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ABs'rRACT

•	 :NASA/Langley Research Center has recently embarked on a comprehensive
program of evaluating higher harmonic blade feathering for helicopter vibra-
tion reduction. Recent wind tunnel tests at the Langley Transonic Dynamics
Wind Tunnel (TDT) have confirmed the effectiveness of higher harmonic con-
tro) in reducing articulated rotor vibratory hub loads. Several predictive
analyses developed in support ^)f the NASA program have been shown to be
capable of calculating single harmonic control 'nputs required to minimize
a single 4P hub response. fn addition, a multiple-input, multiple -output
harmonic control predictive analysis has been developed in support of an
upcoming wind tunnel investigation of this mode of higher harmonic mtrol.
All techniques developed thus far obtain a solution by extracting empirical
transfer functions from sanipled data. Algorithrn data sampling and pro-
cessing requirements are minimal to encourage adaptive control system
application of such techniques in a flight environment. This paper is a
status report on contract w ork to date.
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Intruduction

The reduction of rotor-induced helicopter fuselage aeroelastic response
carries with it the obvious benefits of enhanced operating life for critical
aircraft components and reduced vibration of the controls and attendant pilot
fatigue. Close examination of the rotor aerodynamic jperating environment
reveals the following:	 1) rotor lift and drag and, hence, wake vorticity are
a function of airstream velocity; 2) each rotor blade continually passes over
its own wake and the wakes of other blades: 3) azimuthally varying vortex
strengths and local airflows give rise to shear forces at the hub which are
transmitted through the rotor shaft into the fuselage. Thus, blade root
shears at harmonic multiples of the number of blades are the combined
result of blade airloads, hub motion and various types of blade motion rela-
tive to the hub. As these shears transrtiA froth the rotating to the non-
rotating systern of a 4- bladed helicopter, they give rise to the following:

l)	 3P and 5P flapwise root shears result in 4P hub pitching and
rolling moments.

L)	 4P flapwise root shears feed into 4P shaft axial forces.

3) 3P and 5P chordwise root shears produce 4P hub fore -aft and
lateral forces.

4) 4P chordwise root shears give rise to 4P hub yawing moments.

It can be shown for an n-bladed rotor system that, assuming all blades see
the same loading at the sarne azimuth position, only nit frequency harmonics
will be seen in the fixed system.

Thus, by utilizing phase relationships between various sources of rotor
loads and introducing third, fourth and fifth harmonic pitch variations, the
corresponding airload harmonics can be influenced. These airload harmon-
ics, in turn, would influence blade motion and the modified motions and
airloads together would modulate blade root snears. This is the premise
upon which higher harmonic control is based, as illustrated in Figure 1.

For a four -bladed helicopter, higher harmonic pitch control as a means of
vibration reduction requires superimposing 4P swashplate motion upon col-
lective and cyclic control inputs. When external 4P control of the swashplate
is present, third, fourth and fifth harmonic pitch variations may be obtained
independently of the pilot's use of collective and first harmonic pitch. Fourth
harmonic pitch can be achieved by oscillating the swashplate ver. tically as a
fourth harmonic about the collective position set by the pilot. The technique
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Figure 1. Helicopter Vibratory Loads Reduction
by Higher Harmonic Control

for imposing third and fifth harmonic blade feathering involves fourth
harmonic tilting; of the swashplate. Consider the following blade pitch
schedule 8 (q) as a function of lateral swashplate tilt 0 (w):

6(4+) - (^(4j) Sill tp	 (1)

If swashplate tilt is allowed to vary as a fourth harmonic with amplitude A,
then

© (w) = A cos 44j sin

A
A (sin 5 L - sin 341	 (L)

If swashplate tilt is taken about a longitudinal axis,
then,

L



6 (y) = A cos 4qj cos y

2 (cos 5,P + cos 310	 (3)

Similar results would be obtained if swashp)ate tilt was a t.in. phased fourth
t	 harmonic. It is clear, therefore, that any phase and magititude combination

of third and fifth harmonic pitch is possible by proper choice of amplitude
and phase of fourth harmonic swashhlate tilting about longitudinal and lateral
axes.

The material that follows describes an inve&tig;ation of several techniques
developed under NASA contract NA5 1 - 14552 to solve for required harmonic
pitch amplitudes and phases. All algorithms developed thus far compute
input signals required to null shaft oscillatory forces by extracting empirical
transfer functions from sampled data. The various techniques are contrasted
in terms of accuracy and their potential for application in a closed loop
active control network.

Review of Previous Research

Emerging; as the only flight test investigation of higher harmonic control for
vibration reduction conducted to date, a 1962 test program described in
Reference 1 employed an open-loop second harmonic blade feathering; control
system installed on a modified UH- IA. Provisions were made for in-flight
adjustments of both amplitude and phasing of 2/rev blade feathering.
Program objectives were threefold:	 1) reduce vertical fuselage vibrations;
2) reduce oscillatory blade loads; and 3) delay the onset of retreating blade
stall. Although the investigation of second harmonic control as a means of
stall pre%ention was inconclusiVe, the program did demonstrate that a
red-fiction in vertical vibration at the aircraft cg and a reduction in oscilla-
tor- blade bending moments can be achieved simultaneously through proper
application of harmoMc fe	 ering;.

