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Reference


Steam Power Plants (continued) Number



Hub, 1957 193


Kauffman and Kyllonen, 1977 55


Pacault, 1973 210


Schwarzenbach, 1967 197


United Engineers, 1977 92


United Engineers, 1977 93


United Engineers, 1977 211


United Engineers, 1977 212


Vrable and Quade, 1977 95



Surveys, References, and Overviews



Anderson, et al, 1975 ill


Bechtel, 1977 7


Bechtel, 1977 8


Bramlette, et al, 1976 106


Bundy and Hanneman, 1973 149


Cantor, 1977 18


Coastal Chemical Co., n.d. 23


Coastal Chemical Co., 1977 24


Collins, n.d. 169


Dow Chemical, 1977 107


Du Pont, 1,976 30


Eichelberger and Gillman, 1977 226


Engineering Foundation, 1977 167


Exxon, 1977 34


FEA, 1975 114


Fischer, et al, 1975 115


Fox, Fuller, and Silverman, 1977 37


Givoni, 1977 151


Glenn, et al, 1976 118


Greenstreet, et al, 1977 200


Guthrie, 1974 216


Haywood, 1974 135


Haywood, 1974 136


Kalhammer and Schneider, 1976 161


Keenan, 1951 145


NATO, 1976 126


NATO, 1976 127


O'Callaghan, Jones, and Probert, 1976 67


Perry and Chilton, 1973 215


Pollock, 1977 70


Rubero, 1964 82


Salyer, et al, 1977 83


Taube, 1978 208
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Reference


Thermocline Number



Blackshear, et al, 1977 10


Bligh, 1977 11


Chubb, 1976 102


Chubb, Nemecek, and Simmons, 1977 103


GE, 1977 38


GEZAEP, 1-977 1-34


Hallet and Gervais, 1977 62


Hardy, et al, 1977 48


Honeywell, 1976 176


Honeywell, 1977 51


McDonnell Douglas 1977 177


Nemecek, Simmons, and Chubb, 1976 104


Pfannkuch and Edens, 1977 68


Pollock, 1977 70


Riaz, 1977 76


Riaz, 1977 77


Riaz, 1977 78


Riaz, 1977 79


Riaz, Blackshear, and Pfannkuch, 1976 80



Utility Operations
 


Economics



Bechtel, 1976 6


Beckmann, Fritz, and Gilli, 1974 141


Gilli and Beckmann, 1974 40


Glenn, et al, 1976 118


United Engineers, 1977 92


United Engineers, 1977 93


United Engineers, 1977 211


United Engineers, 1977 212



Load Management



Barnstaple, Kirby, and Wilson, 1976 2


Barnstaple, Kirby, and Wilson, 1977 3


Bechtel, 1976 6


Beckmann, Fritz, and Gilli, 1974 141


Beckmann and Gilli, 1976 5


Boeing, 1976 12


Boeing, 1976 13


Bundy and Hanneman, 1973 149


ECEC, 1976 31


FEA, 1975 114


Fox, Fuller, and Silverman, 1977 37


Gilli, 1971 192


Gilli and Beckmann, n.d. 39


Gilli and Beckmann, 1975 41


Gordian Associates, 1975 120


Hallet and Gervais, 1977 62


Honeywell, 1977 51


Martin Marietta, et al, 1977 61


Schwarzenbach, 1967 197


Vrable and Quade, 1977 95
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APPENDIX B



TAXONOMY - PROPONENTS AND SOURCES
 


FOR



CONCEPTUAL DESIGN OF THERMAL ENERGY STORAGE


FOR



NEAR-TERM ELECTRIC UTILITY APPLICATIONS
 


B-I 



Rev. 2-1-78



SOURCES OF HEAT



Proponents References



1. High Temperature Water



11. Feedwater Heating Loop (any point) 1,3-6,8,21,25 108,121,156,128


12. Boiler Inlet


13. Steam Drum in Boiler



2. Steam



21. Extraction Steam (existing FWHpoints) 25,1 6


22. 	 Extraction Steam (special or enlarged
 


points)


23. Crossover (between IP and LP turbines)


24. Cold Reheat (output of HP turbines)
 

25. 	 Hot Reheat (output of reheat, input to



IP turbine)


26. Live Steam (input to HP turbine) 31,48,22-24 36,712,85,105,132,62,61,51


27. Backpressure Turbine Output


28. Turbine Shaft Power and Steam Compressor Marguerre, Babcock(French)



3. Gas



31. Helium (as in HTGR or PBR) 	 26,49,47 95,149,154,12,13


32.


33. 	 Hot Air (as in GT intercool or compressor 28 iO,11,A8,



output) 68,78-80


34. Stack Gases (as in GT regenerator)


35. Fluidized Bed (furnace combustor)


36. 	 Heat Pipes (coupling furnace air, helium,



or stack gas to TES system)
 

37. Other 	 42 22,102-104



4. Unspecified 	 41 19
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STORAGE MEDIA



SENSIBLE HEAT



References Proponents



Liquids



1. High Temperature Water



11. HTW to 1700 C 108,121,128 5,6


12. HTW to 2300C 108,121,156,128 5,86


13. HTW to 350°C 26,42 1,2,4



2. Organic Compounds



21. Oils 38 22


211. Exxon 6,16,17,62,66 21-23,25


212 Dow Chemical


213. Mobil



22. Silicones


221. Dow Corning



29. Other



3: Inorganic Compounds



31. Salts (Molten)


311. Nitrates


3111. HITEC 95,108,112 26,29


312. Hydroxides


319. Other



32. Sulfur (Molten) 71,82,85,105 31



33. Sulfuric Acid


34. Metals (Molten)


39. Other
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Solids



4. Metals



41. Steel/Iron 
 
49. Other



5. Minerals



51. Silica


52. Granite


53. Iron Ore


531. Feolite


59. Other



6. Ceramics



61. Alumina


62. Magnesia



PHASE CHANGE MATERIALS



7. Organic Compounds



71. Phthalimide



79. Other 
 

8. Inorganic Compounds


81. Nitrates 
 
82. Carbonates 
 
83. Fluorides 
 
84. Hydroxides 
 
85. Chlorides 
 
86. Metal Eutectics



89. Other 
 

References Proponents



91 30



19 41 

132,36 48 
29 44 
149,154 49 
25 43 

22,36,102-104,132 48,42 

19 41 
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CONTAINMENT



ABOVEGROUND



High Pressure Tanks 

11 Welded Steel 
12 Prestressed Concrete RV 
13 PCIV 

2 Low Pressure Tanks (Sensible Heat) 

21 
Single Tank/Thermocline 

without packed bed 
22 with packed bed 
23 Drained beds 

Hot and Cold Tanks 
24 Two tanks without packed bed 
25 More than two w/o packed bed 

3 Low Pressure Tanks (PCM) 

31 PCM in shell/HTF in tubes 
32 
33 

PCM encapsulated into packed bed 
Immiscible Fluid 

UNDERGROUND



4 Steel Tanks 

41 Stress transfer by air 
42 Stress transfer by concrete 

5 	 Unlined Natural Confinement



51 	 Aquifers 
Excavated Caverns 

52 without packed bed


53 with packed bed 
 

6 	 Other ? 

Not Specified



Proponents 
 

1 

1 
 

29 
 
22,24,32 
 
27 
 

21,22,23 
 
25,26 
 

42,43,48 
 
42 
 
49,51 
 

3,8 
 
2 
 

4,5,6 
 
8 
 

28 

References



4,5,39,40



4,5,41-45



106,112


12,13,54,62


38



16,17,61,62,66


6,37,95



25,29,36,132 
22 102-104


146,154



28,74,75


2,3



26,47,108,121,128


156



10,11,48,68,


76-80
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UTILIZATION



The use of the storage system for utility load management requires


a number of "conversions" in state and location, the final one of which


is the conversion to electricity. Some plurality of the following con­

versions are used. These are structured as steps toward Utili-zation.­


U-l. CONVERSION TO ELECTRICITY FROM STEAM


1.1 Increased Steam Flow Through the Main Turbine-Generator


1.1] by decreased extraction for feedwater heating


1.12 by steam addition at the crossover (LP turbine inlet)


1.13 by steam addition at higher temperature and pressure points



1.2 Steam Flow Through Peaking Turbines


1.21 single peaking turbine


1.22 multiple peaking turbines



1.3 Other



U-2. CONVERSION TO ELECTRICITY NOT FROM STEAM



U-3. CONVERSION TO STEAM


3.1 From HTW


3.11 by internal steam generation (instorage container)


3.12 by external evaporators



3.2 From Other Sensible Heat Fluids


3.21 in indirect heat exchangers


3.22 in direct heat exchangers



3.3 From Solids; Direct Heat Exchange



3.4 From Gases or Vapors; Indirect Heat Exchange



3.5 From Latent Heat Fluids


3.51 Liquid/Solid PCM


3.52 Gas/Liquid PCM



3,6 Superheaters



U-4. NON-STEAM HEAT EXCHANGERS
 

4.1 Sensible/Sensible Heat


4.11 Liquid/Liquid


4.12 Liquid/Solid


4.13 Liquid/Gas



4.2 PCM Materials
 

4.21 Sensible'PCM


4.22 PCM/PCM



U-5. THERMAL TRANSPORT



5.1 Pipes



5.2 Heat Pipes



5.3 Other



U-6. CONTROLS AND MISCELLANEOUS
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CONCEPT DEFINITION #1



PROPONENT(S)



Prof. Paul V. Gilli - Graz University of Technology, Austria


George Beckmann - Waagner Biro



References



4-5, 39-45, 117, 141



CHARACTERIZATION 

Medium 12,13 HTW 212 to 250°C 
Containment 11 Welded steel pressure vessels plus 

cold condensable storage -50'C 
Source of Heat 21 Extraction steam at feedwarer 

extraction points 
Conversion 321,322 Multiple turbines operating at 

different input pressures 

DESCRIPTION



This concept is a baseline configuration, not now the favored con­

cept of the proponents but one of the earliest in their listed refer­

ences. It features high temperature water as the storage medium, con­

tainment in welded steel pressure vessels, source energy from steam


extraction points, and multiple peaking turbines on a common shaft,


with distinct pressure ranges.



7 Fire 42 from Reference 45 summarizes the system concept. Steam


extracted for feedwater heating at four normal extraction points is


'par'ly diverted to a set of steam accumulators. The three lowest


steam temperatures are supplied sequentially to each accumulator in


the set to increase the temperature and pressure of the water therein


in steps minimizing availability loss. The fourth steam source is


supplied to a higher pressure accumulator for superheat. Complex


valving is needed to supply each steam source to each accumulator in


the proper sequence. Controls and instrumentation to monitor this can


also be complex.



Prof. Gilli sugqests this concept is suitable for welded steel


pressure vessels. The sequencing of accumulators during charging and


discharging implies a large number of small tanks. Reference 40 shows


a "working model" for this concept with 64 tanks of 580 m3 each.
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F19. 42 	 Flow sheet suitable for the use of welded steel storage vessels, employ­
ing varying pressure storage, sequential discharge, separate peak boe 
turbine and multi-pressure condenser 
1 Reactor (PWR) 8 Superheat accumulator 

2 Steam Generator S Superheater 
3 Main (base load) turbine 10 Discharge steam lines 
4 11an condenser 11 Peak load turbine 
5 reed heater train 12 Peak load condenser6 Charge line 13 Cooling tower


7 Main accumulators 14 Condensate storage



Source: Reference 45. 
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During discharge of each accumulator, steam is generated internally

by reducing the pressure at the outlet. Three peaking turbines (11 a,


b, and c) on a common shaft are designed for inlet pressures of 1 MPa,


0.5 and 0 18 MPa (145, 73., and 26 ps-ia) and condenser pressure of


-0.012 MPa (.-1.7 psia). As steam is generated in an accumulator the


pressure continues to decrease. By throttling, the discharge steam is


reduced to the next lowest turbine inlet pressure; each turbine oper­

ates at constant inlet pressure. As in charging, the accumulators are


sequenced by valves to the next lowest pressure turbine when the steam


pressure falls to or below the design turbine inlet pressure.



