, since it offers such a trans-

parent means for checking the overall satisfaction of the necessary conditions.

The analyses here have been divided into three tasks. In the first

task, cracks with various geometries (that is various A/2C and A/T but with

W/2C = o> only) are treated with uniform normal loads. In the second task,

most of these cracks are treated for loads applied obliquely. In the third

task the plate may have various finite widths, but the load is only normal.

The specifications for the cases in these three tasks are shown in Table 1.

The following discussion of analyses groups the cases first according

to the tasks and next according to the depth-to-length ratio A/2C, since the

requirements for design of the analysis are governed largely by those factors.

Requirements for the design which are common to all the cases are discussed

mainly in connection with the first case.

The fourth task was to make the computer programs operational on an

NASA computer. This has been done, using an early form of the User's Manual

provided as a separate report (NASA CR159401). Some discussion of this part

of the work is included later.

Many results will be persented here in graphical form, though they

were obtained in numerical form from the computer, which was usually either

a CDC Cyber 73 or a CDC 6500.



TABLE 1. SURFACE CRACKS AND LOADS CHOSEN FOR ANALYSIS

Task Load

I Uniform normal

II Variously oblique

(3 = 24°, 45°, 60°)

III Uniform normal

A/2C

0.

0.

0.

0.

0.

0.

0.

0.

50

25

10

05

5

25

10

25

0.25

0.25

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

o,
o,
0,

0

0,

0,

0.

o,
,7

,7

0.

0.

0.

0.

0.

0.

0.

A/T

5,

5,

5,

5,

5,

5,

5,

0.

0.

0.

0.

0.

0.

0.

7. 0.9

7, 0.9

7, 0.9

7, 0.9

7, 0.9

7

7

W/2C

00

00

00

oo

00

oo

CO

2

1
3

.0

.5

.0



SURFACE CRACKS UNDER NOBMAL LOADS

The surface cracks chosen for analysis presuming a uniform nor-

mal load a (which corresponds to having remote tension perpendicular to the
o

crack) Included cases for four depth-to-length ratios A/2C with several frac-

tional penetration ratios A/T, as shown in Table I. Since cases with the same

A/2C form a natural group, such groups will be discussed separately, but

several matters affecting all groups will be treated in connection with the

first group (with A/2C = 0.50) and especially with the first case (with

A/T = 0.0).

Cases with A/2C =0.50

If A/2C = 0.50, the crack is semicircular. It might be expected that

such cracks would be simplest to analyze, and indeed stress intensity patterns

for such cracks in semi-infinite bodies (so that A/T = 0.0) were published

quite early [5,6]. The apparent simplicity vanishes, however, if the plate

has a back surface (so that A/T > 0.0), and some previous investigators seem

to have avoided such cases. Thus the semicircular crack is interesting and

not trivial.

Some Principles for Design of Analysis

Since the crack load here is implicitly normal to the crack and

symmetric around 6 =0, regardless of the presence of the body surfaces, the

crack function series should use as load constants only those related to normal

loads symmetric around 0=0. In the notation of Appendix?or Reference 1, these

are the a" . . The constants related to shear loads (there called R' , , v1 , ,m,k Km,k Ym,k'
P' , and Y' , ) should vanish*, as should those for antisymmetric normal loads

Dtt $ K t&) K.

(the 6?' , ). In the expressions for normal loads on the crack, each constant
IQy 1C

* In the notation of References 2 and 3, these shear load constants are
a , -,, a . _, a , . and a . ., respectively. The a* . and <£' ,m,k,2' m,k,3' m,k,2 m,k,3 r J m,k m,k are

there called a and a ,. The way in which the crack load constants
m,k,l m,k,l

enter the analysis is explained further in Appendix F.



10

a1 , is multiplied by a term including a factor cos m0. Since a series of
Uly K

such terms is even in 0 and complete as a Fourier series over the range

-r* < 6 < & even if only even values are used for m, it is sufficient to use

only those terms for which m is even. Beyond this, it has been found that the

rapidity at which many crack functions become large as their evaluation points

are shifted on the crack plane toward the crack front depends largely on the

sum m •+• 2k*, and that increase of this sum increases numerical difficulties

with the integrals used in the crack functions. For these reasons, it was

decided that for normally loaded semicircular cracks the crack load constants

to be used would be only the a^ ̂  with m even and with m + 2k only up to some

fixed value, normally 16. Since m and k begin with 0 and range upward, this

allowed all the crack function series to have 45 terms.

Use of the boundary point least squares fitting process requires

selection of points where the fitting is to be done. Since there were

usually 45 crack load constants to be fitted for semicircular cracks, and

since least-squares fitting typically benefits from using about twice as many

points as there are constants, 99 points were selected for the fitting of

boundary conditions. These points, together with 89 selected for checking

purposes, are shown in Figure Al in Appendix A. It can be seen that the

pattern for these points was chosen partly by a polar design near the crack

front and partly by a linear design near the crack lip, with extra concentra-

tion of points near each of those potentially troublesome boundaries. An

effort was made also to get points at enough circumferential and radial spacings

to exceed the counts of angularly and radially distinct functions to be fitted.

The motivation behind these choices also governed point selection for cracks

with other ratios A/2C as shown in Appendix A.

* It may be noted that as the evaluation point approaches the crack front many
crack functions become infinite if the point is off the crack but not if it
is on the crack. In particular, the radial variation of the boundary
stresses on the crack is expressible in terms of polynomials of r if r < a,
and the polynomials remain finite as r •*• a. For r > a the polynomial repre-
sentations of the same stress components are not relevant, even on the crack
plane, and indeed the relevant functions become large in proportion to
l//r-a . The ability of the present crack functions to represent such
behavior analytically illustrates the power and adaptability of the theory
being used here.
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The choice of surface load functions to be used is set by the rect-

angular latticework used on each surface of the body. Since doubly linear

interpolation of the freeing loads is implied within each rectangle, the rect-

angles should be small enough so that kind of interpolation will suffice. To

get a crude estimate of the freeing loads which may be needed, one may consider

the patterns of stresses that would arise on the front or back surface if there

were no surface effects, that is as if the body were infinite. Such a pattern

for stresses a , proportional to that from a uniform normal crack load, is shown

in Figure 3 for part of the plane cut by a semicircular crack (along x = 0 over

-1 < y < 1), presuming Poisson ratio 0.3. For a unit load, these factors would

be multiplied by or' n = /v/Z/rr « 0.80. Also shown is part of the latticework
U j U

actually chosen for the fitting process. Only one quadrant of the lattice is

shown, since it is symmetric around both the x and y axes, as are all lattices

to be used here. Since the shear stresses T and T implied by crack loads
yz zx

defined by constants o?1 with m even vanish on the front surface for a semicirc-J m,k
ular crack, as the formulas of Appendix F show, the stress a is the only one

2.

needing to be freed on that surface when the crack is semicircular and the body

is a half space (A/T = 0.0). Thus the detail of the lattice of Figure 3 seems

reaonable for this case, though it must be admitted that unexpected contingen-

cies may arise in the fitting process to make the freeing load patterns quite

different from this estimate. The entire lattice for this case is shown as

Figure Bl in Appendix B, where lattices for all the cases are collected.

The surface load elements to be used can be visualized readily by

noting that their peaks occur wherever two lattice lines cross, with both

extending in both directions beyond the crossing. Such points are called

pyramid points, and it should be noted that many of them occur on the axes

of symmetry when the symmetric extensions of the pattern are recognized. The

base for each pyramidal load element includes the four smallest rectangles

adjoining the pyramid point which can together form a single larger rectangle.

Over each such base three pyramidal loads may act, defined by peak loads

p (^ -a ), s (,>, T ) and t (~ T ). Symmetry, of course, demands here that
z zx yz

s should vanish for pyramid points on the y-axis while t should on the x-axis.

It is also necessary to choose points where boundary conditions are

to be fitted on the body faces. In earlier work it had been tempting to choose
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many such points, perhaps twice as many as the number of pyramid points, but it

was found that then the calculated load constants, stress intensity factors,

and so on were extremely dependent on where the points were placed. An even-

tual interpretation of this phenomenon was that when more boundary conditions

are assigned on a surface than the number of load constants available on that

surface, then the crack load constants become engaged in the fitting of sur-

face load conditions, and they are badly adapted to that function. A general

rule seemed evident: crack constants should be used only to fit crack condi-

tions and necessary interactions with the surfaces, while surface constants

should be used only to fit surface conditions and necessary interactions with

the crack. Happily a convenient way was found to effect this division of roles

among the two classes of load constants, namely to assign surface boundary con-

ditions only at pyramid points. This assured that each boundary condition

assigned on a body surface would have an associated surface load constant with

the primary function of satisfying that condition. Moreover, the surface loads

at most pyramid points are strongly dominated by a single surface load constant,

so there is little confusion of roles among surface load constants in fitting

of surface boundary conditions. Thus a key choice made in the present work is

simply that surface boundary conditions have been assigned only at pyramid

points, except when the pyramid point happens to be the crack tip. At the tip

the complex variations of crack stresses would make the pyramid point poorly

representative of the possible choices, as Figure 3 suggests. (There c -* »
z

along most rays approaching the crack, but not on the crack.) This plan for

surface boundary-condition points has been used in all the analyses in this

report, but some variation has been allowed for the point near the crack tip.

The boundary conditions assigned at each selected point on the crack

or on a body face are that the three stress components that could be transmitted

across the face there must have the proper overall values when contributions

from all load constants are taken together. (FRAC3D arranges this automatically

after being given the boundary condition point.) On the body faces those proper

values are zero, and if the crack is subjected to a uniform normal load the

conditions there are q, = -0 and TQ = T =0. In the calculation, a factor
* o «J jr

CT has been removed from all the stresses, so all the calculated stresses and

surface constants should be multiplied by a if dimensional values are desired.

Also in the calculations the crack radius a was treated as the unit length, so
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that linear coordinates shown are multiples of a. Moreover, the calculated

crack opening displacements effectively include a factor y/(o a) where y is

the shear modulus.

