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ABSTRACT

NASA/Langley Research Center has recently embarked on a comprehensive
program of evaluating higher harmonic blade feathering for helicopter vibra-
tion reduction, Recent wind tunnel testz at the Langley Transonic Dynamics
Wind Tunnel (TDT) have confirmed the effectiveness of higher harmonic con-
trol in reducing articulated rotor vibratory hub loads. Several predictive
analyses developed in support of the NASA program have been shown to be
capable of calculating single harmonic controi: nputs required to minimize

a single 4P hub response, In addition, a multiple-input, multiple ~output
harmonic control predictive analysis has been developed in support of an
upcoming wind tunnel investigation of this mode of higher harmonic - ntrol,
All techniques developed thus far obtain a solution by extracting empirical
transfer functions from sampled data. Algorithm data sampling and pro-
cessing requirements are minimal to encourage adaptive control system
application of such techniques in a flight environment, This paper is a
status report on contract work to date,



TABLE OF CONTENTS

ABS'PRACTIlllllllll.lll.lllll L T I I I )

INTRODUCTION .. ccccoooovocossssoosossssossosoe

REVIEW OF PREVIOUS RESEARCH ., ¢ v v o 06059 600006 50

WIND TUNNEL TESTING ivasasssnianames caaonmia

PREDICTIVE ANALYSISOVERVIEW ., . . s s e oo o s 00000000

SINCLE INPUT, SINGLE OUTPUT PRELICTIVE AMNALYSES
ThreesPoint Teéchnique « c i v ¢ s i s v v wm « va s
Nonlinear (Six-Point) Technique . ...+ ¢ ¢ ¢ v ¢ 4.

Two=-Point Technique , ¢ v o v s s s s s v s v 65 4 60090

MULTIPLE INPUT, MULTIPLE OUTPUT PREDICTIVE
ANAIJYSES . ® 8 & & » 8 8 " 8 e a o 8 . . L L

Linear Regression Predictive Analysis . ... ... ..
CONCLUSIONS .. 00040 R A Y

RF:I"F:RENCES L T R T T L )

iii



Introduction

The reduction of rotor-induced helicopter fuselage aeroelastic response
carries with it the obvious benefits of enhanced operating life for critical
aircraft components and reduced vibration of the controls and attendant pilot
fatigue. Close examination of the rotor aerodynamic operating environment
reveals the following: 1) rotor lift and drag and, hence, wake vorticity are
a function of airstream velocity; 2) each rotor blade continually passes over
its own wake and the wakes of other blades: 3) azimuthally varying vortex
strengths and local airflows give rise to shear forces at the hub which are
transmitted through the rotor sbaft into the fuselage. Thus, blade root
shears at harmonic multiples of the number of blades are the combined
result of blade airloads, hub motion and various types of blade motion rela-
tive to the hub. As these shears transmit from the rotating to the non-
rotating system of a 4-bladed helicopter, they give rise to the following:

1) 3P and 5P flapwise root shears result in 4P hub pitching and
rolling moments.

2) 4P flapwise root shears feed into 4P shaft axial forces.

3) 3P and 5P chordwise root shears produce 4P hub fore-aft and
lateral forces.

4) 4P chordwise root shears give rise to 4P hub yawing moments,

It can be shown for an n-bladed rotor system that, assuming all blades see
the same loading at the same azimuth position, only n{l frequency harmonics
will be seen in the fixed system.

Thus, by utilizing phase relationships between various sources of rotor
loads and introducing third, fourth and fifth harmonic pitch variations, the
corresponding airload harmonics can be influenced. These airload harmon-
ics, in turn, would influence blade motion and the modified motions and
airloads together would modulate blade root shears. This is the premise
upon which higher harmonic control is based, as illustrated in Figure 1.

For a four-bladed helicopter, higher harmonic pitch control as a means of
vibration reduction requires superimposing 4P swashplate motion upon col-
lective and cyclic control inputs. When external 4P control of the swashplate
is present, third, fourth and fifth harmonic pitch variations may be obtained
independently of the pilot's use of collective and first harmonic pitch., Fourth
harmonic pitch can be achieved by oscillating the swashplate ver.ically as a
fourth harmonic about the collective position set by the pilot. The technique
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Figure 1. Helicopter Vibratory Loads Reduction
by Higher Harmonic Control

for imposing third and {ifth harmonic blade feathering involves fourth
harmonic tilting of the swashplate. Consider the following blade pitch
schedule 8 () as a function of lateral swashplate tilt ¢ (L):

0 (W) = & (§) siny (1)

If swashplate tilt is allowed to vary as a fourth harmonic with amplitude A
then

0 () = A cos 4y sin
= ?(sin 5¢ - sin 3y) . (2)
If swashplate tilt is taken about a longitudinal axis,

then,



W

0(y) = A cos 4y cos §

"

g (cos 5¢ + cos 34¥) ., (3)

Similar results would be obtained if swashplate tilt was a sinc phased fourth
harmonic, Itis clear, therefore, that any phase and magnitude combination
of third and fifth harmonic pitch is possible by proper choice of amplitude

and phase of fourth harmonic swashplate tilting about longitudinal and lateral

axes,

The material that follows describes an investigation of several techniques
developed under NASA contract NAS1-14552 to solve for required harmonic
pitch amplitudes and phases. All algorithms developed thus far compute
input signals required to null shaft oscillatory forces by extracting empirical
transfer functions from sampled data, The various techniques are contrasted
in terms of accuracy and their potential for application in a closed loop
active control network,