As shown, separate double-flow turbines for high, medium, and low


pressure steam are provided. They are designed to be simple, rugged,


and to accommodate the rapid thermal expansion during frequent starts


and stops. No provision for steam bleeds for feedwater heaters or for


moisture removal is made. To minimize exhaust wetness, which affects


turbine efficiency and life, superheater accumulators (point 8 in the


figure) are provided.



The superheater accumulators as shown are of the displacement type.

They are charged with extraction steam at -,2 MPa. During discharge,

high temperature water (HTW) from the top passes through two heat


exchangers in the turbine inlet lines to the two highest pressure tur­

bines. The HTW at reduced temperature is reinjected at the bottom of


the accumulator, forming a rising thermocline. Pressure and tempera­

ture of the output are more nearly constant than in the variable


pressure type.



As the water volume in the accumulators (7)is greater when charged


than when discharged, tanks for condensate storage (14) during the


discharged period must be provided, with roughly one-fourth the capac­

ity of the accumulators but at roughly ambient pressure.



PERFORM4ANCE



State Points



Charge line 1: 0.5 MPa, 150'C V


2: 1.0 MPa, 180'C V


3: 2.0 MPa, 212% V 

Accumulators: 2.0 -- 0.2 MPa 
212 - 120% 

Superheater charge line: 4.8 MPa, 260°C


discharge : 4.8 MPa, 260C


reinjection: 4.8 MPa, 175°C



Turbine Inlets a: 1.07 MPa, 2A5°C


b; 0.49 MPa, 1790C


c; 0.14 MPa, 1190C



Condenser: 0.012MPa, 50'C



Storage Efficiency



0.5-0.75 (Reference 45, p 81)
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CONCEPT DEFINITION - VARIANT 1.1



PROPONENTS



Prof. Paul V. Gilli - Graz University of Technology, Austria


George Beckmann - Waagner Biro



References



4-5, 39-45, 117, 141



CHARACTERIZATION 

Medium 11,12,13 HTW 120 to 2600C 
Containment 11 Welded steel pressure vessels plus 

cold condensable storage -50'C 
Source of Heat 11 Extraction of feedwater before HP 

pump for main storage; feedwater 
at boiler inlet and cold reheat; 
steam is used for superheat 
storage 

Conversion 321,322 Multiple turbines operating at 
different input pressures 

DESCRIPTION



Much of the configuration for this concept, as shown on Figure 45


of Reference 45, is similar to Concept Definition 1. The storage pres­

sure vessels instead of being variable pressure accumulators, with


internal steam generation, are displacement accumulators with external
 

steam generation. A displacement accumulator is always filled with


liquid. During charging, HTW is injected at the top and cold water is


withdrawn from the bottom. The boundary between them, a thermocline,


moves downward but stays reasonably sharp.



During discharge, HTW is withdrawn from the top and passed sequen­

tially through three flash evaporators used as external steam genera­

tors. In each of these, the HTW is throttled to a reduced pressure at


which a fraction of the water is transformed to saturated steam, and


the remainder is water at saturation temperatures. This water goes to


the throttle for the lower pressure steam generators. From the lowest


pressure flash evaporator the water at a reduced temperature is


returned to the bottom of the displacement accumulators where a rising


thermocline is formed. The total mass of water stored in the accumula­

tors differs somewhat between the fully charged and discharged condi­

tions because of the yejA thermal expansion of the water and the con­

tainment. Condensate storage (14) provides a reservoir for this dif­

ferential, which is much smaller than needed in Concept Definition 1.
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13 3 

Fig. 45 	 Flow sheet suitable for the use of welded steel storage vessel, 
employing aisDlacement-type storage, external steam generation 
and separate peak-load turbine


1 Reactor (HTR) 9 Superheater


2 Steam Generator 10 Discharge steam lines


3 Main (base load) turbine 11 Peak load turnine


4 Pain condenser 12 Peak load condenser


5 Feed heater train 13 Helium blower


6 Charge line 14 Condensate storage


7 Main accumulators 15 Jet pump


8 Superheat accumulator 16 Start-up valve



17 Steam generator



Source: Reference 45.



C-6





Steam leaves the three steam generators at three pressures. Each


is at a constant pressure and needs no further throttling. The top


two are superheated, partly by heat exchange from a separate HTW flow


passed sequentially through the steam generators and partly by heat


exchangers fed by an expansion accumulator C8). An expansion accumu­

lator maintains an almost constant temperature and pressure during dis­

charge by withdrawal of HTW from the bottom and increasing the size of


the steam cushion by evaporation of a small fraction of the water.


The superheater is charged by injecting both HTW at the final feed­

water temperature, and enough cold reheat steam to fill the accumula­

tor at the desired temperature and pressure.



The fiqure shown is for a gas-cooled HTR, The cold reheat steam


is at an adequate pressure and temperature to charge the superheat


accumulator to 260 0C. The same storage system configuration could be


used for an LWR but the source of steam for this accumulator would


have to be the main steam supply, rather than cold or hot reheat.



Proponents note as advantages over Concept Definition 1 that this


concept does not require the sequential valving of groups of three


different charge lines and to three different discharge lines. A


recirculation pump is usually needed for displacement accumulators.


In this concept the need is eliminated by using the pressure energy of


the HTI4 from the superheaters in a jet pump. This also contributes to


the needed condensate storage at 14. The cost and compl'exity of the


valving in Concept Definition 1 must be traded off with the added cost


of the evaporators.
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CONCEPT DEFINITION - VARIANT 1.2



PROPONENT(S)



Prof. Paul V. Gilli - Graz University of Technology, Austria


George Beckmann - Waagner Biro


F. Schilling - Siempelkamp Giesserei KG, Krefeld, FRG



References



4-5, 39-45, 117, 141, 148



CHARACTERIZATION 

Medium 13, 12 HTW at 250-260°C 
Containment 13 PCIV main, steel cold storage 

Source of Heat 12&26or24 FWH + steam refills accumulator 
Utilizatio-n 1.22, 3.12 Three cascaded evaporators 

DESCRIPTION



Concept Definitions 1.0 and 1.] included three basic modes of using


a steam accumulator (HTW storage):



Variable Pressure - Internal steam generation - C 1.0
 

Displacement - Both HTW and colder water/thermocline - C 1.1



o Expansion - Constant pressure steam cushion - C 1.1


superheat



All were considered to be welded steel tanks. This concept describes


two variants usirg onlly expansion type accumulators. It also intro­

duces the mode of containment preferred by the proponents, the pre­

stressed cast iron vessel (PCIV). Figures 46 and 47 of Reference 45


are combined.



The concept of the PCIV is that it can be made in:much larger sizes


for high pressures than welded steel tanks, with lower cost, lower
 

losses, easier transport and assembly, and improved safety. It could


be applied in all three accumulator modes, and may be considered as sub­

variants of Concepts 1.0 and I.1. However, the variable pressure mode


as used in Concept 1.1 with the requirement for sequential valving


during charge and discharginq, requires a number of vessels preferably


much greater than three, so loses the cost advantage of large size PCIV


unless very large storage volumes are required. The displacement mode,
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with a vertical temperature distribution including a sharp thermocline


poses the problem for thick walled PCIV of thermal stresses near the


thermocline. The proponents inmost recent concepts and flow diagrams


include the expansion mode accumulator.



In both Figures 46 and 47, the mode of charging is assumed to be


that used inthe superheat accumulator in Concept 1.I. Inan expdn­

sion accumulator the steam cushion may expand from say 5 percent to


95-100 percent of the storaqe volume. Replacement is principallv with


HTW at nearly the desired temperature. with a supplement of steam


injection at a hiqher pressure than desired, which by condensation


restores the desired temperature, pressure and steam cushion size. As


indicated inConcept 1.1, for the superheat accumulator the highest


temperature feedwater plus cold reheat steam for a fossil plant and


hot reheat steam for the nuclear plant meet the requirements. For the


main accumulators either the same feedwater temperature or one before


the last boiler feed pump may be used. Cold reheat steam is probably


adequate for both the fossil and nuclear applications.
 


Figures 46 and 47 both show three stages of flash evaporators to


feed three parallel turbine sections at different pressure levels.


They differ in the means of superheating. The first has a separate


superheat accumulator. HTW from it passes sequentially through two


heat exchangers to superheat the HP and MP steam flows. The HTW then


joins the water flow to the LP evaporator. In Figure 47 the super­

heaters inthe HP and MP steam flows are fed by HTW from the main


accumulator (separately, not sequentially). Another flow option is


illustrated in Figure 47 by the design of the HP turbine to supply


steam output at the pressure level of the MP turbine instead of


expanding all the way to condenser pressure. This changes the power


and cost distribution among the three turbine casings.



One property of expansion accumulators is a large swing inthe


size of the steam cushion. A separate cold storage tank of welded


steel (4)must be provided with about half the volume as the main


accumulator but at pressure near atmospheric (eg, 120C). No circula­

tion pumps are required inthe storage loops of this concept.


Required sizes and pressures of vessels required versus simplicity of


operation and the needed auxiliaries such as valving, controls, and


pumps are cost tradeoffs to be considered.
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CONCEPT DEFINITION - VARIANT 1.3



PROPONENT(S)



Prof. Paul V. Gilli - Graz University of Technology, Austria


George Beckmann - Waagner Biro


F.E. Schilling - Siempelkamp Giesserei KG, Krefeld FRG



References



4-5, 39-45, 117, 141, 148, 175, 188, 189, 192, 209



CHARACTERI7ATION 

Medium 13 HTW at 250'C 
Containment 11 PCIV 
Source of Heat 26,12 Live steam and hot feedwater 
Utilization 1.21,3.12 Single evaporator feeds oeaking 

turbine and hot feedwater 

DESCRIPTION



The capabilities of the PCIV are claimed to be higher in pressure


(and temperature) than can be considered for welded steel tanks of


large sizes. To take full advantage of this, the proponents describe


(Figures 49-51 in Reference 45) several closely related concepts


applicable to fossil (coal) plants with main steam supply of 540°C


and 17 to 24 MPa. Expansion accumulator(s) operate at a charged


pressure between the main steam and the cold reheat (8 MPa) so that a


one-stage flash evaoorator (9)can supply additional steam flow to


the reheater, IP'and LP turbines during peaking. The main IP and LP


turbine can be sized to provide the added capacity or a separate IP


and LP turbine and condenser can be provided at 10 and 11.



The expansion accumulator (2)is charged by a mixture of feed­

water and throttled main steam supply. During discharge the water


and steam pressure and temperature can be maintained steady by small


continuing injection of live steam at the top port. The water output


of the flash evaporator is reinjected into the feedwater loop by a HP


feed pump. Conservation of total feedwater volume requires that feed­
water tank (7) be sized to accept the change in liquid volume in the 
accumulator between fully charged and discharged condition. 
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I Heat source ? Feed water tank 11 Peak load tur­
2 Expansion-type PCIV 
3 Main turbine, HP 

(cold storage)
8 Feed water heater 

bine, LP 
12 Peak load tur­

4 
5 
6 

IP
" LP 

Main condenser 

9 Flash evaporator
10IPeak load turbine,Hp 

bine, condenser 

I0 


I2 

Fig. 49 Expansion-type feed water and steam storaqe wi Ih sepdrate peak load turline 
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CONCLPT DEFINITION #2



PROPONENT(S) 

R&D Associates - J. Dooley 
S. Ridgway



References



28, 74, 75, 81



CHARACTERIZATION 

Medium 13 HTW from 290 to 360% 
Containment 42 Steel tank in underground cavity. 

Source of Heat 26 
Stress transfer to rock by concrete. 

Prime Steam 
Utilization 1.2 Steam used in peaking turbine(s) 

DESCRIPTION



This concept features high temperature water as the storage medium,


contained in underground cavities. Source of energy is'from prime


steam. Utilization of energy is by generating steam in cavity and feed­

ing through peaking turbines.
 


Figure 1 from Reference 81 shows a schematic diagram of the concept.


