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ABSTRACT 

An overview of piloted aircraft simulation is presented that reflects 
the viewpoint of an aeronautical technologist. The intent of the document 
is to acquaint potential users with some of the basic concepts and issues 
that characterize piloted simulation. Applications to the development of


aircraft are highlighted, but some aspects of training simulators are 
covered. A historical review is given together with a description of some 
current simulators. Simulator usages, advantages, and limitations are 
discussed and human perception qualities important to simulation are related. 
An assessment of currentG simulation is presented that addresses validity, 
fidelity, and deficiencies. Future prospects are discussed and technology 
projections are made.
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SECTION 1 .0 

INlMODUCTION TO PILOTED SIMULATION 

I . 1 HISTORICAL PERSPECTIVES SURVEY 

1 .1 .1 Definitions 

Flight simulation is the art of mimicking flight. Although practiced 

in an engineering sense, it is not far from pure art in that it uses the 

mechanisms of illusion and deception to achieve a purpose. While strictly 

speaking, the term "flight simulator" refers to any device that imitates 

flight such as a wind tunnel, it is commonly used to mean a piloted flight 

simulator. This class of devices is-used for both research and training 

in the integration of man and flight vehicle. The emphasis may vary from 

man to machine but always with the interaction of both. 

The modern flight simulator consists, in varying degrees, of a cock­

pit, computer, visual system, and motion system. The cockpit, which may 

be supported on a moving platform, contains seats, instruments, controls, 

visual displays, and aural and tactile devices. All of these elements 

are controlled by the pilot through a central computer which solves equa­

tions representing the simulated aircraft.



The simulator is designed to create as many of the sensations of flight 

as are experienced by the pilot. Figure 1-1 shows an example; the flight 

simulators used by the British Aircraft Corporation.



1 .1 .2 Advances in Flight Simulation Technology 

The chronological development of flight simulators is described in 

the following paragraphs and in Table 1-1. There, the advances in contrib­

uting technologies are shown together vith milestones in simulator develop­

ment. 

Flight simulation began with flight itself. The flight pioneers 

built special devices such as wind tunnels that helped them to develop 
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their machines. They also developed additional pilot training aids.



According to Valverde (Ref. 1) two devices appeared in England together



with early powered airplanes. They were advertised as the "Sanders Teacher"



and the "Eardley-Billings Oscillator." They were parts of aircraft that



could be moved on pivots to simulate the attitude movements expected in 

flight. Most early aircraft were single-place machines and one learned 

to fly them by trial-and-error, at best a risky prospect. 

For thirty years following the advent of the powered airplane, the 

simple flight simulators that evolved were used mostly for pilot training. 

During the same period, advances in aeronautics, control, computing, and 

cinema continued. Simulators, however, appear to have developed on their 

own-, i.e., with little influence from related technologies. By the time 

of the start of World War II, however, the picture began to change. The 

related technologies of aircraft control, servomechanisms and dynamic 

analysis, electro-optics, and computers began influencing training simula­

tor designers. The first Link trainer introduced in 1929 grew into a 

relatively sophisticated and widely used wartime instrument trainer. Air­


craft control and autopilots became reasonably well understood and the



wartime need for accurate fire control systems spurred the development of



servomechanisms and analog computers. Although the Greeks appear to have



built an analog for computing celestial body motions as early as the first



century B.C., the modern mechanical analog computer appeared about 1910



(the Great Brass Brain used by the Coast and Geodetic Survey to calculate



tide tables) and refined versions were developed at MIT about 1940 by Bush. 

About the same time, the communications industry developed the operational



amplifier, the essential element of electronic analog computers.



The mechanical digital "computers" prior to World War II were not
 


suitable for the real-time calculations required of trainers. This was



due to their use of relays. The application of vacuum tubes to digital
 


computers at the University of Pennsylvania during the war resulted in



computational speeds high enough for real-time applications. The Univer­


sity' s design was converted into a prototype by 1960 that resulted in the 

Universal Digital Operational Flight Training (UDOFT).
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After the war the influence of the related technologies grew. The 
analog computer began to be used for laboratory simulations of flight 

dynamics and in the 19.O decade, television became populax. By the 1960 

decade, the digital computer had firmly found its way into training devices 

and the television camera/model technique was first explored for takeoff 

and landing training. Further motivation was provided by the Apollo lunar 

exploration, as the high concern for safety in that program resulted in 

training and engineering development devices that incorporated the sophis­
ticated virtual image dasplays and powerful digital computers that are



essential to today's simulators.



The related technologies such as aircraft flight dynamics analysis, 

airborne computers, and the computer-generated display were developed to 

the point that refined aircraft models were possible together with simple 
but potentially complex displays. By the late sixties and early seventies, 

the airlines had successfully attempted transition training using only



simulators. 

A variety of devices were used by the airlines for training pilots 

for the 707, 727, 747, and DC-10 aircraft. They incorporated large motion 

platforms, television and cinematic visual systems, and digital computers. 

The military services followed later with extensions of the Apollo 

virtual image displays for their full mission simulators requiring wide 

fields of view (SAAC, ASPT). 

While the airline use continues to be driven by profit constraints, the 

military use of sophisticated trainers is motivated primarily by a peace­


time atmosphere emphasizing cost effectiveness and the beginnings of the



energy shortage.



The simulation industry today is characterized by rapid advances in



visual system technology and is heavily influenced by computer hardware. 

The current ability to define complex aircraft models capable of representing 

the full flight envelope drives the computer requirements. New concepts 

in computer systems and architecture are emerging that, together with the



advanced displays, will press the visual simulation technology to new and 

dramatic highs. Today, the military use is the main stimulus for full 
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mission simulation development. Military sponsored work on laser displays 

and computer-generated imagery shows promise of achieving f uUl field 

coverage and high brightness levels with a resolution approaching that of



the eye. The television camera/model technique will probably fall into 

disuse by 1985. The television industry, however, is already developing 

the solid state picture tube, a device that could revolutionize visual 

simulation of all kinds by 1990. The full mission simulators such as the 

Simulator for Air-to-Air Combat (SAAC) and the Advanced Simulator for Pilot 

Training (ASPT) (formerly the ASUPT; Advanced Simulator for Undergraduate 

Pilot Training) represent the advanced military simulators and bld the 

vision of what's to come.



While a look at the simulator technology certainly reveals a strong



emphasis on training uses, the research community to which this report is 

addressed has been busy putting together pieces of this technology for its 

own use in developing aircraft. It is not clear exactly when the first



engineering development simulator was assembled. It probably took place
 


in a computer laboratory during the early fifties in response to an engin­

eer's desire to understand a simple flight control problem. The extension 

of a simple laboratory setup to a more sophisticated simulation is almost 

the natural result of engineering growth and awareness. When components 

are common (servomechanisms, etc.), it is easy to justify an engineering 

development simulator on the basis of total development cost effectiveness. 

The motivation for engineering development simulators, of course, had



to be different from that for training. The early stimulus probably was 

curiosity, later, it was necessity. Two notable examples from the past 

and one from the present are cited in this respect. In the 1950's, the 

century-series of fighters encountered roll-coupling problems that were 

subsequently solved with the aid of sophisticated computer simulations. 

The unstable dynamics of the Vertical Takeoff and Landing (VTOL) aircraft 

of the 1960's prompted the use of simulators to ascertain their suitability



for piloting without electronic assistance. Recently, high-performance 

fighters show departure (spin entry) properties at high angles of attack. 

This has spurred the use of development simulators in both alleviating the 

condition and training for its prevention.
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1.1,3 Kind of Simulation 

The overall purpose of a training simulator is to develop people's



skills, whereas that of an engineering development simulator is to develop



aircraft. Within the two broad classifications of training and engineering 

development simulators, several distinct types can be identified. For



training simulators, the types vary irith the training scope. With engin­

eering development simulations, the important factor is the amount of flight 

hardware included or represented. The important features of several types 

within each class are further amplified in Table 1-2. 

1 .1.4 Results of Simulation 

The result of all simulation is learning although it assumes many 

forms. The learning associated with pilot training is obvious. It results 

in what is termed "transferability" to the actual aircraft. This simply 

means that skills learned in the simulator will allow the pilot to fly the 

actual aircraft with the same performance. Measures of simulator training 

effectiveness include training trials (time) required to perform according



to a criterion (performance) compared to that for the actual aircraft. 

While it is a relatively easy matter to measure this "transferability," 

it is more difficult to determine what elements of the simulation contri­


bute to it, e.g., cockpit, visual system, motion platform, instructional 

method, etc.



The result of engineering development simulations is knowledge about 

hardware or design concepts. This takes the form of pilot opinion, maneuver



time histories, hardmre performance in a simulated environment, or engin­

eering judgments following observation of the simulated aircraft as it is 

"floi.m" through various maneuvers. The physical result of the training' 

device is intangible, whereas that from the development simulator is usually 

quite visible and sizable. The training simulator's computer is a "hard­

wired" device that cannot be re-programmed or accessed easily while the 

computer of the engineering simulator is a general-purpose device that permits 

re-programming and access to a large number of its comptations, a feature 

that is necessary in the laboratory. This aspect is the main distinguishing 
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feature between training and engineering development simulations. The 

Advanced Simulator for Pilot Training (ASPT) is an exception since it is 

used for training research. It uses a general-purpose computer and is 

operated in a laboratory environment. 

1 .2 SUVEl OF SIMUlATiON AVAN-AGES AD LIIfTAT OMS 

1 .2.1 Savings Through Simulation 

By far, the largest savings associated with simulation is the operating 

cost per hour compared with that of the machines represented. This is the 

case for both training and engineering simulations but is especially clear 

for trainers. This is because accountability associated with a training 

program is simpler than that for an engineering laboratory where harduare 

is shared with other programs. Engineering development simulators, on the 

other hand, cannot be easily described in the same terms because direct 

comparisons of costs associated with development without simulation are



seldom available.



Some examples of direct operating cost, however, are available and 

they are described here to illustrate the point. In the early 1970's, 

American Airlines set out to achieve 747 transition training using only 
simulators. The cost drivers cited were that the 747 direct operating 

cost for training was $2900/hour (loss of passenger revenue is not included) 

while the simulator cost was about $300/hour, a cost advantage of ten to 

one. This demonstrated example is an airline industry milestone and since 

that time, the acceptance of simulation for nearly all training among the 

airlines has been high. 

The acceptance in the military services has been slower, primarily 

because of the difficulty in designing simulation equipment to meet the 

more demanding military needs. Recently, the rate of acceptance is increas­

ing because hardware (particularly visual) is rapidly improving, and because 

of the pressures to reduce fuel usage and extend the life of aircraft.



The example cited for engineering development is one where an airborne



control computer was verified using a ground based simulation. The actual 

computer was integrated with an engineering simulation of a helicopter, and 
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its control laws were verified by "flying the simulation" to the design 

limits. Approximately 100 hours of simulator testing were required to 

"debug" the computer which was subsequently flown without incident. It 

was estimated that the reduction in flight test costs (approximately 

$4000/hour) more than offset the cost of the simulation and resulted in a 

savings of at least $100,000. 

1.2 2 Plight Hardware Evaluation 

Although the methods for analysis of piloted aircraft are highly 

developed, these methods are still not comprehensive or able to handle 

complex interactions. The large variety of flight conditions possible



also makes analysis cumbersome. 

In the early days of aircraft development, the only way to assess the



"flyability" of an aircraft was to fly it. The pilot's observations and



judgments were the only "flight data" available. While today' s engineering 

development simulations are largely justified and evaluated on more 

technical and abstract terms, the "try it out" philosophy still provides 

a great stimulus to simulation work. The "first flights" in an engineering 

simulation of a new aircraft are quite revealing. The complete flight 

envelope can usually be explored in an hour and potential problems quickly 

assessed. The controlled laboratory environment allows for safety while 

simplifying data acquisition. 

What is really attractive about an engineering development simulation 

is that actual hardware elements may be inserted into it for evaluation. 

When a new aircraft is built, a "hardware test stand" is built to verify 

the flight control concept. This consists of an "iron bird" that mounts the 

actual flight control hardware. It usually contains a partially instrumented 

cockpit and sometimes a platform-mounted sensor unit. It is a relatively 

simple matter to include more visual display equipment and build an engin­

eering simulator out of the stand. On the other side, a simulation that 

includes only mathematical representations could be tied to the hardware
 


test stand. In essence this is nothing more than replacing computer models 

by real hardware. The important interaction here is the gradual replacement



of simulated elements by real elements. This is the basic mechanism that 
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gives the designer a means for evaluating his knowledge and establ-ishing 

confidence in his designs in a safe, controlled operational environment. 

Some of the more important uses of an engineering development simula­

tor are summarized below: 

* 	 Evaluation of Flight Control Hardware. The kinds of 

hardware commonly evaluated by this method are: 

control surfaces, actuators, linkages, force feel 

systems, sensor packages, airborne control and air 

data computers, and central and side manipulators. 

o 	 Evaluation of Displays. Fire control, target ac­

quisition, reconnaissance, systems monitoring,



navigation, and landing displays are among those 

evaluated by the simulation method. Low-light­

level television displays, infra-red scanning 

devices, and other similar equipment is generally 

not evaluated in the simulator but used as an 

element in an experiment. This is because these 

devices are not usually compatible with the outside



scene generator of the simulator.



o 	 Evaluation of Human Factors Equipment. It is



especially useful to test equipment designed to



maintain human effectiveness. Lighting, panels, seat 

arrangement, auxiliary controls, and communication 

equipment can be effectively evaluated. Devices such 

as "g" suits which compress parts of a pilot to 

prevent blackout under high acceleration obviously



cannot be evaluated in a device that can only produce 

small accelerations. Centrifuges are normally used 

for this level of work. These are of course a special­

purpose simulator. 

The reader will see that the above uses center about the human and



how he is integrated with the machine. Human outputs and inputs are gener­

ally areas where fruitful work can be accomplished in simulators. Devices 
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that more effectively accomplish human integration can easily be evaluated 

by the simulation method. 

1 .2.3 Effects of Fidelity on Rosults 

Fidelity is a word commonly used to indicate the degree of quality of 

a simulation. it is inferred that quality is synonomous with closeness to 

the real world but this is not necessarily true. For example, a particular 

visual display may provide enhanced cues so, in some respects, its quality 

may exceed that of the real world. To aid the discussion, fidelity will 

be defined in twTo ways. Engineering fidelity -ll mean the measured 

physical closeness to the real world. Perceptual fidelity will mean the 

perceived closeness. Engineering fidelity will be used to describe the 

mathematical model quality, for example. Perceptual fidelity will be used 

to describe the quality in terms of subjective pilot response and could be 

used to describe the quality of a visual landing display, for example. 

It is natural to expect that the fidelity of simulation All affect



simulation results. A clear example of this is the fidelity effect of 

the mathematical model'. All simulations include a body of computations 

that describe the motions of the aircraft being simulated. Pilot control



commands form the inputs to these computations. They then produce the



aircraft's attitude and position in space and higher derivatives of these



quantities. The "modeling art" is highly developed, and the "modeler's 

bag of tricks" is extensive. With the use of sophisticated tools such as 

wind tunnels, flight test instrumentation, and good theoretical methods, 

a model of an aircraft can produce responses that can closely approach 

those of the real aircraft.



When these models become large enough that their computer irmplementa­

tion becomes difficult, compromises are sought that generally reduce 

engineering fidelity. This is almost alays the case and the desired model 

has to be simplified in order to "fit" on the computer. 

The term "model" means the mathematical function has a theoretical 
basis as opposed to a representation 4hich could be a fitted function 
of measured wind tunnel data. 
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If such a compromise is made, the resulting simulated aircraft re­

sponses will differ from those of the real aircraft and the observed handling 

qualities, for example, may also differ. 

The simulation user must, therefore, determine the level of engineering 

fidelity required for his experiment. Some of the factors that affect this 

judgment are: 

o The kind of results sought; handling qualities estimates 

generally do not require the high fidelity that performance 

measurements do 

o The accuracy of the environmental aerodynamics, propulsion 

data, etc., that are the basis of the model



* The degree to which the simulation can show to the pilot 

the effects under study. If, for example, the visual 

or motion system cannot show the differences between 

several configurations due to system limitations, there 

is no justification to examining these configurations. 

In other words, the engineering fidelity desired should 

depend in part on the perceptual fidelity available. 

Perceptual fidelity is the term that is usually used to describe the 

pilot interfaces, i.e., the visual, motion, force feel, tactile, and aural 

subsystems. This index relates to the quality of information to and from 

the pilot. It can be measured subjectively using pilot opinion and, in 

some cases, objectively through the identification of pilot model parameters. 

Often, a low value is the root cause of simulator-related problems. 

In assessing perceptual fidelity, the most important factors appear
 


to be:



o 	 Hardware performance relative to human performance. 

By this it is meant that hardware performance should 

be judged relative to human performance. For example, 

the ability of a visual display to show fine detail 

should not be greater than that of the eye. The 

ability of a motion platform to show a force change 
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should be judged relative to the human's ability to 

sense it.



C 	 Pilot bias or prejudice. A pilot familiar with



helicopters would probably be less sensitive to fine



changes in perceptual fidelity associated with a 

transport because he has had to learn so many compen­

sating control techniques not required for flying the



transport.



* Pilot skill level. There is some evidence suggesting 

that neophyte pilots are insensitive to motion platform



engineering fidelity, whereas experienced pilots are



more sensitive. This suggests that skill level is



commensurate with information processing capability. 

The inference is that training simulation may not require 

the fidelity that an engineering simulation does.



O 	 Pilot workload. Recent research results (Ref. 2) 

indicate that motion perception threshold levels vary 

with workload. The -varying threshold implies a 

varying perceptual fidelity. 

o 	 Task. This is considered to be one of the more 

important factors in establishing validity. Whether 

the task be height judgment using a visual system



or tight control of attitude during an attack using 

visual and motion systems, the task will affect 

perceptual fidelity because the sensory mechanisms 

of 	 the human are structured for excellence in some



tasks but not others.
 


The effects on the fidelity measures described almost always result 

in 	 degraded total (pilot/aircraft) performance. There are cases, however,



when no degradation is apparent because the pilot adapts a new strategy 

in flying the simulator. For example, the current television visual systems 

do not allow real-world landing performance (e.g., touchdom sink rate) 

probably because of their optical and mechanical properties. Pilots, however,
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can, by practicing, achieve real-world landing performance using them 

(Ref. 3). Their workload is higher than that in the real world and their 

eye scanning behavior is different. It is generally agreed that for 

perceptual fidelity to be high, pilot workload, pilot behavior, and 

aircraft 	 performance should be close to that of the real world.



Before leaving this introduction to fidelity, which is covered more in 

later sections, it is stressed that engineering fidelity is a relatively



straightfonard measure. It is readily estimated by a variety of mathe­

matical methods and is applied to the hardware elements of the simulation 

that include the mathematical model and those that affect the hardware



performance. The perceptual fidelity, on the other hand, is used to de­

scribe the effectiveness of the pilot interfaces such as the force feel,



visual, aural, tactile, and motion systems. It is a more difficult measure 

to take and requires clever experimental procedures and special equipment.



1.3 SURV=Y OF OURRE SIMULTOES 

1 .3.1 Overview of Visual and Motion Simulators in Use Today 

The following paragraphs contain an overview of five simulators in 

use today within the U.S. and Canadian Governments. Both engineering devel­

opment and training devices are represented. They are described in terms 

of 	 their major subsystem elements and uses, namely: 

O Cockpit 

o Computer and control station



o Visual system



O Motion system



* General uses.



Four of the five examples illustrated are of the ground-based type. The 

fifth is 	 an airborne simulator. All show the variations possible such as 

provisions for single or multi-crew members, single or multi-aircraft, 

visual or 	 motion emphasis, and engineering or training emphasis. 
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The in-flight simulator vifl obviously appear different because it 

is a modified helicopter as opposed to the laboratory environment of the 

ground-based facilities. 

One ground-based simulator described (ASPT) is devoted totally to 

training research. A comparison of this device, with the others will reveal 

the basic differences between training and engineering simulations. This 

is, in essence, a difference in the structure of the computer control 

station. In general, the training device computer is a special-purpose 

machine whose program is relatively fixed. The control station (used by 

the instructor) contains an extensive array of controls and displays. 

These allow the instructor to vary quickly the flight condition and monitor 

student performance. The ASPT computer system, however, is general-purpose 

in keeping with the research uses of the device. 

The engineering simulator is usually supported by a complex of general­

purpose computers and peripherals. The control station in this case is the



computer terminal and may include graphic displays, plotters, and strip 

chart recorders. These permit the monitoring of the aircraft being 

simulated.



The concepts employed in today' s simulations are summarized below by



element.



a) Cockpit



This is usually a metal structure similar to the 

cockpit portion of a typical airplane or helicopter. 

It contains seats, manipulators, instruments, displays, 

and aural devices. The engineering cockpits embody 

quick-change principles so that the instrument, control, 

and seat arrangements can be varied. Some cockpits
 


may be completely lifted off their mounts for changeover 

to another. The interior of the cockpit of the P-3C 

Weapon System Trainer is shown in Fig. 1-2.
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Figure 1-.Cockpit of the P-30 Weapons Systems Trainer 



b) Computer and Control Station 

This is the intelligent heart of the simulation. 

From here, all functions are monitored and controlled. 

The computer may be of the digital, analog, or hybrid 

type. Commonly employed peripherals such as printers, 

teletypewriters, etc., can be attached or a sophisti­

cated control station may be included for the instructor's 

use. All the computations required by the simulation 

are performed by the computer complex. Figure 1-3 

shows this complex for the Air Force Flight Dynamics 

Laboratory Flight Simulation Facility. 

c) Visual System



This element produces the outside scene as would 

be seen by the crew members. Three concepts are 

commonly used today, television, computer-generated 

imagery (CGI), and point light projection. The television 

concept employs a camera driven past a vertical model of the 

simulated world. This is accomplished by a computer­


controlled motorized gantry structure. The camera is 

fitted with an optical device called a probe. This 

varies the "look angles" of the camera and serves to 

fix the "viewing point" relative to the model board. 

The small size of the probe head also allows a close 

approach to the model board to simulate low altitudes. 

A view of a model runway with a penny on it is shown in 

Fig. 1-4 as photographed through a probe. The gantry 

and model board of the Flight Simulator for Advanced 

Aircraft are shown in Fig. 1-5. 

The computer-generated scene is employed in much 

the same way. The cockpit display elements are similar; 

the method of creating the scene being different. 

Within a digital computer are stored the coordinates of 

and numbers representing the light values of the simulated 
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Photograph Represents a Horizontal 97 degree Real Field of View and was Taken at 0.2 inches


(8 foot long Model 1400:1 Scale) at F/7.0. Tilt Focus Correction Applied



(Focussed on the Runway).



Figure 1-4. Pilot's Eye View of a Scale Model Runway 
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world. These are then retrieved for any viewing 

point in this world and the data used to reconstruct 

the scene as would be viewed from this point. The 

scene details are then "drawn" on a cathode ray tube 

device in the cockpit. Smoothing and shading techniques 

are used to create imagery that is convincingly real­

istic. Several computer-generated scenes are shown



in Fig. i-6.



Point light source projectors are also used when



wide fields of view are required without fine detail. 

A transparency containing models is driven past a 

point source near the center of a spherical screen. 

The transparency's shadows projected onto the screen



will form a dynamic image of the models that is useful 

for wide-angle visual flight reference. Figure 1-7 

shows a photograph of a scene created by a De Florez



point light source projector. 

When the cockpit device is a cathode ray tube (CRT) 

a series of lenses or mirrors and beamsplitters is 

used to create the impression of distance. These 

optical devices collimate the light emanating from 

the CRT so that the scene appears to be far away. 

When large lenses are placed before TV monitors, they 

act as magnifiers; enlarging the apparent view of the 

TV picture while collimating it or focusing it far away. 

Collimation can also be created by a spherical 

mirror except that the TV monitor must be coincident 

with the viewer's eye. To overcome this, the viewer's 

eye and the TV monitor display device are offset. 

This is the principle of DUOVIEW. A 45 deg beamsplitter 

may be used to separate monitor and eye. The "pancake 

windows" of the Advanced Simulator for Pilot Training 

fold the light path through the use of polarizing 
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SA Space Shuttle Orbiter Airport Scene for the Luftansa Trainer 

Figure 1-6. Computer-Generated Scenes (Courtesy of Evans and Sutherland) 
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Figure 1-7. Airport Scene Created by a Dle florez Point Light Projector 
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Figure 1-8. Four Methods of Collimating a CRT Display 
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Figure 1-9. Six-Degree-of-Freedom Motion System 



Figure 1-10. "G" Seat of the Advanced Simulator for Pilot Training 
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1.3.2 The Flight Simulator for Advanced Aircraft (FSAA) 

The NASA-Ames Flight Simulator for Advanced Aircraft 

CLASS General purpose, engineering research and development.Ground-based. 

USES Research and development of aeronautical vehicles and 

systems 

Elements 

COCKPIT 
I 

Transport-type; side-by-side seating w.ith jump seat. Center 
overhead and side consoles. Three-axis control loaders 

-i th stick or wheel and pedals. Standard instruments. Dual speakers 
for aural cues. Collimated television monitors for both pilot and


copilot for outside scene. Communications and computer controls are 
provided. 

COMPUTERS Xerox Sigma 8 and Sigma 7, two EAT 8400 digital computers. 
EI graphics digital computer. EAT 8800 and numerousPDP-11 

231-R analog computers. Comcor 175 analog computers. Disk units, 
printers, CRT terminals, and conversion units.



VISUAL I Two color television camera/model systems. Scales of 400/I 
SYSTEM and 600/I. Field-of-view 360 vertically by 48o horizontal­

ly. Resolution about 480 TV lines in both directions. 
Roll and yaw continuous, pitch + 25 deg. Approximate fly-over space, 
13 km x 3 km x 700 m. Closest approach to the model is about 2 mm. 
Closest focus is about 25 mm. Generates scene from a single aircraft. 

MOTION Six-degree-of-freedom gantry and gimbal assembly supporting 
SYSTEM the cockpit. Driven by electric motors through gears, 

chains, toothed wheels on rubber faced tracks. Large 
amplitude; approximately + 300 rotations, + 12 m sway, + 1.3 m heave, 
+ 1 .0 m surge. Bandridth 2 - 4 Hz. Variable linear drive logic with 
limiting functions. 

Photograph of this device in Fig. 1-11. 
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1.3,.3 The Advanced Simulator for Pilot Traiing (AST) 

Advanced Simulator for Pilot Training (ASPT) 

CIASS General-purpose training research simulator; ground based 

USES I Research and development 
simulation equipment 

of training methods and related 

Elements 

COCKPIT I Two T-37B cockpits, two-place side-by-side; standard 
instrument group. Additional displays and controls for 

simulator operation, monitoring, and control. Control loaders for both 
student and instructor for stick, pedals, and throttle. Aural simula­
tion of engine, airflow, landing gear, rain, hail, thunder, etc. Closed 
circuit television for monitoring pilots. 

COMPUTER/CONTROL STATION I Single SYSTMS 86 central processor unit 
Iwith 93K word core memory. Peripherals 

include: teletypewriter, line printer, card reader, disc, two magnetic 
tape units, and digital plotter. Linkage and real-time monitor system. 
Foreground/background computational capability allows computer use 
without simulator down time. Two conventional and one advanced in­

structor/operator station. The conventional station is a standard 
instructor/operator station with repeater instruments and traditional 
input/output. Advanced station uses four cathode ray tubes, switches, 
and a keyboard for control of many varied simulator and training 
functions.



VISUAL Wide-angle (+ 1500 horizontally, +1100 , -400 vertically) 
SYSTEM high-resolution (7 arc-minutes) display formed by seven 

pentagonal display units. Units are 30 inch diagonal high­
brightness CRT's with pancake windows for collimation. Units are 
mosaicked together and held by a common frame. Monochromatic images 
are generated by a computer-generated imagery scheme producing 2000 
edges in the scene. Scenes generated include Williams AFB, all T-37 
contact practice areas, auxiliary airport, a formation flight image of 
another T-37, and a 50 nautical wide perimeter around the flight areas. 
All attitude capability. 

M)TION Six-post synergistic six-degree-of-freedom electrohydraulic 
SYSTEM motion platform with redundant legs. G seats in both 

cockpits. Stick shakers and buffet simulation. Flexible 
drive algorithms for research. 

Photograph in Fig. 1-12. 
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I .. 4 The Differential Maneuvering Simulator (Dm) 

The NASA-Langley Differential Maneuvering Simulator 

CLASS General-purpose engineeringGround-based. 
research and development. 

USES Research and development of air combat vehicles and 

tactics. 

Elements 

COCKPIT Two cockpits, single-place, century series fighter configu­
ration. Standard instrument group with head up and head 

down graphics displays. Three-axis control loaders with conventional 
stick and pedals. Aural cue generator. Buffet actuator on heave. 
Communication and computer controls. "G"suit. Interchangeable front 
and side consoles. Bubble canopies. 

COMPUTER Eight digital computers operate in multi-program, multi­
processor environment. These include three Control Data 

Series 600 machines, two Cyber 175's, two Cyber 173's, and a Star-100 
Vector Processing Computer. Multiple access switches provide access 
to standard peripherals, bulk storage, and special real-time interfaces. 
A real-time simulation subsystem synchronizes and accesses programs for 
the Differential Maneuvering Simulator. Three fully-expanded EAI 
231-R and two GPS 10,000 repetitive-operation analog computers are 
available. 

VISUAL JTwo fixed-base spherical screens surround the cockpits.
SYSTEM On each is displayed a sky-earth scene produced by a four­

gimbal point light source projector. The sky-earth pro­
jector shows only rotational movement, not translations. A television 
projector is combined with gimballed mirrors and a zoom lens to produce 
an image of a fighter aircraft anywhere within the spherical screens. 
The fighter image is generated by a camera viewing ginballed models. 
Continuous rotation is possible without lock or occlusion. System
bandwidth is 4 Hz. High performance servosystem makes the simulator 
capable of following spins, departures, etc. 

Photograph in Fig. 1-13. 
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1.3.5 The Large Amplitude Multi-Mode Aerospace Research Simulator (IAMAS) 

The Air Force Large Amplitude Mlti-lode Aerospace 
Research Simulator 

CLASS General-purpose engineering research and development. 
Ground-based. 

USES Research and development of aeronautical vehicles and 

systems.



Elements



COCKPIT Fighter-type. Typical of century-series aircraft with a 
single seat. Center and side consoles. Three-axis 

control loaders with stick and pedals. Standard instrument group 
with head up and head down displays for fire control. Communication 
and computer controls. 

COMPUTERS Several EAI 84o0 and PACER digital computers linked to 
many EAI 8800 and 231-R analog computers and peripheral


equipment. Basically a hybrid facility with high flexibility in 
architecture. 

VISUAL Television projection and point light type. Cockpit is 
SYSTEM surrounded by a spherical screen on which are projected a 

sky-earth scene from a point light sky-earth projector.
A ginbafled television projector produces a fighter aircraft image or 
a ground scene generated by a camera model system. Field-of-view is 
2660 horizontally by 1080 vertically.



MOTION Five degree-of-freedom, beam type motion base. Driven by 
SYSTEM electrohydraulic servomechanisms. Vertical actuator is 

integrated with a pneumatic equilibrator to hold the beam 
up and provide safety margin. Heave and sway travels + 3.3 m. Pitch, 
roll, and yaw + 25 deg. Bandwidth is 4 Hz. High performance velocity 
and acceleration.



Photograph of this device in Fig. 1-14 
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Figure 1-1 Ii. The U.S.* Air Force large Amplitude Multi-Made Aerospace Research Simulator (zkMAM) 



1.3.6 	 The National Aeronautical Establishment (NAE, Canada) 
Airborne V/STOL Simulator 

The NAE (Canada) Airborne V/STOL Simulator 

CLASS Special-purpose, engineering research and development,airborne. 

USES Research and development of V/STOL aircraft and helicopters 

Elements 

COCKPIT Actual cockpit of the Bell 205-A helicopter with right


i hand controls modified for electrical outputs only.


Active electrohydraulic feel system. Center console modified to


incorporate computers and computer control panels.



COMPUTER I Interdata Model 5 minicomputer with 24K byte memory.
Digital Equipment Corp. PDP 11/03 digital microprocessor.

Dedicated analog computer for controlling the feel system. 

VISUALVISUAL The actual out-the-window scene.SYSTEM 

MDTION The helicopter itself. This implies the full six-degree-
SYSTEM of-freedcm capability of the helicopter but can be control­

led through its normal controls only. These are normal 
force and pitch, roll, and yawing moments. Choice of model-following 
or response feedback techniques for varying flight characteristics. 
Performance limited to that of the basic helicopter. Preliminary

designs for adding fore- and aft- and side thrusters for six-degree­

of-freedom control.



Photographs in Figs. 1-15 and 1-16 
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1 .)4 sDFiATioN APPLICATION 

1.4.1 	 Examp e of a Research and Development 
Siuafltion at NAA Ames Research Center 

In the following paragraphs, an example of a research and development 

simulation is described. This particular effort demonstrates the effec­

tiveness of a rudimentary cockpit simulation. Not only did the participants 

learn from the experience, but valuable insights were formed regarding the 

required handling qualities for a helicopter operating close to the ground. 

An Army requirement for terrain flight operations of helicopters in all 

possible lighting and weather conditions is currently motivating some research 

into the required handling qualities and related configurations. An 

accurate description of the terrain flight missions in engineering terms 

does not exist, and the simulator hardware employed in the study was sus­

pected of not having sufficient fidelity to allow low-level simulation. 

In spite of these factors, a useful simulation was performed because the 

authors of the effort know about the deficiencies and tailored their experi­

mental investigations to fit with the overall research program. 

The research objective was: 

"To investigate the effects of large variations in 
several rotor system design parameters on the handling 
characteristics of single-rotor helicopters without 
stability augmentation in nap-of-the-earth (NOE) 
flight." 

The simulation was part of a larger coordinated effort to research the 

problem. Since gross trends were desired, the level of mathematical model­

ing was kept modest and special display features were designed that allowed 

control of task and partly offset the visual system deficiencies. A simpli­

fled generic main-rotor system mathematical model was developed for real­

time pilot-in-the-loop simulation. With this model, the effects of rotor­

system parameters of interest on the stability and control characteristics 

was assessed to help develop the test plan.



The authors, Talbot and Chen, described their work in Ref. 4. Excerpts 

from this paper are presented below. 
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"Description of Simulation



For this study, a fixed-base simulator was used in



conjunction with a Redifon closed-circuit television camera/ 

model system. The simulator cockpit consisted of a Bell 

UH-lA cabin section facing a shrouded screen and TV projector. 

The UH-lA control system was used with working hydraulics, 

bungee cords, and magnetic brake, i.e., with force-displacement



characteristics and a force-release feature similar to an



operational helicopter. The instruments were all functional



except the torque pressure and percent gas generator rpn. 

Little reference was made to instruments in this task; most 

cues were provided by the projected television scene. A 

1:400-scale terrain model was used in the simulation (Fig. 1-17). 

The model is based on a section of Hunter-Liggett Military 

Reservation in central California. 

Three artificial courses were placed on the model. The



longitudinal course (or hurdles) consisted of 50-foot-high



barriers placed at irregular intervals at least 700 feet apart.



The lateral-directional course (or slalom) consisted of trees



about 75 feet high spaced similarly to the barriers in a



straight line. The combination course consisted of barriers



combined with trees placed down the centerline of the barriers.
 


The spacing distribution of trees and barriers for the combina­


tion course was the same, but the sequence was different so



that the difficulty levels were not matched in coordinating



lateral and longitudinal controls down the entire course.



The three obstacle courses were designed to give the



pilots a specific and repeatable precision flying task. The



longitudinal and lateral-directional tasks were included to



allow the pilots to concentrate on one set of aircraft axes



at a time. The combination task was included so that the



vehicle characteristics as a whole could be evaluated in a
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Figure 1-17. 1: 40Scale Modl Terran Boexd of a Portion of the U.S. Army Hiter-Liggett Reservation 



control tendency, cross-coupling, or low stability. A 

rating of 8 or more reflected a controllability problem 

or a near collision; ratings from 5 to 7 indicated high 

workload; ratings from 2 to 3, a good gun platform. The 

pilot felt extremes of ratings were most significant. 

Pilot B looked for agility and precise control while flying 

at maximum speeds and lowest tolerable altitudes. His 

perception of exaggerated pitch coupling due to collective 

pitch consistently biased his pilot ratings by 1 to 2 points 

toward unacceptable. For most configurations, any longi­

tudinal inputs made for speed changes were overshadowed by 

cyclic pitch corrections needed to counter collective-to­

pitch coupling. At no time was loss of control imminent. 

If pilot compensation was extreme, slowing down and in­

creasing clearances helped." 

Note that considerable effort was made to define tasks that exercised



the properties under investigation. Also, pilot performance measures were



taken (time-altitude data) to support the findings. Task definition is



extremely critical and the authors openly acknowledged that the courses



flown may not represent combat-type terrain flight. Nevertheless they



considered their findings valid because they were supported by some



analytical basis.



For these tests, the visual display field of view was 48 degrees 

horizontally by 56 degrees vertically (standard )25 line TV format). The 

pilots would occasionally comment about the restrictive field of view and 

lack of clarity and detail especially when making large pitch and roll 

attitude changes. 

At the time of writing, portions of the experiment had just been



repeated using the moving base FSAA. The interest here was to assess the



effects of motion on the results and to advance the research. Some early



comparisons of results from both simulations show the familiar effect of



motion, which is to cause poor configurations to appear a little better.
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1 .4.2 Usefulness of Training Simulations 

It is difficult at best to define the usefulness of training simulations. 

Effectiveness measures vary, and tests to determine effectiveness in terms 

of transferability require large, carefully-controlled experiments; something 

not compatible with the training environment. 

It is generally accepted that the usefulness of a training device 

not only depends on its inherent fidelity, but also on the way it is 

utilized in training. With the proper instructional method, a low-fidelity 

trainer can be very effective and vice-versa. 

The special features of a simulation can be advantageously used in



training. For example, training for instrument approaches and landing under 

adverse weather conditions can be more-effectively accomplished by simula­

tion rather than in flight because the simulation may be re-started at the 

initial approach point and ended at touchdown thereby saving time. The



experimental laboratory-type environment of the simulation allows close 

control over visibility and runway conditions, factors difficult to control 

in the real world. 

From another viewpoint, the measurement of training effectiveness can



be more easily made in the simulator because a host of variables may be



examined. Freeze and playback functions are also helpful unique features. 

In some instances, the aircraft characteristics can be changed to vary



task difficulty and so on. 

The point here is that training simulators are rarely used like their 

aircraft counterparts because of their unique features making them different 

from the aircraft they represent. With the advent of sophisticated full­

mission simulation, instructional method development is sure to blossom. 

Prior to World War II, simulators were used mostly as instrument or



procedures trainers. The requirement to train many pilots during the war



spurred investigations into synthetic trainers. The equipment of the day 

left much to be desired. Now, with the advanced visual systems emerging, 

full mission simulation is possible. Instructional methods are sure to 

improve and, with that, training simulation usage should expand. The energy 

constraints should surely serve to fuel this process. 
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The traditional role of simulators as part-task, procedures, and



instrument trainers prevalent before and after the war will change. Already 

the airlines have demonstrated transition and continuation training using



mostly simulators. The military services are attempting to train basic 

air combat on simulators and they already are developing full-mission 

trainers for air-to-ground weapons delivery tasks, part task trainers for 

aerial refueling, and full-mission devices for low-level helicopter warfare 

training. 

On an optimistic note, there appear to be no limitations to the 

effective utilization of simulation in training if there are no constraints 

on the development of computer-supported instructional methods.



TR 10711-2 1-46





SECTION 2 

84MTORS AND HUFAN PERCEPTION 

2.1 MUM PERCEPTIONS IMPORTANT TO SIW3ZTION 

2.1.1 Human Visual Perception 

2.1 .1 .1 Field of View. The human eye is a wide field optical sensory 

organ. Its structure suggests a half hemispherical field of view (+ 90 de­

grees both horizontally and vertically) but the usable field is limited by 

the skull shape surrounding the eye. This limits the field of the right 

eye to typically 70 degrees left and 100 degrees right of the foveal point* 

and 50 degrees above and 80 degrees below it. The pattern is reversed 

horizontally for the left eye so that in combination, the net field is



approximately + 100 degrees horizontally, 50 degrees above, and 80 degrees 

below the fovea. The eye muscles are capable of rotating the eye about 

+ 60 degrees in azimuth and elevation. With eye movements, the average



human is able to see + 110 -degrees horizontally and + 50 degrees and -80 

degrees vertically. There is a counterroll reflex that is discussed in 

Section 2.1.4. 

2.1 .1 .2 Resolution. Resolution is a term used to describe the ability



of the eye to discern fine detail. It is not only dependent on the optical 

properties and nerve structure of the eye, but also on object contrast and 

background luminance. This is usually defined as the ratio of object 

luminance to background luminance. Obviously nothing can be seen at a 

constrast ratio of one. On the other hand, stars have a high contrast ratio



and in spite of their small angular size are easily seen. The complex 

nerve interconnections and the diffraction produced by the eye's optical 

elements may account for the ability to detect fine wires and stars even 

though their subtended angle is less than the angle subtended by a single 

nerve cell.



* Point of highest acuity or where it appears that we are looking. 
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Figure 2-1 shows the measured visual acuity mean and range as a 

function of horizontal field angle for two background luminance levels 

(Ref. 5). Note that the minimum acuity is about one-half minute of arc 

for a background luminance roughly equivalent to that of the average sky 

on a cloudy day. For a background luminance level equivalent to that of 

light from the full moon on an average earth, the acuity is about 12 arc­

minutes. 

Vernier acuity is the ability to detect separate parallel segments of



a line. It may be facilitated by diffraction effects, and is much lower 

or better, typically 0.03 arc-minutes. This is the acuity associated with 

detection of offset lines and telephone wires. The minimum perceptible 

acuity may also be determined by diffraction effects and may have no loter 

limits on the angle subtended by the intrinsic size of the object. This



is the acuity associated with seeing stars and is a function of brightness,



not angular size. For example, the giant red star Betelgeuse (magnitude 

+1) subtends an angle of 0.001 arc-minutes but can easily be seen due to



atmospheric scintillation (twinkling effect) and the diffraction properties 

of the eye that cause the star's image on the retina to be about one arc­

minute in diameter.



It is stressed that all of the above values of visual acuity are for



a detection task. More complex tasks such as recognition require a pattern



of barely-detectable shapes. This implies a larger subtended angle. For 

example, the 20/20 line of letters in the familiar Snellen eye chart subtend 

an angle of five arc-minutes at the correct test distance of twenty feet. 

2.1 .1 .3 Contrast/Ludlnance Sensitivity. The details of a scene are 
-visible because their various elements contrast witth each other in luminance



and/or color. Limiting visual performance is often useful for determining 

simulation visual equipment properties, and a variety of ways exist for 

establishing visual performance. Generally, the probability of accomplishing 

a visual task (such as detection or recognition) is given along with the 

contrast required. Contrast can be expressed in many ways. The usual



definition is the difference in luminance (target minus background luminance) 

divided by background luminance. Other expressions can be found in the 

literature such as:
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Target Luminance - Background Luminance 
Average Luminance



and Target Luminance

Background Luminance 

At low contrast levels, the last definition, the simple contrast ratio,



is nearly unity and all the other expressions involving a difference 

approach zero. The values are sometimes multiplied by 100 to yield percent



contrast.



Tests have shown that the contrast threshold is a function of at least



three variables:



O Target size 

o Target pattern



O Background luminance. 

To illustrate this point, two sets of data will be described by sketches. 

The first is by Blackwell (Ref. 5) and shows the variation of the 50 per­

cent probable contrast threshold with background luminance and target size 

(Fig. 2-2). In this case the target was a gray disk on a darker background. 

Note the transition from cone (photopic) to rod (scotopic) vision as shown



by the break in the curves.



The second illustration is from the results of Campbell and Maffei 

(Ref. 6). The authors measured the 100 percent probability contrast



threshold as a function of target pattern. This was a sinusoida!ly­


varying luminance pattern that resembled alternating light and dark bands. 

The spacing between bands was varied and the number of light or dark bands 

per degree of angular dimension, termed the "spatial frequency," was 

therefore varied.



Figure 2-3 shows a sketch of these data for a human and, by measure­


ments of evoked potential, a cat. Note that the lowest threshold for a



human is 0.004 and occurs at a spatial frequency of 3 cycles per degree.
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For the cat, however, the lowest threshold is 0.01 at a spatial frequency



of 0.3 cycles per degree. The suggestion is -that vision may be naturally



optimized for some function.



These concepts may be unified by the use of a three-dimensional plot.



Such a plot is shown in Fig. 2-4. The abscissa relates the background



luminance and the ordinate, the contrast. The third dimension (into the



paper) contains the resolution metric, which, in this case, is the inverse



of angular resolution or could describe the spatial frequency. The surface



sketched represents typical results for a detection task where the space
 


above the surface represents detection and that below, no detection. The



data projected on the frontal plane is that of Fig. 2-2. The side plane



projection could show the data of Fig. 2-3 (it does not because the data



of Figs. 2-2 and 2-3 are for different types of targets). Such a plot



would show the effect on contrast of an increasing spatial frequency if the 

target were an alternating luminance pattern. This is termed the modulation



transfer function (MTF) and is useful in describing the visual performance 

of electro-optical visual systems. For example, a hypothetical television 

ITF is sketched showing how it could intersect the detection threshold. The 

MTF describes the ability of a visual system to show a periodic luminance 

function whose frequency is increasing. At some point, the system cannot 
"folow"any longer and the resultant contrast is zero. Generally the



plot is normalized to "static conditions," i.e., the lowest spatial fre­


quency but in the sketch the absolute contrast is implied. In another



sense, the NTF is analogous to the frequency response function of a



dynamical system.



2.1 .1.4 Color Sensitivity. The spectral response associated with



vision shows peaks depending on whether the rods or cones are being stimu­


lated. Rod (scotopic) vision can occur at very low luminance levels



(average illumination on a dark moonless night) and is colorless, having a



single spectral peak at a wavelength of about 500 nanometers (green). This



results, in part, from the visual pigment associated with the rods that



contains photosensitive molecules that respond to a wide band of light waves



with the spectral peak as identified above. It is interesting to note that



the greatest density of rods occurs at a field angle of about 20 degrees.



In this area, night vision is most sensitive.
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The cones, on the other hand, are adapted to high luminance (photopic) 

vision and are most dense at the fovea, the area of highest acuity. The



cones are responsible for color vision and contain three visual pigments 

similar to that of the rods, but whose spectral peaks occur at about 440


nanometers (blue-violet), 540 nanometers (yellow-green), and 560 nanometers



(yellow-orange). 

In Ref. 7, Land presents an interesting theory of color vision which 

he calls the "retinex theory," the word being derived by him from the two 
words retina and cortex. Using experimental results, Land ascribes color 

vision to the action of both the retina and the visual cortex. He maintains 

that it is not the absolute illumination level on each pigment that results 

in color impressions, but rather the relative intensities on each of the 

pigments. It is as though the action of the cortex is to compare the 

various pigment stimulations in order to form a color impression. This is 

similar to stereoscopic vision where it is thought that the slightly dis­

parate images of both eyes are processed together in the brain (perhaps the 

cortex) to form an impression of depth. Furthermore, Land maintains that 

stimulation of only two pigments is sufficient to form the impression of 

a wide range of colors. The implication of this is, of course, that color 

visual simulation systems may only need to include two basic colors. 

2 . ,5 Depth Perception. This is that property of vision that 
results in the world being perceived as three dimensional rather than as 

just a flat picture. There are many mechanisms by which this takes place 

but only a few can be effectively simulated. The mechanisms can be separated 

into two groups; those associated with binocular vision (use of both eyes 

simultaneously) and those associated with monocular vision (one eye only).



Binocular Effects



Physiologists have suggested that the images formed by



each eye are fused in the visual cortex. Also, that visual 

pathways starting from nerves at corresponding points in 

each retina are associated in the cortex so that disparate



images can be used to form the impression of depth. This 

is called binocular disparity. The principle of this mechanism 
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is that each eye sees a different image because of their
 


separation. The slight differences in these images can



be interpreted by the brain as depth. In this regard, the



impression created is of a three-dimensional version of



the objects in the visual field as would be seen by a 

single "Cyclopean eye" located midway between the eyes. 

Other clues to range are produced through the use of both



eyes. The slight "toeing in" of the eyes to a close object 

is called convergence and provides a clue at ranges up to 

about 20 meters (66 feet) (Ref. 5). 

The slight change in accommodation (focus) for close 

objects is also a clue but is accurate only at ranges less 

than 1 meter (3.3 feet) (Ref. 5). ' 

According to Ref. 5, the most accurate mechanism for 

perceiving depth using internally-generated cues is the 

stereopsis resulting from binocular disparity. Experimentally­

determined values of stereoscopic acuity (smallest detectable



angular disparity) are in the range from 10 to 2 arc-seconds. 

The reference states that an observer, for example, with a



corresponding stereoscopic acuity of 5 arc-seconds can



discriminate that an object at 2600 meters (8530 feet) is 

closer than one at infinity. 

Monocular Effects
 


There are a number of other clues available to the single



eye as to depth and range. Seven are mentioned below:



1) 	 Motion parallax describes a change in relative 

position of objects due either to object or 

observer motion. 

2) 	 Apparent size of familiar objects is also a



powerful clue. 
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3) Linear perspective or the geometrical aspect of



a vanishing point, parallel or convergent lines, 

and 	 related effects is important.



4) 	 Interposition or the masking of objects by others



that are closer.



5) Aerial perspective is the loss in contrast produced



by atmospheric effects at increasing distance from
 


the 	 observer. 

6) 	 Shadows are an important clue to depth. 

7) Apparent intensity of point light source objects



can give a clue as to range and depth.



2.1 .1.6 Movement Thresholds. The threshold of sensitivity to an 

abrupt change in angular velocity of a target moving across the visual 

field is approximately 1/10 of the angular velocity. At zero angular 

velocity the "rate threshold" or minimum step of angular velocity perceivable 

is between 1 and 2 are-minutes per second. For movement toward or away 

from the observer, the time required to detect a movement, varies roughly



inversely wiith the speed (Ref. 5). This suggests a minimum range difference 

that can be detected. Reference 5 describes data taken at initial ranges 

of 7.6 meters (25 feet) using a 90-millimeter (3.5 inch) wide target. This 

corresponds to a change in the target visual angle of about 1 arc-minute. 

2.1 .1.7 Effects of Motion. Two effects are known although subject 

differences are large. The first is the reduction in visual acuity for 

objects moving with an angular velocity and the second is the compensatory 

eye 	 movements caused by head movements in space.



1) 	 Dynamic acuity is the visual acuity threshold for 

objects moving with an angular velocity relative to



the observer's eye. Data from Ref. 5 shows that the 

dynamic acuity is less than the static value and, like 

static acuity, varies with target and background 

luminance. If the static acuity is 1 arc-minute, 

TR 1074-2 	 2-11 



the dynamic acuity is 2 arc-minutes at an angular 

velocity of 80 degrees per second. At an angular



velocity of 120 degrees per second, it is about



8 arc-minutes.



2) The effect of head movements



Head movements aid depth perception and range
 


judgments. They also aid fixation under moving condi­


tions. The vestibular organs of the inner ear are



known to cause compensatory eye movements in a par­


ticular range of frequencies. These movements appear



to aid fixation when the head is moved rapidly. The



compensating movements are elicited by angular as well 

as rectilinear head motions. For example, rotating 

the head about the vertical axis causes fast as well



as slow compensating eye movements. Translation up



and down causes corresponding up and down eye move­


ments. Side force either due to tilt in the gravita­


tional field or acceleration causes a counterroll



reflex in both eyes that is dependent on the normal 

force. 

An object may be easily fixated even with head



movements at frequencies of up to 2 Hertz. However,



fixating a vibrating target with eye movements alone



cannot be done beyond frequencies of 1 Hertz without 

increasing errors (Ref. 5). 

2.1.1.8 Flicker. Critical fusion frequency is a term that describes 

the visual fusion of a flashing light. When a flashing light is presented 

to an observer, there exists a critical frequency of these flashes where 

the impression of light is continuous. The frequency at which this occurs 

is the Critical Fusion Frequency and increases with the luminance of the 

light source. For example, Ref. 5 shows that for commercial television 

sets with luminance levels of about 10 foot-lamberts, the Critical Fusion 

Frequency is about 52 Hertz. Commercial TV which provides a new picture 
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6D times a second is rarely perceived as flickering. However, the European



power frequency of 50 Hertz sometimes causes a bright light to appear as



flickering. 

2.1.2 Humn Motion Perception



2.1.2.1 Anguv a' Motion Perception. The sensation of rotation is



thought to come largely from the semicircular canals of the inner ear. 

While certainly other sense organs such as the surface pressure receptors
 


and those in joints and tendons are sensitive to applied forces resulting



from rotation, evidence from experiments in rotation sensing strongly 

suggest that the primary rotational sense organs are those of the vestibular



system. 

As early as 1931, it was proposed that the function of the semicircular 

canals could be represented analytically by that of a heavily damped torsional 

pendulum. Experimental evidence supports this View. Young (Ref. 8) has 

developed comprehensive models of this sensory process. 

In summary, the properties of angular motion sensing are: 

1) Angular.motion perception is frequency and amplitude 

dependent. Large, rapid motions are sensed while



small, slower ones are not.



2) 	 Head movements while rotating can strongly influence



the perception of rotation, and can cause disorienta­


tion.



3) 	 Compensatory eye movements are synchronous with the 

perception of rotation.



For 	 example, it is well-known that a human subjected to a step of angular 

acceleration accurately reports the buildup of angular velocity. As time
 


passes, however, the impression of buildup ceases and the angular velocity 

appears to hold constant when in actuality it is still increasing. This 

is the consequence of the "washout" property of the semicircular canals 

that precludes our sensing slow movements. 
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The thresholds associated with the "torsional pendulum model" view 

lead to a prediction of latency time for the perception of angular accelera­

tion. A longer time is needed to sense a smaller acceleration. Typical 

examples of such data are described by Young in Ref. 8. From the point of 

view of the dynamicist, the organs "pass" motions in the frequency band of 

approximately 0.1 to 10 radians per second and are structured as angular 

velocity transducers in that frequency range. The threshold velocity in 

this range is about 0.1 degree per second.



2.1.2.2 Force Perception. It is not clearly established that the



vestibular organs account for all of the force perception observed. The



view of the utricles (an accelerometer-like organ near the junction of the 

semicircular canals) as damped linear accelerometers leads to the notion 

of phase lags for the perception of force. The best data on this subject 

were obtained by Meiry (Ref. 9) using a linear acceleration device. The 

subjects were instructed to report velocity reversals while stimulated by 

sinusoids of acceleration. The reported perception of velocity reversals 

relative to the actual reversals shows a phase lag of 45 degrees at a 

frequency of 1 .5radians per second. These data are from tests where the 

subject is seated in a soft chair that offers no other kind of stimulation. 

Threshold data similar to those for rotational movement are reported in



Ref. 9. 

2.1.2.3 Tactile and Kinesthetic Perception. Tactile sensitivity or 

the "sense of touch" is part of the broader array of sensory processes 

that are the function of the proprioceptive system. The sensing elements 

that form this system include surface receptors that sense touch, tempera­

ture, pressure, and pressure gradients as well as those elements deeper 

in the body that sense muscle tension, skeletal deflection, and internal



organ movements. The proprioceptive system also includes the vestibular 

organs. Some attempts have been made to determine models of the tactile 

and kinesthetic senses (Ref. 10) but they are far from described adequately 

to allow formal design of simulation equipment. Applied forces are the 

primary stimuli for these proprioceptive elements. Forces cause the 

pressure receptors to react and cause skeletal movements that are sensed 

by the muscle, joint, and tendon receptors. According to Gum (Ref. 0), a 
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more rapid response is available from the head/muscle and body pressure



sensing system than is available from the vestibular system under identical
 


forcing functions. This is probably the reason why a buffet or vibration



signature may be accurately identified. Also, the tactile elements'



response appears to decay rapidly with repeated stimuli (habituation



Ref. 	 10).



While the proprioceptive system elements may be viewed individually,



it is customary to consider their stimulation and response as a unit. The



tactile and kinesthetic system's primary function appears to be the creation



of postural reflexes, control of limbs and torso, and protection from



hostile intrusion such as piercing or burning.



For this reason, a variety of devices are under development that are



designed to stimulate this system. They include the "g" seat, "g" suit, 

harness and limb loaders, and stick shakers. They are all designed to 

reproduce somewhat the surface pressure distributions and limb/head deflec­

tions experienced in flight. Limited successes with "g" seats are reported 

by Tiesler (Ref. 11). This reference also reports an extensive table of 

threshold levels determined by various researchers. As with other human



senses, a large variability exists in such data owing to the probabilistic



nature of sensory processes involving thresholds.



The method or device used for stimulation is highly important. For



example, a seat arrangement where the human is securely strapped tends to 

reduce the pressure sensitivity on the parts of the body that are under



high pressure. By proper design, however, the low pressure portions may



be used to elicit responses to low levels of force change.



2.1.3 	 Aural Perception 

The human auditory system is configured to respond to changes in air 

pressure at frequencies that range from about 30 to 15000 Hertz. The 

hearing response shows a peak that occurs at about 2000 Hertz. Reference 5 

gives allowable signal-to-noise ratios for various speech levels and speech 

content. Habituation effects are present which result in reduced hearing 

following exposure to noise. These are also given in Ref. 5. The sense 
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of hearing is an obvious method of detecting and using the various sounds 

associated with flying machines. Among these are aerodynamic "hiss" from 

the boundary layer; engine compressor and exhaust noise; runway rumble;



the periodic noise from propellers, rotors, and fans; and the whine of 

transmissions. The rhythmic nature and beating associated with periodic 

sound makes it ideal for sensing important aircraft parameters. For 

example, rotor speed may be readily held within close tolerances using 

rotor noise alone.



Besides these simple examples, it is well known that the human is able 

to discriminate complex sounds, e.g., music. This implies the ability to 

analyze and identify these sound spectra, particularly to pick out tonal 

peaks associated with a particular aircraft effect. The fact that the 

hearing sense, like the vestibular and kinesthetic senses, is always "on" 

(as opposed to vision) makes this sense and the others especially valuable



as an alerting mechanism for failure detection experiments. 

2.1.4 	 Perceptual Integration 

The selection of the order of presentation for the preceding material 

is intentional. This is done to emphasize the ascending order of frequency 

for the response of the various human sensing systems. Figure 2-5 shows a 

sketch of the inferred human sensory frequency response from speculation 

arising from the data reviewed for this work. The ordinate is an arbitrary 

scale normalized to the visual response, and represents "information acquisi­

tion 	 rate." The abscissa is frequency in Hertz. The areas under each



curve represent the relative "information acquisition capacity." The peaks 

for the semicircular canals, kinesthetic, and aural systems are shown. 

Note that the visual sense encompasses a large area signifying the large 

information capacity that sense is capable of acquiring. 

The visual, utricular, and kinesthetic senses all have a static 

response. Note also the cutoff frequencies and peaks suggested in the



response. Vision begins to cut off at about 1 Hertz. The semicircular 

canal's response peaks at 1/6 Hertz and extends slightly beyond the visual 

response. The kinesthetic system's response begins where the visual and 
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vestibular response fades, reaching a peak at about 3 Hertz. Thresholds of 

vibration detection begin rising at frequencies of 100 to 200 Hertz. At 

these frequencies, the auditory response begins, reaching its peak at about 

2000 Hertz. Beyond 15000 Hertz, the body sensors do not seem to respond to 

anything. The sum of all the sketches is also shown in Fig. 2-5 and it is 

interesting to note how relatively wide band the human sensory processes



are when considered this way. They seem to overlap very conveniently. 

Figure 2-6 shows an attempt to describe the probable time delays 

associated with each process. It is known that visual time delays associated 

with detection or recognition tasks vary with the scene complexity (informa­


tion). Typically, pilot time delays associated with high-performance motor



tasks requiring the processing of a simple scene can be as low as 0.44



second (Ref. 12). When motion stimulation is introduced, the delay can 

be reduced to about 0.2 second. Could it be that the sensory processes 

sensitive to higher frequencies produce perceptions with smaller time 

delays? This possibility is sketched in Fig. 2-6 where a hypothetical 

perceptual time delay range is plotted for each sensory process. 

Just how are all these sensory processes integrated into a total 

perception? Attempts to formulate a theory of perceptual integration is



reported by Young, et al. in Ref. 13. The theory advanced includes the



concept of "expected stimulation" from an internal model of the external 

world (aircraft, for example). An interpretation of Young's concept is



shown in Fig. 2-7. The important feature here is the internal model that 

is developed through learning. This model structure is important to the



explanation of:



1) Differences in disorientation effects between pilot



and passenger



2) Differences in disorientation effects between student



(neophyte) and instructor (experienced pilot)



3) Effects of head/limb movements



4) Various visual illusions 

5) Training 
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6) 	 Attention sharing



7) 	 Disturbance (unexpected) versus command (expected) 

effects 

8) 	 Habituation (decay of response with repeated 

stimulus) 

9) 	 Adaptation (decay of response with steady stimulus). 

The model in its present form also permits an explanation of observed



simple tracking performance. Some recent experimental progress on the 

modeling of visual and motion effects on human tracking are reported in 

Ref. 14 by Junker and Levison. Their results clearly show the effects on 

tracking performance of command-type (expected) motions and disturbance­

type (unexpected) motions. They are currently researching the effects of 

motion washouts. Although Young's representation of human sensory processes
 


is complex and partly substantiated, it nevertheless holds the promise of 

giving an explanation of sensory behavior suitable for simulation equipment 

design.



The notion of an "ordered hierarchy" of perceptual processes that are 
successively matched to the total stimulus by an "internal executive" is 

appealing to researchers. The overlapping response functions, coupled
 


with the internal adapted model appears to have all the ingredients neces­

sary to explain the wide range of behavioral skills possible ranging from 

acrobatics to piloting and the multitude of effects related to training



and disorientation.



2.2 CURRENT SIMULATOR CAPABIITIES; COMABISONS WTH PERCEPTION 

2.2.1 Visual Systems 

In Section 2.1.1, the essential features of human visual perception 

were described. In overvieu, they are: 

O Field of view 

o Resolution/contrast/luminance sensitivity 
(including color)



O Depth perception. 
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There are, of course, static and dynamic aspects of these factors, great



variability among people, and degradation with age. Nevertheless, for the



pilot population, visual perception is a highly-developed wide-ranging



property that comprises the mainstream of sensory activity. To build an



electro-optical device compatible with these characteristics is no small



task and the electro-optics and electronics industries have not done badly



on this score.



io schools of thought prevail in designing simulator equipment. The 

first advocates "face validity," that is, to replicate the world as closely 

as possible. The second school advocates "stimulation but not replication." 

The first is relatively easy to identify but technically difficult to


implement; the reverse is true for the second. Moreover, determining


required stimulation and evolving tests that establish validity is more


esoteric. Consequently, the practical drivers of the simulation technology


are the advocates of the first approach.


In the case of visual systems, this is certainly true and the result 

has been astonishing. Closed-circuit television, point light source pro­

jection, and computer-generated imagery have been developed to high levels 

by the simulation industry for the bulk of applications. Even in the case



of computer-generated imagery, the face-valid approach is taken. This



technology is obviously one where only cardinal elements of a scene can be



represented owing to the computer limitations, but still, little research 

is being done on discovering what elements of a computer-generated scene 

are necessary to perform a given task. 

Current simulation visual systems may be compared in terms of the



three categories of visual perception previously outlined. This is done



in Table 2-1 and Fig. 2-8, where visual performance is shown together with



that of the normal eye (Ref. 5). Figure 2-8 includes human visual data on



the contrast required to detect a circular target. The systems chosen for



comparison are:



o High-performance closed-circuit television



o Point light source projection 

o Computer-generated imagery. 
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---- ---- ------- ---- ------ ---- ---- ----------

0 	 

VISUAL 
CHARACTERISTIC 

Field 	of View 


Resolution/ 

PO Contrast/
I Luminance/Color
R3------------- -

Sensitivity 

Depth 	Perception 

TABLE 2-1 

PEROIRMAWE OF THREE CURENT VISUAL SYSTEMSCOY2ARED WITH THAT OF 	 THE NORMAL EYE 

NORMNL HIGH-PERFORVANCE POINT LIGHT SOURCE 
EYE CLOSED-CIRCUIT TV PROJECTION 

+ 	 110 deg horizontal + 24 deg horizontal + 182 deg horizontal 

d e g v e r t c a 
+ 0} l 	 + 18 deg vertical + godeg vertical 

Minimum separable Minimum separable Resolution not a cri­
resolution (fovea) resolution (on-axis) teron. 

0.7 - 10 arc-minutes 7 are-mnutes Edges of objects are 


Periphery 100 arc-minutes Edge of field spread as their range 

Vernier (fovea) 	 12 arc-minutes decreases 

0.03 - 0.1 arc-minutes- - - --- ----- -- ------ --- ---


Minimum perceptible (stars) Luminance range Luminance range 

0.001 arc-minutes 1-20 foot-Lamberts 0.1-1 foot-Lamberts 

Luminance range 	 Contrast ratio Contrast ratio 	 

10-5 to 103 foot-Laberts 	 1-20 1-10 	 

8 color hues Arc-lamp color with hues
Contrast threshold detectable of transparency 
- 3 to 10310



128 color hues detectable



Monocular: Monocular: Monocular 
Accommodation Collimated display Real image display set 

< I meter 	 produces accommoda- to screen radius. 
Convergence tion to optical in- Provides no clues 

< 20 meters finity provides no except those from scene 
Scene interpretation? 	 clues except those interpretations. 


from scene interpre- Normally hidden faces 

tation. Normal 
 of oboects are visible. 

Binocular: except no shadows or Binocular: 
Stereopsis from motion parallax. Binocular disparity 
binocular disparity Binocular: absent. No stereopsis 

< 2600 meters? Binocular disparity 
absent. No stereopsis



COMPUTER-GENCRATED 

IMAGERY 


+ 19 deg horizontal 

+ 16 deg vertical 

Resolution on axis 

7 are-minutes 


Resolution at edge
 
10 arc-minutes



Highlight brightness


6 foot-Lamberts 


Contrast ratio 

1-20 

Shades of gray detectable 
10 

8 color hues detectable 


Monocular: 
Col2imated display produces 
accommodation to optical 
infinity provides no clues 
except those from scene 
interpretation. Normal 
except no shadows or motion 

parallax. 

Binocular: 
Binocular disparity absent. 

No stereopsis 




Visual surface for


detection of a


circular disc


(From Ref. 5) Resolution



(araminutesr)

0.06



1o4 ioj4 2~irV<,~ 10 01Current 

0104 O __-V V
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Note that in terms of the three broad categories of comparison, the visual 

concepts produce a system with either a wide-field, low resolution and few



scene details, or one with narrow field, moderate resolution and many scene 

details. The luminance range is a fraction of that to which the eye can 

adapt to and all the concepts described produce no binocular disparity that 

can produce stereopsis. At most, they allow accommodation to optical 

infinity or to the distance of a screen, typically 8 or 10 feet from the 

eye.



In dynamic terms, scene resolution of the CRT-based systems degrades 

with scene slew velocity. For example, for television systems, a yawing or 

pitching slew rate of 40 degrees per second can cause resolution to degrade
 

to a 1/10 of the static value. The degradation associated with the eye,


however, is only about 1/2 of the static value at these slew rates. The


point light source concept, of course, does not suffer from dynamic resolu­

tion loss because it uses no scanning mechanisms with associated time


delays. Hybrid versions of the three are in use, however, that overcome 

some of these difficulties. For example, the ASPT uses seven collinated 

CRT pancake windows in a mosaic to achieve a wide field of view without a 

proportional loss of resolution. The IAMA8 and DI/B concepts use a mixture 

of point light source and television projectors to achieve a wide field, low 

resolution view of the sky and horizon with a narrow-field view of a high­

resolution target. The Advanced Attack Helicopter Training Simulator uses 

two television "windows" to achieve a wider field of view. 

In summary, current visual systems approach the field of view and 

resolution of the eye but not nearly the contrast/luminance range. None



of the concepts produces any meaningful binocular depth cues. All facili­


tate some depth perception through the inclusion of monocular clues.
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2.2.2 Motion Systems 

Platform Motion 

There are four features of any platform motion device that define its



performance. They are:



* 	 Maximum performance envelope; acceleration,



velocity, position limits



0 	 Minimum performance; thresholds 

0 	 Bandwidth; dynamic response 

O 	 Drive logic; relation between simulated aircraft 

motion and simulator motion.



Maximum performance is the motion "envelope" the device is capable of. 

These limitations are a consequence of limited travel and motive power.



While they must be considered in any design, they bear no relationship to 

human perception because they must be avoided in practice.



Minimum performance (thresholds) are important compared to perception



thresholds because they must be lower; otherwise, the platform feels



unnatural (bumps, jerks, etc.). The thresholds of perception have been 

determined by many investigators. Hosman, et al, determined them on a



transport training simulator (Ref. 2) and found the rotational threshold



to be a function of frequency. More importantly, they determined the



levels to be dependent on task loading. If the pilot -was busy, his thresh­

old level increased. Rough approximations to these levels are listed 

below: 

o 	 Sinusoidal rotation threshold: 

= 0.2 w deg/sec
2



Acceleration 
 

Velocity = 0.2 deg/sec



Position = 0.2 deg



where cu is in radians per second.
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O 	 The sinusoidal translational acceleration threshold 

is independent of frequency and is about 0.01 g. 

The capability of the transport training simulator with which the thresholds 


were determined obviously was sufficient. This device, however, incorporates 


hydrostatic bearings and, as such, has low friction and noise levels. For 


example, Hosman reports that for a heave drive resulting in a heaving 

sinusoidal acceleration of about 0.01 g, the heave noise level vas about 

0.002 g.



When a motion platform device is subject to non-linear phenomena 

such as friction, higher thresholds can be expected. The NASA Ames Research 

Center Flight Simulator for Advanced Aircraft (FSAA) is such a device. 

It 	 uses screw jacks, rubber-faced tracks with toothed wheels, timing chains, 

etc., to transmit torque. Its threshold levels are reported in Ref. 15. 

They are higher than the rough approximation to Hosman's data. In spite 

of this, the FSAA is not widely described as a "rough machine." Occasional 

bumps and jerks can be felt when riding the FSAA and the platform structure


can be rung with sharp control inputs. The point here is that the FSAA



threshold levels in rotation of about two or three times the rough approxi­


mation to Hosman's data are not objectionable in practice. This is most



likely due to the perception thresholds being higher for complex tasks such



as landing an airplane. This supports Hosman's finding and suggests that



indifference threshold levels are more important to simulation than are



the minimum levels found in low task loading perceptual tests. The thresh­


old or minimum performance required for effective motion simulation needs



to be clarified.



To illustrate further the point that indifference thresholds are more 

important than perceptual thresholds the FSAA translational axes performance 

is cited. The lateral (sway) axis of the FSAA, like all the other axes, 

is configured as a velocity servosystem. This means that a step of input



command voltage causes the actuator to reach a steady velocity after a



short transient period. The value for the threshold given in Ref. 15 is



+ 91 millimeters per second (+ 0.05 feet per second). This means that a



0.01 g step of side acceleration will integrate to this velocity after 1/10



second, an acceptably short time. According to Young (Ref. 8) the latency time
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for 0.01 g (time to detection) is about three seconds*- One is tempted



to question the value of simulation to the 0.01 g level simply because of



the long times required for detection. One is further tempted to speculate



that the important design thresholds are closer to the acceleration values



corresponding to the knee of the human latency curve where detection times



are short. If this is so, then the design thresholds may exceed the



minimum perceptual values by a factor of three or four times. 

Bandwidth and dynamic response are terms used to describe the rapidity 

with which the motion platform responds. Bandwidth is the sinusoidal 

frequency where the response amplitude is 0.71 of the command value. The 

dynamic response can be described in many ways. A common method is to 

show that the sinusoidal response lies within a tolerance about the response 

of a specific model. Such a model is a simple second-order lag-type system 

that is described by a natural frequency and a damping ratio. Typical 

values for these are: a natural frequency of 3 Hertz and a damping ratio of



0.7. The tolerance is typically + 20% of the phase function up to a fre­

quency of 1 Hertz. A tolerance about the amplitude function may just as 

well be chosen and/or the frequency for matching extended. 

Compared with human motion perception dynamics, typical platform 

dynamic response is faster. The upper 0.71 amplitude frequency of the 

sinicircular canal's response is about 10 radians per second. Typical 

FSAA rotational bandwidths are between 20 and 28 radians per second. For 

translational motion (force) typical bandwidths of the FSAA are between 

11 and 18 radians per second as compared to the 1 .5 radians per second 

bandwidth of the utricles and the unknown (but probably higher) bandvidth 

of the kinesthetic senses.



If one were conducting perceptual tests, a requirement for motion



bandwidths at least three or four times greater than those for the human 

receptor is reasonable. For piloted simulators, however, where the response



of the pilot and aircraft combination is limited, it is still only necessary



to provide a bandwidth of three or four times greater than that of the 

pilot/aircraft system. These values are rarely greater than aircraft



* Based on tests along the longitudinal (surge) axis. 

TR 1074-2 2-28





characteristic frequencies such as those for the short period and roll



subsidence, typically about 3 or 4 radians per second. It appears,



therefore, that a motion bandwidth of about 12 radians per second is the



minimum required.



Adams (Ref. 16) states that "for a single-axis control task, a general 

conclusion can be made that for these types of tasks, the servo drive 

characteristic should be equivalent to a linear second-order system with 

a natural frequency of 20 radians per second or higher." 

This author (Ref. 12) has found from tests on the roll axis (single 

axis) that a bandwidth of 20 radians per second produces three-fourths of 

the performance improvement possible with a large (6o radians per second)



bandidth. 

Digital computers perform their calculations in a finite time. A



time delay results from this that is typically 3/2 of the frame time. What 

is important to simulation is that the total time delay from control move­


ment to platform movement not exceed a specified value. Just what this 

value is remains open to question. Some recent test results obtained by 

A. M. Junker of the Air Force Aeromedical Laboratory suggest that a time 

delay of 80 milliseconds negates the effect of motion and that the delay 

should be even less. These results are for tracking-type experiments. If 

this is true, then the effective delay of a finite-bandwidth actuator and a 

computational delay should be about 0.08 second. When using actuators 

with a second-order lag response of 25 radians per second natural frequency 

and 0.7 damping ratio, a frame time of about 0.013 second is required. 

This results from an effective actuator delay (for sinusoidal inputs) of 

0.06 second



O.O6 (frame tietime) 0.8scn+ 3 (rm = m8 second 

Drive logic is the array of computations that take simulated aircraft



motions and use them in calculations of simulator motions. In its simplest



form the operation is simply to multiply by unity. This makes the simulator 

motions equal to those of the simulated aircraft and, of course, the motion 

"fidelity" is also unity or the best possible. 
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Practically speaking this is never done. The simulator motions are



scaled (multiplier is less than unity) and also "washed out" by functions 

that return the motion platform to a near-neutral position after a short



time during which the simulator follows the simulated aircraft. When



scaling and washout are used, as they must be, the motion fidelity is less



than the best possible. The selection of motion drive logic is still an



art because it is difficult to relate reduced motion to perceptual fidelity.



Usually the rotational motions are washed out to a level position by



scaled washouts. The apparent forces at the pilot station of the simulated



aircraft are used to drive the translational actuators of the platform, if



any, through scaled washouts. The forces are also used to generate a slow



rotation in pitch and roll so as to create the impression of steady longi­


tudinal and lateral forces using components of the reaction to gravity.
 


The 	 net result is the following:
 


I) 	 Fast rotational motions are "passed" while slower



ones are not



2) 	 Anomalous slow rotations are introduced to accomplish



steady-state force simulation (longitudinal and side) 

5) 	 Fast normal force increments are passed, slower 

ones are not. Fast-acting longitudinal and side 

forces are passed if translational actuators on 

those axes are used. Slower acting forces on 

these axes are represented by'tilting in the 

gravitational field. 

In addition, washout forms may be linear or nonlinear, simple or



complex. An attempt to relate perceptual fidelity to scaled washout is



reported in Ref. 12. Two plots-from this reference are given in Fig. 2-9. 

The first relates scaling and phase shift of the recovered angular velocity 

to fidelity regions delineated by the adjectives high, medium, and low. 

The notion here is that the scaling-phase shift property of the drive 

logic affects the fidelity in terms of pilot behavior. The angular velocity 

plot is for a frequency of 1 radian per second, the frequency at which the 
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Figure 2-9: Motion Fidelity Versus Phase Distortion and Gain at 1 rad/sec 




semicircular canal response is best. The plot is shom in Fig. 2-9 together



with curves for a first- and second-order linear washout.



A second plot is also given relating fidelity to the force recovery 

also at a frequency of 1 radian per second. This plot could be relevant to 

the normal axis where a washout is necessary to restrain the simulator for 

steady normal acceleration. The force plot, however, does not cover the



whole picture in the case of force recovery fidelity. This is because, in



the case of longitudinal and side force recovery, anomalous tilt rates are



produced to achieve slow force recovery and these "false" angular rates 

are not treated by the criteria advanced. Attempts to define perceptual



fidelity are being carried out by Young, et al, (Ref. 13) through the 

comparison of the motions perceived in the simulator and the simulated
 


aircraft. This procedure should lead to a better knowledge of perceptual 

fidelity since use is being made of the present knowledge of human sensory 

models. 

Practical drive logic must include scaling and washouts that appre­

ciably "cut in" on human motion perception. Referring to the fidelity 

plots of Fig. 2-9. we see that second-order washouts with scaling of 0.5 

and washout frequencies of 2/3 radians per second border on the low/medium 

fidelity boundary. Values such as these, however, are commonly used in 

simtlator motion drives. 

In summary, it can be said that the motion drive logic of most simula­

tors must seriously reduce the "passed" motions in a range of frequencies 

where humans are still quite sensitive. Commonly-used washout break 

frequencies are i/2 to 2/3 radians per second compared to the semicircular
 


canal response from 10 radians per second down to 0.1 radian per second.



2.2.3 Control Loaders



Control loaders are the force actuators that are used to impart "feel" 

to the control manipulators. They are configured two ways generally. In 

the first, a strain gauge transducer near the grip is used to drive an 

actuator that physically moves the manipulator. In a sense the manipulator 

can be moved only by means of this actuator. The strain gauge output is 

introduced to a computer where the equations describing the position of
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the manipulator as a function of the applied force are solved. The manipu­


lator position is then fed to the actuator. In this way a variety of



force characteristics may be simulated by the same hardware. 

The second method uses an electro-hydraulic actuator that is configured 

as a force servo, i.e., a command voltage input results in a force being 

applied to the manipulator. Naturally, if it were not restrained by the 

hand under such conditions, for example, it would move to its stop. In 

the latter mechanization, position and velocity transducers driven by the 

manipulator send their signals to a computer where equations for the force 

as a function of displacement and velocity are solved. The force computer 

is then used to drive the force servo.



Both kinds of control loaders can be found in simulators and each 

accomplishes its function but with differing performance. 

The simulation of control feel is important to simulation for the same



reason it is important to flight. Aircraft manufacturers have long recog­

nized that the control feel is an important part of the overall handling



qualities built into the aircraft. Care is exercised to get the feel right 

and aircraft specifications reflect this. The loader concepts described 

generally do a good job provided the actuator's bandwidth is high. Whereas 

the position servo bandwidths approach 20 Hertz, the force servo bandwidths 

approach acoustical frequencies. This is necessary in order to achieve 

the fast response required to simulate nonlinearities such as friction and



dead zones. Because of this, control feel is difficult to model, and



control loaders are difficult to tie in to digital computers. An example 

of control loader implementation is given in Ref. 17 in which the effects 

of digital computing lags are documented. When a loader system has been



successfully implemented, the fidelity associated with force simulation is 

very high. Subjectively, differences between aircraft and simulator cannot 

be detected and the force differences can easily be kept below I to 2



ounces. 

Pilots sometimes complain that the stick forces in a simulator are



noticeably different during high g maneuvers although they may closely


match the aircraft's forces. The inference is that this is an illusion 
caused by the lack of high g forces acting on the rest of the body in


the simulator.
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2.2.4 Sound Generators



The technology associated with music systems has produced hardware 

that achieves a high sound fidelity. With the advent of multi-channel 

systems, the complex wave patterns that produce the richness of sound can 

be synthesized. 

Although exotic sound systems could be applied to simulation, they 

usually are not. The richness and depth of sound produced in the cockpit



apparently need not be duplicated in the simulator in order to provide



essential aural information. For example, the fidelity of compressor



whine need not be high in order to give a compressor speed cue.



Sound generation equipment for simulation purposes, therefore, is



relatively simple and straightforward. White noise generators create basic



noise that is filtered according to the general pitch desired. These



signals are then multiplied by steady or periodic waves to produce aero­


dynamic hiss, runway or exhaust rumble, and compressor whine. Periodic



multiplication produces rotor or propeller sounds depending on the frequency 

of the periodic multiplier. Two speakers are used in the cockpit so that 

some stereo sound effect is produced that would alert the pilot as to a 

specific engine failure. 

Sound simulation is important because timely failure detection is 

often performed using sound. When cockpit sound levels are high, addi­

tional strain on the crew is produced that results in more workload and 

difficulty in communicating. These factors are sometimes the central



issues behind a simulation. In some instances, the sound creates a clue



to an important parameter such as rotor speed and can be used by the pilot



to help to regulate it.



2.3 DESIGN OF SIMUlATOR EXPERMNS 

Flight simulation is, after all, the art of mimicking flight. It .is 

done to facilitate either pilot training or the study of a flight problem. 

In this respect, simulation is much like flight test. Three ingredients 

are always identifiable: the selection of a flight condition, the defi­


nition of maneuvers and tasks to be performed starting at that condition, 
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and the evaluation of the results according to a criterion. The effect 

of each on the experimental design follows.



Selection of Flight Conditions. Obviously this factor influences 

the size of the experiment since a finite time is allocated to each 

condition. The sequence in which the conditions are presented may affect



the results as can the time allotted to each. For example, if insufficient 

time is allocated to a difficult task, the training effect may contaminate 

the results. This factor hardly affects data acquisition requirements 

although it does affect the software required to initialize the simulation.



Definition of Maneuvers/Tasks. At each flight condition, the crew



members are required to manipulate the aircraft and subsystems. Each 

phase of the maneuver must be defined as well as the operation of all 

subsystems. This portion of the plan should enhance repeatability and 

lead to easy definitions of the evaluation criteria. 

Evaluation. During and/or after the performance of each maneuver 

phase, a method of evaluating the results is needed. The measures may 

be subjective in nature such as the Cooper-Harper Pilot Rating or equiva­

lent or objective. Objective measures may be simple or complex. A major 

simulation benefit compared to flight test is that every bit of data is 

located somewhere in the computer complex and may be retrieved using the 

proper softwtare and peripherals. The data "extraction" may be simple, 

requiring no further processing except scale adjustment. On the other 

hand, extensive on-line or post-test data processing may be required if 

performance measures are sought. A performance measure is a mathematical 

function that relates the quality of the task performed using selected



data from the test. These measures may range from simple statistics taken
 


at discrete "windows" in time to complex functions expressing performance 

in the time or frequency domain. Algorithms performing fast Fourier analysis



are easily implemented on today's digital computers and can be tailored to 

perform off-line assessments as desired or on-line hardware diagnostic



analyses. No special requirements exist for such analyses except enough 

mass-storage memory.



It is perfectly feasible today to store on mass-storage devices every
 


bit of data generated during a simulation. Generally, tradeoffs must be 
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made by the user between run time, number of variables, and sample inter­

val. Data generated months ago may be retrieved and used as inputs for 

off-line analyses of the users' choice. It is even possible to reconstruct



missing or unrecorded data through the use of the original algorithms 

used in the simulation. For example, if it were desired to record every



data bit in a long series of simulations, without an excessive memory



requirement, the digitized control inputs need only be recorded and later 

played through the original program. 

In spite of the ability to automate most data acquisition functions, 

the picture of the using engineers stooped over a strip chart recorder



during simulation periods will probably never disappear. The "first look" 

and monitoring function value of the user can hardly be underestimated. 

This function, however, has been modernized through the use of graphic 

displays. By interfacing a graphics terminal to the computer complex, 

the ability of the user to monitor and acquire information is perhaps 

increased by an order of magnitude compared with that using traditional 

strip chart recorders, plotters, and alphanumeric displays. The reason



for this is the ability to program a dynamic status-and-results display 

using the geometrical concepts that were used to formulate the test. For 

example, a three-dimensional graphics display of a helicopter carrying an 

external sling load is extremely valuable in rapidly assessing the dynamic 

status of the combination.



In summary, the important functions and qualities of a good experimental 

design follow: 

o 	 Clearly outlines the research questions,.



o 	 Focusses the simulation tool on these questions. 

o 	 Outlines pretest, test, and post-test procedures 

including all checkout phases. 

O 	 Defines evaluation criteria in terms similar to 

those used to define the tasks and maneuvers. 

0 	 Includes a validation phase. 
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o Assigns just enough time and samples to give 

statistically significant results. .



o Assumes realistic simulator utilization. 

o Isbased on some theoretical premise. 

The reader is again referred to the simulation example cited in



Section 1 .4.1 for insights into experimental design. 
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SECTION 3 

SUMM AND OUTLOOK FOR THE FUTURE 

3A1 SUWY OF STAT OF SIMULATOR TEC1fIOLOGY 

3.1 .1 Philosophical Evaluation of Simulation Validity 

When validity of current simulation is judged in terms of its use­


fulness, it is high. The wide use of the tool by Government and Industry



for both engineering development and training is obvious. In another sense,



the tool is useful because it is so cost effective compared with other



methods of achieving the same result.



To bring the various design groups together in examining their aircraft



product as a system is no small task, but yet it happens routinely in engin­


eering simulations.



Philosophically speaking, the greatest benefit of simulation is the 

discipline of thought it creates. To create a simulation, one must expend 

a great deal of thought defining the various systems and their interactions. 

The result is a view and knowledge of the aircraft that is unified and 

applied. It is the first place the designer can verify his concepts. 

When one looks at the technology itself, great gaps appear and the 

validity of some components is obviously low. The drivers of the tech­

nology are those who accept 'face validity." When the required quality 

cannot be achieved with today's hardmare, efforts at validation are 

mounted. The rather esoteric nature of simulation validation, however, 

is verified by the small number of such efforts reported in the literature. 

In the area of computers, the validity is considered highest. Today's



computers are able to solve in a timely fashion the equations representing



the mechanics of flight associated with today's aircraft. The view is 

offered that the modeling art and computing go hand-in-hand and are there­

fore never very far apart. Remember that early simulations were computer
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simulations only, performed in non-real time. As this art developed, the



computer technology followed perhaps being partially driven by it.



The validity of cockpits is also high. A realistic replica of a modern



aircraft cockpit is relatively straightforward to build. Electronic equip­


ment is available that can readily interface computers with the variety of



instruments and controls that are available.



. The validity of visual systems is considered to be medium. Today's



technology is characterized by either narrow field-of-view low resolution



systems that are combined in a mosaic to estend the field or hybrid systems



incorporating several concepts, e.g., point-light and television projection.



The range of luminance levels and contrast that can be simulated is a



fraction of what exists in nature or what can be seen by the normal observer. 

Also the resolution of these systems is, at best, about 3 to 6 arc-minutes



as opposed to the 1 arc-minute normal resolution of the eye.



The reason that visual systems work as well as they do is because



their use is limited to tasks that do not require sophisticated visual



hardware.



Motion systems have not advanced much in the last decade. Besides



some clever innovations such as the six-post concepts, no new technologi­


cal advances have appeared on this score. The fact that most motion systems



in use today have performance levels requiring large attenuation in apparent



motion parameters suggests that their validity is low. Only the large 

systems offer a fidelity that is considered medium to high. From another 

viewpoint they all probably contribute to face validity of the total simu­

lation. The "g" seat concepts are as yet not completely developed to 

where their validity may be determined. 

3.1o.2 Areas of Deficient Fidelity 

The areas of deficient fidelity are those where high pilot/aircraft 


performance levels are sought. These include: 


C The landing maneuvers. Below an altitude of about 15 

meters (50 feet), the simulation of landing including



touchdown and rollout cannot be performed with the high
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fidelity associated with no training effects. 

Deficiencies in modeling the aircraft close to 

the ground, visual system effects, and motion 

attenuation may all contribute to the problem. 

o 	 Terrain flight with helicopters. When vigorously 

maneuvering close to the ground to maintain course, 

helicopter pilots require fields of view, scene 

details, and dynamic performance not available



from current visual systems. 

o 	 Formation flight. For perhaps the same reasons 

that high-fidelity landing simulation cannot be 

performed at this time, formation flight cannot 

be simulated with resulting realistic pilot work­

load and performance.



In 	 addition to the areas of deficient validity, a number of unresolved



-questions exist relating to simulation technology, e.g., design of hardware 

and establishment of requirements. They are: 

0 	 What are appropriate subjective and objective fidelity 

measures that can be used to describe the quality of 

simulation for both engineering development and 

training? 

o What scene details are required of a computer-generated 

image system in order to accomplish specified flight 

maneuvers and what are their optical properties?



* 	 What fields of view are required in order to accomplish 

specified maneuvers? 

o 	 What is the effect on fidelity of computational time 

delays and actuator dynamics? 

o 	 What is the effect on fidelity of motion drive logic 

(washout)?



o What is the training value of platform motion devices? 
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o 	 What is the training value of any element of a 

simulation? 

* 	 What are appropriate criteria for specifying the 

accuracy of mathematical models? 

* 	 What are appropriate and simplified methods for 

hancdling the frame time problem? 

o 	 Can effective color visual simulation be accomplished 

using only two basic colors? 
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3.2 FUTURE PBOSPECTS 

The anticipated peace-time environment highlighted by economic pres­

sures- and energy constraints will surely stimulate research and development 

of simulation. The military services are seeking full mission simulators 

for training. The airlines desire to increase the fidelity of their 

trainers to where all training can be conducted in simulators. The Air 

Force and Navy presently own and operate large research and development 

simulators and the Army is developing one.



Industry users continue to update and improve their facilities to 

support their new aircraft programs and the simulation equipment mann­

facturers continue in their development efforts using as a basis the



related technologies of computers, lasers, and electronics. 

Several trends can be seen that will impact on future developments. 

In computation, current desires for helicopter and V/STOL advances presses 

the computer technology. Requirements for many computations corresponding 

to systems of many degrees of freedom (rotors, fans) will require short 

frame times per computation in order to perform the many computations



required and still keep the total frame time within reasonable limits 

of 100 milliseconds or less. The industry is responding (for other reasons) 

with advances in architectural concepts. Parallel processing, although 

presently cumbersome to implement, shows great promise of being able to 

handle these gigantic programs. A large host computer of the IBM 370 

or CDC 7600 class appears to meet these requirements now. 

The advent of microprocessor technology in 1975 holds the promise for 

distributed processing. in simulation, dedicated microcomputers will be 

made integral with the visual and motion hardware elements they drive 

leaving the host computer free to compute the equations of interest. 

Perhaps the most dramatic advances will occur in the area of visual 

systems. The Air Force, in seeking to satisfy its future training require­

ments, will develop full-mission simulators that include full fields of -view, 

color, and resolution of better than 3 arc-minutes. Computer-generated



imagery will provide the image basis for these displays forcing the camera/ 

model image generation technique into obsolescence sometime after 1985.
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Several candidate display concepts are under development that will



allow full -visual simulation. The mosaic of pancake windows All continue 

to be improved. The laser scanning display is an obvious application of



that concept that will find its way into-the simulation industry. The



light-emitting diode (LED) display, however, holds the real promise for



full visual simulation including color. Solid-state display segments are



already developed for experimental use in television. The fact that back­


ing from comnercial interests is available for-the solid-state display,



whereas it is not for the other concepts, makes it the most probable



one ultimately to be part of a fl visual system. The requirement for 

control of the many thousands of LED's points to computers and computer­


generated imagery as the most probable means of image generation. It



is expected that the full visual system will be developed by 1990.



No dramatic improvements in motion simulation hardware are expected, 

except that the "g" seat will most likely replace, or at least supplement, 

the existing motion platform hardware. Present research trends, when 

taken optimistically, suggest that the requirements for motion cueing 

will be understood by about 1990. The record on this score for the past



thirty years does not support this premise. If the platform technology



should advance to the point where some effects of drive logic were known,



and the "g" seat were to be well developed, the combination of these



devices and full visual simulation would yield hardware that leaves little



to be desired.



With such technology, full mission simulation would become practical­


ity, and the need for research on validation and visual/motion cue effects 

would be reduced. The only problem that would remain is the one that will



be with us forever: the intuitive modeling of new physical systems.



In the following paragraphs, some crystal-ball gazing is done in order



to solidify some of the concepts advanced and also to give the readers



some incentive to stimulate their own visions.



The period is the 1990 decade and the century is soon to turn.



Simulation has become not only a routine part of aircrew training and



engineering but it has also penetrated driving schools, and schools for
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trainmen, ship crews, heavy equipment operators, tank drivers, and the 

racing establishment. It has finally found its way into amusement parks 

and into fantasy centers where a variety of illusions impractical to 

create in everyday life are produced in safety and for a price. 

A typical system contains a single-unit visual module that is used to 

stimulate visually a single individual. Its display is generated by approxi­

mately three million LED units controlled by a parallel processor interfaced 

to an image generation computer. The units are mounted on the interior of 

a 5 meter (10 foot) diameter sphere surrounding the seated subject who wears 

a helmet containing eye polarizers, trackers, and motion sensors. The 

field of view is complete and in two or three colors. The minimum spot 

size is one-half arc-minute and stereopsis may be produced by activating the 

eye plate polarizers and the helmet motion sensors. The luminance range is 

nearly complete from 0.0001 millilamberts (dark night) to 1000 millilamberts 

(a moderately bright sunny day). No apparent image blur exists for moderate 

slew rates.



The image may be synthesized from photographs or manually selected 

from a catalog of objects. Specific markings such as signs and head-up 

display (HUD) elements are inserted on-line by means of a graphics terminal 

format using the entire display. 

The seat is a "g" seat and is mounted atop a modest platform motion



device. The full spectrum of movements possible is available although



attenuated, zith the exception of very low frequency normal accelerations. 

Magnetic linb loaders are available for some high g maneuvers. Aural and 

olfactory simulation is available. 

The visual/motion unit is a part of a complex that is tied to a



central computing facility many miles away that is tied in turn to other 

facilities in the country. These facilities interface not only to Govern­


ment simulation computers but also to private facilities generating cultural 

event programs. These consist of wide-angle views selected by the observer 

of cultural events (plays, etc.) as well as programs from the visual media.' 

Variations of the visual/motion module include provisions for other 

seats, window frames, and panel and control layout. 
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The simulation capability of the device is unlimited compared with 

the perennial modeling limitation. The question now is turned from "how 

do we stimulate four of the five senses?" to "what do we wish to stimulate 

them vrith?" 
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