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FOREWORD

This handbook was prepared by New Technology, Inc., under Contract

NAS8-31423, entitled, "User Technology Study." The Remote Sensing Data

Handbook (RSDH) presently contains summary information on remote sensors

of earth resources and related data system elements. Technical monitors

for this handbook are Messrs. Harvey Golden (EF-21) and Dave Schaefer

(EF-23) of the Data Systems Laboratory of the Marshall Space Flight Center,

Alabama. Principal investigators for the handbook are James L. Ellison

and R. R. DeWitt of New Technology, Inc., Huntsville, Alabama.

Questions, comments and suggestions concerning the contents and format

;bf this handbook are invited. Communications may be made via the RSDH

Change Request Forms (located at the end of Section 2) or by telephone to

the following individual:

Mr. Dave Schaefer (205) 453-4064

Revisions of this document and/or quarterly updates are available

through the National Technical Information Service and/or the Marshall Space

Flight Center Documentation Repository.

Revised 31 July 1978

(Revision 3)
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Section 1

. • . INTRODUCTION

This handbook is a digest of information on remote sensor data systems. It

includes characteristics of space-borne sensors and the supportive systems immedi-

ately associated therewith. It also includes end-to-end systems information that

will assist the user in appraising total data system impact produced by a sensor.

The objective is to provide a tool for anticipating the complexity of systems and

potential data system problems as new user needs are generated. Materials in

this handbook span sensor systems from the present to those planned for use in

the 1990's. Sensor systems on all planned missions are presented in digest form,

condensed from data as available at the time of compilation. Projections are

made of anticipated systems.

Remote sensing systems encompass many disciplines. To provide the handbook
• ' ; » ' ' ' ' ' ' • '"'""'

user with a perspective between the discipline and the specific sensor information,

an introduction to each sensor group (e.g., Scatterometers) is included in

each sensor category. This introductory section will assist the user in under-

standing the principles of the operation of the instrument and the meaning of terms

associated with specific sensors. Sources of additional information and trends

in the field are also discussed. The information in each introductory section

addresses a particular category of sensors and is outlined as follows:

- Historical Information

- Principles of Operation

- Performance Limiting Factors.

-r Data System and'Output Products

- Trends in R § D

REV. NO.: 2 REV. DATE: 31 Jan 1978
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II

- Prominent Contributors

- References

Information on specific sensor systems is presented in a data sheet format

which is discussed in Paragraph 1.3.

1.1 Revision Control

A revision control structure and procedure is provided in Section 2, such

that this handbook may be maintained by periodic revision and/or republications. All

sensor related information and data sheets in this handbook are dated, numbered

and controlled via this procedure.

1.2 RSDH Cross Indexing

'To further assist the handbook user, four cross indexes are provided to

facilitate entry into the sensor systems information from any of four different

(Perspectives: :,

- Alphabetical Listing of Sensors vs. Sensor Category

- Program Alignment and Development Schedule Information

- Discipline Alignment and Major Function Information

- Sensor Spectrum and Coverage Characteristics

These indexes are described and contained in Section 3.

1.3 Sensor Data Sheets

Information on specific sensor systems is presented in a data sheet format

which organizes the information without restricting it. The same data sheet for-

mat is used throughout the handbook and is illustrated in Figure 1-1. As shown

in Figure 1-1, the data sheet is structured into thirteen information cells plus a

continuation sheet. To familiarize the user with the sensor data sheets, Figure 1.1

gives a short description of the information content for each information cell.

REV. NO.: 2 REV. PATE: 31Jan 1978
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Section 2

RSDH REVISION CONTROL

In order for the RSDH to be current and useful, a communication mechanism

is required between the Data Systems Laboratory (DSL) personnel, who are respon-

sible for the publication and maintenance of the RSDH, and the RSDH users. This

communication link is provided by a revision control structure and associated

updating procedures outlined and described in this section. It is anticipated

that, in many cases, RSDH users will be major contributors to the handbook's

technical content. This mechanism provides a means for these users to contribute

new, additional or corrective information to the RSDH.

2.1 Revision Control Structure

The revision control structure for the RSDH is separated into three activities

as follows:

- Overall RSDH Revision and Distribution Control

- Sensor Category Revision Control

- RSDH Change Requests

Overall RSDH Revision and Distribution Control - The users of the RSDH will

include Data Systems Laboratory and associated contractor personnel, other NASA

personnel, contractors, and other government agencies. Each user will be issued a

RSDH bound in a. looseleaf folder so that he may make page additions and deletions.

