
NASA Technical Memorandum 78757'

REFERENCE MANUAL FOR THE LANGLEY

RESEARCH CENTER FLIGHT SIMULATION

COMPUTING SYSTEM

(NASA7-M-78757) REENCE
ANUAL FOR THE N79-13235

LANGLEY RESEARCH CENTER FLIGHT SIMIULATION
COPUTING SYSTEM (NASA) 103 p HC A06/F' AO1

CSCL osB Uncias

GJ/61 39027

JEFF I. CLEVELAND, II

DANIEL J. CRAWFORD

LAWRENCE F. ROWELL

JULY 1978 t

N/ASA
National Aeronautics and
Space Administration

Langley Research Center

Hampton, Virginia 23665

REVISION RECORD

Revision Description

-

1/76
Preliminary release.

A
7/78

First formal release.
literary corrections.

Revisions include technical and
New features include subroutine RESUMEQ.

iie@Revision A

REVISION MARKINGS

New features, as well as changes, deletions, and additions to information in

this manual are indicated by bars in the margins or by a dot near the page

number if the entire page is affected. A bar by the page number indicates

pagination rather than content has changed.

ACKNOWLEDGEMENT

The statement on the top of this page and Table 1, page 7 are

reproduced with the permission of Control Data Corporation, Minneapolis,

Minnesota.

iie Revision A

TABLE OF CONTENTS

page

Entry Point Table of Contents. v

Introduction

Real-Time Data Management

.............. 1

Program States 3

...........
 22

Lost Time Synchronization 58

Nonreal-Time Usage 65

Common Block Communication and Discrete Input/Output 67

Error Processing and Terminal Interaction. 79-

Utility Subroutines 93

References 95

Index of Entry Points 96

iv Revision A

ENTRY POINT TABLE OF CONTENTS

RTINIT....................

RTSRT

RTHOLD1

RTHOLD2

HOLD3

RTCYCLE

RTIDLE

RTCLEAR

FINI

FILEARR

FILEVAR

NEWVAR.....................

READBUF...........................

RTREAD

RTWRITE

REWRTF

SKPRTR....................

DISPOSE...........................

LOSTIME

RESUME.................

RESUMEQ

RTCLASS

DISADD

RTERROR

RECADD

v

page

......... . 8

10

12

13

14

15

17

19

21

25

28

......... . 32

34

36

39

41

......... .		 43

45

59

. 61

62

66

78

85

87

Revision A

TTINPUT 88

TTMESS 90

TTYDAYF 2

RTIME 94

vi Revision A

INTRODUCTION

The real-time simulation system has been operating at Langley since 1967.

It has been modified and improved many times since-then. The latest

modification includes an upgrading of the computers (6600s to Cyber 175s) and

an upgrading to the Network Operating System (NOS). There are also several

new innovations in the real-time hardware including a special real-time disk

with its own dedicated peripheral processor. The NOS operating system has

been modified to accommodate real-time simulation while simultaneously

processing both interactive and batch jobs. These modifications have been

made following the philosophy of minimum departure from the standard system so

that the simulation software system can be more easily upgraded to future

releases of NOS.

Real-Time Supervisor is a group of subprograms which are loaded with each

simulation application program. The Supervisor provides the interface between

the application program and the operating system and coordinates input and

output to and from the simulation hardware. There are other simulation

utilities which are not included in the Supervisor. The most notable of these

are the graphics processors and the mode control subprogram which interfaces

between the application program, the program control console, and the

Supervisor. These processors are not discussed in this reference manual.

Since both the hardware and software environments of real-time simulation

have changed since 1976, most of the utilities'-including Supervisor have been

completely redesigned and reprogrammed.

This paper is a reference manual for the Real-Time Supervisor. As

implementation progresses, this manual will be kept current.

1 Revision A

The design of the'Supervisor is modular and flexible and currently

provides: communications with the Real-Time Monitor; interaction with the

Digital/Analog Subsystem (DASS); communication to and from the real-time disk;

interactive error processing; and interaction with the channel clock which

provides time accounting and insures time schedule integrity. Future releases

of Real-Time Supervisor will include more sophisticated error processing, a

multi-frame rate per job capability, and other features as required by the

user.

2 Revision A

PROGRAM STATES

Persons familiar with the previous implementation of real-time simulation

on the CDC 6600s may tend to confuse program states with the more familiar

program modes. In the former system, there were only two program States -­

synchronized real-time and HOLD. The programmodes, Operate, Hold, Reset, and

Idle, were executed in synchronized real-time; whereas such functions as

copying the real-time disk file to a printer were done in the single HOLD

state. With this new system, Real-Time Computing System (RTCS), four program

states are supplied. The attributes of these states are described below and

in Table 1.

HOLDR

When a job successfully executes a SKED** control statement to allocate

real-time resources, it enters the HOLD3 program state. (A program may also

enter HOLD3 from any other program state.) In this state, the job has high

queue and CPU priority and occupies a real-time (high-numbered) control point

which has immunity from automatic rollout. Rollout may occur only if (1) the

job does time-sharing terminal input/output, (2) the job requests rollout, or

(3)TELEX aborts or the terminal communication link is lost.

During the HOLD3 state, the job may communicate with the time-sharing

terminal and the operating system in any manner. The job is not allowed to

communicate with any real-time equipment (DASS, RTDISK, CRT, or ADAGE) during

the HOLD3 state.

Synchronized Real-Time (SRT)

When a program is in this state, the strict synchronization with the

* See reference 2.

3 Revision A

simulation real-time clock is maintained. At the beginning of each real-time

frame, packed analog and discrete inputs are transferred to the Supervisor.

At the end of the frame packed analog and discrete outputs, CRT outputs,

RTDISK input/output and ADAGE output are transferred to the apprQpriata

equipment as requestedby the application program. In this state, normal

communication with the operating system (such as file processing) is not

allowed.

HOLD1

In this program state, the program may communicate with the real-time

hardware (DASS, RTDISK, CRT, or ADAGE) and with the full NOS operating system

except that input/output to the time-sharing terminal is not allowed and

synchronization with the real-time clock is not maintained. The program runs

asynchronously with the packed analog and discrete inputs being transferred

each frame time, but the program is neither interrupted nor started; i.e.,

inputs from the DASS continue to be transferred each frame, but the program is

essentially unaware of the beginning of every new frame. Output requests to

real-time hardware may be done at any time. Note that input/output to local

files, permanent files, and other equipment except the time-sharing terminal

is allowed.

HOLD2

This program state is identical to HOLDI except that analog and discrete

inputs are not transferred, effectively "holding" these input values to the

last time they were transferred. This state is intended to be used as a

diagnostic aid.

Revision A

Supervisor's functions include self-initialization, coordination of I/0 to

and from the special hardware, packing and unpacking analog channels, passing

buffer addresses to tables used by the simulation processors, and

communication with the Real-Time Monitor.

When a job is scheduled (via a SKED"*control statement) into a real-time

control point, it will be in the HOLD3 state. The simulation engineer can

work interactively (such as edit, compile, etc.) with the computer in this

state until such time that he is ready to execute his real-time program. When

he begins execution, the program should immediately initialize itself by a

call to RTINIT. The Supervisor initially sets all harware input/output arrays

to zero. The program can then change states as is necessary by calls to

RTHOLDI, RTHOLD2, HOLD3, ot RTSRT. A call to any of the HOLD states is

ignored if the program is already in that state; however, a call to RTSRT

while the program is in SRT is an error condition.,

The calls to RTCYCLE, RTIDLE, and RTCLEAR are essentially requests for I/O

to the special real-time hardware. The difference between RTCYCLE and RTIDLE

is that RTIDLE only affects iscrete I/O; whereas, RTCYCLE initiates I/O for

the DASS, RTDISK, and/or RTGRAPHICS subsystems. RTCLEAR is used for

calibration of external equipment. It sends zero out on all assigned analog

and discrete channels. In addition, if the program is in the SRT state, these

calls cause the release of the central processor. Since these calls mark the

end of a real-time cycle, one of them should be called once each frame before

expiration of the required compute time (RCT).

5 Revision A

A call to FINI terminates execution of the program and enables the

interactive terminal so that the engineer can do any necessary processing such

as program editing, nonreal-time .graphics, compilation, and assemblies. At

this point, he can either go back to real-time processing,. or deallocate -his

*

resources by a call to SKED . A brief summary is followed by a detailed

description of the'Supervisor program state calls.

CALL FUNCTION

RTINIT INITIALIZE FOR REAL TIME OPERATIONS

RTSRT ENTER SYNCHRONIZED REAL TIME

RTHOLD1 ENTER HOLDI STATE

RTHOLD2 ENTER HOLD2 STATE

HOLD3 ENTER HOLD3 STATE

RTCYCLE END REAL TIME FRAME

RTIDLE END REAL TIME FRAME

RTCLEAR CLEAR HEAL TIME OUTPUTS

FINI ENTER TERMINATION PROCESS

** See reference 2.

6 Revision A

http:processing,.or

Program
Name

Characteristic

Q Priority

CPU Priority

Storage Moves

Rollouts

Entry

Exit
(Assume total use
of interrupt
features)

Terminal I/0

RT Subsystem i/O
except ADDIS

0 ADDIS inputs

- Mini-CP Area
d and ItT resource

allocation

17
RTM Responds to
[Real-Time Starts

NON-REAL-TIME

BATCH INTERACTIVE

Standard NOS Standard NOS
(low) (medium)

Standaid NOS Standard NOS
(low) (low)
Yes Yes

Yes Yes

Local or Remote TTY terminal
card reader

Drop fro Log OFF
control point

No Yes

No No

No No

No No

No No

HOLD3

Real-Tmr (high)

High Priority
Batch
Yes, if not locked
out by otheir RT
Jobs

Yes

I. Call to SKED
to allocate RT
resources.

2. Program re­
quest from

HOLDI, HOLD2.
or SRT

1. Cull SKED
to deallocate
resources

2. Log off
(interactive)

3. Drop from C. P.
(Batch)

4. HOLDS, HOLD2,
or SRT

Yea

No

No

Yes

No

REAL-TIME

HOLD2

Roat-TimeD
(high)

High Priority
Batch
No

No

I. Program re­
quest from
HOLD3, HOLDI

or SRT

1. Log off
(Go to HOLDS)
2. End an RA+l

(HOLDS)
3. Program re­

quest for HOLDS.
HOLD , or SRT

No

Yes

No

Yes

No

HOLD1

Real.Time
(high)

High Priority
Batch
No

No

1. Program re­
quest from
HOLD3. HOLID2,
or SRT

1. Log off
(HOLDS)
2. End in RA+

(HCLD3)
3. Program re­

quest for HOLDS,
HOLD , or SRT

No

Yes

Yes

Yes

No

SYNCHIRONIZED
REAL-TIME (SRT)

Real.-Time (high)

Real-Time
(Synchronzed)
No

No

I. Program re­
quest from HOLDS,
HOLDS, or iIOLDI

1. L.g off(HOLD3)1)
2. End inRA+l
(HOLD3)

3. Program re­
quest for HOLDS.

HOLD2, or IOLDI

No

Yea

Yea

Yos

Yes

"

0
"j
0

0

H=1

(

RTINIT

PURPOSE: To initialize the Real-Time Supervisor and to establish ADC and DAC

communication areas.

USE: 	 Format 1 'CALL RTINIT (ID, ADC, NADC, DAC, NDAC)

Format 2 CALL RTINIT (ID, ADC, NADC, DAC, NDAC), RETURNS ($ERROR)

ID one word Hollerith constant (10 characters maximum) containing

the identification of the simulation program for messages to

'the mainframe console operator; e.g., "DMS-F11" or

10H TAIL SPIN.

ADC array at least NADC words long into which Supervisor will

store the scaled floating point ADC values.

NADC number of ADC input channels to be unpacked and floated. May

be 0.

DAC array at least NDAC words long from which Supervisor will take

the scaled DAC values'.- -. .

NDAC number of DAC output channels to be .packed and unfloated. May

be 0.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 RTINIT must be the first call to the Supervisor and should be the first

executable statement in the program.

