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SUMMARY

A generalized close-coupled canard-wing configuration was tested in the
Langley high-speed 7- by 10-foot tunnel at Mach numbers of 0.40, 0.70, and 0.85
over an angle-of-attack range from -4° to 24°. Studies were made to determine
the effects of canard vertical location, size, and deflection and wing leading-
edge sweep on the longitudinal characteristics of the basic configuration. The
two wings tested had thin symmetrical circular-arc airfoil sections with charac-
teristically sharp leading edges swept at 60° and 44°. Two balances which allow
separation of the canard-forebody contribution from the total forces and moments
were used in this study. The data in this report supplement several earlier
publications by the National Aeronautics and Space Administration.

INTRODUCTION

The studies presented in references 1 to 14 indicate that close-coupled-
canard-wing configurations can provide substantial improvements in fighter maneu-
verability. In particular, these studies have indicated the effects of canard
size, vertical location, and deflection and wing leading-edge sweep on canard-
wing interference at subsonic, transonic, and supersonic speeds (refs. 4, 8,
and 9); the effects of canard planform, vertical location, and wing leading-edge
sweep on canard-wing interference for high angles of attack at subsonic speeds
(refs. 10 and 11); the effects of canard location on the wing buffet character-
istics (ref. 12); trim characteristics of a canard-wing configuration with a
variable camber wing (ref. 13); and a detailed pressure distribution study on a
canard-wing configuration at transonic speeds (ref. 14). The present investiga-
tion was made to provide a systematic data base on the effects of canard size,
deflection, and vertical location for a close-coupled configuration with inter-
mediate and high wing sweep. These tests were made in the Langley high-speed
7- by 10-foot tunnel at Mach numbers of 0.40, 0.70, and 0.85 at angles of attack
from approximately -4° to 24° with canard deflections from 0° to 10°. These
data supplement references 8, 9, and 11.

SYMBOLS

The International System of Units (SI), with U.S. Customary Units presented
in parentheses, is used for the physical quantities in this paper. Measurements
and calculations were made in U.S. Customary Units. The longitudinal data pre-
sented in this report are referred to the stability axis system. The moment
reference point was taken to be at fuselage station 63-71 cm (25.08 in.) for
both balances.

A aspect ratio,

b wing span, 50.8 cm (20.0 in.)



Drag
drag coefficient (main balance), -

qSw

Lift
lift coefficient (main balance),

Canard balance lift
lift coefficient obtained from canard balance,

Pitching moment
GUJ pitching-moment coefficient (main balance),

qSwc

Cjn 0 pitching-moment coefficient obtained from canard balance,
Canard pitching moment

qSwc

c wing mean geometric chord, 23-31 cm (9-18 in.)

L/D lift-drag ratio (main balance)

M free-stream Mach number

q free-stream dynamic pressure, Pa (lb/ft2)

'Sc exposed canard areas, cm2 (in2) (165-16 cm2 (25.60 in2) for canard I;
230.06 cm2 (35-66 in2) for canard II; 288.73 cm2 (44.75 in2) for
canard III)

Sw reference area of wing with leading and trailing edges extended to
plane of symmetry, 1032.7 cm2 (160.0 in2)

z vertical distance from wing chord plane to canard chord plane, posi-
tive up, cm (in.)

a angle of attack, deg

6 canard deflection angle, positive when trailing edge down, deg

Ac canard leading-edge sweep angle, deg

Aw wing leading-edge sweep angle, deg

MODEL DESCRIPTION

A three-view drawing of the general research model is presented in figure 1
This model was designed so that various wing and canard planforms could be



attached to the common fuselage to vary their positional relationship. Figure 2
presents a photograph of the model with the large canard and 60° swept wing.
Table I presents the pertinent geometric parameters associated with this model.

Two different untwisted wing planforms were used (wing I with Aw = 60°
and wing II with A^, = 44°); however, both wings had- the same area, mean geo-
metric chord, symmetrical circular-arc airfoil sections, and maximum thickness
which varied linearly from 6 percent of the chord at the root to 4 percent of
the chord at the tip. The two wings were located longitudinally so that the
distance was the same for each configuration between quarter-chord points of
the mean geometric chords of a given canard and wing.

Canard I had a leading-edge sweep angle of 51.7° and an exposed area Sc
of 16.0 percent of the wing reference area S^. Canards II and III had the same
leading-edge sweep and exposed areas of 22.3 and 28.0 percent, respectively, of
the_wing reference area. Each canard was tested in the chord plane of the wing
(z/c =0.0 ("mid" canard)) and in a position 18.5 percent of the wing geomet-
ric chord above the wing chord plane (z/c = 0.185 ("high" canard)). Body
fairings were used to fair the canard mounting brackets into the fuselage for the
high canard (z/c = 0.185), and these were left on the fuselage for the mid
canard (z/c = 0.0). The canard was untwisted and had symmetrical circular-arc
airfoil sections. The thickness varied linearly from 6 percent of the chord at
the root to 4 percent at the tip.