Another condition applied to all the analyses is that considering

all the crack loads and freeing loads the body must still be in equilibrium.

For the cases of normally loaded surface cracks in plates, this means that

the sum of the loads p applied at all pyramid points, weighted according to

their pyramidal bases and their directions of action (whether +z or -z) , must

vanish.

Case with A/T = 0.0

With the above principles and choices, the analysis was undertaken,

beginning with the case having A/2C = 0.50 and A/T = 0.0, presuming a unit
°*normal crack load, so that 3*- =-1 on the crack. Poisson's ratio was taken to

be 0.3, the value to be used for all calculations reported here unless other-

wise stated. After a special computer program called LATTICE was used to

obtain many indices associated with bases for pyramidal surface loads, its

output was used as input for FRAC3D in producing the system of boundary con-

dition equations. Then MATSOL was used to solve the system for the load

constants, essentially by a method of successive elimination which has been

found to yield high accuracy. From the crack constants, using formulas

on Page A-9 of Reference 14, the first-mode stress intensity factor k was

found at many points along the crack from root to tip. (Most commonly, 41

points have been used from root to tip, though only 21 were used here.

Changing this count is trivial.) This factor k^ was normalized by dividing

it by the value the load would have implied around a deeply embedded crack,

that is by ls.̂ m = 2o ^a~/ir, so that the printed output was k /k . Since

the commonly used factor K is simply k-SiT, the output can also be read to

be K /K . These results for the stress intensity factor are shown in

Figure 4. Actually several slightly different sets of results were found by

using various placements of the boundary condition point near the crack tip.

The results shown used a point midway from the tip to the next lattice point

beyond the tip on the crack plane. Results found with other placements will

be described later in the Discussion.
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This stress-intensity factor distribution for A/T = 0 is like factors

that have been reported by Smith and others [5,6] except that theirs rise

more rapidly near the crack tip. Their results were found by fitting two

basic analyses at discreet points, somewhat as was done here, but with basic

analyses that were less developed. In view of the adaptability of the basic

theories and the fineness of detail used here (which is greater than in a

previous analysis which used the same methods and gave nearly the same stress

intensity pattern), the present results should be afforded a high degree of

credibility, but details near the crack tip are not entirely certain.

The method used here for justification of results, however, is not

comparison with other authors' results, but is instead the checking of overall

satisfaction of boundary conditions. To this end, values for the stress oz
were found at the midpoints of all the surface rectangles and for a- at all

the checkpoints shown in Figure Al, using the load constants found by solving

the assigned boundary conditions. The misfits obtained at this array of non-

fitted points, as percents of the applied load, are shown in Figures 5 and 6.

Being calculated for points well removed from the points where fitting was done,

these misfits should be among the poorest that could be found, yet except in

small regions near the crack tip and lip these misfits are small. Differences

between the calculated stress system and the ideally desired stress system must

be traceable to the overall pattern of boundary stress misfits, so Saint-

Venant's principle implies here that the differences between the calculated and

the ideal systems are small, except very near the crack lip and tip. This

reasoning provides confidence in the calculated results. The difficulty near

the lip probably is traceable to the discontinuity required in Fourier series

to fit some implied discontinuous stress or movement. In anticipation of such

problems, considerable refinement had been built into the front lattice near

the crack lip.

One other check, more necessary for cases involving back surfaces,

is that a and T should become small near the upper x-limit of the lattice,
X Z"X.

while a and T should be small near the upper y-limit. For the present case,

all such stresses were found to be less than 0.02. Thus again the calculated

stress system seems good.
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Cases with A/T > 0

Turning to cases with a semicircular crack in a finite plate so that

A/T > 0, it was apparent that some new features would need to be added. One

new requirement was suitable back lattices, so some promising ones were

chosen depending on A/T, as shown in Figure B2. In choosing, it was recognized

that disturbances of stresses from a crack radiate toward the back quite

strongly in directions tilted about 45° from the crack plane. This, together

with the distance from the back to the crack, influenced the spacing and

breadth of the refined latticework nearest the root of the crack.

A second new consideration was that freeing forces on the back would

need to include shearing as well as normal stresses, and the presence of shear-

ing stresses applied to the back would imply a need for shearing components

among the freeing loads applied to the front. Thus a full complement of free-

ing loads was admitted on both the front and back surfaces. The same patterns

were applied for series structure and boundary condition positions as had

been applied when A/T = 0, yet when new calculations were made presuming

A/T = 0.5, the results were very poor. Not only was the level of the stress

intensity factor greatly reduced where intuition said it should increase, it

was also found that the non-fitted boundary conditions far from the crack were

poorly satisfied, and even the satisfaction of fitted conditions at distant

points was bad. A change was needed.

An attempt was made to emulate the treatment of the case with

A/T = 0.0 by dropping the shear freeing loads and the shear boundary con-
i

ditions from the front face, but this proved to be inadequate. Since boundary

conditions at distant points were proving difficult of satisfaction, an

attempt for improvement was sought by doubling the range of the latticework

in both directions. This only made the solution worse.

It was clear that some new principle was at work. After reflection,

it was realized that whereas the constants a' , describing normal loads on the
HI) 1C

crack were not allowed by the formulas to produce any shearing loads on the

front surface (See Appendix F, putting m even and 0 = ± ? in the formulas for

T and T .), the shearing loads on the front surface could exercise great
83 '9

influence on the normal stress on the crack. Thus a non-reciprocal relation-

ship existed between the constants or* . for the crack and the constants s and t* m,K
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for the front surface, with those constants s and t assuming the role of

unrestrained tyrants. That relationship could not be tolerated, especially

since the only reason for admitting those front constants a and t had been to

compensate for some minor shearing stresses emanating from freeing loads on

the back surface.

With this interpretation in view, it was decided to return to the

boundary condition equations obtained using the original lattices but while

solving them to delete all influence that front-surface loads s and t might

have on the normal stress on the crack. This performed wonders in improving

the solution for the case with A/T =0.5, most noticeably in the more distant

parts. The influence of those front-surface loads s and t was restored,however,

in checking the fitted boundary conditions, and those conditions were found to

be satisfied nearly as well as they were by the original, distorted solution.

Even with this new method of solution, however, some small difficulty remained

in fitting boundary conditions far from the crack, so recourse was taken to

weighting those conditions more heavily in the least-squares fitting process.

In particular, weights were assigned to conditions at the more distant points

in approximate proportions to the area each point sampled. With this addi-

tional change, the solution for the case with A/T =0.5 achieved approximately

the same apparent quality as had been attained with A/T = 0. The calculated

stress intensity factor for the case with A/T =0.5 using this method has been

added to Figure 4. Further solutions for the cases with A/T = 0.7 and 0.9

obtained by the same methods were found without difficulty and are also shown

in Figure 4.

It is reasonable to inquire what may be learned more broadly from

this experience. One thing is that unreciprocated relationships between two

sets of load constants can be very poisonous to a solution. The lack of

influence of the a1 , on front-surface shears produced a particularly dangerous
Illy K

situation here, but that may not have been the only trouble. It appears likely

that the diminishing ability of the crack constants to influence any condi-

tions at great distances from the crack also admitted errors in the parts of

the solution for the more distant parts, especially when moments generated

jointly by freeing forces on the front and back surfaces could influence normal

stress on the crack significantly . This consideration may explain why the
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insistence on better satisfaction of conditions at more distant parts helped.

It also argues against extending analyses for the effects of surface loads to

distances beyond those where the effects of the crack should be felt.

It seems probable that efforts by previous investigators to merge

two forms of whole-body analysis by applying discreet boundary conditions (as

is done here) have encountered problems similar to those found here. One may

wonder whether this is partly why Thresher and Smith [6], in a study including

back surface effects, omitted solutions for semicircular cracks in plates of

finite thickness. For a very thick plate (A/T = 0), they found the K /K

shown in Figure 7, together with earlier results from Smith, Emery and

Kobayashi [5], in a comparison with results from the present study. It can

be seen that results from these three studies generally agree, but as 6 -*- ^/2

the rise found by the present study is noticeably the gentlest.

Also included in Figure 7 are factors K /K found by finite element

methods by Raju and Newman [7] and by Yagawa, Ichimiya and Ando [8]. Their

cases with A/T =0.2 should be nearly comparable to those found by the other

methods, so the close agreement between the results of the present study

(with A/T = 0) and those of Raju and Newman (with A/T = 0.2) is noteworthy.

For higher values of A/T, the results from the finite element calculations

diverge from each other and even more from the results from the present study

as shown in Figure 4. The concensus regarding back-surface effects with semi-

circular cracks is therefore weak, especially for large A/T.

Cases with A/2C = 0.25

Analysis for cracks with length-to-depth ratio 0.25 proved to be

much more straightforward. The relative ease of analysis here may have been

partly attributable to considerable efforts that had been devoted to such cases

at an earlier time, but it was also probably inherent in the analyses them-

selves. If A/2C = 0.25 the problem of unreciprocated relationships between

crack and surface load constants is abated, yet the problems characteristic

of small ratios A/2C do not seem to arise. Thus A/2C = 0.25 is a convenient

ratio for the analysis of surface cracks having circular fronts.

If A/2C = 0.25, the surface lattices must be different from those
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used with semicircular cracks, but the earlier experience had furnished some

good ones. A single front lattice was taken as suitable for the cases with

A/T = 0.0, 0.5 and 0.7, and it is shown in Appendix B as Figure B3. A single

back lattice was used for the cases with A/T = 0.5 and 0.7, as shown in

Figure B4. With A/T = 0.9, some extension of the latticework laterally had

been found desirable (presumably to account for plate bending), so for that

case new front and back lattices were used, as shown in Figure B5 and B6.

The boundary condition points used in conjunction with these lattices were

again the pyramid points, except near the crack tip. Near the crack tip,

because of an earlier search for representative boundary conditions, the s and

t conditions were assigned as they were with the semicircular crack, but the

p condition was set at a point one-fourth the way from the tip to the next

lattice point along a line perpendicular to the crack. This somewhat unusual

choice of tip boundary conditions should give good results if A/2C = 0.25,

but they should differ only slightly from those found with the tip condition

placement used with A/2C = 0.5. (Stress intensities found with either placee-

mgnt for the case with A/I =0.7 agreed closely except very near the tip, where

the off-plane boundary condition gave a result about 0.05 higher.)