2. 	 RTINIT may not be called in SRT.

3. 	 The amount of packed analog data transferred to and from the DASS

ORIGINAL PAGE IS
'01 POOR QUALITY

8 	 Revision A

equipment is determined by the SKED control statement sequence, whereas

the number of channels unpacked (ADC's) or packed (DAC's) by the

Supervisor is determined by RTINIT. The conversion is between a 60 bit

floating point word in the CYBER mainframe and a 15 bit fixed point word

in the analog subsystem.

DESCRIPTION: The first call to RTINIT causes the Supervisor to initialize

itself. This includes establishing terminal I/O buffers, error recovery

addresses, and initialization of the standard error recovery package. Colons

(OQB display) are removed from ID before it is placed in SIMID in common

/SUPCOMM/. The ADC and DAC array addresses and lengths are retained for

communication with the DASS hardware but DASS input/output is not performed.

RTINIT may be called more than once if the array addresses or lengths are to

change.

ERROR MESSAGES:

1. CALLED IN WRONG PROGRAM STATE (NERROR = 2)

RTINIT may not be called in SRT.

2. NO. OF ADC OR DAC .LT. ,O (NERROR = 124)

NADC or NDAC is less than 0.

3. BAD STATUS FROM URT - RTS FUNCTION (NERROR = 202)

URT STATUS =

This error .should never occur, and it indicates a failure of the

Supervisor or the real-time system. An analyst should be informed of the

problem.

9 Revision A

RTSRT

PURPOSE: To enter synchronized real-time state from a nonsynchronized state.

USE: Format 1 CALL RTSRT

Format 2 CALL RTSRT, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 The program must be in a nonsynchronized real-time state before CALL

RTSRT.

2. 	 An RTQP request must have been included in the SKED resource requests.

DESCRIPTION:

1. 	 The program state is changed to synchronized real-time (SRT) from a

nonsynchronized state (HOLD1, HOLD2, or HOLD3).

2. 	 If an ADC array was specified in A call to RTINIT, then the ADC inputs are

unpacked, converted to floating point format, and placed in the-ADC array.

3. 	 The discrete inputs are available.

4. 	 Supervisor returns control to the calling program.

ERROR MESSAGES:

1. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

RTSRT was called in SRT (must be in a HOLD state).

2. 	 REAL-TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

3. 	 REAL-TIME HARDWARE FAILURE (NERROR = 3)

_ STATUS =

10 	 Revision A

Hardware error detected in DASS equipment. Continued DASS operation

may give unpredictable results.

4. 	 PPU CALL ERROR IN

RA+1 = 2522150100.. .XXX PPU=URM

The job did not have an RTQP resource request.

11 	 Revision A

RTHOLD1

PURPOSE: To enter the HOLDI state.

US: Format 1 CALL RTHOLD1

Format 2 CALL RTHOLD1, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: None.

DESCRIPTION: If the prgram is in SRT Supervisor issues a URM01** monitor

request to complete the SRT frame. Supervisor issues a URM02** monitor

request to'change the state. The job is a high priority (CPU and QUEUE)

nonsynchronous program. The job has access to RTDISK, CRT, ADAGE, and DASS

hardware. (If a program is in the HOLDI state and it makes this call, the

call is treated as a no-op.) Discrete inputs are being refreshed by the

hardware at the frame rate. See Table 1 for definition of HOLDI state.

Control is returned to the calling program.

ERROR MESSAGES:

1. 	 REAL-TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

** See reference 2.

12 	 Revision A

RTHOLD2

PURPOSE: To enter the HOLD2 state.

USE: Format 1 CALL RTHOLD2

Format 2 CALL RTHOLD2, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: None.

DESCRIPTION: If the program is in SRT Supervisor issues a URM01** monitor

request to the complete the frame. Supervisor issues a URM03** request to

Real-Time Monitor. The job is a high priority (CPU and QUEUE) nonsynebronous

program. The job has access to the real-time disk, CRT, ADAGE, and DASS

(outputs only); however, the analog and discrete inputs are frozen to their

values at the time that HOLD2 was entered. (If a program is in the HOLD2

state and it makes this call, the call is treated as a no-op.) See Table 1

for definition of HOLD2 state.

ERROR MESSAGES:

1. 	 REAL-TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

* See reference 2.

13 	 Revision A

HOLD3

PURPOSE: To enter the HOLD3 state.

USE: Format 1 CALL HOLD3

Format 2 CALL HOLD3, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: None.

DESCRIPTION: Supervisor issues a URM04** monitor request to Real-Time Monitor.

The job is a high priority (CPU and QUEUE) nonsynchronous program. In the

HOLD3 state, the job is subject to being rolled in and out and storage moves

can be affected. All TELEX interactive work must be done in this state. The

RTDISK, CRT, ADAGE, and DASS hardware cannot be accessed in this state.

ERROR MESSAGES:

1. 	 REAL-TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

* See reference 2.

14 	 Revision A

RTCYCLE

PURPOSE: It signifies that all user processing for the frame is complete.

RTCYCLE preserves the program state from which it was called (i.e., HOLDI,

HOLD2, or SRT) and causes all real-time I/O to be performed.

USE: 	 Format 1 CALL RTCYCLE

Format 2 CALL RTCYCLE, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: This call is not allowed in HOLD3.

DESCRIPTION:

1. 	 Control branches from the application program to Supervisor.

2. 	 If either disk input or disk output is required (i.e., one or both of the

file buffers need to be stored or refreshed), then the RTDISK flag will

be set in the appropriate Real-Time Monitor request bit.

3. 	 If any data is contained in the CRT buffers, then the RTCHT flag will be

set in the appropriate Real-Time Monitor request bit.

4. 	 The DASS flag will be set in the appropriate Real Title Monitor request

bit. If a DAC buffer was specified in a call to RTINIT, then these words

will be converted to DASS format and packed four to a central memory word

in an output buffer.

5. 	 A URM01** monitor request is issued and the central processor is returned

to Real-Time Monitor.

" See 	 reference 2.

15 	 Revision A

6. 	 Monitor will signal the necessary peripheral processors and they will

accomplish the transfer of data to and from their respective hardware;

RTDISK, CRT, and DASS, including analog and discrete input/output.

7. 	 In due time, Real-Time Monitor returns the central processor to the

Supervisor.

8. 	 If an ADC buffer was specified in a call to RTINIT, then the input buffer,

which was filled by the DASS input peripheral processor will be unpacked,

converted to floating point format, and placed in the ADC buffer (unless

in 	HOLD2).

9. 	 New discrete inputs are available.

10. 	 Supervisor returns control to the applications program.

ERROR MESSAGES:

1. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

Called in HOLD3.

2. 	 REAL-TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

3. 	 REAL-TIME HARDWARE FAILURE 	 (NERROR = 3)

STATUS =

Hardware error detected in DASS equipment. Continued DASS operation may

give unpredictable results.

16 	 Revision A

RTIDLE

PURPOSE: It signifies that all user processing for the frame is complete.

RTIDLE preserves the program state from which it was called (i.e., HOLDI,

HOLD2, or SRT). RTIDLE causes the discrete output data from the discrete

buffer to be sent out to the DASS hardware and the discrete inputs to be read

into the discrete input central buffer.

USE: Format 1 CALL RTIDLE

Format 2 CALL RTIDLE, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: This call is not allowed in HOLD3.

DESCRIPTION:

1. 	 Control branches from application program to Supervisor.

2. 	 The DASS I/O bit will be set in the appropriate Real Time Monitor request

word. However, the user's DAC buffer will not be packed, formatted, nor

transferred 	to its associated output buffer.

*
3. 	 A URM01 monitor request is issued and the central processor is returned

to Real-Time Monitor.

4. 	 Monitor will signal the DASS peripheral processor and data will be trans­

ferred to and from the analog hardware.

5. 	 In due time, Real Time Monitor returns the central processor to the

Supervisor.

6. 	 Supervisor returns control to the application program.

' See 	reference 2.

17 	 -	 Revision A

ERROR MESSAGES:

1. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

Called in HOLD3.

2. 	 REAL TIME HAS NOT BEEN .INITIALIZED &NERROR- I)

No previous call to RTINIT.

3. 	 REAL-TIME HARDWARE FAILURE 	 (NERROR = 3)

STATUS =

Hardware error detected in DASS equipment. Continued DASS operation may

give unpredictable results.

18 	 Revision A

RTCLEAR

PURPOSE: It signifies that all user processing for the frame is complete.

It preserves the program state from which it was called (i.e., HOLDI, HOLD2,

or SET). It places all zeros in Supervisor's packed DAC buffer and transmits

these to the Real-Time Subsystem. It also places all zeros in the user's

packed discrete buffer and transmits the buffer to the discrete output

hardware. If RTDISK or RTCRT I/O is required, it is done also. It causes the

input discretes to be read into central memory along with the ADC inputs which

are also unpacked and placed into the user's buffer. This differs from the

previous Supervisor in that the user must reset his output discretes after

coming out of RTCLEAR (i.e., discretes are not saved).

USE: Format 1 CALL RTCLEAR

Format 2 CALL RTCLEAR, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: This call is not allowed in HOLD3.

DESCRIPTION:

1. 	 Qontrol branches from application program to Supervisor.

2. 	 Supervisor's packed DAC buffer is set to zero.

3. 	 User's packed discrete output buffer is set to zero.

4. 	 The DASS flag (and possibly the RTDISK or RTCRT flags) will be set in the

URM01** monitor request word and the request will be issued.

* See reference 2.

19 	 Revision A

5. 	 The zeroed outputs are transmitted to the DASS and the inputs are brought

into central memory in time for the next frame.

6. 	 In due time, Monitor returns the central processor to the Supervisor.

7. 	 Supervisor returns control to the applications program.

ERROR MESSAGES:

1. 	 CALLED IN WRONG PROGRAM STATE (NERROR 2)

Called in HOLD3.

2. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

3. 	 REAL-TIME HARDWARE ERROR 	 (NERROR = 3)

STATUS =

Hardware error detected in DASS equipment. Continued DASS operation may

give unpredictable results.

20 	 Revision A

FINI

PURPOSE: To terminate a real-time simulation program.

USE: CALL FINI

RESTRICTIONS: None.

DESCRIPTION:

1. 	 Nontime-sharing origin job.

a. 	 The program is placed in HOLD3 state.

b. 	 The program is terminated.

2. 	 Time-sharing origin job.

a. 	 The program is placed in HOLD3 state.

b. 	 The standard error recovery package is called and various options

are available for time-sharing terminal operation. See error

processing section for usage.

ERROR MESSAGES:

1. 	 REAL TIME HAS NOT BEEN INITIALIZED. (NERROR z 1)

No previous call to RTINIT.

21 	 Revision A

REAL TIME DATA MANAGEMENT

Each of the two CYBER 175s have the following disk file features:

1. 	 access to a large permanent file system

2. 	 access to a pool of -disks--which is, used- for local files and system files

3. 	 access to a high performance real-time disk which is capable of

storing or retrieving a total of 282 central memory words every 1/32 of a

second.

It is this third feature that is discussed in this section. Each real­

time 	 job can have as many as two real-time files. The performance will be

shared among all the real-time jobs on a single computer. If equally

distributed, each of three jobs could store or retrieve as many as 94 words

each 	 1/32 of a second.

Files on the real-time disk are scratch files and will disappear when a

job deallocates its real-time resources. Simulation input data would likely

be brought from the permanent file system to the local file pool and then be

written on the RTDISK for later real-time access. Conversely, simulation

output data would be written to the RTDISK in real-time and later copied to

the local disk pool. From there, it might be routed to a printer, tape,

punch, or to permanent file storage. One anticipated application of the

RTDISK is to record a pilot's control inputs during a simulated flight and

then to play back the flight by driving the simulation with the recorded

inputs.

Since there is a limited amount of space on the disk, it must be allocated

among the real-time jobs on the computer. The mechanism for doing this is

contained in Static Scheduler (SKED) and the RTDM control card which has the

following format:

RTDM (size 1, size 2)

22 	 Revision A

The parameters of this card specify how much space (in tracks) the user wants

for each of his files. If the space is available, Static Scheduler will

assign it to his job. There are 1,616 tracks on the 844 disk, and each track

can accommodate 6,848 central memory words. There is a possibility of

upgrading to a double density 8M4 disk in which case available space will

double.