_-1 1967 analytical investigation of higher harmonic pitch control to eliminate
the transmission of oscillatory vertical forces from the rotor is detailed in
Reference 2.
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First the required pitch angles were found which eliminated oscillator, , lift
loadings at all radial stations by compensating for the azimuthal variation in
blade tangential velocity and downwash nonuniformities. The assumed con-
trol system was such that radial and azimuthal variations in pitch angle
Inputs were possible.

Subsequent portions of the study were directed at computing pitch angle
inputs at the blade root necessary to null oscillatory moot shears. For this
case, the constraint of eliminating oscillatory lift at all radial stations was
relaxed.

Conclusions reached oil 	 basis of analysis of a UH- IA-configured rotor
were that radial schedules of higher harmonic pitch angles required to
eliminate all oscillatory airloads were a function of flight condition, and
would be difficult to accommodate such radial pito variations in a flight
applr,-ation. The study also concluded that a majority of transmitted oscilla-
tory vertical root shears can be eliminated by using only pitch angle inputs
at second and fourth harmonics on a UH- IA.

An ex:ensio-. of the work performed in Reference 2 is described in
Reference 3 in which oscillatory drag or inplane forces arc addressed in
addition to vertical vibratory loads. Elimination of oscillatory inplane loads
was analytically achieved by superposing third and seventh blade feathering
(second and sixth harmonic swashplate tilting motion) upon normal feathering
require:nents for trim. Reference 3 chose also to estimate the effect of
higher harmonic pitch control inputs on performance. In concluding that the
majority of vertical and inplane root shears can be eliminated simultaneously
with second, third, fourth and seventh harmonic root pitch control, Refer-
ence 3 first demonstrated the feasibility of multiple-input, multiple-output
higher harmonic control applications. In addition, results of Reference 3
support the contention that higher harmonic pitch control has little effect cn
rotor performance, a fact later to be borne out in wind tunnel investigations.

Although analytical treatments of higher harmonic control have established
its feasibility, much of what is presently known about the technique has
evolved through wind tunnel test programs. References 4, 5, 6, and 7 sur»-
marize wind tunnel investigations of harmonic control as well as the results
generated from such programs.

References 4 and 5 describe a 1973 investigation, based on experimental fre-
quency response data, of vibration compensation by periodic variations of the
primary controls. Vibratory forces and moments to be compensated on the
2. 29-rn (7. 5 ft) hingeless model were vertical force and pitching and rulling
moments. Using transfer function methods in the frequency domain to cal-
culate required control inputs as well as the resultant blade response, it was

4



found blade pitch variations required for vibration alleviation vary as a
function of advance ratio; less than 1 degree for 0. 2 < µ, s#.45 and
3 degrees for µ = 0, 85. The 4P cumpensation control inputs were effective
in attenuating; 31-1 and 5P flapwise bending moments while 2P flap mun ► ents
were largely unaffected by -11' blade feathering. It is noted that References •1
and 5 report there was no instrumentation to measure vibratory hub pitching;
and rolling; moments, and that these quantities were obtained from flapwise
bending moments. Thus, the effect of inplane forces, vertical shear forces
and blade torsion have been ignored. In addition, the effect of blade feather-
ing on rotor performance was not addressed.

Reference 6 and its extension Reference 7 describes what has proven to be
the most co.nprehensive and encouraging wind tunnel investigation of har-
inonic control to date. By imposing 4P swashplate vertical motion as well
as pitching and rolling; notion on a 3. 05-m (10. 0 ft) Mach-scaled hingeless
rotor, it was observed that vibratory hub load reduction carries with it no
penalty in terms of blade flap bending or rotor performance. While Refer-
ence 6 describes performance benefits of 20 percent with 2P feathering,
Reference 7 reported no such improvement with 4P feathering.

Paran.ount in the conclusions of Reference 7 is the fact that simultaneous
reduction of several vibratory hub load components is possible due to
superposition of harmonic pitch effects, thus underscoring; conclusions,t^
Refe--ence 3.	

•

Although not discussed in previous work, high frequency blade pitching;
carries with it increased control loads by virtue of the tennis racket effect.
In contrast, Multicyclic Flap Control, Reference 8, wherein high frequency
elastic torsional deformations generated by a mid-span servo flap are
employed to null hub vibratory loads, has no such penalty. Inertia-induced
control loads, in fact, are greatly reduced sine • (' only a flap is being driven,
not the blade. In addition, Reference 9 reports mid-span hitching is far
more efficient than full span pitch control in reducing first mode flap bending;
excitation. Inherent desi ,_, n dra\ backs of servo-flap contr 1 are g-cater
mechanical complexity in terms of rotor blade/control system design
integration.

Although the above studies as \\ell as others not inentioned here, were
successful in demonstrating the potential of harmonic control to expand the

5
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flight envelope of the hingeless rotor there exists u need for further study in
several areas. Specifically, this paper intends to address the following:

The effect of -II- swashplate vertical, pitch and roll motion on
hub forces and moments of an articulated rotor model in the
wind tunnel.

•	 General characteristics of several algorithms developed to
predict required swashplate inputs.

