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1. 1Introduction

Most of our knowledge of elementary particle, nuclear, and atomic
physics comes from collision experiments. When these collisions involve
systems of many particles, exact solutions of the scattering equations
are out of the question. Models that emphasize certain reaction mec-
hanisas can sucessfully explain much of the available data, but as both
experimental and numerical techniques get sharpened, there is an increas-
ing need to understand how these models are embedded in an exact multi-
particle ctheory. This would allow us to correct these models for excluded
physical processes, and to evaluate the importance of these corrections.

For the case of bound states, there is a theory that provides a
framevwork for understanding bound state calculations in the above sense,
This is the Bethe-Breuckner-Goldstone theory (1]. This theory does not
give a perscription for calculations, but rather provides a complete
framework for systematically including, and evaluating corrections (2]
to various bdound state calculations.

Our goal in this paper is to construct an exact multiparticle reac-
tion theory that does a similar thing for collision tlieory, We restrict
our considerations to non-relativistic potential theory (though we make
some comments on how both particle creation and relativistic kinematics
might be included). The formulation of such a theory is difficult because
the boundary conditions that come into a collision theory are much more
complicated than those of a bound state theory, By working in momcutum
space these boundary condition problems can he reduced to problems of

analytic structure.

In non=relativistic potential theory, there are many existing N-body
theories based on mathematically well understood equactions (3]. These
theories guarantee the existence of formal soluilons [4), and allow for
practical calculations when N<4 [5], They are also useful guides for
constructing models of simple reaction mechanisms {n more complicated
problems. Unfortunately none of these theorles have the kind of flex~
ibilicty that we demand. A typical example that {llustrates the type of
flexibility that we desire would be to treat scattering of 6Ll by ,Hc.
treating the bLl simultainously as a bound 3ua-]u system and a bound
2"-‘"3 system, maintaining both unitarity across the ’ue-Jn and zu-‘uc
breakup cuts and compactness of the kernel cf the integral equation., In
addition we would like to be able 2o construct a first principles
optical potential (from a compact kernel theory) describing the effect of
the excluded channels [6]. Applications of this tvpe are beyond the
scope of existing N-body theorfes. 1In addition, since the structure of
most N-body theories is ditctated by compactness considerations having
little to do with physics, ft is not clear that truncations maintaining
the structure of these equations will clearly relate to any physical
process, There re other approaches that are orfented more towards
practical calvulations, such as Jdistorted wave approximations and mul-
tiple scattering approaches [ 7], however these are not easily extendible
to include all muany body corrections.

The type of theory that we want should satistv several constraints
if it i poing to be useful,  First the theory siould be based on a very

tlexible foundintion that allows us to separate the important aspects
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7 8
directly retated to experimentaliy me wsurable quantities than are poten~
of a reaction from the unimportant ones. We would like to do this in 4 tials,  Fourth, we are able to miintain unitarity of the truncated equations
vay that relates directly to the physics, and is independent of the without sacrificing analyticity Cas compared with unitarsy K-matrix the=-
dynamical structure of any cquatfon. In additlon we would like to be ories).  This makes our theory compatible with dispersion theoretic

able to calculate the contributions from both the important and techniques. Finally our theory is based o a4 description of the dvnamics

unimportant parts of the dyvnamics and understand how they combine to

in terms of asvmptotic channels. This permits us to =ake direct contact
give the full dvnamics. A compact kernel approach is desirable, since with experimentally ohsorved quantities, and to keep careful track of
solutions of compact kernel equations are weil understood, admictting how boundary cenditions come into plav.

¢ tive solution tochniques. We would like compactness: to be In developing this theory we obtain two very usetul results that

maintained independent of how the dynamics is divided. should be of interest by themselves. The tirst ie Theorem | which uses

We would also 1ke to be able to control the unitarity structure of combinatoric techniques to construct a democratic expansion of the full

our equations. By this we mean that we would like to know what parts of Hamiltonfan in terms of proper partition Hamiltonians. In this wav we

ur dynanics are responsible for the presence of flux in various asymp- can easily understand N-body scattering {n terms of propagation through the

totlc chacnels, and how mon-unitary corrections, due to loss of flux, varfous non-orthogonal fewer body channels. To our knowledge this is a

¥ be included in a controlled SRONEE new result., The other result concerns the use of comhinatoric tech-

The theory that we develop is consistent with all of these criteria,

s

nlques in treating connectivity., The key results are Theorem & and the

ard has several additional notevorthy features. First the approximate decomposition (1). These results are not new (8], but their power,

? ics 1s calculated from an approximate laniltonian. This makes it which exceeds the applications at hand. has not been fullv appreciated.

"48Y to consider symmetry properties of our truncated system. Second, In particular they allow us to get connected kernel eqrations with

the theory allows for the inclusion of many body forces in a natural way., completly arbitrary truncations of manv hody Hamiltonians.

Since all particle creation effects can be implicitly described by energy This paper is divided into six sectfons. In the next section we

dependent many body forces, the inclusion of relativistic kinematics describe background material that will he needed in subsequent sections.

would allow us to extend some of our techniques to higher enerpy colli- Our notatfon is established in this section. In the third section we

sions (the relativistic kinemacics and energy dependent forces will alter five a precise definition of a reaction mechanism, We use combinatoric

our analytic considerations in an obvious vay). Third, the hasic input techniques to prove our damiltonian decompe sftfon theorem. Dymamic

that comes into our theory are transition operators and boun! state operators associated with a4 given reaction mechanism are defined, and

functions corresponding to fewer hody problems. These S related to solutions of fewer bodv problems. In section 1V ve develop



compact kernel integral equations for operators corresponding to each
reaction mechanism in terms of fewer bodv solutions. These operators
are then used as input in another compact kernel integral equation for
the full dynamic operators. In section V we prove varlous properties
of these equations. All of our integral equations are shown to have
connected kernels or cornected {terated kernels. In addition we

prove that the dvnamic operators corresponding to the various reaction

mechanisms satisfy a suitablv truncated optical theorem.

i0

1. Backzrow !

Tn this section we ostablish our notat on and intreduce necessary back-
rround material.  The miteris! is divided § 1o three parts,  Flret we dis-
cuss the notfon of a partition lattice. Th : will he i=rortant in handling
the connectivity aspects of our theorv, The we introduce the notation and
conventions that will be used in the remain r of the paner., Finally we

collect some well-krown spectral properties subsvste= sperators which

are nevded as input in anv Nehodv theorv., We begin with an fntroduction

partition lattices,

Ao Partitton fattice

Apartition, a, of M particles e a4 way o dividing the N particles into
na disjoint zroups of particles, called clusters, e use lower case Latin
letters fa, b, c...} to denote partitions, and Moo Moe 0 e to denote the
number of clusters in the partition. For N rarticles there are two partitions
that are uniquely specifierd once the number of clusters are giver: the l-cluste
partition, and the N-cluster partition. We denote these by 1 and 0, respective
Given 2 partitions, a and b, we sav aghorha if acan be chtained from
b by breakinpg up some (possibly N) clusters of b, This concept s ecasily
{llustrated in the four-particle case where

a = (12)(34) b = (121)(4) A DRSS N P

cga ¢ " b a g! b.

The relation € is a partial orderiny on the set of partitions of N
particles. We defioe Jeast upper hounds (unions) and preatest lower bounds
(intersections) relative to the nartial ordering. Given two partitions a and

by AYh is the finest  partition (the one with most  clusters) satisfying

AUb 2a and aUh Rh. The intersection afMb is the coarsest partition (the



cie with the least aumher of clusters) satisfvinz AN b < a and an b b,
The unions and intersections defined ahove hoth exist and are unique. The
operations W and N endow the set of partitions with a lattice structure |9 |.
In order to understand  and N we gpive some examples in the four-particle par-
tition lattice:
(12)(N(4) y (12)(34) = (12)(34)
(123)(4)  (1)(234) = (1234)

(12)(3)(4) N (1)(234)
(121 (6) N (1D (26) = (13)(2)(4).

M(2) (N (&)

The partition lattice is important in N-body theories because of its
relation to the notion of the connectivitv of N-hodv operators. Given a par-

cition, a, and a linear o erator, B, on our N=-particle Hilhert space, we sav

B has connectivitv a if B commutes with the )na parameter unitarv group of
translations that describe the motion of the clusters of a: and these are the
only translations with which B commutes. This means that on taking momentum
space matrix elements of B, the only conserved momenta are the total CM momentum
and the relative momenta between the various clusters of a.

The aim of all N-body theories is to recast the Schradinger equation in
the form of an integral equation wicth .co-pacl kemel. Compact kemmel integral
equations are well understood and admit constructive existence theorems | 4].
Disconnected operators are generally never compact. One cxpects that if oper-
ators of definite connectivity satisfy sufficiently restrictive boundedness
conditions, any product of these operators that is connected will be cnupactl.
We therefore define a fiber compactness assumption (F.C.A.). This assumption

puts sufficient conditions on an a~connected operator 8, so that whenever a

string, S, of such operators has overall connectivity 1, S _{s compact after

the €4 motion is factored out. In this work we assume that we have a suitable
F.CLA, npcr.nlm'.z. In particular, whenever wie mention connectivity, we mean
connectivity plus some suitable F.C.A.  We remark that an F.C.A. must he com-
patibhle with the structure of the cquations to which it is applied. Since
our maln interest is in developing and motivating a new N-bedvy formalise, we
will not consider the nature of the F.C.A. We refer the interested rcader

to Ref. [11].

The important connection between connectivity and the partition lattice
is the following: Let A and 8 he operators with conanectivities a and b, respec-
tivelv, 1f we consider A3, the product only comnutes with those translation
operators that simultancously commute with both A and B. Since ¢ D a, ¢ 25
imply that the !nc parameter unitary groups of translations of the clusters of
¢ are also among the unitary sroup of translations of the clusters of both a
and b, and since any such ¢ must satisfy ¢ D a uh, it follows that the wni-
tary group of translations commuting with both A and B are preciselv those
describing the motion of the clusters of a Wb, Thus we get the important
result: 1f A has connectivity a, and B has connectivity b, then AB has con-

nectivity aub. When aub = 1, the product AB will then be compact,

B. Notation
Consider N nonrelativistic mutually interacting particles with a Hamiltoni.
of the form
I =K+V,
where K §s the N particle kinetic eneryy operator, and V describes the inter-
action hetween particles, Tvpically V is of the form V' = 1?,| \'” where V”

is a short-ranped force between particles 1 and j.  Our formalism also allows

the fnclusion of 3,....N bode forces. The case of N-body forces in the N-body




problem requires some modification: we discuss their inclusion in Sppendix AL
In everything that follows we assume that V consists onle of L L BRI T
forces. External forces are casily included by assuming thev are tied to
an additional fictitious particle of infinite mass.