The series structure used for cases with A/2C = 0.25 was the same

as was used for semicircular cracks, that is an m-even series triangulated

on k to keep 45 load constants. Eighty boundary condition points and 71 check

points were selected on the crack, as shown in Figure A2.

The stress intensity factors IC./K obtained by the analyses for these

cases are shown in Figure 8. A striking feature of these results, as compared

to results obtained by F. Smith and Thresher [6] is the maximum value located

away from the crack root when A/T = 0.7 or 0.9. This shape is similar to that

obtained by C. W. Smith experimentally [9], though his materials had Poisson's

ratio v near 0.5 whereas the present calculations used v = 0.3 to be nearer

to that for common structural materials. The degree of agreement between his

experiments and analyses of the present form is shown in Figure 9, including

a solution for j> = 0.5 found independently of the present project, and is very

encouraging. These new results also agree with an observation occasionally

mentioned by experimentalists, namely that part-circular cracks tend to ellip-

ticize as they grow. Thus the results here promise to offer new insights into
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crack stability and growth.

The test for dependability derivable from the present theory itself

was made, of course, by checking boundary conditions at non-fitted points on

both the body surfaces and the crack. The misfits for a on the front surfacez
and for a*, on the crack, as percentages of the crack load, are shown in

Figures 10 and 11 for the case with A/2C = 0.25, A/T = 0.7 and v = 0.3. (Checks

for the case with v = 0.5 showed misfits that are slightly larger). These

checks suggest that the fitting of conditions is good, so that the solution is

of high quality. Of course, a complete study of check points would include

fittings of 3 stress components on each of the three faces. The full check is

not shown here, but it indicated similar quality in all nine fitting patterns.

Much more checking applied to analyses for other cases was also done but will

not be elaborated here.

Cases with A/2C = 0.10

To begin treatment of the cases with A/2C = 0.10, which may be said

to have slender cracks, new lattices were designed to accommodate freeing

stresses from a crack on the xz plane with lip covering -yr- <, y <_ -y=- and

reaching down to where z = -yr- . The crack series were taken with 36 terms,

using only even values of m, with reductions in the number of k's as m.

increased, and for determining the crack constants 75 boundary condition points

were chosen on the crack. The computations began as for the cases with larger

A/2C, but trouble appeared very soon. In particular, it could be shown by

inspection that the first solution for load constants for the case with A/T = 0

could not possibly furnish a least-square solution for the boundary condition

equations that had been used to determine those constants. The solution could

not possibly be right, and the stress-intensity factors computed from it

reflected that by being negative. Thus began a long search for a usable

design for analysis for a slender crack. To keep the work simple, the case

with A/T =0.0 was employed.

The first remedy tried for this analysis was to use double precision

in redoing the least-squares fitting process. This was permissible since use

of double precision in the fitting process did not need to be preceded by any

consideration of accuracy in the coefficients of the equations to be fitted,
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since here only the accuracy of the fitting was at stake. The CDC Cyber 73 on

which the work was done normally carries 15 significant digits, so with double

precision it carried 30. Use of that precision did produce splendid fitting

of the boundary conditions used, especially for points on the crack, but the

following checks at non-fitted boundary points showed errors many times larger

than the assigned crack load. Again the solution could not possibly be

accepted.

Pursuit of a solution by assigning more latticework and continuing

use of double precision was prohibitive - the 300,000 word high-speed memory

on the largest computer at Battelle would have been much too small. Therefore,

in view of indications that the crack was being overfitted at the expense of

fitting on the plate surfaces, means were selected to produce a better balance

in the fitting process. The original set of boundary condition equations was

edited by reducing the number of crack constants used and by making roughly

proportional reduction in the number of boundary condition points used on the

crack. The first such reduction was cautious, but improvement was noticed,

so further reductions were made until only 15 crack constants and 25 crack

boundary points remained. With that reduction it was found that double

precision was no longer needed, the fitting of boundary conditions all over

the crack remained good, and troublesome misfits at non-fitted points on the

front surface had been divided by factors of 10 to 100. Yet some uncomfort-

able misfits remained, so a further kind of revision was needed.

In order to obtain further improvement, a new set of boundary con-

dition equations was computed including two basic changes: the front lattice

was enlarged somewhat and further subdivided to reach the form shown in

Figure B7 in Appendix B, and for the crack function series the terms for odd

m as well as even m were retained. The purpose of retaining terms for odd

m's was not to be able to use more terms—it was instead to make a broader

selection of terms available. (Even hundreds of crack terms could be deleted

during the editing effected by MATSOL.) In particular it was desired to find

what could be done with series involving terms for m's that are multiples of

3, since it was suspected that such a choice might be particularly adapted to
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cracks for which A/2C = 0.10.*

From solutions of variously edited versions of this new matrix it was

soon found that use of m-triple series is beneficial, and indeed for the case

with A/T =0.0 there seemed to be fair latitude in further details of the

structure of the crack series. Since series with 10 to 12 terms still seemed

desirable, the assignment of boundary condition points on the crack eventually

was accepted to be that shown in Figure A3 of Appendix A, using 25 points for

fitting and 30 for checking.

With the case for A/T = 0.0 reasonably well solved, attention was

given to cases with larger A/T. After a few attempts, an apparently reason-

able solution was found for the case with A/T = 0.5, using the lattices shown

in Figures B7 and B8 in Appendix B, and using a 12-term series. Included in

the series were the first five k terms with m = 0, the first four with m = 3,

the first two with m = 6, and the first one with m = 9.

Before the case for A/T =0.7 was undertaken, it seemed apparent that

even with m-triple series the solution might be very dependent on further

details of term selection for the series. Since also it was recognized that

the plate here is thin enough so that there might be significant bending of

the plate over a fairly wide range, a pair of broader lattices was chosen, but

arranged so that editing by MATSOL could trim their size. These lattices are

shown as Figures B9 and BIO. In addition crack function series with many terms

were included to allow wide selection of series terms. Then an extended search

for an acceptable solution began, using variously edited versions of a single

set of boundary condition equations.

* The use of terms with m's which are multiples of three provides Fourier

series which form complete sets over an angular spread -r <_ 6 <_ j. Such

a spread of 0 is large enough to span the part of the front surfaces need-

ing fitting when A/2C = 0.10, but it excludes the extra part in ~y <_ 6 <_ y

for which the m-even series provides. The exclusion of the extra part avoids

ambiguities which would otherwise degrade the fitting of overall boundary

conditions.
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Repeated trials showed that the solution for the case with

A/2C = 0.10 and A/T =0.7 could depend heavily on the further details of even

the m-triple series, so monitoring of misfits for non-fitted points on the

front and back surfaces was vital. It was also found that moderate changes

in weighting of subsets of the boundary conditions had significant effect.

It was also found that lattices more extensive than those used for the earlier

cases with A/2C = 0.1 simply promoted errors. After eleven trials, a solution

was finally found which seemed reasonably dependable. Its series terms are

not only triply spaced in m, they are also doubly spaced in k. There are

three terms for m = 0, two for m = 3, two for m = 6, one for m = 9 and one
o f. 9 A

for m = 12. Latticework for |^ x |>2.4 or IjcY |>2.4 was deleted, but the

remaining boundary condition equations for |'2TX|>1'2 were weighted doubly.

The solution obtained for K /K is shown in Figure 12.

Since the case here with A/T =0.7 had been found so unstable during

the solving process, it seemed that any comparison between its solution and

those for A/T = 0 or 0.5 should at least be based on crack series with the

same structure. Therefore, new solutions for those earlier cases were com-

puted, using the same kind of series as for A/T =0.7. The changes thus

produced in the earlier cases were minor, as was reasonable since their solu-

tions had already seemed fairly stable. Thus the three stress intensity

factor patterns shown in Figure 12 are based on uniform structure of the crack

series, and appear to be dependable.

An analysis for the case with A/T =0.9 was attempted, using the

lattices shown in Figures Bll and B12, and using the same crack series design

as had been used for the cases with smaller A/T. Unfortunately, this design

was not very successful for this case, as was indicated by fairly widespread

difficulty with non-fitted boundary conditions on the front face. The tabu-

lated values of K^ did show a maximum value about midway between the root and

tip of the crack (as the case with A/2C = 0.25 and A/T = 0.9 shows), but the

overall level of the K was lower than that for any of the other cases with

A/2C = 0.1, presumably because the boundary conditions were not enforced

adequately in the overall sense. Further variations of design would have been

needed to refine the analysis for this case to-the point of acceptability.

The problems that were encountered in these cases with the slender
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FIGURE 12. STRESS INTENSITY FACTOR ALONG SLENDER CIRCULAR SURFACE
CRACKS (A/2C = 0.10) UNDER NORMAL LOAD
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crack (with A/2C = 0.10) may be interpretable in various ways, but the follow-

ing views appeal to the present author. First, when many terms were used in the

crack series there was too little individuality among the contributions from

those terms so the fitting became unworkably indeterminate. That seems to

have been why double precision was needed with 36 crack terms, but not when

less than 20 were used. Use of few terms helped also to reduce misfits at

non-fitted points by permitting less variation among the effective boundary

conditions over the entire surface of the body. Secondly, in the success-

ful analyses, the triple spacing of m produced a series suited to an adequate

but not excessive range of 0; and in a somewhat similar vein the double spac-

ing of k introduced terms with enough individuality to fit the needs but not

so much as to make great ambiguity in fitting. Thirdly, the deletion of

excessively extended latticework avoided use of boundary conditions at points

where the influence of crack loads is felt too weakly to be used dependably,

and extra weighting of the remaining outer parts of the latticework restrained

some specious role-switching of surface load constants. These interpretations

may not be precisely correct, but they are plausible enough to show that there

can be many kinds of pitfalls in long calculations which merge two basic kinds

of analyses by pointwise fitting of boundary conditions, especially when one

kind employs functions intricate enough to represent effects from cracks.