Considerations for applying; harmonic control in an active feedback
network.

Wind Tunnel Testing

The solution techniques explored thus far have been developed in support of
Lang l ey Research Center's comprehensive program of evaluating active
higher harmonic control for reduction of helicopter aeroelastic response.
The program embodies the phases shown in Figure 2. The higher harmonic
control concept was evaluated recently using a 2, 74 -m (9. 0 ft) diarneter aeru-
elastically scaled rutor model in the NASA/Langley Transon ; c Dynamics Wind
Tunnel (TDT). Characteristics of the model rotor are given in Figure 3,
Table I and Figure 4. The test was conducted such that niannal phase and
amplitude sweeps of 4P collective, longitudinal cyclic, and lateral
cyclic feathering were made to explore the frequency response of the

ACTIVE CONTROLS FOR REDUCTION OF
HELICOPTER AEFIOELASTIC RESPONSE

• ESTABLISH HIGHER HARMONIC CONTROL EFFECTIVENESS
EXPERIMENTAL PROGRAM
4 BLADED ARTICULATED ROTOR
SWASHPLATE EXCITATION
OPEN LOOP

SINGLE INPUTS At FIRST, THEN MULTIPLE INPUTS
0 DETERMINE. CONTROL LAWS FOR ACTIVE. SYSTEM

ANALYTICAL PROGRAM
0 ASS" SS EFFECTIVENESS OF ACTIVE SYSTEM USING

WIND TUNNEL MODEL TESTS 	
-)

0 VALIDATE CONCEPT THROUGH FLIGHT TESTS 	 _`J

Figure 2. NLRC Active Higher Harnionic
Control Pro,ram
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TABLE I. SUMMARY OF ROTOR SYSTEM PROPFRTFF'S V014 T11F
2. 7 -METEK (9 FOOT) DIAMETER RESEARCH MODEL ROTOR SYSTEM

Rotor Type	 Fully Articulated

Number of Blades	 4

Rotor Diameter	 279- _m (110 in, )

Blade Chord
	

10, 77 -cm (4, 24 in. )

Spar Chord	 4, 72-cm (1, 86 in. )

Solidity
	

0,0982

Airfoil Section	 NACA 0012

Theoretical Blade Twist
	

0 degrees

Hinge Offset, Coincident
	

7, 62-cm (3. 0 in. )

Rout CIItOLIt
	

31. 75-cm (12. 5 in. )

Blade Elastic Axis	 25% Chord Nominal

Blade Pitch Axis	 25% Chord

Center of Gravity	 Adjustable (Outer Blade 22%
thru 37%)
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six hub forces and moments. Combined rotor/fuselage responses were
measured by a six-component balance mounted below the pylon. Hub
vibratory loads as measured by the balance were corrected to ct^'",rpensate
for n_.1-scale sv ashplate inertial forces. Blade and pitch link loads were
also monitored,

0 Figures 5 and 6 depict a representat9vevariation of 4P hubaiornral response
with 4P collective feathering inputs. Azimuthal and radial coordinates of the
Figure 4 phasor plot represent 4P hub normal response phale and magnitude,
respectively. Sample 4P collective inputs were Made at a constant arr.pli-
tude of 1/2 degree, the data points being annotated with input phase.
Baseline hub response represents the ambient hub response to he compen-
sated prior to any feathering inputs. Figure 6 illustrates an optimization
techni q ue by which a local n	 mriniurr1 can be reached by varying 4P input
phase, arid further refined by modulating 4P input amplitude.

Preliminary wind tunnel results concerning the effect of 4P feathering
inputs onblade loads are presented in Figures 7 through 12, and discussed
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in greater detail in Reference 10, It was found that although flapwise and
edgewise bending moments were fairly insensitive to 4P collective inputs at
the "optimized" condition of Figure 6 (0, 11 degree amplitude, i0 degree
phase), root torsional muments arid, hence, pitch link loads were aggravated
by such inputs, as illustrated in Figure 9. Specifically, the 4P content of
blade torsional moment and pitch link load was highly amplified as a result
of feathering induced inertial loads, Figures 10, 1 1, and 12.

As noted in figure 3, however, the first elastic torsion mode of the blade
was above IOP at the design operating Speed. Thus, a more torsiom lly
compliant rotor may not have undergone such dynamic amplifications
in pitch link loading. The substantial increase in 5P content of torsiona.i
moment and pitch link load, as depicted in Figures 10 anti 12, can be attrib-
uted to inadvertent mixing of 4P collective signals with swashplate pitching
and rolling notion.

By way of conclusion, wind tunnel testing of a dynamically scaled model
rotor has established that higher harmonic blade feathering can nrininlize
rotor-transmitted huh vibratorN forces and moments. Although such feather-
ing inputs may result in higher blade and control system loads, judicious
blade design may provide relief from any loading penalties.