In general the operators e deal with are sums of operators of definite

connectivity. For an operator B we define (al‘ to mean the part of P that

has comnectivity a. We .ote that (n)' = 0 if B has no part with connectivity a

We also use the notations:

'\_‘
| Z, Igl
? wcay °

a
B = , (8] (1)
b(gu L

£ 3
- . (8l .
R
c(€b)

Using this notation we define thepartition interactions

v - ; v) (2)
b(ga) u

As an example consider the case of four particles:

Yaznee * V13 * V23 * Vg 4 Yy,

123 _
asn@ " Vit Vy

where le] is a three-body force acting among particles 1, 2 and 3. The oper=

v

ator V. is the sum of all interactions internal to the clusters of a, V" s

the sum of all interactions external to the clusters of a, and v: is the sum

of all interactions hoth oxternil to the clusters of a and internal to the
clustors ot b,
In the same wav we dofine the partition lamiltonians:

" 7 llllb - K \". (&3]

YY)
de note K has connectivity 0, We ohserve
]

al
L S
Hy ® Yy

We now define the operators describing the full denamics.  The resolvent
operator is
Gy = (z-m',

It contains all of the N-body phvsics. In dvnamic content G(2) is eauivalent

to the transition operators [12]:

@ v e v e WP
™) VP e v e VP

The matrix elements of either of these opera ors between asvmptotic states
nives the physical transition pronabilities. Their on-chell matrix elements
are identical but they differ off shell. “e also define the various partition
(subsystem) iesolvents:

e @ et
Ir peneral, we sunpress the Z=dependence of G, C.‘ and 1',"'. Since we use the

i ab
partlt}-m operators (1‘. V':. ete., to construct €, T, we must first under-

stand the partition operators. We discuss these (n the next subsection.




C. Subsystem Spectral Proparties
The basic philosophy hehind the N-body problem is inductive: one solves

the N-body problem using input from fewer bodv problems. The fewer body
solutions are used to construct the partition resolvents, (‘.a. or their equiva~
lents. Although Ga involves all N particles, when a # 1, a has 2 or more
noninteracting clusters each having fewer than N particles. Thus Gn describes
the dynamics of several noninteracting fewer body svstems, rather than a single
N-body system. We define

H '-k!* \.’j i=1l,...4n

i a

where V‘ is the sum of all interactions internal to the {'" cluster of a, and
K‘ is the lu' clusters kinetic energy. Tlie operator C‘-(Z-H‘)-1 is trivially
related to the truc fewer body resolvent Y u simple imbedding. Hugenholtz [13)
has shown that

G.(Z) - f‘-l(Z) » Gz(Z) *oaes * C"a(Z)
vhere * is the convolution in Z. This determines the dynamics of "n from fewer
body systems.

Although ll. involves fewer body dynamics, it is an operator on the N
particle Hilbert space. Because of the translational invariance of the rela-
tive positions of cthe clusters of a, lla has only a continuous spectrum. We
distinguish between two types of elmstau-s) of the partition Hamiltonlans,
l.. The first class of partition Hamiltonian states will he denoted as
maximally connected eigenstates. A maximally connected eipenstate
is a state where the particles of each cluster are in a bound stoce. These
states avre in 1-1 eonesp@ndeuce with the set of physically preparable initial
states from which the full scattering states evoive, provided we let a vary
over all partitions of N particles with "o 2. The complomentary class of

TWe.a T . n.
partition Hamiltonian eigenstates are those where the particles of at least one

Ty

B R L T WY
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cluster are in a scattering state. ‘e call these scattering states of the
partition Namiletonian, and note that thev also evolve from maximally con-
nected states of another nartition Hamiltonian, "h' with bC a.

We define a channel o by a partition, a, describing an asyvmptotic con-
figuration, and a set, 1, of quantum numbhers describing the internal state
of cach of the hound clusters of a maximally connected eipenstate of “a’ e

denote the eigenstates of ll1 by:

f‘(|‘\‘ maximally connected eipenstute of H with
é R a

channel ot

" 5)
!:J(ﬁh)‘- : ‘.‘a(.h)‘ = scattering eijenstate of ”’h that {

evolves from a maximally connected eigenstate

of ll‘1 with channel ,b

For notational convenience we suppress the continuous parameters describding the

momenta of the clusters of a (resp. h). We define A, hwv:

0

We note Ao fs just the set of scattering channels.

For each partition Hamiltonian N1 we let Sa(éh) be the closure of the

A, = ["11-1‘_1-91(1“)‘ is a maximally connected efgenstate of H_ :. (6)

subspace of N-bodv Hilbert space penerated by | :t.(!‘h)'-". we assume that
each partition Hamiltonian satisfies asymptotic completeness. In particular,
if % {s our N-bodv Hilbert space, we assume asvmptotic completeness [15]:

vavdl FHe O s 2).

€ Ay
h(< a)
Asymptotic completeness allows us to define:
A 1
Pn(nh) {projector on sn(uh)..

In terms of (5), r1(.4h) admits the representation

e [ ap p 3 Ve ?
P a) = ] 'wl';-.'drnh-ll’a('h) 200 )




It also follows that €_(Z) admit.. the spectral resobut ion
a FHE st L tonian Do omposition
T . -
c@= 7, f daF
8 € b
“bc Y
b(< a)

In this section we dot jine formlly what we mean by a reaction gv-rhv.mlflrn (!

g (4

Dualicatively, this is meant to deseribe the Impartant processes awceurring

when a scattering or reaction nrocoss takes rlace,  The chofee of M must

-
whe suit; set of momentum coordinates he relative momenty
re the 'i are a suitable se mentum coordinates for the relative m " rely on phvsical intuition, hut for anv cholee the formalism provides a

S o | : the corres d reduced masses. ) og- rAtOrs
of the clusters of b, and iy are ponding reduced s These operator techmiane for ohtaining mathematically appropriate equatfons to describe it

3 - " . . v “
are the buildirg blocks from which we constrect our theors,  la' (5), (1), (%) and to ohtain systematle corroctions far all othor processes,

and all subseaurnt work we assume the overall €1 deerces of “rocdom have heon The section s divided into four parts. Ye hepin by condidering sore

removed. useful combinatoric relatfons, Next we use these results to write the full
Hamiltonian as 2 sum of partition Hamiltonians. Wis vields decompontition of
W in terms of asveptotic channels, Finally we define reaction mechanine, in

feneral terms and construct the assocfated operators,

A Combinatorics

The Stirling number of the sceond kind,

is defined as the nusher of

ways N distinguishible particles can be prouped Into m non=empty clusters, We

n
also define the coefficients l'1 Cn (-) "(n‘- 1), The main results
a
required are " [16):
Lemma 1: A
’, b
:c- ¢ o) 8 cwy, n S22, (")
aRM N a(Dh) Y e M M
na.'f

The prime on the sum means that the partition 1 {s excluded, Ve
use this notatlon throughout our paper., Lemmy | (s the %ev combinatoric result,
The peometric Importance I8 the followine: when I1 i defined as (n (1), one

™
can show ) €0, b the disconnected part of B,
a
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Another set of numbers that are of Interest arfse from the (nversion of
By Lenma | we have

the relation “e
b 3 ; Y ko
'a.b(c.‘)“lh". “anlBly. a(%!-) a .t
The anticluster coefficients [17], -\:. are defined hy It follows thae
A a!
! . o - " r 2 1 ' o
('l.“ " h(;) 1b 'h (l ) ; ('A ‘.1 - |“ “ llv h,[' v "'I.l,.

This allows us to extract [B] from B,. The existence of the anticluster cocf- where ve have uved (2) vith ¥ o V.. I there are no %-body forces

& . b
ficients depends on the invertibility of the macrix a3 We ehow that l‘," * 0, and the result follovs.

§ not only has an inverse, but that the {nverse (s an |{ teger matrix.
a2b y . e = Besults (11 and (1) lead te the fmportant theorem:

Put the partitions in ascending order bv number of cluster«, Since
Mheoren 1:

a2b » ny 0.0 Sn implies b is the right of a and the entrv | {s el ¢ w. a3
above the diagonal. If n, TN, a 2b =a = b so one obtains '« along the
Thin fu a trivial consequence of (11 and (12), It <avs that the full S-body
diagonal. In this representation 4.?!’ has entries which are alvays 0 or |
Hamiltonfan can be expressed as a sum of partition Hamiltonlane, We recall that
with 1's along the diagonal, and 0's below the diagonal. These three facts
a the partition Hamlltontans are fewer bodvy operators,
are enough to prove that the kM exist and are integers. These coefficients
Using the projection operatars defined in ( ) we may write
can be easily constructed by row reduction. A specific example for three z:
] Py W, (la)
particles is given in Fig. 1. Explicit expressions for '-,; can be obtained | . - biga® 'tho Ay

Substieuting (14) (n (1)) and changing to order of the surmations ve f{nd

B. Decomposition in Partition Hamiltonians . ’
L ) 7 Vv

, vy n, (19
. We nov use Lemma 1 to express the full N-body Hamiltonian as a sum of b WE Ay u}-’b) a7 h s
partition Hamiltonians. Using (9 ) with b = 0 1t follows that We note
. . - —ay
k=1 c_ k. (1) § ) - ‘
a ¥ et
a b lhc /\“ ‘\,C A"
We also have the following: Do finfng
’
Lemma 2: M) €,
P'e v v, an a@m &4 !
a
= (15) becomon?
To prove this we note
N . il - H(r ), (1n)
e v,efc, 2w, =l >oc. ;\ ’
a * 3 5 Ay P, b a2m =




This expresses H as a sum of operators constractod from fower by eperators,
each of which corresponds to a different asvaptotic channel,  We do pnet peed

to know full N-body solutions te make this division.