The RSDH Table of Contents will be followed by a "RSDH Revision Control Sheet" which

will reflect the current content status of Sections 1 through 4 and the structure

(titles only) of the sensor categories in Section 5. The internal content of each

sensor category is controlled by a different form as explained later.

In order to provide revisions and other RSDH changes to users, a "RSDH Dis-

tribution List" is maintained. This list identifies all RSDH recipients by name,

I RiV. NO.: 2 | REV. DATE: 31 Jan 1978
1—û »H--Û —I— --.

2-1



RSDH-

organization/company, address and number of copies provided. ' '

Sensor Category Revision Control - A separate table of contents and revision

control form entitled, "Sensor Category Table of Contents and Revision Control

Sheet," is maintained for each sensor category in Section 5. These control forms

are located at the front of each sensor category and provide content and revision

status on an individual sensor group basis.

RSDH Change Requests - The RSDH will be updated periodically as new infor-

mation is available. It is recognized that RSDH users may be a major source of

up-to-date sensor information as it is released. Users may originate a request

for change to the RSDH via the Change Request (CR) forms provided at the end ofs

this section,.. .The CR forms permit users to note outdated information and input

new information and other suggested.improvements to the RSDH.

The responsibilities and procedures for accomplishing revision, distribu-

tion and change request activities are discussed in the next paragraph.

2.2 Revision Control Procedure

Revisions 'are made on a periodic basis to improve and expand the information

content of the.RSDH, The initial copy of this handbook (Baseline Issue, dated

30 June 1977) represents a concentrated effort by Data Systems Laboratory to accumu-

late, condense, categorize and format sensor information into a useful reference

document. RSDH users utilizing this manual to perform requirements analyses, sensor

system studies or other sensor related evaluations will be able to contribute sig-

nificantly to keeping this handbook as current and up-to-date as practical.'The CR

form discussed in Section 2.1 and contained at the end of Section 2 is provided for

this purpose. In order that new and corrective information from CR's, as well as

REV. NO.: 2 j REV. DATE: 51 Jan 1978



RSDH

.
those generated by Data Systems laboratory, can be inserted into the RSDH on a

timely and effective basis, the following, revision control procedures are established:

•Revision Frequency - New material developed or received by Data.Systems Lab-

oratory for inclusion into the RSDH will be reviewed for approval on an as-received

basis. Updated material will be formulated into revision packages and released to

RSDH users on a frequency of at least semi-annually, but not more than quarterly.

• Revision Control Authority - The authority for approving new and/or revised

content for the RSDH is vested with the Requirements. Analysis Branch (EF-23) of

the Data Systems Laboratory. Revision control is accomplished by one or more

designees of the Requirements Analysis Branch in the form of a RSDH Revision Control

Unit (RCU). The functions of the RSPII RCU are as follows:

(1) control the list of recipients of the RSDH,

(2) approve material that is to be added to or deleted from
the RSDH,

(3) insure that all CR's are reviewed, answered and/or implemented,

(4) insure that the RSDH is maintained as current as practical.

• Preparation of Revised Material - Preparation of revision packages is

the responsibility of the RSDH Investigative Unit (IU). The RSDH IU is composed

of Data Systems Laboratory personnel from the Requirements Analysis Branch and/or

contractor personnel. The functions of this unit are to:

(1) perform research on sensors or related systems for
inclusion" into the RSDH as directed by the RCU,

_ (2) review, research and implement CR's as approved by
the RCU,

(3) control and maintain the originals (master copies)
of the RSDH and revision packages, and

(4) print and release RSDH revision packages as approved
by the RCU.

REV. NO.: 2 | REV. DATE: 31 Jan 1978
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• Contents of Revision Packages - Change material approved by the RCU will

be issued on a periodic basis in the form of RSDH revision packages. These

packages will contain the following:

(1) Revision Instruction Sheet - This sheet will provide
the revision number, revision date, pages to be deleted,
pages to be added and special instructions as appropriate,

(2) New RSDH pages, as required, annotated with revision date
and number*

(3) Changed RSDH pages as required, annotated with revision
date, revision number and revision section indicator,

(4) Updated Revision Control Sheets for those sections and/or
sensor categories which have been modified.