Predictive Analysis Overview

The effectiveness of higher harmonic control having been est.ablished
through wind tunnel tasting described in the previous section, a dt-terniiriis -
tic approach to solving for required feathering inputs is developed next. The
desire to implement higher harmonic control in an adaptive control siystelli
has created a set of unique requirements for solution techniques. Algorithms
to be employed must be efficient so as to permit a high solution refresh rate.
In addition, the algorithm must require a mininium of sampled data, both in
quantity and type, so 3 not to impose burdensome data acquisition require-
ments. Working within these requirements, there exist several control
philosophies that can be accommodated:

•	 A single swashplate degree of freedom (d, o, f. ) is used to
control a single hub response.



•	 Multiple swashplate d, o. f. 's are used to control a single hub
response.

•	 Multiple swashplate d. o. f. 's are used to control multiple hub
responses.

In addition, any one of these techniques may be implemented using multiple
frequencies (i, e. , 4P, 8P, and i 2 blade pitching).

Several predictive techni q ues have been developed to treat the single input,
single output higher harmonic control philosophy. These techniques were
developed in support of the 1977 NLRC TDT test program, and, conse-
quently, results have been generated from available data. Techniques
dealing with multiple-input, multiple-output har ► nonic control have similarly
been developed for a planned March 1978 TDT test program. The various
techniques will be developed and contrasted in the sections that follow.

Single Input, Single Output Predictive Analyses

Three-Point Technique

In developing predictive algorithnis to calculate optimal swashplate inputs,
advantage was taken of the almost linear relationship between 4P feathering
inputs and 4P hub oscillatory forces and moments. The first such approach
developed requires a priori knowledge of baseline vibraAon levels and two
samples of oscillatory output in response to known 4P feathering inputs. By
using 4P collective swashplate inputs to minimize 4P hub normal forces, the
procedures can be outlined as follows:

1)	 Define feathering inputs and response quantities as phasors
having magnitude and phase as:

F ZBL	 ( I F Z BL I ' 'OZBL)
Phasor representing
4P component of
baseline hub normal
force, with amplitude

F'ZBLI and phase
relative to an index
blade 4)ZBL

14
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AWA7

Phasor representing
4P component of hub
normal force in response
to an arbitrary 4P collec-
tive input

•

FF z 	 Phasor representing
4P component of hub
normal force in response
to an arbitrary 4P col-
lective input different
from above

0 01 = ( I 0 ^ 1 (	 4"001)	 Phasor representing
the first arbitrary
4P collective pertur-
bation with magnitude

1 
00 1 I and phase 0(b0 1

002 = (10 0..1 , "'O02)	
Phasor representing
a second arbitrary 4P
collective perturbation

S
L) Transform phase and amplitude to sine and cosine magnitudes:

F ZCBL	 I F ZBL I cos AZBL

P ZSBL	 ( F ZBL I yin 4OZBL

0 0	 (0011 cos D601
I

0OS1	 10011 sin 04001

etc.

15



3) Assume there exists a plane, Figure 13, that describes the
relationship between •11-3 hub normal force cosine magnitude
and 4P swashplate collective sine arid cosine magnitudes.
Assume a sin ► ilar plane exists for the sine magnitude of 4P
hub normal force. In addition, establish the following limitations:

a) The FZC and F!S planes are riot parallel to each other

b) Neither of the two planes are parallel to the plane of zero
response (F ZC i, F ZS	 0)

c) The locus of points representing the intersection of the
planes is riot parallel to the plane of zero response.

4) Write equations for the F ZC and F ZS planes in terms of two
arbitrary coefficients and baseline magnitudes.

AO 0C + BO 0S ^ 
(F ZC	 FZCBL) - 0	 (i1)

DO 0C
+ EOOS F F ZS	 FZSBL) - 0	 (5)

By substituting two frequency response samples, the coefficients
in Equation (4) arid Equation (5) may be determined.

5)	 Referring to Figure 13, F ZC and F ZS in Equations (4) and (5),
respectively, may now be set to zero. This yields equations
for two lines in the zero-response plane, represented by line
segments AB and CD in Figure 13. SinlUltane0113 solution of
the two equations yields point P, whose coordinates are the
sine and cosine magnitudes of the 4P collective input needed to
null the sine and cosine magnitudes of hub response.

A schedule of 4P collective inputs arid resulting 4P hub normal force
responses for a particular wind tunnel tri ► rl condition is presented in
Table U. Test conduct was such that 4P collective amplitude was held con-
stacit while phase was swept manually in near 45 degree increrrrents.
Table III presents results using data from Table II with the 3-point tech-
nique. Results were calculated based on combinatorial permutations of two
of the eight available data points to check solution consistency. A single

16
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Figure 13. Planar Relationships Between 4P Collective
Input and 41:1 Shaft Axial Force Sin and Cos Con ► ponents

solution was then obtained by neglecting those solutions with phase greater
than one standard deviation away from the mean phase. A new nican phase
and amplitude was then calculated from the reduced set of solutions.
Results generated from test data were fairly consistent with three exceptions
notes!. Close examination revealed that when 413 perturbations were made
180 degrees apart, as were the 3 cases of Table 11I, the planes that resulted
were vertical and coplanar, thereby defining; an infinite set of non-unique
solutions. Rather than impose a sampling scheme to preclude 180 degree-
apart sampling, it was deemed more appropriate to develop a technique that
has no such constrain,-
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TABLE III. SOLUTION 1NPU I'S BASED ON 3-POINT TECHNIQUE
(DATA FROM TABLE 11)

Threc-Point higher Harmonic Solution

U t,.