Review of Previous Research

Emerging as the only flight test investigation of higher harmonic control for
vibration reduction conducted to date, a 1962 test program described in
Reference 1 employed an open-loop second harmonic blade feathering control
system installed on a modified UH-1A, Provisions were made for in-flight
adjustments of both amplitude and phasing of 2/rev blade feathering.
Program objectives were threefold: 1) reduce vertical fuselage vibrations;
2) reduce oscillatory blade loads; and 3) delay the onset of retreating blade
stall. Although the investigation of second harmonic control as a means of
stall prevention was inconclusive, the program did demonstrate that a
reduction in vertical vibration at the aircraft cg and a reduction in oscilla-
tory blade bending moments can be achieved simultaneously through proper
application of harmonic feaghering,

A 1967 analytical investigation of higher harmonic pitch control to eliminate
the transmission of oscillatory vertical forces from the rotor is detailed in
Reference 2,



First the required pitch angles were foun< which eliminated oscillator lift
loadings at all radial stations by compensating for the azimuthal variation in
blade tangential velocity and downwash nonuniformities, The assumed con-
trol system was such that radial and azimuthal variations in pitch angle
inputs were possible,

Subsequent portions of the study were directed at computing pitch angle
inputs at the blade root necessary to null oscillatory voot shears, For this
case, the constraint of eliminating oscillatory lift at all radial stations was

relaxed,

Conclusiors reached on the basis of analysis of a UH-1A-configured rotor
were that radial schedules of higher harmonic pitch angles required to
eliminate all oscillatory airloads were a function of flight condition, and
would be difficult to accommodate such radial pitgh variations in a flight
application, The study also concluded that a majority of transmitted oscilla-
tory vertical root shears can be eliminated by using only pitch angle inputs
at second and fourth harmonics on a UH- 1A,

An ex*ensior of the work performed in Reference 2 is described in

Referencc 3 in which oscillatory drag or inplane forces are addressed in
addition to vertical vibratory loads, Elimination of oscillatory inplane loads
was analytically achieved by superposing third and seventh blade feathering
(second and sixth harmonic swashplate tilting motion) upon normal feathering
requirernents for trim, Reference 3 chose also to estimate the effect of
higher harmonic pitch control inputs on performance. In concluding that the
majority of vertical and inplane root shears can be eliminated simultaneously
with second, third, fourth and seventh harmonic root pitch control, Refer-
ence 3 first demonstrated the feasibility of multiple-input, multiple-output
higher harmonic control applications, In addition, results of Reference 3
support the contention that higher harmonic pitch control has little effect cn
rotor performance, a fact later to be borne out in wind tunnel investigations,

Although analytical treatments of higher harmonic control have established
its feasibility, much of what is presently known about the technique has
cvolved through wind tunnel test programs. References 4, 5, 6, and 7 sum-
marize wind tunnel investigations of harmonic control as well as the results
generated from such programs,

References 4 and 5 describe a 1973 investigation, based on experimental fre-
quency response data, of vibration compensation by periodic variations of the
primary controls, Vibratory forces and moments to be compensated on the
2.29-m (7.5 ft) hingeless model were vertical force and pitching and rolling
moments. Using transfer function methods in the frequency domain to cal-
culate required control inputs as well as the resultant blade response, it was



found blade pitch variations required for vibration alleviation vary as a
function of advance ratio; less than | degree for 0,2 = sg@.45 and

3 degrees for u = 0.85, The 4P compensation control inputs were cffective
in attenuating 3P and 5P flapwise bending moments while 2P flap moments
were largely unaffected by 4P blade feathering. It is noted that References 4
and 5 report there was no instrumentation to measure vibratory hub pitching
and rolling moments, and that these quantities were obtained from flapwise
bending moments, Thus, the effect of inplane forces, vertical shear forces
and blade torsion have been ignored. In addition, the c¢ffect of blade feather-
ing on rotor performance was not addressed.

Reference 6 and its extension Reference 7 describes what has proven to be
the most comprehensive and encouraging wind tunnel investigation of har-
monic control to date, By imposing 4P swashplate vertical motion as well
as pitching and rolling motion on a 3. 05-m (10. 0 ft) Mach-scaled hingeless
rotor, it was observed that vibratory hub load reduction carries with it no
penalty in terms of blade flap bending or rotor performance. While Refer-
ence b describes performance benefits of 20 percent with 2P feathering,
Reference 7 reported no such improvement with 4P feathering.

Paramount in the conclusions of Reference 7 is the fact that simultaneous
reduction of several vibratory hub load components is possible due to

superposition of harmonic pitch effects, thus underscoring conclusions of
Reference 3, (*)

Although not discussed in previous work, high frequency blade pitching
carries with it increased control loads by virtue of the tennis racket effect,
In contrast, Multicyclic Flap Control, Reference 8, wherein high frequency
elastic torsional deformations generated by a mid-span servo flap are
employed to null hub vibratory loads, has no such penalty. Inertia-induced
control loads, in fact, are greatly reduced since only a tlap is being driven,
not the blade. In addition, Reference 9 reports mid-span pitching is far
more efficient than full span pitch control in reducing first mode flap bending
excitation, Inherent design drawbacks of servo-flap control are greater
mechanical complexity in terms of rotor blade/control system design
integration,

Although the above studies as well as others not mentioned here, were
successful in demonstrating the potential of harmonic control to expand the



flight envelope of the hingeless rotor there exists & need for further study in
several areas, Specifically, this paper intends to address the following:

@ The effect of 4F swashplate vertical, pitch and roll motion on
hub forces and moments of an articulated rotor model in the
wind tunnel,

® General characteristics of several algorithms developed to
predict required swashplate inputs,

@ Considerations for applying harmonic control in an active feedback
network,

Wind Tunnel Testing

The solution techniques explored thus far have been developed in support of
Lang'ey Research Center's comprehensive program of evaluating active
higher harmonic control for reduction of helicopter aeroelastic response,

The program embodies the phases shown in Figure 2. The higher harmonic
control concept was evaluated recently using a 2. 74-m (9. 0 ft) diameter aero-
elastically scaled rotor model in the NASA/Langley Transonic Dynamics Wind
Tunnel (TDT). Characteristics of the mmodel rotor are given in Figure 3,
Table I and Figure 4, The test was conducted such that manual phase and
amplitude sweeps of 4P collective, longitudinal cyclic, and lateral

cyclic feathering were made to explore the frequency response of the

ACTIVE CONTROLS FOR REDUCTION OF
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~ SINGLE INPUTS AT FIRST, THEN MULTIPLE INPUTS
@ DETERMINE CONTROL LAWS FOR ACTIVE SYSTEM

~ ANALYTICAL PROGRAM
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Figure 2, NLRC Active Higher Harmonic
Control Program
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TABLE L

SUMMARY OF ROTOR SYSTEM PROPERTIES FOR THE

2. 7-METER (9 FOOT) DIAMETER RESEARCH MODEL ROTOR SYSTEM

Rotor Type

Number of Blades

Rotor Diameter

Blade Chord

Spar Chord

Solidity

Airfoil Section
Theoretical Blade Twist
Hinge Offset, Coincident
Root Cutout

Blade Elastic Axis
Blade Pitch Axis

Center o1 Gravity

]
Fully Articulated

4

279-_-m (110 in,)
10. 77-cm (4. 24 in.)
4,72-cm (1. 86 in.)
0. 0982

NACA 0012

0 degrees

7.62-cm (3.0 in.)
31.75-cm (12. 5 in.)
25% Chord Nominal
25% Chord

Adjustable (Outer Blade 227
thru 37%)
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Figure 4. Aeroelastic Experimental Rotor System

six hub forces and moment Combined rotor/fuselage responses were
measured by a six-component balance mounted below the pylon, Hub
vibratory loads as measured by the balance were corrected to co™ipensate
for n.a-scale swashplate inertial forces., Blade and pitch link loads were

also monitored

‘igures 5 and 6 depict a representafive variation of 4P hub iormal response
with 4P collective feathering inputs, Azimuthal and radial coordinates of the
Figure 4 phasor plot represent 4P hub normal response pha#e und magnitude,
respectively. Sample 4P collective inputs were race at a constant ampli-
tude of 1/2 degree, the data points being annotated with input phase.

Baseline hub response represents the ambient hub response to he compen-
sated prior to any feathering inputs, Figure 6 illustrates an optimization
technique by which a local minimum can be reached by varying 4P input

phase, and further refined by modulating 4P input amplitude,

Preliminary wind tunnel results concerning the effect of 4P feathering

inputs ongglade loads are presented in Figures 7 through 12, and discussed



ap
NORMAL
FORCE,
LB

270 -

0 -

50 -

0 -

20 |~

0.

.
c fo 007%
u - 030
l 630 APM
00 ap)  «1/2
90
&
“OPTIMIZED"
CONTROL
166 D
: ~» INPUT PHASE, DEG
RESPONSE PHASE
Figure 5. Variation ofk4/Rev Normal Force
with 4/Rev Collective Input Phase
*
300 j-
*
250 |-
200 |-
N
160 j=
;| BASELINE
0 - |
(.‘l 'a 007%
“OPTIMIZED" H 0.30
50 b~ CONTROL 2 630 APM
00 (4P) 172
0 1 — I L i 1 A - N J

0 40 80 120 160 200 240 280 320 160
INPUT PHASE, DEG

Ficure 6, Variation of 4/Rev Normal Force
with 4/ Rev Collective Input Phasc

o



IN-LB

0 Nm (O BASELINE
ir A~ “OPTIMUM HHC
ALTENNATING 20[ A
FLAPWISE
BENDING
MOMENT
(172 PP
0 0.2 N4 06 08 10
RADIAL STATION, (/R
Figure 7. Spanwise Variatior . .ade

Alternating Flapwise Mom: ... (Ref, 10)

IN.-LB
- BA |
120 ¢~ (O BASELINE
N-m /\ - “OPTIMUM" HHC
12
80}
ALTERNATING sk
EDGEWISE
BENDING
MOMENT
(112 P-P) a0
4}
0 L 0 1 1 A 1
0 0.2 04 06 08 10

RADIAL STATION, r/R

Figure 8. Spanwise Variation of Blade
Alternating Edgewise Moment (Ref, 10)

10



IN-LB
16 =

ik

ALTERNATING
ToRsioNAL oL
MOMENT

Nm
16p
Q© - BaseLINE
PaY A\ - "OPTIMUM” HHC
12 \

osf \t\

04

1 | |

0 02 04 06
RADIAL STATION, r/R

Figure 9. Spanwise Variatinn cf Blade

Alternating Tursional Moment (Ref, 10)