The Supervisor manages the real-time data storage and retrieval

capability. It creates and maintains the necessary file environment tables

and maintains the other interfaces with the Real-Time Monitor and the RTDISK

peripheral processor program. Supervisor does not rewind the real-time files

without a specific directive (REWRTF) from the user. There are two types of

data sections on the real-time files. The first contains the central memory

addresses of the data on the file. These addresses are provided by the user's

calls to FILEVAR. The second type is the data itself. This implementation

allows the user to dynamically control which variables he is recording and to

subsequently read the data back into the correct central memory addresses.

The table of recorded variables can be increased dynamically by calls to

FILEVAR or reinitialized by a call to NEWVAR.

The real-time files can only be accessed in the SRT, HOLDI, or HOLD2

states. File buffer sizes are left to the option of the user (FILEARR).

Generally, increasing buffer size will increase performance at the cost of

increased field length. Other calls provided by Supervisor are a skip logical

record function (SKPRTR) and dispose to printer or punch function (DISPOSE).

The DISPOSE call is the only one in this section which does not directly

pertain to the real-time files.

23 Revision A

A brief summary of the Supervisor data management calls is followed by a

detailed list and some instructive examples.

CALL FUNCTION

---FI-LEVAR­ - -ESTABLISH -VARIABLE -ADDRESSES­ --

NEWVAR REINITIALIZE VARIABLE TABLE

FILEARR ESTABLISH BUFFER AND VARIABLE TABLE SIZE

RTWRITE WRITE RECORD

RTREAD READ RECORD

DISPOSE SEND LOCAL FILE TO PRINTER OR PUNCH

SKPRTR SKIP RECORDS ON RTDISK FILE

24 Revision A

FILEARR

PURPOSE: To establish memory locations for both the file buffer and the

variable address table.

USE: Format 1 CALL FILEARR CIFN, BUFFER, NBUFF, VARTAB, NTAB)

Format 2 CALL FILEARR CIFN, BUFFER, NBUFF, VARTAB, NTAB), RETURNS ($ERROR)

IFN integer file number (1 or 2) indicating for which file the

arrays are being specified.

BUFFER array name of a block of memory to be used by Supervisor as a

file buffer.

NBUFF 	 number of words in buffer (should be the dimension of BUFFER)

and should be a multiple of 64 plus one (i.e., 257, 1025,

etc.).

VARTAB 	 array name of a block of memory to be used by Supervisor as a

table of variable addresses to control the transferring of

data between the specified file and the program.

NTAB 	 number of words in VARTAB (should be the dimension of VARTAB).

NTAB must be at least the sum of the maximum number of

variables plus the number of arrays specified in calls to

FILEVAR.

$ERROR 	 statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. FILEARR must be called before the first activity on a real-time disk file.

2. For access to both files, FILEARR must be called twice with unique array

names.

25 	 Revision A

3. 	 A real-time file must be rewound before a change in buffer array or

variable table array. This assures flushing of the buffer.

4. 	 FILEARR may not be called in SRT.

-
-DESRIPTO: By specifying different buffer sizes, the performance limit of the

simulation disk can be affected. For this reason, the burden of specification

of 	 buffer size is given to the programmer. A program with a high recording

frequency and a high number of recorded variables will require a large buffer

and 	 conversely a program with a low recording frequency and a low number of

recorded variables will require a small buffer.

In order to not restrict the record size for a real-time file record, the

programmer must supply the"memory to hold the variable address table which

controls the transfer of data between the program-and the file buffer. Note

that one location is required for each simple variable and only one location

for each array specified.

ERROR MESSAGES:

1. 	 BUFFER SIZE LESS THAN MINIMUM 	 (NERROR-= 101)

NBUFF specification is too small to allow reasonable disk performance.

Must be greater than 128 and greater than twice the size of VTAB.

2. 	 FILE n NOT REWOUND (NERROR = 103, 104)

File must be rewound before new specifications are made.

3. 	 ILLEGAL FILE NUMBER (NERROR = 4)

File number is not 1 or 2.

4. 	 ILLEGAL TABLE SIZE (NERROR = 102)

NTAB must be greater than 0.

5. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

26 	 Revision A

6. CALLED IN WRONG PROGRAM STATE (NERROR = 2)

May not be called in SRT.

7. NO RTDM FILES ALLOCATED (NERROR = 125)

RTDM files not requested when SKED executed.

8. FILE 2 NOT ALLOCATED (NERROR = 126)

IFN 2 and RTDM SKED request did not request allocation for file 2.

9. 	 BAD STATUS FROM URT - FET FUNCTION (NERROR = 203)

STATUS =

This error should never occur and it indicates a failure of the Supervisor

or 	 the real-time system. An analyst should be informed of the problem.

27 	 Revision A

FILEVAR

PURPOSE: To establish a table of variable addresses for communication with

simulation disk.

USE: Format 1 CALL FILEVAR (IFN, VI, V2, ..

Format 2 CALL FILEVAR (IFN, VI, V2, . . .), RETURNS ($ERROR)

IFN integer file number (1 or 2) indicating for which file

variables are being specified.

Vi A to 62 simple variable names. See Format 3 and Format 4

below for array referencing. (Note that FiLEVAR may be called

more than once to establish a variable table.)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 If a specified variable is double precision, then only the more

significant word is accessed.

2. 	 If a specified variable is complex, then only the real part is accessed.

3. 	 FILEVAR may be called only enough times to fill the variable table as

specified by VARTAB and NTAB in FILEARR.

4. 	 Must be called before any calls to RTWRITE.

5. 	 Extreme caution must be used when calls related to a real-time disk file

are used in multiple overlays. The variables must be in COMMON or in a

common overlay.

28 	 Revision A

DESCRIPTION: Each time FILEVAR is dalled, the specified set of variables is

added to the variable address table for the specified file. This-table is

used to control the transfer of data records on subsequent calls to RTWRITE.

FILEVAR may be called in any program state so that the size of a simulation

disk record may vary as it is written. NEWVAR may be called to establish a

new table (see SUBROUTINE NEWVAR) while data is being written.

ERROR MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR ='4)

File number is not 1 or 2.

2. 	 TOO MANY VARIABLES SPECIFIED (NERROR = 120)

Attempt to exceed variable table as specified from FILEARR.

3. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT

4. 	 FILE n NOT INITIALIZED (NERROR = 5, 6)

Failure to call FILEARR

5. 	 BUFFER TOO SMALL (NERROR = 132)

Huffer specified in FILEARR is not large enough to hold variable table

and data.

29 	 Revision A

USE: Format 3 CALL FILEVAR (IFN, AERAYl, NI, ARRAY2, N2, . . .

Format 4 CALL FILEVAR (IFN, ARRAYI, NI, ARRAY2, N2, . . .), RETURNS ($ERROR)

IFN negative file number (-1 or -2) indicating which file arrays

are for.

ARRAYi name of array to be saved. (Maximum of 31 arrays per call.)

Ni number of words in ARRAYi (DIMENSION).

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 If the array is multi-dimensional, Ni should be the product of the

dimensions.

2. 	 If an array is double precision or complex, the number of words specified

(Ni) should be twice that specified in the dimensionality statement.

3. 	 FILEVAR may be called only enough times to fill the variable table as

specified by VARTAB and NTAB in FILEARR.

4. 	 Must be called before any calls to RTWRITE.

5. 	 Extreme caution must be used when calls related to a real-time disk file

are used in multiple overlays. The variables must be in COMMON or in a

common overlay.

DESCRIPTION: Each time FILEVAR is called, the specified set of arrays and

lengths is added to the variable address table for the specified file. Note

that each array reference requires only one word in the variable table.

FILEVAR may be called in any program state so that the size of a simulation

disk record may vary as it is written. NEWVAR may be called to establish a

new table (see SUBROUTINE NEWVAR in the section) while data is being written.

30 	 Revision A

ERROR MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR = 4)

File number is not -1 or -2.

2. 	 TOO MANY VARIABLES SPECIFIED (NERROR = 120)

Attempt to exceed variable table as specified from FILEARR.

3. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

4. 	 FILE n NOT INITIALIZED (NERROR = 5, 6)

Failure to call FILEARR.

5. 	 ARRAY LENGTH NOT SPECIFIED (NERROR = 122)

No corresponding Ni for ARRAYi.

6. 	 BAD ARRAY LENGTH (NERROR = 123)

Length is 0 or negative.

7. 	 NEGATIVE UNUSED TABLE ENTRY COUNT (NERROR = 201)

This error should never occur and indicates that either the Supervisor

contains a logic flaw or that the data buffer has been inadvertantly

overwritten. An analyst should be informed of this problem.

8. 	 BUFFER TOO SMALL (NERROR = 132)

Buffer specified in FILEARR is not large enough to hold variable table

and data.

31 	 Revision A

NEWVAR

PURPOSE: To erase a file variable table as established by FILEVAR.

USE: 	 Format 1 CALL NEWVAR (IFN)

Format 2 CALL NEWVAR (IFN), RETURNS ($ERROR)

IFN integer file number (1 or 2) indicating which file variable

table is to be erased.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 FILEVAR must be called before any subsequent calls to RTWRITE.

2. 	 NEWVAR should be called during a write sequence to reinitialize the table

of recorded variables or after the file has been rewound. It should not

be called during a read sequence.

DESCRIPTION:
NEWVAR is called when it is desired to establish a new variable

address table for a file. NEWVAR resets the table size to zero so that

subsequent FILEVARs can establish a new variable table. Note that NEWVAR may

be called in real-time so that dynamically changing read/write requirements

may 	 be accommodated. A variable table does not.exist after a CALL NEWVAR.

ERROR 	 MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR = 4)

File number is not 1 or 2.

2. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

3. 	 FILE n NOT INITIALIZED (NERROR = 5, 6)

Failure to call FILEARR.

32 	 Revision A

4. CALLED DURING READ OPERATIONS - FILE n - (NERROR = 129, 130)

NEWVAR was called when last operation on file was a read.

33 Revision A

READBUF

PURPOSE: To initially fill a buffer before the first transfer of data to

the program in SRT by RTREAD.

USE: Format 1 CALL READBUF (IFN)

Format 2 CALL READBUF (IFN), RETURNS ($ERROR)

IFN integer file number of file to be read.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 READBUF may only be called in HOLDi or HOLD2.

2. 	 The file must have been previously written by RTWRITE.

DESCRIPTION: In order to read a file in real-time, the data must be in the

buffer before it can be transferred to the simulation program. Therefore,

READBUF or SKPRTR must be called prior to the first RTREAD to read the first

buffer of data from the disk. Once RTREAD is called, RTREAD will continue to

refresh the buffer as necessary.

ERROR MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR = 4)

File number is not 1 or 2.

2. 	 FILE n NOT INITIALIZED (NERROR = 5, 6)

Failure to call FILEARR.

3. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

State is not HOLDi or HOLD2.

4. 	 FILE n EMPTY (NERROR = 105, 106)

No data written on file.

34 	 Revision A

5. I/O SEQUENCE ERROR FOR FILE n (NERROR = 13, 14)

Attempt to read a file when last request was a write. File must be

rewound first.

6. REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

7. VARIABLE TABLE TOO SMALL (NERROR = 121)

File contains variable table that exceeds size of variable table specified

in last call to FILEARR.

8. 	 PARITY ERROR DETECTED ON FILE n (NERROR = 133, 134)

Unrecoverable disk parity error. An analyst should be informed of the

problem.

9. 	 DISK HARDWARE ERROR (NERROR = 208)

STATUS'=

- This error should never occur and it indicates that-an RTDM response code

was not recognized. An analyst-should be informed of the problem.

35 	 Revision A

RTREAD

PURPOSE: To read one set of program variables from a simulation disk in real

time.