The underground cavity has a thin (1/2-inch) welded-steel liner, with


special high-temperature, high-strength concrete filling the space
 

(about 1 foot thick) between-the liner and cavity wall to transfer


stresses to the rock as well as to provide thermal insulation. The


cavity is operated as a variable-pressure steam accumulator (see Con­

cept Definition #1), charged with prime steam up to temperatures as


high as 3600C. On discharge, steam is generated in the cavity and fed


directly to separate peaking turbines. As the cavity discharges the


steam temperature ani pressure decrease, resulting in a decreasing


output from the peaking unit. In order to keep thermal stressing of


the cavity liner within "conservative" values the temperature swing is


limited to 400C, which results in limiting the discharge to between 15


and 40 percent of the cavity volume, depending on the initial tempera­

ture. The specific energy storage (defined as actual work out of


turbine/cavity volume) is between 18 and 21 kWh/m 3 , with a claimed


turnaround efficiency of 85 percent. Direct costs for storage cavity


are estimated at 160 to 177 $/m3 in the sizes recommended.



Reference 75 mentions that proponents have also considered operating
 

the cavity as d constant-pressure displacement accumulator, but consid­

ered it less desirable. No further details are given.
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Figure 1. Thermal Energy Storage System Schematic.
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CONCEPT DEFINITION #3



PROPONENT(S)



Ontario Hydro - A.G. Barnstaple 
J.J. Kirby 
J.E. Wilson



References



2, 3
 


CHARACTERIZAlION 

Medium 
Containment 

Source of Heat 
Utilization 

12 
41 

11 
1.11 

HTW up to 1800C (3500F) 
Steel tanks in underground cavern. 

Stress transfer to rock by 
compressed air. 

Heated feedwater 
Hot feedwater reduces extraction 

for feedwater heating, primarily 
at crossover from HP to LP turbine. 

DESCRIPTION 

This concept features sLorage of heated feedwater in underground


tanks. The energy is utilized by using the stored water to partially


supply the feedwater requirements, thereby reducing steam extracted


for feedwater heating.



Figure 5.2.1 from Reference 3 summarizes the system concept and 
shows the heat balance for normal operation (iestorage inactive). 
The storage system is a constant-pressure displacedient accumulator 
(see Concept Definition-Variant 1.1) consisting of three insulated 
steel tanks in a cavern about 150m underground. The air in the 
cavern is pressurized and cooled, allowing a thin-wall tank designed 
only to contain tile static heat of the stored water plus a small allow­
ance for imbalances. An open-surface pressure-balancing reservoir 
keeps the stored water in contact with cavern pressure. 

The accumulator is charged by pumping heated feedwater (&180°C)


into the top and colder water ( 950 C) out the bottom and into the


final three stages of the feedwater heater chain. On discharge stored
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hot water is pumped from the top of the tank to the output of feedwater


heater chain and cold water from the feedwater loop pumped into the


bottom. 

Proponents claim the storage (turnaround) efficiency "is likely to


be above 80 percent," based on an estimated cavern leakage rate of 2


percent per day. The basic cycle examined is that of a CANDU-PHW


1200 M4We unit, with modifications to accommodate feedwater storage.


For this unit the peak output is limited to about 6.5 percent above


normal operation. The specific energy storage is about 14 kWh/m 3,


with storage-related direct costs estimated at 210 - 280 $/&3 in 1976


dollars, or 15 to 20 S/kWh.



A minor variant of this concept stores a supply of hot water con­

densed from prime steam, for use in reheating as well as feedwater


supply. Since this would not supply all the necessary feedwater,


additional feedwater storage is required. This scheme provides a peak


output about 13 percent above normal operation, but is not favored due


to the higher cost of storing water at temoeratures suitable for


reheat - with only a slight increase in output.



Proponents also note that other cycles may be able to achieve up to


25 percent peaking capability, with suitable redesign of the turbine.


However, the low coolant temperature of the CANDU pressure tube


design and the high temperature risein the reactor, when combined with


pinch-point limitations, dictate a relatively low feedwater temperature


and limit the peaking capability.
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CONCEPT DEFINITION - VARIANT 3.1



PROPONENT(S)



Ontario Hydro - A.G. Barnstaple


J.J. Kirby


J.E. Wilson



References



2, 3
 


CHARACTERIZATION 

Medium 
Containment 

Source of Heat 

13 
41 

26 

HTW at about 265°C (510'F) 
Steel tanks in underground cavern. 

Stress transfer to rock by 
compressed air. 

Prime steam from main boiler 
Utilization 1.22 Flashed steam powering separate 

peaking turbines 

DESCRIPTION



This concept features storage of high temperature water in under­

ground tanks. Stored energy is obtained by condensing prime steam and


is utilized by flashing to steam which powers multiple peaking turbines


on a common shaft.



Figure 6.2-1 from Reference 3 summarizes the system concept. The


storage system is a constant-pressure displacement accumulator (similar


to that described in Concept Definition #3) consisting of six to eight


insulated steel tanks in a cavern about 2000m underground. The


air in the cavern is pressurized (to about 9 MPa) and cooled, per­

mitting a thin-wall tank designed only to contain the static head of


the stored water, plus a small allowance for imbalances. An open­

surface pressure balancing reservoir keeps the stored water in contact


with cavern pressure.



The accumulator is charged by pumping cold water from the bottoms


of the tanks to a spray condenser fed from the prime steam supply


(5.4 MPa, saturated). Heated"water ( s265°C) from the spray condenser is


pumped into the top of the accumulator and excess cold water stored in


the main boiler feedwater storage tank. During discharge the stored


hot water is pumped from the top of the tanks and passed sequentially


through three external flash evaporators, each supplying steam to
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separate peaking turbines operating over different pressure ranges.


Cold water from the low pressure evaporator and the condenser is


pumped into the bottom qf the tanks after deaeration, and excess water


is stored in a separate surge/storage tank,



Proponents claim storage (turnaround) efficiencies between 75 and
 

80 percent, depending on the ratio of charging to discharging times,


based on a cavern air leakage of 2 percent. The specific energy stor­

age (actual work out of turbine/storage volume) ranges from 32 to


34 kWh/m3 for the various charge/discharge ratios analyzed. Esti­

mated direct cost of storage-related equipment ranges from 400 to 460



3
$/m in 1976 dollars, resulting in a specific storage cost of 11.90


to 14.30 $/kWh.
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CONCEPT DEFINITION #4



PROPONENT(S)



University of Houston - R.E. Collins


Subsurface, Inc. - K.E. Davis



References



26, 47



CHARACTERIZATION 

Medium 
Containment 
Source of Heat 
Utilization 

13 
51 

HTW up to 340'C (650'F) 
Saline aquifers s5000 ft deep 
Not defined 
Not definod 

DESCRIPTION



This concept features HTW as the storage medium contained in deep

saline aquifers. it is essentially a storage concept for use in solar


electric power systems, but no specific system description is given.


However, the operating temperatures proposed would make it suitable


for generating steam to run turbines, as in Concept Definition -

Variant 3.1.



The storage system is charged by pumping hot water (340°C) into an


aquifer, approximately 1500m deep in order to provide sufficient


hydrostatic pressure to prevent flashing of the water. Heat is stored


in some-of the water as well as in the permeable rock formation of the


aquifer. On discharge the water is pumped out of the aquifer. For


large storage systems the thermal losses are estimated to be less than


1 percent per day. The proponents recognize that mineral scale aeposi­

tion in the aquifer (and in any heat exchangers exposed to the HTW)


is a serious problem with water at these elevated temperatures. For


that reason this concept is not now favored.
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CONCEPT DEFINITION #5



PROPONENT(S)


General Electric-TEMPO - C.F. Meyer



References



108, 121



CHARACTERIZATION 

Medium 
Containment 
Source of Heat 
Utilization 

12 
51 

HTW up to s200 0C (390'F) 
Confined aquifers >150m deep 
Feedwater heating 
Reduced extraction for FWH 

DESCRIPTION



This concept features HTW as the storage medium contained in con­

fined aquifers. It is essentially a method providing long-term storage


of large amounts of heat to facilitate the use of total energy systems.


However, the operating temperature range proposed makes it suitable for


use as a Feedwater storage system as inConcept Definition #3.



Figure 9 from Reference 121 illustrates the basic module of this


storage concept. Inorder to supply the HTW to be stored and to dis­

pose of the water withdrawn from storage, two wells - a doublet - are


used. They are spaced farther apart than the radius for the maximum


volume of storage. Both tap the same aquifer which is confined top


and bottom by impervious layers. To charge the system water is cycled


from the right well to the left well. A heat exchanger keeps the


groundwater separate from the high quality boiler feedwater. When


heat isneeded from storage, water iswitndrawn from the left well and


injected into the right well, which will be warm compared to native


groundwater.



In order to prevent the water from flashing to steam, the hydro­
static head must ,be higher than the saturation pressure, requiring 
moderately deep aquifers. For example, HTW at 2000C (saturation pres­
sure 1.7 MPa), wi'll require aquifers at least 150m deep. Although 
mineral scale deposition is expected to be a problem, at the moderate 
temperaturns involved proponents conclude that it should be within cur­
rent technological capabilities. Direct capital costs for a module 
are power related, rather than total energy related, because the stor­
age volume of the aquifer is essentially unlimited. A module capable 
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of delivering 200C water at a rate of about 160 m3/hr (700 gal/min) is


estimated to cost $350,000 to $740,000 in 1974 dollars. If used as a


substitute for the feedwater storage in Concept Definition #3,this


flow rate would produce about 2.5 MW additional electrical output.


Assuming an 8-hour discharge at constant rate results in a cost of


about 18 to 37 S/kWh in 1974 dollars. A well field of 20-30 well 
pairs would be used for production of 50-75 MW electric.



The concept would be more competitive for seasonal than for daily


load leveling. For the weekly cycle, economic analysis isrequired.



A related concept of application isto store HTW during the night


hours i6i all seasons and all day long in the non-peak seasons, thereby


reducing the turbine generator electric output to 80 percent of peak


capacity during off-peak hours. The stored HTW would supply a district


heating system serving space-heating loads in the winter season.
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CONCEPT DEFINITION #6



PROPONENT(S) 

Ian Glendenning - Central Electricity Generating Board, UK 
James O'Hara - R.M. Parsons, Inc. 
Philip Chow 
W.L. Greenstreet 

- ToY. Lin International 
- ORNL 

References



200, 152, 153, 222



CHARACTERIZATION



See Concept Definitions 1 and 3.



DESCRIPTION



Prestressed Concrete Pressure Vessels (PCPV) are an aboveground


containment means alternative to the PCIV or steel vessels in Concept 1.


There is over 35 years of experience with prestressed concrete struc­

tures such as buildings and bridges, in which prestressed tendons


assure that the concrete is always in compression for expected loadings.


As pressure vessels, secondary containment for nuclear reactors has


literature references back to 196d. T.Y. Lin International informs us


that Bechtel alone has engineered and/or constructed 59 PCPVs in the


U.S. and abroad, and that the total number of vessels (at about 0.4


MPa, 60 psi) completed and under construction in the United States is


210. They report that one for 4 MPa C600 psi) has been completed for


a reactor.



Both ORNL and the team of R.M. Parsons, Inc. and T.Y. Lin Inter­

national have studied conceptual designs for coal gasifier process


containment. James O'Hara of R.M. Parsons provided data separating


out the direct costs for the PCPV alone (without ancillary process


equipment) for several sizes, pressures, and temperatures studied (7


and 14 MPa, ambient to 1650 0C). Cost comparisons between PCPV and


multiple steel modules had been made in each case; the steel vessels


cost 2.5 to 5 times as much per m3.



Glendenning of CEGB has studied underground compressed air storage,


with storing the thermal energy of compression in packed rock beds in


an aboveground pressyre vessel as a system option. Both PCPV in large


sizes (28,000 i3. 10 ft3) and steel pressure vessels were considered;


again.
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The basic concept of PCPV construction is the field construction


of a reinforced and prestressed thick concrete wall around a thin steel
 

container for thermal storage or other process use, Immediately sur­

rounding the steel container is a moderately thick layer (0.2 - 0.5 m)


of high-temperature high-strength concrete, a material costing about


five times as much as conventional concrete. This material can with­

stand high temperatures and thermal cycling duty such as rocket test


stands, jet engine pads, etc. The conventional concrete should not be


exposed to high temperatures (100 - 250'C limits as mentione&in vari­

ous sources) so a cooling system of built-in metal fins and water carry­

ing tubes may be needed at the interface between high temperature and


conventional concrete.