I	 .

0

Data from
Cases 4P Input Aiuplitude 4P Input Phase

L 14 2 15 0. 2 1 1 28. 100
21 .1 216 0. 210 28. 132
214 217 0.210 28.224
21 .1 218 0. 197 26.	 131

214 219 0. 211 28. 374
214 220 0.210 28.220

214 221 •	 0.210 28.084
215 216 0.251 1	 26.286

':15 217 0.251 25.268

215 218 0.251 32. 355
215 219-0- 0. 361 91. 018
215 220 0.241 23.078
215 221 0.223 28.452

216 217 0. 250 24. 54 3

216 218 0. 251 32. 710
216 219 0. 2 .11 40. 101

116 220 f- 0. 218 13. 641
216 221 0.208 29.913
2 17 218 0. 251 33.437
217 219 0.244 31.596
217 220 0.264 28.002
217 221 -0- 0. 102 87. 186
218 2 1 1? 0. 250 33. 180

218 220 0.252 33.091
218 221 0. 256 32.975
21 0 2'0 0.231 34. 196
21') 221 0.220 34.396
2-)o 221 0.208 34, 652

Linear Higher Harmonic Solution

4P Input Amplitude	 1P Input Phase

0.232	 30. 1.40
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Nonlinear (Six-Point) Technique

The second predictive approach to be investigated replaces the planes of the
forme- approach with second-order surfaces defined by equations 6 and 7:

	

A© OC 2 + BOOSZ 1- CeOC80S + DeOC ^ EO0S = FzC FZCBL (6)	 . i

.,

Fe0C24- GOOS2 } He000OS ^ I6 0C + Jo 0S 7 FZS F ZSBL	 (7)

The shape functions above are similar to cubic polynomials used in finite
clement plate analysis; the lower-order terms are retained to improve the
approximation while higher-order terms are eliniinated to reduce the number
of samples required to define coefficient: A through J.

In addition to a baseline condition, five sample swashplate inputs aria result-
ing hub responses are required to uniquely define the two shape functions.
Once the 10 coefficients are defined, a Newton-Raphson iterative scherne is
used to solve the scat of nonlinear algebraic equations for the required
swashplate inputs. The scheme takes the following recursive form:

lot i } 1 = jpj i - [Of), I If 1, 	 i = 1,	 .. , N	 (8)

where

eOC

H0S
r

ZAeOC + 20 0S + D	 ZB60S + Co 0C + E^

r	 ZF000	 HO OS + I	 ZG00S + fie0C ` J J 
r

10
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and N is the number of iterations. The analysis it. initiated (i = o) by using
solution inputs derived from the linear 3-point technique or a reasonable
guess. A satisfactory tolerance on convergence can usually be met in
4-5 iterations. Table IV pr tints results generated from Table 11 data using
the nonlinear approach. C,'W agreement is seen between the linear and
nonlinear algorithms, indicating; hub forces arc s more linear than nonlinear
with control inputs o! small amplitude.

The need for five data points as well as a baseline does not preclude active
control applications of a nonlinear approach. Reference I 1 details a
minicomputer-directed helicopter active control network where up to
24 samples of rotor state were required each revolution. In the event a
particular control application was unable to sustain the rather low
6 samples/rev rate, the process could be retarded to provide a new solu-
tion every several revolutions. The lowered solution rate would virtually
be undetectable in the cabin environment.

I'he paramount drawback to this t\pe of analysis lies in its arduous data
processing requirements. The inversion of 5 by 5 matrices coupled with an
iterative solution process could erode control loop response. Thus, it third
predictive analysis was investigated which has no inherent sampling con-
straint g nor exhaustive data processing requirements.

Two-Point Technique

The third single-input, single output algorithin to be investigated requires a
baseline and only one sample frequency response to provide a solution. The
technique, developed by Langley, is based on the following tacit assumption:
if hi ,, her harmonic partial response is defined as that portion of hub

TABLE IV. SOLUTION INPUT BASED ON 6-POINT NONLINEAR
TECHNIQUE (DATA FROM TABLE II)

Nonlinear higher Harmonic Solution
Using Newton-Raphson Iteration

Number of Iterations - 3

Data from Cases	 I 4P Input Amplitude	 I 4P Input Phase

214, 215,  216, 217, 2 l t)
	

0. 223
	

29. 514
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oscillatory force due solely to 4P ft-athering inputs G. &.^ total response
sinus baseline response), then 4P sample input phase 14-dds harmonic
artial response pha-e by a constant amount. The validity of this a- ► sitnp-

tiun using Table 11 data is established in 'cable V. Referring; to Figure 14,
the algorithni can he suwnn,arixed as follows:,.

	

1)	 U,ing phasur notation, vectorially subtract Re 	 baseline
hub response of interest from the perturt)ation hub response.