C. Reaction echanisma

In this pare we define a reaction wechanism (R, Oualitatively an kM
is a phenvmenolozical picture of how a reaction pProvecds, usually motivated by
some ohserved property of the svstem. For seattering experiments the moat
important propertics are cross sections. In some cases they slve enouph useful
information to isolate a donfnant RM, but often must he supplemented by physi-
cal intuition. Given anv set of important asveptotic channels, we have a
natural way of Isolating the dvnamics that propagate throush these channels,
This leads us to define a reaction mechanism as follows,

Definition:
A reaction mechanism (RM) is a collection
AE A, of asvmptotic channels. -l

In any specific example one still has to decide on physical grounds what
states are important. Clearly, states responsihle for large portions of the
cross section should he important. Orn the other hand, if we are below the
threshold for a certain channel, it mav still he important through of f=shell
effects. Our phenomennlogical pictures will he lnpnum'( guldes in pleking
out an RM, especially with regzard to these off-shell effects.

Analyticity is a very powerful tool in scattering theory: given the dis-
continuities across the scattering cuts, residues of the hound siate poles,
and the asymptotic behavior at Z = « ye may use analvtic considerations to re-
cover all N-body physics. Through analyticity and unitarity constraints the
discontinuf: .es across the scattering cuts are related to the physical cross
sections. This relation is expresscd in the optical theorem [ 18] whieh In our

notation has the form:

e

. -
42
!
" . i \ |
ety 1 ( N - ’ 1 "
LN SN ¢ OOV Codpls v v Dbl . T o (18)
[ ah
1 o
N | for v (e bilonr Fupront, and Foothe mart il prosn neetiog
‘it Bt
Vo e MY room { peey ' YO, Thteugh e opt i al theotem one
' ' !

Crdese o brwdate Bl parts o the soanamics peaponsibde for the 2arfouws inal
states, me of the aims of this parere fo 1o prove the following:
Theorem M

The decomposition § - Z‘ 'H!I' wives o decompesition of the (ull
’ L A
febody famfltontan into term’ mv)rv-m-n-!lur to cach final ¢hannel in the

Chwan any 1, 1t

follomting “onue,

¥ 11

WEAY defines a unitary theory @hose final state spoctrus conslats oaly of th
channelis) A, If A @ Ay we met out full dvnamic theorv, We postpone the
prool of this theorem until Sec. v,

Wo derine sore special Rs, 1€ A s an ', wo defline the complementary
RM, A', by A' = Aﬂ\A. Atrdvial B A, s an B where

L ey

J
winde, -‘CA-
These RM's are termed trivial because the Hamfltontan HIAY has ne (nteract fons

between the clusters of o, so the dvnamics are dorivable ditectle from fowes

body prohlems. Few-hody #oare these where each of the partitions (al -‘€ Al

involve no more than four clusters., These are {mportant hecause (o a
connected kernel approach, their dvnamic complonite is comparable to that
of a fow ~hady prohjem,

In the remainder of this section we use the operator H(A) to define
dynamie R operators,  In the next two sections we develop connected kernel
cquat fons for the R operators aml theie complements.  le show how these
may “ae ‘.mhlnml In another comnected kernel equat lon to aet the full reaction

dvnamies,




T
D. 1 Operators 2
In a full reaction theorv one bewins with a lamittonian: ene rhen con-
structs resolvents, transition operitors amd other dvnamic cuantitie..  We
follow this procedure for the RM Hamiltonion, H(A), defined by (19). Firsy
we construct effective RM interactions. UVaing (15) we sce H(N) admits the
representation
HA) = ; ;‘c TRL \Z Py B oL (20)
ba€aa@m " TN T g Thigm g N0
We define
-
T 1, €A Talw! A
and che R!M partition Hamiltonians by
Ho(R) 2 P (A) W= P (A) H P (3). (22)

Ao o
For A = Ao this reduces to Pa(.\“i = 1 and H.(.\o) = ".1' With this definjtion
(20) becomes

Ha) = ¢ v .
a a a

allowing us to construct H{A) from the projection operators 'a”“' Note "“0) v W,
Next we show
Lemma 3:

—

[REAY ] = W (A)
a(%'b) " L

lemma 3 is an important compatibility condition hetween the analytic

(B2))]

properties described by P.(A) and the connectivity properties described by
[B(A)] - In order to prove this result we need some additional machinery,

We define wave operatcrs

g it e
[, | Pt

Cra L Y

and the operator

e siva T 1 3 A A o ..‘ 2 g . .
f“. URL2 S 0 » ¥ (F-F U". F'h_‘.‘n h“h’l "'l.. ae -y
where ¢ it thy enerpy ot th LAt ..( " p‘, o, -4
Usdog tlerso opet®itors, e sfili s YR ] Pt P repretentat fin
| ' o 2 AED 1L Gx ) :
,*’( h) "(l ) by Uy . e

This allows us to relate partition seattering states with saximally connected

partition statex., From (2 ), (22), angd (28) fy follows that
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» e -
W in) » o > de Pty £ 6t (F"y (%)
' e a— N W A
hisa) 1, €A
. " [ .t
where | = | iNY, We ohseree that t" has conncctivity b, while . wd S
- L he -
have vonnectivities contained (n 4. Since D g a, ‘n ) !\(\\.Il - i) Is
sue of terms with connectivities ¢ such that 8 2 ¢ D h. 1t fe& eavy te show
Lemea &
||.’ g ) he ’l ity ' te ) o b .
& y -
| .( ) ‘h('h'l vl : I oS £ty : ¥ l._ agea (%
2 he =
We prove (26 By oexpanding ‘\i } oand S (£ ) as follous:
t h be b
Py s e ve Ve e e P e (106 V) o (terss vith conmectiviey
a4 < © oaa < " ¢ ¢
external to ¢},
- - LI
simtlarly wath b (F ). Since | & ¢ P e (E YV, md since terms wich von-
il q 0 .

nectivities external to ¢ give ne contribution to the ¢ connected patt of an

expression, (I6) hecomes

h
a

+ e . N @ he
. tre R
150 CE) ‘h(‘h'”',, (E ‘,‘A [ ‘_(i‘ ) “k"b" ” (¥ ‘l‘.

* fgetms with connectivity
external to .'l‘

Since the last ters is necessartlv 0, (281 follows,

We Are now in 4 position Lo preove (24 The first step in this nroof

is Lo exirwt VIH-\H“ Using (2%, (20, (21), and (22) we have

—

b h 3 -
L2 = 1+ G (2 V . \ oy I s "o e™y
a a a ITEN] K.t 4. | se ) lht b (LR
1 M a) & A
b h ol ’
‘a S B va ':au‘ ) Making & connectivity capansion of this using (PR we obtain
- .
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Changiang the order of the sums pives

N 2 . . din T [ ’ =
W =) 2, LoF 2, il EDYE oaen™ e 4
— = =\ a ¢ Wk ¢ !
c b{(C ) W A al(?e)
’
By (9) s (T‘ =1 - 'n T Usine this in (27) we obtain
alCe) <
i o e
- 133 - 1 -
Wy =3 S s [ rNah NI B D S T
& ?'t_ 5 ".:__— . « ¢ ¢
This allows us to make the identification:
hy L f b, he -
wwi - /o [ ED £, B i (€T ) dE, (28)
h(\——;d, "b" A B a a

Using (28) in the left-hand side of (23) we obtain

e e :
\ L . T -
[H(M]_ = ol S J SED E Gy o @) ar .
a(i’b’) P (< WP ¢ a3 ‘fz'\ - il a b

Using (26) we obtain

T [H(D)] = )—' ) [ 125" E (vepy ot @™y ar
e L, 1 Ik (1B 4y ()] dE

a(Cw» ™ c(Ca) a'Ea

Changing the order of the sums, using (25) gives

[R(A)]_ = 3" /\— » f aSEh £ (e oSt E )
a(Zb:) a (TS 1€ :bgzr.‘ Ly P e TR

—: = 3
- c(%,) %c"n N G WO A G I
= H (V.
This proves (23).
Since the P.(:\) are fewer body operators (projectors on eigenstates
of partition Hamiltonians), the operators Ila(l\) = Pa(l\) lll can he constructed
from solving fewer body problems. From (10) it follows that (273) mav he

inverted to give the [li(A) Ia" in terms of these fewer hody salutions via:

M@, = Z '; th (A). (29)

Y ow el ine tiw Mopartittion tnteract foe Faliowing } 1) a
s ) we o
i
v (AY I,
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Thene rre uwl to interact e i » ! [ the
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V2 o 1® 1l . . e v
, .
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} o g A
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From the representation (V) §t & an sasy mattor ? Hrw
viay = v3A « v
W
N
b A = NV (A & Al
l A At
A
HOA) = V (A) & H (AY, ot
A
Nevt we consider BM resclvent operators. By analeopy with the 511 % '

teaction theory we define

6{A:2) (Z-\n-..\"l

G A2y - oant,
a a

Since H(A,)) = H; "n(.\(,) . ",1' it follows that C(A :7) #CI7) and NN -t (7
in the full reaction thenrv, (16) fmplics that the %% partition resclvents can
be constructed from solutions of fewer hodv nroblems, We define

(A I =P (A,

a A

It follows from (22) and (12) that

o\
G (Az2Y = P (A) 6 (7)) & e | (i
a A 1

This gives an explicit representation of .t‘l\;, 1in terms of solurions of fewer
hady problems.  Becawse of relations (310 and {12) it follows that one has

the resolvent equat lons




G - G W) = G (A VA 6 = G v 6 () (34)

G (A) - G (A) = G (A)(H_(A) - H, (A)) Gy (A) = Gy (A)(H_(A) - H, (AV) C (A (3%)

6, P -V G ) = 6 W T =¥ 6 )

b
a

b s y -vla) .
G.(A)(V.(A)-Vb(h)) G, (A) = G, (A) (V_(A) -V (A)) G (0

We have suppressed the Z. If ve set A = Ay these become the standard resolvent
relations.
Next we define the RM transition operators
P = V) + ) et @)
(36)

™ = P+ V@ e’ o)

Again these sat{ fy the property that
P wgn - 2@,

The dynamic content of the T':b(A:Z) is the same as that of G(A;7), This follows
from (36) and the relations

G(A) = G, (A) + G, (A) 37 6 @
ab
G(A) = G (A) + G_(A) T2 (A) G, (A).