The conventional concrete is restricted in cracking by conventional


reinforcing bars and placed in permanent compression by inclusion of a


multiplicity of vertical and perimetrical tendons. While external


cable wrapping is proposed by some (ORNL, Reference 200), more recent


technology incorporates the cables at various intermediate radii in


the concrete, and uses inverted U tendons to apply prestressing both


to the cylindrical containment and the hemispherical end caps. As the


concrete is poured in layers of several feet per week conduits are


incorporated into which the tendons can be threaded,



C-25 



2-1-78



CONCEPT DEFINITION #8



PROPONENT(S)



A.B. Atomenergi - P.H. Margen



References



60, 156



CHARACTERIZATION



Medium 12 HTW up to 220'C


Containment 41 Steel tanks in underground cavern.



Stress transfer to rock by com­

pressed air.



Source of Heat 11 Heated feedwater


Utilization 1.11 Heated feedwater reduces extract* i 

for feedwater heating



DESCRIPTION



This concept features storage of heated feedwater in steel tanl.­

located in a pressurized underground cavern. The stored energy is


utilized by supplying heated feedwater, thereby eliminating the ,need


for extraction steam to the high pressure feedwater heaters.



Figure 1 from Reference 60 summarizes the system concept. The


storage system is a constant-pressure displacement accumulator consist­

ing of two insulated steel tanks in a cavern about 60m underground.


The air in the cavern is pressurized and cooled, permitting use of a


thin-wall ( 2.5 cm) tank designed only to contain the static head of


the stored water plus an allowance for imbalances. An open-surface


pressure-balancing reservoir keeps the stored water in contact with


cavern pressure.
 


The accumulator is charged by pumping cold water out the bottom of


the tanks, through the three high-pressure feedwater heaters (thereby


increasing extraction steam flow to these heaters), and into the top


of the tank. On discharge the feedwater flow to the high-pressure


heaters is shunted to the bottom of the tanks and hot water from the


top is supplied to the boiler, thus eliminating extraction steam to


the high-pressure heaters. Two methods are suggested to provide for


the volume change of the water as the accumulator is charged and dis­

charged. One method utilizes a small steam cushion at the top of the


tanks, fed with extraction steam to maintain a constant pressure. For
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the alternative method the accumulator is maintained full of water and


the expansion volume provided by an expansion tank on the surface.



For the cycle described the proponent estimates a peak turbine out­

put about 25 percent above normal (ie no storage), vith suitable


redesign of the turbines and-condenser. Low-pressure turbine exhaust


area would be increased about 38 percent above conventional designs,


or a separate low-pressure turbine provided, to handle the increased


steam flow during peaking. The high-pressure feedwater heaters and


the associated steam bleed points must be designed for larger flows


during the charge cycle.



Proponent estimates the specific energy storage for this concept at


35 kWh/rn3 and the direct capital cost of storage-related equipment at 
52 $/m3 in 1971 dollars. This results in about 1.50 S/kWh. 
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CONCEPT DEFINITION #21



PROPONENT



Exxon - R.P. Cahn, E.W. Nicholson
 


References



16, 17, 66



CHARACTERIZATION 

Medium 
Containment 

Source of Heat 

Utilization 

211 
23 

21,26 

1.11 

Oil (Caloria HT43), 38-274°C 
Two atmospheric pressure tanks, 

aboveground, without packed bed 
Extraction steam from FWH points and 

prime steam 
For feedwater heating 

DESCRIPTION 

This concept describes a method of retaining and using the excess


heat generated during periods of low power demand when operating a


nuclearreactoror fossil fuel furnace and associated boiler at steady­
state conditions. The excess heat is stored as sensible heat in low


vapor pressure (LVP) organic material at atmospheric pressure, and is


used during peak demand periods for boiler feedwater and interstage


steam reheating. The LVP material is stored in a cold oil storage


tank at approxunately 38°C (1000F) when the TES system is in a dis­

charged state, and is heated to approximately 2740C (5250F) by passage


through heat exchangers which are heated by a portion of extraction


steam at various levels of expansion as well as a portion of the pri­

mary high pressure steam. The heated fluid then flows to a hot oil


storage tank for retention until needed.



Since steam turbines can be flexibly operated at partial load by


varying either the amount of steam fed or the fraction of steam


extracted at various points, low load conditions are met by extracting


partially expanded steam and diverting some primary steam to heating


the oil. High load conditions are met by curtN ling the diversion of


primary steam and the extraction of expanded steam with a consequent


increase in turbine performance, and during this period feedwater and


interstage steam reheating are accomplished by heat exchange with the


hot oil.



It is calculated that by storing about 25-35 percent of the heat



output of the furnace or nuclear reactor, about 15-20 percent of the
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plant's power output can be shifted from low load to high load periods,


Certain heavy hydrocarbon oils are usable at temperatures below 343°C


(650'F) if kept isolated from the atmosphere to prevent oxidation and,


since they have satisfactorily low vapor pressure at the maximum temper­

ature, may be conveniently stored in atmospheric pressure tankage.



The system diagram given in Reference 16 indicates that the major


items of equipment required in addition to those of a normal steam


plant are the hot and cold oil storage tanks and two heat exchanger


trains, one for heating the oil during off-peak periods and a separate


one for heating boiler feedwater and interstage steam during on-peak
 

periods.



In Reference 17, the proponents point out that there are many


alternate arrangements embodying this concept which involve different


ways of interconnecting the steam and TES systems, different turbine


arrangements including use of a peaking turbine or two half-load tur­

bines, and the concept of using the heat for other heat uses in the


steam cycle such as intermediate pressure steam production for turbine


drive of auxiliaries.



PERFORMANCE



References 17 and 66 cite the following results of a nuclear power


plant design study involving this storage concept.



Type of Power Plant Nuclear P14R



Primary steam, HlPa/ 0C (psia/°F) 6.9/285 (1000/545)


BFW temperature, 'C (0F) 260 (500)


Oil temp., hot/cold, 'C (0F) 271/93 (520/200)



Base case capacity 	 1043 Me


Capacity with storage (see note) 1066


Minimum output while charging 713


Maximum output while discharging 1325



Energy charged to storage, 10 hrs 3533 MWh


Energy delivered from storage,
 


10 hrs 2594


Thermal storage efficiency 73.4%



NOTE: 	 The increased capacity of the modified plant results


from the fact that the larger turbine and condenser


required for peak operation allows a lower exhaust


pressure and consequently more efficient operation.
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CONCEPT DEFINITION - VARIANT #21.1



PROPONENT



Exxon - R'.P. Cahn and E.W. Nicholson



References



66



DESCRIPTION



Two variants of the basic concept are briefly discussed in Refer­

ence 66; they are storage of hot water coupled with oil storage and use


of two turbines.



Water below its normal boiling point, contained in atmospheric


pressure tankage, can be used for thermal storage up to about 99°C


(210'F). While hot and cold water tanks, pumps, etc would be required,


the net effect is more efficient use of the oil storage medium by


avoiding the low temperature range where the oil is most viscous and


has its lowest specific heat.



Another modification involves storing a nominal amount of boiler


feedwater in a high pressure drum at BFW final temperature. This


would allow rapid load following and simplified control of the nuclear


unit.



Regavding the turbines, it is noted that the difference between


the maximum and minimum extraction rates imposes a significant design


problem.on a single turbine. A two-turbine system may be preferable,


with one designed as a peaking unit optimized either for input steam


from various takeoffs of the main turbine or for conditions produced


by using the stored hot oil for generating steam rather than just BFW


heating.
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CONCEPT DEFINITION #22



PROPONENT 

McDonnell-Douglas Astronautics Co. - R. Hallett, G. Coleman 

References



62



CHARACTERIZATION 

Medium 51,52,211 Fixed bed of 1-inch granite gravel 
and #6 silica sand in Caloria 
HT43 heat transfer fluid 

Containment 22 Aboveground, atmospheric pressure, 
steel tank operated with a 
thermocline 

Source of Heat 26 Prime steam generated in concen­
trating solar receiver 

Utilization 3.21 Steam generated in indirect heat 
exchanger admitted to intermedi­
ate pressure turbine 

DESCRIPTION



This concept, along with numbers 23 and 24, was developed as the
 

thermal storage subsystem of a concentrating solar collector power


plant. The function of TES in that context is to smooth out short


term variations in insolation (eg, intermittent cloud cover) and to


extend plant operation into the hours of darkness. The concept is


described here because of the relevance of its TES subsystem to the


load following task.



The full system is shown in the accompanying schematic. During


periods of adequate insolation, superheated steam from the receiver


is supplied in parallel to the turbine/generator (TUR) and, through a


desuperheater (DSH), to the thermal storage heater (TSH). The turbine


flow comprises a conventional steam cycle with the spent steam


exhausting to the condenser and intermediate steam being extracted to


feedwater heaters (FWn) and deaerator-heaters (DAH). The thermal


storage flow, after transferring its heat to the heat transfer oil


pumped from the thermal storage unit, passes through a detemperator


(DT) and a flash tank '(FT) before rejoining the boiler feedwater


return.
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When the system is operated on stored energy, hot oil is pumped


from storage to the steam generator (SGR) where it vaporizes partially


reheated feedwater drawn from the deaerator-heater. The intermediate 
pressure steam produced is admitted to the turbine at an appropriate 
point for its conditions. 

The system is designed to operate flexibly in a number of modes as


dictated by supply (insolation) and load conditions: simultaneous


charging and direct power generation, power generation using solar
 

heated steam, power generation using storage heated steam, and simul­

taneous charging and power generation using storage heated steam to


smooth out fluctuations due to intermittent cloud cover.



The thermal storaoe units consist of a number of identical cylin­

drical tanks, axis vertical, installed aboveground, containing


granite rock and silica sand (inapproximately a 2:1 volume ratio)


with an 0.25 bed void fraction tilled with Caloria HT43 heat transfer 
oil. During charging, the heated oil at 316°C enters through a mani­
fold at the top of the tank and generates a tniermocline as it moves 
downward heating the rock and sand. Gold oil atr23 20 C is withdrawn 
from th~e bottom manifold and pumped to the thermal storage heater. 
During discharge, the process is reversed; hot ojI ds pumped from the 
top manifold to the steam generator and cold oil is returned to the


bottom of the tank. The heat transfer fluid circuit is isolated from


the atmosphere, and the tank ullage is kept filled-with nitrogen at a


small positive pressure. The heat transfer oil is continuously fil­

tered in the main transfer line, and its condition is maintained by


periodic removal of a portion for purification by distillation and


makeup of losses to polymerization.
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For the specific application described in the reference, four


tanks are employed, permitting the extraction of 1857 MWht, after 20


hours hold time at a maximum rate of 285 MWt. The tanks are each


27.6m i.d. and 18.3m high, with the packed bed standing to a height


of 17.1m and the free oil surface at 3160C at a height of 17.7m.


The tank is fabricated of structural steel, field welded construction,


with plate thickness ranging from 44.5mm at the bottom to 6.35mm at


the top. The conical roof and sites are covered with a 204mm blanket


of fiberglass insulation and a corrugated aluminum weather cover.


Each tank contains 20,270 Mg of solids and 1,878 Mg of oil.



The thermal storage steam generator is a 3-stage unit comprising a


feedwater heater, boiler, and superheater. Feedwater at 121% and


2.76 MPa is heated to 230'C for transfer to the boiler where it is
 

converted to saturated steam at the same temperature. Further heating


produces steam conditions of 299°C and 2.72 MPa at the superheat out­

put for admission to the turbine.
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CONCEPT DEFINITION #23



PROPONENT(S)



l;artin-Marietta Corp. - Floyd Blake


Georgia Institute of Technology - S.H. Bomar



References



61 

CHARACTERIZATION 

Medium 211,311 Oil (Caloria HT43), 238-295°C and 
molten salt (HITEC), 271-482°C in 

Containment 23,25 
separate stages 

Low pressure tanks without packed 
beds, two-tank system for salt, 
multiple for oil 

Source of Heat 26 Prime steam generated in concen­
trating solar receiver 

Utilization 3.21 Steam generated in indirect heat 
exchanger admitted to intermedi­
ate pressure turbine 

DESCRIPTION



lhe background discussion relating to Concept Definition 22


applies equally here. This concept differs, however, in two important


regards: a two-stage thermal storage system of molten salts and oil


is used (rather than a single-stage, oil system), and the oil is


transferred between hot and cold tanks (rather than a packeQ bed tank


with a thermocline). Since the mode of operation of this system is


essentially like that previously described, the balance of this dis­

cussion is limited to the characteristics and operation of the storage


subsystem.