Case with A/2C = 0.05

A very slender crack, with A/2C = 0.05, was considered, but only for

a thick body so that A/T = 0. Such a crack, as part of a crack with unit
20 20radius, cuts the surface over the range — -r-rr- < y < -z-rr > and penetrates to

the depth where z = - . A new lattice for the freeing load analysis was

needed, and the one chosen is shown in Figure B13. The pattern for boundary

conditions and check points is shown in Figure A4 of Appendix A. Since the

crack and even the significant part of the body surface covered so short a

span of the angle 6, it was decided to use crack series terms only with indices

m divisible by 4, and since the crack is so shallow to use indices k divisible

by 4. The series actually used had three k's for m = 0, two k's for m = 4 or

8, and one k for m = 12 or 16. Happily, this design was successful in
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producing a solution which showed good quality when tested for satisfaction

of non-fitted boundary conditions. The solution obtained for K_/KT is
I I°°

shown in Figure 13.

Patterns of Stresses and Crack Opening Displacements

An advantage of the present method for analyzing surface cracks is

that after a suitable set of load constants has been found, only a straight-

forward calculation is required to evaluate stresses and displacements at any

chosen set of points in the body. Thus for all the normally loaded surface

cracks for which stress intensity factors have been presented, further calcu-

lations were made to get patterns of stresses and crack opening displacements.

The results from these calculations are shown in Appendices C and D. The

coordinates 6, 4> and r' used to identify the stress positions are shown in

Figure 14, as are the notations for the three crack opening displacements

(shown for a lip point). Of course, COD and COD vanish if the crack

load is purely normal.

To have enough stress evaluations so that stress distributions could

be visualized somewhat, the evaluations for each crack were to employ three

values of 9, four off-plane angles $ and five radii r'. To make the results

orderly, it was decided to use values of r' and <ji that were as uniform as

possible for any one crack, though the varying length of the rays for vary-

ing 6 and <J> meant that uniform selections of r1 were not always feasible.

The values of 6 used always included 0 and 6 plus some intermediate value,
tip

and if the stress intensity was maximum at an intermediate 6 that became the

third chosen 9. Since variations with $1 were expected to be interesting over

a wide range, the values chosen (except at crack tip) were 0, 45°, 90° and

135°, and since 180° would yield crack opening displacements that too was used.

The selections of r' varied according to the plate thicknesses available for

the individual crack. Note that the p' used in Appendix C is p* = r'/a, where

a is crack radius.

A further choice made to promote orderliness was that the stresses

would be expressed in terms of the cylindrical coordinates associated with

the crack. This choice seems to have been a good one, since the patterns of

the six stress components in that system were found to be remarkably consistent



34

KI
K
I«

0.5

0.4

0.3

0.2

0.1

Crack Shape:

ac

1/6 1/3 1/2

e/e

2/3 5/6

tip
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center of crack circle

a. Coordinates (r1, $, 9) of positions for stresses

b. Components of crack opening displacement

FIGURE 14. NOTATION FOR STRESS POSITIONS AND CRACK OPENING
DISPLACEMENTS ALONG A SURFACE CRACK
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as 9 varies and even among all the cracks. Thus, it is possible to scan the

results shown in Appendix C and see a characteristic pattern for each stress

component, maintained with fair constancy through all the cases. After the

general pattern has been noted for each component, it becomes possible to make

more intelligible comparisons between the results for the several cases. Of

course the overall level for many sets of curves should be expected to vary

in correspondence with the local value of the stress intensity factor. Thus

it is possible to see, for example, that among the stress calculations at the

position 6 = 0 for semicircular cracks the values for a~ rise higher for

A/T m 0.9 than for any other A/T. Interestingly, the highest a. is not on
V

the crack plane where cp = 0, but instead is somewhere near cp = 45 , and CT
* r

becomes large more rapidly than does a, as r -» a with cp = 0. Such comparisons

can be continued by the reader according to his interest, perhaps at length.

For example, one might seek to interpret directions of observed crack growth by

considering angular variations of stresses, and later to predict such directions.

The values shown for the stresses in Appendix C of course refer to

the crack load as a reference stress. To find dimensional stress levels, the

entries should be multiplied by a .

With semicircular cracks, a should vanish for 0 =" ^ , since it is
9 t-

normal to the surface. Its failure to do so for p1 ^ 0.03 is due, of course,

to sparsity of detail in the freeing loads fitted there. Further subdivision

of the front lattice near the crack tip would improve the accuracy at the

expense of more computing, and it could be even better to use a freeing surface

load element having a singularity approximating that from the crack loads, but

that is not available now. Values of a and a also have minor defects if 0 = ̂

and cp is near TT because of lack of fitting along the lip. The defective parts

for these results are shown in Appendix C as dashed lines. Even for 0 < ?

* Even near a deeply buried circular crack under uniform normal load, Reference

3 shows o\ maximum for a similar 9 > 0, and this agrees with brief tabular
0

results in Reference 4. Reference 3 also shows a for that case becoming

large more rapidly than does a» as r -» a with cp = 0, and Reference 4 would

agree except for errors. (Cf.[3].) The relative magnitudes of these stresses

comments strangely on the usual definition of the stress intensity factor K .
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the inaccuracies near the lip affect some results for a , a and ov for semicir-
r Q 7

cular cracks at points where cp -» rr. These defects, however, should concern only

solutions in small regions near the crack tip and lip.

It was recognized that the multiplicity of results for individual

stress components might be more burdensome than some reader might like, despite

a desire to comprehend the stress patterns. Therefore, a combined form of

stresses was included among the calculated results, namely the octahedral

shear stress [10], which is

[2 \i r. .<. , vT__ = k j^ [(°r-o0> + (OQ-̂  )loc |3/6 Lv"r "6' ' N"9"^;

This quantity has the advantage of being independent of the coordinate system

being used. It is related to strain energy due to distortion, and it occurs

frequently in the theory of plasticity. No drawings of this quantity are pro-

vided here, but tables of it could be assembled for the same cases and places

used in preparing Appendix C by referring to data sheets accumulated during

performance of this research.

For all the above cases of cracks with normal loads, crack opening

displacements were evaluated at several positions along the crack lip and at

several positions between the center of the lip and the root of the crack.

These results are provided in Appendix D by plots of the quantity u' = yu/(Pa),

with u being the local x-displacement of one face and P being the normal load.

Here P = a . Thuso

CODT = 2u = 2u' a a/y.
I o

The three dimensional character of the crack opening is illustrated by showing

variations of u1 along both the y and the z axes.

Even with purely normal loads, points on the crack face can undergo

displacements in up to three directions. Thus the overall length of the crack

may change, and the lips of the crack may rise away from the original front

plane. These latter forms of motion, however, are alike for both faces of the

crack under uniform normal load, so they do not produce any form of crack open-

ing. The other components of crack opening displacements shown in Appendix D

were from shearing loads to be discussed later.
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SURFACE CRACKS UNDER OBLIQUE IjQADS

If a plate with a surface crack normal to the surface is subjected to

remote tension a applied obliquely at angle 3 as shown in Figure 2, then the

implied stress from crack loads has the components (see Reference 10, p 19)

2
o = -a cos 3, T -a sin 3 cos 3.x o xy o

In the cylindrical coordinate system these implied stresses are

2
0=0 - -a cos 3 ,

TO., = -T cos 9 = -o sin 3 cos 3 cos 9 ,oj xy o '

T = -T sin 9 = -o sin 3 cos 3 sin 9.^r xy o

2
Thus the effective crack loads are P = o cos 3 applied normally to the crack

and S= a sin 3 cos 3 applied as shear parallel to the crack lip. Loads of
o

the first kind have already been treated for all the geometries for which ob-

lique loads are specified in Table 1, so to treat the cases with oblique loads

it is only necessary to add the effects from properly proportioned uniform

shear loads parallel to the crack lip. The finding of these latter effects is

the principal thrust of this second task.

With shearing crack loads of this kind, the selection of crack load

constants to be used changes. The constants to be used here are those for
* ^

shear loads applied in the antisymmetric fashion, namely 3' . and Y' r. (i-n them, ic m, K
notation of Appendix F ). Another change from previous cases is in the sym-

metries around the xz plane and yz plane, which are used in reducing the quan-

tity of load constants, boundary conditions, and so forth. Happily, it can be

be shown that this second kind of loading admits as many symmetries as the

first kind does, but all symmetries for the first become antisymmetries for

the second, and all antisymmetries for the first become symmetries for the sec-

ond. Another change is that with the crack load being a uniform shear T , thexy
equilibrium condition needed explicitly is that of rotational equilibrium

around the z axis, instead of the translational equilibrium parallel to the z

axis that was needed before.
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A few changes were required to make the program FRAC3D fully appli-

cable for cracks subjected to shear loads, but with those changes completed,

the treatment of the new cases began. The methodology used was much as had

been applied for the previous cases, though some extra problems did arise. The

new problems here too varied mainly with changes in A/2C, so again cases with

fehe same A/2C will be discussed together.

Cases with A/2C =0.50

For the semicircular crack on the surface of a very thick body (so

that A/2C =0.5 and A/T =0.) it was found satisfactory to use the same front

lattice as was used for a normal load and also to use the same assignments of

boundary condition points on the surface and generally on the crack, but a new

structure was needed for the crack series. The need apparently arose from the

fact that the crack loads, undisturbed by surface effects, would be represent-

able by terms for which the index m would be unity so the use of terms with

even m would be disadvantageous.* With this understanding, it was decided to

use only terms for which m is odd, and to limit the values of k so that

m + 2 k < 15 (or occasionally m + 2k< 17). With the indices thus limited, the
A A

crack constants $'», and y' . cannot influence any shearing loads on the surfaceni K. fiiy Jc
of the body, and the normal loads possible there have a step across the crack

lip. Thus for the case with A/T = 0, the freeing loads on the surface were

limited to normal loads (shearing loads were forbidden), and along the crack

even normal freeing loads were omitted since they could not match a step func-

tion. To accommodate the lack of surface loads along the crack lip, the normal

boundary conditions there were also omitted, but this loss of analytic condi-

tions was effectively compensated by the antisymmetry of the freeing o acrossz
the crack plane. (The o« from the crack constants also vanished along the lip

considering the constants being used.) Thus a reasonable set of load constants

and boundary conditions was available, but it was to be expected that boundary

* Attempts to use series with both odd and even m's proved very unsatisfactory,
apparently because of ambiguity in fitting due to such series' capacity to
represent functions over the entire span -TT < 0 < TT.
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conditions near the crack lip might be poorly satisfied because of the step be-

havior of some functions along that line. The fine detail already assigned

along the lip promised to mitigate possible ill effects from that limitation.