UE: Format 1 CALL MTEAD (IFN, LD), RETURNS ($END'

Format 2 CALL RTREAD (IFN, LD), RETURNS ($END,$ERROR)

IFN integer file number (1 or 2)indi6ating which file is to be

read.

LD 0 returned indicates data transferred.

-1 returned indicates lost data gap (see RTWRITE).

$END statement number to-which control is returned if end of file

is encountered.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 RTREAD may not be called in HOLD3.

2. 	 A buffer and variable address table space must have been previously

established for this file number by a call to FILEARR.

3. -A call to READBUF or SKPRTR must be called in HOLDi or HOLD2 before the

first call to RTEAD in SRT.

4. 	 CAUTION: An optimizing compiler may optimize this call out of order

since the variables are not specified in the call.

DESCRIPTION: Each time RTREAD is called one set of previously recorded

variables is placed in the corresponding variable addresses. If the file

being read contains gaps due to lost data conditions (from RTWRITE), then no

36 	 Revision A

data will be transferred until the gap has been passed. (LD will be set to -1

during the gap.)-

ERROR MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR 4)

File number is not 1 or 2.

2. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

May not be called in HOLD3.

3. 	 FILE n NOT INITIALIZED (NERROR = 5,6)

Failure to call FILEARR.

4. 	 LOST DATA DETECTED FOR FILE n (NERROR = 9,10)

Exceeded data transfer capacity of simulation disk system (in SRT only).

5. 	 BUFFER EMPTY (NERROR = 119)

READBUF or SKPRTR must be called before the call to RTREAD.

6. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

J7. 	 VARIABLE TABLE TOO SMALL (NERROR = 121)

File being read contains variable table that exceeds the size of the

variable table specified in last call to FILEARR.

8. 	 I/O SEQUENCE ERROR FOR FILE n 	 (NERROR = 13,14)

Attempt to read a file when last operation was a write. File must be

rewound first.

9. 	 UNRECOGNIZABLE FILE HEADER 	 (NERROR = 205)

This error should never occur and it indicates that Supervisor did not

find a specially coded file header in a real-time file. An analyst should

be 	 informed of the problem.

37 	 Revision A

10. 	 PARITY ERROR DETECTED ON FILE n 	 (NERROR = 133,134)

Unrecoveratle disk-parity occurred.' An analyst should be informed of the

problem.

11. 	 DISK HARDWARE ERROR (NERROR = 208)

STATUS

This error should never occur and it -indicates that a RTDM response code

was 	 not recognized. An analyst should be informed of the problem.

12. 	 BUFFER TOO SMALL (NERROR = 132)

Buffer specified in FILEARR is not large enough to hold variable table and

data.

38 	 Revision A

RTWRITE

PURPOSE: To write one set of program variables to the simulation disk in SRT.

USE: Format 1 CALL RTWRITE (IFN)

Format 2 CALL RTWRITE (IFN), RETURNS ($ERROR)

IFN integer file number (1 or 2) indicating which file is to be

written.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 RTWRITE may not be called in HOLD3.

2. A buffer and variable address table space must have been previously

established for this file number by a call to FILEARR.

3. 	 A table of variables must have been previously established for this file

number by one or more calls to FILEVAR.

4. 	 CAUTION: An optimizing compiler may optimize this call out of order

since the variables are not specified in the call.

DESCRIPTION: Each time RTWRITE is called, one set of program variables, as

established by calls to FILEVAR for the file number, is written to the

simulation disk file. Note that the variable address table, as established by

calls to FILEVAR, may be changed while the file is being written. Additional

calls to FILEVAR will lengthen the table, while a CALL NEWVAR, followed by

calls to FILEVAR, will establish a new table. If the variable address table

is altered, the new table is recorded before the data on the file so that when

the file is read, the data is transferred to the same addresses from which it

was recorded.

39 	 Revision A

ERROR MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR = 4)

File number is not 1 or 2.

2. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

May not be called in HOLD3.

3. 	 FILE n NOT INITIALIZED (NERROR = 5,6)

Failure to call FILEARR.

4. 	 NO VARIABLES FOR FILE n (NERROR = 7,8)

FILEVAR had not been called to establish variable addresses for data

transfer.

5. 	 LOST DATA DETECTED FOR FILE n (NERROR = 9,10)

Exceeded data transfer capacity of simulation disk system.

6. 	 ATTEMPT TO EXCEED ALLOCATED FILE SPACE, FILE n (NERROR = 11,12)

Attempt to use more disk space than allocated through SKED.

7. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

8. 	 I/O SEQUENCE ERROR FOR FILE n (NERROR = 13,14)

Attempt to write a file when last operation was a read. File must be

rewound first.

9. 	 PARITY ERROR DETECTED ON FILE n 	 (NERROR = 133,134)

Unrecoverable disk parity error occurred. An analyst should be informed

of the problem.

10. 	 DISK HARWARE ERROR (NERROR = 208)

STATUS =

This error should never occur and it indicates that a RTDM response code

was not recognized. An analyst should be informed of the problem.

40 	 Revision A

REWRTF

PURPOSE: To flush the buffer and rewind a real-time disk file.

USE: Format I CALL REWRTF (IFN)

Format 2 CALL REWRTF (IFN), RETURNS ($ERROR)

IFN integer file number (1 or 2) indicating-which file is to be

rewound.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 No automatic file positioning is done by Supervisor. A file must be

explicitly rewound between RTWRITE and RTREAD.

2. 	 REWRTF may not be calied in SRT.

DESCRIPTION:
 Each time REWRTF is called, the specified file is rewound-to the

beginning of information. If the file buffer is not empty and the last file

activity was a write, the remaining data is written to the file. Rewinding a

rewound file or an uninitialized file is a null operation. If REWRTF is

called in HOLD3, Supervisor enters HOLD1, issues the rewind, and returns to

HOLD3.

ERROR MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR = 4)

File number is not 1 or 2.

2. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

REWRTF may not be called in SRT.

3. 	 ATTEMPT TO EXCEED ALLOCATED FILE SPACE, FILE n (NERROR = 11, 12)

Attempted to use more disk than allocated through SKED.

4I 	 Revision A

4. PARITY ERROR DETECTED ON FILE n (NERROR = 133, 134)

Unrecoverable disk parity error occurred. An analyst should be informed

of the problem.

5. DISK HARDWARE ERROR (NERROR =-208)

STATUS =

This error should never occur and it indicates that a RTDM response code

was not recognized. An analyst should be informed of the problem.

42 Revision A

SKPRTR

PURPOSE: To skip forward records on a real-time disk file.

LM: Format 1 CALL SKPRTR (IFN, N)

Format 2 CALL SKTRTR (IFN, N), RETURNS ($END, $ERROR)

IFN integer file number (1 or 2) indicating on which file records

are to be skipped.

N number of records to be skipped.

$END statement number to which control is returned if end of file

is encountered.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 Skipping may be done only on a file that is being read.

2. 	 Skipping may not be done in HOLD3.

DESCRIPTION: Each time that SKPRTR is called, the specified number of records

is skipped on the file. If there are not enough records left on the file to

skip, the file is positioned at end of information and control is returned to

the 	 $END statement number.

ERROR MESSAGES:

1. 	 ILLEGAL FILE NUMBER (NERROR = 4)

File number is not 1 or 2.

2. 	 NEGATIVE RECORD COUNT (NERROR = 107)

Number of records may only be 0 or positive.

3. 	 T/O SEQUENCE ERROR FOR FILE n (NERROR = 13, 14)

Skipping may only be done on a file that is being read.

43 	 Revision A

4. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

5. 	 FILE n NOT INITIALIZED (NERROR = 5, 6)

Failure to call FILEARR.

6. 	 VARIABLE TABLE TOO SMALL 	 (NERROR = 121)

File being skipped contains a variable table that exceeds the size of the

variable table specified in last call to FILEARR.

7. 	 BUFFER EMPTY 	 (NERROR = 119)

SKPRTR was called in SRT before READBUF or SKPRTR had been called to

initialize the buffer in HOLDI or HOLD2.

8. 	 LOST DATA DETECTED FOR FILE n (NERROR = 9, 10)

Exceeded data transfer capacity of simulation disk system (SRT only).

9. 	 UNRECOGNIZABLE FILE HEADER (NERROR = 205)

This error should never occur and it indicates that Supervisor did not

find a specially coded file header in a real-time file. An analyst should

be informed of the problem.

10. 	 PARITY ERROR DETECTED ON FILE n (NERROR = 133, 134)

Unrecoverable disk parity error occurred. An analyst should be informed

of the problem.

11. 	 DISK HARDWARE ERROR 	 (NERROR = 208)

STATUS =

This error should never occur and it indicates that a RTDM response was

not recognized. An analyst should be informed of the problem.

44 	 Revision A

DISPOSE

PURPOSE: 	 To dispose a file to an"output queue.

USE: 	 Format 1 CALL DISPOSE (LFN, QUEUE, OT)

Format 2 CALL DISPOSE (LFN, QUEUE, OT), RETURNS ($ERROR)

LFN logical file name, left justified, either blank filled or zero

filled (e.g., 2LMF or 2HMF or .WF").

QUEUE (optionai) queue to which file is to be disposed. Valid

values are:

"PR" - print queue (DEFAULT)

"PH" - punch queue coded 026

"P9" - punch queue coded 029

"PB" - punch binary

"P8" - punch 80 column binary

OT (optional) origin type queue to which the file is to be

disposed. Valid values are:

"BC" - batch queues (DEFAULT)

"El" - remote batch queues

$ERROR 	 statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. The file must be a local mass storage file.

2. The file must exist and be nonempty.

3. The file should be rewound to assure that all information has been written.

4. May not be called in SRT.

45 	 Revision A

DESCRIPTION: the file is released to the specified queue. If the origin type

is "1EI" and the computer being used is R or T, then the file is released to

the simulation batch terminal on that machine. If the origin type is "El" and

-some other computer is used, the file is released to the user's user number.

ERROR MESSAGES:

1. 	 ILLEGAL FILE TYPE (NERROR = 108)

File is not a local mass storage file.

2. 	 FILE EMPTY (NERROR = 109)

No information on file or file does not exist.

3. 	 ILLEGAL FILE NAME (NERROR = 110)

LFN is not a file name.

4. 	 ILLEGAL QUEUE TYPE (NERROR = 111)

Queue type is unrecognizable. ­

5. 	 ILLEGAL ORIGIN TYPE (NERROR = 112)

Origin type is unrecognizable.

6. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

7. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

May not be called in SRT.

8. 	 ERROR RETURN FROM LFM (NERROR = 206)

STATUS =

This error should never occur and it indicates that LFM (local file

manager) returned an error code that was not recognized by Supervisor.. An

analyst should be informed of the problem.

46 	 Revision A

EXAMPLE 1

PROBLEM STATEMENT:

Write variables T, X, Y, and Z and arrays P, D, and Q to RTDISK during a

synchronized simulation run., After the run is completed, play back the

written data, print the data,,and dispose the print file to the batch line

printer.

EXPLANAION: (numbers refer to program listing below)

1. 	 The PROGRAM statement establishes the standard input and output files. In

addition, it establishes a special file which will be written on and

disposed to the batch printer.

2. 	 This DIMENSION establishes arrays which will be used for the real-time

file buffer and the variable address table.

3. 	 This DIMENSION establishes the simulation recording array variables.

4. 	 This DATA statement establishes a file name for subsequent access to the

file PRTFILE.

5. 	 This CALL defines the data buffer and variable address buffer for

real-time file 1.

6. 	 These two CALLS establish the program variables and arrays for real-time

file 1.

7. 	 This CALL executed in synchronized real-time causes the variables and

arrays established in 6 to be written to real-time file 1.

8. 	 This CALL, executed in HOLDI or HOLD2, causes real-time file 1 to be

rewound.

47 	 Revision A

9. 	 This loop causesone-record of real-time'data to be read from the

real-time disk and written to file PRTFILE each time through the loop.

After the last record hasbeen processed, control is transferred to

statement 90032.­

10. 	 PRTFILE is rewound to ensure that all data is flushed from the buffer;

then the file is disposed to the batch print queue for printing.