A schematic diagram of the thermal storage subsystem is shown in 
the figure. Note that both the charginq and heat recovery line; con­
sist of three separate heat exchangers: a desuperheater, condenser, 
and subcooler in the charging line; a preheater, boiler, and super­
heater in recovery line. The high temperature storage medim (molten 
salt) serves the desuperheater and superheater; the lower temperature 
storage medium (oil), the other exchangers. In charging, the super­
heated steam generated in the receiver raises the temperature of the 
heat transfer salt from 2710C, as drawn from the cold salt tank, to 
482°C for storage in the hot tank. The steam then enters the con­
denser where it is condensed by heat exchange with the colder oil. 
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The oil leaving the condenser at 295'C is pumped to a hot oil storage


tank, and the water leaving the condenser is subcooled to 243% for


return to the steam cycle feedwater system.



For steam generation in the discharge cycle, feedwater at 216%


and 3.2 MPa is drawn from the steam cycle, preheated, and converted to


saturated steam at 235°C in the boiler by heat exchange with the hot


oil. The steam is then superheated to 422% and 3.0 MPa by heat


exchange with the molten salt and passed to the turbine.



The specific design described in the reference for a 150 MWe solar


plant employs seven spherical, insulated oil storage tanks 23.2m in


diameter and two spherical, insulated salt storage tanks 15.8m in


diameter. Only six oil tanks are required to contain the volume of


oil required by the system; the seventh, empty, tank facilitates the


transfer by receiving heated (or cooled) oil and avoiding creation of


a thermocline as a result of returning,this oil to a tank at a differ­

ent temperature. The oil tanks are constructed of mild steel, and the


spherical shape is chosen both to accommodate temperature and pressure


stresses and to minimize heat loss from the tank. The salt system


employs two spherical tanks, each large enough to contain the entire


salt charge. The cold salt tank is of mild steel, and the hot tank of


stainless steel for salt containment above 454°C.
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CONCEPT DEFINITION - VARIANT #23.1



PROPONENT(S)



Martin-Marietta Corp. - Floyd Blake


Georgia Institute of Technology - S.H. Bomar



References



61



CHARACTERIZATION 

Medium 311 Eutectic heat transfer salt (IIITEC, 
Partherm 290), 238°C - 4820C 

Containment 25 Three low pressure tanks without 
packed bed 

Source of Heat 26 Concentrating solar receiver as 
superheated steam generator 

Utilization 3.21 Steam generation in indirect heat 
exchanger 

DESCRIPTION



Where Concept 23 involves a two-stage thermal storage system with


oil as the first stage medium and molten salt as the second, this


variant uses molten salt in both stages. Two configurations are


possible: independent salt loops for the two stages, and dependent


loops in which the "cold" tank of the high temperature stage functions
 

also as the hot tank of the low temperature stage. An optimization


study iuvolving the two configurations and the salt storage tempera­

tures indicates that the dependent system is preferable since it


requires three tanks rather than four with the salt temperatures set


at 238°C, 294°C, and 4820C. As in Concept 23, the temperature swing


between the two lower values is associated with water preheating and


evaporation on discharge and condensing and subcooling on charge,


while that between the two upper values is associated with superheating
 

on discharge and desuperheating on charge.
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CONCEPT DEFINITION #24



PROPONENT(S)



Honeywell, Inc.



References



51



CHARACTERIZATION 

Medium 211 and 52,311 Oil (Caloria HT43) and rock in 
first stage, 249°C -303'C; 
molten salt (HITEC) in second 
stage, 299C- 4540C 

Containment 21,23 Low pressure, packed bed tank 
with thermocline in first 
stage; two tanks (hot and 
cold) without packed bed in 
second stage 

Source of Heat 26 Prime steam from concentrating 
solar receiver 

Utilization 3.21 Steam generation Tn indirect 
heat exchangers 

DESCRIPTION



Like Concepts 22 and 23, this heat storage subsystem is part of a


concentrating, solar-powered electric plant in which the turbine


receives steam from the receiver subsystem and/or the thermal storage 
subsystem and supplies those subsystems with feedwater. This concept


combines the oil-filled, packed rock bed, single tank with thermocline
 

featured in Concept 22 with the use of molten salts for the


superheating and desuperheating stages as described in Concept 23.


The system schematic displays the main equipment units.



The HIrEC salt is cycled between two cylindrical, stainless steel


tanks with dished heads mounted with their axes vertical in an insu­

lated, concrete-walled, underground vault. For a 100 MWe plant, the


salt tanks are sized for 130 MWht storage with a temperature swing of 
299% to 4540C. [his results in 12.2m diameter by 9.8m height tank 
designs. The oil and rock filled main storage requires tyo cylindri­
cal, vertical axis, aboveground tanks of 34.8m diameter and 14.6m 
height capable of storing 831 MWht with a 2490C to 303°C temperature 
swing. The thermal storage system is charged by prime steam at 5100C 
and 10.10 MPa. On discharge, it generates steam at 3910C and 3.62 MPa


at a maximum rate of 285.5 MWt for admission to the 70 MWe turbine


generator. Feedwater is returned to the steam generator at 190.5°C.
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CONCEPT DEFINITION #25



PROPONENT(S)



Bechtel Corp.- William Stevens



References



6 

CHARACTERIZATION 

Medium 
Containment 

Source of Heat 

211 
25 

23,26 

Oil (Caloria HT43), 38C- 260°C 
Multiple, atmospheric pressure 

tanks without packed bed 
Prime steam from high pressure and 
crossover lines 

Utilization 1.11 Feedwater heating 

DESCRIPTION



The concept described here was selected as the preferred retrofit


thermal energy storage (RTES) system for existing coal-fired or


nuclear utility plants in this 1976 study. The study also concluded,


however, that the fundamental idea of RTES does not warrant further


investigation due to its added equipment requirement, high capital


cost, excessive downtime for installation, and the relatively small


fuel savings expected. Nevertheless, the concept is included for


completeness and because of its similarity to Concept 21.



The present scheme uses the sensible heat of hot oil for feedwater


heating, thereby replacing the energy that would otherwise be removed


by extraction steam; a 16-17 percent increase in on-peak output is


anticipated. It is noted, however, that the low pressure stages of


standard design turbines are incapable of passing the roughly 50 per­

cent increase in turbine exhaust flow that results from not extracting


steam for feedwater heating. Consequently, a separate peaking turbine­

generator is required in this retrofit application.



The schematic shows the system components as envisioned for a


fossil-fueled plant and the flows during on-peak operation. Note that


steam for the peaking turbine is diverted from the cold reheat line


(CRH) and the crossover point and that the feedwater reheat flow is


through the thermal storage heat exchangers. During off-peakperiods,


a portion of the main steam supply (MS) and of the low pressure supply


at the crossover is diverted to charge the thermal storage system 
while the balance is used in the main turbine operated normally with


extraction steam feedwater heating; the peaking unit is idle.
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Both this concept and number 21 use the stored heat of a hot


hydrocarbon oil for feedwater reheating but they differ in the follow­

ing particulars.



1. To avoid tapping multiple extraction steam locations in a


retrofit installation, this concept diverts steam from only


two points: the main steam line and the crossover.



2. 	 A single train of heat exchangers is used in this concept for


off-peak oil heating and on-peak feedwater heating, rather


than the separate trains of Concept 21.



3. With the three oil storage tank arrangements used here (one


for hot oil, one for cold, and one for either), the total


tankage volume need be only 1.5X that of the oil rather than


2X as in the two-tank arrangement of Concept 21.



4. 	 Finally, since this is a retrofit concept, a peaking unit is


specified rather than the ab initio design of a main turbine
 

capable of no-extraction operation.
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CONCEPT DEFINITION #26



PROPONENT(S)



General Atomic Co.


Oak Ridge National Laboratory



References



95,53; 37,110



CHARACTERIZATION 

Medium 3111 Molten salts (HITEC), 288 0C-5430 C 
Containment 25 Multiple low pressure tanks without 

Source of Heat 31 
packed bed 

Intermediate helium loop of htgh 

Utilization 3.4 
temperature gas-cooled reactor 

Generate prime steam for peaking 
turbine 

DESCRIPTION



This concept provides a means by which a high-temperature gas­

cooled reactor operating at steady state can provide electrical power


to a varying load by calling on thernfal energy stored as the sensible


heat of molten salt. The associated figure from Reference 95 illus­

trates the concept. Heat generated in the reactor core is transferred


from the core-cooling primary helium loop to the intermediate helium


loop which interfaces with the balance of the system. The intermedi­

ate loop flow supplies two heat exchangers in parallel. The first, a


helium heated steam generator, powers a conventional steam cycle, base


load plant. The second, a helium/molten salt heat exchanger, is used


to charge the thermal storage system as the salt is transferred from


the cold to the hot tank. To satisfy peak power demands, the hot salt


is pumped through a steam generator to the cold storage tank, and the


steam generated is used to drive a peaking plant turbine-generator.



The base load plant steam generator develops steam conditions com­

parable to those of modern fossil fueled plants: 5100C and 16.64 MPa


at the high pressure turbine throttle and 538°C and 3.79 MPa in the


hot reheat line to the intermediate pressure turbine. Feedwater is


returned to the steam generator at 187°C and 20.44 MPa.



For the peaking plant cycle, the heat transfer salt at 5430C is


cooled to 2880C as prime steam is generated at 4830C and 13.93 MPa
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and hot reheat steam 511'C and 3.86 MPa. Feedwater at 188°C and


15.79 MPa returns to the steam generator.



The salt storage tanks are free-stand-ng conical~roofed, cylindrical


vessels of conventional design. The cold tank is of carbon steel and


the hot tank of stainless steel. Tank wall plates are tapered in


thickness from bottom to top to match the reducing stress. Tanks are


insulated on the exterior to reduce surface temperature to 660C. In


the application described, associated with a 2000 MWt reactor, four


hot salt tanks and four cold salt tanks, each 36.6m i.d. and 17.4m


hiqh, are required. The ullage space in the system is filled with


nitrogen at slightly above atmospheric pressure.
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CONCEPT DEFINITION #27



PROPONENT(S)



General Electric Co.-Space Division



References



134, 38



CHARACTERIZATION 

Medium 5,21 Fixed rock bed (type unspecified) 
plus a minimum quantity of oil as 
a heat transfer fluid 

Containment 23 Multiple, low pressure tanks with 
packed bed; establish thermocline 

Source of Heat Unspecified, other than solar energy 
system 

Utilization Unspecified 

DESCRIPTION



The essence of this concept is its use of gravity-fed trickle flow


of oil as a heat transfer fluid through a rock bed as the heat storage


medium to both charge and discharge the system. lhis form of sensible


heat storage was proposed for use with various solar energy systems in


which it could be adapted to particular temperature ranges by the


appropriate choice of oil.



Hea transfer accomplished by a thin film of oil covering the rock


is expected to be more effective than the usual convective mechanism


occurring in a dual-medium, oil-filled rockbed. The higher heat


transfer coefficient of the oil film also results in more rapid


response of the storage medium, thereby maintaining a sharp thermo­

cline as the oil temperature varies through the charge/discharge cycle.



The rockbed is contained in unpressurized, nitrogen-blanketed 
tankage of either of two designs. The first design consists of one 
small tank and two or more (as necessary for sizing) large tanks; the 
second, of one or more large tanks compartmentalized by insulated 
separators. Appropriate valve and pump arrangements permit charging/ 
discharging the separate tanks or compartments in series or in parallel.
The purpose of these configurations is to enable full high temperature 
response from a subvolume when the total system is only partially
charged, since the charge and discharge flows are in the same direc­
tion. In either design, the rockbed rests on a support plate over the 
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oil sump and is topped by a perforated oil distribution plate; no


complex manifolding is needed. 