APPARATUS, TESTS, AND CORRECTIONS

The present investigation was conducted in the Langley high-speed 7- by
10-foot tunnel (ref. 15). The forces and moments developed by the model were
measured by means of two internally mounted six-component strain-gage balances.
One balance was housed within the forward segment of the fuselage and was
rigidly attached to the rearward fuselage segment. A small unsealed gap was
maintained between fuselage segments to prevent fouling. This balance (here-
after called the canard balance) measured the loads on the canard and on the
forward segment of the fuselage (shaded area in fig. 1). The second balance
(hereafter called the main balance) was housed in the rearward segment of the
fuselage and measured the total model loads.

Tests were made at Mach numbers of 0.40, 0.70, and 0.85 while the angle
of attack was varied in 2° increments from approximately -4° to 24° at a side-
slip angle of 0°. The Reynolds number for each Mach number is shown in the
following table:

Reynolds number,
per meter

8.383 * io6
11.739
12.113

Mach number

0.40
.70
.85



All tests were made with the boundary-layer transition fixed on the model by
means of narrow strips of carborundum grit as outlined in reference 16. Past
experience has shown that blockage and jet boundary corrections are' very small
for this size model when tested in the slotted-wall test section of the Langley
high-speed 7- by 10-foot wind tunnel; thus, blockage and jet boundary correc-
tions are neglected for this study. The angle of attack of the model has been
corrected for sting and balance deflections caused by aerodynamic loads. All
measurements were corrected to a condition of free-stream static pressure on
the base of the model. However, drag measurements were not corrected at the
forebody base because of the small amount of clearance at the model location.

PRESENTATION OF DATA

These data provide part of a systematic data base on the effect of canard
size, vertical location, and deflection and also supplement the conclusions of
references 8, 9, and 11. The data are presented without analysis. To aid in
using the data, the results are presented as follows:

Figure
Effect of canard deflection on longitudinal aerodynamic character-

istics at M = 0.40, 0.70, and 0.85 over the angle-of-attack
range of -4° to 24° for -
Canard I (SC/SW = 0.16), wing I (Aw = 60°), z/c = 0.0
Canard II (SC/SW = 0.22), wing I (Aw = 60°), z/c =0.0 ....
Canard III (SCSW = 0.28), wing I (Aw = 60°), z/c =0.0 ....
Canard I (SC/SW = 0.16), wing I (Aw = 60°), z/c = 0.185 ....
Canard II (SC/SW = 0.22), wing I (Aw = 60°), z/c = 0.185 ...
Canard III (SC/SW = 0.28), wing I (Aw = 60°), z/c =0.185 ...
Canard I (SC/SW = 0.16), wing II (Aw = 44°), z/c =0.0 ....
Canard II (SC/SW = 0.22), wing II (Aw = 44°), z/c =0.0 ....
Canard III (SC/SW = 0.28), wing II (Aw = 44°), z/c =0.0 ...
Canard I (SC/SW = 0.16), wing II (Aw = 44°), z/c =0.185 ...
Canard II (SC/SW = 0.22), wing II (Aw = 44°), z/c = 0.185 ...
Canard III (SC/SW = 0.28), wing II (Aw = 44°), z/c = 0.185 . • •
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TABLE I.- GEOMETRIC CHARACTERISTICS

Body:
Length, cm (in.) 96.52 (38.00)

Wing (wings I and II are the same except when specified):
A (b2/Sw) 2.5
b, cm (in.) , 50.80 (20.00)
Aw for -
Wing I, deg 60
Wing II, deg 44
c, cm (in.) 23.31 (9-18J

Airfoil section Circular arc
Sw (area extended to plane of symmetry), cm2 (in2) 1032.2 -(160.00)
Root chord, cm (in.) 29.80 (1T.73)
Tip chord, cm (in.) 6.77 (2.67)
Maximum thickness at -

Root, percent chord . . , 6
Tip, percent chord 4

Canard I Canard II Canard III
Canard:
Ac, deg 51.7 51.7 51.7
Airfoil section Circular arc Circular arc Circular arc
Sc, cm

2 (in2) 165.16 (25.60) 230.06 (35.66) 288.73 (44.75)
b, cm (in.) ^ 27-94 (11.00) 3V.65 (12.46) 34.749 (13.58)
Root chord, cm (in.) . . . 13.54 (5.33) 15.95 (6.28) 17-92 (7r05)
Tip chord, cm (in.) . . . 2.71 (1.07) 3-18 (1.25) 3-59 (1.41)
Maximum thickness at -

Root, percent chord . . 6 6 6
Tip, percent chord ... 4 4 4
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(a) M r 0.40.