With this design for the analyses and presuming a uniform shear load

S (-T ) on the crack, calculations were made for the case with A/2C = 0.50 andxy
A/T = 0. In these calculations a factor S was removed from all the stresses and

load constants (as a had been when the load was normal). The computed stress

intensity factors k~ (~T ) and k~(~Taa) were normalized through division by

k - 2S/T/1T, so that the k is analogous to the former k. . Since the usual KTT
S 8 1°° II

and K^TT are KTT = k_/ir and KTTT = k_/!r, the computed results could be read to

be KjT/K and K_TT/K , where K = k /ir, and these factors are shown in Figure 15.

The waviness of K for 6 near ir/2 is plausibly attributable to difficulty of

fitting conditions near the crack tip, but the smallness of KIIT in that range

makes that waviness seem unimportant.

In view of the difficulties that had attended the analysis of normally

loaded semicircular cracks in plates of finite thickness (that is with A/T = 0.5,

0.7, 0.9), it seemed evident that special treatment of the boundary condition

equations would be needed also with the shear-loaded crack. Thus, freeing shear

loads were admitted for both surfaces, but during the fitting of the load con-

stants the front-surface shears were denied any influence on the shear stresses

on the crack. Again the normal stress conditions on the crack lip were omitted,

and area-based weighting was applied to ensure close fitting of surface boundary

conditions at points relatively far from the crack. With these arrangements in

the analytic design, the computation for the shear loaded semicircular cracks

proceeded smoothly for the cases with A/T = 0.5, 0.7, and 0.9. The stress in-

tensity factors K and K ......for these cases are included in Figure 15.

The stress intensity factors KT and K,....,. shown here are plausible

modifications of the factors that would arise around a circular crack in an in-

finite body loaded in uniform unidirectional shear [3]. They also provide

plausible limiting cases to factors found by Smith and Sorenson [11] for sur-

face cracks which are semielliptical but not semicircular.

Under a uniform normal load the only non-zero stress intensity factor

is K , while under a uniform shear load T the only non-zero factors are K

and K^y-r- Thus, under a load corresponding to a remote tension a applied with
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FIGURE 15. STRESS INTENSITY FACTORS ALONG SEMICIRCULAR SURFACE CRACKS

(A/2C = 0.5) UNDER A LATERAL SHEARING LOAD
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obliquity 3, and letting K = 2u Va/ir, the stress intensity factor K /Kret o f j_2
for a semicircular crack becomes simply cos 6 times the quantity represented

in Figure 4, and the factors K__/K _ , K T7K ,. become sin 3 cos 3 times
II ref and III ref

the quantities represented in Figure 15. To put these results into dimensional

form they need only be multiplied also by K ,. Thus, Figures 4 and 15 together

contain the stress intensity factors for obliquely loaded semicircular cracks.
2

It is helpful, of course, to see how the introduction of the factors cos 3 and

sin 3 cos 3 modifies these results, so this is shown for all these semicir-

cular cracks in drawings in Appendix E. After these factors have been applied

so that all these factors are directly comparable, it is reasonable to seek

some single stress intensity factor characterizing the overall tendency for

further crack growth. It is not entirely clear what that single factor should

be, but Sneddon [12] has proposed the factor

V \V -L/1 ..\/W- -L IT «-\ I 1/2Kiv =

In order to provide at least a temporary unified factor, the quantity K V/K _

also has been drawn with the results for the other factors in Appendix E.

Under a uniform normal load the only non-zero crack opening displace-

ment component is COD , but under a uniform shear load T the only non-zeroI xy
crack opening components are CODjj and CODjjj as identified in Figure 14.

Since CODj has already been supplied to within the factor 2P a/y if the crack

has a normal load P, the components CODjj an(j CODjn for the cracks with uni-

form shear load S (~T ) are also recorded in similar fashion in Appendix D.
uv ywMore precisely, the drawings there show v ' = -j-— and w1 = ~-t so with a shear
o3. Dei

load S parallel to the lip of the crack one would have

COD = 2v = 2v' S a/y, COD. = 2w = 2w? S a/y.

Alternatively, if the load comes from remote tension a applied obliquely at

the angle 3, the three components of crack opening displacements are

2
COD = 2u' a a cos 3/y ,

COD__ = 2vf a a sin 3 cos 3/y ,II o
COD = 2w' a a sin 3 cos 3/V ,
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and the local values of u , v , and w' can be read from graphs in Appendix D.

There are, of course, other contributions to the crack face displacements

which may shorten, lift, or warp the faces, but those displacements are

shared alike by both faces.

For semicircular cracks, the vanishing of w' at z = 0, as shown in

Appendix D, is somewhat misleading. The quantity w' actually should have a

step as z passes through zero, but the series for w' varies continuously so it

vanishes. Even approximation of this step height is awkward.

Cases with A/2C =0.25

In contrast to the semicircular cracks, the cracks with A/2C = 0.25

being subjected to a uniform shear load T required no special treatment
"•i 2fexcept (i) to use the constants 3 -, and y' i » (ii) to reverse the symmetriesm,K m,R

from those used with the normal crack load, and (iii) to apply only rotational

equilibrium around the z axis. The same lattices were used as with the normal

load, and the crack series were taken with indices m and k selected as they had

been with the normal load. Thus m was taken to be even, and the limitation

m + 2k < 16 was applied. This produced 45 constants 3' , but only 36 con-
~— * m,K

stantsy' i since y1 i = 0 for all k. One other slight change was that them,K O,K
surface boundary conditions near the tip were here assigned halfway from the

tip to the next lattice point beyond the tip but on the plane of the crack.

Other boundary condition points were used as before, but those on the crack

used the conditions o, = 0, T. = -S cos6, T = -S sin9. Thus only simple

changes were made. The computations proceeded without any special difficulty

and led to load constants that checked well.

The stress intensity factors KJT/K and KTII/K computed for cracks

with A/2C = 0.25 and A/T = 0.0, 0.5, 0.7 and 0.9 under uniform shear load S are

shown in Figure 16. To convert these results to dimensional form they need

only to be multiplied by K = 2S /a/ir. To get the three stress intensity fac-
S

tors K /K if a remote tension o is applied obliquely at angle 3 one may use
X 1T6I O A

Figures 8 and 16, multiplying values in Figure 8 by cos 3 and those in Figure

16 by sin3 cos3. Values of these kinds for the obliquities with 3=0°, 24°,

45° and 60° are given in Appendix E, together with the combined value K /K -.
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FIGURE 16. STRESS INTENSITY FACTORS ALONG PART-CIRCULAR SURFACE
CRACKS (A/2C = 0.25) UNDER LATERAL SHEARING LOAD
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To get crack opening displacements resulting from a uniform shear

load S, one may use values shown in Appendix D for v1 = g and w1 = •„—•, mul-

tiplying them by 2S a/y to get COD and COD . To get the crack opening

displacements due to remote tension o applied obliquely at angle (5, one

may apply the same conversion factors to the y',v', and w1 from Appendix D as

were applied for values for the semicircular cracks.

Cases with A/2C =0.10

For slender cracks with A/2C = 0.10 under uniform shear load T ,

the analyses again proceeded as modified forms of those for same cracks under

a normal load, with changes comparable to those used for A/2C = 0.25. However,

with A/2C = 0.10, the selection of indices for the crack constants g' . andm,k
Y' , included only m's divisible by 3 and k's divisible by 2. Three k's werem, K
used for m = 0, two k's were used for m = 3 and m = 6, and one k was used for

fV I

m = 9 and m s 12. The count of crack constants thus was 9 of the form g ,
m'k

and 6 of the form y' , (there being none of form yn , ).
Illy K. \)y JC

The stress intensity factors KTT/K and K_TT/K computed for A/2C =
II s III s

0.10, with A/T = 0.0, 0.5 and 0.7 under uniform shear load S(̂ r ) are shownxy
in Figure 17. For conversion to dimensional form they require only multiplica-

tion by K = 2S /a/TT. Using K = 2o VaJH, the three stress intensity factorss rer o J

K./K f from remote tension o applied at obliquity g are obtainable from

Figures 12 and 17 through multiplication by cos g (for i = I) or by sing cosB

(for i = II or III). Values of these three factors are shown graphically in

Appendix E for g = 0°, 24°, 45° and 60°, and again KIV/
K
ref is included.

The crack opening displacements COD,.,, and COD,..,... from a uniform

shear load S (-T ) are again obtainable from plots of v1' and w' given inxy
Appendix D, through multiplication of those entries by 2S a/y. Again to get

the crack opening displacements due to remote tension a applied with obliquity

g one may apply the same conversion factors to the u', v1, and w' from Appendix

D as were applied for values for the semicircular cracks.
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FIGURE 17. STRESS INTENSITY FACTORS ALONG SLENDER SURFACE CRACKS
(A/2C = 0.10) UNDER LATERAL SHEARING LOAD
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SURFACE CRACKS IN BARS

In order to investigate how the effects of surface cracks may be

altered by finite width of the plate, several cases were investigated in

which the plate, as shown in Figure 2 is presumed to have sides at the posi-

tions y—±y so that the body is a bar. The program was already equipped to

handle such cases, identifying the front surface (z = Q) as Face 1, the back

surface (z = z ) as Face 4, the surface at y = -y as Face 3, and the surface

at y = y as Face 6. The only new features needed for the analytic design

were lattices for the two new sides plus a strategy for treating boundary

conditions along the edges of the bar.