We have succeeded in defining dynamic operators that describe any RM and
which have a natural correspondence with operators in the full reaciion theory.
Theorem 2 ties these operators to the specific reaction mechanism.

In this section we defined the concept of reaction mechanism. For any
reaction mechanism this definition allows us to lsolate dynamic operators
having the same structure as the corresponding operators {n the full reaction
theory. Since the algebraic structure relating the various resolvents and
interactions are all preserved, the dynamic RM operators, G(A) or T':h(A) '
can be calculated using any first principles reaction theory. For a sultable
choice of RM, this may result in simpler practical calculations. Furthermore
the structure of the equations should help us understand the dynamic processes
involved in the RM. In the next section we will use N-body techniques to derive

mathematically well-behaved equations for the RM operators.

bl 3

IV. Dynamic Equaticns
In this section we write counected kernel equations for the BM resolvents
and transition operators., wWe also show the relationship between the tull
.

dynamic eperators and the KM dynazic operators.

A. RM Operators

. at
In constructing dvnamic equations for the operators CLAY and T

"(A) we
first dispose of the case of trivial reacticn mechanisas. FRecall that A i«

trivial {f

faaRcn €AY
¢

h
By (1) we have HiA) = Khu) + VO(A). Ustng (79) and (1) we see

» i & A . *e
vy s 2, Lo £a | (.::x!'. ) E_(a3E) 2 C(E7)] 8
a(‘aﬂ clga) a €A .9 -
Yy . ¥ ¥ [R5 £ o) 2'F ) ar
: - I S E s o, W}, ‘

[ S—
¢ aE A al2de)

.l“* h)

We note \‘_C A, a2 c™afd by triviality. It follows that all non-re:
terms {n the sum (37) have ag . The sum must vanish bdecause of the testiic
tion a* b, Thus '.'h(A‘ « (0. This means H(A) = N'_(A). and comsequent Iy, that
G(A) = l'.h(A). Si{nce ‘:y.“” {s deternined from soluttons of fewer bdods prodlems,
both G(A) and T?h(‘.V are Anown. We see that there is no new dynazfcal content
fn trivial RM's. The cotresponding Operators can be constructed dlrectliy
from fewer bhodv solutions,

The situation for nontrivial RM's is not so sisple,  We degin dy giving
connected kernel equattons for the RM resolvent G(A). Assume A L& nontrivial,
we define

VA e c v .
< [

-



We also define the operators (“-a (A) by the equation:

= y A %
a.a“’ SCRT RN ;Z 6,0 22 &

b(“' (3%

In the next section we show that the first {terated kernel of this ¢ x"|.|‘.2~-1|

is connected. Assuming our RM {nteractions \':(A) are conslistent with the

operating F.C.A., the first iterate of (18) will be a compact kernel equation.

7

This condition guarantees a unique sciution [4). We show that the operator

& = § 5.“ (A) (1
<

may be identified with the RM resolvent G(A). We have
Theoren 3:°
G(A) = &(A). (4

To prove this ve first show E(A) is independent of a, then that it satisfies
all of the resolvent identities (34).

To show B(A) is well defined we use the perturbation expansion generated
by (38). We need the following:
Lemma 5:

* b a
G, () - G (A) = En G.,(A)(vcl(h) -vc‘(A)) c‘l("

’ c
b a 1 a
+ W, (A -v () G (A ") -v? (A) ¢ (A +....
Zl A % < < CH <, <, L

(41)
To prove this lesma we first note

E v, (A) 'E Cy pm 'E % °§'; Ll czf—'n:) w1, v {3 h) %

By Lenma 1 we have
’
=1-4 .

H(A) = | P,
a

(42)

Since

it has o Fally connected pleces, (wl) hocomes

v

2 eay . > THIA) o ' TY
) b &) '
h bl 1
hy (J0)., Vsing (41) {n (19) we find
' N -
) ( / o (A ’
‘nA \(\ - 5 { rll"l '\ . A)
1
Iterating (4a) with b « ¢, 'l ¢ ¢y Rives
H 2
N
(A) = G (A) = ) G (A A) - (A)Y € (A
a b d P '
cy 1 )
.—,/ . 1 Y
& ) " a Ry (A (A) {A YAy 2
—d o « A
i 1 i

Repeating this fteration an Infinlte number of times gives (4})
We new show that the definition (39) is independent of a, f.e., for
anv a and b
T (6 (A) =& (a)) =0
e ( ac ) he

to each order {n »(A)., Equation (18) generates the expancin

. C
« G < " u® (4 - - A;,“l-,
?'."cm G (A) & 4G () vl(A) 'ruw_’ "1m ’l-" v (A) T (A) e
1
Summing over ¢ gives
.. ' ~ / "'
16 (M =6 M)+] ¢ (A o™ 6 unz CA v e vty s
ac a a [ [ - a c < €y t
¢ ¢ x.(, 1 1 2 ’
Using (464) in (45) gives
' .
L8 = @] e - A6 W
c ° 1 1 ey
L . ’ a d‘
« (14 UglA) G (A) + g (A) G (A v (A G, (M) s L)L (4f)
d 1 a 2 *
ik 1

In order to show that this (e the expansion for i E‘.N(A) ve constder the n"

order term of (46) in v. This term is (suppressing the A'g):
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In order to observe the cancellations in (47) one must start from the right
of the top line. The term with the single underline and all factors to its

left cancel the second line. Moving to the left, the term with the double

underline, everything to its left and the terms, -C v: Gc . to the right
n-1 'n n
cancel with line 3. We continue this process until we get to the term with

the triple underline. This term, along with what remalns on the right cancels
the last n+1°% 1ine. What remains is the expression on the right-hand side
of the equality. This is the n°M order term in the sum. Putting these terms
together each such n gives:

" b
ZE“(A) -G () + E Gy (A) V2 (A) G_(A) + ...

which is just the perturbation expansion for Z'abc(k). This proves that C(A)
c
is well defined.

Now wve p d to d rate that we can {dentify &(A) with G(A). Using
(38) wve have

. . ‘ .
) = ‘{, c, W8, + g G () v2) %‘ N

Ew = G n + c_mlg'u:(fn %),

n

From (43) we have

LAY = & (A) + G (A) v Ea .

This must hold for any a. Thereiore ((A) satisfies a1l relevant resolvent (den-
titles and may be {dentified with the KM resolvent operator (A), since satis-
fying all Lippmann-Schwinger equations s erough to vield uniqueness, even thoug
a single one does not.' This concludes the proof of (0.

1t follows that for nontrivial téaction mechanisms, the RM resolvent
may be ohtained by equations (J1) and (18). The kernel ant driving terms
of (38) are determined from solutfcas of {iewi hody predlens using (J2), (240,

(30}, and (33},

B, Full N-Body Fquations
In part A wve derived connected kemel egquations for G(A) = (I - H(A))
Given a reaction mechanisz A there is a complesentary reaction mechaniss A'
Since H = ,,;—A ll(a‘). A' - A(\\A implies that
a& %
How H(A) « H(A"Y . (4%)
From («8) follow the relations
Cow C(A) & C(A) K(A"Y ©
G o= G(A') * G(A") WA ©.
9 -
Iterating these equations gives
Go= G(A) & C(AN) HOA'Y G(A") ¢ C(A) H(A") C(A"Y H(AY G (49)
In the next section we prove that (49) (s a connected kemel equation tor any ¢
of A. At this stage we have a full N-body theorv. We note that we actually he
family of N-body theories~ one for each complenentary pair of reaction mech-
anisms. Since our main interest is {n scattering phenomena, it s advantageou:r

to reformulate these equations (n terms of transition operators. Ve do this

in the last part of this section.




C. Scattering Operators

Recall the definitions of our &M scattering operatevs (¥q. (36)), These
can be calculated from (36), (38), and (39). Direct calculation of the
T(A)'s will clearly save us a quadrature or two. Another advantage in cal-
culating the RM transition operators directly i{s that for anv A, G](A) is
never zero. It follows that (38) 1s a system of coupled equations with B, -1
coupled equations (19) where 8“ 1s the Nth Bell number, {.e., the number of
distinct partitions of N particles. The -1 is because we have no terms for
the one-cluster partition 1. For sutficlently simple RM's transition oper-
ator equations may couple together far fewer amplfitudes.

Transition operator equations for the r‘l"(m may e obtained in a straight-

forwvard wvay by rewriting (36) (using (34)) as

™ = v e 6w,
Using (43) and (34) in (48) we obtain
v .a -1 ' oa cb
W I fw e w glw ¢ I w6 m 1w, (50

Ve note for A = A, these are the fully-of f-shell BRS equations in precursor

form [8]. The same proof that shows the first {terated kernel of (38) {s

connected, also shows that the first iterated kernel of (50) is ccnnected.

The advantage of (50) is that v:(A) = 0 when ¢ Is such that ¢ 2d for at

least one a‘CA. reducing the number of coupled equations. Generally the

largest reduction will be when A is a few-body RM. We note that (38) and

(50) will both have vanishing iterated kernels when A is trivial. An equation

which can yield corrections to 1:?(5) from the complementary RM, can be

obtained by rewriting (49) as a scattering operator equation. Ome obtains
e glectom gt o it o 1 e gt (s1)

- r%-‘(n') + HIA) G(A) H(A) G(A®) T. (s2)

L] -
e
Fauation (52) fs the transition operator verslon of (49). 1t alse has »
connected kernel. Fauation (510 can be sirply characterized when 1t s evaln
{ . - 1
1ted between on-shell states.of the forn ':3‘14‘ N fb'*h) vith ln'ﬂb(’h' in
this case (51) hecomes
ah 1 a0 2 ob 1
] 4. (B )> & « (o 1Y (A) (A) T w (A I ¢ ) i
’a('1 T bbb Ya'a ¥ bbb
a -1 o b r =1 Each ¢ (51) has
where 0 (A) = 6 " (A) GIA), & (AY = G(N) f, (A). Ea torm fn (5 a
Al
ab % i
simple physical (aterpretation. The firnt term T (A) deseribes the ncarterd
b
that ‘orcurs purely through the primary EM, A, The wave operator o (A) diatorts
the incoming wave through the primary RM, The cperator T scatters the di»
L ]

torted wave through the secondary BM, A', At least once, The vave cperator
“‘J(J‘ 1lstorts the outroing wave through the primary BM,  The treatment |

particulary appropriate when the primary BM describes most of the phye!
and the A' corrections can be included perturbatively. fu~11af A one must uhe
(51) directly.