O

r, ZHH	 FZ l	 L ZBL.	 A► 	 (9)
O

	TABLE V. ASSUMPTION: SAMPLE INPUT PHASE	

0 1LEADS HIGHER HARMONIC CONTROL PARTIAL
RESP0 SE PHASIi BY CONSTANT AMOUNT

.O

4P HHC Partial tlesponse Phase 	 a

n

	

22L	 196

	

275	 !	 202

U

	

310	 1197	

.1

	

358	 193

	

'^.	 190

0

	

''0	 1 9.1

	

147	 197
l

	

185	 19.1

•

•

^tl
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Figure 14. Iwo-Point Higher Harmonic
Solution Technique

A	 O
L)	 Rotate the higher harmonic partial response phasur entil it

opposes the baseline: phasur. If FZHH has magnitude and
phase I F LHH I and eZHH- this step requix7vs a rotatiun of
magnitude 6 ZHI;	 ZBL - 180).

O
3)	 By virtue of the ass^..nptiun that the diffvrence between Wntrol

¢	 input phase and harmonic control partial response phase is
constant for a given flight conditio% the required colitool

•	 in t f 	 n a • be writ's	 ''^pu p ease,	 i ^	 1 c.
0	

O

O

•	 00	 4	 0
0	 40 o.. =AO 0I - (0214H - (OZBL - 1ti0))	 (10)

•	 O

0	 4) ®Allowing that harlrionic control partial response r Magnitude
O	 IFZHHj is linear with control input , amplitude, the required

O	 control input amplitude for hulling baseline response ib
U	 0

0	 ^.	
O

O

0	 p

0

0
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Table VI presents results generated by the two -point approach using wind
tunnel data from Table II, The level of agreement between this approach and
the previous te-hnic,ues indicates it is the most likely candidate for control
applications, given its generality and simplicity.

Thus. it has been established that by virtue of the almost linear relation Aiih
between feathering inputs and hub oscillatory forces, sever 	 technio;ies

TABLE V1. SOLUTION INPUTS ...USED ON TWO-POINT TECHNIQUE
( DATA FROM TABLE U)

Two-Point Higher Harmonic Solution

^Data from Case	 4P Input Amplitud!:  4P Input Phase

114 0, 210 28. 15E

215 0.221 21.627

216 0.206 27.343

217 0.236 31.391

218 0.2.19 33.527

219 0. 244 29. 763

220 0, 21.1 2t). 891

221 0, 202 29. 222

Linear Higher Harmonic Solution

4P Input Aniplitude	 4P Ji,l>ut Phase

0. 220	 28.795

0

24
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exist for predit ling 11' control input to mininii..e beiscline vibrations on the
basis of sarrtpl -d d;tut. T'he potential of ih ► •se techniq ues, aK well as others
to be applied in a multiple - input, multiple - output mole, will be discussed
in the next suction,

Multiple Input, multiple Output Predictive Analyses

A priniary considt-ration in appr , ► a,'hing higher harmmnic cunt; of in a multiple-
input 11.ultip1e-output ► r.t ► de is that there exist only three independent swash-
plate degrees of freedom to minimize six hub vibratory responses. One
approach is to minimize just the three hub responses that largely contribute
to vertical fuselage response, namely, 4P verti. al forces, 4P fore-aft forces
and 4P piiching ntornents at the hub. Alternativciy, one could address the
responses contributing to lateral fuselage response: 4P side forces and .11'
roliin¢ and yawing moments, however many hub forces w i ll be minimized,
once the control objective has buen es t ablished the predi ^tive algorithm must
be developed.

In de g el()ping a predictive technique for this mode of harmonic control, it is
desirable to again mini ► .iize sampling and data processing requirements .
Thus, to si p pl, extend the 6-point nonlinear technique to 3-inputs and
3-outputs, would require 15 input perturbations, and 48 FFT's or spectral
ana.vses, thereby, proving too burdensome for adaptive control systerns.
Similarly, th throe-point technique would require 6 input perturbations and
11 FFT's in a 3-input, 3-output mode. Even extending the two-point technique
'o such a rn ► ode would require 3 perturbations rind I2 FFT's per solution
:plate. _1 linear regression analysis in the frequency domain, discussed
in the next section, requires three perturbations and onl y six FFT's and as
such, hold much prornise in nultiple-input, multiple output applications.

Linear Regression Predictive Analysis

rho analysis of a linear system with p inputs and a single output shall be
considered first. By virtu of systen-, linearit y , response in the time domain
can be %written as a sun: of p individual componrr.t responses

P_

Y(t'
	

Y 	 (t)

	
(12)

k=1

0

k



t,	 r-W " ̂

For the case, of a single hub output, say normal force, and input frorn 3
swashplate d, o. f p s Eq. 12 becomes

F (t)	 F	 (t) +• F	 (t) + F	 (t) + F	 (t)	 0 3)
Z	 xl	

Z 
	 z3	

Z 

where Fr o represents a baseline normal force response and F zk (t) repre-
sents normal force response to the k th input when other inputs are zero.
The individual component responses, F zk (t) can ')e represented as the con-
volution of the inputs x k (t) with the impulse response !unctions h k (t). Hence
the component outputs are given as follows:

.m

F zk (t)	 '	 h
k	 k

(T)x (t - T)dT	 (14)
w- 

the Fourier transform of Eq. 14 yields

V zk (f)	 H  , (f1 X k (f1	 (15)
lF z

where F zk (f) and X k (f) are the complex Fourio - transforms of F zk (t) and x(t)
respectively. Thus, the Fourier transform Fz (f) for the total output is,

1 Z 	 1{1F (f) X 1 (f) ^ HLF (t) X 2 (f) + H 3 F (t) X 3 (f)	 F z0 (i)	 (16)

Z	 z	 z

or,

^p-
F' z ([)	 ' $" lik
	 (f)X k (f) } F^o (f)	 (I i )

k-1	 F
'l.