(12 P-P)
4p
Qb=
IN-LB
3
B N-m
0l r
2F
02
TORSIONAL
MOMENT,
f/R=018
1+
RN o
|
0% 0

BL

HHC

A

1

~ AR

HARMOMICS

Figurel0, Harmonic Decomposition of

BElade Torsional Moment (Ref. 10)

2p P ap s



4
Nm
04
1 Q (- BASELINE
03k \ A\ COPTIMUM” HHC
\l
TORSIONAL \
MOMENT < | \
4TH HARMONIC 02t \
~
‘.""'--.._ '
1k -~
01} gl
T~
Q.
O—0O— "
m
oL 0 " 1 1
0 02 0.4 0.6 c8 10

RADIAL STATION, r/R

Figure 11. Spanwise Variation of Blade
Torsional Moment Fourth Harmonic (Ref, 10)

LB
ar N
16 ¢
1k
12
PITCH
LINK
LOAD 2k
B b
8L
HHC
1
4t
sk | A A U

® 20 w ap 5P 6P »
HARMONICS

Fieure 12, Harmonic Decomposition of Pitch Link L.oad (Ref, 10)



in greater detail in Relerence 10, It was found that although flapwise and
edgewise bending moments were fairly insensitive to 4P collective inputs at
the "optimized' condition of Figure 6 (0, 22 degree amplitude, 50 degree
phase), root torsional moments and, hence, pitch link loads were aggravated
by such inputs, as illustrated in Figure 9. Specifically, the 4P content of
blade torsional moment and pitch link load was highly amplified as a result
of feathering induced inertial loads, Figures 10, 11, and 12,

As noted in Figure 3, however, the first elastic torsion mode of the hladc
was above 10P at the design operating speed, Thus, a more torsionally
compliant rotor may not have undergone such dynamic amplifications

in pitch link loading. The substantial increase in 5P content of torsicnei
moment and pitch link load, as depicted in Figures |0 and 12, can be attrib-
uted to inadvertent mixing of 4P collective signals with swashplate pitching
and rolling n.otion,

By way of conclusion, wind tunnel testing of a dynamically scaled model
rotor has established that higher harmonic blade feathering can minimize
rotor -transmitted hub vibratory forces and moments, Although such feather -
ing inputs may result in higher blade and control system loads, judicious
blade design may provide relief from any loading penalties,

Predictive Analysis Overview

The effectiveness of higher harmonic control having been established

through wind tunnel testing described in the previous section, a determinis-
tic approach to solving for required feathering inputs is developed next. The
desire to implement higher harmonic control in an adaptive control system
has created a set of urique requirements for solution techniques, Algorithms
to be employed niust be efficient so as to permit a high soluticn refresh rate.
In addition, the algoritl'm must require a minimum of sampled data, Loth in
quantity and type, so *'s not to impose burdensome data acquisition require-
ments. Working within these requirements, there exist several control
philosophies that can be accommodated:

® A single swashplate degree of freedom (d.o.f.) is used to
control a single hub response,

® A single swashplate d, o, f, is used to control an aggregate of
hub responses,



e Multiple swashplate d. o.f, 's are used to control a single hub
response,

e Multiple swashplate d.o.f, 's are used to control multiple hub
responses,

In addition, any one of these techniques may be implemented using multiple
frequencies (i.e., 4P, 8P, and 12P blade pitching).

Several predictive techniques have been developed to treat the single input,
single output higher harmonic control philosophy. These techniques were
developed in support of the 1977 NLRC TDT test program, and, conse-
quently, results have been generated from available data, Techniques
dealing with multiple-input, multiple-output harmonic control have similarly
been developed for a planned March 1978 TDT test program, The various
techniques will be developed and contrasted in the sections that follow,

Single Input, Single Output Predictive Analyses

Three-Point Technique

In developing predictive algorithms to calculate optimal swashplate inputs,
advantage was taken of the almost linear relationship between 4P feathering
inputs and 4P hub oscillatory forces and moments, The first such approach
developed requires a priori knowledge of baseline vibra.ion levels and two
samples of oscillatory output in response to known 4P feathering inputs. By
using 4P collective swashplate inputs to minimize 4P hub normal forces, the
procedure can be outlined as follows:

1) Define feathering inputs and response quantities as phasors
having magnitude and phase as:

F L® qf

ti
2B ) Phasor representing

4P component of
baseline hub normal
force, with amplitude
|FzBL| and phase
relative to an index
blade ¢ZBL

zpL| * ®zBL

14



2)

Far = Fz,] - 20
Fao® (Fza] 22
0, = (oo, - 4%
8, dﬁozl. as,,)

Phasor representing

4P component of hub
normal force in response
to an arbitrary 4P collec-
tive input

Phasor representing

4P component of hub
normal force in response
to an arbitrary 4P col-
lective input different
from above

Phasor representing
the first arbitrary
4P collective pertur-
bation with magnitude
|om Iand phase aé,

Phasor representing
a second arbitrary 4P
collective perturbation

Transform phase and amplitude to sine and cosine magnitudes:

ZSBL

ocC

0sl1

ZCBL

0

iE:zra.l.l
EZBLI

01

ol

etc.
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3) Assume there c¢xists a plane, Figure 13, that describes the
relationship between 4P hub normal force cosine magnitude
and 4P swashplate collective sine and cosine magnitudes,
Assume a similar plane exists for the sine magnitude of 4P
hub normal force. In addition, establish the following limitations:

a) The F and F_ _ planes are not parallel to each other

ZC ZS
b) Neither of the two planes are parallel to the plane of zero
response (FZC = FZS < 0)

c¢) The locus of points representing the intersection of the
planes is not parallel to the plane of zero response,

4) Write equations ior the F,~ and F,g planes in terms of two
arbitrary coefficients and baseline magnitudes.

Abne * BOg t (Fye - Foepr) ° 0 (4)

Dby * Ebyg * Fyg - Fygp)) = 0 (5)

By substituting two frequency response samples, the coefficients
in Equation (4) and Equation (5) may be determined,

5) Referring to Figure 13, Fyzc and Fzg in Equations (4) and (5),
respectively, may now be set to zero, This yields equations
for two lines in the zero-response plane, represented by line
segments AB and CD in Figure 13, Simultaneous solution of
the two equations yields point P, whose coordinates are the
sine and cosine magnitudes of the 4P collective input needed to
null the sine and cosine magnitudes of hub response,

A schedule of 4P collective inputs and resulting 4P hub normal force
responses for a particular wind tunnel trim condition is presented in

Table II. Test conduct was such that 4P collective amplitude was held con-
stant while phase was swept manually in near 45 degree increments,

Table III presents results using data from Table 1I with the 3-point tech-
nique, Results were calculated based on combinatorial permutations of two
of the eight available data points to check solution consistency. A single

16
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solution was then obtained by neglecting those solutions with phase greater
than one standard deviation away from the mean phase. A new mean phase
and amplitude was then calculated from the reduced set of solutions.

Results generated from test data were fairly consistent with three exceptions
noted. Close examination revealed that when 4P perturbations were made
180 degrees apart, as were the 3 cases of Table IlI, the planes that resulted
were vertical and coplanar, thereby defining an infinite set of non-unique
solutions. Rather than impose a sampling scheme to preclude 180 degree-
apart sampling, it was deemed more appropriate to develop a technique that
has no such constrain.=



TABLE II. SCHEDUI.E oF 2+ COLLECTIVE INPUTS AND HUB RESPO

NSES

81

m 0. 30 0.075
Higher Harmonic Blade Feathering for Helicopter Vibration Reduction Phase/Amplitude Notation
[ 4P Input 4P Input 4P Output 4P Qutput

Amp Phase Amp Phase

Point Response of Interest (deg) (deg) N (lbs) (deg)

213 Baseline/Normal Force 00 0. 00 (25. 80) 4400
114. 8

214 Collective/Normal Force 50 27. 00 (35.40) -138. 00
157.5

215 Collective /Normal Force .50 73.00 (46. 60) -5, 00
207. 3

216 Collective/Normal Force .49 114. 00 (65. 00) -26. 00
288.1

217 Collective/Normal Force .49 166, 00 (73. %0) 13. 00
328.7

218 Collective /Normal Force .49 -151. 00 (76. 40) 41. 00
339.8

219 Collective/Normal Force .48 -104. 00 (70. 90) 75. 00
315.4

220 Collecti®/Normal Force .49 -50. 00 (57. 10) 121. 00
254.0

221 Collective/Normal Force .49 -9. 00 (45. 00) 165, 00

200. 2




TABLE 11, SOLUTION INPUTS BASED ON 3-POINT TECHNIQUE

Three-Point Higher Harmonic Solution

(DATA FROM TABLE II)

Data from
Cases 4P Input Anplitude 4P Input Phase
214 215 0,211 28, 100
214 216 0.210 28,132
214 217 0.210 28,224
214 218 0.197 26,131
214 219 0.211 28,374
214 220 0.210 28,220
214 221 . 0.210 28, 084
215 216 0. 251 26. 286
15 217 0,251 25,268
215 218 0.251 32, 355
215 219 o~ 0. 361 91,018
215 220 0, 241 23,078
215 221 0,223 28,452
216 217 0, 250 24,543
216 218 0,251 32,710
216 219 0. 241 40, 101
216 220 = c.218 13,641
216 221 0,208 29.913 .
217 218 0,251 33.437
217 219 0, 244 31.596
217 220 0. 264 28,002
217 22] o= 0,102 87. 1856
218 219 0.250 33,180
218 220 0.252 33,091
218 221 0. 256 32,975
219 220 0,231 34. 196
219 221 0.220 34, 396
220 221 0,208 34. 652

4P Input Amplitude

Linear Higher Harmonic Solution

0. 232 30, 140

4P Input Phase

19




Nonlinear (Six-Point) Technique

The second predictive approach to be investigated replaces the planes of the
forme= approach with second-order surfaces defined by equations 6 and 7:

2 2
+ + = -
AB, + BO, g+ COL 0,5 * DB, t E6Gg = F, o - Fypy  (6)
F6_ 2+ Go. 2 +He_ 0. +10__ +J8 . =F._ -F (7)
oc os ocos oc os ~ Fzs " YzssL

The shape functions above are similar to cubic polynomials used in finite
element plate analysis; the lower-order terms are retained to improve the
approximation while higher-order terms are eliminated to reduce the number
of samples required to define coefficients A through J,

In addition to a baseline condition, five sample swashplate inputs and result-
ing hub responses are required to uniquely define the two shape functions,
Once the 10 coefficients are defined, a Newton-Raphson iterative scheme is
used to solve the set of nonlinear algebraic equations for the required
swashplate inputs, The scheme takes the following recursive form:

-1 .
fol.,, =fe}, -[vf), {4k  i=1 ..., N (8)
where
0
ocC
{e}. =
' |%0s

. .
ZABOC + ZBOS D ZBOOS CeOC + E

+ + ¢
ZFBOC HOOS 1 ZGOOS HOOC t J
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and N is the number of iterations., The analysis is initiated (i = o) by using
solution inputs derived from the linear 3-point technique or a reasonable
guess. A satisfactory tolerance on convergence can usually be met in

4-5 iterations. Table IV presents results generated from Table 1l data using
the nonlinear approach, agreement is seen between the linear and
nonlinear algorithms, indicating hub forces are more linear than nonlinear
with control inputs of small amplitude.

The need for five data points as well as a baseline does not preclude active
control applications of a nonlinear approach., Reference 11 details a
minicomputer-directed helicopter active control network where up to

24 samples of rotor state were required each revolution, In the event a
particular control application was unable to sustain the rather low

6 samples/rev rate, the process could be retarded to provide a new solu-
tion every several revolutions, The lowered solution rate would virtually
be undetectable in the cabin environment,

The paramount drawback to this type of analysis lies in its arduous data
processing requirements. The inversion of 5 by 5 matrices coupled with an
iterative solution process could erode control loop response, Thus, a third
predictive analysis was investigated which has no inherent sampling con-
straints nor exhaustive data processing requirements,

Two-Point Techuique

The third single-input, single output algorithm to be investigated requires a
baseline and only one sample frequency response to provide a solution. The
technique, developed by Langley, is based on the following tacit assumption:
if higher harmonic partial response is defined as that portion of hub

TABLE IV, SOLUTION INPUT BASED ON €-POINT NONLINEAR
TECHNIQUE (DATA FROM TABLE 1I)

Nonlinear Higher Harmonic Solution
Using Newton-Raphson Iteration

Number of Iterations = 3
Data from Cases 4P Input Amplitude 4P Input Phase
&4, 215, 216, 217, 218 0, 223 29.514
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..
escillatory force due solely to 4P feathering inputs (i. e.?' total response
ninus baseline response), then 4P sample input phase leads harmonic

artial responre phasc by a constant amount, The validity of this assump-
tion using Table 1l data is established in Table V, Referring to Figure 14,
the algorithm can be summarized as follows:y
' -
1) Using phasor notation, vectorially subtract fe baseline
hub response of interest from the perturbation hub response,

tb\

ZHH z1 " Fzpr @ (9)
. .
TABLE V. ASSUMPTION: SAMPLE INPUT PHASFE

LEADS HIGHER HARMONIC CONTROL PARTIAL
RESPONSE PHASE BY CONSTANT AMOUNT

9,
.

4P Collective Input Phase, deg | 4P HHC Partial ﬁesponne Phase A

27 222 196

73 © 275 n 202

o
114 310 197
3

166 & 58 193
1

209 2 190

L]
256 90 L 194
310 o 147 197
Q
351 © 185 194
o
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3)

4)

HESPONSE MINUS BASE LINE 0

\, 2 ROTATE (3

/ UNTILIT @
OPPOSES BASELINE
X \ e
© ~ 4
SAMPLE RE"ON‘ 4 & 7 " 100 150
/ ESPONSE AMPLITUDE N
)
o
/
—/
BASELINE i
. 0 RESPONSE PHASE

Figure 14, Jwo-Point Higher Harmonic
Solution Technique

o
Rotate the higher harmonic partial respo‘gse phasor until it
opposes _the baseline phasor, If Fyzp has magnitude and
phase 'FZHH I and 07 4, this step requives a rotation of
magnitude e&Hh “ZBL - 180).

By virtue of the ass. . nption that the diffgrence between control

input phase and harmonic control partial response phase is
constant for a given f{light condition, the required contnrol
input phase may be \\g'xttcn v

- (0 o (0. - 180))

8¢, =o° ZHH ZBL

od

o

o
Allowing that harimvonic control partial response magnitude

]b ZHHJ is linear with control input amplitude, the required
control input amplitude for nulling bascline response is
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- N - 'F'
5] =%, —-‘“‘I ()
' lFZHHI

Table VI presents results generated by the twoe -point approach using wind
tunnel data from Table II, The level of agreement between this approach and
the previous techniques indicates it is the most likely candidate for control
applications, given its generalily and simplicity,

Thus, it has been established that by virtue of the almost linear relationship
between feathering inputs and hub oscillatory forces, severs! techniques
TABLE V1. SOLUTION INPUTS _ASED ON TWO-POINT TECHNIQUE
(DATA FROM TABLE 1I)

Two-Point Higher Harmonic Solution

Data from Case 4P Input Amplitud=: 41 Input Phase
214 0,210 28, 15¢
215 0,221 21, 627
216 0.206 27, 343
217 ’ 0. 236 31. 391
218 0. 249 | 33,527
219 0. 244 29.763
220 0,221 26, 891
221 0, 202 29, 222

Linear Higher Harmonic Solution
4P Input Amplitude 4P Jrput Phase

0,220 28. 795
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exist for predicting 4P control input to minimize baseline vibrations on the
basis of samp!l d deata, The potential of these techniques, as well as others
to be applicd in a multiple-input, multiple-output mode, will be discussed
in the next section,

Multiple Input, Multiple Output Predictive Analyses

A primary consideration in approaching higher harmonic control in a multiple-
inpulr multiple-output mode is that there exist only three independent swash-
plate degrees of freedom to minimize six hub vibratory responses. One
approach is to minimize just the three hub responses thau largely contribute

to vertical fuselage response, namely, 4P verti.al forces, 4P fore-aft forces
and 4P piiching moments at the hub, Alternatively, one could address the
responses contributing to lateral fuselage response: 4P side forces and 4P
roliing and vawing moments, However many hub forces will be minimized,
once the control objective has been cstablished the predi-tive algorithm must
be developed,

In developing a predictive technique for this mode of harmonic control, it is
desirable to again rairirnize sampling and data processing requirements,
Thus, to si ply extend the 6-point nonlinear technique to 3-inputs and
3-outputs, would require 15 input perturbations, and 48 FFT's or spectral
ana.yses, thereby, proving too burdensome for adaptive control systems,
Similarly, th» three-point technique would require 6 input perturbations and
21 FFT's in a 3-input, 3-output mode. Even extending the two-point technique
to such a mode would require 3 perturbations and 12 FFT's per solution
ipdate. .\ linear regression analysis in the frequency domain, discussed
in the rext section, requires three perturbations and only six FFT's and as
such, hold much prournise in multiple-input, multiple output applications,

Linear Regression Predictive Analysis

The analysis of a linear system with p inputs and a single output shall be
considered [irst, By virtue of system linearity, response in the time domain
can be written as a sum of p individual component responses

Y - Y, (1) (12)

25



For the case of a single hub output, say normal force, and input frora 3
swashplate d.o. f, s Eq. 12 becomes

Fit)=F () +F (t)+F () +F_(s) (13)
z z z z z

| 2 J o

where F, represents a baseline normal force response and F,, (t) repre-
sents normal force response to the kth input when other inputs are zero,
The individual component responses, F_, (t) can he represented as the con-
volution of the inputs x, (t) with the impulse response functions hy(t), Hence

the component outputs are given as follows:

sz(t) = / hk(r)xk(t - rtidT

-

(14)

The Fourier transform of Eq. 14 yields

sz(f) = Hk (f) ka (15)
Fz

where sz(f) and X (f) are the complex Fourie~ transforms of sz(t) and x(t)

respectively, Thus, the Fourier transfoim Fy (f) for the total output is,

. (0) X, () + H3F (f) X () + on(f) (16)
z z

Fz(” = Hl (f)Xl(f) + HZ

F
z

P
F (D) - i H  (OX (0 + F () (17)
k=1 Fz
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where F_,(f) is the complex Fourier transform of the baseline normal
force response,

Now if p independent observations of the inputs and outputs are avai:able,

then Hsz(f) k=1,2, .., pcan be obtained by solving the linear simul-
taneous equation

P

L (v) ~ (v)

F, M - kZl e, %0 4 E (18)
. z
(v=12 ..,p

where v is the observation index. As outlined in Reference 13, for the
case when only a single observation is available, as would be desirable

for applications to higher harmonic feathering, we can select a set of p
frequencies for which the input vectors,

X (f) X, (1)
X (f,) X, (f,)

X () = o X)) = b .Xp(fv)
xl(fp) XZ({p)

are linearly independent, We can then obtain an approximation Hk (f) to
; . ; . Fg
Hyp (f) by solving the simultaneous linear equations
z

1]
M
I

E

F(f) (1) X, (1) (19)

(v

"
-
v

o

S—
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Acknowledging the existence of additive noise n(t), the observed output F (1)
is represented as -

Fz(t) = F_(t) + n(t) (20)

Taking Fourier transforms of equation 20,
p
= D H, (X, () ¢+ a0 (21)
k=1 kF .

and thus if we solve the following equation for the unknowns HkF (f) (k =

1, 2, ... p)in place of the equation for Hk (f)
Fz
P "
- z H(6) X (£) (22)
o) kF kv
Z
ivsesl 2 .., p)

we get an approximation to Hygp (f) contaminated with the noise n(fv).
z

If we assume there exists a set of frequencies }fn: for which HkF (fﬂ) =
Hep,» k=1 2, .., p, =1, 2 .., N, then “

F () = zn X, (f,) + n(f,) (23)
N ¢
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implies a problem of estimating multiple regression coefficients,

Now consider the complex random noise variables ny (v = 1, 2, .., N), which
are mutually independently distributed with first and second moments

E(nv) =
(24)
2 2 2
= E(I = 0
E(Re nv) (Im nv)
and the observations are made on variables X, , X, , .., X_ , (v =
) , . 1 zv P
I, 2, .., N) satisfying the relation v v
P
2 z H X +n (25)
oy k kv v
Z
(v = 1, 2, , N)
where the inputs Xl i R0 e n K are considered to be observable non-
v Py
random variables,
The probability density function L for the noise n, is given as follows:
1N L 2
L=( z) exp--—-z-znv (26)
2o 20 v=1
Substituting for n, from equation 25, we obtain
P 2
LY LNl = N :
L = 5] expl- — > F () - > H  X(f) (27)
2na 20" v=1 k=1 F
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The maximum probability estimate, according to Reference 13, (l.-!] -

HZFZ' ces gPFg) (?f (Hu;-z. .HZF v «+v Hp z) is nblfninod by finding the

valués of Hkp_ which minimize the sum of squares in the second paren=
thesis of the r'l'ght hand side of equation 27, These values are given as

follows:

=4 - -
2= .
H] (F?. X))
F :
-~ z —_
H (F , X))
ZF z 2
” -1
= D " (28)
F{p (F, X))
Fz L i
where
(Xl. Xl) (Xz. ]) ALY (Xp. ])
(Xl. Xz) (Xz. xa) I (xp. xz)
D = . . (29)
(X, X)X X3 « o X, £.)
. p 2 p PP -
and the inner products are defined by
N
X, X3¢ ) x. %" (30)
j ] \:‘1 jv v

(Jse = ln ZI"OP)

( )* denotes complex conjugate
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and it is assumed that N2 p and D"l exists, and for our case, (p = 3),

xlv = F¥FT of swashplate collective inputs at frequency fv
sz = FFT of swashplate lateral cyclic inputs at frequency %
X3v = FFT of swashplate longitudinal cyclic inputs at frequency fv

If the above analysis is performed twice again, one each for hub pitching

moment and axial force, we obtain

(M, X)) ]
e 1
M, X))

(_IG..X)
LT N il

(F ., X.) |
= X |
(Fx. XZ)

F ., X )
x *p

By superposing the 3 matrix systems above, we may write

(F‘z, Xl)(My. X]) (I-'x. X])

RS e & 3
{HFZ' HMy, 'HFx = D Fz. XZ) (My. XZ) (Fx. Xz)
(Fz' X3) (My' ?43) (Fx' X3)J
(3 x 3) (3 x 3) (3 x 3)
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Thus, equation 16 can be extended to include three hub outputs as follows:

F () - F () X (f)
z zZ0 ‘ ' 1
M (0) - M () - lHF y By o Hy | X, (f) (34)
. z y x
F (f) - F__(f) X, (f)
x X0 3

The higher harmonic solution input is obtained by setting Fz' M, and F to
zero, inverting the complex transfer function matrix and multlprymg:

‘x (f) -F  (f)
1 ZO
i -l
lxzu) 3 ‘HF L Hy, o H | M () (35)
z y x‘
X, (f) -F__(f)

where * now denotes an optimal solution,

It is seen that the transfer function generated in this estimation technique
can be used to relate 3/rev, 4/rev, and 5/rev harmonic blade pitching to
similar harmonics of blade flapwise and edgewise root shears, Writing
third, fourth, and fifth harmonic blade pitching in terms of fourth harmonic
swashplate pitching, rolling and collective motion in addition to solving for
similar harmonics of blade root shears in terms of fourth harmonic hub
forces and moments permits the direct application of equation 33, Once an
objective function is written in terms of swashplate displacements and hub
forces and monients, optimal swashplate inputs required to null certain hub
vibratory forces can be derived, as in equation 35, Reference |13 presents
details for the construction of a confidence region for the estimate of the
frequency response function at a given frequency. In addition, special
smoothing and filtering techniques may be necessary to improve the statis-
tical nature of the sampled data, Reference 12 lists several frequency
domain techniques for smoothing raw spectra,

The anticipated control sequence for applying such an algorithm involves
measuring 3 hub baseline vibration levels to initiate the solution procedure.
Once the ambient or baseline levels have been determined, a single simul-
taneous swashplate perturbation in pitch, roll and collective at 4P yields
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information necessary to generate required inputs for nulling the bascline
condition, The dependency of such aimbient vibration levels upon flight
condition requires that the solution feathering inputs be updated in response
to changes in rotor trim, It would be undesirable, however, to render the
actuator system idle each time baseline levels are to be obtained jor a
solution refresh., An alternate control scheme might consist of working
with finite differences to minimize, not the basecline response, but the
change in hub response due to changes in rotor trim, That is, once optimal
swashplate inputs have been derived and implemented, there exists a mini-
mized but finite residual hub response. As these vibratory loads increase
in response to changes in rotor trim, the control objective becomes one of
minimizing the ''delta" such as to drive hub loads back to the original mini-
mized level., This technique would, therefore, preclude idling the actuators
each time rotor trim is changed,

Note here that the envisioned adaptive control network design shall not
address alleviation of helicopter gust esponse, Notonly are rotors highly
effective gust attenuators in their presont form, but the low {requency spec-
tral content of gust response quantities is not amenable to attenuation with
fourth harmonic feathering,

The solution algorithms presented here will be evaluated in upcoming wind
tunnel investigations of multiple-input, multiple-output higher harmonic
control of NASA/Langley Research Center,

Conclusions

Data obtained from a recent wind tunnel investigation of single-input, single=
output higher harmonic control has led to the following conclusions,

= By varying phase and amplitude of 4P collective, lateral cyclic
or longitudinal cyclic feathering, the 4P spectral component of
any of six rotor-transmitted hub oscillatory responses can be
minimized for a given trim condition,

e 4P collective inputs needed to minimize 4P hub normal forces
induce higher peak-to-peak torsional moments and, hence,

pitch link loads on an articulated rotor,

® Flapwise and chordwise bending mocments were fairly insensitive
to "optimal'' 4P collective inputs, on the rotor tested,
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An investigation of several techniques for predicting 4P swashplate inputs

needed to minimize 4P hub vibratoery responses using wind tunnel test data

has generated the following conclusions:

There exists an almost lincar relationship between 4P hub
responses and 4P feathering irputs,

Optimal single inputs can be generated from vibratory response
data, Such inputs can be calculated from a completely general
6-point nonlinear algorithm, However, by taking advantage of
several key assumptions, a computationally more efficient tech-
nique can be derived requiring only 2 sample reosponse data
points,

Techniques exist for treating the multiple-input, multiple-output

mode of higher harmonic control, The effectiveness of these
algorithms will be assessed in an upcoming wind tunnel program,
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