Once we show that (38) and (49) or (50) and (52) are connected beroel
equat{ons the N-body aspects of our theorv are complete. We can gonatruct the
N-body scattering s'ates by applying G r.;‘ to the states ‘oht 1, )» (the mantmally
connected partition elgenstates). Fredholm theory guarantees that the
residues of the poles of G are finite rank projection operators on the N-body
bound states. Since any degeneracy is always finite, the N-bodv bound states
can all be i{solated. :f we were to continue by solving the N ¢! body proebles,
these solutions would then be needed to construct the Pl(k)’n for N-body
systems.

The other remaining problem is to prove Theorem 2 which is needed to
show that the oparator ‘I"“’(M {s related to the RM~ A in the sense discussed

in (19). This problem and the connectivity problem are considered in the

next section,

e e e ———————— I — b ————
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V. Properties of Equations
In this section we discuss properties of the dynamic equations intro-
duced in Sect. IV. We show that (38), (49), (50), and (52) are connected
kernel equations for any choice of nontrivial A. Assuming that all of the
operators used as input are consistent with the operatina F.C.A., all »f
these equations will have unique solutions by Fredholm theory., We also show
the RM transition operazors satisfy an optical theorem of the form (18 fnvelving

only those partial cross sections associated with the RM-A.

A. Connectivity of the RM Operator Equations

We show that the first iterates of (33) and (50) are connected. For (%)

.
the iterated kernel is | G _(A) v2 ) G (A) 7p(A), while for (50) fe is

b
{' v:(A) GC(A) v:(A) Gb:A). To show both of these are connected i(t s suf-
;ictcut to lhovm
Theorem &4:
z' U:(A) G (W) u:(A) is connected for any nontrivial A. (54)
c

By definition of v we have

-

' a c Lapt a © . ;
E ve(R) G_(A) v (M) € Vel G V() ¢ . (35)

ne-

Ve can drop the cb on the right of (55) without changing any results. Making

& connectivity expansion of V:(A) ccu) we have

e <
E c. ‘;e L |v:m G (A, vy (A)

e ad d c
£ cc d(g) l(vs(l) + vc (A’)(Gd(k) + Gd(A) VC(A) CC(A))ld Vb(:\)- (56)

We have used (31) and (35) i{n the above. Note v:(m = 0 in (35) for dCc,

Since terms with connectivities external o d (upper d's) do not contridute

to the d connected part of an operator, (58) hecomes
- : 2 ¢
C Vi(A) €, (AY), ¥ ).
LA (AY], vy (A

¢ Saigo) d

Changfng the order of the sums gives

= e

(A) C 1 '
.."_l d\.\'l,d o C \‘:M.

c

K| el
Using the representazion (30) {or \';\A) glves
’
WA= N S
IVEIA) (A ] / § 4 [H(AY)
d d d e ¢ ! g
d NELY el B)
el )
. £ =
- (v (A) G, (A ), IH(AY ) | _}| (L=sd ycl. $7)
—t | VNS ' .
4 el d d d ¢ Sgerd) eCe ¢

Now from lemma 1 we have

/ /’ T“I
C =1, z 8 G » ) €C == . [88)
) c I es e o L ¢

24

Using (53) in (57) glves

' ' S ¥
- a ¢ r a
T 5 Yy v (U ) G 31,4 ¥ =&
! C(A\ K‘_IA !'(H . ) “.1“ d“ A“A‘i\'\\‘

- d e(ChH) “.‘ur-l
The condition n means that dUe =) which (mnlfes thae | ) | ] s con-
duerl d -
o -
nected,  Thus B2 ¢ (A \'N;'\‘ {s completely connected for any nentrivial
b L [ 4

<
A, The connectivity of (35) and (30 follow {mmediatelv., Nontriviality must

be assumed hecause for trivial A the fterated kernel ts zero.

8. Connectivity of Full Dynamic Fquations
Now we show that Bqs. (49) and (52) have connected kernels. Here we
deal with kernels of the form G(A) H{A") C(A') H(AY and M(A") C(A) N(A) C(AT).

It sufffces to show!”




Theorem 5:
H(A") G(A") H(A) and H(A') G(A} H(A) are connected .
Proof':
Since the proofs of these results are similar we only consider the
H(A') G(A") H(A) case. Using (20), (21), (22), (31) and (34) we have

v U - ¥ 0 ' vy udeae . s v M)t
H(A') G(A') H(A) Z € W (ANDIE (A +6 (A" via") a(a VIR () + v

. .
- ) o . . i . : ' , A ' . . e
{ €, H (A ¢ (A "“(‘“3 €L H A G () v G’ B

.
. a
‘g C. H (A 6 (") v

The second and third terms on the right contain f (‘,a H_‘(A') ca(,\') v'(A') and
. a

Z C‘ H‘(A') G.(A') v?(A). These can be shown to be connected using the same
a

.
methods employed in proving (54). The remaining term {s Z ca n‘(A') GJ(.\') H’L\‘).
a : S
Using (22) and (33) this term becomes
.

. Q"
I e w v arter—s P A" G P (A P (M) W, (59)
a

For complementary reaction mechanisms we have by (8), (21
P A) = Q (A")
P.(A') P.(A) =0 (60)
P.(A') Q‘(A') = 0.

Using (60) in (59) gives

’
Z Cq H(A") G (A") H_(a) = 0,

It then follows that H(A') G(A') H(A) is connected.
We remark that A and A' do not actually have to be complementary; they
only need by disjoint. This means that several such disjoint reaction mecha-

nisms may be joined in this manner. We discuss this in Appendix A. We also

. -
'8
note that unlibe (54, Thecorem 5 helds for toth trivial and nentrivial #M'a,
Co fpectral Properties of rm perators
In order to understand unit atitv, we must first lerstand the wpectra
Properties of the operators that cerve as (rput in the o 1atfons for the k™
ﬂpl'(ﬁfn‘r"ﬁ.
We bogin by discussing the ofeenstates of o (A e, 0. 8., !
‘
1, €A we Have
' (A ¢ - : 1
1 Nk a }

By (5), (22) and (61) we have

D« (E =% )lg (a ) = (F -H (A)Y 3 {a
S a a b ] a a b

1f Ih¢A ft follows that

H (A2 (s ) =1 P (A (A) & (o ) = 1
a a b ,

We see that "4(“ will have three kinds ~f elyenstates: manimallv connected
eipenstates of “.‘ with 13€A; scattering elgenstates of N‘ that evolve {ro=
maximally connected elgenstates of "h with -HC A and elgenstatey of u’ wit
1‘,¢A. We will refer to this 1nst rlass as zern cnergy state

The most Interesting cigenstates of H"(A- are the scattering elgenctates
From the above we know that these are also scattering eigenstates of |

a
Because 1h€A we note that '1,’( 'h) *is a maxirmally connected elgenstate of
uh(/\). Considered as eigenstates of Hae the seattering states of N.‘IA)
satisfy:

1.:(1“)‘ - 'eh(‘h)‘ s 0 (a, ). (61

Alternatively ve may ask what (s the scattering eigenstate of M.(M that

evcives from the efgenstate foh(\h)' of 1 (A). These boundary conditions give
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+ B b +
1A A 64)
foglap)iar = Loy ()> + G (A) V() (3,):iA (
.
To determine the relationship between (63) and (64) we consider “n('h) as
an eigenstate of Ha(A) rather than "a' Fquation (62) allows us to write
+ + b o o
(Eub-ub(e\)ﬂéahb)* - V.(A)Ia.(ub) .
This gives
* + b +
S P \ ! 5
lo (@)= = 12 (ap)> + 6 (M) v (A)¢ () (65)
- a )> = (63 65)
where I(b(abb satisfies (:ﬂb H.b(A))Il:bhb) 0. If we write (63) and (
in a coordinate representation, as the clusters of b get far apart, ti. con-
tributions from V: and V:(A) vanish. Since the function -;':;(abj- tn (nl)
and (65) is the same, we must have
[eylayg) = Lo, ().
Using (35) and (65) we can express (65) as

4+ + 0 b .
log(ay)> = 1 + Co(A) VI(A)) |0, (). (66)

Using (35) we may express (64) as
+ + b
]o.(.;b).m = +6 @) V.("”“b"‘b)" (67)

Comparing (66) and (67) wve have
+ +
H.(ab)’ - |0‘(ub);A>.

This identification allows us to make the identifications

-1 -1
+ + 2 +.b = + b ! + .
DAY "b("b” (uc.v.)hb(ah» (uo.mv.(n))lab(.‘hb G (MG “‘”‘b
for bC a, when operating on maximally connected states Iob(nb)> with 1b€ A.

ab

This result will be important in deriving unitarity relations for the T, (A).

(2, )>

b

(68)
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D. RM Unitartty

We now prove Theorem 2 by showing that the RM transition operators (36)
satisfy a unitarity relatfon consistent with the underlying RM. This swans
T}-vqro_q 6: (RM Opeical Theorem)

tmes G EITINAEY (4 (3 0180 = - (A:E) . (69)

Pl

Proof:
Throughout this procf we use the following rotatton:
A, AE) = A(E#4c) = A(F - 1)

& A(E) = UmlA(E+4c) = A(E- 1¢))

v ()

AGE") = ALE: 10

2= E+ic.

To show our unitarity relation we calculate 3 T:: (AJE),
f )

this we need some aldit{onal results. We observe (16) implies

™@ = 1™ W e P - vy, (70

Using (50) and (7)) {t {s ecasy to show

LI
™ W = v e 7w Gom V(4 an
<

Tnb

v

Nl
VIR Sa? Y G, (A) P 7

¢

(A) = Vh(:\) +

where the operators T'°(A) are defined .

ak . LA -
L O NP IR vEIA) G (A) M) - rg ¢ ¢ T e sl OB
c ¢

Using (71) we find

a ™ me I @ 6. -1 e (h Yo
[\
. - -
=T T mnc e PO s G azbn vP ). (74)
e p
We now use

In order to evaluate



E

¥ o Nt
s a1 ™0 c,ani . s
[ d « d
This and the subsequent lemmas in this proof are proven in Appendices B, C,
and D. Using (75) in (74) we find
b

)V (A

! d yde,  *
8, 1‘:_(»\;!:)-{ g *%w A, r.d(.\.u(\‘ RO

4

Using (72) this becomes

ab ' pac ch, *
a, 1% (B = z Pem s e e’

Taking the limit as ¢ + 0 gives
Lemma 7:

8 1 ey I PN a s AT ). (76)
c

From (7), (8), (21) and (33) it follows that

8 G_(AE) =-2n1 Z: Z "‘";"""'n —1le (a> G(E-E'(ad,ﬁ))t,c(ud)'. (N

d(Sc) ayeh 1

Since the S-function keeps the -tarc;".-’(mdh on shell we may use (66) and

(65) to express (77) as

8 G (A:E) = Z Y e msEh 6 a:Eh)
d(Ce) a €A =

x [= 2 X ' -1,0 5" e
{ 1"“’1""3“‘-1"4"’4” S(E e(ud,i))«d(ud).l Gg (MET) G (A:ED).

(78)
To simplify our expressions we define
Dlay:E) = -2ni f"r"‘"..‘-ﬂ’a“'a” S8(E-E(a PN <o lap]. (19)

Using ( 78) and (79) in (76) gives

a1 mim -] Pt 2. 2 e mih ¢ aie") peagercgtaien)
c 4Se) a€n ¢

* G ET) T (AGED). (80)

- ah
Stace we already have good equations for T (AR we may use the solved form
(Y to write

1 - - - - - - - N
r:i‘(.\;F, ) ".(_(A;l' ) T‘b (AE )-f;i!u;! ) G (AE DTSV (A) GIAGE )] \" (A) -
‘ - « <

Using (34) this hecomes

- - - - h - - - - [ 3 4 .
G‘,X(A;E ) G (AE D) T (AGET) = th\;F Y GCAET) V) v e vE ) araceT) VA
- «
- ™ ). (81)
W <
Wo remark that one does not need the solved fors of 17 (A) to prow 5
can show it directly from the dvnamic equations using arpuments cimiiar to

those tn Sect. IV.A. Using (81) in (B0} glver

D e
nt - - y

8 ™ (um e | }_ 2. o o aieh DAY A IEICORL IR ST
e d(< ) Id(-’\

Changing the order of the summation in (22 ) gpives

- S
ab N ac,, o+ TR o i
AT, (AE)= ) Z l /, 1 (AED G (AE) G U (ASED] Dl ) T (AL

A

4a,€A c(Td

We now note

Lema 8
emie’ o " oty v <0 1r e Ba
ol )
This lemma means that we can axtend the ¢ sum in (83): +J . Ustng
cf ﬁ) c
(73) we get

' xac,, .ot o -1_0-",1 U . S | ) L
zc 1" 6 (e ¢ (e E vl 6 e 6 (A.E)OZ w2 6 (i)

L o~
i ) e e e
L

Comparing ( 85) to (50) and noting that the solution must be unique 1t
follows that

a *nc(A;E‘) G (A;E‘) ﬂ-‘(A:E‘) - ™ et . (86)
’ c d .
¢

Using (86 ) in (83 ) after extending the ¢ sum gives
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8 T2 ey = E 'r:d(A;t:") D i) 1 (aseD) (87)
ud€.\
y . b L+ +* b -
where we have used ) 5 = z . From (36) we have \T“ (AED) = TNAEDD.
d n"z‘ "di A
It follows that
ab .. ad .. JrEn L s T 38
8 TP (A:E) = _5{, 1 aE") pyGa et ashyi (s8)
nd A

Equations ( 87) or ( 88) are the basic operztor unitarity relations for our
RM transition operators. To put them in optical theorem form (69) we take
on-shell matiix elements of ( 88) between states !:au_‘h for a € A. Using
this with ( 79) gives

+ - . =
71 lace, (@) [T (ME D o (a)> = -2n1 BZ‘ AIJPI...d!‘"b_l 8(E - £, iF))
b
« e G )T e e (5001

. dnf(ma.i‘.a)

- -tlzssZC.‘A fles a2 113 g™ Loy (80" ———— d?l...dfnb_lx (30)
b

where a‘ is the density of final states. Using the standard quantum mechanical

relation between the cross section and the transition operators [21), we can

= -1l IZ : 0 Lo (EA). (o1
tnclglmh “a

Combining ( 89) and ( 91) we get our RM opticai theorem (69), As stated before

identify ( 90) with

this unitarity result proves Theorem 2. This justifies the interpretation
of the operators ‘I'“(A) as transition operators describing the reaction

mechanism A in the sense of the definition (17).

(39)

La

V1. Summarv and Conclusion

A Snmmary
We Yawe presented a unified treatment of different reaction rechaniams
in nonrelativistic N-body scattering. This theory {s bSased oa connected

kernel intearal egquations that are expected to become compact given reasenable

1
constraints on the p‘h-n:mh‘.l These equations can be formulated for anv

important set of asveptotic channels. The uperators '.'.“ (A) are aprroximate
trnsition operators that Jdescribe the scattering proceeding through an
arbitrary reaction mechanism A, These operators are unigquely determined hv
a connected hernel equaticon and satisfyv an optical theorem consistent with
the chofce of reaction me hanisn.  Connected kernel equations relating jfk“‘
to the full T':h allow us to correct the approximate solutions for anv {enored
process to any order.

Although our theorv is capable of treating any reaction mechanis= A, it
is only when the individual states of A itnvolve a few clusters, that the equa-
tions for the TM‘\'A\'S result in a substantial simpli{ficatton of the exact
theorv., In this case of few-bodv reaction mechanisms, two basic simplifications
occvr.  The most i{mportant 1s that the number of continuous vector variahles
in the kernel of the integral equations reduces to N,, - 1, where .\‘.‘ - ?.ICIA "

a

Since the vector nature of these variables can be reduced by separahle ~
expansions and partial wave techniques, one can usually get the numher of
continuous degrees of freedom down to Nn = This reduces the numerical
complexity of the many-bodv problem te that of a few-hody probles which may
admit exact numerical treatments. The other simplification {s {n the number

of equati.ns involved., 1f one defines the set

- {al 3
PA uu?b.thA %




the number of distinct partitions in this set (s the number of coupled equa-
tions for T‘b(A). For highly clustered states b, this nunber {5 considerably
less than Rﬂ-l. which is the number of equations for the exact T"'h when
every possible tvpe of multipartic @ ftorce exists.

This theory represents a conslderable improvement ov ¢ model theoretic
treatments of few-bodv reactlon mechanisms. The approximate dynamics is
dictated directly from the reaction mechanism and automatically includes all
corrections (such as spectroscopic factors and overcounting corrections) nceded
to maintain the integrity of the underlying N-bodv nature of the system., It
shows how all corrections to the approximate solution core in, including
effects of particle identity. It gives a unifled treatment of all few-boly
reaction mechanisms, with the same dynamic simplicity of the rodel calculation,
but can include complicated reaction méchanisms involving overlapping configur-

ations where it is difficult to formulate models.

B. Applications
The most important consideration in applying these methods to physical

systems is choosing a dominant reaction mechanism. It is only when the

reaction hanism A ts for most of the dynamics that the approximation
'l';b - r:"(n) can be expected to be good. In this same situation one expects
the corrections should be amenahle to perturbative treatments. Finding the
wmost important set of asymptotic states A may not be simple. One expects
that final states that are responsible for large reaction cross sections
should be included in A. On the other hand, other states may have to be
included even if they have negligible or no cross section. There can he

several reasons for this. First, the available phase space on the enerpy

Lt

wll Mimbes the size of various cross sectfouns, but the assoclated processes
could sttll be Important off shell. A better measurerent would be to con-
stder the ratio of the actual cross section to the available phase space.
For wore procedses @ miy be below the threshbold for the ~pecing of the
channel, Araln these states mav Introduce Important off-shell ef{feocts

can try to use a phenomenclezical pleture of the reaction mechaniaem to
decide {f these states are (mportant. Another possihility {5 to look at the
slze of the cross sectfon above threshold, 1f sitstantial matrix elements
are indicated, we might expect the state to be {mportant At this stape
ingenulty and physical {nsight are fmporzant {ngredients in choosing react b
mechanisms. One this (s done, however, the formaliss presented here alwy
vields a mathematically well-behaved framework,

The most important applications to our fermalism f« to few-Yo'y reactior
mechanisms, It {s here that the formalfsm should result fn a sufficient
simplification to allow for numeri.sl calculation. The methods of Bencze and
Redish [22) for treating ldentical particles in N-body systems can beo appited
to our equations and result in an additional reductinn of the number of
coupled equations when fdentical particles are {nvolved,

An example of the type of system that one could apply these methods to
{s nucleon-nucleus scattering above about 50 MeV. Here it is observed tha:
the dominant processes are single nucleon knockout [23). This -uggests keeping
those channels {nvolving the incident nuclecon, a nucleon frem the nucleus
and the residual core. Our formalism allows us to treat all possible con-
figurations of two nucleons and a core simultaneously. When the BR symmetri-
zation fs applied we would get four coupled two-vector varfable integral

equations corresponding to the configurations (p,A), (n,A'), (p,n,A-1), (p,p,A-1)
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The six continuous degrees of freedom could then be reduced to one or two
using partial wave techniques and separable expansions. For comparicon we
note a three-body problem with local potentials and distinguishible particles
involves three coupled two-vector variable integral equations., It follows
that the dynamics for scattering of N-body systems with three-bodvy 4 =lnant
reaction mechanisms will have essentlally the same complexity as 4 throe-
body svstem has. A calculation of this type {s in preparation.

Another application concerns processes involving several reaction mecha-
nisas. If these reaction mechanisms are amenable to different tvpes of
dynamic treatments, our formalism allows us to treat each one individually,
using different methods for each one. It then shows us how they must he
combined to give the full dynamics. Applications of this type are somewhat
more ambitiocus than the previous types. We will not discuss them furthor,

The last application is with few-body systems. We note for any chofce
of A our equations give a reaction theory equivalent to N-body Schrdadinper
theory. Unlike some few-body theorles our formal{sm incorporates all com-
binations of many-body forces. Thus it is a useful formalism for exploring the
important questions concerning the existence of few-body forces in many-body
systems.

In conclusion we constructed an exact unified formalism for truncating
an exact N-body scattering theory to describe any set few-body reaction
wechanisms in a natural and unitary manner. We are able to handle any tvpe
of reaction mechanism, and still maintain the connected structure of our

theory.

Appendix A

In this avpendix we discuss extenstons of the bastie theorv: the inclusion

of N-bedy forces, and extensions to more than twe teaction =echanisne
A. N-body Forces

In order for an N-body force to be compatible with cur theorv 1t must
gatisty an appropriate F.CLA. This means that the N-bholdy force must he com

Pact as a Hilbert space operator (assuming we have removed the ™ degres

freedom).  Since the decompesition (13 cannot support a fullv conpecty

operator, we must modily our formallsm, There are two constderations How

the equations must be madified, and how the sodifications affert unitarity,
The corpactness of the N-body forces makes them eanv o Include,

Ditferent methods of treating these forees are sultable for fierpe

applications. We present one of manv possihle techniques for incl

ding them, We let Y denote our N-bhodv force, and assume that 8 can be

split into a part corresponding to each RM,

\'l - "X‘A‘ . \'1\4\"

where ‘u‘l(r\\ and ';'1‘-\'\ are compact, and may he zero. Using out previcus nsta-
tion (2), (1) ve define

Vi) T v e v ()
= .

) L »
\b(,\) ‘h‘k) + \l(A)

G(A) u'.-nm-vlun". (A1)

With these Jefinitions our RM transition operator hecomes

P = v e v c v
« VAN (A ¢ e YR 6o Tt (A7)
Gy, b b

statlarly for 1™ (A). From (A1) 1t follovs that



W
G(A) = G (A) + G(A) v"(p Gy (A)
Using this in (A2) gives
ab, a ~1
T = VA GA) 6T .
By Lemma 1
-t
L oCoViN) = v )
= 1 1
which i{mplies
ah * a c * .
TL(A) = Z €. VI (G (M) + G_(A) ¥E(A) Gia)) 6, (A)
ELN a -1 | . ch
T, () '{: €. Vo(a) G (A) 6 (N + is VI 6 ) 1T
We define
a - a
v (d) = C V. (A)
giving
ab ' a ~1 . cb
T, @A) = E v (A) G (A) G " (A) oz 2 (Y G_(A) T (M), (A%

This generalizes Eq. (50) when N-body forces are included. Because the first
iterated kernel cf (AJ) differs from that of (50) only by temms containing
'1“" ic follows that the first iterated kernel {s connected. We note it
d:l!on from (50) by the modification
Ue(A) = BZA) 4 € V(M) -

We get a similar equation for the A'-RM.

We may now use our previous results on unitar{ey to show (AZ) satisfles
a proper unitarity relation. To de this we note

a, TPW - VW, i Y . ()

We also note

G(A) = G(A) + G(A) Vl(lc) G(A) — (AS)

- -
. .
C(A) = GIAY =10 (A)Y ¢ (Y ei(NY '."I‘\!l ¢ f'[,\\llo'.’l_\i o (A
= (1" GIA) V(A 2 (A (1 e¥ () (A%)
v G(A) - G (A)"= G(A) ¢ G (A)°e GIA) v O (ar® - Giay ¥ (M) GOA)
‘ .|‘\v",'11,\| (A= GIA) ',1 () (A)*= A Y] AY V, (A
L A S A\ A Yy iA L .A 1 ¢ A y . b r A Toe (A
. G )"V ) } ¥ ) W { vV, (A)
sal ¥yt 1 1

sing ( A% ) this reduces t

A (A = (1 + 6(A)) V (A)) (A) -'.\,\ (AT (e
From () and (F8 ) {t follows that
)
A G(AY = } (1 rg.‘,‘y,\p-v( (] + v¥ia a®
St 1
1A
]
we take the limit au o 0 in ( Af . By the discussi tn Appenidix C, 1
compaciness of \'lu\l 11lows us to being this limit fnside the terwm 14 00A
i

ete., piving

‘
8 G(K) = S:. (e vOecy VAN DGOV W) 6 A ey ) can
r €A : :

a

=
= 2 (4G A« VAN DG (e (v ) ev ) oo
= il a !

IJCA
Using this ta ( A4 ) with (AT) pives
g b +
1w . ), 2w o6 ) 1" (A7)
.[(TA 1

Compartng ( A7 ) and (87) it follows that T/ (A) also satisffes a propes
unitarity relation. Thus .he In:lusion of N-body for es in the RM operator
equat {ons does not change the un'tarity structure of the operators. To cosbine
the RM's Eq. (49) must be modificd so

C(AY = GIN)

H(A) + H(A) # VI(A)'

Similarly for A » A'. Apain the connectivity is maintained.
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B. Several RM's
in some applications one may find it desirable to deal with several

disjoint reaction mechanisms, (A nIAIﬂA -3

n

A, U A

i,i=1... 1 £33 (=1 i
opposed to a pair complementary RM's. In this case the RM operator equations

-1
) - (Z-H(:\t)-ll(A,)) .

- "n’ as

(38) or (50) remain unchanged. If we define C(A‘UA,
(49) 1s replaced by the equations

G(AIU Az) - C(Al) + G(Al) H(Az) ‘:(AZ) + G(Ax) N(A..,) C(Az) H('\l) G(:\IU \)

G(AlUAzUA,) - G(AIU Az)OG(AIUAz) H(AJ) G(AI)

(A8)
+ GAUA,) H(AJ) G(AJ (H(A)) +1H(A,)) G(AUA, U
n-1 n-1 n-1 "):_l
G=G(U A) +G(U A) H(A) GIA) +G(U A) H(A) GMAI( ] H(AD) G.
=1 ! T R R gogrs v TR ey

The proof used to show (49) has a connected kemel also shows that each of the
equations ( A8) have connected kernels, the key point being that the disjoint-
ness of the Ai" make the disconnected parts of the kernels into products

of orthogonal operators.
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Appendix B
In this appendix we prove Lemne 6 which savs
A " . 1 .
2, P - T 1w s 6 ¥
¢
where
ah a ¢! A . cb a o' Z8c c
= o (A) v2a) o -y ‘ ; "
" () epA) & T 0d(a) 6 (A) PP Ca) vaA) ¢ ! T G (A mp(A). (x1)
¢

<
To prove this we note

a ) - 0y - 10"

b aab, & o . Sl Ry "7
=1 - - PCIE M e an TP el Py e e Pt
i e e i ( g <‘A i
< S

Y o o . . .
=T e, e @ PN ST L e 0 6oy TN
. ch < d ad d

. »
« I ***w e oy Pw'. (82)
¢ < C

Using (B1) in (B2) gpives

' aad . «
c):d('l" IR R R TO RN R TORRERTY, STV RS A YT ¢ ¥
. c
(8Y)
But v“f(n - :':M\' s0 (B)) becomes!?

.
s ¥ - T s o 2w
[

which is the desired result.
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Appendix C

In this appendix we pr;)vr.- Lemma 7 of the text. The context of this lemma
1s that we can bring the limit in (76) through the A and Tf"(:\)'. 1
problem arises because the operators become unbounded as ¢ =+ 0. This means
the limit only makes sense whea the operators are restricted to a suitably
dense set of vectors in our N-body Milbert space, and furthermore, produc:s
of these operators make sense only ! certaln combipations. Thus there are two
concerns: the operators themselves, and the structure of the equations
determining how the operators are put together. In this appendix we only
concern ourselves with the second of these considerations.

oS (A) and some

The type of problem that arises is when some Gd(A) in i‘
Gd(A)’in 'l':‘(A)hm connected by 8 functions in some of their continuum
variables. This can cause singularities that would not normally app.:r,
through the mechanism

24c
(pz + !)2 +c

5— [ S(E+p%) dp

vhere the 2ic comes from the “:c(”' Other combinations with € ana AGC(A),
tf”(A). and M;e can also cause problems. All of these problems can be
traced to the fact that two similar denominators are separated by § functions
in the momentum variables. We will show that our equations are structured
so that this will never happen in Eq. (76).

To do this we use (38), (72) and (7)) to express (76) as
s, W) - Z' w5, o 1w"

-7 (u:mo‘{; o By W LA 8 c P T T " ).
< . 113

In this form the singularities of the T's are all contained in the U's, since

.
by Theores & J v:(A) 8, G W) v:(A) 1s a connected operator, it follows that
c

‘ A
there are no nontrivial functions separating the singularitics of T i
“ - -
and TP (41", We need only check that no similar singularities of Gy
.
o ﬂ”(A) are separated from .‘I f-r(M by £ functions in thelr momentum

varifables, 1t suffices to consfder the product
" '

< e A . &
(.l (A '_l/\l [y f,((l\) '(M.

C' v
We let "CA be a cut of G (A) ,which requires £ ¢ (¢}, Constder the first
Vaing (28) we can write

appearance of this cut in G .
e

- "y a «
d - (G ) uT(A) # 8
'Jr(“ “( dA(A e(A

b L P wl)
.

We first argue that there is no problem when this cut first occurs in -f,_ A)
because of the follewing: 1f the cut ‘“ 1s in «".Q(A) then g € (), When we
consider "-“(A) :':(A) L Cr(A), the fact that g€ ¢ N e means that

De(A) = UT(A) ¢ o"8(a) = w8 (A). s requires thar vT(A) efther has a

{nteraction external to &, or else {t {8 0. The presence of an interaction

with connectivity external to g means that there cannot be a t function in all tha

relative momenta of the clusters of g separating C'(M and & !‘-C(A\. Heno
there is no prohlem if the cut 7‘ first appears in (’-'(A) fn (C1). 1f the cut
e first appears in the ?-'d.(A) in (Cl1), there is clearly no & function because
it is separated from At GC(M by the connected string Z. :!:(A) f‘-'(M .‘:(A).
Singularities arising from the product & C‘(A) v:(h) a"(h) *can be treated
analogously. These arguments justify Lemma 7 provided the expression is

evaluated between 2 suitable class of state vectors.



Appendix D
In this appendix we prove

v

1
W 6, 6l 0y =0 for e P (on

To show this we evaluate the left-hand side of (D1). Equation (79) i{mplies
c -1 ac
W) 6 () 63 ) Dlay = te T 6 W) D). (v2)

This will vanish as ¢+0 unless el 15 CC(A) is singular when applied to (s 0.
will happen if we can factor a cd(A) out of the expression ‘?'"(A) CclA). To

prove (D1) we show that c P d means that the first occurrence of G, (A) is

separated from D(ad) by an operator external to d. We show that this combina-

tion cannot give rise to 3 singularity. Since D(xd) looks like a maximally

connected eigenstate, |8 (a,)>, of H, to P G (A), ve consider

tim 1 ¥C@W) 6 W8 60> P

e+0

We note e* d means that there is at least one cluster of d that is not
contained in any single cluster o c¢. Interactions internal to this cluster
necessarily must occur in the perturbation evpansion of Gd(A). The fact that
this cluster is externmal to c arans that these same {nteractiors cannot occur
in the perturbation expansion ol GC(A). It follows that l’-d(A) cannot be
factored out of GC(A), however that 4ves ot mean (! can be factored out of
F(A) GG(A). To see that this cannot hapy n we note

c 'z ab Wb
W c w - I' (o, + 72w ,0m o ¢ . (03)

Since v:(A) has only terms internal to c, the interactions external to c that
are necessary to complete the nrtutbnlm_ expansion of cd(,\) can, at hest,
come from the %(A) in (D3 ). Fortunately v:(l\) consists of interactions
external to b. If the required interactfon is in Gh(A). it must be internal

to b. But for that b, n:(A) will contain terms external to this cl :ter,

This

56

1f a term s external to a cluster of partition, {t {s necossary external to

the whole partition. [t follows that the f(itst occutrence of :'.‘M\ will he

sepa.ited from :d(-d)‘ l:‘-nd‘n by at least one interaction external to d.
we show that under the above conditions the singularity due to :'.d.u

is washed out., 1t then follows that (D) vaniskes as ¢ * 0, To show this

{t {u sufficient to show

tis 1e G (A VA4, (a2 » 0.
B Rl ety

Using (71y and (3D, the above hecomes

‘ e Y p R - 4 d S { 4,
/ ar, ... df e - - Vo (AYle )
E+ ¢ e (O - a7 1 na-l LIRS 4 4
aigd €A d a8 . \
‘ Eeteor - Y prin )
"4 =t ‘ 1
< =l \
- 3
o5 . . a“f (o) de .
We note that I _(2) y b <28 {8 hounded as T« R * 10 for any dounded
¢ 4 (2 -5 )
integranle (o). I1f our state vectors and *he interaction V (A) ate sultally

well behaved, there w11l be no singularity {f anvy of the momenta {n (D) ge
integrated. To show that st least one of these ‘:"1 gets integrated we must
consider two cases. Case 1 fs when d' ¢ d.  In this case the denominator

fn (D&) has at least one momenta involving particles (n a single cluster of &,
Maximal connectivity of |o

(a,)> means that :\('dv {s an operator with con-

4 d
nectivity d. This seans that the presence of 'J(‘d“ or l‘nd‘ cause this
momentum to get integrated over. In this case we have no singuiarity. Case 2
1s when d' « d. In this case the momenta, ‘:i' in ((D4) are the Jacobl momenta
of the clusters of d. Here \"’. consisting of terms external to &, cauvses

at least one of these momenia to be integrated. This also vashes out the
Q,(A)

h. —
Ee¢ 1

will not affect ourunitarity relations vhen £ ¢ 0. Since the singularities

singularitv, We remark that the tera causes a4 probles at FE = 0. This

of concern do not appear, the ¢ In (D2 ) causes (D1 ) to vanish as ¢ * 0,

Thia proves Lemma 8,



Footnotes
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of Physics and Astronomy, University of Marvliand, College Park, Maryland.
1. We assume the center of mass motfon has been factored out.

2. This assumption allows us to wse the terms connected and compact

almost interchangably. In general our kernels are anmalvtlic ecperator
valued functions of the complex energy Z. Compac*ness as a Hilhert

space operator following from the F.C.A. 1s assumed to hold only for

Z in the domain of analvticity cof the kemel. Typically for Z on the
scattering cut our operators are no longer compact. Generally solu-

tions still exist on the scattering cuts, but oanly as unbounded operators.
This means that the transition operators ouly make sense when they are
applied to a certain dense set of initial state vectors. The physically
interesting case of Z on the scattering cut can be treated by Fredholm
methods if one can introduce a new norm that excludes the troublsome
initial states. Often th< kernels can be shown to be compact on the
scattering cut in the topology of a suitably chosen mnorm. In [4] Steinberg

shows that the analytic Fredholm theorem holds on Banach spaces.
3. Kone of the partition Hamilionian eigenstates are state vectors of
our N-body Hilbert space, but can be considered as generalized eigen-

wvectors in a suitably rigged Hilbert space (14).

&. This lemma follows from substuting the recursion relation (24.1,411A)

of ref.(16] into the check {:,o(-)""-zs:-n (24.1.4118).

S. It 1s interesting to consider the relation between (16) and the

- -
“N
tral v ity f the full Rastle ' W full ectral elutt
{akes the form
e 1 . "
OO T} | il ful

where B={%-body hound states!, Assuming that M has no N-hody forces we hav

W) . (Hi{a)!, =

A full 1A !
It follows that

1 " "M

1A full fu

One can show that the H( (ls in ) L ’a i " ! .
i
the difference hetve W) and H(a) ., Involves only terss where al
ull
N particles are simultatlrously correlated, expar ton (16 ar he roms
as-the hest approximatlion to the full spectral reselution that can
algebhraleally obtained purely from fewer hody eojutions,
!

6. One mizght be concerned that the (-) signs of the r‘ which are hurlel

tn (19) might cause the RM Ha=m{ltonian H(A) to grossly vinlate lower

’
boundedness of the spectrum, in the sense that one f the cuts might got
flipped to the negative direction. That this does not happen follows by

applying the analvtic Fredhola theoren (6] to eq.(13) {terated once and

theh extracting the analytic structure of the Yernel using eqs. (31) ar

7. We note the analytic Fredholm theores gives uniqueress provided s
solution exists. To show the solution exiets {n the domain of aralvticity
one must show that it exists for at least one 7 in this domain. Generally
this {s no problem because a Z can generally he found for which the

perturbation series converpges.

' (F
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8. The proof of this relation is not the most satisfying. 1f one is
willing to introduce the RM transition operators (36) firse, it {s possibhle
to give a better proof. Taking (50) as the fundamental equation, using
(38) and (73) as definitions one can show

w6, W= P e W=, 2we (vhe1)
by showing all three expressions satisfy the same connected kernel equation,
whose solution must be unique (see 7). Theorem J then follows using (1%)

= ab
and G(A) G.(A)OG.(AH“ (A)Gb(A).

9. We note G(A) and G{(A') will have poles corresponding to both approximate
Qa“)

Z
(49) involves products of operators containing these singularities with other

N-body bound states, and to the terms in (33). Since the kermel of
operators that may vanish on these poles in some apprepriate sense, it
does not follow that the full solution G must contain any of these pole

singularities.

10. Recall that the algebra of compact operators is a 2 sided ideal of the
algebra of bounded operators [20]. This means that the product of a

compact operator with a bounded operator is compact. Since our F.C.A.

guarantees comp (dby tivity) of
. L c
HA' G and [ v2(A)G (v (A)
for Z not on the scattering cut (see 2), and since G(A) and G.M) are
bounded for such Z, compactness of the appropriate kernel foilows from

Theorems 4,5.

It In this formulation of the N-body problem we are not free to impose
constraints on the effective Interactions dirvectly, Their properties

are determined by solut.ons of fewer hody problems. Generally the terms
that appear Involve profucts of potentials and prolectors on fever

body bound states. Assuming the real interactions are well bdehaved, one
expects the bound states to be elements of some fower Dodv Hilbert space

The bound state projectors imbedded in N-bodv Hilbert space will then be
Hilbert-Schaide (in fact finfte rank) on the appropriate fiber (In the sense
of Simon {n [11]). This tvpe of structure, .comdined vith reasonable
interactions shoulld yield effective interactions that are sufficiently

well behaved to obtain an F.C.A..

12. 1€ one were to try to mock up particle creation effects, *he effective
interactions would hecome energy dependent. We would no longer have
I d

.c(\,-.ctA =0. Instead the discontinuity in v((A‘ would give rise to the
various particle production cuts, The structure of sur unitarity relation
should then give seme {ndicatfon of the tvpe of analveic structure that
;‘d(A\ would require in order to g

. quire in order to get the right tvpe of production cross

sections. A sericus treatment of this should also (nclude relativistic

kinematics,

PR
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(123)
1(23)
2(13)
3(12)

123

(123) 1(23) 2(13) 3(12) 123 (123) 1(23) 2(13) 3(12) 123
1 1 1 1 1 1 =1 -1 -1 2
0 1 0 0 1 0 1 0 0o -1
0 0 1 ) 1 0 0 1 o -1
0 0 0 1 1 0 0 0 1 -1
0 0 0 0 1 0 0 0 0o -1

Fig, 1

Construction of anticluster coefficients (N= 3).
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