11. 	 Real-time file 1 is rewound before making another run. Subsequent CALLS

to RTWRITE will cause the same set of variables and arrays to be written

as before.

48 	 Revision A

EXAMPLE 1

-1- PROGRAM A (INPUT,OUTPUT,PRTFILE)

-2­
-3- DIMENSION BUF1(2049),VTAB(7)

DI'MENSION P(5),D(513) iQ(10)

INTEGER PRTFILE

-4-
C ESTABLISH FILE NAME FOR PRTFILE

DATA PRTFILE /7LPRTFILE/

-5­
-6­
-6-

C ESTABLISH FILE BUFFER AND VARIABLE ADDRESSES
CALL FILEARR (1,BUF1,2049,VTAB,7)
CALL FILEVAR (1,T,X,Y,Z)
CALL FILEVAB (-1,P,5,D,15,Q,10)

C
C

ENTER SRT FRAME LOOP
THE FOLLOWING SECTION IS THE REAL TIME LOOP

-7-
C WHITE OUT THE PROGRAM VARIABLES EACH FRAME TIME

CALL RTWRITE (1)

C END OF SET LOOP

C ENTER HOLDI OR HOLD2 STATE

-8­

-9­

-10­
-10-

C READ BACK THE PROGRAM VARIABLES AND WRITE TO PRTFILE
CALL REWRTF(1)

90030 CALL RTREAD,(I,LD), RETURNS (90032)
WRITE (PRTFILE,20000) T,X,Y,Z,P,D,Q

20000 FORMAT ()
GO TO 90030

C ALL VARIABLES HAVE BEEN WRITTEN, DISPOSE 'TO PRINTER
90032 REWIND PRTFILE

CALL DISPOSE (PRTFILE,"PR")

-11-
C

C

REWIND FILE 1 FOR NEXT RUN
CALL REWRTF (1)

RETURN TO SRT

END

49 Revision A

EXAMPLE 2

PROBLEM STATEMENT:

Copy a local file containing data to be read in real-time to a real-time

disk file. Read the data (3 variablei) from-the real-time disk file in

synchronized real time and write the results of the simulation run (7

variables) to the other real-time file. After the simulation run is complete,

print the results and prepare for another run using the same real-time data.

EXPLANATION: (numbers refer to program listing below)

1. The PROGRAM statement establishes the-standard input and output files. In

addition, it is used to establish both the local file RTDATA which

contains the real-time data and the local file PRTFILE'which will be

written on and disposed to the batch line printer.

2. The DIMENSION establishes arrays for the real-time file buffers and

variable address tables.

3. This DATA statement establishes file names for subsequent access to files

RTDATA and PRTFILE.

4. 	 This CALL defines the data buffer and variable table buffer for real-time

file 2.

5. This CALL establishes the program variables that will be associated with

real-time file 2.

6. This loop causes sets of the variables VW, DELE, and DELA to be read from

the local file RTDATA and then recorded on real-time file 2 until the end

of file on RTDATA is reached. Each set of the variables becomes a logical

record on the real-time file.

7. 	 Real-time file 2 is rewound and the buffer is loaded initially for

subsequent RTREADs. ORIGINAL PAGE IS

O pOOR QUALITY

50 	 Revision A

8. A file buffer and associated variables are defined for real-time file 1

which will be used to record the results of the simulation run.

9. 	 File 2 is read in real-time. Each time RTEAD is called, one set of the

variables VW, DELE, and DELA are placed in memory. The program continues

at statement 90100 whether or not end of information on real-time file 2

is reached.

10. 	 A set of results is written to real-time file 1.

11. 	 Real-time file 1 is rewound before being played back.

12. 	 This loop causes one record of real-time results to be read from the real­

time disk and written to file PRTFILE each time through the loop. After

the 	 last record has been processed, control is transferred to statement

90032.

13. 	 PRTFILE is rewound to ensure that all data is flushed from the buffer;

then 	the file is disposed to the batch print queue for printing.

14. 	 Both files are rewound prior to the next run.

15. 	 The real-time input file buffer is initialized for the next run.

ORIGINAL PAGE IS
- OF, POOR QUALITY

51 	 Revision A

EXAMPLE 2

-1- PROGRAM B (INPUT,OUTPUT,RTDATA,PRTFILE)

-2­ -DIMENSION-BUF1(2049-)-,BUF2(5i3),VTABV(7),VTAB2(3)

INTEGER RTDATA,PRTFILE

-3-
C ESTABLISH FILE NAMES

DATA RTDATA /6LRTDATA/, PETFILE /YLPRTFILE/

-4­
-5­

-6­

-7­
-7-

C INITIALIZE REAL TIME INPUT FILE AND COPY DATA FROM RTDATA

CALL FILEARR (2,BUF2,513,VTAB2,3)

CALL FILEVAR (2,VW,DELE,DELA)

100 READ (RTDATA,10000) VW,DELEDELA
10000 FORMAT ()

IF (EOF(RTDATA)) 120,110
110 CALL RTWRITE (2)

GO TO 100
120 CALL REWRTF (2)

CALL READBUF (2)

-8­
-8­

.C INITIALIZE REAL TIME OUTPUT FILE

CALL FILEARR (1,BUF1,2W49,VTAB1,7)

CALL FILEVAR (1,T,U,VW,X,Y,Z)

C
C

ENTER SHT LOOP.

THE FOLLOWING SECTION IS THE REAL TIME LOOP

-9-

C READ THE REAL TIME DATA FILE, IGNORE END OF FILE

CALL RTREAD (2), RETURNS (90100)

90100 CONTINUE

-10-
C WRITE OUT THE PROGRAM VARIABLES EACH FRAME TIME

CALL RTWRITE (1)

C END OF SRT LOOP

C ENTER HOLD1 OR HOLD2 STATE ORIGINAL PAGE IS'0 o0 QUALITY

2isiPOORQ

52 Revision A

C READ BACK THE PROGRAM VARIABLES AND WRITE-TO PRTFILE

-11­

-12­

"CALL REWRTF(1)
90030 CALL RTBEAD (1,LD),, RETURNS (90032)

WRITE (PRTFILE,20000) T,U,V,W,X,Y,Z
20000 FORMAT (

GO TO 90030

-13­
-13-

C ALL VARIABLES HAVE BEEN WRITTEN, DISPOSE TO PRINTER
90032 REWIND PRTFILE

CALL DISPOSE (PRTFILE,"IPR")

-14­
-14­
-15-

C

C

INTIALIZE FILES FOR NEXT RUN
CALL REWRTF (I)
CALL REWRTF (2)
CALL READBUF (2)

RETURN TO SRT

ORIGINAL PAGE IS

END "'04POOR QUALITY

53 Revision A

EXAMPLE 3

PROBLEM STATEMENT:

During an aircraft landing simulation, write the variables T, H, X-, Y, Z,

U, 	V, and W to a real-time file until the altitude (H) gets below 8000 feet.

At 	 that time, begin writing additional variables RANGE, AZIMUTH, and ELEVAT.

After the simulation run print the time history.

EXPLANATION: (numbers refer to program listing below)

1. 	 The PROGRAM statement establishes the standard input and output files. In

addition, it establishes a special file which will be written on and.

disposed to the batch printer.

2. -This DIMENSION establishes the arrays which will be used for the real-time

file buffer and variable table.

3. 	 This DATA statement establishes a file name for subsequent access to the

file PRTFILE.

4. 	 This CALL defines the buffer and variable table array for real-time file

1.

5. 	 This CALL establishes the initial set of program variables that will be

associated with real-time file 1.

6. 	 This initializes the control variable INIT.

7. 	 This section of code causes the variables RANGE, AXIMUTH, and ELEVAT to be

added to the set of variables associated with real-time file 1. This is

done the first time that H gets below 8000 feet.

8. 	 This CALL executed in SRT causes the variables established by FILEVAR to

be written to real-time file 1.

9. 	 This CALL causes real-time file 1 to be rewound.

54 	 Revision A

10. 	 This loop reads back the data on real-time file 1 and writes the time

history on PRTFILE. The loop exits to 90032 when all the data has been

processed.

11. 	 PRTFILE is rewound to ensure that all data is flushed from the buffer;

then the file is disposed to the batch print queue for printing.

12. 	 Real-time file 1 is rewound before making another run.

13. 	 This CALL erases the previous file 1 variable table so that RANGE,

AZIMUTH, and ELEVAT will not be recorded initially.

14. 	 FILEVAR is called to establish the initial file 1 variables.

15. 	 Control variable INIT is reinitialized.

55 	 Revision A

EXAMPLE 3

-1- PROGRAM C (INPUT,OUTPUT,PRTFILE)

-2- DIMENSION BUF1(1025),VTAB1l(11)
INTEGER PRTFILE

-3-
C ESTABLISH FILE NAME FOR PRTFILE

DATA PRTFILE /7LPRTFILE/

-4­
-5­
-6-

C ESTABLISH FILE BUFFER AND VARIABLE ADDRESSES
CALL FILEARR (1,BUF1,1025,VTAB1,11)
CALL FILEVAR (1,T,H,X,Y,Z,U,V,W)
INIT = 0

C
C

ENTER SRT FRAME LOOP
THE FOLLOWING SECTION IS THE REAL TIME LOOP

-7-

C WHEN H PASSES THRU 8000 START WRITING RANGE, AZIMUTH, AND ELEVATION
IF (H.GT.8000.0) GO TO 91000
IF (INIT.LT.0) GO TO 9100
CALL FILEVAR (1,RANGE,AZIMUTH,ELEVAT)
INIT = -1

91000 CONTINUE

-8-
C WRITE OUT THE PROGRAM VARIABLES EACH FRAME TIME

CALL RTWRITE (1)

C END OF SRT LOOP

C ENTER HOLDI OR HOLD2 STATE

-9­

-10­

-11­
-11­

(
C READ BACK THE PROGRAM VARIABLES AND WRITE TO PRTFILE

CALL REWRTF(1)
90030 CALL RTREAD (1,LD), RETURNS (90032)

WRITE (PRTFILE,20000) T,H,X,Y,Z,U,V,W
IF (H.LT.8000.0) WRITE (PRTFILE,20001) RANGE,AZIMUTH,ELEVAT

20000 FORMAT ()
20001 FORMAT ()

GO TO 90030
C ALL VARIABLES HAVE BEEN WRITTEN, DISPOSE TO PRINTER
90032 REWIND PRTFILE

CALL DISPOSE (PRTFILE,"PR")

56 Revision A

C INITIALIZE FILE 1 FOR'NEXT RUN
-12- CALL REWRTF (1)
-13- CALL NEWVAR (1)
-14- CALL FILEVAR (1,T,H,X,Y,Z,U,v,W)
-15- INIT = 0

C RETURN TO SRT

END

ORIGINAL PAGE IS
OF. PoOR QUALF~y

57 Revision A

LOST TIME SYNCHRONIZATION

A condition known as lost time synchronization occurs when a program in

synchronized real-time attempts to use more central processor time in a single

frame than was allotted to the program through SKED. Mhen-this occurs, Real-

Time Monitor interrupts the program, saves its operating registers, and

restarts the program on the next frame at a previously established interrupt

address in Supervisor. At this point, the Supervisor has two paths that can

be processed. If no previous CALL LOSTIME has been executed or if the

argument NFRAME is negative, the Supervisor transfers control to the standard

error package. If LOSTIME recovery is enabled, control is transferred to the

recovery statement. The program is still in SRT and at this recovery point

the application program can issue a CALL RESUME or RESUMEQ to resume execution

at the point of interruption or the program may elect to do some other

processing.

58 Revision A

LOSTIME

PURPOSE: To provide a lost time synchronization recovery capability.

USE: 	 Format 1 CALL LOSTIME (NFRAME), RETURNS ($RECSTAT)

Format 2 CALL LOSTIME (NFRAME), RETURNS ($RECSTAT,$ERROR)

NFRAME maximum number of frames the program is allowed to be in

continuous lost synchronization recovery. If NFRAME is

negative, no recovery processing will be done and Supervisor

will transfer control to the standard error package.