26



where Fao(f) is the complex Fourier transform of the baseline normal
force response.

Now if p independent observations of the inputs and outputs are available,
then Hk F z (f) k	 1, L, ..	 p can be obtained by solving; the linear simul-
taneous equation

i	 k-1	 F
r` z (v)(f) 	 M 	 (f)Xk(v)(f ) 1^ Fzo (f )

Sp
	

(18)

(v - 1, L,	 P)

where v is the observation index. As outlined in Reference 13, for the
case when only a single observation is available, as would be desirable
for applications to higher harmonic feathering;, we can select a set of p
frequencies for which the input vectors,

X 1 ( f 1 )	 XI(f1)

X I (f L )	 XL(f2)

1 (f) _	 XL(f) _	 X (fv	 v	 v)

X 1 ( fp )	 X2(fP)

are linearly independent. We can then obtain an approximation A kF (f) to
HkF (f) by solving the simultaneous linear equations 	 z

z

P
FL(fv) -
	

Hk	
(1) 

Xk(fv)
k=1	 F

z

(v	 1, 2,	 P)

(19)
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Acknowledging the existence,of additive noise n(t), the observed output F (t)
is represented as

F (t) = F (t) ► n(t)	 (20)
z	 z

Taking Fourier transforms of equation 20,

P

	

F z (f) = ^ H 	 (f) X k (f) I n(f)	 (2I)
k = l	 F

z

and thus if we solve the following equation for the unknowns H kF, (f) (k
1, 2, ... p) in place of the equation for H 	 (f)	 z

F
Z

P

	

P z (f v ) _ ^ A 	 (f) Xk(fv)	 (2L)
k=I	 F

z

(v	 I,	 2,	 .. ,	 1))

we get an approximation to HkF. 
z 

(f) contaminated with the noise n(f `').

If we assume tnere exists a set of frequencies f n s for which HkFz(fe)
flk Fz , k = 1, 2, .. , p, Q = I, 2, .. , N, then

P

F z (f Q )	 H 	
X k (fp ) } n( f p)	 (23)_

k=1	 F

(2= 1, L, .., N)

28
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implies a problem of estimating multiple regression coefficients.

Now consider the complex randum noise variables n v (v - 1, L, .. , N), which
are mutually independently distributed with first and second moments

E(n ) = 0
V

E (Re nv ) L = E(Imn	 o
v ) L _	 L

and the observations are made on variables X
1 , XL v 	 P

, , , 	 X , (v =
1, t, .. , N) satisfying the relation 	 v	 v

p
F z (t y )	 H  _ Xkv + n 

k= I	 )~
z

I, L, .. , N)

\\here the inputs X lv , X Lv ,	 Xpv are considered to be observable non-
random variables.

The probability density function L for the noise n v is Riven as fol!uws:

N N

I,. _ (	 1 , / exp	 1-2 
	 nvL

•	 `LTra- I	 - Lv v = 1

Substituting for n ., from equation 25, we obtain

4

1

M.

(24)

(L5)

(L6)

1 
N	

1 `'
L — L exh - —T ,_

,
LnQ	 20-v- 1

F (f ` ) -	 1 Hk ^, Xk(fj	 ` 1

z

(27)

Z9



1- he maximum probability estimate, according to Reference 13, (1111: z'
11 IF, z . .. , P1 )F , ? ) of (II 1 1,, z , Ii2F, .. , Hp l,. Z ) is obtained by finding the
values of IIk l- which minimize tfie sun; of squares in the second paren-
thesis of the right hand side of equation 27. These values are given as
follows:

► ^ W^, X )I

li t (Fz,	 XL)
r

	

u-I	 ,	 (28)

X )
p 	 ' p

r.

where

(X 
I, X I ) (X 2 , X 1 1	 (Xp, XI)

( x I, x 2 ) (X 2 , X L )	 (Xp, xz)

i!	 (2`3)

(x	 x ) (X	 x )	 (x	 x )1	 P	 2	 p	 P	 P

the inner products are defined by

C
N

(X., X ) _ ) X X	 (30).
Q	 u ^v ev

(j, Q	 = 1, 2,	 P )

( )' denotes complex conjugate



and it is assumed that N ^ p and D - 1 exists, and for our case, (p = 3),

h lv	 FFT of swashplate collective inputs at frequency 
f 

X2v = FFT of swashplate lateral cyclic inputs at frequency fv

X 3 = FFT of swashplate longitudinal cyclic inputs at frequency f 
•

If the above analysis is performed twice again, one each for hub pitching
t	 moment and axial force, we obtain

t
(M

Y Xl)
(M y , XL)

f	 11M	 = 1)- t
	

, (3 I )

Y

(M X )
Y	 p

(r' x , X I )