The small oil inventory, about 10 percent of the void volume plus


that necessary to fill heat exchangers and piping, permits use of a 
more expensive oil without incurring a severe economic penalty. For


applications to about 316°C, the more expensive Therminol-66 would be


preferred to cheaper hydrocarbon oils because of its better stability


and greater heat capacity.
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CONCEPT DEFINITION #28



PROPONENT(S)



M. Riaz, et al - University of Minnesota
 


References



76-80, 10, 11, 48, 68, 70



CHARACTERIZATION 

Medium 51,52 Rock bed (silica, granite, etc), 
250°C - 5000C 

Containment 53 Packed bed in unpressurized 
excavations 

Source of Heat 33 Hot air from unspecified source as 
heat transfer fluid 

Utilization 3.4,other Steam generation by indirect heat 
exchange with hot air 

DESCRIPTION



The referenced concept is not so much a particular system as a 
continuing investigation of the properties of large scale, underground 
or near-surface prepared rock beds as high temperature (250'C - 500'C) 
heat accumulators capable of storing energy for up to six months. 
Energy derived from off-peak excess thermal energy from power plants, 
may be stored in large-volume packed beds of native earth or rock


materials, and recovered at rates appropriate for seasonal load


leveling.



The basic accumulator configuration is an array of trenches filled


with pebbles, crushed rock, or naturally formed porous rock and sur­

rounded by undisturbed earth. Various arrangements of manifolds at


the top, center, and bottom of the beds to direct the air flow are


investigated. The basic mode of operation is to charge the bed by


means of a hot air flow in one direction, and to recover the heat at


a later time by a cold air flow in the opposite direction. Results


indicate that there is a range of designs and construction methods


offering the potential for stable heat storage with acceptably low


flow work. The studies include an investigation of the thermal prop­

erties of native rock and methods of modeling the two-phase heat


transfer between rock and air.



C-49 



Rev. 1-25-78



CONCEPT DEFINITION #30



PROPONENT(S)



Robert H. Turner - Jet Propulsion Laboratory



References



91



CHARACTERIZATION 

Medium 41 Steel to 4000C 
Containment 1 Storage media self-contained 

hollow steel ingots 
Source of Heat 21,26 Steam 
Conversion -

DESCRIPTION



This concept features a base load power plant integrated with a


thermal storage unit. The thermal energy is stored in the form of


heat in hollow steel ingots which come in direct contact with the work­

ing fluid (steam) of the power cycle. The source of energy for chara­

ing is from extracted steam. The storage vessel and the storage medium


are one and the same in this concept. It consists of ingots of steel


which have square -cross section with a hole in the middle. These


ingots are essentially thick square pipes stacked one on top of


another. During off-peak hours steam is passed through a system of


manifolds to hollow section of the ingots, thus storing heat in the


steel. Durinq peak hours water is fed through the manifolds to the


steel inqots, thus exchanging heat from the steel to the water for the


purpose of either Feedwater heating, boiling, or superheatinq. No


favored or optimum cycle arrangements or extraction points are


mentioned.
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CONCEPT DEFINITION - VARIANT 30.1



PROPONENT(S)



Robert H. Turner - Jet Propulsion Laboratory



References



91



CHARACTERIZATION 

Medium 41 Steel to 400'C 
'Containment 

Source of Heat 
Conversion 

11 

21,26 
-

Storage media self-contained, 
hollow steel 

Steam 
sandwiches 

DESCRIPTION



This concept is identical to Concept Definition 30 in principle of


operation. Its variation comes in the area of fabrication and leads
 

to a significant reduction in cost. Rather than using hollow steel


ingots, hollow electroslag welded steel sandwiches are used. These


sandwiches are constructed by taking two steel plates, that are held


apart by two narrow spacers which run the length of the sides of the


plates, and electroslag welding the spacers and plates together. By


using this method of fabrication the cost per pound can be reduced


from 45t per pound for ingots to 30¢ per pound for the sandwiches.


This is a cost reduction of 33 percent for the storage container/


media. 
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CONCEPT DEFINITION - VARIANT 30.2



PROPONENT



Robert H. Turner - Jet Propulsion Laboratory



References



91



CHARACTERIZATION 

Medium 
Containment 
Source of Heat 
Conversion 

41 
11 
21,26 
-

Steel 
Steel 
Extracted 

and sand to 4000C 
tube matrix 

steam 

DESCRIPTION



In this variation sard is used as a solid storage media to


replace some of the steel. This system consists of a matrix of steel
 

tubes which are closely packed together. Around the tubes is poured


an inexpensive solid. In this case sand is used. The principles of


operation from this point on are essentially the same as in Concept


Definition 30. Off-peak steam is passed by a manifold to the steel


tubes. This transfers heat directly to the steel and indirectly to


the sand. During peaking the process is reversed and heat is trans­

ferred From the sand and steel back to water being passed through the 
tubes for either feedwater heating, boiling, or superheating. The 
advantage of this system over the preceding two variants is that the 
space between the pipes which had essentially been filled with steel


before would now be filled with inexpensive sand, thus reducing the


cost for the storage media.
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CONCEPT DEFINITION - VARIANT #30,3 

PROPONENT(S) 

Robert H. Turner, Henry I Awaya - Jet Propulsion Laboratory 

References 

91, 180, 181 

CHARACTERIZATION 

Medium 41,13 Slab steel and HTW store energy 
Containment 11 The slab steel is the container 
Source of Heat 13 Water from steam drum in boiler 
Utilization 1.11 Replaces FWH 

DESCRIPTION



A more recent concept now being'analyzed was described by R.H.


Turner on February 9, 1978. Using the concept of thick steel slabs


assembled by electroslag welding as a low cost containment and storage


medium, this variant assembles long slabs, 15.2 cm (6") thick into


square containers, for example 81.3 cm (32") O.D. and 50.8 cm (20")


I.D.



The concept is that there would be an array of these square chan­

nels as shown in Figures A and C from Reference 181, connected in


series (or series/parallel). Steam put in one end would heat the iron,


be desuperheated, condensed, and subcooled. In addition to the storage


of heat in the steel, the condensed water would be retained in the con­

tainers as additional thermal energy storage.



Claimed advantages are the low cost of steel slab, compared to


rolled plate for tanks; low cost of electroslag welding as an assembly


means, increased storage energy density (over Variants 30 to 30.2) by


using HTW as well as the steel for storage, and safety compared to


large steel tanks or PCIV in that catastrophic failure of one of the


square containers is less hazardous than catastrophic failure of one


large tank.



Figure B from Reference 181 indicates a mode of use as feedwater


loop perturbation. The highest temperature water is obtained by pene­

trating the boiler island to extract saturated water from the steam


drum. Excess steam extraction and preheat by the economizer is


required. On discharge steam extraction for FWH is reduced or elimi­

nated and HTW from storage is injected into the steam drum. The main


turbines must be designed for safe operation at the increased steam


flow during this period. A thermocline mode of operation of the


thermal storage unit is assumed, ie a moving interface between hot and


cold water during charge and discharge. 
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CONCEPT DEFINITION #31



PROPONENT(S)



Energy ,Conversion Engineering Company - A. Selz



References



31, 105, 155, 171 (Sulfur data: References 27, 82, 87, 90)



CHARACTERIZATION 

Medium 32 Molten sulfur, alone or with rock 
or iron packed bed 

Containment 2 Low pressure tankage; number and 
arrangement unspecified 

Source of Heat 1,2 High temperature water or steam 
from PWR 

Utilization 3.21 Raise steam for peaking TG in 
indirect heat exchanger 

DESCRIPTION



The, essential feature of this concept is the use of liquid sulfur


as a sensible heat storage medium. It is argued that low cost (<7.5


t/kg), presumptive long-term stability since it is an element, and


liquid, range (m.p. 115'C, b.p. 444°C) favor its use as a thermal


storage medium.



,The early references cited envision a liquid sulfur TES system


employing a single, large, spherical tank of stainless steel (presum­

ably operated with a thermocline) and used for load leveling by a


nuclear PWR plant. Subsequent work has extended this concept to


include duadl-media systems of sulfur and fixed beds of rock or cast


'iron, the use of hydrogen sulfide at 3 atmospheres to reduce viscosity, 
the use of'aluminized low-alloy steel for containment, and storage


temperature sw-ings of 85-1000C with the high temperature to about 
430°C for fossil-fired generating plant applications.



It may be assumed that TES charging is accomplished by prime 
steam, andithat utilization of stored energy is by sceam generation 
to increaseipower; no specific power cycles are given. 
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CONCEPT DEFINITION #32



PROPONENT(S)



Boeing Engineering and Construction Co.



References



12, 13, 224



CHARACTERIZATION 

Medium 62 Magnesium oxide firebrick checker­
work 

Containment 11 High pressure, welded steel tankage 
operated with a thermocline 

Source of Heat 31 Heated helium from concentrating 
solar receiver 

Utilization To heat helium for use in closed 
cycle gas turbine-generator 

DESCRIPTION



This thermal storage concept is associated with a high temperature,


helium-cooled, concentrating solar receiver and a closed-cycle, helium


turbine, power plant. The storage unit consists of several parallel,


high pressure, insulated, steel cylinders filled with a checkerwork of


magnesia firebrick with manifolds at both ends (see illustration); the


flow in each cylinder is distributed by a packed bed of alumina


pebbles in the hemispherical endcaps.



During the charge portion of a cycle, compressed helium is heated


in the receiver and fed to the turbine and the storage unit in parallel.


During discharge, the helium flow direction through the storage unit


is reversed providing hot gas to the turbine as shown in the plant


schematic figure.



Helium is delivered to the turbine at temperatures between 594°C


and 816 0C. The storage medium temperature swing is approximately 264 0C.


A turnaround efficiency of 72 percent is reported.



Cast iron bricks and magnesia bricks are compared in Reference 224,


with the higher cost per kg of iron being cancelled by the lower cost of


containment because of higher density; resulting cast iron TES is 5 per2


cent less costly than magnesia TES.
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CONCEPT DEFINITION #33



PROPONENT(S)



University of Houston - R.E. Collins


SubSurface, Inc. - K. Davis



References



169, 170



CHARACTERIZATION



Medium 21 Hot oil


Containment 5 Unlined salt-dome solution mined



cavern


Source of Heat Not specified except solar


Utilization No details
 


DESCRIPTION



The proponents suggest that solution-cavity storage of hot fluids


in salt deposits is an economic alternative to hard rock excavation.


Many products are now stored and recovered from such cdverns including


natural gas, hydrogen and oxygen, butane and propane, and ethylene.


Crude oil reserves are also being so stored, so hot oil storage may


be practical without liners for materials compatibility or stress
 

transfer. Multimillion barrel capacity caverns are current (>200,OOOm3).


For the pressurized gases and liquids stored, security, safety, reli­

ability appears well tested. No example of hot fluid storage is


given so thermal stress affects are unknown.



One of the proponents suggests solution mining with brine,


replacing the brine with cold oil, and gradually raising the tempera­

ture by removing cool and injecting hot oil so stress transients are


minimized. Separate hot oil and cold oil caverns are preferred with


pressurized inert gas ullage forming a cap in each tank.



The possibility of packed bed (pebbles) is mentioned, to reduce


oil costs, but this would appear to require a thermocline approach


with risk of thermal stress.



Proponent estimates current cost of a two-cavern system (nearly


half-a-million m3 of excavation) at $3.0 million, or 6.7 $/m'.


Roughly 20 States have significant salt deposits as domes or beds.
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CONCEPT DEFINITION #35



PROPONENT(S)



General Electric Co,-TEMPO - W. Hausz



References



Internal documentation - conceived during this project.



CHARACTERIZATION 

Medium 5,21,31 
Containment 22,23 
Source of Heat (See Concept Definitions 22, 24, and 27) 
UtilizatioT (See Concept Definitions 22, 24, and 27) 

DESCRIPTION



This concept is primarily a method of operating dual media, oil/


rock or salt/rock storage systems with a smaller amount of heat transfer


fluid Coil or salt) required yet retention of the conventional thermo­

cline motion of Concepts 22 and 24 rather than the trickle charge


method of Concept 27.