During the construction of the program FRAC3D, it was conceived that

it might be desirable to avoid sharp declines in surface freeing loads, near

the edges of the bar. To accomplish this, it was seen that pyramidal loads

might have bases extending beyond the edges of the bar so that peak loads

might be placed directly on an edge, provided only that proper continuity was

assured between shear loads acting on the adjoining faces. To arrange for

this continuity, restrictions on the independence of shearing loads along

edges were built into the symmetry apparatus in FRAC3D. Thus the use of

bordered lattices became possible with the last rows of rectangles situated

beyond the edges of the bar.

The specifications for this task had provided an option of analyzing

cracks either with A/2C =0.5 with A/2C = 0.25. Since the latter value had

proved to be much simpler in the previous analyses, it was chosen for use with

the bar. Then, using the width W/2C = 2, the bar analysis was begun by treat-

ing the cases with A/T = 0 and A/T = 0.5. For both these cases, bordered

lattices were designed as shown in Figures B14 and B15 of Appendix B. The

portions of the lattices lying beyond the edges are shown as dashed lines.

Using these lattices, boundary conditions were assigned at all the pyramid

points, including those on the edges. Since the load was to be a uniform

normal load o , the crack series and boundary conditions were assigned as they

had been for the infinitely wide plate having a normally loaded crack with

A/2C = 0.25.

The analyses based on these designs produced plausible solutions
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except for having high freeing loads along the edges and concomitant high

misfits of boundary conditions at the centers of rectangles along the edges.

The somewhat strange effects along the edges were particularly bad for the

case with A/2C =0.5. In searching for a way to avoid these large but rela-

tively Isolated misfits, the same sets of boundary condition equations were

simply edited to remove effects of surface loads with peaks along the edges

and to drop boundary conditions along the edges. The results of this change

were that small misfits arose along each edge but the misfits of non-fitted

points were drastically reduced, while other quantities such as the stress

intensity factors were scarcely altered. Thus it was decided to drop the

bordering, and along the edges to rely simply on fairly detailed subdivision

of the rectangular bases for freeing loads. Lattices selected later illustrate

this policy.

The solutions for Kj/Kĵ  found for the cases with A/2C = 0.25, W/2C= 2,

A/T = 0.0 or 0.5 without use of bordering are shown in Figure 18. Here again

K, = a va/TT where a is the normal load. Also shown in Figure 18 is KT/KTIco O O I I co

obtained for the case with the same A/2C and W/2C but with A/T=0.7, as derived

using the lattice shown in Figure B16 of Appendix B. In order to show how much

change arose from finite width of the bar, results from previous calculations

using an infinite W/2C are shown as dashed lines. It can be seen that the width

effect on K /K is mainly an overall increase which is generally small but is

greatest for A/T = 0.7, especially where the stress intensity is highest.

It was desired further to find how the stress intensity factor should

rise as W/2C decreases, so cases were added with A/2C = 0.25, A/T = 0.7 and

W/2C = 1.5 or 3, to compare with the related previous analyses using W/2C=2 or

». The lattices used for these two additional cases are shown in Figures B17

and B18 of Appendix B. The stress intensity factors K /K obtained for these

two new cases plus the two others sharing the same A/2C and A/T are shown in

Figure 19. Again the main width effect is a general rising of the stress

intensity factor as W/2C decreases. The effects seem very small for W/2C > 3,

and are appreciable but not large even for W/2C down to 1.5. These calculations

show little width effect near the end of the crack, but such might appear if

W/2C were nearer unity. (A small discrepancy in location of boundary condition

points near the crack tip made the spacing of these curves slightly irregular.)

Since the loads for the above cases are normal loads and there is
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symmetry around both the xz and yz-planes the only crack opening displacements

are of the form CODj. Values for these displacements are displayed implicitly

in Appendix D where the variations of y ' = ̂ p- are shown in Figure D5 for the
XT A

cases used for Figure 18 and again for those used for Figure 19. Since here

P = a , the values of CODT can be found as 2u' a a/p.
o l o

A principal reason for choosing the cases represented in Figure 19

was to make comparison with measurements of crack opening displacements that

had been made by Collipriest [13]. He used a 1/4-inch aluminum plate over a

foot long and initially six inches wide. Across the longitudinal center line

of the plate he grew a crack with depth 0.170 in. and length 0.720 in, so that

its defining parameters could be approximated as A/2C = 0.170/0.720 = 0.236 =

0.25 and A/T = 0.170/0.248 = 0.685 » 0.70. The crack was not entirely circ-

ular or elliptical, but by assuming it to be circular with sagitta 0.170 in.

and chord 0.720 in. it is implied that the crack radius was 0.466 in. This

latter estimate is probably low, however, since assuming the crack to be

elliptical would make its radius be 0.762 in. at its root. Thus his dimen-

sions are not perfectly relatable to dimensions assumed for the cases of

Figure 19, but they seem near enough to justify making rough comparisons.

Collipriest subjected his specimen to remote tension a , measured

the widest crack opening displacement COD, and recorded (COD)E/a , where E is
o

Young's modulus so that E = 2y (1+v) . He then several times trimmed the plate

to narrower width and repeated the COD measurements. Assuming v to be 0.3 as

is typical for aluminum, it is possible now to compare his results with predic-

tions based on the COD-, computed at the center of the crack lip for the cases

shown in Figure 19, though there is some uncertainty in the value to use for

the crack radius in the theory. To use the theory to predict what values he

should have found, one may use the relationship

d+v) a
o

taking the u' at the center of the crack lip. The theory may seem to be

applied most consistently by taking a = 0.466 in., but to find whether the

theory and experiments show similar width effects it seems equally permis-

sible to presume a = 0.627 in. so that the two methods will agree for very
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wide plates. Using both these values, comparisons between the theory and

experiment are shown in Table 2, with entries interspersed according to the

values of W/2C. The comparison is also shown graphically in Figure 20.

Employing the values based on a = 0.627in., it can be seen that the

predicted plate-width effects are indeed similar to the measured ones to within

the accuracy that the measured values seem to have had. The discrepancy

between the alternative theoretical values reflects that the theory and experi-

ments are not perfectly matched, but the mismatch seems within that which could

be related simply to the differing shapes of the crack fronts. Thus, on the

whole, the two types of results agree to within any reasonable expectations.
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TABLE 2. THEORETICAL AND EXPERIMENTAL PLATE WIDTH EFFECTS ON COD*

Width
W/2C

oo

8.324

7.671

6.268

4.868

4.222

3.394

3.0

2.558

2.0

1.5

Theoretical

u' a = 0.466 in

0.4218 1.022

—

—

—

—

—

—
0.4252 1.030

—
0.4409 1.068

0.4451 1.079

(COD) E/a

a = 0.627 in

1.375

—

—
'

—

—

—
1.386

—
1.437

1.451

Measured
(COD) E/a

—
1.34

1.38

1.37

1.37

1.38

1.40

—
1.44

—

—

*Dimensions include A = 0.170 in, 2C = 0.720 in., T = 0.248 in.
The crack radius a is doubtful, but the values used are plausible.
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COMMENTS CONCERNING RESULTS AND PROCEDURE

Observations Concerning Computed Results

The analyses which are reported here cover enough cases to show

how effects from part-circular surface cracks vary with the depth-to-length

ratio A/2C, the fractional penetration ratio A/T, the load obliquity angle 8,

and to some extent the fractional span ratio W/2C. In treating this range

of cases, several previously unanalyzed ones have been covered, including the

slender cracks (A/2C £ 0.10), the obliquely loaded cracks (3 > 0), and those

with finite fractional span (W/2C £ 3), though some partially comparable

analyses have been performed for elliptical cracks by other investigators.

Even the analyses for normally loaded semicircular cracks in plates of finite

thickness seem new among analyses by methods other than finite elements. The

variation of the stress intensity factors shown among all these cases should

be helpful to a stress analyst or designer of structural parts in estimating

how variations in crack geometry or loading may alter the danger that a crack

may grow.

The attempt to attain accuracy in the solutions has led to finding

qualitatively new effects in some cases which had been treated previously by

other investigators. In particular, for the normally loaded cracks with

A/2C =0.25 and with A/T = 0.7 or 0.9, the peak stress intensity factors are

here found to occur about midway between the root and tip of the crack instead

of at the root. This result agrees with some measured stress intensity factors

[9] and also with inferences some experimenters have made from crack growth.

The analysis provides an explanation, by showing that there is outward bowing

of the plate in the vicinity of the crack, and the bowing counteracts the load

at the root of a crack which extends near enough to the back face. Thus, the

additional information provided by this newer methodology can be significant.

Another example of a qualitatively new implication seems to appear

in results for semicircular cracks, for which the stress intensity factor is

minimum at the root of the crack except when A/T = 0.9. This suggests that

if the crack is far enough through (probably more than 0.9 of the way) then

in growing the crack may first break through the back, whereas if it were
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not so far through the plate it would first tend to grow laterally. The rela-

tive insensitivity of the stress intensity factor to proximity of the back for

the less penetrating semicircular cracks may suggest also why the stress

intensity factor for the bar seems so little distorted near the end of the

crack: the side of the bar is still too far away for such distortions even

when W/2C =1.5.

A perceptive interpreter may see many more inferences in the reported

stress intensity factors, but there is also another potentially rich source

of inferences in the computed stress patterns. The variations of the indivi-

dual components of stress around the crack front are probable contributors to

the direction of crack growth, so knowledge of those components as provided

here for many cases should help first in correlating data on crack growth and

later in predicting the growth more precisely. If the octahedral shear stress,

as a stress invariant related to strain energy of distortion, is desired for

assistance in crack growth studies, it too can be found from the data sheets

accumulated during the computation of stresses for the cases covered in

Appendix C. Moreover, if further detailed stresses are desired for these

cases or for cases which were analyzed but not used for stress computations,

it should be possible to find more stress patterns by computations beginning

with the load constants which have been saved as computer input for the great

majority of all the cases listed in Table 1.* Much potential help exists here

for investigating the relations between stresses and surface cracks.

The crack opening displacements presented in Appendix D offer >*

another avenue for correlation with experimental work. One such comparison

has been provided in Table 2, but many more should be possible. Thus, by

observing how the normal load factor P and the shear load factor S change

with the obliquity (3, one should be able to make comparisons with measure-

ments of all three components of crack opening displacement as identified in

Figure 14, if those measurements are made under oblique loads. The more

Load constants were retained on magnetic tape for all cases analysed on
computers at Battelle. This includes all but the last two cases of Task I,
the next to last of Task II, and the last two of Task III. The other five
cases were analysed using the CDC computer at Langley Research Center after
FRAC3D and its companion programs had been made operational on that machine
through joint effort by personnel of Battelle and of Lewis Research Center.
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subtle displacements related to plate face bending, crack lengthening and

crack warping also can be computed from load constants that have been retained

(though FRAC3D first needs checking for consistency in dimensional factors

implied for contributions from surface loads versus those from crack loads).

Observations About Design of Analyses

Ability to run the programs LATTICE, FRAC3D and MATSOL successfully

in a computer does not of itself imply the ability to perform analyses of the

kinds that are reported here. Casual reading of the sections of this report

treating normally loaded cracks, obliquely loaded cracks and bars should make

that clear. Study of those sections, however, being coupled with thought

about how stresses can be transmitted throughout a body with a crack, can

provide much useful guidance for the performance of further analyses.

Principles already stated concerning the design of lattices have

included that there should be enough subdivision so that the two-dimensional

linear interpolation can provide adequate representation of the needed freeing

loads. A computer often can be used in making preliminary estimates of those

loads. The lattices should be extensive enough to cover the regions which may

be influenced by the crack load, but if there are both front and back surfaces

then caution should be used in extending the lattices beyond the regions

where the crack loads have significant influence. There is danger if surface

load constants or interactions between them can influence crack stresses but

crack loads cannot influence the surface stresses. The analyses for both the

semicircular and the slender cracks under normal loads illustrate this hazard.

The choice of terms to be used in the crack series is often vital

to the success of an analysis. None of the cracks treated in this report com-

prised more than a semicircle, and a consequence of this was that none of the

analyses used more than half of the terms that could have been used for varia-

tions in the circumferential direction. As the angular length of the crack

shortened, the spacing of the terms in the crack series was widened for the

index related to angular variations (m). Thus for A/2C = 0.5 or 0.25 m was

doubly spaced, for A/2C = 0.10 it was triply spaced, and for A/2C = 0.05 it

was quadruply spaced. Such spacings may not always be absolutely necessary, but

they proved to be quite beneficial.
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The reason for care in the spacing of terms used in the crack series

is probably that the terms must combine enough variations so that they can be

fitted to the functions needed by the analysis but yet do this without the

ambiguity that use of excessive terms would imply. One analysis (that for

A/2C = 0.10 and A/T = 0.0 with normal load) was found to be numerically

unmanageable until many terms were removed from the crack series. Such a

requirement may seem repugnant to analysts who expect simply to add more terms

when more accuracy is required, but it may be seen as being reasonable when

one considers the quantity of arithmetic operations involved and the dangers

of producing an indeterminate solution from the simultaneous equations. In

more colloquial terms, too many cooks can spoil the broth, and here they can

do it by near-indeterminacy plus accumulation of roundoff errors. Of course,

enough terms must remain to fulfill the needs, so the wealth of crack functions

available through the use of the program FRAC3D becomes important in supplying

the breadth of term selection needed in analyzing slender cracks.

Lest it be thought that care in crack term selection is unimportant,

it may be remarked that apparently minor changes in the series structure used

for the case with A/2C =0.1 and A/T =0.7 under normal load made the computed

stress intensity factor at the root of the crack shift from 0.29 to 0.72, and

the variations with 0 also shifted vigorously. Without the use of careful

checking of individual solutions the scattering among them would have produced

intolerable confusion. A consensus solution would not have sufficed.

Another principle already stated is that crack constants should be

used only to fit crack conditions including necessary interactions with the

surfaces, while surface constants should be used only for surface conditions

including necessary interactions with the crack. This principle was embraced

by analyses used here when surface boundary condition points were placed only

at pyramid points except for the boundary condition point near the crack tip.

Before that choice of the points was enforced, it had been found that by shift-

ing the boundary condition points to various positions in the surface rectangles

the stress intensity factor at the root of the crack for one sample case

shifted from 0.79 to 1.36. The appearance of such ambiguity was a strong

reason for the introduction of checking at non-fitted points.

The fitting of boundary conditions near the crack tip remains some-

what problematic. An early study of variations of crack stress functions near
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the tip of a crack with A/2C =0.25 led to placement of boundary conditions

used here for the normally loaded cracks with A/2C = 0.25. That placement

proved to be less desirable for cracks with A/2C = 0.5, however, since its

use produced solutions that checked less satisfactorily near the crack tip than

did those shown in Figure 4 and also had small-amplitude waves along the rest

of the crack front. Moving that boundary condition point onto the crack plane

as already described improved the solutions for the semicircular cracks and

yielded Figure 4. In view of this improvement, the waviness which persists

in the results shown in Figure 15 may be expected to be due to some minor

defect in the design of the analysis which produces only minor changes in

stress intensity factors.

This experience with fitting of conditions near the crack tip, plus

the observation that boundary condition misfits at non-fitted points tend to

be largest near the crack tip, implies that computed stress intensity factors

and stresses tend to be poorest near the crack tip. Considerable refinement

of the latticework has been used there, but more might be used if the results

are to be regarded as being vital. Another more remote possibility is to

produce a modified surface load theory in which triangular base areas could

be used, in order to accommodate better the tendency crack stress variations

have to reach peak values near the tip along lines oblique to the crack plane.

Thus possibilities exist for further work here if it is desired.

Effectiveness of the Checking Process

Without the checking of boundary conditions at non-fitted boundary

points and at points near the outer boundary of the lattices many analyses

given here would have floundered in uncertainty. The only analyses which

automatically gave dependable results were those for cracks with A/2C = 0.25.

For cracks with other depth-to-length ratios the checking process was often

used in order to find how an analysis had failed and what might be tried to

improve it. It should be noted for the great majority of retrials to find

solutions the original system of boundary condition equations was reused

but was trimmed of load constants or boundary conditions in a new way.

While the checking process used here proved to be very useful,
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it must be admitted that it is not absolute in its inferences about accuracy

of the analyses. Small errors in fitting individual boundary conditions are

bound to arise, and there can be uncertainty about what such defects may do

to the stress intensity factors, stresses and displacements. It is helpful,

of course, to gauge the influence of boundary-condition errors by appeal to

Saint-Venant's principle which states that if two alternative systems of

boundary forces on a body are alike in their resultant forces and moments and

differ in detail only over a region of dimension 6, then the stresses produced

by the two systems would agree except within distances of order 6 from the

region where the boundary forces differ. This principle can be quite reassur-

ing, but further examination of the importance of boundary-condition errors

could well be appropriate.

It may be restated that the present methodology lends itself well

to accuracy studies since the only approximations made to the ideal conditions

for analyzing elastic stresses come in the boundary conditions, and those

conditions are applied in a straightforward manner. Analyses which use

internal matching of conditions (as with finite elements), or discontinuous

boundary conditions,or boundary conditions in which both stresses and displace-

ments are approximated could well prove harder to validate conclusively.

Problems regarding the accuracy of three dimensional fracture analysis seem

to be widespread in view of the often encountered desire to validate a given

solution from one investigator by comparing it to one from another, as if a

consensus were the proper criterion for establishing truth in this field, That

situation needs to be remediedrand it is hoped that the present work provides

progress in the right direction.

It is tempting to wonder whether difficulties concerning the balanc-

ing of interactions between two sets of load constants might be discerned in

a straightforward way by mathematical examination of the system of boundary

conditions, and whether such difficulties could be mitigated by some well

defined mathematical procedure. These are problems in the use of boundary

point least-squares solutions which appear to need investigation but which

promise to be difficult, especially unless the two sets of constants are assoc-

iated with well defined basic analyses comparable to the ones being used here.

These are good problems for future research.
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CONCLUSIONS

In brief, the results of the research described here are:

(i) Analyses are provided for enough surface cracks to show

how their effects vary with the depth, to length ratio

A/2C, with the fractional penetration ratio A/T, with

the load obliquity angle 3, and to some extent with the

fractional span ratio W/2C. Several of these analyses

cover cases either previously unresolved or formerly

solved only with significantly less completeness.

(ii) The analyses provide results covering stress intensity

factors, stress patterns and displacement patterns so

that the information can be used in many ways. Progress

was also made in making the information more accessible,

both by inclusion of much detail here, by making prepara-

tions for further calculations which might be desired,

and by making the computer programs operational on NASA

as well as Battelle equipment.

(iii) Many observations have been provided concerning ways to

make the design of the analyses promote the finding of

valid analyses. The discussions of the many cases included

in this report illustrate many useful techniques for

improving the likelihood of success.

(iv) A useful method has been devised and employed to gauge

the accuracy of a particular analysis without recourse to

any external analysis. This capability for self checking

goes far toward meeting a great need of three-dimensional

fracture analyses.
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APPENDIX A

BOUNDARY CONDITION AND CHECK POINTS
SELECTED FOR CRACKS
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CRACKS WITH A/2C = 0.25
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APPENDIX B

SURFACE LATTICES USED IN ANALYSES
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APPENDIX C

STRESS COMPONENTS NEAR SURFACE CRACKS
UNDER NORMAL LOAD
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FIGURE C3. STRESSES WHERE 6 = 90° NEAR CRACK WITH A/2C = 0.50, A/T =0.0
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FIGURE C4. STRESSES WHERE 9=0° NEAR CRACK WITH A/2C = 0.50, A/T =0.5
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FIGURE C6. STRESSES WHERE 9 = 90° NEAR CRACK WITH A/2C = 0.50, A/T =0.5
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FIGURE C7. STRESSES WHERE 6=0° NEAR CRACK WITH A/2C = 0.50, A/T =0.7
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FIGURE C8. STRESSES WHERE 8 = 45° NEAR CRACK WITH A/2C = 0.50, A/T =0.7
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FIGURE C9. STRESSES WHERE 9 = 90° NEAR CRACK WITH A/2C = 0.50, A/T =0.7
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FIGURE CIO. STRESSES WHERE 9=0° NEAR CRACK WITH A/2C = 0.50, A/T = 0.9
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FIGURE C13. STRESSES WHERE 9=0° NEAR CRACK WITH A/2C = 0.25, A/T =0.0
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FIGURE C14. STRESSES WHERE 6 = 30° NEAR CRACK WITH A/2C = 0.25, A/T =0.0
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FIGURE C16. STRESSES WHERE 9=0° NEAR CRACK WITH A/2C = 0.25, A/T =0.5
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FIGURE C17. STRESSES WHERE 6 = 30° NEAR CRACK WITH A/2C = 0.25, A/T =0.5
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FIGURE C19. STRESSES WHERE 6=0° NEAR CRACK WITH A/2C = 0.25, A/T = 0.7
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FIGURE C20. STRESSES WHERE 6 = 30* NEAR CRACK WITH A/2C = 0.25, A/T =0.7
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FIGURE C21. STRESSES WHERE 6 = 6 ± NEAR CRACK WITH A/2C = 0.25, A/T = 0.7
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FIGURE C22. STRESSES WHERE 6=0° NEAR CRACK WITH A/2C = 0.25, A/T = 0.9



C23

0.1

01

-6.1

-0.3

-0.3

-I

0.3-

-o.i

-o.a

VA-

FIGURE C23. STRESSES WHERE 6 = 40° NEAR CRACK WITH A/2C = 0.25, A/T =0.9
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FIGURE C24. STRESSES WHERE 9=9 NEAR CRACK WITH A/2C = 0.25, A/T =0.9
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FIGURE C25. STRESSES WHERE 9=0° NEAR CRACK WITH A/2C = 0.10, A/T =0.0
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FIGURE C26. STRESSES WHERE 9 = 15° NEAR CRACK WITH A/2C = 0.10, A/T = 0.0
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FIGURE C27. STRESSES WHERE 6 = et± NEAR CRACK WITH A/2C = 0.10, A/T = 0.0
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FIGURE C28. STRESSES WHERE 6=0° NEAR CRACK WITH A/2C = 0.10, A/T =0.5
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FIGURE C29. STRESSES WHERE 6 = 15° NEAR CRACK WITH A/2C = 0.10, A/T = 0.5
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FIGURE C30. STRESSES WHERE 6 = 6 NEAR CRACK WITH A/2C = 0.10, A/T = 0.5
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FIGURE C31. STRESSES WHERE 6=0° NEAR CRACK WITH A/2C = 0.10, A/T =0.7
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FIGURE C32. STRESSES WHERE 8 = 15° NEAR CRACK WITH A/2C = 0.10, A/T =0.7
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FIGURE C33. STRESSES WHERE 9 = 9 ± NEAR 6EACK WITH A/2C = 0.10, A/T =0.7
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FIGURE C34. STRESSES WHERE 9=0° NEAR CRACK WITH A/2C = 0.05, A/T =0.0
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FIGURE C35. STRESSES WHERE 9=6° NEAR CRACK WITH A/2C = 0.05, A/T =0.0
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FIGURE C36. STRESSES WHERE 9 = 9^ NEAR CRACK WITH A/2C = 0.05, A/T = 0.0



APPENDIX D

CRACK OPENING DISPLACEMENTS FOR CRACKS UNDER
NORMAL AND OBLIQUE LOADS
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FIGURE Dl. CRACK OPENING DISPLACEMENTS FOR SURFACE CRACKS
WITH A/2C =0.50 UNDER NORMAL OR LATERAL SHEAR

LOADS
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FIGURE D2. CRACK OPENING DISPLACEMENTS FOR SURFACE CRACKS
WITH A/2C = 0.25 UNDER NORMAL OR LATERAL SHEAR

LOADS
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FIGURE D3. CRACK OPENING DISPLACEMENTS FOR SURFACE CRACKS
WITH A/2C = 0.10 UNDER NORMAL OR LATERAL SHEAR
LOAD
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FIGURE D4. CRACK OPENING DISPLACEMENTS FOR A SURFACE CRACK WITH
A/2C = 0.10, A/T =0.0 UNDER NORMAL LOAD

a. In bars with W/2C =2.0
and various A/T
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b. For cracks with W/2C =2.0
in bars of various widths

FIGURE D5. CRACK OPENING DISPLACEMENTS IN BARS WITH PART-CIRCULAR
SURFACE CRACKS (A/2C = 0.25) UNDER NORMAL LOAD



APPENDIX E

STRESS INTENSITY FACTORS FOR SURFACE CRACKg
UNDER OBLIQUE LOADS
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FIGURE El. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.50,
A/T =0.0 UNDER OBLIQUE LOADS
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FIGURE E2. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.50,
A/T =0.5 UNDER OBLIQUE LOADS
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FIGURE E3. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.50,
A/T =0.7 UNDER OBLIQUE LOADS
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FIGURE E5. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.25,
A/T =0.0 UNDER OBLIQUE LOADS
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FIGURE C6. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.25,
A/T =0.5 UNDER OBLIQUE LOADS
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FIGURE E7. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C
A/T =0.7 UNDER OBLIQUE LOADS

=0.25
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FIGURE E8. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.25,
A/T = 0.9 UNDER OBLIQUE LOADS
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FIGURE E9. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.10,
A/T =0.0 UNDER OBLIQUE LOADS
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FIGURE E10. STRESS INTENSITY FACTORS ALONG A CRACK WITH A/2C = 0.10,
A/T =0.5 UNDER OBLIQUE LOADS
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APPENDIX F

REMARKS ON FORMULAS FOR STRESSES AROUND AN EMBEDDED CRACK

If the faces of a deeply embedded circular crack are subjected to

arbitrarily distributed normal and tangential loads, acting oppositely on the

two faces, then the stresses and displacements in the surrounding body can all

be expressed in terms of known functions of position multiplied by constants

determined by the loads [1,2,3]. Using the cylindrical coordinates (r,8,a)

based on the crack circle, it having radius a, and letting p = r/a and £ = ~i /a,

those functions of position are functions of (p,£) multiplied by sin m6 or

cos m0 (where m = 0,1,2,...)- The non-trigonometric factors depend on m and on

a second index k (where k = 0,1,2,...) and are simple combinations of integrals

of the form

but with the combination of integrals varying according to the stress or dis-

placement component involved. The load constants to be used do not change

from one stress or displacement component to another, but they do vary with

the indices m and k and also with the type of load applied to the crack

face. Thus for cases having symmetry around 9=0, normal loads on the crack

involve constants here denoted as a* , while shearing loads involve constants
m,k

31 , and y1 , . For cases with antisymmetry around 6 = 0, the corresponding
m, K m, K * A
loads constants are denoted as a' , $' and y1 u- Since all load systems

m,k m,k 'm,k
can be resolved into sums of parts symmetric or antisymmetric around 9 = 0 ,

these load constants cover all possible loadings.

More explicitly, letting y be the shear modulus*, the stress and

displacement components can be represented as

* Note that y = E/[2(l + v)], where E is Young's modulus and v is Poisson's

ratio.
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"1 m»k ffljU,! ra,k m,k,2 m,k m,k,3J )

rrif k m,k t 1 mfk oi|kf 2 rofk m,k f3J J

BO* CO if Q_ j Q- / 9\. I ft
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»

.r6Here the functions Fu , , to F , , depend only on p and ?. As examples, one

may cite those related to cu , which are



F3

m,k,l

F»m,k,2

(P'C)

2 I m , m + 2 k + 2

.m,k., (P,0

2-v ra,m
for k

Complete lists of the functions F . 1 to Fm,K.,J.

2 m,m+2k for k >. 1

re
are given in References 1,2,

3, and 14. Since they involve so many integrals 1^ (p,£) it can be seen why

the highly efficient means that have been designed to evaluate those integrals

are important. Those means are described in a forthcoming paper (J. C. Bell,

"Evaluation of Integrals Involving Products of Bessel Functions Having Appli-

cation to Crack Stress Analyses").

These formulas were derived for deeply embedded cracks, but they

are useful also for surface cracks when they are coordinated with formulas

for stresses from appropriate freeing loads applied on the cracked surface,

or on other surfaces if the body is finite. Even brief examination of these

formulas shows important features of some analyses for surface crack. Thus

for semicircular cracks under normal loads symmetric around 6 = 0, so that

the only non-vanishing load constants are the a* , and the face with the crack
ir m'

is at 6 = ±—, the loads to be freed on that face are

,66 mir
y E E a1 ,F (p,C) cos -=- (= a in face system)

^l^niyKniyiC)!. z z

t T,6y E E a1 , F . . (p,
m k m>^ m,k,l VH-

. ±mir ..
sin —sr- (=

m J
 am,k sin (= T yz

in face

i face

If only even values of m are used (as is proper for the semicircular crack) ,

the crack loads do not induce any shear stress as the face, since sin =-x— =

This situation is convenient if the body is a half space, but it interferes

with reciprocity between crack and surface loads in analyses for plates of

finite thickness.

0.
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Knowledge of the coefficients a1 , , 3' , » , Y1 , provides
m,k m,k m,k

input for evaluation of the stress intensity factors of all three modes.

In particular, if the stress intensity factor of the first mode is defined as

lira

then (as was shown in [1] and [2])

CO

where

cos sin

tn=0

k=0 k=0

The stress intensity factors of the second and third modes are defined to be

lira

k3
lim
r-+a"*

(r,0,0)

and for them it was found that

m=0

CO

where

cos me]

C

Stress intensity factors defined with an extra factor ̂ /n , as is often included,

are denoted here as K., , K,., and K,,, respectively instead of k., , k« and k_ .