$RECSTAT statement number to which control is transferred each time a

lost synchronization interrupt occurs.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: None.

DESCRIPTION: If this call is not made at least once, control is transferred to

the standard error recovery package when a lost-synchronization interrupt

occurs. Subsequent calls to this entry point may reset the paramenter NFRAME

and return addresses $RECSTAT and $ERROR. A counter is maintained for

adjacent lost time synchronization interrupts. Until this counter exceeds

NFRAME, control is transferred to $RECSTAT. If the count exceeds NFRAME,

control is transferred to $ERROR if specified, or if not, to the standard

error recovery package. This counter will be reset if a normal frame end

occurs (RTCYCLE, RTIDLE, or RTCLEAR) or a change of program state is affected.

59 	 Revision A

ERROR-MESSAGES:

1. 	 REAL TIME HAS NOT BEEN INITIALIZED 	 (NERROR = 1)

No 	 previous call to RTINIT.

2.. 	 LOST TIME SYNCHRONIZATION INTERRUPT HAS OCCURRED (NERROR-= 113-)--

LOSTIME was not called or recovery was disabled and a single lost time

interrupt occurred. (Note that this error is not generated by LOSTIME,

but by the lost synchronization detection section of RTINIT. The message

is included here for clarity.)

3. 	 TOO MANY LOST SYNCHRONIZATION INTERRUPTS (NERROR = 114)

Number of continuous lost synchronization interrupts exceeds NFRAME.

(Note that this message is not generated by LOSTIME, but by the lost

synchronization detection section of RTINIT. The message is included

here for clarity.)

4. 	 NO LOST TIME RECOVERY ADDRESS (NERROR = 127)

$RECSTAT was not specified for NFRAME positive.

ORIGINAL PAGE IS

19F, POOR QUALITY

60 	 Revision A

RESUME,

PURPOSE: To resume processing at the point where lost time synchronization

interrupt occurred.

USE: Format 1 CALL RESUME

Format 2 CALL RESUME, RETURNS"($ERROR)"

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. A lost time synchronization interrupt must have occurred.

2. 	 The program must be in SRT state.

3. 	 No state changes are allowed between the interrupt and the CALL RESUME.

DESCRIPTION: When a lost time synchronization interrupt occurs., the complete

program state (exchange package) is saved. By calling RESUME, the program is

restarted at the point that the interrupt occurred.

ERROR MESSAGES:

1. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

RESUME must be called in SRT only.

2.. 	 NO LOST SYNCHRONIZATION, RESUME CALLED (NERROR = 115)

RESUME was called before lost time synchronization interrupt occurred'

or the program state had been changed.

3. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

4. 	 RESUME CALLED BY NONREAL-TIME JOB (NERROR = 128)

RESUME may not becalled by a nonreal-time job.

61 	 Revision A

RESUMEQ

PURPOSE: To resume processing at the point where lost time synchronization

interrupt occurred.

USt: 	 Format 1 CALL RESUMEQ

Format 2 CALL RESUMEQ, RETURNS ($ERROR)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. A 	 lost time synchronization interrupt must have occurred.

2. The program must be in SRT state.

DESCRIPTION: When a lost time synchronization interrupt occurs, the complete

program state (exchange package) is saved. By calling RESUMEQ, the program is

'restarted at the point that the interrupt occurred. The only difference

between RESUMEQ and RESUME is that RESUMEQ will allow changing of states

between the lost time synchronization interrupt and the resuming call.

ERROR MESSAGES:

1. CALLED IN WRONG PROGRAM STATE

RESUMEQ must be called in SRT only.

2. REAL TIME HAS NOT BEEN INITIALIZED

No previous call to RTINIT.

(NERROR

(NERROR

2)

1)

3. RESUMEQ CALLED BY NONREAL-TIME JOB

RESUMEQ may not be called by a nonreal-time job.

4. NO LOST SYNCHRONIZATION, RESUMEQ 'CALLED

(NERROR =

(NERROR

128)

115)

RESUMEQ was called before lost time synchronization interrupt occurred.

-62 	 :RevisionA

EXAMPLE4

PROBLEM STATEMENT:

Set up a simulation program such that one frame of lost synchronization is

allowed before the program "synchs" up again. If more than one adjacent lost

synchronization interrupt occurs, go into HOLD3 state, issue messages, and do

cleanup processing.

EXPLANATION: (numbers refer to program listing below)

1. 	 The PROGRAM statement establishes access to the standard input and output

files and PRTFILE.

2. 	 This CALL initializes the program for real-time processing.

3. 	 This CALL establishes the maximum number of frames the program is allowed

to be in continuous lost synchronizati6n recovery (1), the lost

synchronization recovery statement (90100), and the error recovery address

(90200).

4. 	 The program enters synchronized real-time.

5. The program recovers to.this point on the first of a series of lost

synchronization interrupts. It calls RESUME to resume the program at the

point of interruption.

6. The program recovers to this point when more than one contiguous lost

synchronization interrupt occurred. The program enters HOLD3 to

communicate with the terminal and to do cleanup processing.

63 	 Revision A

EXAMPLE 4

-1- PROGRAM A (INPUT,OUTPUT,PRTFILE)

-2-
C INITIALIZE FOR REAL TIME

CALL RTINIT ("TEST LTIME",ADC',4,DAC,30)

-3-
C INITIALIZE LOST TIME PROCESSING

CALL LOSTIME (1), RETURNS (90100,90200)

-4-
C

C

ENTER SRT
CALL RTSRT

BEGIN SRT LOOP

C END OF SRT LOOP

-5-
C LOST TIME INTERRUPT POINT
90100 CALL RESUME

-6-
C LOST TIME SYNCHRONIZATION OCCURRED TWICE IN SUCCESSION
90200 CALL RTHOLD3
C ISSUE MESSAGE TO TERMINAL AND DO CLEANUP PROCESSING

END

64 Revision A

NONREAL-TIME USAGE

The Supervisor consists of two subroutine sets, each on a different

library. One set is used for the normal processing of a simulation With

connection to the real-time hardware. The other set isused for debugging and

analysis where connection to the real-time hardware is not required and no

communication with Real-Time Monitor, the DASS hardware, the real-time disk,

or the CRTs is done.

An entry point (RTCLASS) is provided that returns a condition flag

indicating which Supervisor is being used. If the nonreal-time Supervisor is

being used, the Real-Time Monitor and the DASS system are simulated.

Initially, all discrete inputs are off and all ADC inputs are 0. These values

are not changed by the Supervisor. Real-time disk files 1 and 2-become local

files RTDM1 and RTDM2. If an error is detected and if a corresponding *ERROR

statement number has been specified, then transfer to $ERROR is doie. If

$ERROR is not specified and the job is time-sharing origin, the program may

recover to the global recovery address (see RECADD), if specified; otherwise,

all errors are fatal.

65 Revision A

RTCLASS

PURPOSE: To determine which Supervisor is being used.

USE: CALL RTCLASS (N)

N 0 if nonreal-time Supervisor is being used.

-1 if real-time Supervisor is being used.

RESTRICTIONS: None.

DESCRIPTION: Supervisor sets the value of N depending upon which library is

used. This allows a real-time program and a nonreal-time program to be

identical and the programmer need only to use the correct library for loading.

ERROR MESSAGES: None.

66 Revision A

COMMON BLOCK COMMUNICATION AND-DISCRETE INPUT/OUTPUT

Four labeled common blocks (Q9RTIO, SUPCOMM, ERROR, DSCRETE) are

maintained by Supervisor. QSRTIO should not be declared in the user's program

because it is used for communication between various utility routines in the

real-time library. SUPCOMM contains certain information that Supervisor knows

about the job. The user would declare this common if he needs any of this

data. The applications program should never write into this common because it

may adversely affect Supervisor. ERROR returns information from Supervisor to

the user on error conditions. This common is referred to in the error

processing section. Finally, DSCRETE contains the packed discretes and two

arrays of masks which are used in testing and writing discretes. Discretes

are not unpacked by Supervisor because of the unnecessary and excessive time

used in the process. This common should appear in all user programs that

overtly use-any discretes.

A detailed description of the commons and some examples of testing and

writing discretes follows.

67 Revision A

COMMON /Q9RTIO/ DASS,RTCRT,RTDM,ADAGE,R(6)

This common is supplied for hardware processor interface and should not be

declared by the user. It is included here for processor development. If a

-processor is required to -errform real-time input/output, the corresponding

word of Q9RTIO is set to all ones. Supervisor will then set the corresponding

bit in the RTIDLE or RTRECALL** request and clear the Q9RTIO flag. The R(6)

is reserved for future expansion.

** See reference 2.

68 Revision A

COMMON /SUPCOMM/ RCT,FT,NADDCS,NDACS,NIDISS,NODISS,ASTAT ASTAT ,HTIME,

ADBUF(20),DABUF(64),TIMUSED,TIMREM,LSEXP(16),SRTF,HLD1F,HLD2F,

HLD3F,LSF,OT,FL,USERNUM,SIMID,MACHID,RSVD(8)

RCT 	 Integer containing the requested compute time in units of 128

mici6seconds.

FT 	 Integer containing the frame time in:units of i/.1024 seconds.

NADCS 	 Number of ADCs allocated through SKED.

NDACS 	 Number of DACs allocated through SKED'.

NIDISS 	 Number of discrete inputs allocated through SKED.

NODISS 	 Number of discrete outputs allocated through SKED.

ADSTAT 	 ADCON and RTC-IT status as defined on page 4-6 of RTCS Reference

Manual.

DASTAT 	 DACON status as defined on page 4-6 of RTS,Reference Manual.

HTIME Time of day and ADC overload condition as defined, on page 4-6 of

RTCS Reference Manual.

ADBUF Buffer for packed'ADC inputs with four ADCs ;per word.-

DABUF 	 Buffer for packed DAC ;outputs i 4ith foun:DACs>per word.

TIMUSED 	 Integer CPU time in microseconds' that,was,used in the previous SRT

frame. If lost synchronization occurred 'onprevious-frames,

TIMUSED contains the cumulative continuous CPU time used.

TIMREM 	 Integer CPU time in microseconds that Was-not used in the previous

SRT frame..

LSEXP 	 Lost time synchronization exchange package at time of interruption.

See NOS Operating System Reference Manual for detailed definition.

69 	 Revision A

SRTF Flag for SRT, -1 if SRTI 0 if not.

HLD1F Flag foe HOLD1, -1 if HOLDI, 0 if not.

HLD2F 	 Flag for HOLD2, -1 if HOLD2, 0 if not.

HLD3F 	 Flag for HOLD3, -1 if HOLD3, 0 if not.

LSF 	 Flag for lost time synchronization, -1 if in continuous lost

synchronization recovery, 0 if not.

OT 	 Job origin type

*"BCOT" if batch origin.

"TXOT" if time sharing origin

"EIOT" if remote batch origin

"SYOT" if system origin

"MTOT" if multiterminal origin

FL 	 Integer containing field length at last state change i.e.'

CALL HOLD3, CALL RTSRT, etc.

USERNUM 	 User number in display code, left-justified, zero-filled.

SIMID 	 The simulation identification as specified in RTINIT lith'colons

(OOB display) changed to blanks (55B display).

MACHID One character, left justified zero filled wrd6ontaining the

identification of the computer in use; elg., LR, ILT, -ILY,etc.

RSVD Reserved for future expansion.

70 	 Revision A

COMMON /ERROR/ NERROR,NAME1,NAME2,ABSP,RELP

NERROR 	 Error number of last detected error.

NAMEI 	 If nonzero, contains the name of the routine causing the error.

NAME2 	 If nonzero, contains the name of the routine which detected

the error.

ABSP 	 Integer, absolute program address where error occurred.

RELP 	 Integer, if nonzero, approximate program address relative to the

beginning of the offending routine.

71 	 Revision A

COMMON /DSCRETE/ IDIS(16),ODIS(16) ,TMASK(60),FMASK(60)

IDIS Packed discrete inputs - 60 per word

ODIS Packed discrete outputs - 60 per word

TMASK -"True" mask array. The nth bit (starting on the right of the word as

bit 1) of TMASK(n) is set. All other bits in TMASK(n) are off.