Figure 3-- Effect of canard I (SC/SW = 0.16) deflection on longitudinal
characteristics of wing I (Aw = 60°) for z/c = 0.0.
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Figure 3-- Continued.
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(a) Concluded.

Figure 3«- Continued.
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(b) M = 0.70.

Figure 3-- Continued.
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Figure 3-- Continued,



Figure 3-- Continued.
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(c) M = 0.85.

Figure 3-- Continued.
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Figure 3.- Continued.
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(c) Concluded.

Figure 3-- Concluded.
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Figure

(a) M = 0.40.

Effect of canard II (SC/SW = 0.22) deflection on longitudinal
characteristics of wing I (Aw = 60°), z/c = 0.0.
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Figure 4.- Continued.
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Figure U.- Continued.
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(b) M = 0.70.

Figure M.- Continued.
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Figure 4.- Continued.
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(b) Concluded.

Figure 1.- Continued.



S.deg
O off
D 0
O 10

-8 -4 20 24

(c) M = 0.85.

Figure t.- Continued.
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Figure 4.- Continued.
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Figure *!.- Concluded.
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(a) M = 0.1*0.

Figure 5.- Effect of canard III (SC/SW = 0.28) deflection on longitudinal
characteristics of wing I (Aw = 60°) for z/c = 0.0.
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(a) Continued.

Figure 5.- Continued,
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Figure 5.- Continued.
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(b) M = 0.70.

Figure 5.- Continued.
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(b) Concluded.

Figure 5.- Continued.
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Figure 5.- Continued
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Figure 5.- Concluded.
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Figure 6.- Effect of canard I (SC/Ŝ  = 0.16) deflection on longitudinal
characteristics of wing I (Aw = 60°) for z/c = 0.185.
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Figure 6.- Continued.
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Figure 6.- Continued.



Figure 6.- Continued.
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Figure 6.- Continued.
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Figure 6.- Continued.



Figure 6.- Concluded.
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(b) M = 0.70.

Figure 7•- Continued,
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Figure 7.- Continued.
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(c) M = 0.85.

Figure 7.- Continued.

52



Figure 7.- Continued.
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(c) Concluded.

Figure ?•- Concluded.
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(a) M = 0.1JO.

Figure 8.- Effect of canard III (Sc/Su = 0.28) deflection on longitudinal
characteristics of wing I (Aw = 60°) for z/c = 0.185.
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Figure 8.- Continued.
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Figure 8.- Continued.
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Figure 8.- Continued.
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(c) M = 0.85.

Figure 8.- Continued.
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Figure 8.- Continued.
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Figure 8.- Concluded,
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(a) M = 0.40.

Figure 9.- Effect of canard I (SC/SW = 0.16) deflection on longitudinal
characteristics of wing II (Aw = 44°) for z/c =0.0.
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Figure 9-- Continued.
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(c) M = 0.85.

Figure 9.- Continued.
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Figure 9-- Continued.

71



-6 -4

CL

(c) Concluded.
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(a) M = 0.10.

Figure 10.- Effect of canard II (SC/SW = 0.22) deflection on longitudinal
characteristics for wing II (Aw = 14°), z/c = 0.0.
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Figure 10.- Continued.
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(b) M = 0.70.

Figure 10.- Continued.
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Figure 10- Continued.
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Figure 10.- Concluded,
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(a) M = 0.40.

Figure 11.- Effect of canard III (SC/SW = 0.28) deflection on longitudinal
characteristics for wing II (Aw = 44°), z/c = 0.0.
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Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11-- Continued.
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Figure 11.- Continued.
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Figure 11.- Concluded.
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(a) M = 0.40.

Figure 12.- Effect of canard I (SC/SW = 0.16) deflection on longitudinal
characteristics of wing II (Aw = 44°) for z/c = 0.185.
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Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 12.- Concluded,
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Figure 13.- Effect of canard II (SC/SW = 0.22) deflection on longitudinal
characteristics for wing II (Aw = 44°), z/c = 0.185.

100



•rn.c

- I

0

-2 &

-3

-4

-5
14

(a) Continued.

Figure 13.- Continued.

101



S.deg
O off
D 0
O 10

- 6 - 4 - 2 0 2 4 6 8 1 0 1 2 1 4

CL

(a) Concluded.

Figure 13-- Continued.

102
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Figure 13-- Continued.
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Figure 14.- Effect of canard III (Ŝ Sy, = 0.28) deflection on longitudinal
characteristics for wing II (Aw = 44°), z/c = 0.185.
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Figure 14.- Continued.
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