When large quantities of required storage make multiple modular


storage tanks feasible, it is not necessary to have the voids filled


with beat transfer fluid in all packed beds of rock, sand, and/or other


minerals. Some fraction can be drained beds filled only with hot rock


and an inert gas when fully charged; or filled only with cold rock and


inert gas when fully discharged. Enough oil to fill the voids in at


least three tanks, plus the pipelines and heat exchangers is adequate.


For the sketch below, if N tanks are arrayed with say tanks 2 and 3


filled with cold oil and rock, tank 2 would be connected to the heat


exchanger, cold oil pumped from the bottom of the tank, through the


heat exchanger and back into the top as hot oil. When the thermocline


in tank 2 has descended roughly three-fourths of the way to the bottom,


tank 3 is connected to the heat exchanger to continue the charging


operation. Meanwhile the oil in tank 2 is drained from the bottom, and


pumped into the bottom of drained tank 4. The state of tank 2, lower


quarter cold oil and rock, upper three-fourths hot oil and rock, is


just such that all the oil will come out cold and the hot oil will heat


the rock in the bottom quarter of the tank, providing that the relative


heat storage in oil and rock are 1:3 Ca function of the void volume).


The process is continued, draining tank 3 to fill tank 5, etc until


all are fully charged.
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Figure 3. Tank and pipeline configuration.



In discharge a similar process pumps hot oil out of the top of a


filled tank, say tank 2, through the heat exchanger, and pumps the


resulting cold oil into the bottom of this tank until the thermocline


is roughly three-fourths the way to the top. At this point the hot oil


from tank 2 is switched to tank 4 to fill the void. The top of tank 3


is connected to the heat exchanger, a supplementary tank 1 delivers


cold oil to the bottom of tank 3, and the cold end of the heat


exchanger returns cold oil to tank 2. At the end of this step, tank 2


is full of cold oil, tank 3 is being discharged, and tank 4 is charged

with both hot oil and rock. The process continues, with each tank


being drained of its cold oil in the step described involving tank 1.



In addition to the continuing sequence transfers, a few extra
 

steps are required at the end of the charge and discharge cycle to


establish the desired conditions for the next cycle. The figure above


indicates seven tanks, as many more as needed could be used, and five


parallel transfer lines to connect top and bottom ends of the tanks to


the heat exchanger and to each other in the cycle briefly described.



This concept has been expanded and described in a patent disclosure.


The material in this report has been in part supported by DOE/NASA and


in part supported by EPRI. The invention disclosure has been considered


as a product of the research sponsored by EPRI, and assigned thereto.
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CONCEPT DEFINITION #41



PROPONENT(S)



Xerox Electro-Optical System - J.A. Carlson



References



19



CHARACTERIZATION



None



DESCRIPTION



At this time a complete concept definition is impractical since


the proponents have only submitted a brief project summary. However,


their cycle representation is sensible and deserves attention.
 


Two different cycles are proposed using a PCM. One is a latent


heat system, the other a hybrid latent-sensible heat system. The


candidate fluids for both PCM and sensible were not discussed. Both


systems were designed to be incorporated into a solar power plant.
 


System 1 (Figure 1) - Latent Heat Onlj 

This scheme uses latent heat storage at two different temperature


levels to produce a superheated vapor. Large temperature differences


exist between



1. Collector temperature and lower storage level temperature.



2. Upper storage level and cycle temperature.



Large temperature differences mean more availability losses and


this was the main reason for proposing a hybrid system.



System 2 (Figures 2 and 3) - Latent-Sensible 

In this system, latent heat is used to preheat and boil a working


fluid while sensible heat is used to superheat. Note that no large


temperature differences exist between collector, storage, and cycle


operating temperatures. Collection takes place at two different


temperature levels for the latent and sensible points.
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CONCEPT DEFINITION #42



PROPONENT(S)



T.A. Chubb - Naval Research Laboratory


J.J. Nemecek


D.E. Simmons



References



22, 102, 103, 104



CHARACTERIZATION 

Medium 85 Molten salt (MgCl, 
M.P. 385°C) 

NaCI, KCl; 

Containment 32 Low pressure tank, PCM encapsulated 

Source of Heat 37 
into packed bed 

Solar collector fluid, terphenyl 
Utilization 4.22 Boiling and superheating steam in 

evaporating condensing heat 
exchanger 

DESCRIPTION



This concept was developed for a solar thermal power plant, but is


applicable to the present study because of its ability to follow a


load curve.



The storagemedium in this system is a PCM consisting of NaCl, KCI,


MgCl.. This salt eutectic has a melting point of 385 0C. The system


consists of the salt sealed in cans hung in a rack inside of a


pressure-tight tank. Each container has its entire surface area 
 N 

exposed for maximum heat tranfer area. In the bottom of the main tank


is a system of heat release pipes which exchange heat from the solar


collector fluid to a reservoir of heat transfer fluid, m-terphenyl

(boiling point 3650C @ 1 atm). The heat causes the m-terphenyl to


boil which in turn raises the pressure inside the main tank. The


n-terlienyl then condenses on the cooler salt containers, releasing


heat to the salt and causing it to melt. This continues until all the


salt is melted after which point there is a rapid increase in tempera­

ture and pressure of the tank. The tank is said to be full once all


the salt has been melted. in order to discharge the tank water is


passed through a system of boiler/superheater pipes at the top of the


tank. The m-terphenyl vapor condenses on these pipes, thereby


exchanging heat with the water and causing it to boil and superheat
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the steam. The condensing of the m-terphenyl lowers the pressure in


the tank. At this lower pressure heat is tranferred from the salt to


the m-terphenyl liquid causing it to evaporate off the salt container


and thus replenish the condensing vapor. This process is continued


until all the salt is frozen. Durino the time of evaporation the salt


container is kept wet by a circulation system which sprays the liquid


m-terphenyl over the salt containers.



The steam generated in the boiler superheater pipes is used to run


a turbogenerator set. No mention of operating points of the turbine


were made.
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CONCEPT DEFINITION - VARIANT #42.1



PROPONENT(S)



T.A. Chubb - Naval Research Laboratory


J.J. Nemecek


D.E. Simmons



References



22, 102, 103, 104



CHARACTERIZATION



Medium Molten salts 3850, 540°C


Containment Low pressure tank



Packed Bed PCM


Source of Heat


Utilization



DESCRIPTION



The proponents list a number of other salts and appropriate heat 
transfer fluids which may be used in the "Energy Storage-Boiler Tank" 
described in Concept Definition 42. The choice of the salt/heat 
transfer fluid pair depends on the temperature of storage desired. 
The proponenLs suggest that for large generation plants a two­
temperature thermdl storage system would be desirable. A possible 
choice salt and heat transfer fluid for a second temperature of stor­
age, in addition to the one mentioned in Concept Definition 42, is 
CaCl, KCI, NaCI with a melting point of 540C for the salt and P2S5 
with a boiling point of 514 0 C for the heat transfer fluid. The pro­
ponents do not state what the exact usage of the two storage tempera­
tures are, whether one temperature would be used for boiling and the 
other for superheating or whether steam of two temperatures and 
pressures would be generated separately. 

', I Ii..-U.,I dl


; m-Tcrphanyl 

S.0_________ ___ C-67 



2-2-78



CONCEPT DEFINITION #43



PROPONENT(S)



Comstock & Westcott, Inc. - B.M. Cohen



References



25



CHARACTERIZATION 

Medium 

Containment 
Source of Heat 
Utilizatioi 

81,84 

31 

Inorganic salt eutectic consisting of 
NaOH and NaNO3 

PCM in shell/HTF in tubes 
Solar 
Stored heat replaces heat from 

collectors during little or no 
insolation 

DESCRIPTION



This system was designed for use in solar collecting systems,


specifically for the Solar Total Energy Test Facility in New Mexico.


At present no concrete design has been investigated because some com­

puter modeling and conceptual remarks were made in their project


summary. 

The PCM selected is a salt mixture of 92 percent anhydrous NaOH


and 8 percent NaNO 3 (known as Thermkeep)-which undergoes a phase


change between 240-310'C. The proposed working fluid is Therminol-66.


The storage unit consists of an insulated vessel containing Thermkeep


with a tubular heat exchanger immersed inside. T-66 enters at 310%


through the top and leaves at the bottom during charging It enters


the bottom at 240% during discharge. The top of the storage unit


remains the hottest during both charge and discharge while, theoreti­

cally, no gradient should exist during steady-state. However, a


recent personal communication with Mr. Cohen revealed that a slight


gradient did exist in their small experimental unit currently being


tested.
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CONCEPT DEFINITIION #45



PROPONENT(S)



D.D. Edie, et al - Clemson University



References



32



CHARACTERIZATION



None



DESCRIPTION



The proponents discuss the possibility of a direct contact heat


exchanger/storage system applicable to heat of fusion TES units. At


the time of the project summary paper, September 1977, the selection of


both a suitable PCM and immiscible fluid were underway with the latter


proving to be more difficult. The proponent was concerned with


temperatures lower than are of interest to us.
 


The system operates as follows: during charging the immiscible fluid


(with a lower density than the PCM) enters the bottom of the storage


tanks and travels upward, heating the PCM. During discharge the low


temperature immiscible fluid (still being a lower density) is again


injected into the bottom and is heated up by the salt. This is shown


schematically in Figure 1.



Regarding the PCM selection, the proponents feel any number of


inorganic salt hydrates would be suitable once criteria such as low


cost, corrosiveness, heat of fusion, and temperature range were used


to screen down.to an appropriate number. For an initial study, they


chose Na2HPO4 .12H2O as a suitable PCM (temperature range of 16 to 60°C).



The selection of appropriate immiscible fluids has provided only


one "ideal" fluid, this being Exxon's Varsol 18. Several other fluids


were investigated and tested (Dow Corning and several Parafin hydro­

carbons) but were rejected because of an emulsion which formed. This


emulsion is viscosity dependent, however, and applications at higher


temperatures would allow such fluids to be considered.
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Figure 1. Immiscible fluid-heat of fusion storage system.



Varsol



Based on experimental data with the Na2HPO4 .12H 20 and Varsol 18,


storage efficiencies are three times greater than a water storage


system operating at the same temperature range. It does seem inappro­

priate to make this comparison since water systems operating at higher


temperatures have excellent storage efficiency and this concept has


yet to be attempted at temperatures applicable to power plant


operations.
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CONCEPT DEFINITION #46



PROPONENT(S)



Honeywell Corp. - R.T. LeFrois



References



176



CHARACTERIZATION 

Medium 81 Sodium nitrate + 1 percent NaOH 
Containment 21 Steel tank 
Source of Heat .26 Solar application 
Utilization 1,3.51 Liquid-solidPCM indirect HX in 

storage tank 

DESCRIPTION



This concept is basically a PCM storage tank with condenser and


boiler tubes for charging with live steam and discharging by vapor­

izing feedwater. The tank is square, built of thin (1.27 cm) plate
 

walls stiffened by horizontal I-beams welded to the plate. The


condenser is composed of horizontal tubes near the bottom of the


tanks. The lower density of the melt causes convection adequate for


agitation. The vaporizer tubes are also horizontal and near the top.



One novel feature is the use of an off-eutectic mixture of NaNO 3


plus 1 percent of NaO. This is used over a narrow temperature band


of temperatures, 298-303'C, which is well above the solid as line at


246°C and below the 300°C melt point of NaNO3. A slush exists over


the working temperature range. The tendency of a thick deposit of


salt to reduce heat transfer at the vaporizer is inhibited by a novel


scraper on each tube comprising a series of inclined plates with semi­

elliptical holes that closely fit the circular tubes (as in the


figure). A set of these plates is welded to a supoort rod. Two such


support rods make the plates surround the tube. Two halves of a


chain-drive sprocket hold the plates to a 0.13 mm tolerance around


the tube. A chain drive rotates the rotary scrapers on a number of


tubes, at up to 200 rpm.



A system based on this PCM concept was compared with the sensible


heat concepts described in Concept Definition 24, (and in Reference


51). It appeared economically superior but had more technical risk.


Some work has continued at Honeywell.
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Figure 3-6. Split Design Inclined Plate Rotary Scraper 
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CONCEPT DEFINITION #47



PROPONENT(S)



J,R. Gintz - Boeing Engrg. & Construction



References



12, 13



CHARACTERIZATION 

Medium 83 Inorganic eutectic salt consisting 
of NaF-ZnF2 

Containment 31 Buried concrete vessel 
Source of Heat 31 Helium used in Brayton cycle of a 

solar energy power plant 
Utilization Heat stored can take place of 

receiver to heat helium 

DESCRIPTION



The proposed concept was designed to be integrated into a solar


power plant utilizing the Brayton cycle to smooth out fluctuations
 

resulting from little or no insolation. This system stores energy for


six hours, then discharges for six hours, producing 50 MWe of power.



During times of direct sunlight, excess helium is sent through a


modified tube/shell heat exchanger and liquefies the salt eutectic.


The reverse procedure is initiated during discharge with the helium
 

being used either to supplement or completely replace the heat source
 

of the receiver.



The phase change storage concept is a buried square tank. The


outer wall is constructed of reinforced concrete while refractory


brick will provide the required insulation. The inside of the tank is


to be lined with Hastalloy-N to avoid contact between insulation and


salt mixture. The tubes (-30,000) are to be constructed of Inconel


617.



Salt Characteristics



Tmelt = 6400C


AHf = 143 cal/gr = 586 kJ/kg 
Cost = 0.97 $/kg
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Cost Analysis



Account 	 Quantity Unit cost Total coil (M S) 

Salt (fluoride eutectic) 4 2 x 	 10 6 k 0 97 SIkg 39 

3Storage container 722 m 970 S/m3 0 7 
(square, 12 3 m X 12 3 n x 12 1 m) 

3Insulation 	 135 m 741 S/m 3 01 

Heat exchanger 
(0.96 cm 0 D x 12 1 m) tubes 33,600 tubes 51 8 S/tuba 17 

welds 33.600 welds 12.0 $/weld 04 
Manifold allowance (20%) 05 

Helium circulation system 
24 38 MAW 
(pumping 
capacity) 

53,500 S/MW 1 3 

Total 86 

This system has a turnaround efficiency of 62 percent.



2 
Storagr 

3 

State 
Point 

Temp 
(@C) 

res 
(MN/r 2 ) 

1 49 1,80 

3.45 
32__581 816 3.32 

UCop APrator urb 

Plecooler 

Figure 1-6. Storage Plant Schematic 
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CONCEPT DEFINITION #48



PROPONENT(S)



Grumman Aerospace Corp. - Angelo Ferrara, George Yenetchi,


Robert Haslett, Robert Kosson



References



35, 36, 132



CHARACTERIZATION 

Medium 

Containment 

81,85 

31,33 

Inorganic PCM eutectics of either 
nitrates/nitrites or chlorides 

Either tube/shell or liquid metal 
immiscible 

Source of Heat 
Utilizatio­

26 
1.312 

Prime steam (input to HP turbine) 
Heat either replaces FWH or steam 

generated for HP turbine 

DESCRIPTION



This is one of several TES units proposed by Grumman as applicable


to a supercritical fossil fuel plant with the following characteris­

tics:



MWnet - 540


Throttle pressure - 24 MPa


rhrottle temperature - 5380C


Reheat temperature - 5380C



The TES unit was designed to supply 5 percent of the peak power. The


unit was two-stage and can be categorized as follows:



o Step 1: Single loop regenerative heating with the heat source


obtained from main steam and used as a replacement in feed­

water heating.



* Stp 2: Single loop separate power conversion loop also 
receiving heat from the main steam but using heat in own


power cycle for auxiliary power output.
 


Both TES units utilized the heat of fusion of a eutectic salt.


However, analysis showed that sensible heat contributed to 30 percent


of the total energy stored. For stage 1 two eutectics were used:



1 - KCI-NaCI.MgCl2 storing 33 percent 
2 - NaClNaNO3 storing 67 percent 
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For stage 2:



1 - CaC *KCI-NaCl storing 16 percent Vertically separated, 
2 - KCIaCI-MgCl2 storing 32 percent 

3 - NaClNaNO3 - storing 52 percent counterfiow HX



The unit was designed to store energy over an 18-hour period and


supply over a 6-hour period completing its daily cycle.



Two heat exchanger concepts were proposed. One was a tube/shell

with the salt on the shell side while the other employed direct


contact between salt and liquid metal with a separate liquid-metal/


working fluid heat exchanger.



Net Plant Heat Rate out = 0.97 (claimed ?)

Net Plant Heat Rate in



LOCATION 2 SINGLE LOOP REGENERATIVE 
HEATING AUGMENTATION 

CONDENSATE 

THERMAL -REAC OR, OR - ETREDAEHRSOAE!_ EDAECGENERTOR 
BOILER STEAM ENERGY 
GENERATOR 
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LOCATION 8 SINGLE LOOP SEPARATE POWER CONVERSION LOOP 

SEPARATE POWER 
CONVERSION LOOP ON



THERMAL



REACTOR OR 
BOILEMR STEAM 
GENERATOR
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CONCEPT DEFINITION - VARIANT #48.1



PROPONENT(S)



Grumman Aerospace Corp. - A, Ferrara, G. Yenetchi, R. Haslett, R..Kosson



References



132



CHARACTERIZATION 

Medium 8 PCM eutectics, eg KCI NaCI • MgC12 
Containment 32 Thin walled macro-encapsulation 

DESCRIPTION



This concept is purely a variant of containment of PCM; no particu­

lar cycle configuration was associated with it. In Thermal Energy Stor­

age Heat Exchanger by the above authors (Reference 132), a group of


alternative heat exchanger concepts for PCM are examined. In addition


to variants of conventional tube and shell heat exchangers, a macro­

encapsulated PCM concept is described (pp 4-52 to 4-55). Some problems


with PCM heat exchange are expansion and contraction with change of


temperature and melting/freezing, and low thermal conductivity of the


PCM which tends to build upon the heat transfer surface. A candidate


solution to both of these is illustrated in Figure 4-32 from said


reference.



A solution to the low heat transfer through solid PCM is to provide


a large ratio of area to volume of PCM. At reasonable cost this


requires very thin walls of low cost material. The upper figure shows


the "plank-shaped" blocks of container, thin so that the maximum


required penetration distance is small, and wide to give a large area


at low cost. If the PCM contained expands or contracts on freezing,


the upper and lower walls are free to bulge outward, or bend inward, as


shown. The maximum bending stress caused can be low if the walls are


thin (stress varies as t3). The example given suggests a = 7.6 cm,



=
b 61 cm, t = 0.3 mm.



The notched, shaped edge of the container is designed for easy,


stable stacking of containers with a well-defined space between them


for fluid flow.



The chapter also discusses briefly:



" Fluidized microencapsulation (100)j capsules)


" Intermediate pumped loop (eg liquid metal)


" Scrapers to prevent PCM adhesion


" Heat pipe heat exchangers.
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2349-G500 

Fig. 4-32 Stacking Arrangement - Macroencapsulated PCM 
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CONCEPT DEFINITION #49



PROPONENT(S)



General Electric Co.-Schenectady - H. Vakil


F. Bundy



References



119, 146, 149, 154



CHARACTERIZATION 

Medium 
Containment 
Source of Heat 

83 
33 
31 

Molten salt (fluorides) M.P. 680°C 
Low pressure tank, immiscible fluid 
Helium from HTGR 

Utilization 1.1 Increased steam flow through main 
turbine, steam generated through 
indirect heat transfer with PCM 

DESCRIPTION



This concept features a base load nuclear power plant integrated


with a thermal storage unit which supplies peak power. The thermal


energy is stored in the form of latent heat The PCM used is a


NaF-FeF 2 eutectic which has a melting point of 6800C. The eutectic


slush is melted during charging by the helium heat exchanger at the


right of the figure. This helium then goes to a helium-steam boiler.



On discharge, to avoid poor heat exchange from solidification of


the eutectic an intermediate immiscible-fluid direct-contact heat


exchanger loop is used. Molten lead is used in the loop. Droplets oF


molten lead at 370'C enter the top of the storage vessel. They are


heated to 680°C by latent heat flow From the eutectic during their


descent. The thin crust of solid eutectic easily breaks up when the


lead impacts the eutectic slush and pool of molten lead at the bottom.


The molten lead then goes to a lead-steam boiler to generate steam at


538'C. In order to keep the salt from solidifying into a solid imper­

meable layer, helium is bubbled up from the bottom of the salt tank to


agitate the salt and keev it broken up into small particles. This


process is continued to a point where the slush is close to


impenetrable.



For peak power generation the main turbogenerator set is over­

loaded by the steam generated from the stored thermal energy.
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CONCEPT DEFINITION #50



PROPONENT(S)



Rocket Research Co. - E.C. Clark



References



98, 157



CHARACTERIZATION 

Medium 
Containment 
Source of Heat 
Utilization 

33 
2 
-

Sulfuric acid, various concentrations 
Low pressure tanks (see discussion) 
Unspecified 
Unspecified 

DESCRIPTION



The referenced work reports the heat capacity and enthalpy of the


sulfuric acid-water system at temperatures to 290'C and the heat of


reaction and adiabatic reaction temperature for the dilution reaction


of sulfuric acid of various concentrations and initial temperatures.


This work is primarily oriented to the laboratory scale investigation


and system scale conceptualization of a thermal energy storage system

based on the heat of dilution of concentrated sulfuric acid. At the


system level, the apolication envisioned is the use of concentrated


solar energy to separate water from 70% sulfuric acid during summer


levels of insolation, and to recover the heat by combining the


resultant 98% acid and the water during the winter for building


heating.



In the present context, interest in this work is confined to


information relevant to the use of sulfuric acid of various concentra­

tions as a sensible heat storage medium. For this purpose, data deal­

ing with density, viscosity, heat capacity, vapor pressure, thermal


conductivity, and material compatibility are required. The present


report tabulates heat capacity values in 5% concentration steps and


50C temperature steps from O°C to 290°C. The results above 80'C are


extrapolations from published data up to that temperature (Socolik,


A.S., Z physik. Chem. 158, 305 (1932)) with the only verification of


the higher temperature values being the "reasonably good agreement"

between predicted and measured adiabatic dilution reaction tempera­

tures. A table of material compatibilities indicates that there are


several materials that can contain sulfuric acid to at least 3000C


including cast silicon iron, Durichlor 51, Duriron D, Pyrex glass,


and Teflon TFE (to 260°C).
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CONCEPT DEFINITION #51



PROPONENT(S)



Eidgenbssischen Inst. fUr Reaktorforschung (Swiss) - M. Taube



References



166, 204, 205, 206, 207, 208



CHARACTERIZATION



Medium 26 NaOH eutectic

Containment 21 Low pressure storage tank

Source of Heat 26 Live steam from LWR

Utilization 4.22,3.52 Slush to octane to steam (latent/



latent HX)



DESCRIPTION



In this Swiss paper (inGerman) the authors describe two concepts


for latent/latent heat transfer using NaOH and a second component such


as CaO or NaNO2 which forms a eutectic slush with a melting point of


260'C. In the first concept, one heat exchanger is used with live


steam at 6.42 MPa (280'C) in the tubes and the slush circulated


through the shell, to melt the PCM at 260'C. On discharge, the slush
 

converts water at 1200C to steam at 2400C and 1.0 (IPa,'leaving the


slush temperature at 2600C but raising the fraction crystallized.


Despite rapid flow there is a chance of a salt film building on the


tanks of the HX.
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The second concept cures this with an intermediate working fluid,


octane C8HI. On charge, saturated steam at 6.42 MPa (2800C) heat


exchanges to octane at 1.6 MPa (saturation temperature 2700C).


Liquid octane is boiled and passed aver to a second heat exchanger,


in which it isindirect contact with the PCM slush. Slush goes in


the top of this direct HX as does the octane gas, which is condensed.


Octane liquid is the more buoyant, but it is not made clear how per­

fect separation is achieved. During discharge the octane pressure is


reduced to 1.4MPa, putting its boiling point below the slush tempera­

ture. Direct heat exchange, with liquid octane entering the bottom


of the direct contact HX, gasifies the octane which in turn creates


steam at 1.0 MPa and 2400C in the indirect HX.



The idea should avoid the conventional film problems of PCM


materials, if the separation of liquid octane and slush can be


effective.
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