FMASK "False" mask array. The nth bit (starting on the right of the word

as bit 1) of FMASK(n) is off. All other bits in FMASK(n) are set.

RESTRICTIONS:

1. 	 Always DIMENSION precisely as shown above regardless of how many.discretes

are used.

2. 	 Supervisor initializes the masks in RTINIT. The masks are used internally

and must not be changed. If other masks are needed, they should be

created independently.

1. 	 Test input discrete 71 (bit 11, word 2). If it is on (true) branch to

statement 1000."

IF ((IDIS(2).AND.TMASK(11)).NE.0) GO TO 1000

or (slightly faster)

IF 	 (SHIFT(IDIS(2),6o-11).LT.O) GO TO 1000

2. 	 Set output discrete 83 (bit 23, word 2) to true.

ODIS(2) = ODIS(2).OR.TMASK(23)

3. 	 Set output discrete 44 (bit 44, word 1) to false

ODIS(1) = ODIS(1).AND.FMASK(44)

72 	 Revision A

4. Test input discrete 37, (bit 37, word 1.)t.If it is off (false) set H = HMIN

IF ((IDIS(1).AND.TMASK(37)).EQ.o) H HMIN

or (slightly faster)

IF (SHIFT(IDI-S(1),60-37).GE.O) H =,HMIN

NOTE: The change from using unpacked to using packed discretes will

necessitate a change (see example) in how one references (reads or writes)

discretes. In addition, the relative numbering of the discrete inputs within

the user's program will be incremented by one. The first discrete input in

the user's array is wired to the abort button on the console. This is the

only discrete that will be monitored by Supervisor, and it wil) transfer

control to the error processing module at the interactive console when the

button is depressed.

Because of these changes, the discrete assignment tables from the

Simulation Manual (Section 5100.1, pages 27-30) have been altered and are

included here for easy reference.

-73 Revision A

DASS DISCRETE INPUT ASSIGNMENTS

Quantity Bit Position Patobboard Wiring

S/ 1Wod# it# Discrete# Destination

ABORT 1 1 1 1 CLO (AJC 1)

DATA ENTRY 16 1 2-17 2-17 RMS 17-32

MODE CONTROL 16 1 18-33 18-33 RMS 1-16

FSS 16 1 34-49 34-49 FSS 1-16 (AJC 1)

INPUT FROM SITE 60 1 50-60 50-109 RMS 49-108

2 1-49

S/C 2

ABORT 1 1 1 301 CLO (AJC 2)

DATA ENTRY 16 1 2-17 302-317 RMS 305-320

MODE CONTROL 16 1 18-33 318-333 RMS 289-304

FSS 16 1 34-49 334-349 FSS 1-16 (AJC 2)

INPUT.FROM SITE 60 1 50-60 350-409 RMS 337-396

2 1-49

S/C I

ABORT 1 1 1 481 CLO (AJC 5)

DATA ENTRY 16 1 2-17 482-497 RMS 929-944

MODE CONTROL 16 1 18-33 498-513 RMS 913-928

FSS 16 1 34-49 514-529 FSS 1-16 (AJC 5)

INPUT FROM SITE 60 1 50-60 530-589 RMS 529-588

2 1-49

NOTE: Bit numbering starts with bit 1 on the right and progresses through

bit 60 on the left. The bit number is one more than the conventional bit

numbering in the computer.

74 Revision A

DASS DISCRETE OUTPUT ASSIGNMENTS

SIMULATION CONSOLE 1 OR POOR QUALITY

Ouniy Bit Position Patobboard Wiring

Bit# Discrete # Destination

OUTPUT TO SITE 45 1 1-45 1-45 	 RML 1-45

EVENT MARKERS 9 1 	 46-48 46-48 REC 2, EV 3-5

49-51 49-51 3, 2-4

52-54 52-54 4, 2-4

XY PEN LIFT 1 1 55-56 55-56 	 PLOTTER 1, PL (AJC 1)

PLOTTER 2, PL

RECORDER

START/STOP 4 1 57-60 57-60

WHITE LIGHTS 39 2 1-39 -61-99 WI 1-39 (AJC 1)

AUDIBLE ALARM 1 2 40 100 OVA (AJC 1)

EVENT MARKERS 9 2 41-49 101-109 REC 1, EV 1-9 (AJ 1)

EVENT MARKERS 1 2 5Q 110 REC 2, EV 2 (AJC 1)

RED LIGHTS 8 2 '51-58 111-118 RI 1-8 (AJC-1)

MODE LIGHTS 16 2 59-60 119-134 RMS 33-48

3 1-14

DECIMAL DISPLAY 46 3 15-60 135-180 RML 145-190

NOTE: Bit numbering starts with bit 1 on the right and progresses through

bit 60 on the left. The bit number is one more 'thanthe conventional

bit number in the computer.

75 	 Revision A

DASS DISCRETE OUTPUT ASSIGNMENTS

SIMULATION CONSOLE 2

Quantity Bit Position Patobboard Wiring

Word # BitJ# Discrete # Dstination

301-345 RML 313-342
OUTPUT TO SITE 45 	 1 1-45

1 46-48 346-348 REC 2, EV 3-5
EVENT MARKERS 9

49-51 349-351 3, 2-4

52-54 352-354 4, 2-4

2 1 55-56 355-356 PLOTTER 1, PL (AJC 2)
XY PEN LIFT

PLOTTER 2, PL

RECORDER

57-60 357-360
START/STOP '4 1

WHITE LIGHTS 39 2 1-39 361-399 WI 1-39 (AJC 2)

1 2 40 400 OVA (AJC 2)
AUDIBLE ALARM

EVENT MARKERS 9 2 41-49 401-409 REC 1, EV 1-9 (AJC 2)

410 REC 2, EV 2 (AJC 2)
EVENT MARKERS 1 	 2 50

RED LIGHTS 8 	 2 	 51-58 411-418 RI 1-8 (AJC 2)

59-60 419-434 RMS 321-336
MODE LIGHTS 16 	 2

3 1-14

DECIMAL DISPLAY 46 	 3 15-60 435-480 RML 265-310

NOTE: Bit numbering starts with bit 1 on the right and progresses through

I'

bit 60 on the left. The bit number is one more than the conventional bit,

numbering in the computer.

76 	 Revision A

DASS DISCRETE OUTPUT ASSIGNMENTS.

SIMULATION CONSOLE 3

Quantity Bit Position Patchboard Wiring

Word Discrete # Destination

OUTPUT TO SITE 45 1 1-45 481-525 RML 481-525

EVENT MARKERS 9 1 	 46-48 526-534 REC 2, EV 3-5

49-51 3, 2-4

52-54 4, 2-4

XY PEN LIFT 1 1 	 55-56 535-536 PLOTTER 1, PL (AJC 5)

PLOTTER 2, PL

RECORDER

START/STOP 4 1 57-60 537-540

WHITE LIGHTS 39 2 1-39 541-579 WI 1-39 (AJC 5)

AUDIBLE ALARM 1 2 40 580 OVA (AJC 5)

EVENT MARKERS 9 2 41-49 581-589 REC 1, EV 1-9 (AJC 5)

EVENT MARKER 1 2 50 590 REC 2, EV 2 (AJC 5)

RED LIGHTS 8 2 51-58 591-598 RI 1-8 (AJC 5)

MODE LIGHTS 16 2 59-60 599-614 RMS 945-960

3 1-14

DECIMAL DISPLAY 46 3 15-60 615-660 RML 769-814

QOpIGINAL PAGE 18
OF Poop. QUALITY

NOTE: Bit numbering starts with bit 1 on the right and progresses through

bit 60 on the left. The bit number is one more than the conventional bit

numbering in the computer.

77 	 Revision A

DISADD

PURPOSE: To change the arrays that are used for discrete input and output

buffers.

USE-: 	 Format 1' CALL DISADD (IARR, OARR)

Format 2 CALL DISADD (IARR, OARR), RETURNS ($ERROR)

IARR array name of a 16 word array to contain input discretes.

OARR array name of a 16 word array to contain output discretes.

$ERROR 	 statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: DISADD may only be called in HOLD3 state.

DESCRIPTION: This is intended for diagnostic purposes. Discrete input/output

arrays and associated masks are initially assigned to common block DSCRETE

thusly:

COMMON /DSCRETE/ IDIS(16), ODIS(16), TMASK(60), FMASK(60).

For some applications, it may be necessary to change the discrete array

assignment. DISADD will accomplish this function and the change will be

effective 	 until another CALL DISADD is executed.

ERROR 	 MESSAGES:

1. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

DISADD may only be called in HOLD3.

21. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1)

No previous call to RTINIT.

3. 	 BAD STATUS FROM URT-RTS FUNCTION 	 (NERROR = 202)

This error should never occur and it indicates a failure of the Supervisor

or the real-time system. An analyst should be informed of the problem.

78 	 Revision Al

ERROR PROCESSING AND TERMINAL INTERACTION

This section describes the action taken by Supervisor when an error is

detected and describes the interaction with the time-sharing terminal.

ERROR PROCESSING: The following stepehart illustrates Supervisor processing

when an error is detected:

1. 	 Update the values stored in COMMON /ERROR/.

2. 	 If a $ERROR statement is specified, exit from Supervisor error processor

to $ERROR.

If no $ERROR is specified

3. 	 Force HOLD3 state.

4. 	 Issue messages to job dayfile.

5. 	 If job is not time sharing origin, terminate the job abnormally.

If job is time-sharing origin

6. 	 Issue messages to interactive terminal.

7. Make options available to user through terminal interaction. These

options include unformatted memory dump, display-exchange package, and

analyze program memory image.

8. 	 Through terminal interaction, the user may elect to:

a. 	 end the program through normal termination and continue with next

control statement in sequence.

b. 	 end the program through abnormal termination and continue with first

control statement following the next EXIT statment.

c. 	 branch to a predetermined recovery point to restart the program if the

point has been specified., (See SUBROUTINE RECADD following.)

79 	 Revision A

The following illustrates the format of error messages. Consider that

RTREAD was called with a file number of 17; then Supervisor would issue:

ERROR NUMBER 4 IN DMS-F11

ILLEGAL FILE NUMBER

RTREAD CALLED BY PROGF11 AT LINE 179

AT ABS 25347 APPROX. 1347 REL

The error number indicates the number in Table 2 which contains a

listing of the particular error. The third line tells which Supervisor

entry point was called and which user routine (PROGF11) called it. The fourth

line gives the absolute location of the CALL statement and the approximate

address relative to the beginning of the routine.

The simulation program itself may use the error processing section of

Supervisor. This use is described in a later section on the subroutine

RTERROR.

TERMINAL INTERACTION: The Supervisor determines if a job is of time-sharing

origin. If it is, the Supervisor connects the file TT to the time-sharing

terminal. All Supervisor terminal interaction is done through the file TT so

that files INPUT and OUTPUT need not necessarily be assigned to the terminal.

The user may use the file TT through the subroutines TTINPUT, TTMESS, and

TTYDAYF or through FORTRAN I/O.

When RTINIT is called, Supervisor issues the message REAL TIME

INITIALIZED. When the program terminates normally, the message REAL TIME

NORMAL TERMINATION is displayed. If Supervisor aborts the program, the

message REAL TIME ABORTED is displayed.