(F x ^ XL)

H F,	 = D- 
t	

(32)

x

(I,	
X )x p

By superposing the 3 uiatrix systems above, we may write

i(F Z . X 1 ) ( M y . X I ) (1' x . X I )

I1 i F , HM 

,- ' 
I F, l = D - I ( Fz' X Z ) (M , X L ) (1' x . X Z )	 (33)

z	 xI	 )	 _y	 _
( Z, X 3 ) ( N I X 3 ) (>•' x . X3)

(3 x 3)	 (3 x 3)	 (3 x 3)

31



F

Thus, equation 16 (:an be extended to include three huh outputs as follows:

Fz(fl	 r,zo ( f )	 X1(t)

M 
Y 
(t) - M 

y 
o (t)	 - Ill, 

z	 y
HM , H F 

^: 
I ' X 2(t)

I	 I
F (f) - F	 (f)	 X (f)
X	 xo	 3

The higher harmonic solution input is obtained by setting FMyy and F to
zero, inverting the complex transfer .unction >>>atrix and miiiltiplying: x

X 1 (f)	 -Fz0M

X
2 

(t)	 Ili F , HM , H 	 1 - 1	 -M yo (f)	 (35)
l	 Z	 y	 xl

X 3 (t)	 -FKO(f)

where * now denotes an optimal solution.

It is seen that the transfer function generated in this estiniation technique
can be used to relate 3/ rev, 4/rev,  and 5/ rev harmonic blade pitching to
similar harnionics of blade flapwise and edgewise rout shears. Writing
third, fourth, and fifth harmonic blade pitching in terms of fourth harmonic
swashplate pitching, rolling and collective motion in addition to solving for
similar harmonics of blade root shears in terllls of fourth harmonic hub
forces and moments permits the direct application of equation 33. Once an
obiective function is written in terms of swashplate displacements and hub
forces and moments, optimal swashplate inputs required to null certain hub
vibratory forces can be derived, as in equation 35. Reference 13 presents
details for the construction of a confidence region for the estimate of the
frequency response function at a given frequency. In addition, special
swoothin,, , and filtering techniques may be necessary to improve the statis-
tical nature of the sampled data. Reference 12 lists several frequency
domain techniques for smoothing raw spectra.

The anticipated control sequence for applying such an algorithm involves
measuring 3 hub baseline vibration levels to initiate the solution procedure.
Once the ambient or baseline levels have been determined, a single simul-
taneous swashplate perturbation in pitch, roll and collective at 4P yields

(34)

r I
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information necessary to generate required inputs fur nulling; the bast-line
condition. The dependency of such ambient vibration levels upon flight
condition requites that the solution feathering inputs be updated in response
to changes in rotor trim. It would be undesirable, however, to render the
actuator system idle each time baseline levels are to be obtained for a
solution refrebh. An alternate control scheme might consist of working,;
with finite differences to minimize, not the baseline response:, but the
change in hub response due to changes in rotor trine. That is, once optimal
swashplate inputs have been derived and implemented, there exists a mini-
mized but finite residual hub response. As these vibratory loads increase

	

t	 in response to changes it rotor trim, the control objective becomes one of
minimizing, the "delta" such as to drive hub loads Lack to the original mini-
mized level. This technique would, therefore, prec=lude idling; the actuators
each time rotor trim is changed.

Note here that the envisioned adaptive control network design shall not
address alleviation of helicopter gust response. Not only are rotors highly
effective gust attenuators in their pres.nt form, but the low frequency spec-
tral content of gust response quantities is not amenable to attenuation with
fourth harmonic feathering.

The solution algorithms presented here will be evaluated in upcoming wind
tunnel investigations of Multiple-input, multiple-output higher harmonic
control of NASA/ Langley Research Center.

Conclusions

Data obbtained from a recent wind tunnel investigation of sin g le-input, single-
outp^.:t higher harmonic control has led to the following; conclusions.

•	 B y varying phase and amplitude: of 4P collective, lateral cyclic
or longitudinal cyclic feathering, the 4P spectral component of
any of six rotor -transmitted hub oscillatory responses can be
minimized for a given trim condition.

•	 1P collective inputs needed to minimize 4P hub normal forces

	

'	 induce higher peak-to-peal, torsional moments and, hence,
pitch link loads on an articulated rotor.

•	 Flapwise and chordwise bending mcnients were fairly insensitive
to "optimal" 4P collective inputs, on the rotor tested.

33
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dr.

An investigation of several techniques fur predicting 4P swashplate inputs
needed to ininlniize 4P hub vibratory responses rising wind tunnel test data
has generated the following conclusions-

0	 There exists an almost linear relationship between 4P hub
responses and 4P featherin g ir.puts.

•	 Optimal single inputs can be generated from vibratory response
data. Such inputs can be calculated from a completely general
6-point nonlinear algorithm. However, by taking advantage of
several key assuniptions, a computationally more efficient tech-
nique can be derived requiring uniy L sample rrssponse data
points.

•	 Techniques exist for treating the multiple-input, multiple-output
mode of higher harmonic control. The effectiveness of these
algorithms will be assessed in an upcoming wind tunnel program.


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf

