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SECTION 1 

INTRODUCTION AND SUMMARY 

Electric propulsion (EP) mission studies are usually conducted on 
the basis that thruster characteristics are given. The objective is to 
define the best mission using these characteristics. Over the past 
decade, the 30-cm electron bombardment thruster using mercury propellant 
has been the primary candidate for EP mission studies. The bulk of near­
term mission possibilities could be accomplished relatively well with the 1-17 . 30-cm thruster. ' 

Within the last few years, several new high energy mission possibil­
ities have been suggested. These include transportation of large space 
systems from low Earth orbit (LEO) to' geosynchronous Earth orbit (GEO) , 

le .. 22 stationkeeping and attitude control 0;: large space systems, and 
23 planetary sample returns. For these missions, the 30-cm thruster 

operating at baseline conditions (i.e., 3,OOO-sec specific impulse 
(I ), 3 kW into the power processor) may not result in optimum mission sp 
performance. Considerations such as propellant type, nuuber of modules, 
power level, and I suggest that a different thruster operating point sp 
would benefit several missi~ns. 

This study of advanced electrostatic ion thrusters for space propul­
sion was initiated to determine the suitability of the baseline 30-cm 
thru3ter for future missions and to identify other thruster concepts 
that would better satisfy mission requirements. In developing advanced 
thruster concepts, scaling and performance assumptions must include 
technOlogical realities. Thus, the general scope of the study was to 
review mission requi:: •. =nts, select thruster designs to meet these 
requirements, assess tile associated thruster technology requirements. 
and reconunend short- and long-term technology directions that would 
support future thruster needs. Preliminary design concepts for several 
advanced thrusters were developed to assess the potential practical 
difficulties of a new design. 
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A. 0BJECTIVES 

The overall objective of lhis program was tu develop recommendations 

for future ion thruster technology directions. Three spectfic objectives 

guided the study: (1) identification of the probable useful mission 

~ange of the existi~G 30-cm thruster, (2) investigation of methods and 

benefits of expanding the 30-cm thruster mission capabilities, and (3) 

investigation of methods and benefits of developing new thruster concepts 

(e.g., another eize thruster) for tllose missions for which the 30-cm 

thruster is not well suited. 

To carry out the investigation implied by these guiding objectives, 

several detailed objectives were established, including (1) selection 

and analysis of a representative set of potential ion propulsion missions, 

(2) sssessment of mission performsnce as a function of thruster capabil­

ity, (3) assessment of thruster technOlogy boundsries, (4) identifica­

tion of thruster or system parameters that strongly influence mission 

design, and (5) development of a cost modeling technique to investigate 

the relationship between thruster parameters and overall mission cost. 

Relative to the last objective, only Earth orbit missions were considered, 

although, with minor modification, planetary missions could also be 

accommodated by the computer model. 

B. STUDY l'LAN 

The study plan follows rather directly from the stated objectives. 

However, at the beginning of the study, the "working level" objectives 

had not yet been so clearly defined; they were, in fact, partially devel­

oped during the study. The thruster technology assessment task was 

clear from the start. Mission set selection was reasonably clear but 

of rather broad scope. Since the analysis of the missions was deperdent 

on the mispion set se1ecte~, the exact analytical approach was initially 

difficult to define. Similar to the mission analysis task, the process 

of defining important parameters was not straightforward because of the 

wide range of mission possibilities and mission objectives. The cost 

modeling task was developed during the study as the result of attempts 

to develop a generalized approach to Earth orbit missions. A logic 
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diagram of the various study tasks and their interrelationships is 

shown in Figure 1-1; included in the diagram are the numbered taakll 

called for under the contract. Although the contract tasks 'Iere not 

necessarily performed in the sequence originally planned,,, 1111 contract 

objectives were satisfied • 

After a period that included data collection, selection of a pre­

liminary mission set, analysis of several missions, and the start of the 

technOlogy assessments, two significant study approaches became apparent. 

nle first, a generalized mission analysiS approach, allowed s wide 

variety of available mission results to be displsyed in a common format 

and provided a straightforward method for evaluating the sensitivity 

of "mission performance" to thruster characteristics. With the adoption 

of this technique, the mission set final selectIon process was greatly 

simplified since many missions could be handled easily ,and the problem 

of arbitrarily selecting or eliminating missions was essentially eli~ 

inated. The output of the generalized mission analysis approach is an 

estimate of the degree to which a given thruster technology could support 

the selected mission. 

The second approach that provided significant direction to the 

study evolved from an Earth orbit mission cost model technique. A co~ 

puter program was developed to include cost models, maas models, thrust 

system performance models, and approximate relations for mission per­

furmance (:I.. e., "rocket equation"). For a given set of miasion param­

eters (e.g., velocity requirement (AV),vehic1e total mass, flight time), 

costs are computed as a function of speciUc impulse. Thh. cost model 

approach provides a Simple method f~r evaluating the relative sensitivity 

of total mission cost to a large number of thruster and system 'parameters 

( .. 100) • Most efforts during the last half of the study concentrated' on 

the development and use of the cost model program. 

As Figure 1-1 indicates, both the generalized analysis and the cost 

model approaches were supported by the technology assessment task. 

Performance scaling relations, physical scaling experience, and operat­

ing limits (e.s., perveance, thermal) were incorporated into the 
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analytical approaches and into advanced thruster design concepts. 
Several deaign concepts for thrusters with larger beam areas were pre­
pared and analyzed in terms of technology advancement requirements. 

C. MISSION SET SELECTION AND ANALYSIS 

Initial efforts under the study were directed toward pre~sring s 
mission set to be used as the basis for the remainder of the work. The 
selection process, described in detail in Section 2. resulted in the 
following set of missions: 

• Earth orbit transportation 
• Earth orbit st8.tionkeeping 
• Earth observatory 
• Out~r planets (com~osite of seven missions) 
• S~lar system escape 
• Mer,:ury orbiter 
• Close solar probe 
• Comet Encke rendezvous/flyhy 
• Comet Halley rendezvous/flyby 
• Asteroid rendezvous 
• Asteroid sample return 
• Mars ssmple return 
• Out-of-ecliptic • 

A generalized snalytical approach was developed to assess the 
capabilities of several levels of thruster technology to perform these 
missions. The analytical approach utilizes mission tl'ajectory calcula­
tion results obtained from the literature and from work done under this 
contract. For each mission. characteristics such as ~V. initial accel­
eration (A ). initial mass. and payload mass were determined. These o 
characteristics and an analytical formulation based on the rocket equation 
were then used to develop sets of curves in a AV vs Ao coordinate system 
using payload mass fraction (MF. payload mass divided by vehicle initial 
mass) as a parameter. P~rt of the analytical formulation required models 
of thrust system performance and mass. Thruster and thrust system 
technology enter the ,analysis through these models. An example of the 
AV VB Ao curve set format is shown in Figure 1-2. 

By entering a gi'7en curve set (i.e •• a set based on a given tech­
nology) with mission data for AV and A • the payload mass fraction required o 
to perform a specific mi,ssion (MFR) can be compared with the mass fraction 
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capability of the assumed technology. The required mass fraction is 

impoeed on the curve map as indicated. Thus. if the IJ.V vs Ao coordinate 

point occurs at a mass fraction higher than that required. the mission 

can be accomplished with the assumed technology. If the point falls at 

a l~wer mass fraction, the assumed technology level is not adequate. 

Since this spproach involves several approximations, the conclusions 

are not necessarily quantitatively accurate. When the results show a 

definit~ capability margin or a definite inability to perform the 

mission, a relatively firm conclusion is possible. However, when the 

results are close, slight variations in assumptions could change the 

conclusion. Such precise interpretation of the results is not warranted. 

Analysis detsils and results are presented in Section 3. 

D. EARTH ORBIT COST MODELING 

The generalized analysis approach provides a relatively simple 

reethod of gauging the ability of a given technology to perform a mission. 

However, several technologies potentially could satisfy the mission 

technical requirements and remain within the boundaries of technology 

projections. The selection of one technology direction over another 

will certainly involve cost (technology development cost and recurring 

mission cost). 

Although this study does not attempt to predict technology develop­

ment cost, significant effort was devoted to modeling the relationship 

of "transportation" cost to numerous technology-related thruster and 

system parameters. Since this study was primarily directed toward ion 

thruster technology, the scope of the cost modeling was limited to the 

propulsion function of a given mission. 

The cost model work was applied to several earth orbit missions. 

Earth orbit missions were selected because of the future potential of 

electric propulsion in the transportation and on-orbit support of large 

space sY5tems. Selection of a propulSion system type (i.e., electric 

or chemical) will probably be strongly influenced by total system cost. 

Therefore, this cost model work was directed toward determining those 
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. factors that significantly affect system. cost .and towsrddetermi'ningcthe 
sensiUvi~y of system cost to variations in thruster. system.. and mission 
parameters. 

Tbe cost modeling analysis approach is illustrated qualitatively . 
in Figure 1-3. The objective of the calculations is to obtain total 
propulsion cost (transportation or on-orbit) as a funlltion of val'ious· 
parameters. With total cost and various mass breakdowns, cost per unit 
of payload mass (transportation) or cost per unit of net satellite mass 
per year(on~orbit statiol\keepilrg and attitude l'ontrol) are p1;ogramout­
puta. A convenient format for disil1ayingthe reSults is.ahown· in' .' 
Figure 1-4. Specific cost ($/kgof payload) is plotted as afunc.tion of 
specific impulse (I ), with module 'power as a parameter. The nUlllller of sp 
modules needed to perform a given mission varies with Isp and module 
power. Details of the analysis method and extensive results 'are 'pre­
sented in Section 4. 

E. SUMMARY OF CONCLUSIONS 

This study produced useful general methodologies for assessing both 
planetary and Earth orbit missions. For planetary missions,the assess­
ment is in terms of payload performance as a function of propulsion 
system technoLogy level. For Earth orbit missions, the assessment: is 
made on the basis of cost (cost sensitivity to propulSion system tech­
nology level). 

The selection of the 30-cm thruster for near-term missions (for 
power levels below 100 kW) was reinforced by thi.s work. Except for high­
power missions or those requiring a propellant other than mercury, the 
30-cm engineering-model thruster :EMT) is a good choice. However, for 
systems larger than about· 100 kW (Earth orbit or planetary), a larger 
thruster size would be advantageous in terms of cost and payload 
performance. 

Based on the mission ~tudies,' cost modeling, andtechl)ol,ogy assess­
ments ,a 50-em-diameter. thruster is suggested' as l:he next step. in' . 
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Figure 1-3. Earth orbit mission cost modeling, simplified 
block diagram. 
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thruster technology development. By proper selection of propellants 

and bedm currents, a 50-cm thruster designed to operate with a beam 

voltage of about 2400 V would satiafy most of the requirements of 

future missions. Thruster concepts, including an oval cross section, 

were developed to illustrate design techniques for thrusters with larger 

beam ar(>as. 
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MISSION SET SELECTION 

The goal of the mission set selection process was to establish a 

representative set of 10 missions that would fairly reflect the range of 

future electrostatic ion thruste~ requirements. These requirements pro­

vided direction and motivation for future thruster technology develop­

ment. The general selection process followed is illustrated in 

Figure 2-1. 

A. CONTRACT GUIDELINES 

Guidelines for selecting 6 of the 10 missions were provided in the 

contract. Specifically, the mission set was to include: 

• Transportation of large space systems from LEO to GEO 

• Stationkeeping and attitude control of large space systems 
in GEO 

• A mission to less than 0.7 AU 

• A solar system escape mission 

• At least two missions between 0.7 and 5.0 AU. 

These mission categories indicated the desired scope of the study without 

being overly restrictive. 

To aid in the mission selection process, NASA provided several 

reports on previous electric propulsion studieS ands list of documents 

to be considered in establishing the mission set. The document list 

used is presented in Appendix A. This background information provided 

results of trajectory calculations for various missions, system concepts, 

and designs and the general sensitivities between thruster requirements 

and mission objectives. Although a certain amount of mission/trajectory 

analysis was anticipated, it was assumed that the bulk of the ~ssion 

data needed in the study would be obtained from existing literature. 
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Figure 2-1. Mission set se1ect:lorl process flow diagram. 

[] 

o 
fl 
n 
B 
n 
n 
n 
n 
' .. ' .. 1 I 

iJ' L·, 

'. '1.'·'. 
1 -; 

,! : 

IJ', 
>. ! 

[1 

fl.' : a 

n ., 

--1 .....•. ' .. '.i.; ,- ·.';;;i! 



, , 

( 

n 
n 
n 
u 

" n 
n 
o 
o 
o 
fl 
U 

o 
n 
o 
o 
u 
n 
n 
Q 

B. MISSION CANDIDATES 

The missions initially cODsidered for selection are shown in 
Table 2-1 snd sre characterized in terms of payload mass range and dV 
range. The rplatively wide spread in the parameters of Table 2-1 
reflects the flexibility of mission requirements, mission design, and 
utilization of electric propulsion. Clearly, a specific mission design 
would require defining many other factors. However, dV and psylo~d'mass 

\ tend to allow a first-order examination of propulsion system requirements. 
Candidate missions are sun~rized briefly here to provide a basis for ' 
evaluation. 

1. Transportation of Large Masses 

The types of missions that could be considered in this category 
include transportation of full Shuttle-size payloads, portions of large 
sroce power generation satellites from LEO to GEO, transportation of 
space stations, or recovery of large satellites for repair or 
disposal.18- 23 Propulsion requirements might include single one-way­
trip-to-orbit, single round trips with refueling, or multiple round trips 
with and without refueling. In some cases, power might be provided by the 
payload, while in others (e.g., a return to LEO) the EP transportation 
vehicl" would require its t'wn power ~ource. EP is a prime candidate for 
this category of missions and will probably benefit from advanced 
technology. 

2. Stationkeeping and Attitude Control of Large Systems 

Massive snd/or large-surface-area systems in Earth orbit will 
18-21 experience large torques and disturbance forces. Correcting these 

attitude and orbit perturbations could require a significant propulsion 
capability on-orbit. The .'pecific mission of the satellite will dictate 
the detailed requirements in terms of allowable eccentricity change or 
pointing variations. However, propulsion system hardware and propellant 
for on-orbit operations represent a penalty to the satellite since this 
material must be transported to and stored on orbit. In addition, 
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Table l-l. Candidate Missions and Characteristics 

Mission Approximate payload 
Comments AV,a km/sec Range, kg ... 

Earth orbit 
Transportation of 4-8 104_107 
lftrge masses 

. 104_107 
, 

Stationkeeping and 1-10 
attitude control of 
large systel)lfl .. . 
Multimission modular 0.1-4 103 
spacecraft missions I 

. 

Earth observatory 4-6 H'J4 ... 

P:!.anetary 
. Out-of-ecliptic 20_50 5xl02_103 . 

Close solar probe 10-15 103 Thermal 
. , constraints , . 

Solar system escape 4-5 103 Jupiter swingby 
Mercury orbiter 10-20 10:1':2xl03 The,rmal 

. cons.traiilts 
Mercury lander 10-20 104 Thermal 

constraints 
Mercury sample return 20-40 105 Thermal 

constraints 
Venus orbiter EP has little 

advantage Venits lander 
~ver 
ballist.ic Venus sa1!'ple return mission 

Mars sample return 15-20 3_5xl03 

Jupiter orbiter 4-"5 103_2x103 

Jupiter satellite orbiter 4'-5 103_2x103 

saturn flyby 3-(, . 103 

I 
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Table 2-1. Candidate ~Iissions and Characteristics (Continued) 
• 

Mission Approximate Payload 
Comments I!.V,a km/sec Range, kg 

Planetary (Continued) 
Saturn orbiter l-4 lOl 

Titan orbiter • • ~- .. lO l 

Uranus flyby 4-5 lOl 

Neptune flyby 4-5 10l 
Asteroid rendezvolls 6-1: 5x102_lOl 

Asteroid sample return 10-15 lOl _lx10l 

Comet Encke rendezvou9 10-15 5x102_103 

Comet HaUey flyby 20-60 2 3 5xl0 ··10 Vlyby velocity 
dependent 

Waste disposal 5-10 103_105 
Nuclear, using 
payload all 

i power source 

aApplicable to an electric propulsion system. 

6119 
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mult:l.-decade op"'ratlng ltvl. will probably significantly affect design philosophy, redundancy, and net useful satellite mass. EP·has character­is tics that should minimize the on-orbit propulsion penalties. Large vehicles may require advanced thruster technology for cost-effective operation. 

3. Multimission Modular Spacecraft 
The multimission modular spacecraft (MMS) will provide a basic patellite bus that, with certain mission-independent modules, has the potentisl for significa~tly reducing satellite development costs. 24 Although EP could be beneficially applied as a module, the propulsion system requirements can be adequately suppUed by existing 30-cJl or 8-cm thrusters. Because oi the relatively low AV requirements and mass, the MMS 1.s unlikely to requi>:e advanced thrusters. 

4. Earth Observatory 

This category represents a composite of various earth scien~e desires. 21 Satellite measurements rrtght include Earth's magnetic field, crystal dynamics, ocean dynaMics, and atmospheric dynamics •. A satellite of this type might also include "space"-oriented instruments. The orbit would probably be synchronous for stationary local measurements; a satellite capability for orbit pOSition adjustment would probably be included. Thus, it is likely that such an observatory satellite. capa­ble of operating for many years with a broad range of instr~~nts, would be substantially larger than ordinary single"purpose satellites. EP should be well suited for orbit raising, stationke~ping, and positioning. 5. Out-of-Ecliptic 

Transfers out of the ecliptic plane up to 90' are of interest to space scientists because of the new perspective on the sol&r system that such an orbit would provide. 1,25-28 EP is ideally suited to this mission because of the high AV, the unconstrained flight time, and the gradual inclination change (as opposed to an impulsive chemical transfer). The power level and satellite size depend largely on the instrument complement. 
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6. ~ose Solar Probe 

The ~lose sOlar probe is a good EP mission candidate because of the 

relatively high ~v and th~ effective reduction in propulsion system 
7-11. 

specific mass resulting from increased solar intensity. Such a 

satellite ia expected to be relatively small, requiring a propulsion 

power level in the range of 15 to 25 kW (1 AU). However, "advanced" 

thruster requirements might result from thermal constraints. 

7. Solar System Escape 

The degree to which EP is ne~ded for this mission depends on pay­

load mass. Using a Jupiter swing-by trajectory and relatively long 

flight times, a reasonable payload could be trans~orted ballisticslly. 

Electric systems in the 15- to .25-kW range improve payload capability 

and/or reduce flight time. However, since solar 90wer is drastically 

reduced b~yond 5 AU, larger EP systems probably would not be required 

unless a nuclear power source was used. 

8. Mercury Orbiter 

This mission is similar to the close solar 
. 1 8 29-31 

somewhat relaxed thermal constraints. ' , 

probe miSSion, with 

Typical payloads of a few 

hundred kilograms will require propuldion power levels of 20 to 25 kW. 

Thus, except for possible thruster thermsl limitations, existing tech­

nology is probably adequate. 

9. Mercury Lander 

The payload (transported by an EP system) for a Mercury lander 

mission probably would be about an order of magnitude greater than that 

for an orbiter mission. An electric propulsion system power level of 

100 to 150 kW would be needed to transport such a vehicle (initial mass 

~ 4 x 104 kg). Existing 30-cm thruster technology could be applied to 

such a large system, but it would probably be less effective than a 

system using a higher power thruster. 

1.9 

'AAff 

J 



, 

10, ~~cury Sample Return 

'fhis mission waul:! need about two orders .. 1'[ magnitud!!. more payload 

than an orb.iter mission. Thus, the I~P system would be propelling a 

vehicle having an loit ial mass tn the 

require a !lower 

in the range of 

level on the order of 

range of l to 4.x 105 kg nnu would 

103 kW. Sl"~.\ a system, wldch is 

"large space systems" being clIn/olldered under MI,,/oIllln J. 

would probably benefit significantly from the UMl' of an sdvane"d 

thruster. 

11. Venus Orbiter 

The relatively shor.t transfer tIme to Ven\ls reduces the usual potE'n­

tial advantages "f EP, If the mission were pl!rformed with EP, the exist­

f ng 30-l'm thruster would probably be sufficient. 

12. . Venus LanCler 

Th .. increased payload required for a lander would make EP more 

ndvantageouB, but probably not mandatory. 

13. Venus Sample Return 

With the increased flight time demanded by a return flight and 

possible maneuvers in orbit at Venns, an EP system would probably be 

beneficial. The larg" mass and :.~gh power lev .. l might require an 

advanced thruster. 

Compared with a ballistic approach to this mission, EP can increase 

the payload returned to Earth from a few hundred grams to several kilo-
22 grams. Typical missions would use a shuttle launch, EP for Earth/Mars 

transfers, and chemical systems for Mars descent and ascent maneuvers. 

Mission times of three to four years and power levels of 50 to 100 kW 

would be needed. 

15. Jupiter Orbiter 

If performed using 

15 to 25 kW for typical 

EP, this mission would require 
1-17 payloads. Larger payloads 

20 

power levels of 

(for instance, 
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if surface probes were included) might require higher power ,levels. 

Thus, conventional mission app~oaches of the type considered in many EP 

studies would require only existing technology. ~~re aggressive missions 

might benefit from advanced technology. 

16. Jupiter Satellite Orbiter 

Limited reconnaissance of Jovian satellites will probably be per­

formed as part of Jupiter orbiter missions. However, mere extensive 

satellite investigations could require larger payloads. For such vehi­

cles, advancea EP systems would be beneficial. 

17. Saturn Fly-By 

EP improves the payload capability or reduces flight time for 

missions of this type with only modest power levels (15 to 25 kW).1-17 

However, with solar-powered systems, propulsion is limited to distances 

of 4 to 5,AU. Significant payload imp~ovements will occur when space 

nuclear power sources become available. Such systems in the multi-

100-kW range would benefit from advanced technology thrusters with long 

life at high power levels. 

18. Saturn Orbiter 

See comments on Mission 17. 

19. Titan Orbiter 

See comments on Mission 17. 

20. Uranus Fly-By 

See comments on Mission 17. 

21. Neptune Fly-By 

See comments on Mission 17. 

22. Asteriod Rendezvous 

Several asteriod missions have been studied by others and found to 

be well within existing EP technology capabilities. 1,2,29,32-35 Because 

of the high AVs associated with esteriod missions and the reasonable AU 

distances, EP is ideally suited to such missions. 
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,i 23. Asteriod Sample Return 

The higher AV associated with sucn a mission improves the advantage 

of an EP system. 36- 38 The larger masses and higher power levels 

required, compared with a rendezvous, would increase the 'size of the 

propulsion system, but would probably not require advanced thruster 

technology. 

24. Comet Encke Rendezvous/Fly-By 

This mission is typical of several cometary missions, but is of 

particular interest because of its three year orbital period and near 

th 1,2,7-10,29,32-34,39-42 ear passages. Encke is a good EP mission 

because of the high AV. However, various navigation errors might make 

a true rendezvous rather difficult. With typical science payloads, pro­

pulsion power levels of 20 to 25 kW would be adequate for this mission. 

Advanced thruster technology should not be needed. 

25. Comet Halley Rendezvous/Fly-By 

Comet Halley is of both scientific and popular interest. 13- l6 

Because the comet's orbit is retrograde, the mission is essentially 

impossible chemically. It would, however, be quite possible with EP. 

Significant factors in evaluating EP system requirements are flight time 

and fly-by velocity. Jiven some flexibility in these parameters, exist­

ing technology would be adequate for the comet Halley mission. Unfor­

tunately, the time available to develop a spacecraft for the 1986 passage 

is very short. 

26. Nur.lear Waste Disposal 

Strictly from an EP point of view, the nuclear waste mission is 

technologically feasible. Since power would be derived from the payload 

and flight time would be unconstrained, the existing 30-cm thruster 

would probably be adequate. 

C. MISSION SELECTION 

Based on considerations of the type presented in Section 2.B, dis­

cussions with the NASA LeRC study manager, and contract guidelines, a 
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set of missions was selected for analysis. The initial set, shown in Table 2-2, generally satisfied all requirements. However, improvements Were recommended as the study progressed. Although the final mission set, shown in Table 2-3, includes more than the 10 missions required, it is more representative of the study goals than wss the initial set. In the final mission set, the various outer planet missions were taken as a group because their requirements are similar. The multi­mission modular spacecraft was eliminated from the set because the bulk of the payloads represented by this category require low AVs, have low mass, and would most likely use existing thruster technology. The Mars sample return mission and the comet Halley mission were added be~au&e both were of current interest and both might require an advance in thruster technology. The close solar probe was added because it was an extension of the mercury orbiter mission. 
Each mission selected was analyzed from the standpoint of its demands on thruster and propulsion system technology. These demands, which may properly be considered to be requirements, indicate the degree and direction of technological change needed. At various points in the analyses, technology assessments were included to assure that technology extrapolations were not unreasonable • 
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Table 2-2. Initial Mission Set 

Mission Comment 

Earth orbit 

EO transportation Contract requirement 
EO stationkeeping . Contract requirement 
Multimission modular spacecraft missions 

Earth observatory 

Planetary . 

Out-of-ecliptic Contract requirement 
Solar system escape Contract requirement 
Mercury orbiter Contract requirement 
Neptune flyby or orbiter 

Asteroid rendezvous Contract requirement 
Comet Encke rendezvous ~ ______________________________ -L ____ . ____________ ~ 
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Table 2-3. Final Mission Set Used in Study 

Mission Comment 

Earth orbit 

~O transportation Contract requirement a 

EO atationkeeping 

Earth observatory I 
Contract requirement 

Planetary 

Outer planets 

Jupiter orbiter 

Jup1~er satellite orbiter 

Saturn flyby 
~Considered as a single type of mission 

Saturn orbiter 

Titan orbiter 

Uranus orbiter 

Neptune flyby 

Solar system escape Contract requirement 

Mercury orbiter Cont'~act requirement 

Close solar probe 

Comet Encke rendezvous 

Comet Halley rendezvous 

Asteroid rendezvous Contract requirement 

Asteroid sample return 

Mars sample return 

Out-of-ecliptic Contract requirement 

See Section 2.A for discussion of requirements. 

6119 

25 



I 
~: 

" 
• ~"'-' 

~' 
: .-- .. 

I 
I 

!I 
I 

i I,' 

I 
I Ii 

f' [ 

p 
[ f 
; r 

I'····.',·.· E~. ' .'. 
, , . 
. ' 

G 

U 

n 
n 

.. 
SECTION 3 

MISSION SET ANALYSIS 

To use the information gathereq from the various reference sources 

and the trajectory data generated by this study, a generalized analysis 

technique was developed. All the pertinent data was converted to a com­

mon format to provide a uniform baa is for comparison. The technique is 

discussed in Section 3.A. Section 3.B presents propulsion system perfor­

mance and mass models used in the analysis, including estimates for 

several technology levels. Section 3.C summarizes the mission character­

istics required for the generalized approach, including bV, initial 

acceleration, payload, and initial mass. Section 3.D discusses the 

generalized analysis. In addition, results for specific missions ana­

lyzed in detail (e.g., trajectl",:y calculations) are summarized. Detailed 

information that does not fall in the "generalized analysis" category is 

included in the Appendix B. Conclusions from this portion of the study 

are presented in Section 3.E. 

The geners1ized mission analysis technique was applied to the total 

mission set, including the Earth orbit missions. However, the transpor­

tation and stationkeeping of large systems, Missions 1 and 2, were not 

" clearly defined. That is, since wide ranges of mass, size, and power 

level were to be considered, with only broad mission objectives, the 

generalized analysis cou1d"not provide all the desired results. In 

particular, large-scale operation in Earth orbit will require cost­

effective propulsion systems. The economic tradeoffs related to 

Missions 1 and 2 were developed through cost modeling techniques 

(discussed in Section 4). 

A. GENERALIZED ANALYSIS APPROACH 

1. Results Format Basis 

Mission analysis results obtained from various studies are generally 

so~what difficult to compare because of the multitude of assumptions 

required in the basic calculations. However, by distilling the pertinent 

2; 
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information and displaying it in a common format, as 1l1ustrated in 

Figut .. 3-1, approximate comparisons can be made. Th& basis of this for­

mat is derived from the rocket equation with an appropriate use of EP 

system definitions. 

The rocket equati9D has the form 

I!.V • g I 1n (MMo.\ , 
o sp f) 

where 
l!.V - velocity cha~ge chliracterizing the mission 

go • gravitational constant 

(3-1) 

I .. true specifLc impulse (corrected for multiply charged ions, 
sp beam divergence,and propellant utilization efficiency) 

Mo • initial mass of theveh1c1e 

Mf -final mass ufthe vehicle. 

The initial mass can be written as 

or 

where 

Mo - M +M f P 

Mo • M +M +M • pi. pB. P 

M~ = propellant mass 

M = payload mass p9. 

M = propulaion system mass. ps 

A simple rea~angemant of Eqs. 3-2 and 3-3 yields 

or 
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Figure 3-1. Generalized mission analysis results fomat. 
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where MF - payload mass fraction. 

EP sy~tem psrameters 

follows: 
are related to propulsion system mass as 

_ Mps 
P , 
ps 

where P ps • propulsion system input power, or 

Mps .. Pps ups 
Mo Mo 

(3-6) 

(3-7) 

Power is related to other parameters by means of the energy equation: 

where 

P .. ps , 

'1' • True thrust (corrected for multiply charged ions and 
beam divergence) 

nps • True propulsion system. tl,ral efficiency (corrected for 
multiply charged ions and beam divergence). 

This allows us to write 

In terms of vehicle initial a~celeration, 

(3-8) 

(3-9) 

(3-10) 

For convenience in using mission analysis literature, A has the units 
" of "g' s. II Eqs. 3-8 and 3-9 become 

'p .... (A.:~::.') (3-11) 

(3-12) 

30 

111 

0,1 
j , 

ni 
.I 

~l ,I ·1 ! ~: ;t.J . 



[ 

[ 

[ 

If a is expressed in conventional units of kg/kW, then 
ps 

MpS _ 

M o 

A I a 
o sp ps 

20.79 "ps 

Substituting Eq. 3-5 into Eq. 3-1 and using Eq. 3-13 yields 

t.v -

(3-13) 

(3-14) 

As illustrated in Figure 3-1 for a given set of propulsion system 

parameters that are technology-level related, lines of constant peyload 

mass fraction can be defined in a t.Vvs A coordinate system. To use this o 
format, propulsion system models were developed for the desired technol-

ogy level and were used 1 •• displaying Eq. 3-14 graphically. The result 

is a graph having lines of constant mass fraction that represent a given 

propulsion technology level. Mission data is then ueed to obtain 

typical values of t.V, A , and MFR. c 
The mission stuc.y value of MFR is then imposed as a line on the 

apuropriate graph. This line represents the payload mass fraction typi­

cally required to satisfactorily perform the mission. Then, the study 

values of t.v and A are located on the graph. If the t.V VB A point is at 
o 0 

higher mass fraction than that required, the mission probably can be 

performed with the assumed technology. If the 

lower mass fraction than required, the mission 

plished with the assumed technology. 

2. Number of Thruster's 

t.V vs A point is at a o . 
probably cannot be accom-

An estimate of the number of thrusters required for a given mission 

and an assumed technology level can be obtained as follows. The maximum 

number of operating modules (one thruster and power processor combination) 

is approximately the ratio of propulsion system input power to the total 

power per module (i.e., power into a power processing unit (PPU»: 

l' 
;;; ..J!!!. 

31 
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, (3-15) 



~-'~- . 
• 

where Ppp .. power per power proceSSQr and 

where 

Pt • thruster input power 

lb • beam current pel' thruster 

Vb .. beam voltage 

Ilpp • power processor efficiency 

Ile • thruster electrical efficiency 

Ilc .. cabl1ng efficiency. 

, 
(3-16) 

The beam parameters are detClrmilled by the technology choice since 
10 depends on thruster design, and Vb depends on lsp from 

where 

mi .. ion mass 

I 2 
sp , 

e = electronic charge 

nu - measured propellant utilization effi(',icncy 

y .. thrust loss parameter. 

Combining Eqs. 3-11, 3-15, and 3-16 yields 

because 

it ioll,)ws that 

N ID,od -= 

= nil 11 l1y2 I1ps e u pp c ' 
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This is the approximate number of operating modules needed to utilize 
the propulsion system power. 

Two additional conditions must be satiafied: (1) there must be 
enough modules provided to account for wearout, and (2) atandby redun­
dancy must be provided independently of wearout. The total number of 
modules required for wearout (now) can be eatimated from total propellant 
requirements. Uaing Eqs. 3-2, 3-S.and 3-13, the propellant mass ia 

(3-19) 

arid 

(3-20) 

where M = total mass flowrate. 

The value of the int~gral in Eq. 3-20 is simply the total number of 
ampere-hours of operation Tequired to use the propellant. If a thruster 
is characterized by a wearout life in ampere-hours, independent of 
throttling, the total propellant mass can be simply divided by the mass 
equivalent of the ampere-hour life. Thus, 

(3-21) 

where AH = thruster life in ampere-hours. 

To establish the total number of thrusters required, N t and N o ow must be scal~d up to account for redundancy/reliability. To first order, 
a simple redundancy factor, Rt' can be used. Th~n, the approximate 
number required is the larger of 

= No. of thrusters s 

required 

(1 + 

33 
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B. PROPULSION SYSTEM MODELS 

The generalized analysis technique discussed above .requires models 

for propulsion system specific 

indicated by Eq. 3-14. Models 

mass Cl and totu] efficiency n ,as 
ps pB 

for these param .. ters are presented below. 

1. Performance Models 

Although the desired final result of this ,,,,ction is a model for 

n ,several other relationships must also be defined. Total ('fficiency, 
ps , 

as illustrated in Eq'- 3-8, origtnates from the energy equation and is a 

product of all thruster, power processor, and cabling efficiencies: 

= (3-23) 

where 

nt 
= thruster total efficiency 

npp = power processor efficiency 

n c 
= l'abling efficiency, 

Thruster total e'fficiency includes electr:l,cal eff iciency. propellant 

lItilizatl,yo efficiency, and factors to account for ion beam divergence 

and rr,u.l t l.l'ly charged ions: 

'; 
'2 = 

= 

2 
'1 n Y u e 

!Eeasnrt,:'''j ?:ropellant utilil,.a.tion efficiency 

n1 + 2n;> 

mass fracti.n" flow~ate of singly <oharged ions 

lMSS frae.tional flowrate of doubly charged ions 

thruster electrical efficiency 

y = experimentally determined correction factor for beam 
divergence and multiply charged iOlls 
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Vb - beam voltage 

I Ib .. beam current per thruster 

Pt 
.. thruster i,nput power • , 

Beam voltage is related to other parameters through the definition of ion beam energy: 

I 
eV

b 
1 2 

(3-24) 
.. '2 m1 vi 

d 

I .. 
tmi(v,y (3-25) 

'; 

nuY l since 

'; .... 
I v 

(3-26) 
.. -• sp go 

(;i) Csp go) 

2 I Vb .. 
(3-27) 

fi 
, e nu Y r' 

\~ I where " 1,,-

t: 
h mi 

.. ion mass ~ 

I ' :J 

~ e .. electronic charge ~ 

" 

ion velocity due acceleration through Vb 
i' t Vi .. 

to 
,~ 

,~ 

> v .. average exhaust velocity 4 
: '1.< 

I I 
~. .. 

Vi TluY • 
t, 

Beam current can be related to flowrate through I:, 

[ i~' 

lb .. 
mi (:i) = (Mnu) 

(:i) 
(3-28) 

, 
• 

i.' 
.;. 

I !.~, 

where ! 

i~ • 
ion mass flowrate 

i, t mi 
.. 

" " !,' 
VI 
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Calculations made for the generalized analysis utilized the following 

empirical relationships associated with the 30-cm-diameter Hg ion thruster 
(in mks units): 43,59,60 

Pt = Ib (Vb + 180 + ::2) 

nu = (i I:!Yn) 

I = neutral atom flowrate (equivalent amperes) 
n 

= 0.24 + 0.032 Ib 

Il = 1 - 0.08 
I bx = Ib -1 for Ib a 1 

I bx = 0 for Ib $ 1 

0.025 
y = 0.942 - 0.005 Ib + I + 0.6 

b 

= 1 _ 0.13 
I 0.5 

b 

(3-29) 

(3-30) 

(3-31) 

(3-32) 

(3-33) 

(3-34) 

substituting these terms into Eq. 3-23 is o~itted since the equation 

would be somewhat awkward. 

for a given Ib as follows: 

Bu~ to summarize, n can now be evaluated ps 

• 
• 
• 
• 

nu from Eqs. 3-30, 3-3~and 3-32 

ne from the definition and Eq. 3-29 

y from Eq. 3-33 

n n from Eq. 3-34. pp c 

Propulsion system total efficiency is plotted in Figures 3-2 and 3-3. 

The apparent slight decrease in efficiency that occurs at high beam 

current is a consequence of the increased influence of multiply charged 

ions as modelled in equation 3-33. It should be noted that equation 

3-33 has been formulated to fit data in the l-.to 4-A beam current range 

and the accuracy of the expression for lOA has not been verified. 
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Although the efficiency calculations are based on data obtained 
from operation of 3O-clll thruaters on 8&.43.59.60. ua1ng these equations 
for deacribing thruster perfoYmance using other propellants or for other 
size thrusters can be expected to produce relatively accurate results. 
More specifically. thruster electrical efficiency will scale exactly; 
utilization efficiency may be somewhat in error but not aeriously; 
Y should scale roughly aa defined by Eq. 3-33 for other propellants. but 
for other sizes an equivalent 30-cm beam current should be used; and 
power processor efficiency (Eq. 3-34) is probably reasonable for beam 
voltages greater than 1 kV. 

The g~neral dependence on propellant type is through atomic mass. 
By normalizing the atomic m88S to mercury. the Vb and ~ relationships 
can be written in the form 

where 

w 

>-ag 

AA 

AKr 

AXe 

(- )2 .I!! v 
2e "uY 

• A l rsp ) 2 
\100.02 lluY 

Ib • Mllu (:w) • 481004 e~u) • 

• atomic mass unit • 1.6605655 x 10-27 

• atomic mass' 

• atomic mass of propellant 
atomic maS8 of mercury 

• 1 (mercury) 

• 39.948 
200.59 • 0.19915 (argon) 

• 83.8 
200.59 • 0.41777 (krypton) 

• 131.3 
200.59 • 0.65457 (xenon). 

39 

.......... -~.-----..--.,-

(3-35) 

(3-36) 

(3-37) 

l, 

• 



, 
~, 

I 
I , 

Additional relationships that are of use in various calculations 
include thrust T and vehicle acceleration A: 

.- (go~s;) -/ 
T = Mv .. 

.. CuY) 2 0.203943 Vblb lsp (3-38) 

= 0.203943 (Pi::ps
) 

Ao 
T 

0.020794 (J~nps) , .. = 
Mogo o sp 

where Mo is the vehicle initial mass and all values are in mks units, 
e cept A which is expressed in "g's." x 0' 

2. Mass Models 

Propulsion system specific mass a is assumed to include all the ps 
elements required to produce thrust, including a power source (e.g., 
solar array). Historically, a's of 30 kg/kW were used in mission studies 
based on optimistic technology goals. Generally, these a's included only 
the element masses and not system conSiderations such as thermal control 
and vehicle structure required for support. Depending 011 the particular 
study, such system factors mayor may not have been included in the 
overall mass accounting. 

The ffiSSS models discussed in this section include allowances for 
the major system factors assuming certain design approaches. Models for 

43 44 present technology are based on h!lrdware currently un<ler development ' 
(specifically, the 3Q-cm EM! and its corresponding power processor). For 
the generalized analysis, advanced technology was modeled by projecting 
the capability of the 30-cm mercury thruster to higher beam current and 
voltage. 

The mass models used to define present and advanced thruster technol­
ogy are shown in Table 3-1. Although many system designs exist, these 
models were based on typical values us~d in the various reference docu­
ments and should be reasonably representative. 
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Table 3-1. 'l,Iropulsion Syatam MaaaModel Uaed,in G!lneral1zed 
Hisaion Malyaia ' , , 

Sub-Asaembly 

Solar arraya 

Power conditioning panelb 
(Including atructure and thermal control) , 

. . 
Thruster' 
(Includes g1mbals and structure) . ' 

Tltnkage. structure, and miacellaneous C 

Redundancy ,factor", 

Power condit:i.Oning plmels, 

'lhruilterliJ, . 

Lifetime 

Po is solar panel power at 1 AU after degradatio~ 

Present 
Technology 
Haas, kg 

17 

1.2 

1.4 

c 

Pppis input power to power conditioning panel (maximum). 

c. ·r.ons~ant A-hr wearout. 
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The solar array specific mass is based'on the assumption that all , 
degradation occurs early in the mission. The 18 kg/kW assumea approxi-

matelya 15 to 20% degradation of the original installed power (15 kg/kW). 

Since sol.ar array studies indicat!! that specif:!.c masses on the order of 

5 k~/kW may be feasible with present technology,45,46 the results of ,the 

work discussed here are probably conservative. 

Power processor mass was modeled using historical dsta for PPUs alone, 

snd current design data for the sedes resonant inverter (SRI) concept being 

daveloped by NASA LeRC, which includes thermal control and structure. 44 ,47,48 

The basis for the equa\ion used in Table 3-1 is indicated in Figure 3-4. 

The "historical~' curve was obtained as shown in Figt:&re 3-5 '~sing data for 

various PPUs without structure and thermal control. Since the mass of 

the packaged PPU is dependent on many vehicle design factors, the straight 

line shown in Figure 3-4 was assumed as a reasonable eatimate. 

Thruster mass, as used in the model, includes an allowance for 

gimbals and miscellaneous structure associated with the thruster. Typi­

cally, the total "thruster array" is about twice the weight of the 

25 49 
thrusters.' All 'remaining propulsion system elements (such as tanks, 

valves, structure,miscellaneous hardware) are assUmed to be proportional 

to power at the rate of 5 kg/kW. 

As Table 3-1 indicates, thruster masa is constant in this formula­

tion. However, since it is assumed tha.: higher power can be obtained, 

thruster lifetime and the required number of modules plays a strong role 

in modeling propulsion system specific mass. Figure 3-6 illusttates the 

influence of lifetime on mission performance. ln the first ~xample, the 

EMT oper~tes at 2 A. 'The total mass of two thrusters and thei~ individual 

power conditioners is about 136 kg. Modifying the prop~lsion sYdtem to use 

a 4-A beam current, but keeping specific impulse at ~OOO sec (modified EMT), 

yields a total mass of 77 kg without considering thruster lifetime (i.e., 

if no wearout of the thruster occurs). This larg~ decrea~D in mass is 

mainly due to the lower specific mass of the PPU at the higher power 

levels. The trajectory dynamic performance is unchanged for this second 

example, since running fewer thrusters at higher current can produce the 

same acceleration time profile with no increase in system propellant or 
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power requirements. The only change is a lighter propuls Lon system with 
potentially improved payload. 

The mass modeli'ag of thruster wearout lifetime is assumed to occur at 
constant ampere-hours. That is, if the thruster lasts for a given duration 
l.t 2 A, it will wear out in half that time when operated at 4 A. As in 
• ;le third example of Figure 3-6, a spare thruster must then be carried. 
Switching occurs for wearout in a manner analogous to switching for 
thruster failures. The total number of thrusters is the same as in the 
first example, but a significant mass savings accrues from raising 
module power. Total mass would then be 94 kg, a savings of 42 kg. 
Furthermore, even if a third thruster were necessary to complete the 
mission (as a result of a variable thruster lifetime in ampere-hours), it 
would still only add 17 kg, and net savings would then be 25 kg. 

Savings in propulsion system mass thus can apparently be achieved 
by increasing beam current, permitting wearout to occur, and naving 
power processing mas~. Even if the constant ampere-hour wearout assump­
tion is not completely accurate the effec. tends to be balanced by 
reliability considerations. A favorabl~ reliability interaction results 
at higher ~~am currents because the total thruster hours are reduced and, 
consequently, there will be fewer failures and fewer thrusters required 
for reliability purposes. B'lfled on typical system studies, redundancies 
of 20% and 40% for the PPU anu thrusters,respectively,were selected. 

Using the models in Table 3-1 and the previous philosphy for 
thruster wearout, propulsion system specific mass curves were developed. 
For the simplified example shown in Figure 3-7, mission thrust time is 
less than thruster lifetime (i.e., no thruster wearout occurs). The 
trends caused by increasing beam current and specific impulse are then 
divorced from lifetirue considerations. As is seen fOl present technology, 
modifying the EMT from its nominal value of 2 A to around 6 A will generate 
significant decreases in specific ~ss. On the other hand, holding beam 
current constant and increasing the specific impulse from 3000 to 
4500 sec will accomplish approximately the same decrease in specific 
mass (10 kg/kW). Simultaneously tncreasing both beam current and specific 
impulse would only further improve specific mass by 5 kg/kW. The 

46 

. i 

D 
() 

n t., 

n 
-, L 

D 
n 
-\ 

II 

n 
n 
n 
~"'1 

il 
r, 
1I 
0;., i 

n u 

D 

n 
I 
I 

i 

I 

I 

I 
I 

'. 

I 



7254-8 ~r------'-------'-------'------~------I 

SPECIFIC IMPULSE GO 

4000 

6000 , 
8000 

40 , , 
I " ""' ......................... l1OOO 

~ ~"''- ... -~ 30 -....:::. ... '":::':::-- -... u 
ii: ........ --u ...... --- - =-~ 
II> 

20 

10 

I 
ooL--------2L-------~4--------~6--------~B~------~10 

BEAM CURRENT, A 

Figun' 3-7, Propulsion system specific mass; no wearout. 
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change is relatively small becsuse the bulk of the benefit comes from the initial increase of module power, which msy be accomplished by changing e;l.titer variable separately. 
~he' specific results used for the generalized analysis presented in this report are shown in Figure 3-8. These curves include wearout on the basis of a 20,000 A-hr thruster life. A break pOi,nt occurs at 2 A because additional thrusters are required at higher current levels to maintain a constant mission life. The a data needed in Eq. 3-14 was ps obtained from Figure 3-8,. 

C. MISSION CHARACTERISTICS 

Referring to Eq. 3-14, the generalized analysis approach requires mission information on mass fraction '(MF) , initial acceleration (A ), o and AV. Representative daJ;a for each of the missions included in the mission set 'was, obtained from the literature and from trajectory calcu­lations made und~r this study, as indicated in Tables 3-2 and 3-3. Pay­load mass data and references for each mission are shown in Table 3-2. This data was used to select a maximum payload mass for computing MFR. The summary of mission requirements presented in Table 3-3 was distilled from the referenced literature. The parameters of interest, MFR, Ao' and AV, were calculated from the results presented in those studies. AV and A were obtained using Eqs. 3-1 and 3-11, respectively. o 
MFR is based on the maximum payload values indicated in Table 3-2. 

D. RESULTS OF THE GENERALIZED ANALYSIS 
The results of the generalized analysis were derived from Eq. 3-14 and based on the performance models, mass models, and mission character­istics discussed above. A general example of the relationships involved is shown in Figure 3-9. The legend on top of Figure 3-9 describes the technology of the particular low thrust propulsion system being con­sidered. ("Present power technology" refers to the use of the relations in Table 3-1.) First, the le'~el of power system technology (existing hard­ware or pTesent power) is chosen. Then, for a mOdified EMT within the 
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Nission 

Outer planets 
Jupiter orbiter 

Jupiter satellite 
orbiter 

Saturn flyby 

Saturn orbiter 

Titan orbiter 

Uranus flyby 

Neptune flyby 

~ariner class, Jupiter 
~riner class, Jupiter 

, " --------,...:-. _ .JIII ' ': ,: 
11;,;'" ....•. 

Payload 
Mass, kg 

982 

1282 

1360 

1265 

1100 

840 

1031 

1016 

lO96 

750 

825 

750 

swingby 

Orbiter 

References 

(MJS) • 

(I·UO) • 

50 

8, 29 

8, 

50 

51 

52 

53 

51 

29 

54 

54 

8 

51 

8 

Remarks 

. a 
570 kg MJS .+ retro 

Same as' above but 
includes 150-300 kg 
entry probe. 

b . 
MJO deSign 

Pioneer Venus Module 
includes: 150 kg 
probe; retro, lower 
orbit fuel for satel­
lite explorations 

Pioneer class; 
includes: 150 kg 
probe; Type I retro 
fuel; lower orbit 
fuel for satellite 
exploration~ 

Uses Jupiter flyby 

Includes 570 kg MJS 
and retro fuel; add 
150-300 kg for probe 

HAC study for 
technical proposal 

Scaled from HAC study 
for technical 
proposal 

750 kg MJS for 
Uranus/Neptune flyby 

Mariner class, uses 
Jupiter flyby, 
includes probe 

750 kg MJS uses 
Uranus flyby 

'1; 
Li 

a· 

n 
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r Table 3-2. Mission Payload Mass Summary and References (Continued) 

I ~O Mission Payload References Remarks Mass, kg 

n Outer planets 
(Continued) 

n Solar system 320 8 8eUos class escape 

n Mercury orbiter 1335 30 HAC study; Pioneer 
Venus Module (793 kg); 
includes retro; drop u propulsion system 
before injection 

n • 
1480 31 Drops propulsion sys-

tem before injection 

824 8, 29 350 kg 8eUos n • 1317 51 Mariner class 
(775 kg) plus retro n Close solar probe 465 55 Solar probe uses (0.1 AU) Venus awingby 

n 1000 55 Low cost (heavy) 
payload 

E Earth observatory 8000-10,000 11, 18, 21 Shuttle class 
maximum payloads 

r n Comet Encke 

Slow flyby 113 8 Small science . 

fl 
package 

508 56 JPL Mariner Encke 
study; 4 lan/sec 

fl 358-608 33 Pioneer 10/11 class 
and Advanced Pioneer 

D 450 13, 15 Representative pay-
load for flyby 

'j 

opportunity and back-

D ground for comet 
missions 

n 6119 
51 

fl 
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to' -''"' .. 



. i 

'I 
'I 

,~--~,' ~, 

". , ,I 

i 
j' 

'.' ...•........... , .. r 
t.·.,.·: ! ' 
~. . 

t 

. 

.. , 

------

Table 3-2. Mission Payload Masa SU1II1II8ry and Reference (Continued) 

Mission Payload References Mass, kg 

Comet Encke 
(Continued) 

Slow flyby 400 38 (Continued) . , . , 
533 25 . 
350 32 

Rendezvous 635 41 

545 .51 

500 38 

Asteroid rendezvous 350 8 

500 34 

500 35 

6,35 34 

500 38 

350 32 

Asteroid sample 940 37 re.turn (Eros) 

1000 38 

Out-of-ecliptic 600 11 
(1 AU) 

391 51 

200-400 2 

200 27 

52 

Remarks 
, . 

;: i, 

:-;' 

' . 

- ,> 

Mariner class 

HAC/Metis (Pioneer 
class) 

Eros 

Eros 

Ceres 

Various 

Various 

Return capsule, 
leave stage at Eros 

Includes science 
package of 31 kg 

Inclination dependent 
payload 

.. 

, 

.' 

• . 
6119' 
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Mission 

Outer planets 

Jupiter Orbiter 

Jupiter 
satellite 
orbiter 

Saturn flyby 

Saturn orbiter 

Titan orbiter 

Uranus flyby 

Neptune flyby 

Solar system 
escape 

Mercury orbiter 

C 
23, 2 

km /sec 

37 

37 

64 

64 

64 

42 

72 

72 

37 

4 

Table 3-3. Mission Characteristics 

Mpl 
M , kg Conservative MFR Ao 

0 Payload, kg lO-~g 

3050 1360 0.45 3.4 

3050 1265 0.41 3.4 

2320 840 0.36 3.4 

2320 1031 0.44 3.4 

2320 1096 0.47 3.4 

2920 825 0.28 3.8 

2120 825 0.39 3.8 

2120 750 0.35 3.8 

3050 450 0.15 3.4 

5720 1480 0.26 2.1 

. 

AV, Refer- • 

km/sec ence Remarks 

4.3 8,29 

4.3 8,29 

3.6 8,29 

3.6 8,29 

3.6 8,29 

4.5 8 Jupiter swingby 

3.8 8 Uranus flyby to 
Neptune 

3.8 8 Uranus swingby 

4.3 8,29 Jupiter swingby 

17.4 HAC traj ectory 
studies; thermal 
constraints, pay-
load is approach 
mass 

6119 

, ~ 
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Table 3-3. Mission Characteristics (Continued) 

C3 Mpl 
Ao, AV, Refer-Mission , 

Mo' kg 
Conservative MFR 

'Remarks lcm2/sec2 Payload, kg 13-5g lolJ/sec ence 

Mercury orbiter 25 3827 1480 0.39 1.6 10.9 HAC trajectory (Condnued) 
studies ,thermal 
constraints~ pay-
loll!lisapproacb I 
iaass I 

, 

i 25 3827 1480 0.39 l.7 13.1 31 . 
Close solar probe 20 4260 1000 0.23 2.9 14.1 HAC trajec:tory (0.1 AU) 

studieS;' thermal 
c:onstraints, (Sun i VI 
angle> 90·) i ". 

Earth observatory - 27,215 10,000 0.37 2.-4. 6.0 HAC trajectory 
studies to sync:. ! 

eq. , 

i Comet Enc:ke 
I 

Slow flyby 55 2560 608 0.24 4.1-,4.7 S.S HAC studies; 
approach .. 
4,.5 km/sec: 

54 2600 608 0.23 4.6 9,,5 " I 8 4,km/sec: 
77 1970 608 0.31 3~r I 11.,2 " ,?!f 4 /;m/sec: 
49 2720 608 0.22 I 2J' 'S.7 3!1 Venus gravity 

asslst 
" 

I 
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c.n 
c.n 

Mission 

Comet Encke 
(Continued) 

Slow flyby 
(Continued) 

Rendezvous 

Asteroid 
rendezvous 

Asteroioi sample 
retum (Eros) 

'- -----
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'1'-_'~le 3-3. Mission Characteristics (Continue.!) 

C Mpl 
Ao. /lV, -3' Conservative MFR 

km2/sec2 Mo ' log Payload, kg 1O-5g km/sec 

55 2560 608 0.24 3.4 11.3 

54 2600 608 0.23 2.5 10.4 

49 2720 635 0.23 4.4-4.5 9.1-9.8 

54 2600 635 0.24 4.0 11.1 

42 2920 635 0.22 4.1 9.5 

44 2860 635 0.22 4.2 14.3 

51 2580 635 0.24 4.2 10.4 

25 3827 635 0.17 3.3 8.5 

3 5840 635 0.11 3.6 8.1 

4 5720 635 0.11 4.2 5.9 

56 2530 635 0.25 4.6 7.8 

4 5720 1000 0.17 4.2 12.0 

~ & ... ,1 .~ MIt ~ ~ 

Refer- Remarks ence 

29 

2 

41 Different 
opportunities 

41 

8 Long flight time 

8 Short flight time 
I 

2 
! 

8,29 Metis 

34 Eros 

32 Eros 

34 Ceres 

36 Retum capsule, 
leave stage at 
Eros 

I i 

I 
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Table 3-3. Mission Characteristics (Continued) 

"'1 "'he ,'. "-"'C.,~~,,"_ 

U1 
CO' 

C3, 
Mission 2 2 M , kg 

km /sec 0 

-

Out-of-ecliptic • 1 6040 
; 

(1 AU) 1 
; , 
f 

I 
1 6040 

I 

~~ Jc-'_l~.~~ 
r ""~". .......... 

Mpl 
Conservative 
Payload, kg 

600 

600 

... -~ .. -, 
. .........; .,..-~ 

MFR Ac" 
lO-5g 

0.10 2.-3. 

0.10 ,2.2-3.8 

, .... """"'t ..-.-.. 
r-. 
~ 

tN, 
km/sec 

20-55 

22-38 

f"-=f. -' 

Refer- . 
ence 

Remarks 

HAC trajectory 
studies; inclina-
tion dependent 

2 
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Figcre 3-9. Example of the influence of I on 
!J.V vs Ao format results. sp 
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selected power technology, one must choose thruster operating 

in terms of beam current and specific impulse. The~e choices 

conditions 

will serve 

to describe the propulsion system according to the modeling in Sec­

tions 3.A and 3.B. Mission requirements are defined by the payload 

(MFR) for mission success. 

1. Spocific Impulse Considerations 

The dependence of performance on 1 sp is illustrated in Figure 3-9. 

an initial acceLeration A 
o Any mission can be categorized in terms of 

and a velocity 6V required to be delivered by the propulsion system. 

The soectrum of Ao and 6V combinations for all missions is shown in 

Figure 3-9 for a constant (MFR). The solid line on the curve corresponds 

to a particular propulsion system (system technology level, thruster 

operating conditions) that can deliver the specified MFR. To the left 

of these curves, the propulsion system performs the mission with an 

MF greater than that required; to the right, it performs the mission 

with the inadequate MF (or payloacl.). The effect of increasing I sp 

is shown by arrows. In the region of higher 6V and luwer A , where cor­
o 

respondingly less thrust is needed, the preference is to keep the pro-

pellant mass as small as possible, and increasing 1 helps to do this. 
sp 

un the other hand, when higher thrust is needed at low 6V, increasing 

I causes a decrease in per.formance. 
sp 

The reason is that the power 

required, in terms of mass, when increasing I is greater than the 
sp 

propellant savings that would result from the higher 1 sp 

Figure 3-10 outlines the tradeoffs between 1 sp and various thruster 

modifications and MFRs. These charts also show equivalent thrust time, 

~~hich is the mission duration parameter used to characterize the. required 

thruster lifetime for any mission. This eq~ivalent thrust time is 

actually the time it would take to expel all of the propellant with the 

power availablb at 1 AU. For orientation, the Halley's comet miqsion, 

which is a relatively long thrusting mission, requires only about one 

year of equivalent thrust time. 

The trends, as far as 1 is concerned, show a very flat optimal. 
sp 

Considering Figure 3-10(a), for example, for very high accelerations 
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Figure 3-10(a). t,.V vs Ao format for present power tecbno1ogy with 

modified EMT; MF = 0.1. 
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(6 to 8 x 10-5 g) and low AV (10 to 15 lan/see), the performsnce resulting 

from an I up to 5000 see is relatively constant. The fact that there 
. sp . 

is not much difference indicates the very flat optims1. At the extreme 

right (the envelope of maximum performance), little variation occurs in 

lover a great range of A and flV combinations. The message of these sp 0 
curves is that, since increasing lsp may not significantly increase mass 

performance, the higher cost of higher power may not be justified. 

The other parts of Figure 3-10 have the same propulsion system with 

increased MFs. Since the particular propulsion system now has all of 

the curves moved over to the left and down, fewer potential missions can 

be captured by' the particular technology level and thruster modifications 

because of the higher MFR. The trends, as far as lsp is concerned, are 

baSically the same. Since these miasions are characterized by rather flat 

optimals, the basic 1 . considerations become a cost tradeoff: sp increasing 

I to improve performance, although sometimes possible, is expensive. sp 
In summary, the above considerations suggest that I should be sp 

raised oniy after othe~ 

to first attempt 

alternatives have been examined. It is gsnerally 

better to lower the apecific mass of the propulsion sys-

tem by raising beam current. 

2. Mission Performance Results 

The space shuttle was assumed available as a launch vehicle for 

these advanced missions (Table 3-~). The major implication of the shuttle 

is that larger 

as compared to 

ure 3-11 shows 

injected mass and larger propulsion systems are 

earlier launch vehicles (e.g., Atlas Centaur). 

possible 

Fig-

the assumed capability of the Shuttle. The two-stage IUS 

is assumed for the lower launch energy missions and a three-stage con-
57 58 cept. for the higher values of C

3
• • 

The mission performance comparison curves used in the remainder of 

this analysis are shown in Figures 3-12 through 3-16. These figures 

display lines of constant mass fraction in the AV vs A format for o 
various 

in terms 

technology assumptions. Given a particular mission, specified 

of A and AV, any propulsion system (power technolOgy level, 
o 
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thruster ope~ating characteriatics} can deliver a characteristic MF. 

This MF must be grQater than MFa if the propulsion system is to deliver 

an adequate paylQau • 

. l!'1gl:te 3-12 presents.the generalized perfQt'mance Qf the existing 

hardware (EMr); Figures 3-13 through 3-16 present the re-Bults for present 

" 

!lQwer technology and a mQdUied EMf '(4 A) with a range of specific 

impulse (3000 to 6000 aec). A comparison of Figure 3-13 with 3-16 

shows that the higher 1 can capture more missions (MF) for low 1.0 and 

. sp 
Ugh b.V bu~ has a low capability for high A and low b.V. 

a 

a. Outer Planets 

Missions to the outer planets sre depicted in Figure 3-17, 

which :l.s Figure 3-12 replotted with the mission requirements superimposed. 

The emaIl elliptical ares bounds the range of accelerations and velocities 

in Table 3-3 for the outer planet missions. Also shown is a line repre­

se~ting the largest MFa in Table 3-3 (0.47 for the Titan orbiter). 

Obviously, since the EMT can deliver the largest MF, it can also perform 

the remaining outer planet mission. Anotl,er piece of information in Fig­

ure 3-17 is the number of thrust;.ers reqllired for thrust and redundancy. 

Thruster wearout does not occur because of the short mission eqUivalent 

thrust time (EMT life was assumed to be 20,000 A-hr). 

b. Mercury Orbiter 

The results of the detailed trajectory studies of the Mercury 

orbiter mission are shown in Figure 3-18. The areas indicated on the 

curves are the different trajectory classes investigated: low launch 

energy with high propulsion system power requirements (MF • 0.26) and high 

launch energy with low propulsion p.,,.er requirements (m' - 0.39). The EM'!' 

with existing hardware and a moderate number of thrusters calculated from 

actual tr~jectory runs easily meets the requirements of both classes of 

trajectories. 

The generalized plots in Figures 3-12 and 3-17 include the nssumption 

taat wearout occurs for the misaion thrust duration at 2 A. The Mercury 

orbiter is one of the few missions that has a thrust duration longer 
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than 20,000 A-hr, Its equivalent thrust time is 16,000 hr (32,000 A-hr) , 
Thus,iour thrusters were included in the maximum of 13 required for the 
high-power case to compensate for wearout (assuming a 20,000 A-hr lif.e­
time). The HAC trajectory studies of the mercury orbiter included 
thermal constraints which kept the thrust attitude 90· from the aunline. 

c. Close Solar Probe 

'rhe close solar probe (0.1 AU) was also analyzed using HAC 
trajectory programn with conservative MFs (Table 3-3). As. Figure 3-19 
shows, the EM! adequately performs this mission with a moderate n~mher of 
thrusters using existing hardware. Thir, mission hss a relatively long 
equivalent thrust time compared to other missions, but it is still 
only 10,400 hr, whicr is just slightly more than the assumed 
20,000 A-hr lifetime of the EM!. The HAC trajectory studie~ again 
included thermal constraints that kept thrust attitude 90· from the 
sunline. 

d. Earth Observatory 

Figure 3-20 shows that the conservative payload mass fraction 
(0.37) required for the Earth observatory mission could be easily accom­
plished with existing hardwal'e, b~t the number of thrusters might be too 
large for the Shuttle bay. To decrease the number of thrusters, present 
power technology could l~ used with a modification of the beam current. 
For example, if beam current were increas.!d to 4 A, a reasonable numbex 
of thrusters for the very large payload results (all shown in Figure 3-21). 
Increasing the beam current also increases the already adequate payload. 
More pe7formance and a further decrease in the number of thrusters could 
be achieved by raising I ,but this is not required to perform the Earth sp 
observatory mission. In addition, advanced power system techn~logy is 
not required to perform this mission. 

e. Comet Encke Missions 

The comet Encke slow flyby missions are depicted by the shaded 
areas indicated in Figure 3-22 (see Table 3-3). Existing hardware is 

73 

I 



, ,,', 

" 

~ 

II" :. 

~ 
f , .. 
t,.,.' . 

"'~ 
~t 

i,~ 

J 
n-
" 

eo 
PAYLOAD MASS FRACTION 

0.0 

60 0.1 AU SbLAR PROBE: 13 
THRUSTERS REQUIRED 

~.1 INCLUDING REPLACEMI:N'TS 
FOR FAILURES AND 
WEAROUT 120,000 A-HRI . 

\ 
40 \ 

\ 
... '\'\ f .! 
E i .3) 

~\~\ 
~ \ 20 ." ' \ , "-

\'<~~~'>" 10 . 

'~'::'>~ '''~ ,:" 
0 " 0 2 4 6 8 

AO.1ct6 9 

Figure 3-19. Close solar probe (0.1 AU) mission resu1t&; EMf, 
existing power subsystems. 
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Figure 3-22. Comet Encke ~low flyby mission results; EMT, 
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not adequate to perform all missions but. as Figure 3-23 shows, all 
proposed Comet Encke slow flyby missions can be performed with adequate 
payload, using a small number of thr.usters and a modified EMT. 

Similar results hold for the comet Encke rendezvous missions,as 
shown in Figures 3-24 and 3-25. Modifying the EMT to oper,3te with a 4-A 
beam current with present power teChnology yields an adequate payload MF. 

f. Asteroid Rendezvous 

The asteroid rendezvous mission requirements for Eros, Metis, 
and Ceres are plotted in Figure 3-26 from the data in Table 3-3 using the 
conservative payload of 635 kg. The existing hardware (EMT) easily meets 
the payload requirements. The 17 thrusters required is a reasonable 
bound for the most conservative payload and acceleration but can be 
decreased, if desired. by increasing beam current. 

g. Asteroid Sample Return 

The asteroid sample return (Eros), with its somewhat higher 
payload and velocity requiremen.~ may need a modified thruster to obtain 
additional performance depending on launch opportunity (as indicated in 
Figures 3-27 and 3-28). Changing the beam current to 4 A provides this 
extra performance with present power technology. 

h. Out of Ecliptic 

Figure 3-29 depictP the performance for the existing hardware 
from the HAC trajectory runs as a function of the out-of-ecliptic incli­
nation angle. Existing hardware can provide up to 50· with a payload mass 
fraction of 0.1. Raising the beam current to 4 A increases maximum incli­
nation to about 60·. In addition to using a 4 A thruster, it is necessary 
to increase I to obtain a 90· inclination hecause the very high velocity sp 
requirements for 90· inclination can only be met by reducing propellant 
mass. Trajectory results for a 6000-se~ I are given in Figure 3-30. ep 
If 90· inclination is required, then I sp and cost will be higher. 

Out of ecliptic mibsions can also have very long equivalent thrust 
times. Acceleration increases as propellant is consumed, but the average 
time is about 11,000 hr for each 30· of inclination. Thus. the 
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Figure 3-23. Comet Encke slow flyby mission results; modified 

EMf (4 A, 3000 sec), present power technology, 
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Figure 3-25. Comet Encke rendezvous mission results; modified 
EMT (4·A, 3000 sec), present power technology. 
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thrusters required (in Figures 3-29 and 3-30) are mainly for wearout 

replacement. In fact, the modified EMT (4 A, 3000 sec) requires only 

four operating thrusters to provid~ the highest acceleration. Thus, for 

the highest inclination 'case (90°). eight thrusters are required for 

wearout and another ei:;ht :or failure for the conserJative payload and 

maximum acceleration. The equivalent thrust time compensation provided 

in the propulsion system assumed in Figure 3-30 results in an increased 

mass fraction of less than 0.05 for the 6040 kg injected mass in this 

worst case. 

3. r,onclusions from the Generalized o\.nalysis 

In sUPUllary, the EMT can perform a large fraction of the missions 

analyzed. Development of a thruster (modified EMT) capable of ~-A or 

higher beam current at 3000-sec specific impulse Hill provide the 

capability to perform all the missions consideted, with the possible 

excepti.on of the out-of-ecliptic mission. Increasing 

good from a performance viewpoint because it improves 

I is generally sp 
the payload and 

reduces the number of thrusters required, but it could increase mission 

cost becaus~ of higher power. Similarly, the 90° out of ecliptic mission 

can be accomplished with present power technology (solar array a~~ PPU) 

by increasing specific impulse. Advanced lj.ghtweight power technology 

would improve performance, but it is not required to perform any of these 

missions and may not be economically justifiable. 

This analysis did nQ~ consider Earth orbit missions involving large 

space systems. This subje,:t is discussed in Section 4. In add~tion, the 

generalized analysis did not consider other thruster sizes since the 

existing EMT or a modified EMT could adequ~Lely accomplish all the 

missions considered. 
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SECTION 4 

COST MODELING FOR EARTH ORBIT MISSIONS 

The generalized analysis approach, discussed in Section 2, is an 

efficient maans for assessing the first-order impact of various missions 

on thruster technology. Howeve=, the generalized approach omits cost, 

which, under certain circumstances, may be decisive in the use of EP. 

Although cost is an important factor in planetary and small body 

missions, for these the use of EP will probably rest on the tradeoff of 

mission risk against technical advantage, with cost as a secondary 

factor • 

With new large space systems, for which most elements will have 

limited bases for assessing reliability/risk, EP will be judgea largely 

on its merits as a cost-effective propulsion system. This section 

describes cost models developed for several Earth orbit missions to 

indicate where ion thruster technology would best satisfy selected cost­

effectiveness criteria. In general, the goal is the tachnology th~t 

would produce the lowest mission r,ost consistent with the reality of 

developing such technology. In other w0rds, from a mission standpoint, 

the goal is to determine the thruster (and possibly other) parameters 

that would minimize mission cost, and then, through an understanding of 

technology limits, recomm~nd a direction that has a reasonable proba­

bility of succeSR. 

Two general types of Earth orbit missions were considered: 

(1) orbit raising (transportation) of large masses from low (altitude) 

Earth orbit (LEO) to higher altitude orbit and (2) stationkeeping and 

attitude control of large masses in Earth orbit. Details of the assumed 

missions are discussed in "mission riescription" sections. The computer 

IDJdels developed are presented in the "general model" sections, which 

include descriptions of the mission analysis portions of the models. 

Propulsion system performance models, which apply to both types of 

missions, are discussed in the orbit raising mission section. Similarly, 

power source degradation and redundancy models, which also apply to 

both types of missimls, are discussed in a single section. Mass and 
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cost models are discussed separately for each type of mission because 
the models and terminology vary somewhat:. Results of each model are 
grouped into two categories: (1) baselipe results using model parameter 
valuee selected as being r~asonable compromises between 1977 technology 
and future technology and (2) sensitivity results obtained by varying 
each major parameter over a wide range of values. Certain combination 
sensitivittes, obtained by varying two or more parameters, are also 
presented in the latter category. 

The basic graphical format presents cost as a function of specific 
impulse. This format was select •. d 
fundamental parameters in thruster 

because I sp 
technology. 

is one of lhe ruost 

For orbit raising mis-
sions, the cost scale is in terms Qf cost per. unit mass of net payload 
delivered to the destination (i.e., $/kg of payload). For on-orbit 
missions, the cost scale is in terms of cost per unit mass of net satel­
litE. maintained on orbit per year ($/kg/yr). Other plots are also pre­
sented to aid in understanding the results and the various relationships. 

A. ORBIT RAISING (TRANSPORTATION) MISSIONS 

To carry out the economics analysis with the cost modeling program 
described in this section, a relatively large number of assumptions and 
detailed models were required. The orbit raising mission work was 
generally oriented toward the transportation of masses from LEO to GEO. 
However, this particular transfer is only representative, and other 
transfers can be simply handled by the model tllrough the specification 
of 6V. To further clarify assumptions, two baselines were considered: 
(1) matured Shuttle era and (2) large space systems era. Such a dis­
tinction was made to identify differences in thruster technology require­
ments that might result from difft'rent launch vehicle sizes and levels of 
activity in space. For instar,ce, the matured Shuttle era baseline assumes 
a payload size of 25,000 kg, a launch cost to LEO of $300/kg, solar power 
cost of $lOO/W, and a solar power specific mass of 6 kg/kW. The magni­
tude of these factors significantly influences the results of the cost 
analysis. 
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For th" lprge space systems baseline, it is assumed that the 

applications being considered are in the area of highly expanded use of 

space, the masses of interest are 1arg"r than those of current-day satel-

lites, launch costs are lower, and power 
4 Specifically, masses in the range of 10 

sources are lighter and cheaper. 

to 107 kg are considered. Such 

masses would be delivered to LEO by new launch vehicles (e.g., a heavy 

lift launch vehicle) at relatively low cust ($10 to 50/kg).18-21 Power 

sources are projected to weigh 3 kg/k\~ at a cost of $0.5/\;. Other dif­

ferences in these two ba~elines are discussed in conjunctio-, with the 

results. 

Once in LEO, the payload must be placed in anoth"r orbit. An 

electrostatic ion propulsion system, using a solar source, transports 

the mass to the specif~ed orbit. Except for characterizing this trans­

fer by !::,V, the details of the transfer were not considered in this study. 

Clearly, many factors must be considered in designing such a tr8nsfer 

from LEO (e.g., occultation, attitude control, solar array orientation 

and vehicle maneuvers). However, the impact of most of these factors 

on propulsion system design is through !::'V. The mission options considered 

(such as one-way or round trips) are discussed in Section 4.A.1. 

For the orbit raising mission, the propulsion system is part of an 

orbit raising vehicle (ORV) , shown 3chematically in Figure 4-1, which 

contains the subsystems (e.g., computers, data handling, communications) 

necessary to operate with only limited ground interfacing. Models of 

the various elements of the ORV used in this study are described in 

Sections 4.A.6 and 4.A.7. As mentioned earlier, the analysis of the 

sensitivity of the cost results to the various models was a significant 

part of the work. 

1. Mission Descriptions 

The three types of orbit raising missions considered are shown 

schematically in Figure 4-2; they includE': 

• Self-powered round trip - ORV contains the power source to 
supply the necessary propulsion power. On the "down trip," 
the full power is used. Power source mass and cost are 
charged to the ORV. 
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PAYLOAD 
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Figure 4-1. ORV block diagram. 
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Figure 4-2. Orbit raising mission scenarios. 
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Payload powered up; self-powered do~ - payload is, or contains, 

a power source capable of supplying the propulsion power dur­

ing the up trip. On the down trip, the ORV provides its own 

power. Up trip power source mass and/or cost may be ~hal'ged 

to payload. 

• One-way trip (up) - ORV contains the power source, but stays 

with the payload on-orbit. 

Although many other mission options can be defined, these three should 

be representative of a wide range of mission requirements. 

a. Self-Powered Mode 

In this mode, the ORV may make a given number of round trips 

from LEO to a destination orbit (defined by 6V) consistent with the 

specified ORV life. Propulsion power for both the up and down trips is 

provided by the ORV, and the power source mass and cost are charged against 

the ORV. The number of thrusters required per trip is based on the number 

operating, wearout rate, and redundancy for random failures. 

Assuming that the use of the ORV for a given transfer is paid 

for by a "user," the fraction of the worn out thrusters must be taken 

into account. This is done by subtracting from the cost to the user 

the fraction of unused thruster life and adding the cost for refurbish­

ment. In this way, each user effectively only pays for the fraction of 

the ORV worn out. This approach also eliminates the need to transport 

a large number of spare thrusters through many round trips before they 

are needed. In addition, propellant for only one round trip i~ carried 

for the same reason. More specHic details of this mode are discussed 

in the "general model" section. 

b. Payload Powered Up-Trip; Self-Powered Down-Trip Mode 

Since the ORV mass is generally only a fraction of the payload 

mass, and down-trip time may be less critical than up-trip time, signifi­

cantly less power may be needed for the down-trip. In addition, many 

future payloads m~y contain large power sources that could be used on the 

up-trip. For such missions, the cost charged to a user might be reduceci 

since a smaller power source would be paid for as part of the transporta~ 

tion cost, and the net payload delivered on-orbit is increased. 
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c. One-Way Trip (Up) 

In certain cases, it might be advantageous to leave the nRV 

with the payload on orbit. For thi~ assumed mode, the power source is 

charged to the ORV. The cost results will be conservative if the pay­

load can make use of this power on orbit. Propellant is sized only for 

the up-trip, and operaticn of the ORV on orbit would require using part 

of the payload for propellant. 

2. General Model: Orbit Raising 

A logic diagram for the orbit-raising cost model program is shown 

in Figure 4-3. This diagram correctly indicates the functional form of 

the pror,ram, but does not necessarily correspond identically with the 

computer program listing. Efficient coding and the many details not 

shown in this general diagram introduce format variations. A typical 

program listing and a discussion of the listing are included in 

Appendix C. 

Mission mode selection indicated in Figure 4-3 is actually accom­

plished by selecting a few parameters within the program (see the listing 

discussion in Appendix C). For a given set of mission variables, the 

mission computations are started. Propellant mass is obtai:.cd from the 

rocket equation (see Eqs. 3-1 and 3-2). Although this equation is not 

strictly accurate for low-thrust propulsion, conservatism in selecting 

~V tends to compensate. 

Propellant ma~s can be related to ion beam "jet power" as follows. 

The ion beam energy is 

eV = 
b 

or, in terms of beam power, 

= (4-1) 

= (4-2) 
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r. r 

where 

Ej = ion beam kinetIc ener~y 

Ej = rate derivative "f Ej 

P
j = total jet power 

vi = ion velocity 

mi = ion mass 

m
i = total ion flowrate. 

Total propellant mass flowrate is related to total ion flowrate by 

m
i 

= H p nu (4-3) 

(4-4) M = M t f ' P P 

where t f is the f1~ght time appropriate to the mission being considered 
(self-powered, one-way, etc). 

(4-5) 

where nand yare as defined in Section 3.A.2. Substituting Eqs. 4-3, u 
4-4, and 4-5 into 4-2 yields 

To simplify the jet 

equal to one. This 

p. ; 
J (4-6) 

2 power computations, the quantity n y was assumed u 
approximation, at this point in the calculation, 

introduces an e.ror of 5 to 10 percent in Pj • However, since the rocket 
equation for computing ~ is approximate, nv can be adjusted for con­
servatism, and thruster and PPU redundancy can be adjusted, the approxi­
mation will not- signific.!Int1y affect the results. (Pj is used only in 
computing the number of operating modules; P

j is divided by P
mod

' where 
P mod = Ib Vb' ) 
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The next step in Figure 4-3 is to calculate tolal propulsion system 

input powf!r according to 

P ps = (4-7) 

where n is as defined in Eq. 3-8. With 
ps 

the use of n in Eq. 4-7, the ps 
appro~.imation made in computing P. is not 

J 
included in P since n ps ps 

2 
includes fluY as well as other efficiencies. Total propulsion systp-m 

power is used for sizing the solar power sJurce, as explained in 

Section 4.A.5. 

The total number of modules needed for the ORV for one trip includes 

those operating, redundant modules for random failures, and spares for 

lJearout if required: 

Nmod (TO~:IP) (1 + Rt) (4-8) 

N = N (1 + R ) op mod p 

where 

Not = total number of thrusters installed in ORV 

N mod 
p./p 

mod = nuwJer of operating thrusters 
J 

N = total number of power processors op 

P = selected module power (beam power) mod 

TOTRIP = selected up-trip time plus down-trip time 

Rt = thruster redundancy 

R = PPU redundancy p 

Lt = thruster life. 

If TOTRIP is < Lt' then TOTRIP/Lt = 1. PPU life is assumed to be long 

compared with trip time, and wearout can be neglected. Only enough 

thrusters are carried to support one round trip. Those used during the 

mission are assumed ,0 be replaced. 
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The round-trip mod;'.) require an iterative procedure such as 
illustrated in Figure 4-3. Initially, the down-trip time is assumed 
to be half the up-trip time. Since the down-trip time depends on the 
down propellant, which is not known until II is found, the calcul"tions orv 
proceed until the correct down-trip times are found (typically three 
iterations). The net payload is obtained by subtracting the down pro-
pellant as indicated in Figure 4-3. M."ss models used to define the ORV 
are discussed in Section 4.A.7. 

Once a solution to the trip time and p"yload mass calculati)ns :.s 
obtained, cost models are applied to determine the total cost. Details 
of th~ cost models are presented in Section 4.A.6. Total cost divided 
by net payload mass is the basic answer sought for each data point. 
Generally, this calculation cycle is 
for a series of values of a selected 
time). 

repeated for a range of I 's and sp 
parameter (e.g., P d' M , flight mo 0 

Since down propellant is not used for a one-way up-trip, the itera-
tive procedure is not required, and net payload is calculated directly. 
Tbe other difference for one-way trips is the lack of amortization 
of the OR". For multiple trips, a user is charged for only a fraction 
of the ORV life. However, for a one-way trip, the totnl cost is charged 
for t'.1e one trip. The specifics of the cost allocation are given in 
Section 4.A. 7. 

3. Propulsion System Performance 

The various general equations defining the performance of an EP 
system are presented in Section 3.2. The purpose of this section is to 
define the assumptions used in simplifying and applying the general 
equations to the Earth orbit cost modeling analysis. Since the cost 
modeling includes several approximations, simplifications of the per­
formance models are believed to be consistent with the overall modeling 
accuracy. 

Propulsion system total efficiency (Eq. 3-23) can be written in 
the form 

Ilps = (4-9) 
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In the cost model analysis, the following assumptions were made to 

simplif) the computations: 59 ,60 

= 0.95 

= 0.95 

= 0.95 (4-10) 

These values are representative of highly developed components (e.g., the 

30-cm Hg thruster and PPU) as might be expected from a developm~llt pro-
59,60 gram. These values are assumed to apply to 

(Hg, Xe, Kr, Ar). (This a~sumption will be shown 

all propellants cunsidered 

to be justified by the 

lack of sensitivity of cost to minor variations in performance.) Using 

the values defined by Eq. 4-10, Eq. 4-9 becomes 

= 

Total propulsion system input power, Eq. 4-7, is determined using 

relationship. The relationship between Vb and I ,Eq. 3-35, can sp 
be simplified to 

or 

(:~pr Vb = (Hg) 

= , Y (~~g , (Xe) 

= cr ~ 
140 ' 

(Kr) 

= G~gr (A} 

These relationships (solid lines) are plotted in Figure 4-4. Also 

(4-11) 

this 

now 

(4-12) 

(4-13) 

shown 

arlo ltnes of constant thruster diameter for a module power of 100 kW. 
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To determine thruster size for given beam current and beam voltage 

requirements, the considerati'lns ill.ustrated in Figure 4-5 must be 

addressed. Perveance, the proportionality b'ltween beam current and beam 

voltage, is discussed in Section 5.A. The result of that technology 

assessment was used in the cost modeling analysis in the form 

where 

= 8.19 x 10-8 D2 A- l / 2 V 3/2 
b 

D = thruster beam diameter, cm 

A = ratio of atomic mass of propellant to Hg, 

or, normalized to the 30-cm thruster, 

= 2.33 
2 (V )3/2 

Go) 10~0 A-l / 2 

= 2.33 
2 (V ~ 3/2 

(~O) 10~0 , (Hg) 

= 2.88 
2( V ~3/2 

(~O) 10~0 , (Xe) 

= 3.60 
2 (V ~ 3/2 

(~O) 10~0 , (Kr) 

= 
2 (V \3/2 

5.22 (~O) 10~riJ ,(A) 

(4-14) 

(4-15) 

As shown in Section 5.A, Eq. 4-14 assumes a net-to-total accelerating 

voltage ratio, "R", of 0.7. 

Thermal limits are established by thruster maximum operating tem­

peratures. Results of the thermal 'analysis, presented in Section 5.D, 

show that the thermal limit can be expressed in the form 

= 
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Fignre 4-5. Thruster operating limits. 
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Thus, in the process of calculating the size of modules required to 

use the selected power, Eq. 4-15 is used if the current is less than the 

thermal-limited value. For example, the cost model calculations select 

a module power and an I sp 
established. If the beam 

inequality 

for each data point. Thus, Ib and Vb are 

current found from Eq. 4-15 satisfies the 

3/2 

(
Vb) -1/2 

2.33 1000 A :s; 15 

then the perveance equation is used to determine be,am diameter. If the 

inequality is not satisfied, thrusler diameter is determined from the 

thermal limit equation. Thruster diameter as a function of I and sp 
module power is shown for argon in Figure 4-6. 

The maximum voltage limit indicated in Figure 4-5 is of practical 

significance ln developing a thruster. As shown in Figure 4-4, the 

maximum beam voltages are below 7 kV for thruster diameters larger than 

30 cm. In terms of breakdown, this voltage level may be slightly 

inconsistent with the close grid spacing assumptions used to develop 

Eq. 4-14. However, most of the calculations for the cost model involve 

lower voltages and should not prodHce breakdown concerns. 

The lower limit shown in Figure 4-5 is of little practical impor­

tance here since maximum power per module is of interest. At very low 

beam currents, thruster stability must be considered. 

Thruster life is affected by several operating conditions (e.g., 

beam current density, discharge voltage, prope~lant utilization efficiency). 

However, in developing a new thruster for a specific application, a given 

life could probably be achieved by selecting operating conditions, 
61 64 materials, and designs.' Conversely, present knowledge of thruster 

wearout life could be extrapolated to larger diameters by normalizing 

to the 30-cm beam current density. For cost model program purposes, 

two thruster life models that assume either constant life or a life 
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Figure 4-6. Thruster diameter versus I for argon. sp 
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proportional to beam current density have been formulated and described 

in the relationship 

where 

w = W = 4 or 5 for constant life 
c 

or 

w = w v = 4.4 - 1.27 log (Ieq) 

where 

I = equivalent 30-cm thruster beam current 
eq 

I = I (900) • eq mod D2 

The model for w 
v 

was based on 30-cm thruster life test results. 

(4-17) 

A third 

life model that assumes constant ampere-hour life (as used in Section 3) 

would predict lives intermediate between the constant life and the beam 

current dependent models. 

4. Redundancy 

In a typical set of cost model calculations (e.g., cost versus I sp 
as a function of module power), the number of thruster and PPU modules 

varies from point to point. To be consistent, each point in this map 

should have the same reliability. Since reliability calculations are 

somewhat more complicated than simply adding redundancy, an analysis was 

performed to assess the error introduced by using a fixed redundancy. 

Details of that analysis are included in Appendix D. The basic result 

of the analysis is illustrated in Figure 4-7. 

For reasonable assumptions on failure rate, standby redundancy, and 

operating time, reliability becomes relatively high for large numbers of 

modules. Thus, if a redundancy is selecte~ that makes the reliability 
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Figure 4-7. Reliability/redundancy results. 
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high for any number of modules, little error will be introduced by 

assuming fixed redundancy. Based on these results, a redundancy factor 

of 20 percent was used for both PPUs and thrusters. Other results shown 

in Appendix D illustrate that, even for small numbers of modules (e.g., 

25) and lower redundancy for which the reliability would be reduced, the 

final transportation cost is not significantly affected. 

5. Degradation 

The mission approach used in the orbit-raising mission cost modeling 

assumes low thrust propulsion through the Van Allen Belt. The degrada­

tion model used in sizing the solar power source is shown in Figure 4-8. 

The model 

PiN solar 

was based on published degradation factors used for silicon 
65 cells (curve A). Typically, low-thrust missions are expected 

to iacur degradations in solar array out,ut on the order of 25 percent to 

50 percent depending on the trajectory. 

Since future solar cell or design improvements may reduce degrada­

tion, two additional curves (B and C) were added to Figure 4-8 to reflect 

10 percent degradation in array output with equivalent 1 MeV electron 
15 16-2 fluxes of 10 and 10 cm , respectively. This model is also included 

in the on-orbit calculations since the long operating times may accumu­

late large dosages even though the flux rate is low. 

The power degradation factor used in the model is viewed as an 

efficiency: 

= final power 
initial power 

Thus, the power used for sizing the power source is 

= 

6. Mass Models 

(4-18) 

. Mass models for the propulsion system and ORV, as defined in Fig­

ure 4-1, are summarized in Table 4-1. In the cost model program (see 

Figure 4-3), net payload is obtained by subtracting the ORV mass from 
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Table 

M sp 

MORV 

M rt 

M rpp 

a. 
pp 

M orp 

11 rpt 

M 
rw 

M rsm 

M rss 

4-l. 

= 

= 

= 

= 

= 

= 

= 

= 

= 

H~ss Models Used in Orbit-Raising Cost Model 

M - M 
0 orv 

Mrt +M + Morp +M + M +M +M rpp rpt rsm rss rw 

2M N = 2 t ot 
(0.078 Dl • 35 ) Not 

0.001 a. P (1 + R ) pp ps p 

10 
[-0.503 J...,g (P ) + 1.153) pp 

M [1 - exp (-t:,V/g I )] 
0 sp 

a. M rpt orp 

a. (0.001 Ptot ) 
rw 

0.2 [ M +M +M +M rt rpp orp rpt 

100 [1 + 10-
6 Ptot + (Not/Nop -

6119 

the initial mass. Except for determining total propellant mass, the 

calculations do not require iteration. 

a. Thruster Mass 

The mass assigned to each thruster in the system model makes 

an allowance for gimbals and miscellaneous structures by d~ubling the 

thruster individual mass. The model for the individual th~ueter mass 

as a function of diameter is shown in Figure 4-9. A re'l~",·able fit to 

the data points is provided by 

M = 0.078 Dl •35 (D in L~) 
t 

III 
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Thruster total mass is estimated by assuming items such as gimbals and 

thruster "array" structure double the thruster effective mass. 

• (4-19) 

b. PPU Mass 

The historical curve for total PPU mass plotted in Figure 3-4 

was converted to specific mass, as shown in Figure 4-10. This curve is 

represented by the equation 

where 

a = 10[-0.503 log (Ppp) + 1.1531 (kg/kW) 
pp 

PPP = power processor input power (kW) • 

, (4-20) 

Since the model i.s only approximate, the computer program assumes 

module power, Pmod ' is equal to PPP for convenience. These powers are 

actually related by 

P mod , (4-21) 

but PPP is not calculated in the program. This results in a more con­

servative estimate for app than would be obtained if PPP were actually 

used in Eq. 4-20. Power processor total mass is then obtained from 

where app is in kilograms 

PPU redunr~ncy factor. 

= 
-3 10 app P (1 + R ) 

ps P 

per kilowatt, P ps 
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is in watts, and R 
p 

(4-22) 

is the 
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c. Propellant Tankag~ 

Propellant tankage, ircluding valves, lines, and miscellaneous 

hardware, is modeled as a fixed fraction of the propellant mass: 

where 

M = 
orp 

a = rpt 

M rpt 

tankage fraction 

= ( 4-23) 

The baseline cases use a t = 0.1. rp Sensitivity studies show that cost 

results are not sensitive to the reasonable variations in a . rpt 

d. Power Source 

Power source mass is typically considered in terms of specific 

mass (kilogra11l~. per kilowatt). Thus, 

M = rw 
(4-24) 

where 

P = total installed solar power (W) 
tot 

a = power source specific mass (kg/kW) 
rw 

For the matured Shuttle era and larg~ space systems era baselines, a's 

of 6 kg/kW and 3 kg/kW, respectively, were assumed. 

e. Suboystems 

The model used for DRV subsystem mass is 

'0+ + ,,-' '",) + (::: - 1)] M = rss (4-25) 

where the first term in brackets represents the dependence on power 

level, and the second term accounts for complexity added by PPU/thruster 

switching. In the baseline cases, N /N equals 1.0 because total trip ot op 
time is less than the thruster lifetime, and no switching is assumed. 
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f. Structure and Mechanisms 

The mass of ORV structure and mechanisms is modeled as a 

fraction of the sum of the other ORV component masses, including 
propellant: 

(4-26) 

The baseline value of 0.2 was assigned to ex throughout th;,8 study. 
sm 

7. Cost Models 

Cost models for the ORV are summarized i: Table 4-2. The overall 

objective of these cost equations is to obtain total orbit-raising 

cost, C • This totsl cost divided by the net delivered payload II 
or sp 

is the basic final product of each calculation. 

The total cost to launch and transport a given payload mass to 
orbit is expressed in the form 

Cor = Coef C1 + Crt + C opf -:. C + CR, + C , opt orp (4-27) 

where 

C oef = ORV utilization cost factor 

Cl = ORV hardware cost 

Crt = cost of 'thrusters 

C = fixed cost of flight operations opf 

Copt time-dependent cost of flip,ht operations 

CR, = launch cost to LEO 

C cost of propellant orp 

Each of these terms is defined quantitatively in Table 4-2, and each is 
, 

discussed below. Many of the subscripts are defined in Figure 4-1. 
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Table 4-2. Cost Models Used in Orbit-Raising Cost Model 

C = C oef C1 + C t+ C f + C + C~ + C 
or r op opt orp 

C = (T~TRIP) + r TOTRIP 
oef orv 

Cl = C + C + C + C + C + C + C 
I 
! 

ori rp rpt ram rss rw ord I 

• j 
C = C (Morv - M + T ) 
ori ori orp used .~ 

i 

M N tOTRIP) 1 
, 

T = + Rot 1 
used t mod Lt I 

[ 3 ~ tOTRIP) (1.47 NotO.68) 
Crt 

1 
2 42 x 10 log D L

t 
I 

I 

c 1 088 x 105 (ppp)0012 (1047 Nop0068) 
1 

= i rp j 
C = M IXpt C i 
rpt orp rpt I 

! 

• 
, 

C = M C 
orp orp orp 

• (M ) 0.3 C = C 
rsm rsm rsm 

• (M ) 0. 9 C = C 
rss rss \ rss 

• 
C - C P 

rw rw tot 

• 
(Morv 

_ M )0.3 -1 

l C = C Nr ord ord orp 

C = 105 
opf 

• 
C = C TO'l'RIP 

I opt opt 

! • 
C~ = C~ (Mo + T d) use 

C = C 1M 
or or sp 

6119 
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a. ORV Utilization Factor (C f) oe 

The ORV is considered to be a c~usable vehicle that is rented 

to a "user" for payload transport. A user utilization factor has been 

included in the form 

where 

'fOTRIP ~ 

L 
ol"V 

= 

r = 

C oef 

flight time per 

ORV useful life 

interest rate 

= (T~TRIl') 
orv 

+ r TOTRIP (4-28) 

triP 

Part of C
oef 

represents the fraction of ORV useful life (Lorv) charged 

to the user. The second part represents interest on the cost of the 

ORV during the flight. An ORV life of 2000 days and an interest rate 

of 10 percent per year were used throughout this study, 

b. ORV Hardware Cost (C1) 

This factor includes recurring costs and development costs 

amortized over a given fleet of ORVs. 

= C +C +C +C +C +C i+ C d rp rpt rsm rss rw or or 
(1.-29) 

where 

C = cost of PPUs 
rp 

C = cost of propellant tankage 
rpt 

C rsm = cost of structure and mechanisms 

Crss 
cost of subsystems 

Crw = cost of power source 

C = cost 
ori 

of ORV integration and testing 

C = ord 
cost of design,' development, test, and evaluation (DDT&E) 
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Thrusters, propellant, md operations are not included in C
I 

because they 

are the components that are worn or fully used each trip. These costs 

are calculated separately. 

c • Thruster Cost (C ) 
rt 

The relatively large systems being considered require a large 

number of thruster and PPU modules. The thruster cost model assumes 

that a mass-production type fabrication approach will be used to reduce 

costs. Furthermore, thruster costs are modeled by a learning curve, in 

which the unit cost decreases as quantity increases in the form 

where 

C' 
rt 

Ct = 

2C' [1 rt 
_1 1 (TOTRlP) ... + CL L 
N t 

first unit cost 

learning curve parameter 

thruster life (hours) 

I if (TOi:IP) < 1 

at 

(4-30) 

The last term in Eq. 4-30 is th", fraction of thrusters worn out allhough 

this wear is distributed among many thrusters. A user only pays for 

those used. The factor of 2 in Eq. 4-30 is included to account for gim­

bals, structure, and other miscellaneous costs associated with the th.us­

ters. All results were obtained using an 80 percent learning curve, 

giving a = 0.34. This means that the unit cost is reduced by 20 percent 

each time the quant:i.ty doubles. For instance, if the lOath unit costs 

$100, the 200th unit will cost $80. Since the summation in Eq. 4-29 is 

inconvenient, an approximate equation was derived in the form 

2C' rt 
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Thruster first unit cost was obtained from Figure 4-11, which displays 

current thruster costs and a projection for future costs. The rationale 

used for reducing cosLs is th2t future systems for Earth orbit missions 

will allow reduced fabrication tolerances and greater performance dis­

persions. The close tolerances of present thrusters contribute signifi­

cantly to cost. Using the equation that fits the projected thruster 

cost in Figure 4-11, Eq. 4-31 becomes 

= 

where D is in cm. 

2 (4.2 x 104 Ilg D) (1.47 N
O

•
68

) ot 

d. Power Processing Unit Cost (C ) rp 

(4-32) 

PPU cost is modeled similarly to the thruster using an 80 per­

cent learning curve. The first unit cost was derived by fitting a curve 

to cost data for 8-cm and 30-cm PPUs. The PPU cost is then expressed as 

C = 1 88 x 105 {P )0.12 (1.47 N 0.68) 
rp· pp op 

(4-33) 

where 

P = power processor input power. 
pp 

e. Propellant Cost (Corp) 

Propellant costs are assumed to be proportional to propellant 

mass: 

= C' M orp orp 
(4-34) 

where 

C' = cost per unit mass 
orp 

= $0.4/kg for baseline 

f. Propellant Tankage Cost (Crpt ) 

Tankage costs are assumed to be proportional to tankage mass 

using Eq. 4-23 

120 



I 
J 

j 

J 

~ 
",' 

w 
I­
w 

~ 
i5 

'" w 
Iii 
:::l 

'" :I: 
I-

1000 

100 

10 

o 

7254-43 

\; J..... 
, "-ANALYSIS 

FABRICATION / ASSUMPTION 
TOLERANCES~ 

LOOSER 

/ 

/ 
42 LOG100--/ 

TIGHT 
FABRICATION 
TOLERANCES 

/ 

/ 
/ 

/ 
/ ......... .. 

BO 100 120 140 

Figure 4-11. Thruster first unit cost • 

. " 
121 

•• 

i,.... I • " 

1'.';~~·"Ii'· _______ Ii'IiI-'r_~tiot _'ii·IIi·7i1·Iii'lilitill~ tlillJlllidilliiftliri'IIISIiIiIli-.1III"iII;'Yii;·illu .... , OIl' """.7 ... "t_ ........... "_,.." ... "' ....... ~,._ .............. ""~,, .. _',,_, , .... ' 

J 

i 
I 

j 
1 
j 
I 
j 

i 
I 
i 

I 

1 , 



where 

C rpt 

apt 

g. 

C = C' a M 
rpt rpt pt orp 

= tankage cost per unit mass 

= $lOO/kg for baseline 

= tankage factor 

= 0.1 for baseline 

Structure and Mechanisms Cost (C ) 
rsm 

The structure and mechanisms cost model was derived from 

consideration of past vehicle costs and has the form 

= C' (M )0.3 
ram ram , 

where 

C' = 10
4 

$/kg for both baselines. rsm 

(4-35) 

(4-36) 

Since the details and complexity of these elements would affect their 

costs, any general model necessarily must be rather arbitrary. However, 

using the model, the sensitivity of overall transportation cost to 

variations in structure and mechanisms cost can be evaluated. 

h. Subsystems Cost (C ) 
rss 

As with structure and mechanisms, the ORV subsystem cost will 

be highly dependent on design details. Again, through discussions of 

various programs, th~ following model was assumed: 

C = C' (H ) 0.9 
ras rss rss (4-37) 

where 

C' = 
rss 

4 
10 $/kg for both baselines. 

Compared with Eq. 4-35, the difference in the exponents reflects the 

differences in complexity. If the size of a structure is increased, the 

cost is probably not too strongly affected. However, with electronics, 
increased mass certainly means increased cost. 
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where 

i. Power Source Cost (C ) 
rw 

Power costs are modeled in the conventional form 

C = C' P rw rw tot 

C' = cost per unit of power rw 
= $0.5/W (large system baseline) 

= $lOO/W (Shuttle era baseline) 

(4-38) 

Tne $lOO/W value is only a slight reduction from present technology and 

is consistent with goals for solar power source development. The $O.5/W 

is about three orders of magnitude less than current technology. How­

ever, such low power costs will probably be necessary to make a large 

space system economically viabl~ (independent of SEP). 

j. Integration and Test Cost (C i) or 

This factor is intended to account for ORV recurring costs for 

assembly and testing. It is assumed that a fleet of ORVs would be 

produced in a time sCr',le consistent with production-line assembly. The 

cost of such assembly is modeled in the form 

where 

C' ori 

T 
used 

c = C' (11 - M + T ) ori ori orv orp used (4-39) 

cost of integration per unit of ORV dry mass 

mass of thrusters worn out during one round trip 

(
TOT RIl?) ( ) MN --- l+R t mod L

t 
t 

By including factors for thruster wearout, the user pays only for the 

thrusters used (see Eq. 4-30), but must pay for the future installation 

of new thrusters. 
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k. Design, Development, Test, and Evaluation 

Design, development, test, and evaluation 

(C d) or 

(DDT&E) costs are 

included in the model for completeness in the sensitivity analysis. Thl! 

form of the relationship, 

= 
C' 

ord (M _ M )0.3 
Nr orv orp (4-40) 

is similar to that used for structure and mechanisms. Using the rela­

tively small exponent seems appropriate since C d should depend on mass or 
and complexity, but significant non-engineering costs should be largely 

independent of mass. The other parameters in Eq. 4-40 are defined as 

follows: 

C· = 
ord 

DDT&E cost coefficient 

= $10
5 

$/kg for both baselines 

N = number of ORVs over which DDT&E costs should be amortized 
r 

1. 

10 for both baselines 

Flight Operations Costs (C ,C ) opp opt 

These cost factors arise from the philosophy that an SEP ORV 

flight would incur both fixed costs (similar to those for a ballistic 

transfer) and time-dependent costs due to the multi-month duration of 

the flight. For both factors, it is assumed that only the efforts 

directly related to the ORV (i.e., not the payload or launch vehicle) 

should be charged to ORV cost. Thus, the following values were used 

throughout: 

m. Launch Cost (C~) 

Copf 

C opt 

= 
(4-41) 

= 

This element accounts for the eost of launching the initial 

mass from Earth to LEO and thruster refurbishment. The model for C~ has 

the form 

C~ = (4-4n 
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where 

C' ; cost per unit mass 
Q, 

; $300/kg for Shuttle era baseline 

= $lS/kg for large system baseline 

For the multiple round trip mode, the results are conservative because 

the full launch cost was charged to each launch. The $300/kg value is 

based on a possible reduction in current Shuttle projections of $SOO to 

$800/kg. The $lS/kg is based on launch cost estimates developed for 

heavy lift launch vehicles. Overall cost sensitivity studies for each 

of these quantities are presented in Section 4.A.8. 

8. Orbit Raising Large System Raseline Mission Results 

Cost model program results are structure~ around the two baselines 

selected to represent near future applications (matured Shuttle era) and 

late 20th century applications (large space systems era). For each 

baseline, a set of parameters required by the computer model was 

selected. Computer runs using variations around this baseline set of 

parameters were then performed to study the sensitivity of the results 

to various assumptions. 

Recall that the goal of this part of the work is to identify 

thruster characteristics and tqruster technology options that have sig­

nifica.-t impact on transportation system overall cost. Although the 

model incorporates many anticipated technology limits (e.g., thermal, 

ion optics), the sensitivity studies also include parameter variations 

that might require violation of presently expected limits. Thus, inter­

pretation of the final results in terms of new directions in technology 

will require certain qualitative judgements to temper the "black or 

white" computer answers_ 

Initially, the cost model analysis was directed only toward large 

space systems. Later, the Shuttle baseline was included to provide a 

link between the present potential applications of the 3D-em thruster to 

relatively small satellites and to far future systems of the solar power 

satellite type. Many of the parameters studied in the large system base­

line sensitivity analysis proved to be relatively unimportant. Thus, 
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the number of runs n~eded for the Shuttle baseline analysis was signif­
icantly reduced. For convenience in presenting the results, the large­
system basehne is discussed first; the Shuttle baseline follows, draw­
ing on similarities with the large system baseline to reduce duplication. 

To simplify the designation of the baselines and to distinguish 
between various orbit raising and on-orbit missions, the following 
ubbreviations are used: 

O~ orbit-raising (transfer) mission 
ORS ; self-powered orbit-raising mission 
ORP = payload powered orbit 

ORO = one-way orbit-raising mission 
00 = on-oroit mission 

LS = large space system era baseline 
MS matured Shuttle era baseline. 

Withir. the ORILS category, there are three modes (see Section 4.A.l): 
self-powered, payload powered, and one-way. For these, an additional 
descriptor is used, as indicated above. The self-powered mode is used as 
the baseline, and most sensitivi<ies were investigated using ':his mode. 

a. Large Space Systems Era Baseline 

A summary of the large system baseline paramete:.: values is 
shown in Table 4-3 for use with the mass and cost equations listed in 
Tables 4-1 and 4-2, respectively. All of these parameters were pres-
ented in previous sections. The selection of these particular values 
Was accomplished through discussions with NASA LeRe personnel and 
reviews of preliminary results. Argon propellant was assumed because 
of the large quantities required. 

The results obtained with the computer cost model are catego­
rized as indicated in Table 4-4. The general category presents the 
baseline results and several breakdowns of mass and cost to show the 
contributions of the various model elements. The other categories were 
selected for the sensitivity studies. In each case, the parameter of 
interest is varied about the baseline value with all other parameters 
fixed. The results are presented below by category. • 
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Table 4-3. OR/LS Baseline Cost Model Parameters 
Argon Propellant 

P mod 

Lt 

I1V 

t f 

M 
a 

Flux 

Curve 

LORV 

C' . 
on. 

C' rw 

C' 
rt 

C' 
rp 

R 
op 

C' 
rpt 

apt 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

100 kW 

104 hr 

6 km/sec 

150 days 

106 kg 

10 15 

"e" 

2000 days 

$1O/kg 

$0.5/W 

$4.2 x 103 log (D) 

$4.3 x 105 (P )0.1:> 
pp 

0.2 

0.2 

$100/kg 

0.10 

C' = $.40/kg 

$103/day 

orp 

C' = 
opt 

C rsm $104 (M ) 0.3 
rsm 

C 
ord 

6 
= $4 x 10 (M -M )0.3 

. 10 orv orp 

C rss = 1 x 104 (M ) 0.9 
rss 
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Module power (beam) 

Thruster life 

Velocity change 

Up trip flight time 

Initial mass in LEO 

Radiation flux 

Radiation model 

Life of ORV 

ORV integration and testing 

Cost of ORV associated power 

First unit thruster cost 

First unit PPU cost 

PPU redundancy 

Thruster redundancy 

Cost per kg of tankage 

Tankage factor 

Propellant cost per kg 

Time-dependent cost 

Cost of ORV strncture and 
mechanisms 

DDT&E cost amortized over 
10 ORVs 

Cost of ORV subsystems 

_"Ii •. '. 
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Table 4-3. OR/LS Baseline Coat Model Parameters (Continued) 

C opf 

(l 
ps 

C ' 
~ 

r 

= 

= 3 kg/kW 

= $15/kg 

= lO%/yr 

b. OR/LS General Results 

Cost not associated with 
electric ORV 

Specific mass for power 

Launch cost per kg to LEO 

Interest rate 

6119 

The typical data format and results for the baseline condi­
tions are presented in Figure 4-12. The 100-kW curve represents the 
baseline case, while the other module power curves show the general 
cost trends with module power. Line.s of constant thruster diameter 
imposed on the power curves indicate the general relationship of size 
to cost and I • Unless otherwise marked, all data was developed using sp 
the baseline parameters. 

The shape of the curves in Figure 4-12 is the result of 
changes in many parameters. Figures 4-13 through 4-16 are provided to 
aid in the interpretation. Breakdowns of the cost model and mass model 
elements as a function of Isp are shown in Figures 4-13 and 4-14, respec­
tively. In addition, plots of total cost and of cost per kilogram as a 
function of payload mass are presented in Figure 4-15. An additional 
aid in interpreting Figure 4-12 is the number of thruster modules (Not) 
required, as 

At 

is primarily 

Figure 4-15, 

shown in Figure 4-16. 
low I sp ' the steep slope of all the curves in Figure 4-12 
due to the rapidly increasing payload. Sincp, dS shown in 
total cost is relatively constant, the reduction in payload, 

rlue to increases in other masses as I decreases dowinate the low I sp sp region. (Payload is derived by subtracting the ORV mass and propellant 
from the initial mass in LEO.) The mass elements that increase Wi~;, 
decreasing 

and down), 

I are, as shown in Figure 4-14, thrusters, propellant (up sp 
and structure and mechanisms. Structure increases because 
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Table 4-4. Data Run and Sensitivity Study Categories,OR/LS Baseline 

1. General 

Cost/kg versus Isp; Pmod 
Cost breakdown 
Mass breakdown 
Cost/kg versus payload mass 
Number of modules 

2. Mission design sensitivites 

t.V 
Trip time (up-trip) 
Initial mass 
Launch cost 

3. Thruster sensitivities 

Life 
Efficiency 
Mass 
First unit cost 
uRn ratio 
Redundancy 

4. Propellant sensitivities 

Type 
Cost 

5. PPU sensitivities 

Mass 
First unit cost 
Redundancy 

6. Power source sensitivities 

Mass 
Cost 
Degradation 

7. ORV system design sensitivities 

Structure and mechanisms 
Subsystems 
Illtegration and testing 
Df·TlioE 
Flight operations 

8. Payload powered options (ORP) 

Power fraction 

9. One-way trip options (ORO) 

t.V 
Trip time 
Initial time 
Launch cost 

ii' 

6119 

"" .• j i. 'W,·I: ,. "_~~'~ .a. "X n ,r e' T? :.:~.'. hriV%'~ ~ ~ ... 



"0 

'" o 

'E-
"­.... 
o 
C> 

"'" .. 
OJ 
Cl. 

'" ... 
'" 8 
c 
o 
.~ ... 
~ .. 
8. 
'" c 
~ 

>--

SYMBOL 

+ 
o 
~ 

THRUSTER 
DIAMETER 

30 em BASELINE 
60 

100 
150 

LEGEND APPLIES TO ALL 
FIGURES IN SECTION 4 

-... -

7254-404 

p = 20 kU mod 

50 _ 
-- 100 

00 _ 
500 

lu L-____ ~~----_;------_+------~------~------+_ 
3 6 9 12 15 III 

-3 
Isp x 10 ,sec 
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the model assumes a proportionality to total ORV mass which increases 

rapidly as I decreases. sp Another significant point is illustrated in 

Figure 4-16. In the low I area, large thruster diameters are sp 
required, even for the 20-kW and 40-kW modul~s. Since a thruster diam-

eter of less than 100 cm would be desirable, al:d since the number of 

modules is high (500 to 1000) for low module power, a 100-kW module for 

the baseline is reasonable. 

Hoving to the high I end of Figure 4-12, total cost (Fig-sp 
ure 4-13) is increasing while payload mass (Figure 4-14) is decreasing. 

The basic cause of both of these changes is the increased power associ­

ated with higher I • sp Even with the low cost of power assumed for the 

baseline, raw power and PPU costs are important at 

The most cost-effective range of I sp for 

high I sp 
the ORS/LS baseline 

is from about 4,000 to 10,000 sec (Figure 4-15). The transportation 

cost per kg of payload decreases rapidly as I sp increases to 6000 sec. 

As explained above, this occurs because payload mass is increasing rapidly. 

At higher values of 

because the payload 

I ,the specific cost increases again. sp 
mass is nearly constant while the costs, 

This occurs 

mainly for 

power and PPU, are increasing. Similar comments apply to the total cost 

as a function of payload mass. At the low end of this range, relatively 

large diameter thrusters or low-power modules would be needed. However, 

substantial cost penalties are incurred at low module power. The region 

arol,nd 8, 000 to 

gooe. conr;)romise 

9,000 sec I and a module power of 100 kW provides a sp 
between low cost and thruster diameter. Lower module 

power would allow smaller diameters, but at a higher cost. Higher 

moo.lle power would reduce costs, but would require larger diameters; 

mod1lles of even 100 kW will present a challenge for test facilities. 

These preliminary conclusions will be discussed further in light of 

the sensitivity results presented below. 

c. Hiss:lon Design Sensitivities 

T~.0 sensitivities reported in this section are for variations 

around the baselIne self-powered rOJnd-u"i.p mission. Other mission 

options are presented in Section 4.A.8.i. The s"nsil:ivities to mission 

IW, trip time iT,itial mass in LEO, and launch cost can be summarized 

as follows: 
135 
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6V Sensitivity. The transportation cost sensitivity to vari­ations in mission velocity requirements (6V) is shown in Figure 4-17 to be about $5/kg per km/sec at 9000 sec. This trsnslates into a cost of $4 x 106 per km/sec for a payload of 8 x 105 kg. 

Trip Time (Up-Trip) Sensitivity. As Figure 4-18 shows, trans­portation cost is relatively insensitive to trip times longer than 100 days. Short trip times require that a larger frac­tion of the initial mass be devoted to propulsion and cost per kilogram of payload increases. In the 50 to 100 day interval, at 9000 sec, the sensitivity is approximately 0.2 $/kg day. With a payload of 8 x 105 kg, the cost of reducing trip time below 100 days would be about $1. 6 x 105/day. There is obvi­ously a large incentive for allowing more leisurely trips. 
Initial Mass (in LEO) Sensitivity. The rather significant effect of initial mass is illustrated in Figure 4-19. Quanti­tative senRitivities will not be assigned for this case because of the nonlinear variations. This behavior occurs because of certain fixed costs and costs that do not scale linearly with masS. However, it can be shown that the abso­lute cost sensitivity (i.e., $/kg of payload) to variations in initial mass increases with decreasing payload. 

• Launch Cost Sensitivity. A major cost sensiti\ity factor is the cost of launch from Earth to LEO. As Figuce 4-20 shows, the sensitivity to variations in Ci is about 1.3 $/kg (payload) per $/kg (initial mass) of launch cost. Since launch cost is a dominant factor, as shown in Figure 4-13, the results will be extremely sensitive to this value. Although increasing Ci shifts the curves to higher levels, the basic curve shape changes only slightly. (This is also generally the case for 6V, Mo, and t f .) This fact is important in assessing the impact on thruster technology (i.e., recommended thruster size). 
d. Thruster Sensitivities 

The factors listed in Table 4-4 represent the major variables related to thruster technology. Note that all the parameters in the cost model are fixed, while the variable being considered is changed. Thus, all the perturbations (except for category 8 in Table 4-4) are relative to the 100-kW curve in Figure 4-12. Sensitivity to thruster related variables are summarized below: 

• Thruster Life. This sensitivity is shown in Figure 4-21 for two constant life models and a beam current density dependent model (see Eq. 4-17). Changes from the 104 hr baseline to longer life have essentially no effect on cost; shorter lives, as implied by the beam current dependent model, have an effect above 6000 sec. . 
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As an example of the sensitivity of cost to lives shorter than 
104, consider the baseline region discussed in Section 4.A.8.b. 
At 9000 sec, the 10d-kW module has a diameter of about 55 cm and 
beam conditions of 50 A at 2000 V (see Figure 4-4). With the 
beam ~urrent dependent model, a life of about 815 hr is pre­
dicted. Since the cost difference is about $8/kg, the ratio 
of cost change to life change is approximately 9 x 10-4 
$/kg/hr of life. Thus, for a typical payload of 8 x 105 kg, 
the absolute ratio would be '" $700/hr. Ir, other words, in 
developing a new thruster for the ORL/LS "!' '.icaUon, if the 
cost to achieve thruster lives longer than'" 1000 hr is less 
than $700/hr, the increade would be cost effective. Since 
this ratio is notllinear and is probably substantially less 
near 104 hr, a life goal of a few thousand hours would prob­
ably be reasonable. The main point to ~e made is that 
thruster lives of a few t.housand hours are quite acceptable 
for the assumed application. 

• Thruster Efficiency. Cost sensitivity to thruster (or system) 
efficiency is shown in Figure 4-22. The baseline efficiency, 
as discussed in Section 4.A.3, is only moderately optimistic. 
It assumes that electrical losses, utilization efficiency, 

• 

• 

and correction factors can be maintained at the same values 
as for tha present 3D-cm thruster with a 2 A beam. At higher 
beam current densities, measured utilization increases while 
the correction factors decrease, tending to r-coduce a constant 
total efficiency. The probability is low for achieving effi­
ciencies higher than the moriel predids. The probability is 
moderate for slight reductions in the morlel predictions. But 
the probability is low for efficiencies significantly lower 
than predicted. 

Thus, the results indicated in Figure 4-22 show that system 
cost should not be too sensitive to reasonable changes j,n 
efficiency. More specifically, efforts to increase efficiency 
are not warranted, and minor reductions from the predicted 
values will not substantially affect cost. 

Thruster Mass. Cost sensitivity to thruster mass is shown in 
Figure 4-23. Except at low I sp ' thruster mass variations 
from 0 to 200 percent of the baseline value have lirtle impact 
on total cost. Such an effect is explained by the small frac­
tion thrusters contribute to ORV total mass. In developing a 
new thruster, mass could be traced for other factors such as 
larger fabrication tolerances, lower cost, or increased life. 

Thruster Cost. The sensitivity to thruster first unit cost is 
shown in Figure 4-24. Small variations around the baseline 
have little impact on transportation cost, although signifi­
cant increases in cost would begin to be important. 
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• Ion Optics "R" Ratio. The R ratio, defined as the ratio of 

• 

e. 

beam voltage to total voltage, plays a role in defining per­veance. At a fixed beam voltage and thruster diameter, the beam current that can be drawn from a given thruster varies inversely with the R ratio to the 3/2 power. As shown in Figure 4-25, even with ratios as low as 0.4 (0.7 is typical), transportation costs are not strongly affected. The major effect is in thruster diameter, since the power (thrust) per unit area also varies inversely with the R ratio to the 3/2 power. 
Thruster Redundancy. The baseline redundancy used in the cost model is 0.2. Variations from 0 to 2.0 (200 percent redun­dancy) have, as illustrated in Figure 4-26, only a minor effect on cost. Thus, the ORV can be designed to meet any given reliability requirement with little impact on cost (particularly since 0.2 provides good reliability). 

Propellant Sensitivities 

Two propellant parameters were investigated: propellant type llnd propellant cost. Propellant tankage mass and tankage cost sensitiv­ities were omitted because tankage mass :I.s such a small fraction of ORV mass (see Figure 4-14) that even large variations would not affect transportation cost. 

(1) Propellant Type - Four propellants (argon, krypton, xenon, and mercury) were considered, as shown in Figure 4-27. Although the same cost was used for all propellants in Figure 4-27, the lack of sensitivity to type is valid. The $0.4/kg cost is representative of argon but is low for the other propellants. With higher costs for He, Xe, and Kr, the cost curves will compact even more. The primary difference between the various propellants is thruster diameter at a given I if module power is fixed. sp For a ,constant: module power of 100 kW, the I for 3 30-cm thruster would rangG from about 16,000 sec sp 
with argon to about 7,000 sec with Hg as shown in Figure 4-4. Propellant choice must be made on a basis other than its impact on transportation cost (e.g., environment, availability, thruster development, or packaging) • 
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(2) Propellant Cost -The transportation cost sensitivity to 

propellant cost per kilogram is shown in Figure 4-28 for argon. For 

I 's in the range of sp 3,000 to 9,000 sec, propellant cost can affect 

transportation cost. However, for I 's greater than 9,000 sec, the sp 
dependence on propellant cost is rather small and should not influence 

ORV or propulsion system design. 

f. Power Processing Unit Sensitivities 

The variables considered in the PPU study include specific 

mass, cost, and redundancy. PPU life was assumed to be long compared 

with ORV life, and wearout is negligible. In addition, PPU efficiency 

was omitted since the sensitivity result would be similar to that shown 

in Figure 4-22. 

(1) PPU Specific Mass - The results presented in Figure 4-29 

indicate that mass decreases from the baseline would not significantly 

reduce transportation costs. However, large increases in mass from the 

baseline would have a major impact. In the region of 9,000 sec, the 

transportation cost sensitivity is about $3/kg/unit change in a (base­
pp 5 

line value at 100 kW is 1.4 kg/kW). Thus, with a payload of 8 X 10 kg, 

the sensitivity is about $2.4 X 
6 10 per unit change in ex pp Such sen-

sitivity .'ould probably provide incentive to maintain low specific mass 

or to reduce specific mass if initial developments are significantly 

higher than the baseline. 

(2) PPU Cost - The importance of PPU first unit cost is 

shown in Figure 4-30. At 9,000 ~ec the sensitivity of transportation 

cost to PPU cost is about $0.07/kg/percent change in PPU unit cost. 

In absolute terms with 8 X 105 kg of payload the sensitivity is about 

$5.6 x 104 per 1 percent change in PPU cost. Since the PPU cost model 

is probably accurate only within a factor of two (i.e., from 1/2 to 2 

times the model estimate), a 100 percent increase in PPU cost would be 

quite significant. 
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(3) PPU Redundancy .- The effect of PPU redundancy is more 

dramatic than for the thruster, as ahown in Figure 4-31, since PPU cost 

represents a larger fraction. However, with reasonable redundancy fac­

tors (i.e., less than 1.0), transportation cost will not be affected 

significantly. 

g. Power Source Sensitivity 

Power source mass and cost are among the most sensitive param­

eters in the present cost model as well as in essentially all SEP appli­

cations. These factors and degradation are considered here. However, 

under category 6 in Table 4-4, other power sensitivities are presented. 

(1) Power Source Specific Mass - As indicated in Eq. 4-24, 

solar power source mass is the product of specific mass (kg/kW) and 

total installed power (for propulsion). Transportation cost sensitivity 

to specific mass is shown in Figure 4-32. Current technology is about 

15 kg/kW, but projected advances from the literature were assumed in 

selecting the 3 kW/kg baseline. Using the 9,000 sec point again as a 

reference point, the transportation cost sensitivity is about 4 to 5 $/kg 

per unit increase is specific mass. With a payload of 8 x 105 kg, the 

sensItivity is $30 to 40 x 106 per kg/kW. Clearly, there is a strong 

incentive to minimize power source specific mass. 

(2) Power Source Specific Cost - Sensitivity to power source 

specific cost ($/kW) is shown in Figure 4-33. Although the baseline of 
3 $0.5/W is about a factor of 10 less than current costs, :3tudies of large 

power systems project such substantial reductions in the next few decades. 

The sensitivity at 9,000 sec is about 5.5 $/kg per unit change in power 
6 cost, or $44 x 10 per $/W of power. This extreme sensitivity places a 

large premium on low-cost power for this appJication. 
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(3) Power Source D~:gradation - It is assumed that the power 

source utilizes some form of photovoltaic conversion. In raising the 

orbit through the Van Allen belt, degradation may occur depending on the 

array design and on projected improvements in cell technology. The 

impact of degradation for two equivalent flux levels is shown in Fig­

ures 4-34 and 4-35. As defined in Section 4.A.5, curve I\. is representa,. 

tive of current technology, while curves Band C are assumed parametric 

improvements. At the 9,000 sec point, the sensit tvities are "bout 0.3 

and 0.5 $/kg per 1 percent change in degradation at 1015 and 1016 equiv­

alent flux, respectively. These convert to absolute sensitivities of 

$2.4 x 105 and $4 x lOS, respectively, per 1 percent change Ln degrada­

tion. Although improvements in degradation are not quite as beneficial 

as cost or mass improvements, costs in the range of $2 to 8 x 106 would 

be incurred if degradation followed curve A or B rather than the assumed 

baseline. 

h. ORV System Design Sensitivities 

This category includes some of the system factors that WOUL~ 

go into developing and building an ORV, as indicated in Table 4-4. Since 

most of the values selected for t~.ese factors are rather arbitrary, the 

main importance of this particular set of results is in assessing which 

factors might have the most influence. With such sensitivity informa­

tion, a more logical or balanced direction of thruster technology can be 

chosen. 

(1) Structure and Mechanisms SensiUvity - As Figures 4-36 

and 4-37 show, within reasonable bounds, structure and mechanisms param­

eters (C' and 0 ) have little effect on transportation cost. Comb in-
rsm 8m 

ing high mass fraction and high sPGcific cost would have a greater 

effect but would not greatly influence the curve shape or thruster 

selection: 

(2) S"',systems Sensitivity - Because of the large exponent 

used in the subsystems cost model (see Eq. 4-37), subsystem cost can 

strongly affect transportation cost, as shown in Figure 4-38. Again, 

the shape of the curves is not greatly affected over a rather large 
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range of specific costs (C' ), and thruster selection will not be rss 
influenced. However, this sensitivity shows that ORV electronics com-
plexity should be minimized. 

(3) ORV Integration Sensitivity - In the range of C' i from or o to $100/kg, transportation cost is not strongly affected, as Fig-
ure 4-39 shows. As a figure of merit for assembly-line-type operations, 
automobiles are probably assembled for about $1/kg. The baseline 
selected was an order of magnitude greater, but even costs up to $100/kg 
would have only a minor effect on total cost. However, a more significant 
impact would be introduced if integrstion and testing exceeded $lOO/kg. 

(4) DDT&E Sensitivity -Design, development, test, and evalua­
tion are always a large program cost factor. However, as shown in Fig­
ure 4-40, unless the coefficient C' d is raised, and the number of or 
vehicles is reduced, each by an order of msgnitude, DDT&E is not a large 
influence ~n overall transportation cost. 

(5) In-Flight Operations Sensitivity - Operations cost param­
eter results are shown in Figures 4-41 and 4-42. As Figure 4-4i shows, 
fixed operations costs above $106 would be needed to greatly change the 
results. For time-dependent costs, the daily rate would have to exceed 

'$104 to have an impact. Since a man-day might conservatively cost $400, 
$104 would imply 25 people/day or about 8 people on 3 shifts. It seems 
unlikely that a significantly greater number would be necessary on a 
continuous basis. 

1. Payload Powered Option Sensitivities 

The results presented thus far have assumed the self-power 
(ORS) option discussed in Section 4.A.1. The option considered here 
involves using power from the payload (e.g., a power satellite segment) 
for the up-trip, but using ORV power for the down-trip (ORP option). In 
this option, a fraction of the up-trip power (calculated as before) is 
assumed for the down-trip. The ORV was charged (mass and cost) only for 
this fraction. Then, the down-trip time is dependent on the available 
power. Three cases for this option follow. 
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(1) Baseline ORP Power Fraction Sensitivity - Results for the ORP baseline conditions are shown in Figure 4-43. Down-trip powers from 10 percent to 100 percent (ORS baseline) of the up trip were assumed. The total transportation cost is minimized with a fraction of about 50 percent, and is highest at 10 percent. The 50 percent fraction reduces the ORV power source mass and cost, and increases payload. Down­trip time increases, but only about 50 percent. At low fractions, down­trip time becomes extrern~ly long, and so time-dependent factors become important. In the I range of interest (8,000 to 12,000 sec), this 
sp option has only a slight advantage (1 to 2 percent) over the ORS option. (2) ORP Power Fraction Sensitivity with Heavy Power Source -In this case, the power source 

with 3 kg/kW in the baseline. 

mass is assumed to be 10 kg/kW compared The results shown in Figure 4-44 indicate a slight shift from the results in Figure 4-43. The benefit to the ORV of not being charged for the heavy power source shifts the "optimum" fraction toward the 25 percent level. 
fractions reduce transportation cost, 

However, except at low I ,all sp particularly at high I . sp (3) ORP Power Fraction Sensitivity with High-Cost Power Source - Results similar to those in previous figures are presented in Figure 4-45 for power costs of $5/W (10 times the baseline cost). The minimum transportation cost occurs with a fraction of about 50 percent, but all fractions reduce cost compared to the baseline. Considering the resuits of Figures 4-43 through 4-45, higher costs would tend to make the ORP option even more cost effective than the ORS option. j . One-Wa~ Tri2 02tion Sensitivities 
The third mission option (ORO), one-way trips from LEO to higher orbit, allows the ORV to remain with the payload on orbit. Since the ORV cost is then charged to a single trip, the transportation cost is higher than for multiple trips. One-way trip sensitivities are pre­senten for ~V, trip time, initial mass, and launch cost; in each case, the benefit of including the power source in the payload is assessed. 
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(1) ORO AV Sensitivity -- Cost sensitivities are presented in Figures 4-46 and 4-47 for AV for ORV-supplied power and payload-supplied power, respectively. The difference between the two ORO modes varies from about 20 percent at 4 km/sec to about 50 percent at 10 km/sec, with the self-powered costs being greater. The difference between the ORS option (Figure 4-17) and the ORV-powered ORO option is about a factor of 3.5 in transportation cost. Thus, the reuse capability of ORS has a substantial cost benefit. 

(2) ORO Trip Time Sensitivity - Cost sensitivities to trip t1,me for the two power source cases are shown in Figures 4-48 and 4-49. For trips of 100 days or more, the differences are of the same magnitudes descr:l,bed for AV sensitivity. However, for a 50-day trip time, in the ORV-powered mode, the one-way trip cost increases significantly (to ~ 7.5 times the ORS cost of Figure 4-18). This different nature for low trip times is associated with power, as illustrated by the comparison between Figures 4-48 and 4-49. 

(3) ORO Initial Mass Sensitivity -The cost sensitivity to initial mass variations for the two ORO-powered modes are presented in Figures 4-50 and 4-51. The difference between the ORS option (Figure 4-19) and the ORO ORV-powered option is about 3.5 to 4.0. However, between the ORO modes, the payload-powered mode is only about 10 percent cheaper at 104 kg, but is about 40 percent less at 10 7 kg. 

(4) ORO Lau"~.h Cost Sensitivity - Cost sensitivity to launch cost is shown in Figures 4-52 and 4-53 for the ORV-powered and payload­powered modes, respectiviely. A comparison of Figures 4-20 and 4-52 shows that the one-way trip be~omes about 3 times more expensive for the baseline value. If power is charged to the payload (Figure 4-53), the transportation cost will be about 10 percent less at $lOO/kg and 30 percent less at $l/kg than the self-powered mode (Figure 4-52) • 
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9. Orbit Ralsinlij/Shuttle Era Baseline Mission Results 
The MS era baseline is intended to provide a link between present 3D-cm projected applications and LS applications, which are probably several decades away. The differences between th~ LS and MS bahelines are characterized by the seven parameters listed in Table 4-5 with all other valu"s as defined in Table 4-3. The new values were selected on the basis that (1) power technology would be less advanced than that projected for the LS baseline, (2) launch would utilize the shuttle (this limits the initial mass to about 25,000 kg and increases the specific launch cost), (3) for smaller systems, lower power modules should be considered, and (4) the ORV fleet size would not allow production-line assembly, which would raise integration costs. 

a. OR/MS General Results 

The general characteristics of the OR/MS baseline results are shown in Figures 4-54 through 4-5S. The effect of module power is shown in Figure 4-54 for the range from 5 to SO kW. The most obvious change from the OR/LS results shown in Figure 4-12 is the order of mag­nitude shift in transportation cost to about $l,OOO/kg. Other differ­ences include reduced sensitivity to module power level and increased slope to the right of the cost minima. With Xe for a propellant, reason­ably siz~d thrusters (i.e., diameters of less than 100 cm) are closer to minimum cost than with argon. At about 5,000 sec, a SD-kW, 60-cm thruster would be close to optimum. Although the sensitivity to module size appears to be small, the compressed logarithmic scale is deceiving. In the region of minimum cost, the sensitivity is about $0.44/kg per cm of thruster diameter. For a payload of lS,OOO kg (Figure 4-56), the absolute cost is about $S x 104/cm. Thus, the difference between a 3D-em and a 6D-em thruster produces a transportation cost difference of $2.4 x 106 ; the cost difference is about $5.4 x l06 for a 3D-cm to 10D-cm 
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Table 4-5. OR/MS Baseline Cost Model. Parametersa 

P mod = 20 kW Module power 

M • 25 x 
0 

103 kg Initial mass in LEO 

C' = $40/kg ORV integration and testing ori 

C' - $lOO/W Cost of ORV associated power rw 

a = ps 6 kg/kW Power source specific mass 

C~ = $300/kg Launch cost to LEO 

Propellant = Xenon 

a 
All other model parameters are the same as those in Table 4-3. 

6119 

I 
! 

183 

1 
l 
j 
"~ 

J 

• 



. 
-g 
" i ... 
" 
~ .. 
l'i ... .. 
3 
" " -... .. ... 
8. .. 
" I! .... 

. , 

3 

• 

SYMBOL --

6 

+ 
o 
a 
Q 

THRUSTER 
DIAMETER 

30 

-3 Isp x 10 .sec 

Figure 4-54. OR/MS effect of module power. 

. ; 

,_,., .• I..~,._.J"cJ·.r.Lt ,.i,~;....JJ .:--

184 

• 

7254-88 

Pmod"SkW 

10 

20lBASE -
40 L1N&, 
80 

1 

I , , . , 

.. I 

~ 
i 

] 
, , 

il 



n 
D 
n 
o 
·U 

fl 
n 
n 
n 
o 
n 
o 
D 
l 
n 
o 
n 
D 
o 

~ 
i 
{:. 
'0 
?II 

7 

60 

50 

4 

30 

20 

10 

./ 
././ -----

10 

,-f-

Orbit Raising Cost Breakdown 
Xe + Propellant· 

£U!l!!.._E~l 

1 CORI Integration and Testing 
2 CnT Thrusters 
3 CRP PPU 

. 4 '=T!':!~~ Tankage 

5 CRSH Structures and Mechanisms 
.; CRSS SUbs>,s terns 
7 CRW Po>!.r 
o CORD DDT and E 
9 COPF 

10 COPT 

/ 

/ 
/ 

/ 
/ 

/ 

11 
~Tot.IS 

/ 
/ 

~ 
./ 

./ 
./ 

.;' 

3 
I 

a 8 9 

7254-87 _ 

6 

/ 
5 

4 

.,. 
!: 

'K .. 
3 K 

1;; a 
';! 

;2 
2 

1.4.S.C), 
8.9.12 

./ ,. 
0 

3 6 9 12 15 18 . -~. 
,. .. , . .. 

Isp x 1O-3. sec 
.:-. 

Figure 4-55. OR/MS cost.reakdown. 

185 

11 
I I 

J 
'1 
] 

oj 

~ 



, 
" V,'· . 
" • 

"'~ 
0 -~. 
« :;: 

2 

1 

10 3 

5 

3 6 

Curve Element 
1 MRT Thrusters 
2 MRPP PPU 
3 MORP "Up" Propellant 
4 MRPT Tankage 
5 MRSM Structures and Mechanisms 
6 r~RSS Subsys tems 
7 MRW Power Source 
8 r·1PDIIN "Down" Propellant 
g ~1SP Pay load 

9 12 

-3 Isp x 10 ,sec 

15 

Figure 4-56. OR/MS mass breakdown. 

186 

1254-88 

n , . 
0' n 
1\ 
; \ 

1l 
'i\ . 
lj , .. ~ 

•• n·; .. 

n 
Oi. ... 

18 

il 
fJ' 

blli'''':'''~''''·'''··''''· :::.':.:::::. ..... ~-,"_-.-... -."""'-_-,-, ;'''''':-'-;'w.-'-',,-,.-,,---. ;-",,~ .. ,",-,,-,.L'c..~.:,.;;u-·.~~---·-·~,-... -.,-, -'-----, ---' ~ 



n 
u 
u 
n 
n 
n .., 

n 
b .. .. 
~ 
iii 

n ~ 
9 
> 

n 
~ 
II. 
0 
~ 

n 
II: 

II! 

§ 
n ~ 

~ ... 

n II: 

~ 
~ 

11 
II: 
l-

n 
0 
n 
n 
D. 

n 
;.-----.--

• 

7264-\l9At 

5 
6 

MATURED StlUTTLE BASELINE 

~18,OOO IIC 

'\ 
\ 

4 
\ 15,000 , 4 

\ ... t"" 
~2,OOO 

18,000 sec \ "b 
\9000 -.. 

4ft 

3 lip· 
\ 2 § 

.... 2000 sec _ "f!IJOO --- .... -_ ... ~ ----- - - 4000 
3000 

~ 
~ 
~ 

2 
o! 

I-... g 
l-

oL-____ ~ ____ L_ __ ~ ____ ~ ____ ~ ____ _J 

B 10 12 14 16 

PAYLOAD MASS, kg II 10-3 
10 

Figure 4-57. OR/HS cost/kg versus paylosd. 

187 

20 

", I 

J 
l , 
j 

I 
1 , 
I 

1 
I 
I 
j 



Figure 4-58. 

-3 Isp X 10 ,sec 

OR/MS number of thrusters versus I • sp 

188 

u 
j 



! 
'tJ 
' .. -" 
~' 

t 
~'" 
, . 
I 
i 

( 
f 

u 
n 
n 
n 
n 
n 
[1 

n 
n 
n 
o 
[] 

[1 

o 
n 
o 

.-------

difference. Since this cost is per roundtrip. the investment in 
developing a larger thruster would be well rewarded. 

Cost and mass breakdowns are presented in Figures 4-55 ~nd 4-56 
for the OR/MS baseline. Transportation cost is now dominated by launch 
cost and power cost with PPU cost third. Total cost is of the same 7" magnitude ($2 x 10 ) as ~or larger payloads in the OR/LS baseline. The 
mass breakdown is similar to the, OR/LS case with propellant and, thruster 
mass dominating at low Isp' and power and PPU masses dominating at high 
Isp' Cost as a function of payload mass. shown,in Figure· 4-57. indicates 
the most cost-effective region to be around 5000 sec. As a reference for 
thruster requirements. Figure 4-58 shows the number of thrusters required 
as a function of Isp and module power. Also shown are lines of constant 
minimum thruster diameter. 

b. Power Source Sensitivities 

Since power is a major contributor to cost and mass. varia­
tions in these areas are also significant. as shown in Figures 4-59 and 
4-60. The relative cost sensitivity to changes in specific power costs. 
at 5000 sec. is about $3.5/kg per $/W. With an l8.000-kg payload. the 
sensitivity is $6.3 x 104 per $/W. Thus. if the power cost uncertain­
ties were on the order of $50/W. the transportation cost would be 
uncertain by about $3 x 106 (i.e •• ±15 percent of the total cost). 

Specific mass sensitivity. at 5000 sec. is about $3/kg per 
kg/kW of specific mass. Thus. an uncertainty of 2 kg/kW with an 
18.000 kg psyload results in a transportation cost uncertainty of 
about $1 x i05• In this case. specific mass is probably not as impor­
tant as power cost. 

c. Initial Mass Sensitivities 

In the range of 104 to 105 kg. as might be provided by one or 
a few Shuttles. the transportation cost is only moderately sensitive to 
initial mass as shown in Figure 4-61. At 5000 sec, the cost sensitivity 
is about $O.OO2/kg per kg of initial mass. With an 18,000 kg payload, 
this translates into a sensitivity of about $30/kg of initial mass. Thus. 
if a Shuttle could deliver oIlly 2.5 x 104 kg per triP. a cost-effective 
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approach would be to deliver several Shuttle loads to LEO before transport. 

Using the above values, transporting four 2.5 x 104 kg loads in one ORV 

~rip would eff~ctive1y reduce the total ~rip cost by $30/kg or by $3 x 106• 

d. Launch Cost Sensitivities 

The effect of launch cost on total transportation cost is shown 

iu Figure 4-62 to be quite significa.lt. The sensitivity around the 'Dase­

line at 5000 sec is about $1:6/kg per $/kg of launch cost. With an 

uncertainty of 100 $/kg in launch costs, transportation costs for an 

18,000 kg payload would be uncertain by about $3 x 106• 

e. Inte/!iration and Testing Sensitivitv, 

With the higher baseline values for power and launch cost and 

the low initial mass, variation of integration costs become rel~tively 

insignificant, as Figure 4-63 shows. Integration costs sig,nificantly 

above $100/kg would be required to affect overall t~ansportation cost. 

B. ON-ORBIT MISSION 

The basic philosophy used in the orbit-raising analysis is applied 

to the on-orbit mission cost modeling. With only minor exceptions, the 

mathematical formulation follows the orbit-raising equations. However, 

the results of the on-orbit modeling are expressed in terms of the total 

cost of pl'oviding propulsion per unit of Flate1lite mass per year. This 

figure-of-merit, whiLh includes the cost of transportstion from Earth to 

GEO, produces a convenient normalization sod a final number of tractable 

size (typically in the range of 5 to 500 $/kg/yr). 

Applicable portions of the orbit-raising analysis are nor. repeated 

in this section. Specifically, the propulsion system performance, 

redundancy, and degradation sections are not duplicated. In addition, 

in describing thp on-orbit computer model logic, the mathemRtical por­

tions are referred to the corresponding relations in Section 4.A. 

Te~~ino1ogy and general definitions used in the on-orbit analysis 

are presented in Figure 4-64. This diagram is identical with that 

shown in Figure 4-1 except for terminology. For the on-orbit mission, 

the satellite stationkeeping and attitude control functions are pro­

vided by the EP system (i.e., the OOP). A power source mass allocation 
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is applied to the OOP, although in most cases the power source physically 
would be part of the basic satellite. Depending on the satellite design, 
the power source might be required only part. of the time and could be 
used by the satellite during non-propulsion periods. 

1. Mission Description 

The on-orbit mission is illustrated conceptually in Figure 4-65. 
The OOP is shown.as a unit, but in most applications thrusters would be 
placed at widely separated locations to provide moment arms for attitude 
control. In general, the number and location of thrusterp.installed 
would depend on satellite si~e and control requirements" Since such 
satellite design variable.. cannot be easily modeled, an alternate 
approach using estimated AV requirements is included in the on-orbit 
cost model, as discussed in Section 4.B.2. 

As in the orbit raising analysis, specific details of the orhit 
(such as altitude, inclination, or eccentricity) are not directly 
included in the model. It.is assumed that the AV selected will ade­
quately characterize mission requirements. The sensitivity of results 
to AV is discussed in Section 4.B.5. Choosing a conservative AV should 
produce a conser~ative final result ,since the total prupulsion system 
and propellant scale with AV. For large satellites, the forc~s and 
torques i1lu lOltrated in Figure 4-65 are significant contributors to AV. 
An on-orbit AV model is discussed in Appendix E. 

2. On-Orbit Mission General Model 

The logic diagram for the on-orbit mission is shown in Figure 4-66. 
Comparing F;gure 4-66 with Figure 4-3 indicates that the only signifi­
cant difference in logic is the down trip option included in the orbit­
raising auslysis. The mathematical formulation, except for details of 
the cost and mass models, is the same as that presented in Section 4.A.2. 

The starting point is the definition of the mission in terms of 
mission life, AV, and satellite mass. Satellite mass and size (area) 
must be considered in estimating AV (see Appendix E). The basic vari­
able, I , is used in a looping process to develop cost results a& a sp 
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function of lsp' Various parameters defining the mission (life, AV, Mos' etc.), propulsion system performance, cost, and mass are then indi­v:!d:.ally selected for sensitivity analysis. 
Payload mass is considered to be the differe~ce between satellite total (initial) mass and GOP mass. Total cost of providing propulsion for the sate1lite is then divided by mission life and payload mass to obtain co~ts in terms of $/kg/yr. 

3. Mass Models 

Mass models for the on-orbit mission are summarized in Table 4-6. With minor exceptions, these terms (defined with ORV subscripts) are identical Co those discussed in Section 4.A.6. A brief review is pre­sented here to indicate the equation used for model calculations. (The program listings can also be . consulted as a simple reference.) Total OOP mass is defined by 

where 

M os 

M • M +M +M +M +M +M +M oop ot opp op opt ow oss osm' 

• mass of thrusters (Eq. 4-19) 

- mass of PPUs (Eq. 4-22) 
= prope11,ant msss 

= Mos [1 - exp (- AV/go lsp)] 
satellite initial mass 

• propellant tankage mass (Eq. 4-23) 
power source mass (Eq. 4-24) 

= subsystems mass (Eq. 4-25) 
Mosm • structure and mechanisms mass (Eq. 4-26). 

4. Cost Models 

(4-43) 

Cost models for the GOP are summarized in Table 4-7. As with the mass models, the OOP indiVidual element cost models are essentially identical in form to the ORV models. However, since the OOP is not 
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Table 4-6. Mass Models useci in On-Orbit 
Cost Model, 

~-------------.---------------------'~--------------~ , 

~~P • Mot + Mopp + ~op + Mopt+Mosa + Moam + Mow 

Mot • 2 (O. 078D1• 35) Not 

Mopp • 0.001 Qpp P pa (1 .. Rp) 

Where, 

• 10 [-0.503 log(Ptot) + 1.153] 

MOPI: • Qrpt Mop 

M,lSS • 100 [(1 + 1O-6p tot) + (Not/Nop) - lJ 

M - a [M +M +M +M +M 1 osm sm ot opp op opt· ossJ 
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Table 4-7. Cost Formulae Used in On-Orbit Cost Model 

C • C +c +c +c +c +c +c oop ot opp opt osm oss tu oi 

C • 4 3 x lOS P 0.12 (1 47 NO. 68) opp' pp • op 

CoPt • M (C' + a c' ) op op pt opt 

C • C' (M )0.3 OEm oam osm 

• C' (M )0.9 oss oss 

Cto • C~o Mo 

Coi • C' M - M oi oop op 

Cow • C' P ow tot 

Cops • C' t ops f 

t f • mission time 

Codd • C' IN (M - M )0.3 ord ov oop op 
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"rented" to a user for a' given trip; the utilization factor (C
oef

) is 

not involved. Additional model differences (besides subscripts) are 

defined here; the costs that are Bimil~r are referenced to equations 
" . , 

defined for the orbit-raising model. Total propulsion cost for the 
on-orbit mission is defined by 

C .. C +C +C +C +C oop , ot opp opt ow oss 

where 

Cot .. ' cost of thrusters (Eq. 4-32 without last term) 

C = cost of PPUs (Eq. 4-33) opp 

C oss 

C osm 

= 

= 

= 

propellant and tankage (Eqs. 4-34 and 4-35) 

power source cost (Eq. 4-38) 

subsystems cost (Eq. 4-37) 

structure and mechanisms cost (Eq. 4-36) 

Cto .. transportation cost 

C' to 

C' oi 

c ops 

N ov 

= 

= transportation cost from Earth to orbit per kg 

= integration and testing cost 

= C' (M - M ) oi oop op 

= integration cost per kg of dry OOP 

= operations cost 

= C' t ops f 

.. mission time 

= DDT&E cost (Eq. 4-40) 

.. number of on-orbit vehicles over which DDT&E costs 
are amortized 
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5. On-Orbit/Larse System Baseline Mission Results 

In a fashion similar to the orbit-raising mission, two baseline 
sets of parameters are usecl in developing on-orbit results: large space 
system era (CO/LS) and matured Shuttle era (OO/MS). Again, for each 
baseline, general results are presented to illustrate the characteristics. 
Overall cost sensitivities for selected variables are then analyzed to 
assess the importance of various ~arameters. particularly thruster 
parameters. 

a. Orbit/Large System Baseline Parameters 

The 'large system baseline (OO/LS) parameter set is shown in 
Table 4-8. The parameters that are different from the OR/LS baseline 
require some discussion and include AV, mission time, and transportation 
cost. 

An snalysis for estimating AV is presented in Appendix E. 
Clearly, without a specific satellite design, such an analysis is 
extremely approximate •. However, since the p.rimary purpose of the analy­
sis was to determine the order of magnitude of AV to be considered, the 
absolute accuracy is relatively unimportant. A baseline AV of 
1.65 km/s/yr was selected. 

A baseline mission time of 10 years was chosen. based on 
several factors. Although longer times may be needed to make certain 
satellites (e.g., solar power satellite) cost effective, it is probably 
unreasonable to store the necessary propellant for such periods. Thus. 
if propellant is replenished. propulsion system modules could be replaced. 
These additional concept variables would substantially complicate the 
present problem. Mission times of 5 to 10 years are ·currently being 
achieved with existing satellites. However, since current satellites 
are relatively Simple compared to those'imaginedinthe large system base­
line, a nominal 10 year mission is a reasonable compromise. 

. Transportation cost. as it is used in the on-orbit cost analy­
sis, includes all costs 'from Earth to the satellite orbit. This cost is 
just the value computed in the orbit raising mission. A value of $50/kg 
was selected for the OO/LS baseline based on typical OR/LS baseline results. 
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Table·4-8. OO/LS Baseline Cost Model ~arameters 

Argon Propellant 

Pmod = 100 kW 

Thruster Life = 104 hr 

AV = 16.5 km/sec 

t
f = 10 years 

Initial mass = 106 kg 

Electron flux = 1015 eiectrons/cm2
• using curve "c" 

= $lO/kg OOV Integration and Testing 

= $500/kW Cost of OOP Associated Power 

= $4.2 x 103 . log (D) 

= $4.3 x 105 (kW)0.12 

= 0.2 

= 0.2 

= 0.4 (1 + 0.1 x 100) 

3 = $10 /day 

= 10 

= $104 (M )0.3 
osm 

1 x 1O~ 
= 10 

(M -M )0.3 
oop op 

= $1 x 104 (M )0.9 
oss 

= 3 kg/kW 

=$50/kg 
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First Unit Thruster Cost 

First Unit PPU Cost 

PPU Redundancy 

Thruster Redundancy 

Propellant at $0.4/kg 

Tankage at $lOO/kg with 
Tankage factor = 0.1 

Time Dependent Cost 

Life of OOV 

Cost of OOV Structure and 
Mechanisms 

DDT&E Cost Amortized over 
10 OOPs 

Cost of COP'Subsystems 

Specific Mass faT. ~owet 

Orbit Raising COAt per kg 
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b. OOILS Baseline. General Reaults 

The general results of the OOILS baseline are shown in 
Figures 4-67 through 4-71. Specific cost ($/kg/yr) asa function of lsp 
for a range of module power is shown in Figure 4-67. At low:tsp ' these 
data have a shape similar to the orbit raising results. However, at 
high lsp' the curves continue to decrease or just flatten out. The 
explanation for this behavior is illustrated in Figures 4-68 and 4-69, 
which show cost and mass breakdowns. At low lsp' cost is high (due 
to the large transportation cost) and payload ma.ss is low (due to 
large propeliant, thruster, and structure masses). At high lsp' propel­
lant and most other masses are decreasing. Power souJ;'ce mass is 
increasing but is a small fraction of the total. A1\':hough total cost 
is increasing at high lsp' its influence on specific cost is offset by 
the increasing payload mass. 

Specific cost and total cost as a function of the payload 
mass are shown in Figure 4-70. For the baseline condid,~ns, minimum 
specific cost, as well as minimum total cost, occurs in the region of 
12,000 sec. The sensitivity of specific cost to module po",,'er at this 
point, as found from Figure 4-67, is about 0.013 $/kg/yr pel" .kW. With 
the 8 x 105 kg payload, the cost/yr is about $.104 per kW of module 
power.' The cost difference between a 50-kW (30-em) module system and . 6. 6 a 200-kW (60-em) module system would be about $1.5 x 10 /yr or $15 x 10 
o'-er the mission life. The benefit of larger modules is clear. The 
number of thrusters required as a function of lsp is shown in Figure. 4-71. 
The dashed lines show minimum thruster diameter. 

Using the baseline results as a starting point, several sensitivity 
studies were performed to assess the importance of various parameters. 
These study topics, discussed in the following sections, are shown in 
Table 4-9. 
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c. Mission Design Sensitivities 

Four general ,mission factors affecting cost are discussed in this section: 8V, mission time, initial mass, and transportation cost. Although each has a significant impact on cost and could influence mission design, none appears to substantially change the general shape of the curves or thruster considerations. 

1. 

2. 

3. 

Table 4-9. OO/LS Data Run and Sensitivity Study Categories 
General 
Cost/kg/yr versus 
Cost breakdown 
Mass breakdown 
Cost/kg/yr versus 
Number of modules 

I • P sp' mod 

p_yload 

Mission design sensitivities 

8V 
Mission time 
Initial mas>! 
Transportation cost 

Thruster sensitivities 

Life 
Efficiency 
Msss 
First unit cost 
Redundancy 
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4. Propellant sensitivity 
Cost 

5. PPU Sensitivities 

Mass 
First unit cost 
Redundancy 

6. Power source sensitivities 

Mass 
Cost 
Degradation 

7· OOP system design 
sensitivities 

Structure and mechanisms Subsystems 
Integration and testing 
DDT&E 
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i (1)8V Sensitivity-Results for a range of 8V requirements 

are shown in Figure 4-72. For a given mission time and initial mass, 

such a range implies a'range of satellite area-to-mass ratios or uncer­

tainty in the 8V estimate. The minimum cost region around 12,000 sec 

should not bFJ significantly shifted over thi!1 8V rall8e. 

(2) Mission Time - The effect of mission time on on-orbit 

propulsion costs is shown in Figure 4-73. Mission times significantly 

shorter than 10 yr increase special costs dramatically and tend to reduce 

the optimum lap' Times longer than 10 yr will decrease the specific 

costs almost linearly. 

(3) Initial Mass - The initial satellite mass, including the 

OOP and propellant, has a large impact on specific cost, as shown ~n 

Figure 4-74. Although this effect is accentuated by the constant 8V 

used in producing these curves, the general sensitivity is still sig­

nificant. The resson for this trend is that, since a reasonable fraction 

of the OOP costs are independent of mass, specific costs increase ae 

initial mass decreases, 

(4) Transportation Cost - The sensitivity of specific cost to 

transportation specific cost is pr'3ented in Figure 4-75. Transportation 

~ost begins to have a signific~nt effect on specific cost above about 

$lO/kg~ As discussed in Section 4.A.8, transportation will probably be 

in the $30 to $50/kg region for the large system baseline, and on-orbit 

costs will certainly be influenced over this range. 

d. Thruster Sensitivities 

The thruster sensitivity factors considered for the 00/L8 base­

line are shown in Table 4-9. Since it was found ln the OR/LS cases that 

the "R" ratio has only a minor impact on cost, this parameter was omitted 

for the on-orbit work. 

(1) Thruster Life - Two models of thruster life, constant and 

beam dependent, were evaluated as shown in Figure 4-76. Constant life 

greater than about 104 hr has a relatively small impact on cost. However, 
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shorter life or a beam-current-dependent wearout characteristic w(luld 

substantially increase specific cost. In addition, the sensitivity to 

I becomes more pronounced for the variable life model. The optimum sp 
occurs between 3,000 and 6,000 sec and requires a large-diameter thruster 

(larger than 100 em). However, if thruster diameter is limited to less 

than 60 em, the cost sensitivity to lsp is extremely small (for either 

life model). 

(2) Thruster Efficiency -As shown in Figure 4-77, thruster 

efficiency variations over a reasonable range have little effect on 

specific cost. Efficiencies below 0.5 would have a larger impact since 

more modules would be needed. 

(3) Thruster .Mass - Thruster mass has only a moderate impact 

on cost, as Figure 4-78 shows. Only increases of several times would 

significantly change the cost level. 

(4) Thruster Cost -The speCific cost results are only 

moderately sensitive to thruster first unit cost as indicated in 

Figure 4-79. Again, increases of a factor of two or more would be 

required to change the specific on-orbit costs significsntly. 

(5) Thruster Redundancy - The baseline redundancy of 20 per­

cent should provide a reasonable reliab:l,lity. Even if a redundancy of 

40 percent were used, the specific cost would not be strongly affected 

as Figure 4-80 shows. 

e. Propellsnt Sensitivity 

Based on the orbit-raising results, only propellant specific 

cost was considered here. The results are shown in Figure 4-81 for a 

range of propellant costs. Except around 6,000 to 9,000 sec, propellant 

cost has almost no influence on overall specific cost. Other propellants 

should produce similar results with only a shift in thruster diameters. 

f. PPU Sensitivities 

The sensitivities considered are indicated in Table 4-9 
and include mass ,cost, and redundancy • 
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(1) PPU Mass -As Figure 4-82 shows, PPU unit mass 
variations around the baseline have a small influence on cost. 

(2) PPU Cost - PPU cost is somewhat more important as shown 
in Figure 4-83. However, modest variations around tne baseline would 
not draMatically change the overall cost. 

(3) PPU Redundancy -Results shown in Figure 4-84 indicate 
that PPU redundancy is also not too important in overall cost. A factor 
of two over the baseline should be an upper bound on the r£~uired 
redundancy. 

g. Power Source Sensitivities 

Results of the three major factors studies (Table 4-9) are 
shown in Figures 4-85 through 4-87. Power source specific mass 
(Figure 4-85) and degradation (Figure 4-87) show only small overall cost 
sensitivity. Power source specific cost ($/kW) is a more important 
factor, as Figure 4-86 shows. In addition to changing the overall cost 
level source, specific cost changes the curve shape and hence chanses 
the I optimum. At even higher power costs, this effect would be more sp 
pronounced. 

h. OOP System Design Sensitivities 

Representative system parameters (shown in Table 4-9) were 
investigated. Although many others could have been considered, the four 
selected should provide an indication of the sensitivity of overall cost 
to system factors. 

(1) Structure and 
shows, structure costs below 

r 

Mechanisms Sensitivity -As 
5 $10 /kg have little effect; 

Figure 4-88 
costs of 

$10)/kg will increase the overall specific cost level but should not 
significantly. influence thruster selection. 

(2) Subsystems Sensitivity -The subsystems cost parameter 
essentially reflects complexity: the greater the complexity, the 
higher the cost. Figure 4-89 shows that any significant increase from 

4 the baseline ($10 /kg) will have a pronounced effect on overall cost. 
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(3) Integration snd Testing Sensitivity - The integration and test parameter illustrated in Figure 4-90 is also related to complexity. Costs above $lO/kg shift the overall cost level and tend to influence thruster and I selection. sp 

(4) DDT&E Sensitivity -As shown in Figure 4-91, an increase from the baseline of more than an order of magnitude in DDT&E cost would be necessary to have much effect on overall cost. However, even higher DDT&E cost would not significantly influence thruster or I selection. sp 6. On-Orbit/Matured Shuttle Era Baseline Mi'ssion Results 
The on-orbit/matured Shuttle (OO/MS) baseline analyses used a philo­sophy similar to that discussed in Section 4.A.9. Baseline parameters that were changed from the large system bsseline are shown in Table 4-10. Except for transportation cost, these are equivalent to the values shown in Table 4-5. 

a. OO/MS General Results 

Results for the OO/MS baseline are shown in Figures 4-92 through 4-95. In contrast with previou~ results, thruster diameters in the range of interest (30 to 100 cm) occur at I 's below about sp 8,000 sec. Furthermore, as Figure 4-92 shows, the optimal I results sp in small thruster diameters (i.e., less than 30 cm). The overall cost level is significantly higher (about 20 times) than that of the OO/LS baseline. 

A cost breakdown and total cost as a function of I are shown sp in Figure 4-93; a mass breakdown is presented in Figure 4-94. Specific cost and total cost are shown in Figures 4-94 and 4-95 as a function of net satellite mass. Although total cost is minimum at about 7,000 sec, the specific cost minimum occurs at about 10,000 sec for a payload mass of about 18,000 kg. 

b. Power Source Sensitivites 

The impacts of power source cost and mass are shown in Fig­ures 4-96 and 4-97, respectively. Power source cost has a relatively large influence on overall specific cost. However, since thruster diam­eters less than 30 cm are of little interest, the sensitivity is 
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Table 4-10. OO/MS Baaeline Coat Model Parameters a 

Pmod 
.. 20 kW Module power 

Mos - 25 x 103 kg Satellite initial masa 

C· - $40/kg oi Integration and test coat 

C· ow • $lOO/W Power source cost 

a = 6 kg/kW ps Power source apee~lic masa 

-C' .. $l,OOO/kg to Transportation cost 

propellant .. Xenon 

aAII other cost model parameters are the same as those in Table 4-8. 
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somewhat reduced. An increase in power cost from the baseline 19 more significant than a decrease. The effect of power source specific mass is shown in Figure 4-97 to be of minor importance over a rather large range of a's. 

c. Initial Mass Sensitivity 
The effect of initial mass on overall cost is shown in Fig­ure 4-98. On-orbit specific costs vary by about a factor of 'three (for a given I ) over the mass range considered. Righer mass results in 

sp 
, lower cost (as before). Thus, there could be a cost advantage in build-ing one large,satellite rather than several smaller ones if such a situation occurred. 

d. Transportation Cost Sensitivity 
Within the range of thruster diameters of interest, specific cost is relatively sensitive to transportation cost. As shown in Fi8-ure 4-99, the $l,OOO/kg baseline is representative of the orbit raising results, but improvements in orbit raising costs would significantly benefit the on-orbit mission. 

e. Integration and Testing Sensitivity 
Integration costs are a small fraction of the total and even relatively large changes have essentially no effect on specific cost. This result is shown in Figure 4-100. 

C. COST MODELING CONCLUSIONS 
1. Thruster Size Recommendations 

The results presented in Sections 4.A and 4.» were reviewed in terms of costs and thruster technology. A summary of general conclusions is shown in Table 4-11. The recommendations given reflect the ranges of key parameters that provide a reasonable compromise between system costs and thruster development difficulties. For example, under the Oa/LS baseline, costs are minimized around 6,000 sec and with high module 
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Table 4-11. Summary of Cost Modeling Recommendations and Sensitivities 

Mission Option Parameter . OR/LS OR/MS OO/LS OO/MS 

Recommendations 
lsp' sec 8,000-12,000 4,000-5,000 10,000-15,000 4,000-7,000 Thruster diameter, cm 40-70 30-70 40-70 30-60 Module power, kW 50-200 20-80 100-200 20-80 Propellant Argon Xenon Argon Xenon 

Thruster sensitivities 
I Module power High Modarate High Low I LifEo Moderate N/S High N/S I 

Efficiency Moderate N/S Low N/S Mass Low N/S Low N/S Unit cost . Low N/S Low N/S nRu ratio Low N!S N/S N/S Redundancy Low N/S Low N/S 
Propellant sensitivity 

Type Low N/S N/S N/S Cost Low N/S Low N/S 
PPU sensitivity 

Mass Moderate N/S Low N/S Cost High N/S High N/S Redundancy Low N/S Low N/S 
Power source 
sensitivity 

Mass High Moderate Low Low Cost High High Moderate Moderate Degradation Moderate N/S Low N/S 
-- _ ... _------- - - - ---
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Table 4-11. Summary of Cost Modeling Recommendations and Sensitivities (Continued) 

~m ... -v.'t 
ir;,-J 

,N .'" 10 

.t:::::! 

Parameter 

Mission design 
sensitivity 

av 
Mission time 
Initial mass 
Launch cost 

System design 
sensitivity 

Struc. & mechs. 
Subsystems 
Integration 
DDT&E 
Flight ops 

Self powered 
sensitivity 

Power fraction 

One-way trip 
sensitivities 

av 
Free power 
Trip time 
Initial mass 
Launch CO'3t 

N/A = Not applicable 
N/S = Not studied 

~r.t:f -- 1=':3 ~I 1~"'" ~". 
I.-"...~ 

OR/LS 

High 
Moderate 

High 
High 

Low 
Moderate 
Moderate 
Moderate 

Low 

Moderate 

High 
High 

Moderate 
High 

Moderate 

-

C--::. .-,r~~>l .' ~l-",,, '1 
---' 

Mission Option 

OR/MS 

N/S 
N/S 

Moderate 

.--

.. ..-, .. -

High 

N/S 
N/S 
Low 
N/S 
N/S 

N/S 

N/S 
N/S 

.N/S 
NiS 
N/S 

- -

~-=,;.c~ 

,-"1 

-

!""';~~=! -, 

OO/LS 

High 
High 
High 
High 

Low 
Moderate 
Moderate 

Low 
N/S 

N/A 

N/A 
N/A 
N/A 
N/A 
N/A 

"'7$'':=:-1 
~ 

.~"'''t 
----' 

OO/MS 

N/S 
N/S 

High 
High 

N/S 
N/S 
Low 
N/S 
N/S 

N/A 

N/A 
N/A 
N/A 
N/A 
N/A 
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power. However, 6,000 sec results in large thruster diameters (or bigh 

cost). To stay within £easonable bounds (less than 100 cm) and retain 

low system costs, a minimum I of about 8,000 sec is needed. With high sp 
module power, ~osts are not too strongly affected up to about 12,000 sec. 

With these bounds on I , the range of thruster diameters and power are sp 
estahlished. A similar rationale was applied to the other three mission 

options. 

Having established the acceptable ranges of key parameters in 

Table 4-11, the results were reviewed with an eye to defining a single 

thruster "design" that would satisfy all four 

diameter is then bounded between 40 and 60 cm. 

system baseline mission options, an I sp in the 

mission options. Thruster 

To satisfy both large 

range of 10,000 to 

12,000 sec is needed. This I range with argon corrp.sponds to a sp 
thruster diameter range of 

power of about 100 kW (see 

about 50 to 40 em, respectively,·and a module 

Figur .. ", 4-4 ato.d 4-6) •. A 40-cm thruster 

operating on xenon at 5,000 sec (the overlapping point for the MS base­

lines) would have a module power of about 30 kW; a 50-cm thruster would 

have a module power of about 45 kW. 

The beam voltages for argon at 10,OOn and 12,000 sec would be 

approximately 2,400 and 3,500 V, respectively. For xenon at 5,000 sec, 

the beam voltagu would be about 2100 V. If a 50-cm thruster were designed 

for a beam voltage of 2400 V, it could be operated on argon to produce 

up to 100 kW of beam power or on xenon up to about 50 kW at 5400 sec. 

Thus, a 50-cm thruster is ~ good compromise for the four mission options 

and also allows for a common beam voltage. 

A further consideration in selecting between a 40-cm and a 50-cm 

diameter thruster is the uncertainty of wearout life. Since module 

power is important to system cost effectiveness, if sufficient life 

could not be obtained with a 50-cm thruster, operation at lower beam 

current would be less significant than for a smaller thruster. At 50 cm, 

the options for maintaining high module pover and some flexibility in 

wearout life are substantially greater than for a 4o-cm design. 
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2. Sensitivity Conclusions 

Results of the s~nsitivity studies are summarized qualitatively in 
Table 4-11. From a tliruElter standpoint,modu1e power, life, and effi­
ciency are most important. The importance of high power was reflected . 
in the previous recommendations. Life is important, particularly for 
the on-orbit mission. "To ct certain extent, life can be compensated for 
through ,redundancy. However, a minimum life of less than about 5,000 hI' 
would penalize the system. Higb~r efficiency than that used in the 
mCFdeling would not Significantly :lliIprove the cost picture; lower effi­
ciency would ~ot be desirable. The fact that thruster mass has a small 
influence indicates mass cOTud be traded for life, efficiency, or cost. 
Although reliability is covered by redundancy assumptions, a trade of 
thruster mass for a simple", more reliable thruster would also be prudent. 

Somewhat unexpectedly, the type and cost of prope11ant'is relatively 
unimportant. Propellant selection certa~~ly influences thruster ,oper­
ating parameter selection, but the flexibility added by the availability 
of several propellants is quite significant. 

PPU and power source cost and mass were found to be extremely 
important in overall system cost effectiveness. Costs ~~ the magnitude 
used in the model should re sought at the possible expense of efficiency, 
reliability, or mass. (PPU efficiency was effectively included under 
thruster efficiency sensitivity.) Without light-weight, low-cost power 
sources, the overall system cost will be increased significantly. 

From a system design point of view, this work verifies the fact' 
that system complexity, as represent~d by subsyst~, integration, and 
development costs, is relatively important. Although the parameter 
values are somewhat arbitrary, the point at which these parameters 
become important is defined. 

Of the mission design parameters considered, it is clear that 
transportation cost is the most significant since the other parameters 
are determined ry the mission selected. Since the orbit-raising mission 
cost is strongly dependent on launch cilst, and on-orbit cost is dependent 
on orbit-raising coSt, low-cost transportation to LEO is a fundamental 
requirement for a cost-effective near-Earth space transportation syatem. 
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SECTION 5 

TECHNOLOGY ASSESSMENT 

The source of the technology-related portions of the models described in Sections 3 and 4 wss a thruster technology assessment study. The areas covered included ion optical systems, cathodes, ther­mal limitations, wearout life, thruster scaling, propellant type, and operational simplifications to reduce the required number of power supplies. These areas are discussed in this section. 

A. ION OPTICAL SYSTEM 

1. Perveance 

Foremost among these technology ta$ks is the ion optics design. All other thruster design parameters are influenced by the selection of an ion optics design. Having specified the provel!ant, beam current, and beam voltage required to produce the required values of thrust and specific impulse, the first question that must be answered is that of the size of the thruster (grid area) necessary to generate these speci­ficstions. The ion thrus!'er being considered uses a two-electrode system that has numerous aligned apertures that extract, accelerate, and focus the ion beam. Beam current and voltage are not independent quantities in that the maximum current that can be extracted is limited by space charge and is related to the electrode voltages by a form of Child's law, This limitation dictates the dimensions of the accelera­tion electrode assembly. Analysis of the extraction and acceleration processes has been performed by several workers and has been summarized and presented in well-referenced form by Kaufman. 66 Initially, the analy~is here will be limited to obtaining equations for relating thruster (ion beam) diameter to beam voltage and current requirements. 
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where 

First, the beam current IB and voltage VB are related by 

P V 3/2 
Ib • t ' (5-1) 

(5-2) 

and Va is the negative voltage applied to the accelerator electrode to 

prevent electron backstreaming from the neutralized ion beam into the 

ioterelectrode acceleration gap. The perveance p. constant for a 

gi.~n electrode design, is a function of aperture and interelectrode 

dimensions, ana can be written 

P-C1N P , a a (5-3) 

where N is the number of 
a 

P is individual aperture 
a 

apertures in tC9 acceleration electrodes, and 

perveance. Figure 5-1 illustrates the aper-

ture configuration and gives dimensions of the 700-900 

design. In terms of the symbols used in Figure 5-1,' 

67 for singly charged mercury ions, a~ 

R,=R, +t 
g s 

The dimensions shown in Figure 5-,1 yield 

series EMT 

(5-4) 

The factor C
l 

accounts for the variation in current as a function of 

beam radius that is a consequence of a radially varying discharge plasma 

density distribution. Essentially, 

(5-5) 

n 
nl 
01 

r.~ 'J , 

n 
",.,~ 

") 
I" ) I • 

fl 

i J 1"1" 

D 
:d .. 'J 



! 

i' 
>] 

, 
, 
~ 

! 

t, I r 

" 

l 
~ 

t 
! 
il 
~ 

I 
8 , 
r 
~! 
" I; 
t 
Ii 
11 , 
~ 
r 
t; 
), 

~ • 
~ 
" I 

t: 
L 
I , 

i 
~ 
! 

t 
f 
! 

I 
f' 
J' 
I 
t , 
! 
! 

t , 
" t, 
~i 

P I 

n 
P ~ • 

p 3 , 

n 
L 

4t 
~ .: 

H 
1 i 

,! 

I ; 

, 

\ " 

I 
\1 

Ii { 
U 

I! 
r ~ 

! • 

P ! 

r ,> 
'( 

n 

f 
i"--L.!_ 

s 

1 

J± 

72&4-131'" 

eM IN. 

cia· 0.191 0.076 
d.· 0.162 0.080 
S • 0.211 0.087 
Ra • 0.066 0.022 
ta • 0.038 0.016 
t. • 0.061 0.020 

Figure 5-1. Aperture configuration for EMT ion optics. 
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and, for typical 30-cm operation, 01 • 0.52. With the number of 

apertures set at 15,173 for the EM design, the perveance computed using 

Eq. 5-3 is P = 5.1 x 10-5• However, the maximum perveance measured 

experimentally with the EM ion optics design is only 4 x 10-5, implying 

that the assumptions used in obtaining the analytic value of P may be 

slightly in error. To provide a realistic estimate of' thruster size 

requirements, the empirical value can be used to determine an effective 

individual aperture perveance <Pa> by setting 

<P > 
a 

4 x 10-
5 

• 2.6 x 10-9 AV-3/2 
15,173 

For a hexagonal close-packed array of apertures, 

n2 
• 0.9""2 ' 

s 

where n is the diameter of the array (beam diameter), and S is the 

center-to-center spacing of the apertures in the array. Eq. 5-3 

can now be written 

and 

P - 2.34 x 

2 
Ib ~ 2.34 x 10-9 ~ V 3/2 

s2 t 

(5-6) 

(5-7) 

(5-8) 

(5-9) 

Considering ti,e extensive e.mpirical parameter variation that has produced 

the EM ion optics design, the aperture parameters listed in Figure 5-1 

are probably near optimum and are also a realistic basis for predicting 

beam diameter requirements. Therefore, Eq. 5-9 becomes 

(5-10) 
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Eq. 5-10 can now be used to illustrate the beam diameter requirements for a thruster operated on mercury as a function of beam current and totel extraction voltage. Since it is tb~ beam voltage that muat really be specified. a further consideration is in order. Again. invoking empirical results from EM testing, electron backstreaming does not occur if 

Vb Vb R -~-::-;;---<O 7 V +V V - • bat 
(5-11) 

Equation 5-11,is somewhat conservative in that thruster operation with R. 0.7 to 0.78 haa bean demonstrated without evidence of backstreaming; however, most testing has been done under the condition of Eq. 5-ll. Hence, Eq. 5 ,10 can be written 

and 

2 7 -3/2 D - 1. 22 x 10 Ib Vb • (5-13) 
Using Eq. 5-13, the beam requi1ements are illustrated graphically for mercury in Figure 5-2 and for argon in Figure 5-3. These curves are the basis for determining thruster technology requirements after translating thrust and specific impulse to beam current and voltage. Since there is a good technology base for ion optics designs up to 30-cm diameter, Figures 5-2 and 5-3 identify those ranges of beam current and voltage that require advanced technology. These curves are based on empirical perveance data obtained wi~h state-of-the-art 30-cm thruster ion optics in the 0.5 to 4 A current range at beam voltages from :1000 to 1500 V. Consequently, the higher voltage curves should be considered valid only gS a first-order estimate. 
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Figure 5-2. Beam diameter required to produce mercury ion beam 
current. 
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Figure 5-3. Beam diameter required to produce argon ion beam current. 
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2. Curved Electrode Thrust Losses 

Since thruster diameters other than 30 em are being considered in 
this study, the impact of grid curvature on thrust losses must be con­
sidered. Thrust loss was calculated as a function of thruster diameter, 
grid spacing,and radius of curvature (dish depth) for' various dished 
grid geometries. For all these calculations, the compensation was limited 
to provide a maximum. vectoring angle of 16°. Experimental results indi­
cate that accelerator grid direct ion interception increases rapidly for 
angles gre~ter than 16°. Although a relatively large dish depth (small 
radius of curvature) is desirable from a structural standpoint, the 
opposite is true from a thrust loss viewpoint. The results presented 
here show quantitatively the trade-off between thrust loss and dish 
depth (radius of curvature) as a function of thruster diameter. To all 
the thrust loss calculations presented here, the intrinsic beamlet 
divergence, which typically amounts to 1 to 2 percent, must be added. 

a. Grid COmpensation 

Since thrust loss is a function of grid compensat,'ion, this 
parameter is discussed before the thrust loss calculations are made. 
Figures 5-4 and 5-5 show the geometrical parameters associated with a 
dished grid set. The basic compensation problem arises from the need 
to cancel (1) the effects of the dish angle and (2) the vectoring 
caused by the misalignment of the holes for non compensated optics that 
occurs when the grids are separated. In the ideal case, the screen 
eleltrode hole pattern is "shrunk" an amount (compensated) such that all 
bea:nlets are vectored by an angle sufficient to exit parallel to the 
thruster axis, and, in that ideal case, the total compensation Ctot required to accomplish this can be broken into two parts: 

Ctot = C(t g) + C(a) • 

Neglecting the electrode thicknesses, the compensation C(~g) 
required to align the holes is given by 
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(5-14) 

(5-15) 
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where ~g is the grid spacing, D/2 is the beam radius, and $maX is the 

J1sh semi-angle at the grid edge. For the present 30-cm dished grid. 

~g - 0.056 em, D - 29 cm, 'max. 16 0
, and therefore 

C(~ ) 
g , 

which amounts to "'25 percent Qf the total 0.4 percent compensation 
" 

(5.16) 

presently used. If thermal loading causes the grid spacing to decrease 

by causing the screen grid to move toward the accel grid. the compensa­

tion available for vectoring will be increased. 

The,compensation C(a} required to vector the beamlets an 

amount a depends on the vectoring sensitivity measured in degrees per 

no~lized screen aperture offset. There have been efforts to deter­

mine this vectoring sensitivity USing digital computer trejectory 
calculations, bnt the computed and experimental results did 'not agree 

very well. The basic problem is that the computer programs must be run 

with planar sYJI.'1Detry althOUgh the,real problem has no symmetry. The 

approach taken here is to use the experimentally mespured sensitivity 

for the present 30-cm grid set. Figure 5-6 shows some eXperimental 

'data taken ~ith the coj'l1mated ExB'probe. 59 This data shows that there 

is a 2.40 'difference between the r • 0 and l' - 10.7 em profiles. If 

the grid comr.ensation were perfect, these profiles would be on top of 

each other. Since the dish semi-angle a at this radius is "'12.4°, the 
net vectoring achieved was 

6 • 12.4 -~.4" 10° • net 

For a grid compensation of 0.5 percent, the net ,grid off"et at this 

radius is 

fl '. (.OOS) (10.7) - 0.06 tan 12.4° - 0.04 cm • net '" . .' 

The measured vec::toring sensitivity is thus 
, 

10° Sv •.• 04 em -Z50·/cm , 

: -.;, 263 

.' ~.- ' .. 

-{ 
1 

l. 
J 

I 
J 



,. 
] -

, . 

{ r-OCM!~t=::::::~~~ " 3.8CM 
1+ _ 7.3CM 

-10.9CM 

{
f-OCM 

. - 3,8CM 
'++ -7.3CM 

c 10.9 CM 

20 15 10 5 o 

8.DEG 

-5 -10 -15 

Figure 5-6. Beam profiles measured with ExB analyzer; 30-em 
thruster using 0.5% eompensation(Ref. 59). 

264 

-20 

'\{ 
, . . , 

1. 
.. J 

)1',1 1 

" 

J, 'j' 
~1 • ': 1 
• 1 

I 

Bj 
'-,'} : ; I 

· i 
r,<] i .j ! 
r 1 

"1 
K] 
~, 



, 

u 
n 
n 
n 
n 
n 
n 
1·.1 

I 

fl \ 
f.l I ! 

n 

u 
n 

or, in normalized form, since the screen aperture diameter is 0.1905 cm, Snorm -1°/2.Lpercent of screen aperture diameter offset. In comparison. the sensitivity obtained with the 5-em thruster measured with a probe rake was 1°/1.6 percent; digital computer traj'.\ctor~calculations pre­dicted a sensitivity of ~10/1 percent. For the thrust loss calculations described in the following section, the sensitivity messured with the 30-em EMT was used. 

b. Thrust 1.0ss Calculations 

These calculations were made to sid in assessing the feasi­bility of new· th~ter design concepts. Se.veral assumptions were used in making the thrust loss calculations I 
• The current density across the grid varies as 

'J(r) • J cos ~ 
o 2r1;1 

• A maximum beam vectoring of 1.6° at the beam edge 
• Optics geometries for all cases are Bcaled from the present 30-ClII design so that the normalized vectoring· sensitivity - 1°/2.1 percent. 
Using the first assumption, the grid thrust vector cos ij and thr\1llt loss Tloss (in percent) is given by 

cos 6. 
r 

J; 1m 2nr cos ~ cos 
o 

9(::) dr/lo 2n cos ;~o dr , (5-17) 

where 

Tloss - 100 [1 - cos a] (%) , (5-l8) 

and 8(r) is the difference between the dish angle a and the net vectoring angle. The net angle 8(r) used in evaluating the thrust loss in Eq. 5-16 is the difference between the dish angle and the net vectoring angle· y(r): 

8(r) & a(r) - y(r} , (5-19) 
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where 

• y(r) • s[rCtot - d tan a] • 
• A maximum vectoring angle of 160 is assumed to prevent direct inter-ception so that the C(a} compensation amounts to a msximum of 16 x 2.1 percent. 33.6 perc~dt of the screen aperture diameter at the beam edge. Under this assumption, the compensation used for the thrust loss calculation was 

d [9 C • - -+ tan tot r s o (5.20) 

where 9 .. 160 if <p >160, and 9 .. e if 4> <16 0• This expression max max max is plotted in Figure 5-7 as a function of thruster diaMeter with radius of curvature as a parameter. The present 30-cm compensation should be increased to 0.6 percent to be perfectly compensated. For <P is 160• y .. 9° across t.he grid and Tl .. 0 (neglecting the 
max 

oss intrinsic beamlet divergence. which typically amounts to 1 or 2 percent). The amount of thrust loss calculated using Eqs. 5.16. 5.l7.and 5.19 is plotted in Figure 5-8 as a function of thrust diameter with grid radius of curvature as a parameter. Figure 5-8 shows that the present 20-in. grid curvature could be used up to a thruster diameter of ~50 cm with less than 1 percent thrust loss. Figures 5-4 and 5-5 show that this diameter corresponds t~ a maximum dish angle of ~300 and dish depth of ~7 cm. 

c. Practical Considerations 

The calculations discussed above show the relationships between beam divergence. thrust loss. and grid compensation parameters for ideally spaced and aligned grids. In practice, ion optics elec­trodes cannot be spaced completely uniformly, and alignment to obtain the exact required offset in alL radial directions presents a vary difficult assembly task. If thrusters are required in very large num­bers. requirements for such extremely high accuracies represent a costly 
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Figure 5-7. Grid compensation versus thruster diameter. 
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and formidable manufacturing obligation. Since 0.4 percent is 
considered the empirically determined practical limit for 30-cm 
thrusters, the calculations given above are only useful in a relative 
sense and show what could be achieved ideally. Achieving relatively 
small thrust losses would require developing fabrication processes to 
achieve adequate aperture alignment and electrode spacing. 

B. CAntODES 

The hollow cathode configuration shown in Figure 5-9 is the 
accepted cathode design for 30-cm thrusters. This cathode geometry 
hau evolved from extensive development work at NASA teRe and elsewhere 
and a complete referenced discussion of this development has been pre­
se,nted by Kaufman. 66 Essential features of this cathode design are 

• A hollow tnbe with a gas-flow-limiting orifice 

~ An external heater to raise the tube and orifice temperature to l3000K 

• An internal source of BaO for providing a low-work-function surf 'Ice 

• An internal gas pressure of ~l Torr during normal operating conditions 

• Operational modes with characteristics that depend on gas flow and emission conditions. 

Although several. possible explanations of hollow-cathode physical 
processes are considered in Kaufman's review article, the discussion is 
by no means conclusive. Some conclusions for Which there is general 
agreement are that 

• Taermionic emission from the cathode orifice or interior is important to both ignition of the cathode discharge and its operation at low discharge (keeper) voltage. 

The hollow cathode plasma is characterized by an electron density, ne , on the order of lOl8/m3 with a Maxwellian energy distribution ti!at has an electl'on temperature, Te' in the 0.5 to 2 eV range. 
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• Cathode orifice wear is proportional to emission current 
req~irements and orifice dimensions. 

The nominal emission current rating of the 30-cm thruster hollow 
cathode is 12 A for 2 A of beam current. Life tests have been conduct~d at 
this current that show negligible cathode wear for 18,000 hr of testing. 68 
Since the 30-cm thruster cathode was scaled from the 15-cm thruster cath­
ode (SERT II) on the basis of empirical results, we can suggest with some 
confidence that scaling a cathode for higher emiss~()n currents should not 
present a basic technology problem. In previous sections, beam currents 
as high as 15 A were considered a possibility,and such beam currents 
imply emission currents of 90 A. Emission currents of 20 A have been 

69 a"nieved without difficulty from the present 30-cm cathode design, 
but extrapolation to higher currents would require experimental verifi­
cation and probably some additional engineering to achieve the thermal 
environment considered to be a requirement for long lifetime. 

The discussion presented above is relevant only for operation with 
mercury vapor as the propellant or working gas. Achieving the requisite 
low-voltage discharge conditions has not been adequately demonstrated 
with other gases, is not well documented empirically, and was not a sub­
ject of this investigation. Empirically, xenon appears mostsimila'!: to 
mercury ·,apor with respect to discharge characteristics and cathode 
operation. Consequently, for operation with propellant other than mer­
cury, a basic technology investigation and development program is 
considered to be a requirement. 

C. THERMAL LIMITS 

As discharge power is increased to obtain higher beam currents, 
the temperature distribution throughout the thruster changes. Power is 
not distributed uniformly, and some parts of the thruster will be heated 
more than others. To assess the relationship of thermal limits to beam 
current, a thermal modeling analysis W8.S performed. An ll-node thermal 
model for the 30-cm thruster has been developed and has been used to 
predict the temperatures of critical thruster components for hig;, beam 
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current operation. 

model developed by 

The starting point for this effort was a thermal 
70 ' 

Oglebay at NASA LeRC for the 30-cm thruster. The 

nodal conductances, view factors, and power distribution for this model 

were received from NASA LeRC and were incorporated where applicable in 

the development of this simplified thermal model. A description and the 

results of this model sre presented below. 

1. Thermal Model 

The thermal analysis was carried out ~y representing the 30-cm 

thruster as a lumped parameter network of 11 nodes with 22 radiation and 

conductor re~istances. A sChematic showing the thermal model and nodal 

numbering is shown in Figure 5-10. Each of the principal thruster co~ 

ponents was represented by a node that was connected to adj~cent nodes 

by radiation and conductance resistors. These parameters" along with the 

nodal area, vie~ factor, and the emissivity assumed" are summarized in 
Table 5-1. The radiation exchange factors drij were calculated using 

AiDij = [±i(!i-1)+±j(!j-1)+A~Fij]-1 (5-23) 

and are also shown in Table 5-1. 

2. Power Inputs 

The nodal power inputs were calculated as a function of beam cur­

rent on the basiS of a discharge chamber efficiency of 185 eV/ion and a 

fixed loss of 21 W. The actual effective heating power produced by the 

discharge chamber efficiency waS assumed to be re:luced by (37 + 10) 

eV/ion to account for the kinetic energy and heat of ionization 

taken away by the beam ions. This results in an effective, discharge 

heating power as a function of beam current of 

= 138 Ib + 21, (5-24) 
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Table 5-1. Summary of Nodal Areas, View Factors, Emissivities and Form Factors Used in Thermal Model 

Nodes Connector Ai' Aj' e i ej Fij AiF:it!' Connected Number in. 2 in. 2 
in. 2 

2 and 1 1 231 195 0.15 1 0.5 30.1 
3 and 2 2 120 231 0.20 0.20 0.47 14.6 
3 and 6 3 120 74.4 0.15 0.15 0.03 2.5 
5 and 7 4 352 396 0.15 1.0 0.175 30.9 
6 and 7 5 396 396 0.15 1.0 0.50 51.6 
8 and 11 6 81.1 81.1 0.15 1.0 0.50 10.6 

10 and 11 7 111 195 0.15 1.0 0.50 14.5 
9 and 11 8 91 195 0.15 1.0 0.235 9.2 
4 and 11 9 171 120 0.25 1.0 0.05 7.4 
3 and 11 10 155 120 0.25 1.0 0.16 16.8 
4 and 3 11 171 120 0.25 0.15 0.17 ' 10.1 
4 and 9 12 171 114 0.25 0.15 0.06 6.07 
4 and 10 13 171 113 0.25 0.15 0.06 6.05 
4 and 5 14 171 352 0.25 0.15 0.50 22.05 
5 and 6 15 215 396 0.15 0.15 0.325 18.2 
5 and 8 16 215 81.1 0.15 0.15 0.02 3.0 
9 and 10 17 114 114 0.15 0.15 0.265 7.5 
2 and 6 18 0,05a 
6 and 8 19 0.05a 
3 and 5 20 0.095a 
5 and 9 21 0.119a 
3 and 9 22 155 114 0.25 0.15 0.053 5.06 
3 and 10 23 155 114 0.25 0.15 0.056 5.27 

a Conductances in W/oC 
. - .- . 
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where 1b is in amperes, and Pdis is in watts. This power was distributed to the screen, anode, and backplate nodes as follows. Assuming an effective screen grid open area of 70 percent, the wall flux of ions which strike this electrode produce an effective heating power of 

1 (1 - 0.70) [37 + lO] '" 20 I b 0.70 b ' 
-

(5-25) 
where we have neglected the cooling effect of the electrons that combine with ion wall flux. 

By assuming that all the fixed losses are distributed to the back­plate electrode, the power to this electrode was taken as 

13 1b + 21 , 
where the coefficient of 1b was taken to agree with Oglebay's model at a 2-A beam current. The heat to the anode was found by subtracting Eqs. 5-25 and 5-26 from Eq. 5-24, resulting in an anode power 

The power distribution and the power taken away by the beam ions are summarized below: 

p 
. - 105 1b anode 

p 
screen - 20 1b 

Pback = 13 1b + 21 
P • q7 1b lost 

Total: 185 1b + 21. 
The" accelerator grid power (I V

t t) was calculated as a function ace 0 of beam current by linearly extrapolating the typically measured accelerator current at 1 and 2 A beam current. ':rhe total voltaS'" Vt 
was found by solving: 

- p V 3/2 
x t 
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as a function of beam current and using a total thruster perveance of 

which is typical of present close spaced optics. A complete summary ~f the resulting nodal powers as a function of beam current is shown in Table 5-2. 

3. Results and Discussion 

Table 5-3 summarizes the calculated temperatures as a function of bl'am cur cent levels from 1 to 10 A. Also shown are some experimentally measured temperatures for the 1 and 2 A beam current levels; these results are in good agreement with the calculated values. The calculated temperatures are plotted in Figure 5-11 as a function of beam current. To estimate the limiting beam current (temperature) for the present 30-cm thruster, we will assume that the magnet temperature must be less than 500·C and that the vaporizer temperature must be less than 300·C. We will also assume that the radial magnets operate at the baseplate temperature and that the lower limit to vaporizer temperature would be the rear shield temperature. Under these assumptions, it is clear from Table 5-3 or Figure 5-11 that the highest beam current is ~9.5 A to maintain the radial magnet temperature at less than 500·C and must be less than ~ A to maintain vaporizer control. Assuming that these two lindtations can be avoided by improved magnet material and the elimina­tion of vaporizers with argon, the next temperature limit will probably be the ion optics (screen grid).' If an upper limit of 700·C is chosen, the lO-cm thruster could probably be operated up to 15 A. 
Clearly, the maximum beam current for any given size will be limited by a ruaximum operating tempp.rature (probably ion optics). Results of a thermal analysis discussed previously were used to establish a temperature-limiled beam current, as shown in Figure 5-12. Since a large fraction of the radiated heat is rejected through the ion optics, this 
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Table 5-2. Summary of Nodal Input Powers Used in 
Thermal Model 

. 
Input Pow.er. W 

Beam Current, A 

1 2 4 6 8 

1.8 6.4 21.5 46.5 77.5 

20 40 80· 120 160 

,. 105 210 420 630 840 

(3) 34 47 73 99 125 
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Table 5-3. 

Node 

Rear shield 2 

Base plate 3 

Anode 4 . 

Body 5 

Ground Sc. 6 

Mask 8 

Screen 9 

Acce1 10 

Summary of Calculated Temperatures for 30-cm 
Thruster. Values in ( ) Were Determined 
Experimenla11y. 

Calculated Temperature, ·C 

Beam Current. A 

1 2 4 6 8 

(120) (153) 
97 143 206 25). 288 

(200) (262) (328) 
189 258 348 411 462 

271 372 492 574 638 

(174) (230) 
152 224 312 372 420 

(96) 
47 96 160 204 239 

(62) 
33 79 137 178 210 

202 293 404 480 540 
: 

163 246 350 426 487 
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Figure 5-11. Calculated temperatures versus ~. 
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Figure 5-12. Estimated maximum beam current (limited by 
temperature) versus thruster diameter. 
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curve was derived by assuming that radiated power is proportion",l to 
beam diameter and beam current in the form 

-
Therefore, 

where the K's are constants, 

T 
max 

D 

= maximum allowable temperature 

= beam diameter 

- maximum allowable beam current 

= 0.0167 A/cm2 

(5-23) 

(5-29) 

(5-30) 

The constant K4 in Eq. 5-30 was evaluated for the 30-cm thruster assuming 
a maximum current of 15 A. 

D. WEAROUT LIFE 

In the preceding discussions, thruster diameter, or mere properly 
ion beam diameter, was determilled as a function of specified beam cur­
rent (thrust) and voltage (Isp) for both mercury and argon propellants 
on the hasis of state-of-the-art ion extraction system capacity only. 
It is now appropriate to examin~ these results with respect to those 
practical constraints that are presently known and others that can be 
anticipated. 

Consider first the operation of a 30-cm thruster at higher beam 
voltage to obtain higher beam current. With regard to tIle ion extraction 
system, results presented in Ref. 69 indicate that operation at 
increased beam voltage has relat1,vely little impact on the design of 
this thruster component. If beam current is kept within the perveance 
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limitations, then beam current can also be increased without significantly 
affecting the ion o~tical properties of the extraction system. Similar­
ly, operation ~t increased beam voltage is of little or no consequence 
to either discharge chamber .or cathode operation or design. Propellant 
electrical isolators must be adapted to the appropriate voltage insula­
tion, as mUdt all the insulation used, bu~ this is not a significant 
constraint unless extremely high voltages are specified (>10 kV). 

Increasing the beam c~rrent at constant-thruster diamete~, however, 
requires an increase in beam current density and thus a ::coportional 
~ncreGse in plasma density and discharge current. Increasing plasma 
density at an"approximately constant ionization fraction has been found 
to increase the double ionization percentage, and thus discharge chamber 
erosion rates increase at a rate somewhat greater than linear with 
increasing discharge current (beam current). An approximate dependence 
of erosion rate on beam current can be derived as follows. The number of 
particles q eroded from a unit area by a current density j impacting on 
that surface can be expressed as 

(5-31) 

(5-32) 

where S is the sputtering coefficient for the appropriate ion species, 
and e is the electronic charge. The fraction j++/j+ is a function of 
the total current dentisy jt • On the basis of empirical data obtained ot 
with an EMT-like 700-series 30-cm Hg thruster, 

0.1 (5-33) 

where Ib is the total beam current, and the current densities are average 
values for the screen grid boundary. Bj setting j+ proportional to total 
beam current, Eq. 5-32 becomes 

q 

C-1 

[ (
4 "c. Ib) 1+ -­

"I) 
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where C is the proportionality constant between current density and total 

current. The sputtering coefficient for doub!,y charged ions is assumed 
71 to have the value measured for singly charged ions at twice the ion 

energy (voltage). For the energy range of interest (30 to 40 V), the 

ratio S-++/S+ is approximately lS. Hence, Eq. S-34 can be written 

(5-35) 
= 

where K incluaes the appropriate considerations for relating current 

density to beam current, sputtering coefficient for the material being 

eroded, and to the energy of the eroding ions. 

If a particular discharge chamber surface is now selected as the 

critical surface for material loss, it is possible to use Eq. 5-35 to 

relate useful lifetime to beam current. By specifying the allowable 

material loss in terms of atoms per unit area N, the lifetime, T, is 

given by 

q T = N = constant, (S-36) 

and hence 

= 

where the subscripts denote lifetimes and erosion fluxes for different 

current values; therefore, 

= 

or 

= (5-37) 

Eq. 5-37 can now be used to extrapolate measured thruster lifetime for 

operation at lower currerlts to operation at higher current under the 

assumption that the conditions (particularly constant discharge voltage) 

stated in Eq. 5-33 are valid. Thus, conditions are thought to be satis­

fied for a 30-cm thruster of the 700-series EM design if the discharge 
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power input in watts per beam ampere (eV/ion) and the true propellant 

utilization efficiency are held constant. . As an example, the screen 

grid lit.,time W,lIS 60 percent consumed in the 10,000 hr endurance test 

of thruster SIN 701 (NASA CR-135011) and the average current was 

1.4 A.72 The lifetime T at current Ib can be estimated by 

T(I) 
4.85 x 104 

(5-38) -
" 

for operation at a d~scharge power input of 185 eV/ion and a corrected 

discharge propellant 'utilization efficiency of 88 percent (as shown 

graphically in Figure 5,-13). Although the applicability of this curve 

to thruster operation in general may be quantitatively in question, this 

ty~e of relationship between lifetime and beam current is considered to 

be qualitatively valid. 

The ion extraction screen grid has been selected as the critical 

surface here because, as a discharge chamber component,· the ion extrac­

tion screen grid thickness affects the efficiency of producing beam ions 

(eV/ion). Conaequently, if one wishes to preserve thruster efficiency, 

one cannot simply increase the grid thickness to increase its lifetime, 

as is possible with some other discharge chamber components. Although 

the absolute value of the relationship shown in Figure 5-13 may be 

somewhat uncerta:l.n, it is possible to make the observation that, for 

short-term missions, existing 30-cm technology could produce high beam 

currents with useful lifetimes. 

It is anticipated that operation at lower propellant utilization 

efficiency will change Eqs. 5-33 and 5-38 such that a familY of 

curves will be generated that a1C shifted to higher lifetime. Again, 

drawing on empirical data, the relationship between j++/j+ and cor­

rected discharge chamber propellant utilization efficiency, shown in 

Figure 5-14, can be used to modify Eqs. 5-33 and 5-38 to obtain 

Figure 5-15. The applicability of the empirical data in Figure 5-14 in 

a general consideration is quantitatively questionable; hQwever, the 
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Figure 5-13. Estimated thruster wearout lifetime (700-series EMT, Hg, 37 V, nu = 0.88). 
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Figure 5-14. Relationship between (j++/j*) and discharge utilization efficiency (700~series EMT, Hg, 37 V). 
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trends produced (as shown in Figure 5-15)should be valid. Consequently, 
the observation that a relatively small change in propellant utilization 
(5 percent) can produce a large change in screen grid wearout lifetime 
(100 percent) is considered valid (except for the absolute values of 
the changes). 

It is useful at this point to consider the constraints placed on 
thruster design by the implications of F~gure 5-15. If discharge chamber 
wearout lifetime is determined by the ion extraction screen thickness, 
unless the thruster configuration and operating characteristics are 
significantly changed, then Figure 5-15 can be used to restrict the 
relationship between beam current and beam diameter. Supposing that the 
wearout lifetimes shown in Figure 5-15 may be as much as a factor of two 
too low, the maximum beam current that can be considered practical for a 
minimal lifetime (3000 hr) is still only about 10 A. This limit is 
essentially independent of whether the propellant is argon or mercury, 
because the sputtering coefficients are essentially the same for both 
elements and doubly charged ions are formed in argon about as readily 
as in mercury. Extension of this limit would require new, advanced 
technology that is not directly identifiable from '"Jnsideration of 
present 30-cm thruster development. Figure 5-16 shows ,the modifications 
of the beam-current/beam-diameter relationship with the current density 
limitation applied. The shaded areas of the charts are unavailable 
because the current densities required would not be consistent with 
lifetimes considered to be useful. The information in these relation­
ships is applied as illustrated in the following example. If a given 
mission analysis indicated that a 40 A beam of argon ions at 2 kV beam 
voltage would be optimal for each thruster module, then Figure 5-16 
indicates that the minimum beam diameter for useful lifetime would be 
60 cm even though the ion optics could be designed to produce 40 A at 
2 kV with '" 50-em-diameter beam. 

E. THRUSTER SCALING 

In the preceding sections, the factors that limit the power and 
thrust capacity of existing 30-cm mercury ion thrusters were discussed. 
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Figure 5-16. Beam diameter required to produce argon or mercury ion beams, including WearOI"t limits. 
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It was shown that the upper limit on beam current is 10 or 15 A depending 
on whether wearout lifetime or thermal constraints are considered to be 
most imp?rtant. For a mission of 125 days or more, screen grid wearout 
lifetime dominates and the current limit is 10 A. One option is to con­
sider using several thruster modules with a single power processor to 
obtain the required lifetime. The ion opt~cs thermal limit then becomes 
most important because any attempt to alleviate thermal problems in this 
component would constitute a major development task, whereas magnet 
temperature limitatio,ns might be alleviated by changes in magnet material 
or reduction of heat transfer to the magnets. Hence, 15 A would be the 
upper operational limit for a 30-cm-diameter thruster, based on the 
assumed ion optics thermal considerations. This limit is independent of 
propellant type or specific impulsE since the discharge power input 
required per unit of 
approximately 3 kW. 
capacity would have 

beam current is essentislly a Cm'lstant' and would be ' 
Consequently, any improvement in 30-cm thruster 

to address the problem of rejecting this order of 
thermal input without the temperature of the accelerating electrodes 
exceeding 700·C. An advanced concept 30-cm thruster would therefore 
depend on development of new technology capable of higher power density 
operation and designed specifically for heat rejection. Some of th~ 
fundamental requir<=1l1ents that can be predicted for specifying sUI!h I~ 
thruster concept are 

• High specific impulse operation to permit adequate electrode thickness for heat rejection by conduction 

• 

• 

• 

Improved beam and discharge plasma uniformity to distribute 
thermal inputs more evenly 

Incorporation of materials capable of higher temperature 
operation 

Efficient operation at low discharge voltage to ~tnimize ion 
sputtering erosion. 

Increasing t,he thruster beam area while keeping power (or thrust) 
densities at or below the limitations indicated above can'be approached 
as an engineering problem rather' than one requiring technology. As in 
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determining thruster limitations, the appropriate starting point in 

considering l.arger thruster modules is to examine the ion extraction 

system requirement. 

One way to increase the beam area would be to increase the beam 

diameter. To maintain high current density at low beam voltage, the 

dimensions of the electrode thickness and interelec~rode spacing must be 

kept as small as practical. This dimensional limitation implies the use 

of curved or dished electrodes to achieve mechanical stabiU_ty. As 

discussed ifi Section 5.A.2, electrode curvature introduces a thrust loss 

because of non-axial beam trajectories. The technique used to vector the 

off-axis beamlets to "compensate" for electrode curvature approaches the 

direct interception limit at 30-cm beam diameter and therefore larger 

diameter thrusters might have to operate with uncompensated aperturea 

at the periphery. Thrust losses resulting from this limitation were 

discussed in Section 5.A.2.b. An additional constraint to increasing 

beam diameter is the availability of electrode material. Mol:-,)denum 

sheet is currently only av-ilable in widths up to 24 in. (61 cm), and 

at present no other material offers a viable substitute. Therefore, 

50 cm is at present the practical fabrication limit on beam diameter. 

F. PROPELLANT-TYPE CONSIDERkrlONS 

The 30-cm EMT has been developed primarily for operation using 

merc_~f as the propellant. It is a relatively straightforward matter to 

operat~ a thruster on other gases since the discharge mechanisms are 

not dependent on the mass or ionization potential of the gas used. 73 ,74 

Performance characteristics are another matter, however, and the highly 

attractive characteristics of ion thrusters based on operation with 

mercury may not be maintained with an urbitrary choice of propellant. 

Because of the relatively large quantity of propellant required for 
6 

some large earth orbitsl satellite applications (~10 kg), an inert gas 

(e.g., argon) appears to be an attractive propellent possibility. The 

first consideration is the ionization potential: 15.75 V for argon as 

compared to 10.4 V for mercury. This means that more discharge energy 

goes into ionization of each argon ion and also that dischargev)ltage 
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must be higher to obtain the same number of ionizations per primary 

electron (cathode emitted). These facts present a trade-off between 

operating at incressed discharge voltage (thereby increasing discharge 

chamber ion sputtering erosion) and limiting discharge voltage (thereby 

reducing propellant efficiency and increasin~ charge exchange ion sput­

tering erosion of the accel electrode). Thi~ trade in erosion rates 

will be assesed in more detail at a later time. 

The mass of the argon atom is only .20 percent of the atomic mass of 

mercury, and therefore operation on argon implies higher specific 

impulse or higher power per unit of thrust. To approach the 30-cm EMT 

thrust and lifetime specifications (for mercury operation),an EMT design 

thruster operated on argon would have to be operated at a specific 

impulse of about 8000 sec and at a 12-kW power level (5500-V beam volt­

age at 2-A beam current). This power requirement could be p.rohibitive 

in some applications. 

Next we consider some of the advantages and operational implications 

of using argon as the propellant. First, argon is a gas under anticipated 

operating conditions and no heaters or vaporizers are required for pro­

pellant supply. Flow rates can be accurately controlled using flow 

impedances and constant pressure regulators. This implies that thruster 

control must be established using only electrical parameters (not pro­

pellant flow) unless a variable flow impedance is developed. Thruster 

turn-on time can be essentially eliminated since no vaporizer warm-up 

is required. Because of reduced ionization efficiency, double ioniza­

tion processes are not anticipated to be as i~portant to thruster dis­

charge chamber life in argon thrusters as in mercury thrusters. Thus, 

it may be possible to increase propellant utilization efficiency by 

increasing discharge voltage and yet maintain constant wearout life. 

The more significant implication tc advanced thruster technology, 

in so far as ,ngon operation is concerned, is thruster lifetime and con­

trol. In applications where argon is nearly mandatory because of the 

quantity of propellant required, the number of thrusters will be large -

even if the module size becomes significantly larger. Moreover, it 
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would be extremely desirable for an ion thruster to turn on and off with 

the simplicity of a fluorescent lighting fixture and to be capable of 

operating as long, or longer. Current hollow cathode technlJlogy provides 

long operating life but is relatively complex from the stalldpoint of 

cathode ignition and control. Advanced cathode technology has been 

investigated by personnel at NASA LeRC, Colorado State University, and 

HRL, but no results have been reported, at this time, that show possi­

bilities of simplified long-life thruster operation on argon or other 

gaseous propellants. Thus, there is a clear opportunity for thruster/ 

cathode technology innovation. 

G. OPERATIONAL SIMPLIFICATIONS 

The 30-cm mercury ion thruster, as presently developed, requires 12 

power supplies, at least 8 of which are required to be more or less con­

tinuously variable in output. The 12 power supplies are 

Variable output power supplies 

• Beam or screen supply 

• Discharge supply 

• Acce1 supply 

• Magnetic baffle coil supply 

• Cathode vaporizer supply 

• Main vaporizer supply 

• Neutralizer vaporizer supply 

• Neutralizer keeper supply 

Fixed output power supplies 

• Cathode tip heater supply 

• Neutralizer cathode tip heater supply 
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• Isolator heate,.";! supply 

• Cathode keeper power supply 

Of the variable output power supplies, the only obvious possibility for 

simplification is the combination of beam and accelerator supplies. 

Feasibility of this combination was demonstrated under the 2.5-kW 

Advanced Technology Ion Thruster program (contract NAS 3-17831) during 

1975 •. Similarly, all of the fixed power supplies listed, except the 

cathode keeper supply, are used only during start-up (or for very low 

power operation). Since the discharge power supply is variable and not 

in use during 'start-up until the heaters are no longer necessary, it can 

be used to supply heater power by appropriate heater design and inter­

connections of heaters. The power processor being developed for the 

30-cm EMT uses the discharge supply for powering the isolato.r heaters 

prior to discharge ignition. This capability was also demonstrated 

during 1975 under the above-mentioned program for the cathode tip and 

the isolator heaters. Similarly, the cathode keeper discharge can be 

maintained after keeper ignition by using a dropping resistor from the 

anode, thereby eliminating the steady-state keeper supply requirement. 

The stability of the keeper discharge in ~his mode of operation has also 

been demonstrated fur all anticipated transient conditions. Thus, it 

would be possible to eliminate· one variable output and three fixed output 

power supplies without altering any of the steady-state control concepts 

now in use. 

To identify further simplifications, it is appropriate to examine 

the function of each of the eight remaining power supplies as related to 

thruster operation requirements. 

1. Beam (or Screen) Power Supply 

This supply provides the voltage necessary to accelerate and focus 

the ion beam. It is operated as a constant-voltage supply with a cur­

rent limit. Beam current is determined by discharge and vaporizer 

parameters. 
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2. Discharge Power SupplY 

This power supply ionizes the propellant and :I.s operated as a 
constant current supply. Discharge current is an independent param~ 
eter determined by the beam current desired. Cathode propellant flow 
determines the discharge voltage. 

3. Magnetic Baffle Coil Power SupplJ[ 

This power supply excites the magnetic baffle coil and is an effec­
tive adjustment on the discharge voltage/cathode propellant flow 
characteristic. Variable output for this power supply is a convenience 
or flexibility option. 

4. Cathode Vaporizer Heater Supply 

This power supply provides cathode vaporizer propellant flow and its 
output is controlled in direct proportion to discharge voltage (closed 
loop), as compared with a reference voltage (independent parameter). 

5. Main Vaporizer Heater Sepply 

This power supply provides main vaporizer propellant flow and its 
output is controlled in proportion to beam current (closed loop) and 
compared with a reference signal (independent parameter). 

6. Neutralizer Keeper Power Supply 

This puwer supply initiates and maintains the neutralizer hollow 
cathode plasma. The power supply is operated as a constant-current 
source with keeper current as an independent variable. Keeper power 
supply voltage varies with neutralizer vaporizer propellant flow rate. 
The neutralizer keeper curr::.~!: set-point is automatically changed when 
the beam current is turned off. to maintain the total neutralizer emis­
sion current essentially constant. 

7. Neutralizer Vaporlzer Power Supply 

This power supply provides neutralizer vaporizer propellant flow 
and is controlled in direct proportion to the keeper voltage (closed 
loop) in comparison to a reference voltage (independent variable). 
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8. Neutralizer Cathode Tip Heater 

This power supply is used only during start-up per1~ds to obtain 
initial neutralizer cathode ignition. Combining this function with the 
main cathode and isolator heater presents an insulation problem for 
steady state operation. 

Finding further simplifications that would eliminate power supplies 
involves the defining of new control concepts or some loss of flexibility 
in parameter selection. For example, operation at a single beam current 
could reduce the discharge supply from a variable to a fixed-output power 
supply and re~uce the complexity of the main vapol:1zer supply somewhat. 
Similarly, a thruster modification could· eliminate the magnetic baffle 
coil requirements. Operation of the thruster with gaseous propellants 
would eliminate vaporizer power supplies. 
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SECTION 6 

ADVANCED THRUSTER CONCEPTS 

An initial objective of this study was to translate the thruster requirements defined by the mission studies into detailed hardware designs. However, the scope of the detailed design task was reduced to allow a greater emphasis on Earth orbit mission cost modeling. Although detailed designs were not developed, several advanced design options were considered. Three options are discussed in this section: (1) a So-cm thruster scaled directly from the 30-cm EMT, (2) a SO-cm thruster using a new structural approach, and (3) an oval 30 x 90-cm thruster. Since these concepts were developed mainly for assessing first-order potential problems, the discussion is limited to describing salient features. 

A. SCALED-UP 30-CM EMT CONCEPT 

A SO-cm-diameter thruster concept, using the present 30-cm thruster components and structural approach, is shown in Figure 6~l. This par­ticular diameter was chosen for several reasons: 
• 50 cm is probably near the upper limit for straight­forward ion optics development. Molybdenum sheets ace currently available only up to about 60-cm widths. Thruster diameters larger than 50 cm would require expensive special mill runs or fabrication from joined sheets. 

• Beam divergence thrust and efficiency losses start to become more important around 50 cm. If the grid radius of curvature must be maintained near that used for the 30-cm (50-em radius), grid compensation cannot totally correct the divergence. Structural stability tests would be needed to establish confidence in a higher radius of curvature. 

• Grid-to-grid hole alignment and spacing'control become more difficult as the diameter increases. . 
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Figure 6- . 1 Continued. 
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50 cm is probably near the limit of high performance 
operation with a single cathode. At this size, 
plasmanonuniformity with a large central cathode 
might require extensive experiments for magnetic 
field shaping (e.g., cusped fields). 

• A 50-cm thruster is in the region of inter6st for 
large vehicle missions in Eal."th orbit. 

The design shown in Figure 6-1 utilizes the 30-cm thruster struc­
tural approach and the 30-cm thruster length. To a first approximstion, 
the length need not be scaled since the neutral atom mean free path 
before ionization is less than the chamber length. Additional inR111ators 
and supports are provided for the optics and ground covers. With the 
two-point gimbal mount, the structure would probably require additional 
stiffening and thickness compared to the 30-cm design since loads are 
carried further. In addition, the fabrication tolerances and assembly 
procedures would be tighter than for the 30-cm thruster because of the 
greater difficulty of defining the ion beam axis relative to the gimbal. 
pads. 

The cathode and cathode pole shCJwn are the 30-cm thruster design. 
The propellant plenum was arbitrsrily placed at half the anode radius. 
Clearly, the final detailed designs of these and other parts would 
require prototype testing. 

B. ADVANCED 50-CM THRUSTER CONCEPT 

The 50-cm thruster design discussed in the previous section has 
several fabrication and structural weaknesses. The concept illustrqted 
in Figure 6-2 should improve on these aspects of the design. Since a 
major portion of the thruster mass is associated with the optics 
assembly, use of the shell for structure is inefficient. By bridging 
around the shell at three locations, the optics loads can be transferred 
more directly to the gimbal mounts. In addition to improving the load 
path, the concept shown in Figure 6-2 simplifies the optics-gimbal 
tolerance problem. 

300 

I 
j 

j 
1 
1 
I 

i 
1 

I 
\ 



f' 

r 
r 
I: 
I, 
ie 
f 

r-
t. 
" 

t:: 
(' 

{ , 

" 

~"I .. " •.• -~- -;- --~-X~":11i'l',"'~W"""'J~ - . \ ' . .'" -"": •. _. • '.. .,,", > -', 
. . -. 1 ~ . 

-::;" """-;:"""7 -,""~'" .. 

•• L.t UlfJlJ!tJe .X~t}~~~,:e~, &i j ,.¥Hi':!MUP;;; ._~ljiJ . i.e g, .Jsze n .. £&.£232&'1& !!i. '~"I!'.._Q,. J ",!£t..Lbl!Z .£!!&Ai§E!!iM.li£aZ QUid; 1& i2 E_ 

.. IJ!!II!I ,,'" """ ~ ::=:$ _..,.] :=l <-", ~~j 0,;:,5 ~ :=I 

'" o .... 

RADIUS OF 
CURVATURE = 70 

~..:..-.-' 

FV~ 
I 
J == =--

GIMBAL PAD 

30 20 
40 1 I -L --t-t--I--- __ ____ 

\ -~ • 
~...L_r'--____ ~ ___ _ 

-\ 

" 

(n) 

c::::t === == 

72M-1. 

00 

~i 
~i 
~)::. 
>0 
£::t"J. 
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The 30-cm EMT shell design resulted from a series of changes 
designed to make the thruster adequate dYllamically without major re­
design. However, if the shell design task were initiated anew, a 
concept more like that shown in Figure 6-2 would probablY result. 
Avoidance of complex jigging, as currently required, should reduce 
assembly time and cost. 

C. OVAL CROSS SECTION CONCEPT 

An alternative to increasing the ion beam diameter is to increase 
the beam area by increasing one dimension only, thereby producing an 
oval cross section. An example of this approach is illustrated ill 
Figures 6-3 and 6-4. The beam envelope becomes 30 cm x 90 cm and 
could be expected to perform at approximately three times the 30-cm 
thruster capacity with ess~ntially the same lifetime and operational 
characteristics. Since molybdenum sheet is available in any desired 
length (at 60 cm widths), fabrication of the electrodes becomes a 
question of designing the proper hydroforming fixtures. Several main 
problems can be anticipated in developing such an advanced concept 
thruster: 

• Achieving structural sta'bility in the ion 
extraction electrodes and mounting assembly 

• Achieving a relatively uniform discharge 
plasma in the elongated geometry 

• Achieving adequate structural. strength. 

The structural questions present an engineering problem that is probablY 
tractable if the weight constraints imposed are not too severe. The 
plasma uniformity problem is not so easily dismissed, however. The 
proposed solution to this problem makes use of two thruster c~thodes 
and central propellant introduction. Integration and control of two 
hollow cathodes as shown represents a development task thar'has not been 
approached before; however, there should be no fundamental difficulty 
in such an approach. Solution of this problem will have to be primarily 
empirical because discharge modeling is not sufficiently analytical to 
permit des,ign computations. Parameters to be explored would include: 
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Figure 6-3. Oval, 30 x 90-em thruster design. 
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Figure 6-3. Continued. 
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Baffle size and shape 

Cathod~ location 

Pole piece geometry 

Propellant introduction 

Methods for controlling cathode 
propellant flow. 

In the configuration shown in ~igure 6-3, the magnetic field line 
geometry is still the divergent O~ SERT II type. Improved plasma uni­
formity has been obtained and reported by workers making use of boundary 

i fi ld i h h d h 75 ,76 Ail magnet c e geometr es t at ave a cuspe s ape. s ng e cusp 
configuration, as shown in Figure 6-5, is the most readily adapted to 
existing technology. In this configuration, the plasma volume is not 
entirely free of magnetic field, but improved plasma uniformity has 
been demonstrated. A multiple cusped geometry, shown in Figure 6-6, 
introduces considerably more complexity. Since the latter geometry 
might be operable with a single cathode, however, it cannot be ruled out 
a priori. 

Til e~.amine some of the properties of an oval thrus ter in terms of 
EMT t2chnology, two assumptions were made: 

• An approximate thruster weight can be estimated 
by assuming that the weight of discharge chamber 
elements can be scaled in proportion to the cir­
cumference of the chal'lber, and that optics 
assembly and backplate weight scales in proportion 
to beam area. 

• A plasma and beam current diFltribution can be 
established across the sho~ter beam dimension 
that matches the r~dial density distribution 
of a 30-cm thruster. 

Given these assumptions, the .caled thruster mass would be about 
2.4 times ~at ~f the 30-cm ~, ,and the beam area ratio would be 3.55 . ,;.. ~iI['. ' • 
times that of the.,J0-clJl ,JiM't If, one assumes a uniform beam currer,t .. --, . '. ~ . density, then the larger'fhru.s_~ef could provide 7 A beam curr.cmt with a 
lifetime of greater than i~ hr or a maximum beam current of 53 A for 
shorter lifetime. 
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Figure 6-6. Multiple cusp magnetic field discharge 
chamber configuration. 
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If one assumes a current distribution that has the form 

1Tr 
j(r) • jo cos D ' 

then the current capacity for the oblong thruster would ,be about 4.5 

times that of '.he EMT, and, consequently, the thruster could provide 
• 4 9-A beam current with greater than a 10 -hI' lifetime or a maximum beam 

current of 67 A for shorter periods. Thus, the scaled oval thruster 

configuration would have the following specifications: 

• Thruster mass 

• Beam current 

• Beam current 

• Lifetime 

,18.5 kg 

9 A (average) 

67 A (maximum) 

105 (A-hr). 

Preliminary assessment of the' thermal characteristics of the 

"stretched" thruster shows no basis for estimating significant differ­

ences since the primary thermal process, radiation thrqugh the screen 

grid, has been scaled directly by area. Consequently, providing that 

discharge current and plasma density distributions can be established 

as assumed above, thp. p.~aled thruster. configurations would have com­

ponent temperatures essentiall)' the same as those of the EMT. For an 

EMT-type magnetic confinement geometry, this may be a rather pessi-
- -

mistic assumption, and the cusped configurations may be more realistic 

for achieving a satisfactory plasma distribution in the oval geometry. 

t 

The cusped msgnetic geometries may offer more promise for 

establishing a satisfactorily uniform plasma distribution, but they will 

e1so carry a weight penalty. We estimate that the additional anode and 

polepiece required for a single cusp geometry would add 1.2 kg (6%) to 

the thruster assembly. 

Assuming' a periodicity every 2.5 em for the multiple cusp 

geometry, 6.5 kg (35%) additional weight would be added to the thruster. 

Since the 6.S kg increase in weight could require heavier structural 

elements to satisfy launch requirements, this is probably a low estimate. 
:I., • 

Consequently, the single cusp may be the most promising ,'a~,etpative. 
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The most critical single element in this "stretched" configuration 

design is considered to be the ion optics assembly. The concerns are 

more practical than fundamental in that a fabrication process is 

required for manufacturing electrodes in the oblong shape with 

aufficient conformality that uniform interelectrode spacings can be 

achieved. Conceivably, the processes now used for hydro forming and 

chemically milling the circular, dished-grid electrodes can be adapted; 

however, this supposition remains to be demonstrated. Similarly, the 

electrode mounting structure becomes more vulnerable to distortion in 

the oblong configuration, and that possibility also affec.ts the ability 

to achieve satisfactory interelectrode spacing. These two elements are 

the major concerns for increasing the longer dimension of the "stretched" 

thruster. If low I (close grid spacing) is not a requirement, then sp 
the degree of difficulty is lessened. If thAse unproven factors can be 

adequately handled, the long dimension of the oval thruster can be 

extended or shortened to match thruster module requirements with a mini­

mal impact on thruster design and performance characteristics. 

An additional factor that should be mentioned is reliability. 

Although the oval concept may require mUltiple cathodes for best 

performance,operation with ·a failed cathode would be possible. 

Performance w~uld probably be degraded with a failed cathode (e.g., 

one failed out of three), but mission options should be better relative 

to.having a completely failed module. 

I 
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SECTION 7 

STUDY CONCLUSIONS 

The most significant products of this work are the cost modeling 
methodology developed for Earth orbit missions, the generalized analysis 
approach for planetary missions, and the technology assessment results. 
Specific conclusions relative to the selection of an advanced thruster 
concept were also developed. These specific conclusions are important 
and necessary, but their value depends greatly on the input assumptions. 
Although the assumptions and resulting conclusions may be changed by 
additional study, the analysis tools developed here should provide a 
straightforward means of evaluating the assumption/conclusion relationship. 

Earth orbit mission ~ost modeling results produced several reason­
ably clear conclusions. Under most conditions, module power is the key 
thruster parameter in producing low-cost transportation and on-orbit 
propulsion. The upper bound on module power is not a hard boundary, but 
thruster development considerations will probably restrict the power 
level to about 100 kW. Depending on the mission, thruster wearout life 
is ,the next most important parameter. When refurbishment is not included, 
wearout life is quite significant in the overall system cost picture. 
Other thruster parameters initially thought to be important (e.g., mass, 
unit cost, redun?ancy) appear to have only second-order effects on total 
cost. Power processor and power sourcelarameters strongly influence 
total cost and should be carefully consiricred in selecting a vehicle 
design. 

After evaluating the cost sensitiv'lcy of the transportation and 
on-orbit missiona to a wide range of parameters, a So-cm-diameter 
thruster was sugge~ted. This thruster, operated at a beam voltage of 
about 2400 V, would satisfy a wide range of Earth orbit missions. For 
large systems (SPS size), the So-cm thruster could be operated on argon 
with a beam power of about 100 kW. For somewhat smaller vehicles, xenon 
could be used effectively with a beam power of about 50 kW. \ , 
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The generalized mission analysis approach was used to evaluate a 
broad range of planetary and small-body missions. For most of these 
missions, the existing 30-cm thruster is a good choice. However, payload 
performance for Encke's comet, Earth observatory, asteroid rendezvous, 
asteroid sample return, and out-of-the-ecliptic missions would be 
improved by higher thruster beam current. Beam currents of 4 A or more 
would significantly reduce the number of modules, reduce the propulsion 
system specific mass, and increase payload. This characteristic is 
similar to the module power dep~ndence discussed previously. The primary 
difference between the Earth oloit and planetary missions 'is specific 
impulse. Planetary missions tend to demand lower specific impulse 
(e.g., 3000 sec) for high performance. Lighter and cheaper power sources 
would tend to remove this constraint and add some flexibility to increas­
ing module power. 

Several thruster design options were considered for thrusters in 
the 50-cm range. In addition to a simple scaling of the' conventional 
circular cross section, an oval-shaped thruster was suggested. The oval 
cross section may increase the scaling range without significantly 
increasing the total technology effort. 
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SBCTION 9 

DEFINITIONS AND NOMENCLATURE 

A. ABBREVIATIONS 

B. 

SBP • solar electric propulsion 
EMT • engineering model thruster 
LEO • low Earth orbit 
GBO • geosynchronous Earth orbit 
ORV • orbit raising vehicle 
OOP • on-orbit propulsion system 
LS • large space system era 
MS • matured shuttle era 
OR • orbit raiSing 
00 • on-orbit 
ORS • orbit raiSing self-powered 
ORP • orbit raiSing payload powered 
ORO • orbit raiSing one way trip 
PS • propulSion system 
AU • astronautical unit 
PPU - power proceSSing unit 
PROPULSION SYSTEM PERFO~CB 

T 

P ps 
p 
pp 

P
t 

P
j 

Pmod 
P tot 
l' b 
In 

Vb 
mi 

• True specific impUlse (corrected for multiply charged 
ions, beam divergence, and propellant uUl1l!stion 
efficiency) 

• t1!rust 

• propulsion system input power (after degradation) .. 
.. 
" .. 
.. 

power processor input power 
thruster input power 

total propulsion system jet power 

thruster beam power (jet power) 

total installed power (before degradation) 
beam current 

" neutral flowrate equivalent current 
beam voltage 

.. ion mass 
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nu 

ne 
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13 

\l 

W 

A 

All 

Ao 

AV 

C3 

tf 
Lt 

D 

TOTRIP 

Ieq 

Itnod 
P 

Pa 

Yt 
Va 

,. gravitationsl constant 

,. electronic charge 

,. ion beam jet energy 

,. ion velocity 

,. average beam velocity 

• propulsion system total efficiency 

• thruster total efficiency 

,. power processor efficiency 

- cabling efficiency 

,. power source degradation factor 

• thruster measured propellant utilization efficiency 

= thruster electrical efficiency 

= mass fraction of singly charged ions 

,. mass fraction of doubly charged ions 

= thrust loss of efficiency cQrrection parameter 

= parameter defined by Eq. 3-32 

= atomic mass unit 

• atomic weight 

,. atomic weight ratio 

= ampere-hours 

= vehicle initial acceleration 

- vehicle velocity change associated with trajectory 

= launch energy parameter 

= mission propulsion time 

= thruster life 

= thruster life parameter, Eq. 4-20 

• thruster beam diameter 

= orbit raising mission round trip propulsion time 

= equivalent 30-cm thruster beam current 

= beam· current associated with a single thruster module 

= perveance fo~ an electrode design 

= perveance for a single aperture 

= total accelerating voltage 

= accelerator voltage 
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Jo 
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Ctot 
C(R.g) 

C(a) 
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8net 
IInet 
ro 

<Pmax 

li 

Te 

ne 

Fij 
Ai 

ej 

Pdis 
Psc 
Pback 

Panode 
Plost 
qi 
Kl , K2 
K3 

• number of apertures 
= ion optics parameter defined by Eq. 5-5 
• ion optics dimension 
• SCl:een gr~.d to accelerator grid spacing 
= screen grid aperture diameter 
• accelerator grid aperture diameter 
• aperture center-t.o-cent:er spacing 
• screen grid thickness 
- accelerator grid thickness 
- beam current density as a function of .radius r 
• beam current density on centerlina 
- "R" ratio defined by Eq. 5-11 
- ion optics aperture "t-otal compensation" 
- compensation requ~red to correct for grid curvature 
• compensation required to correct for ap,erture offset 
• electrode curvature semi-angle at edge 
- beam vectoring angle 
- aperture offset distance 
• radius parameter used in defining beam current profile 

• beam maximum vectoring angle allowable ~ithout direct interception 

= grid dish depth 

- electron temperature 
- _lectron density 

- thermal model parameter, Eq. 5-23 
= thermal model parameter, Eq. 5-23 
= thermal model parameter, Eq. 5-23 - discharge power 
= screen grid heating power by plasma 
= back plate heating power by plasma 
= anode heating power by plasma 
- power radiated through apertures 
r- total power radiated from thruster 
• constants, Eq. 5-28 
= constant, Eq. 5-29 
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liilJ III 

j,j+.j+i­

S+. S+i­

C 

K 

N 

• constant. Eq. 5-30 

• beam area 

• maximum allowable temperature 

• number of particles eroded p~r unit area by ion 
sputtering 

• ion current density 

• sputtering coefficients 

• constant used in Eq. 5-34 

• constant used in Eq. 5-35 

.• allowable material loss in atoms per unit area 
a lifetime used in Eq. 5-36 

MASS DEFINITIONS 

Mo 
Mf 

~ 
~ 
MpR; 

Mps 
MF 

MFR 

Msp 

Neop 

• vehicle initial mass 

• vehicle final mass 

- pr·.lpellant mass (general analysis) 
.. p'copellant mass flowrate 

• payload mass 

• propulsion system mass 

- payload mass fraction. Eq. 3-5 

- required payload mass fraction 
- satellite net mass 

.. on-orbit vehicle mass 

Mrt • Mot • thruster unit mass 

Morp. Mop - propellant mass 
Mrpt • Mopt 
ctrpt 

Mrpp. Mopp 
ctpp 

Mrw. Mow -
Mrss • Moss .. 

Mrsm• Mosm .. 

• 

--

propellant tankage mass 

propellant tankage fraction of propellant 
power processor mass 

power processor specific mass 

power source mass 

subsystems mass 

structure and mechanisms mass 

structure and mechanisms mass fraction 

propulsion system specific mass 
thruster redundancy 
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Rp • power processor redundancy 
Not • number of thrusters (with redundancy) 
Nop • number of power processors (with redundancy) Nmod • number of operating modules (thrusters) 
Now • number of thrusters required by wearout 
T used • mass of thrusters worn out during one round trip 

COST DEFINITIONS 

Cor 
C
Oef 

C1 
Crt' 
C' rt 
Corp' 
C' orp 
Crpt ' 
C' rpt 
CXpt 

Crpp ' 
C' 

rpp, 
, COl"f 

Copt 
CR. 

C~. 
r 

Cot 

C op 

C opt 

C opp 
C' opp 

• 
• 
• 
• 

• 
• 

• 
• 

• 
• 

-
• 
• 
• 

-

total orbit raising cost 

ORV utilization cost factor 
ORV hardware cost 

cost of thrusters 

thruster unit cost 

propellant cost 

propellant cost per unit mass 

propellant tankage cost 

tankage cost per unit mass 
tankage factor 

cost of power processor9 

power processor unit cost 

flight operations fixed cost 

flight operations time dependent cost 
launch cost to LEO 

- launch cost per unit mass 
- interest rate 

Crsm' Cosm -

Crss ' Coss 
Crw ' Cow 

• 
• 

structure and mechanisms cost 
subsystems cost 

power source cost 
C' rw 
Cori ' Coi 

Coi 

• 

--
• 

power cost per unit power 

ORV integration and testing 

integration cost per unit of ORV or OOP dry mass 

coat of design, development, test, and 'evaluation (DDT&E) 

C~rd • DDT&E cost coefficient 
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• lesrning curve parameter, Eq. 4-30 

• number of ORV's over which DDT&E costs are amortired 
• subsystems cost coefficient 

• structure and mechanisms cost coefficient 
• cost of on-orbit propulsion 

• transportation cost, earth to final orbit 
• transportation Cost per unit mass 
• on-orbit operations cost 

• operations cost per unit time 

rI 
I 

: I ! 
, 

I , I 
I 

; I I I L 
I 

[J 
, 
I 
J 

I il , e ' 326 

:j 
~ i 



0 
0 
H 

n 
fl 
0 
0 
n 
~ 

0 
D 

n 
0 
a 
0 
n 
u 
n 
o 

APPENDIX A 

DOCUMENT LIST' 

The following document list,was provided by NASA LeRC 

as an initial guide, in mission selection and analysis. 

Although most of these reports were consultec! in the course 

of the study, not· all were usei'. directly. Reports referenced , 
directly in t.'he text were presented in Section 8. 

1. Future S~ace T~ansportation Systems Analysis Study 
Space Program Optics and Transportation Requirements 
Interum Report 11 Decembe,r 1974 Contract NAS9-l4323 

2. Outlook for Space - A Forecast of Space Technology 
1980-2000 NASA 15 July 1975 

3. Orbital Transportation in the 1980's and Beyond 
H. P. Davis paper no. AAS 75-141 

4. ReqUirements and Considerations in Selecting Space 
~ug Propulsion Systems 
C. J; Cohan AAS Paper no. 75-lf.0 

5. Preliminary Technology Ass~esment Satellite Power 
System Concepts 
W. B. Lenoir and R. E. Currie, Jr., February 1975 

6. MisSion Roles for the Solar Electric Propulsion 
Stage (SEPS) with the Space Transportation System 
Northrup SerVices, Inc. Final Review Presentation, 
January 1975 NAS8-30742 

7. Solar Electric Propulsion Thrust Subsystem 
Description 
JPL TM 701-209, 1 February 1975 

8. Concept Definition and System Analysis forSo,lar 
Electric Propulsion Stage 
Vols. 1-5, Boeing, NAS8-3092l, January 1975 

9. A Study of the Solar Electric Slow Flyby of Comet 
Encke in 1980 
JPL TM 760-90 Rev. A, 25 January 1974 
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APPENDIX B 
MISSION STUDY DETAILED RESULTS 

In Section 3 all mission work was condensed into a 
specific format, called the "generalized analysie approach." 
However, several analyses were conducted in more detail with 
trajectory runs. The missions analyzed included (1) Mercury 
orbiter, (2) Comet Encke, (3) Comet Halley, and (4) out­
of-the-ecliptic. The basic results for the last of these 
four missions were adequately discussed in Section 3. Ad­
ditional de~ailed results for the other three missions are 
discussed here. 

A. MERCURY ORBITER (MO) MISSION 
The MO mission was analy~ed to clarify certai~ 

·characteristics t~at bear on thruster requirements. Specifi­
cally, efforts were directed toward evaluating trajectories 
that would ~liminate potentially severe thruster thermal 
requiremen,ts. By constraining the nominal thrust vector to 
be directed 900 to the sun l1.ne, thrus ter thermal loading 
should be controllable well within present thruster limits. 
Since a mission "penalty" might be expected from such a 
constraint. this analys~s was initiated to estimate the order­
of-magnitude of the effect of the constraint on payload and/or 
flight tillle. 

'two series pf trajectory calculations were made to bound 
the required acceleration levels with thrust attitUde con­
strained to be 90 0 from the sun line: 

• Low Power, Low Acceleration. This case is similar toprevious 2JPL !esults, with a high launch energy 
(e 3 • 25 kM Isec ). power of 16.1 kW (maximum of 21.7 kW), injected mass of 3827 kg, but with a 
constrai~~d thrust angle and acceleration level of 1.6 x 10 g. . . 
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• High Power. High Acceleration. For this case, 
thrust propulsion is t~aded for launch energy. 
launch mass was raised to 5720 kg "for a C30f 
4 km2 /sec 2 , power level was 28.4 kW (38.~ kW 
maximum), and acceleration of 2.07 x 10-g. 

low 
The 

Figure B-1 presents the approach velocities for these two 

cases. Although the low acce1erstion runs are connected by 

a dotted line, they are actually discrete solutions which do 

not exist at intermed1.ate points. Each "so'lution represents 

a discrete number of orbit revolutions. The low acceleration 

level, with constrained· thrust attitude, can give similar 

flight times to the unconstrained JPL case hut at a CORt of 

higher approach velocities. Allowing flight times to increase 

(utilizing coast periods) can ,greatly reduce' the approach 

velocity. Approach velocity is import.ant because ;l.t strongly 

influences retro requirements. 

Figure B-2 depicts both the approach maSI! to Mercury 

snd the net orbited mass. A 500 km by 6 hr orb1.t was plotted­

for comparison of traj ectorie.s. All cases use the same high 

thrus~ retro propulsion assumption.s after ejecting a propu1sic;1n 

system rated at 55.3 kglkW. .(Thh.1s the;! value USed by, JPL). 

The results show that although the higher acceleration and 

.. power. can orbit about 1250 kg, 1.t is po.ssib1e to orbi.t 1190 

kg for a much . lower power if flight time is increa.eed. The 

relatively small difference probably does nO.t justify the 

added propulsion system expense, unless flight time must be 

constrained to low values. Also, comparing Figures B-J. and 

B-2 shows that reducing the approach velocity to below about 

1 km/sec reduces net orbited mass because the total velocity 

starts to be more effectively delivered with. an impulsive 

high thrust retro. 

The total number of thrusters required is shown in Fig-

ure B-3. The purpose of the figure is only to determine whether 

the 30-cm thruster is adequate for the mission. It is not 

intended to be used to select a mission profile or nominal 
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Figure B-I. Mercury approach velocity versus time of flight for MO mission. 
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power level. The range of injected masses adequate for a 

Mercury orbiter mission was found to be 3000 to 6000 kg from 

literature su.veya and other HAC studies. The acceleration 

levels appeared to be bounded between 1.6 and 2.1 x 10-5 g. 

HAC EPSTOP computer runs were also made to determine the 

required number of 30-cm thrusters and sparr;" using the 

reliability computations with acceptable thruster reliability 

greater than 0.995. The results, presented in Figure B-3, 

show that a maximum of 16 thrusters would be required for the 

seemingly least desirable misllions with high power levels 

(though these missions may still be acceptable). The lower 

power profiles would probably require 8 t,o 10 30-cm thrusters, 

depending on reliability requirements. For these calculations, 

only thruster reliability was considered since the intent was 

to ·define thruster requirements. 

From this work, we concluded that the existing 30-cm 

thruster can adequately support a range of s~amingly acceptable 

MO missions. The 90 0 thrust attitude ~onstraint significantly 

reduces the thruster thermal level thae would be experienced 

in the unconstrained case. The impact of this constraint is 

mainly reflected in slightly increased flight times. 

The Mercury orbiter mission was also used to illustrate 

the sensitivity of mission performance to propulsion system 

specific mass. The variation of propulsion aystem mass with 

thruster lifetime is shown in Figu,re B-4, which uses detailed 

trajectory computations from EPSTOP. The propulsion system 

mass (see Section 3.B) is plotted versus thruster lifetime. 

The Mercury orbiter mission is a fairly long duration mission 

and typically would require 32,000 A-hr wearout lifetime for 

a 2 A thruster. If the actual lifetime of the 2 A thruster 

is greater than that value, no savings in propulsion system 
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masa over that shown in Figure B-4 would occur. OP the other hand, if the lifetime is less than 32,OOa A-hr, spare thrusters must be carried to replace those that waar out. Every point on any nf these curves in Figure B-4 has similar reliability (at least 0.995) and flies basically the same trajectory. 
Assuming 20,000 A-hr as a representative thruster life­time,~igure B-4 indicates a small mass savings (4 thrusters or 68 kg) obtained by increasing the thruster lifetime to' . 32,000 A-hr. Al.ternatively. if the beam current is increased to 4 A, with a wearout lifetime of 20,000 A-hr, the propul­,sion syste~ mass would decrease by almosi 200 kg. The rela­·tive 'mass savings from increasing beam cuj;rent from 4 A to ,12 A is less than 80 kg, which indicates that: most of the beneift could be obtained from raising beam current from 2 A to 4 k. 

The tota'l. number of thrusters is indicated by the dashed liries ~n'Flgure B-4. These lines are not straight vertical lines because of the favorable tradeoff in reliability at higher beam currents when each thruster operates .for a shorter period. Thus, a large decrease in propulsion system mass (~nd a correspondingly large increase in net payload) is ob­tained by raising beam current if thruster lifetime (in terms of ampere-hours) can be maintained relatively constant. In­creasing the lifetime of the thruster helps somewhat, but results in a far less dramatic mass improvement 'even for relatively large changes in lifetime. 
B. COMET ENCKE SLOW FLYBY MISSION 

During the study, interest was focused on the relationship between mission performance snd thruster throttling character­istics. Comet Encke was chosen as a typical ~ission for assessing this sensitivity. 
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An Bncke slow flyby (4.5 km/aec) trajectory was simulated; 
the results are shown in Tabla B-1. The refarance trajectory • 
was that obtained with the BMT power varied at constant beam. 
volt.ge. For all options except the last two (which inaorpo­
rate a two-fold increase in module power), the resultinl per­
formance variation i. le •• than 10 kl. The •• result •• uaaeat 
that aamall performance aain and a reduution in power may be 
obtained by operating near the perv.ance limit. It is not 
surprisinl that performance il improved by iucrealinl efficien­
cy or decreaeing thru.ter mass. 

On the 'other hand, the large performanee increasa caused 
by increasing maximum beam current i. important, and this ik 
the primary result of this portion of the study. The large per­
formance increaae is not due to improved thruster efficiency 
but rather to propulsion sy.tem mass reductions due to using 
this operating condition. This option could also be compared 
to increasing specific impulse, which also yield. a substantial 
gain in net spacecraft mass. The last cases in Table B-1 were 
chos~n to yield the ~ame module power (5.2 kW at 4100 sec and 
2 A) as for the 4 A, 3000 sec case. Both cases give a large 
payload improvement, but the higher lap requires a 35% increa.e 
in power. 

C. COMET HALLEY MISSION 
This effort was performed at a time when the Comet Halley 

mission was being actively conllidered by NASA. Since it is 
qUite late to start the program, this information is only 
for the record. 
1. Comet Science 

The next appearance of comet Halley haa an estimated 
perihelion date of rebruary 5-9, 1986; the uncertainty is 
due to the postulated presence of non-gravitational decele~ating 

339 

1 
I 
'j 

1 
I 

~ 
1 

1 
I 
I 

j 

\ 
J 

, 



• 
I 

! 

• 

J: , 
• I 

I 

i 
. I 

i 

, i 
. i 

Table B-1. Effect of Various Thruster Operating Conditions on Encke Slow Flyby Trajectory 

Total Thruster Relative Condition 
Power at lAU,kW Net Mass, kg 

. 
Constant lsp .. 3000 19.5 0.0 
Constantl sp .. 2S50 19.0 +.2 

. Constant 1 '. 2700 . sp lS.2 -.3 
"Ferveance J.imit Throttling" 1S.2 +5.5 IBS: 2 A ., 
Variable lsp lS.S -2.5 
Constant Utilization Efficiency 19.4 +S:S and Beam Divergence 

Total Efficiency Increased 1% 19.6 +3.4 
Thr~ster Mass Decreased 1 kg 19.5 +10.0 

.Maximum Beam Current .. 4 A lS.4 +267.2 
Constant I .. 4100 sec sp 26.S +64.6 
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forces (mass ejection under the influence of solar radiation 

heating). Earth-based sightings will recover Halley's comet 

when the nuclear brightness is about 20th magnitude', which 

may occur in 1983 and could refine the estimate of when the 

perihelion will occur. Unfortunately, the along track distance 

will be the least sensitive' to optical measurements, so con­

siderable ephemeris uncer'tainty will probably exist. 

The 'Whipple icy congo1merate model of cometary behavior 

is currently most widely accepted; it views comets as "small, 

fragile, low-density structures of frozen gases, ,well mixed 

with dust and large? debris. Approaching the sun, the gases 

begin to vaporize from this nucleus, forming an extended 

atmosphere of dust and gas (seen as the coma) which streams 

back under the influence of solar pressure and the' solar wind. 

to form tails." The burst of activity noticed at about 3 AU 

from the sun may be caused by water vaporization, which is 

thought to be the major volatile component of most comets. 

Imaging, the nucleus has a high priority because a nu~leus 

has never been seen, only postulated. 

dust analysis also have high priority 

Mass spectroscopy and 

in studies of the origin 

of comets and of the composition of the nucleus. ~Ieasurements 

of the existence, location, and physical properties of the 

solar wind and bowshock interactions (with potential contact 

surfaces) is of great, interest to plasma physicists. 

The desired mission, scenario, a spatial survey, would 

probably satisfy most science objectives. The spacecraft 

would enter the bowshock, traverse the coma, and then image 

the nucleus. Then it would fly slowly through the tail in a 

manner that would maximize the data collection time and 

distance from the nucleus. 

Tradeoffs among science return, 

requirements and costs, and approach 
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and propulsion system technology). are complex but most probably favor a slow fly-through of 1 to 2 km/sec (if possi­ble) • 

b. Trajectory Analysis 
Figure. B-S illustrates the retrograde nature of Halley's comet and the comet's motion in the near perihelion region. Rendezvous is preferred before perihelion as indicated in the JPL "ion drive" trajectories in Figures n-6 an.d B-7., The 19~2 

. 
launch opportunity has rendezvous just outside of i AU atSt) days prior to closest approach. The trajectories in the fol­lowing analysis leave the arrival data unconstrained (but l~ss than 3 AU). Fixing the arrival date could affect the minimum flyby opportunities for the later launch dates. Typical propulsion system requirements are given in Figure .B-8 for launch dates between 1982 and 1985. The curves are called "typical" since a small range of accelerations and SEP velocity additions could produce similar approach veloci­ties. Slig}!t trajectory deviations exist due to the differing acceleration time histories, of the various propuls:l.on sys tems modeled. The chief cause is varying propellant. utilization with I. ,but , sp the exact trajectories are also a function of launch energy (C

3 , or, equivalently. power, and technology level specific 

initial mass) .intial 
mass of the propulsion system~ The trends clearly show the increased propulsion system requirements needed to decrease approach velocity. A rendezvous, if poss ible, must take place with an ea.rly 1982 launch. As late as 1985 would not b.e improved by an SEP sys tem. Tradeoffs of net spacecraft mass and power requirements for a spectrum of technology levels and launch opportunit.ies are shown in Figures B-9 to B-14. These launch opportunities occur early in each launch year for the pre-perihelion Comet Halley fly-throughs. Four thruster and system technology levels 
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are presented. The first is the present engineering model 

thruster (EMT) with present technology power conditioning 

and solar panels. The EMT operates at 2 A and 3000 sec Isp 

When spares are added, the propulsion system specific mass 

a becomes 45.5 kg/kW. ps 
The next two systems have modified EMTs. The first 

assumes an I of 5000 sec; the second assumes a beam current sp 
of 6 A. Power conditioners are modeled according to present 

technology estimates of masses. In tbe second case, increased 

wearout rate of higher beam current thrusters necessi~ates 

Lhruster replacement due to wearout. As one thruster wears 

out, a replacement thruster is connected to t~e power condi~ 

tioner in a manner similar to that occuring in a thruster 

failure. Specific masses of the two systems are 33 and 29 

kg/kW, respectively. 

The final system modeled contains an advanced concept 

thruster operating at high beam current (6 A) and high I 
sp 

(5000 sec). This thruster is assumed lighter and more ef-

ficie~t than the EMT. Corresponding breakthroughs occur in 

power conditioning and solar panel masses to yield an 

extrem~ly light system having a of only 14 kg/kW. This 
ps 3 

a is still somewhat higher than the ion drive system with 
p~ 

a value of only 10 kg/kW (a 4 kg/kW difference). 

Figures B-9 and B-1~,present the results of the March 

19821aunch opportunity. The net spac~craft mass is given 

in Figure B-9 as a function of desired approach velocity and 

technology level and compared to an estimated mass of 450 kg 

required for this type of mission. None of the technology 

levels is capable of rendezvous with the required mass,' but 

the advanced technology comes very close ('" 1 km/sec). In 

fact, the extra payload delivered by the ion drive system 

with its 4 kg/kW'difference at about alan kW power level 
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could acbieve the rendezvous. The three present power 

technology levels do show some approach velocity 

ments with thruster changes at 450 kg (18 km/sec 

improve-

to 12 km/sec), 

but, as seen in Figure 8-10, higher power is required. 

Figure 8-10 depicts the same trades as Figure 8-9 in terms 

of power required for a 450 kg net spacecraft. Whenever a 

technology's performance is greater than 450 kg (in 

Figure 8-9), the Shuttle payload is scaled to decrease the 

power requirements'(i.e., initial mass), but "&'cceleration,l>V, 

and propulsion system characteristics are kept constant. 

The penalty for the 6 km/sec decrease in approach velocity 

ia now clear - over 30 kW of increased power is required (i.e., 

from 50 to 84 kW). At a potential $500,OOO/kW of solar panel, 

the cost for the 33% extra science time is very high. Simi­

larly, the power/cost for reducing the approach velocity 

towards zero is extrao~dinary for even the advanced technol­

ogy. Reducing the approach velocity from 4 to 1 km/sec more 

than doubles P (from 50 to 110 kW). These values are con-o 
siatent with the ion driye results when efficiency differ-

ences (0.74 versus 0.76), acceleration levels, and a are ps 
taken into account. Small technology changes require large 

power jumps because of the asymptotic nature of the curves. 

For each curve in Figure B-10, the last few km/sec changes 

in approsch velocity (above the 450 kg limit) causes high 

relative changes in power level. A clear message is that 

the trajectory requirements are barely satisf.ied, and any 

slight change in technology will be extremely costly. 

The 1983 opportunity is depicted in Figures B-11 and 

8-12, in which trends similar to the 1982 launch are exhib­

ited. The basic difference is the minimum approach velocity, 

which is now about 10 km/sec for the unconstrRined arrival 

date. The three present technology curves (EMT and modified 

EMT) are also closer to each other in approach velocity 
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performance «4 km/sec) but still differ significantly in 
power requirments (>30 kW in Figure B-12). Again the lower 
regions of approach velocity for each technology implies 
large increases in power levels. For example. decreasing 
the advanced technology from 21 to 19 km/sec zaises power 
required from 35 to 115 kW. a threefold increase. 

The curves for the 1984 opportunity (Figures B-13 and 
B-14) exhibit a still further decrease in the difference 
between technology levels. Above 20 km/sec, large increases 
in net spacecraft mass result from small increases in approach 
velocity, which show that technology level is important. 
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APPENDIX C 

EARTH ORBIT COST MODEL PROGRAM LISTING 

Computer programs were written to model the cost methodology for 

both the orbit-rising and on-orbit cost'models descr~bed in Section 4 

of this report. These programs were developed and used with the DEC 

System-lO time-sharing service and were written in FORTRAN IV. Copies 

of the listings for the three principsl versions of the orbit-raising 

and the on-orbit programs are presented in Tables C-l through C-6. 

These listings are for Shuttle era bas~line cases run using Xe pro­

pellant and an initial msss of 25,000 kg. 

The three versions of each cost model produce outputs which 

calculate 

• Cost per net payload ($/kg) 

• Normalized cost breakdown for 
each major subsystem 

• Mass breakdown (kg) for each 
msjor subsystem 

Each of these programs plots the chosen variable (e.g., cost per net 

payload) as a function of I with any of the other input variables as sp 
a par~eter. Since most of the equations are common to all of the 

programs, only the orbit-raising version is discussed here. The 

nomenclature used for the various parameters follows that used in the 

computer listings in which all the program variables use only capital 

letters. In the listings, mUltiple statements on a line are separated 

by semi-colons. 

The computer program uses specific impulse (XISP) as the inde­

pendent variable, over the range from 3000 to 18,000 sec. For argon, 

the beam voltage VB is given in terms of the specific impulse XISP as 

VB = [XISPI199] 2 (C-l) 
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This relation ~s derived from the expression 

where 

I • 'V/g •. [1'11 + 1'12] J2eVB y sp g M 

----

I'l
l • 0.81 

1'12 • 0 .• 06. 

y. 0:958 

M • 6.63 x 10-26 kg 
-----'-." 

(C-2) 

(C-3) 

. For Rg, h, or Kr 'propellants, the expression on the right hand side of Eq. C-l should be multiplied by the mass ratios listed bel~: 

Propellant M/M Argon 
lIg 5.022 
Xe 3.287 
Kr 2.098 

~or eXample, at 4000 sec, VB - 404 V for Ar and 2029 V for lIg ~assuming the same 1'1
1 , 1'12' and y). After the program calculates the. beam voltage, the beam current per module ~OD is calculated from the assumed module (beam) power as 

~OD • PHOD/VB (C-4) 
The thruster diameter D is then calculated by assuming an optics perveance equivalent to the 30-cm thruster. Experimentally. using mercury propellant, it is found that at a beam voltage of 1000 V and a ... net to total ratio of 0.7, a beam current of 2.33 A can be extracted from a 30-cm-diameter thruster. Or, in general, at R • 0.7. 

~OD . VCOEi VB ¥? (D ~\ 2 , \iOOOI 361 (C-5) 
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where the VCOEF for different propellants is listed below: 

.. ~. 
Propellant . 'VCOEF,A VCRIT; V 

Hg 2.33 3462 
Xe 2.88 3005 

Kr 3.60 2590 

I Ar 5.20 2026 

6119 

The parameter VCRIT is the voltage at which the extracted beam current 

is the maximu~ possible for a given thruster diameter because of thermal 

limitations. For the 30-cm-diameter thruster, a thermal analysis 

predicted a maximum possible beam current of 15 A; in general 

~OD - 15 (~O) 2 • (C-6) 

The computer program solves for the thruster diameter at a given VB and 

~OD using Eq. C-5 for VB <VCRIT+ and Eq. C-6 for VB> VCRIT. The 

parameters VCRIT and VCOEF for Ar become 12.04 A and 1,158 V for R ~ 

0.4 and 3.57 A and 2,605 V for R = 0.9. 

After the thruster diameter is calculated, the thruster mass XMASS 

is calculated using the empirical for~ula 

XMASS = 0.078 D1. 35 (kg) , 

and the PPU specific mass (kg/kW) is calculated from the empirical 

formula 

ALPPU _ 10 [-.503 log (PMOD) + 1.153] (kg/kw) , 

where PMOD is in kW. 

(C-7) 

(C-8) 

From the assumed velocity change DELV and initial mass XMO, t~e 

final mass XMF and propellllnt mass XMP are calculated using the rocket 

equation. The jet power PJET is t.hen calculated from the propellant 

mass and trip time SEC as follows: 

PJET • XMP 
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[g * XISP) 2 
2 (SEC) (C-9) 
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The total inpu~ power PTaT is calculated by dividing the jet power by 

the product of the thruster, solar cell, and the PPU efficiencies. PPU 

efficiency is assumed to be constant at 0.95. Thus, 

ProT - PJET (EFF ... SOLEFF ... .95)-1, (C-10) 

where the thruster efficiency is given by 

0.84 VB 
EFF - (VB + 220) • (C-ll) 

Eq.C-l1 assumes a discharge power of 200 eV/ion and a fixed loss of 

20 eV/ion. The 0.84 factor in Eq. G-ll results from using the same mass 

efficiency and loss factors as for the 3a-cm thruster at 2 A of Hg+ 

beam current. The solar cell efficiency is determined from ,the total 

electron flux (input) and a degradation model. 

The number of operating modules NMOD is ca1cuiated from the jet 

power by dividing the latter by the assumed module beam power, 

NMOD - PJET/PMOD 
(t-12) 

Stand-by redundancy for both the thrusters (ROT) and power processora 

(ROP) is included in the modeling. Thus Nap, the total number of PPU 

modules, is given by 

WOP - NMOD [1 + Rap) , (1;-13) 

which assumes t~at the life of the PPU is much greater than that of tile 

mission. The number of thruster modules, NOT, is calculated from the 

thruster lifetime LT and the total trip time TOTRIP as 

(C-14) 

Fox: most cases, thruster lifetime is taklm as a constant equal to 104 

hT.. However, the computer program has an optional empirical fo~la 

that calculates thruster lifetime as a function of the beam current 
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density. In Eq. C-14, the total trip time is obtained from the sum 

of the down time (DOWN) and tbe up trip time (TIME). This calculation 

is done ~ teratively since, the down time depends on the down propellant 

mass, MPDWN, which is not known until the vehicle mass, MORV, is cal­

culated for the UF trip. Thus, 

MPDWN - MORV [1 _ DELV/GISPj • 

In Eq. C-15, it is assumed that the same GISP, DELV, and PTOT are 

used for the down trip and for the up trip. 

(C-1S) 

After the above calculations are made, it is a straightforward 

algebraic calculation to calculate the other system masses and cases. 

Since these formulas are in the computer listings and have been 

discussed in the text of this report, they are not repeated here. A 

summary of the mass and cost nomenclature used for both the orbit­

raising and on-orbit models is shown in Table C-7. 
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Table C~7. Summary of Noaenclature·forCost Mod-ls n 
MASS DEFINITIONS 

n .. j Orbit On 
Raising Orbit 

n , 
j 
I 

fl 1 

I H 
fl .. ~ 

MRT MOT Thrusters, Gimbals, etc. 

MRPP MOPP PPU 

HORP MOP Proppellant (up) 

MPDWN ----- Propellant (down) 

MRPT HOPT Tankage 

MRSM MOSM Structures and Mechanisms 

MRSS MOSS Subsystems 

MRW MOW Power 
':'.~ 

I 

fl 
MORV MOOP Vehicle 

MSP HOSP Payload 

n .... 
;1 

COST DEFINITIONS 

Orbit On 

"I Z! .. ; , 
Raising Orbit 

CRT COT Thruster Costs • 

:;'1 , 
~ l 

i 

C1.U' COP PPU Costs 

---_ ..... COPT Propellant and Tankage 

n 1 ., 
" ~. 1 

~ 1 .. j , 

CPROP ----- Propellant 

CTANK ---- Tank 

CRBM COSM Structures and Mechanisms 

CRBS COS!,; Subsystems 

CRW COW Power 

.. \ .. 

~ ~ 

-I ~ -1 

~ 

CORD CODD DDT and E Cost 

COPT ~)PS Time Dependent Cost 

CORI COl Integration and Testing 

COPF ---._- Costa not associated with electric ORV 

n ./ , 
C1 ----- Launch Cost 

---- CTO Earth to Orbit Cost 

; 

" ~ u. 
6119 
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APPENDIX D 

RELIABILITY AND REDUNDANCY 

Calculations were made to determine if the redundancy factors presently used in the cost model were consistent with good reliability practic~s and if different system designs were being prope~ly compared. The analysis that follows shows that the PPU and thruster redundancy factors should be approximately'O.lS to 0.20 to assure high reliability. However, changes in redundancy factors produce only a small change in the cost per kilogram of payload calculated by the cost model. 

A. ANALYSIS 

Standby redundancy is the technique considered here for increasing the reliability of the thruster and PPU systems. As shown be 10'''' , the reliability of these systems can be increased to any desired level'if enough standbys are used. It is shown in Ref. D-l that if the failure rate of a single unit is A (failures/hol'·'. then the reliability of II single unit operating for t hours will be 

RCt) • e -At 
(E-1) 

This exponent:l.a1 law is derived on the assumption that the failures are random (i.e., chance failures) and that their statistics are given by the Poisson process. Mathematically, this means that the probability of exactly n failures occurring in a device during a time intetva1 T is 

Pen T). e -AT(A T) , n! (E-2) 

and that the early end wearout failures have been eliminated. It is also shown in Ref. 0.-1 that the reliability of a redundant system consisting of m operating modulcs and n standby units is given by 

(mAt) 
(E-3) 

r! 
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Figure D-l shows eq. D-3 plotted as a function of the number of 

operating units m for a redundancy of 0.15 so that the number of 

standbys wss given by 

n • 0.15 m (integer part) 

The sawtooth behavior in the computed reliability is caused by the 

step function changes in the number of standby units. For example, 

as m varies from 14 to 19, the PPU reliability decreases because 

the number of standbys (two) remains constant while at m • 20 the 

standbys increase to three, producing a sudden jump in reliability. 

The results shown in Figure D-l were computed for t. 104 hr 

(1).-4) 

and an assumed A of 10'05 and 5 x 10-6 for the thruster and PPU, 

respectively. We are also assuming the reliability of the switching 

necessary to tum on a standby is included in these failure rates. 

Figure E-l shows that above approximately 200 units the total thruster 

reliability is greater than 0.99, while for the PPU this reliahility 

is achieved at about 40 units. 

Reference to Table D-l or D-2 shows the number of operating 

units for a wide range of module power and I and indicates that the sp 
number of operating modules varies from ~ 2,000 to ~ 25 depending 

on the module power ~nd lsp' The results shown in Figure D-l imply 

a higher redundsncy than 0.15 would be needed for the lower number of 

modules. However, comparing the data in Tables D-l and D-2 shows that 

the cost/kg changes less than 1% for more than a 100% change in PPU/ 

thruster redundancy. Thus, th~ use of a constant redundancy factor 

produces a total thruster and PPU reliability which varies depending 

on the module power level and beam current density. Henceforth, a 

PPU and thruster reliability of 0.2 will be assumed that will provide 

a worst case reliability of > 0.99 for nearly all cases. 
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O.l~.IO -

0.980 

0.970 

0.960 

0.950 

0.940 

0.930 

0.920 

0.910 

POWER PROCESSOR 
>. ... (; )C 10-6 

i Xt. 0.951 

THRUSTER 
>. .,0-5 FAILURES/HR 

i Xt -0.905 

STAN". :J REDUNDANCV ·0.15 
t -104 HR 

0.900 L-__ ..-L. ___ ...L.. __ --'I--__ --1. __ ~...L.. __ ---I 
o 40 80 120 160 200 240 

NUMBER OF OPERATING UNITS 

Fil\url·D-!. Reliability/redundancy r~sults. 
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Table D-l. Tabulation of Orbit Raising Cost Medel Parameters as a Function of lsp with Module Power as a Parameter. 
Mo = 106 kg AV = 6 km/sec At = 100 days Lorv = 1000 days 
Thruster redundancy - 0.10 p~~ redundancy = 0.05 ~, . t 

~umbe'r of -
Thruster I 'Thruster Paylosd 

I Total 
Ptotal 

sp' pperating Number of Diameter, Life, Mass, sec Units Thrusters em .\lr. , MW 
10-3 

X kg' 
PI-IOD= 2~KI~ 
••••• • $ •••••••••••••. •••• 
4. 41l"~~ . 6H 957 182.6 173~6 • .3 2i.2 467.4 r 1>"011. !l71il 6913.3 66,,3 i7l1.5 28.7 463.3 I !:Ie 0 ~l'. 13Hl 2789" 32.3 1240.3 35.4 4tH.l HHHli:. 16!l0 54052 21.8 81l6.1 42.7 320.9 1 ~\HH1. 1!I91? 65191 18.2 1:106.1 511.3 228.9 

P:~iOD:: 50KW · ....................... ,. 
4GO~'. :l52 . i8J 288.8 17396.~ 23.2 52'5.5 6~~0{:). 3 (; (l 2761 11)4.8 3711.5 Us.7 5C15.6 1.11.:0O. 5.24 1115& 51.1 124~.3 35.4 453.6 1~0"0. 660 .21621 34.5 606.1 42.7 3111.4 12o~3. "'9Q 26W:'6 28.7 8il6.1 56.3 299.9 

1'1': lJ D= Hliil K w 
••••••••••••••••••••••••• 4 U'Hi. 126 191 406.4 17.396 •. ~ 23.2 525.2 6UtH':. 194 13illfJ 1"8.2 3711.5 28.7 527.1 b.HHl. 262 5!i76 '12.2 124&.3 35.4 479.4 .I. iilHh). 3 HJ 1081~ 48.7 IHJ6.1 42.7 411.9 I2~~0 • 398 13036 40.6 8il6.1 50.3 335.7 

1'~'luD=2ii i! Kv. 
• • • • • • • • • • • • • • • • • • • • • • • • • 4e00. 63 95 577 .6 17396.3 23.2 539.3 blllHl. 97 693 209.6 3711.5 28.7 542.3 8000. lSI 2789 102.1 1240.3 35.4 497.5 1 ili! il t, • IllS 541:15 68.~ ae6.1 42.7 433.5 120ihl. 199 6519 57.4 8i~ 6.1 50.3 3611.9 

PI'ICD=50 flKW 
• • • • • • • • • • • • • • • • • • • • • • • • • 4IliH;. 25 .3b 9Ll. ;2 17396 • .1 23.2 552.2 aU iJ ~ • 38 27 6 3 H.4 3711.5 28.7 55b.~1 oiHl iJ • 52 1115 161.4 1249.3 35.4 513.5 l[;tHHJ. 6fl 21b:.! 11:9.» blJ6.J. 42.7 452.6 121<H)0. 7!J :l (,''1"' ~eJ.U B06.1 Sf'. 3 363.4 • 
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Cost, 1 
$/kg 1 

~ 
221:1.7. 
286.4 
422.~r 
637.5 

1"';01.6 

192. ~ 
2.34.(' 
327. -
465.1 
665. ' 

177. ' 
.2.1.1. 
288. 
Bil. 
551. 
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Table 1>-2. Tabulation of Orbit Raising Cost Model Parameters as a 
Function of lsp with Module Power as a Parameter. 

Same input data as Table I, except: 
~hruster redundancy = 0.2 
PPU redundancy = 0.2 

-
I sp' Number of Total Thruster 'Thruster 

Operatin, Number of· Diameter, Life, sec 
Units Thrusters em hr 

H:OD= 201<w 
•••••••••••• & •••••••••••• 

4IHHl. " (, n H!44 182.6 17H6. j 
6elHl. 976 753C 66.3 3711.5 
eHHll/! • 1310 .31'425 32.3 124fl.3 

1~ilil~. 11>56 58966 21.8 8~6.1 
12fJfJ0. 19911 7l11e 16.2 6e6.1 

~'aOD= 5fd{i\ 
••••••••••••••••••••••••• 

4lHHi. 252 4-" J.. 288.1:1 17396.3 
6iUflU. HHl 3fH2 104.8 3711.5 
!:lfl0;J. 524 .i217!! 51.1 124fJ.3 

h~HJ0. (-(,0 23566 34.5 806.1 
12tHl"' • ., !.Ie 28447 28.7 1if)6.1 

.t',·,ujj=l L1" [{'w 

••••••••••••••••••••••••• 
4~00. 126 2~Hl 41Hl.4 17390.3 
61H1l1. 194 1506 148.2 3711.5 
8tHl". 262 6085 "2.2 124f1J.3 

H;lUil0. 330 11793 48.7 f:l06.1 
.i2\J~il. 398 14223 411.6 806.1 

P,>:OD=2fJ0Kv. 
••••••••••••••••••••••••• 

4~ill1. 63 H)4 5'77.6 17396.3 
6\J00. 97 753 U9.6 3711.5 
!HHH). .i.J1 '3042 U)2.1 1240.3 

HHHHJ. 165 5896 68.9 806.1 
1201Hl. 19!1 7111 57.4 dilb.l 

H!0D=5 0 0 KW .......................... 
41)0\). 25 41 !Ill. 2 17396.3 
61:1;!iJ. 38 Hll 3'31.4 .nn.:' 
8t.i,Hl. 52 i21"' 161.4 1240.3 

Hl~liH1. 66 2358 1119.IJ 806.1 
1201HJ. 7') 2844 90.8 806.1 

-
379 

Pta tal 
MW 

23.2 
28.7 
35.4 
42.7 
50.3 

23.2 
28.7 
35.4 
42.7 
51:1. '3 

2'3.2 
28.7 
35.4 
42.7 
50 •. 3 

2,3.2 
28.7 
35.4 
4:2.7 
50. , 

23.2 
2b.':' 
35.4 -42. .. 
50.3 

Payload 
~ss 

10- x kg 

467.4 
463.3 
4ll3.2 
321.1 
229.0 

5il~.5 
5fl5.6 
453.9 
361.6 
300.1: 

525.2 
52".1 
479.4 
412.1 
H5.8 

539.3 
542.3 
497.5 
433.6 
361.1 

5!:'2.2 
556.fJ 
:'13. D 
452.8 
31B.5 

Payload 
' Cost, 

$/kg 

2 H.B 
291.2 
429.8. 
64S.6 

Hi20.3 

194.6 
236.6 
331.6 
471.6 
6'74.0 

178.1 
212.8 
2 9iJ .6 
402.2 
555.6 

16"'.2 
197.4 
264.6 
359.6 
406.5 

15 e • " 
lb4. b 
243.4 
325.71 
433.6/ 
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APPENDIX E 

ON-ORBIT MISSION i,V MODEL 

As part of the on-orbit mission cost modeling analy~is, it was 
necessary to estimate!::N requirements. ThruJt is required for both 
station-keeping (orbit perturbations) and for attitude control. 
Obviously, the magnitude of these forceo and torques is highly 
dependent on satellite mass and shape. Ba~ed on a review of space 
power satelli.te (SPS) studies, the following equatiol' for total impulse 
per year (N-sec/yr) was developed: 

Impulse = 50 M s 

"here M ~ satellite total mass, kg s 

2 A = satellite area exposed to sunlight, m s 

K = earth gravitational par.'lmeter 

= 4 x 105 km3/sec2 

R = satellite orbit radius. s 

A 1/2 
s (E-l) 

The first term represents Clorth-south stationkeeping, the second 
term accounts for solar pressure (orbit and attitude perturbations), 
and the third term accounts for gravity gradient torques. The sole 
purpose of this equation is to estimate the magnitude of the 6V 
requirements for a range of satellite sizes and is not considered to be 
more than a rough estimate. The details involved in obtaining this 
equation are discussed in this section. 

A. STATIONKEEPING PERTURBATIONS 

Of the many possible perturbations that might affect a satellite 
orbit, four were considered: (1) east-west forces, caused by 
"triaxiality;" (2) north-south forces, caused by solar and lunar 
perturbations; (3) solar pressure; and (4) microwave emission from an 
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antenna. East-west forces and microwave radiation were neglected as being small compared with others. 
The north-south forces result in a 6V requirement of 8hout 50 m/sec per year. Using the relationship between average thrust and 6V, 

and 

T = M s 

Impulse = T 6t 

Thus, the first term in Eq. E-l is simply 50 M s 

(E-2) 

(E-3) 

Solar pressure force on typical arrays is approximately 55% of that for a perfect reflector. This translates into a pressure of 

-6 -6 2 P = (0.55) (2) (4.4 x 10 ) = 4.7 x 10 ,N/m. sp 
The force associated with solar pressure is 

F = 4.7 x 10-6 A ,N, sp s 

(E-4) 

(E-5) 

and the annual impulse needed to balance this force is approximately 

I = 150 A , N.sec/yr. sp s (E-6) 

B. ATTITUDE CONTROL PERTURBATIONS 

The two major attitude perturbations considered were gravity gradients and solar-pressure/CG-misalignment. Gravity gradient torques are important if the moments of inertia of the satellite are unequal. Since sun-line orientation and antenna pointing place several limitations on satellite configuration, the mcments of inertia for large-area satellites (e.g., SPS) are significantly different. In addition, when large masses and large dimensions are involved, the gravity gradient torques are high. 
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Clearly, without a given satellite design, gravity gradient 
torques can only be grossly estimated. The order of magnitude of this 
torque was assumed to be 

where 

Torque = 1- M W2 A 12 s 0 s 

W = satellite orbit rotational frequency 

o • (~~ '" 

= 7.3 x 10-5 rad/sec at synchronous altitude. 

(E-7) 

The angular momentum per year associated with this torqu~ is approxi­
mately 

(E-8) 

The impulse required to compensate this momentum can be estimated by 
assuming propulsion forces are applied with a lever arm (LA) length 
equal to 

LA = 1/2A 1/2 (E-9) s 

such that 

6 (K ,\ 1/2 Impulse (GG) = 6 x 10 \R;J' MsAs (E-lO) 

Solar pressure torque results from a misalignment of the center 
of pressure and the satellite center of mass. If the misalignment is 
1% of a typical satellite dimension (i.e., 0.01 A 1/2), the'momentum s imparted would be 

Momentum (sp) = 1.5A 1/2 , N.m.sec/yr • s (E-ll) 

Since misalignments probably could be kept to a few percent of typical 
dimensions, this perturbation would be small compared with others . 
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c. !w ESTIMATE 

An estimate of the propulsion 6V requirement can be obtained from 

Eq. E-l. Using an M = 106 kg and an A = 10 7m2 , the total impulse 
s s 

requirement per year at synchronous altitude is 

Impulse ~ 1.65 x 109 , N'sec/yr (Ei-12) 

or 

6V ~ 1.65 x 103 , m/sec/yr. (E-13) 

This 6V value was used in the on-orbit cost model calculations. 
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