80 Revision A

ERROR MESSAGES

NERROR MESSAGE

1 REAL TIME HAS NOT BEEN INITIALIZED

2 CALLED IN WRONG PROGRAM STATE

3 REAL-TIME HARDWARE FAILURE

STATUS =

4 ILLEGAL FILE NUMBER

5 FILE 1 NOT INITIALIZED

6 FILE 2 NOT INITIALIZED

7 NO VARIABLES FOR FILE 1

8 NO VARIABLES FOR FILE 2

9 LOST DATA DETECTED FOR FILE 1

10 LOST DATA DETECTED FOR FILE 2

11 ATTEMPT TO EXCEED ALLOCATED FILE SPACE, FILE 1

12 ATTEMPT TO EXCEED ALLOCATED FILE SPACE, FILE 2

13 I/O SEQUENCE ERROR FOR FILE 1

14 I/0 SEQUENCE ERROR FOR FILE 2

15-100 Reserved for Expansion

TABLE 2

81 Revision A

NERRO MESSAGE

101 BUFFER SIZE LESS THAN MINIMUM

102 ILLEGAL TABLE SIZE

103 FILE 1 NOT REWOUND

104 FILE 2 NOT REWOUND

105 FILE 1 EMPTY

106 FILE 2 EMPTY

107 NEGATIVE RECORD COUNT

108 ILLEGAL FILE TYPE

109 FILE EMPTY

110 ILLEGAL FILE NAME

111 ILLEGAL QUEUE TYPE

112 ILLEGAL ORIGIN TYPE

113 LOST TIME SYNCHRONIZATION INTERRUPT HAS OCCURRED

114 TOO MANY LOST TIME INTERRUPTS

115 NO LOST SYNCHRONIZATION, RESUME CALLED

116 NOT TIME SHARING ORIGIN

117 TOO MANY CHARACTERS

118 CONTROL WORD OUT OF RANGE

119 BUFFER EMPTY

120 TOO MANY VARIABLES SPECIFIED

121 VARIABLE TABLE TOO SMALL

122 ARRAY LENGTH NOT SPECIFIED

123 BAD ARRAY LENGTH

124 NO. OF ADC OR DAC LT. 0

TABLE 2 (Cont'd)

82 Revision A

MESSAGE
NERROR

125 NO RTDM FILES ALLOCATED

126 FILE 2 NOT ALLOCATED

127 NO LOST TIME RECOVERY ADDRESS

128 RESUME CALLED BY NONREAL-TIME JOB

129 CALLED DURING READ OPERATIONS - FILE 1

130 CALLED DURING READ OPERATIONS - FILE 2

131 NO RECOVERY ADDRESS SPECIFIED

132 BUFFER TOO SMALL

133 PARITY ERROR DETECTED FOR FILE 1

134 PARITY ERROR DETECTED FOR FILE 2

135 FORTRAN END PROCESSING ATTEMPTED

136-200 Reserved for Expansion

TABLE 2 (Cont'd)

Revision A
83

--

NEROR MESSAGE

201 NEGATIVE UNUSED TABLE ENTRY COUNT

202 BAD STATUS FROM URT-RTS FUNCTION

STATUS = ---

203 BAD STATUS FROM URT-FET FUNCTION

STATUS =

204 Q8LSREC CALLED IN NONREAL TIME

205 UNRECOGNIZABLE FILE HEADER

206 ERROR RETURN FROM LFM

STATUS =

208 DISK HARDWARE ERROR

STATUS =

209-299 Reserved for Expansion

300-399 Reserved for Real-Time CRT

400-499 Reserved for ADAGE

TABLE 2 (Cont'd)

84 Revision A

RTERROR

PURPOSE: To issue error messages and control optional Supervisor processing

after a detected error.

USE: CALL 	 RTERROR (NERROR, MESSAGE, OPTIONS, LN, RPOS)

NERR 	 error number of the message. For Supervisor detected errors,

see Table 2. For user detected errors, see appropriate

documentation. Error numbers 1-499 are reserved for the

Supervisor and real-time processors.

MESSAGE 	 message to be displayed as second line. Must be terminated by

trailing byte of zeros.

OPTIONS 	 bits in this word control the options selected for optional

Supervisor processing. The bit assignment will be defined

during implementation.

LN 	 level number of routine which produced the error (i.e., how

far to traceback for error routine). If 0, no traceback is

done.

RPOS 	 integer indicating which return in the returns list in the

calling subroutine is the recovery statement number. If 0,

there is no recovery return.

RESTRICTIONS:

1. 	 RTINIT must have been called; otherwise, all errors are fatal and the job

is aborted with appropriate messages.

2. 	 If a user level subroutine wishes to use the $ERROR returns feature, the

call to RTERROR must be followed by a RETURN DOLERR, where DOLERR is the

error return statement parameter.

85 	 Revision A

DESCRIPTION: A detailed flow chart of error processing will be provided as

implementation proceeds.

ERROR MESSAGES: ALL

86 Revision A

RECADD

PURPOSE: To define an error recovery address for time-sharing programs.

USE: CALL RECADD (N), RETURNS ($RECPT)

N 0, disable recovery

1, new recovery address

$RECPT statement number to which control is returned after Supervisor

error processing.

RESTRICTIONS: None.

DESCRIPTION: For a time-sharing origin job when an error is detected by

Supervisor for which there is no corresponding $ERROR statement number,

messages are issued to the terminal, certain optional processing is allowed,

and then, if directed by the terminal operator, transfer is made to $RECPT.

Use of this subroutine in batch origin jobs has no effect.

ERROR MESSAGES:

1. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR = 1).

No preyious call to RTINIT.

2. 	 NO RECOVERY ADDRESS SPECIFIED (NERROR = 131)

$RECPT was not specified for N=1.

87 	 Revision A

TTINPUT

PURPOSE: 	 To read a line from the interactive terminal.

-USE: 	 Formadt'1 'CALL TTINPUT (MESS, N)

Format.2 CALL TTINPUT (MESS, N), RETURNS ($ERROR)

MESS array, which should be dimensioned to 16, that will receive

the characters entered at the interactive terminal.

N 	 length of line in words including the end of line character

(see page F-2 of NOS 1.2 Reference Manual) received from

terminal. If line entered from terminal consists of a

carriage return only, then N will be 0.

$ERROR 	 statement number to which cbntrol is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. Must 	 be a time-sharing origin job.

2. Must 	 be in HOLD3 state.

DESCRIPTION: The Supervisor establishes a connection to the TTY terminal

through the file TT. The file is read and the line and length are returned to

the program. This is somewhat analogous to:

READ 100,MESS

100 FORMAT 16A10)

except that a 12 bit byte of binary O's terminates the,line after the last

nonblank character.

ERROR 	 MESSAGES:

1. 	NOT TIME-SHARING ORIGIN 	 (NERROR = 116)

*Called by wrong origin job.

88 	 Revision A

2. 	 CALLED IN WRONG PROGRAM STATE (NERROR =,2)

Program not in HOLD3.

3. 	 REAL TIME HAS NOT BEEN INITIALIZED (NERROR 1)

No previous call to RTINIT.

89 	 Revision A

TTMESS

PURPOSE: To write a line to the interactive terminal.

USE: Format 1 CALL TTMESS 'MESS, NC)

Format 2 CALL TTMESS (MESS, NC), RETURNS ($ERROR)

MESS line of characters to be displayed on interactive terminal.

Must be terminated by an end of line sequence, i.e. any word

with four octal zeroes in the twelve rightmost bits.

F-2, Volume 1 of the NOS 1.2 Reference Manual.-)

(See page

NC control word

$ERROR

0 for single message or last line of multiline-message

1 for intermediate lines of multiline message

statement number to which control is returned if an abnormal

condition is detebted. See error processing section for usage.

RESTRICTIONS:

1. 	 A line is limited to 150 characters.

2. 	 Must be in HOLD3 state.

DESCRIPTION: The Supervisor establishes a connection to the interactive

terminal through the file TT. The line is written to file buffer and the

buffer is written if full or NC is zero. If the job is not time-sharing

origin type, local file TT is written.

ERROR MESSAGES:

1. 	 CONTROL WORD OUT OF RANGE (NERROR = 118)

NC is not 0 or 1.

2. 	 TOO MANY CHARACTERS (NERROR = 117)

Line length limited to 150 characters.

90 	 Revision A

3. CALLED IN WRONG PROGRAM STATE (NERROR = 2)

Program not in HOLD3.

91 Revision A

C-0,

TTYDAYF

PURPOSE: To issue a message to the interactive terminal and to the job

dayfile.

USE-: Format 1 CALL TTYDAYF (MESS)

Format 2 CALL TTYDAYF (MESS), RETURNS (.$ERROR)

MESS line of characters to be sent to terminal and job dayfile.

Line must be terminated by an end of line sequence, i.e. any

word with four octal zeroes in the twelve rightmost bits. (See

page F-2, Volume i of the NOS 1.2 Reference Manual.)

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS:

1. 	 A line is limited to 80 characters.

2. 	 Must be in HOLD3 state.

DESCRIPTION: The Supervisor establishes a connection to the interactive

terminal through the file TT. The message is written to the terminal and the

job dayfile. If the job is not time-sharing origin type, local file TT is

written.

ERROR MESSAGES:

1. 	 CALLED IN WRONG PROGRAM STATE (NERROR = 2)

Program must be in HOLD3 state.

92 	 Revision A

UTILITY SUBROUTINES

This section contains the documentation of utility subroutines that will

be useful to the simulation programmer.

930 Revision A

RTIME

PURPOSE: To obtain CPU time used and CPU time remaining in an SRT frame.

USE: 	 Format 1 CALL RTIME (USED, REM)

Format 2 CALL RTIME (USED, REM), RETURNS ($ERROR)

USED integer microseconds of CPU time used this frame.

REM integer microseconds of CPU time remaining in this frame.

$ERROR statement number to which control is returned if an abnormal

condition is detected. See error processing section for usage.

RESTRICTIONS: Program must be in SRT state.

DESCRIPTION: Supervisor issues a URM10* request to Real-Time Monitor to

obtain the CPU time used and then calculates the time remaining. The clock

resolution is about 64 microseconds.

ERROR MESSAGES:

1. CALLED IN WRONG PROGRAM STATE (NERROR 2)

Must be in SRT.

2. REAL TIME HAS NOT BEEN INITIALIZED (NERROR 1)

No previous call to RTINIT.

* See 	 reference 2.

94 	 Revision A

REFERENCES

1. 	 Control Data Corporation: NOS Version 1 Reference Manual, Volume 1
and Volume 2, Publication Numbers 60435400 and 60445300, Nov. 1977.

2. 	 Control Data Corporation: Real Time Computing Subsystem Reference

Manual, Publication Number 60454770, July 1977.

950 	 Revision A

INDEX OF ENTRY POINTS

DISADD 78

DISPOSE 45

FILEARR 25

FILEVAR 28

FINI................... 21

HOLD3 14

LOSTIME . .59 .

NEWVAR .•.......... 32
............

.

RECADD 87

RESUME 61

RESUMEQ 62

REWRTF.......................... 41

RTCLASS 66

RTCLEAR 19

RTCYCLE 15

RTERROR......... 85

RTHOLD1 12

RTHOLD2 13

RTIDLE . .17

RTIME . 94

READBUF............... . 34

RTINIT.................... 8

RTREAD . .36

RTSRT 10

RTWRITE 39

96 Revision A

Page

SKPRTR 43...

TTINPUT 88

TTMESS
 90

TTYDAYF • 92

97 Revision A

1. Report No. 2 Government Accession No 3 Recipient's Catalog No.

NASA TM 7R7,57

4. Title and Subtitle 5. Report Date

Reference Manual for the Langley Research Center July 1978

Flight Simulation Computing System 6 Performing Organization Code

7. Author(s) 8 Performing Organization Report No.
Jeff I. Cleveland, II, Daniel J. Crawford, and

Lawrence F. Rowell

10. Work Unit No.
9. Performing Organization Name and Address

NASA-Langley Research Center 11 Contract or Grant No
Hampton, VA 23665

13. Type of Report and Period Covered
12 Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics & Space Administration 14 Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

16. Abstract

The Langley Research Center Flight Simulation Computing System provides a

researcher with an advanced real-time digital simulation capability. This

capability is controlled at the user interface level by the Real Time Simula­

tion Supervisor. The Supervisor is a group of subprograms loaded with a

simulation application program. The Supervisor provides the interface between

the application program and the operating system, and coordinates input and

output to and from the simulation hardware. The Supervisor also performs

various utility functions as required by a simulation application program.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Real Time Simulation
Digital Simulation Unclassified - Unlimited
Flight Simulation

Subject Category 61

19 Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price*

Unclassified Unclassified
 102 $6.50

* For sale by the National Technical Information Service, Springfield, Virginia 22161