The functional diagram in Figure 2-1 illustrates revision control activities

for the RSDH.

REV. NO.: 2 REV. DATE: 31 Jan 1978
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Section 3

RSUH CROSS INDLXES

The sensor information maintained in this document is structured into ten

(10) categories which are representative of the major remote sensing devices

presently used or planned for use in space programs and related discipline

activities. These ten categories are identified in the Table of Contents by

category title, section number and page. An additional "Sensor Category Table of

Contents and Revision Control Sheet" is located in front of each sensor category

section to provide content information and revision control for that sensor group.

To utilize the RSDH by the "Table of Contents" structure, one may select the

sensor category of intcresj and scan the "Sensor Category Table of Contents and

Revision Control Sheet" to locate the specific sensor(s) desired. Four (4) cross

indexes are provided in this section which allows entry into the RSDH in other. ,

ways. A brief description is provided for each cross index, followed by the

specific cross indexed information.

Alphabetical and Sensor Category Index - This index provides a complete

alphabetical listing of all sensors contained in the RSDH. This list is cross-

indexed to sensor categories and page numbers which allows entry into the

handbook by sensor name, title or acronym.

Program and Development Index - This index provides a list of current and

planned space programs relative to the sensors contained in the RSDH. Sensor titles,

sensor development schedule data and RSDH page numbers for sensor location are in-

dexed to the sponsoring program. This index allows one to locate specific sensors in

the RSDH, relative to a given program. Programs are listed in alphabetical order.

Discipline and Major Function Index - The Discipline and Major Function Index

provides the user with a means of locating sensors which align to a particular |

3-1
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discipline or application. The major function associated with the sensor and

RSDH page information are also provided.

Spectrum and Coverage Index - Sensors are grouped by category and listed

alphabetically within each group. Spectral characteristics, IFOV, FOV and page

numbers are provided for each sensor.

I REV. NO.: 2 I REV. DATE: 31 Jan 1978
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ALPHABETICAL AND SENSOR CATEGORY INDEX

ALPHABETICAL LISTING

Advanced Atmospheric Sounding and
Imaging Radar [AA6IR]

Advanced Very High Resolution
Radiometer [AVHRR]

Altimeter, Radar [ALT]

Coastal Zone Color Scanner [CZCS]

Earth Terrain Camera (S190B)

Fluxgate Magnetometer [FMAG]

Gradiometer, Rotating [GRAD]

Heat Capacity Mapping Radiometer
[HCMR]

High Resolution Infrared Radiation
Sounder [HIRS]

Large Earth Survey Telescope
[LEST]

Laser Altimetef/Profilometer
Experiment (OP-06-S)

LIDAR (APE-01)

Metric Camera (EOE-1)

Microwave Atmospheric Sounding
Radiometer [MASR]

Microwave Sounding Unit [MSU]

Multispectral Photographic
Facility (S190A)

Optical Bar Panoramic Camera (S163)

SENSOR CATEGORY

Atmospheric Sounders
(Section 5.8)

Imaging Spectroradiometers
(Section 5.7)

Altimeters
(Section 5.2)

Imaging Spectroradiometers
(Section 5.7)

Multispectral and Mapping Cameras
(Section 5.5)

Field Measuring Sensors
(Section 5.10)

Field Measuring Sensors
(Section 5.10)

Imaging Spectroradiometers
(Section 5.7)

Atomspheric Sounders
Section 5.8)

Imaging Spectroradiometers
(Section 5.7)

Laser Radars
(Section 5.4)

Laser Radars
(Section 5.4)

Multispectral and Mapping Cameras
(Section 5.5)

Atmospheric Sounders
(Section 5.8)

Atmospheric Sounders
(Section 5.8)

Multispectral and Mapping Camera
(Section 5.5)

Multispectral and Mapping Cameras
(Section 5.5)

PAGE
NUMBER

5.8-39

5.8-83

5.2-19

5.7-77

5.5-21

5.10-31

5.10-35

5.7-69

5.8-75

5.7-87

5.4-21

5.4-15

5.5-15

5.8-69

5.8-79

5.5-27

5.5-33

SECTION NO.: 31 SECTION TITLE: RSDH Cross- Indexing

a -, 1 REV. NO.: 3 REV. DATE: 31 July 1978



RSDH
ALPHABETICAL AMD SENSOR CATEGORY iUOc

ALPHABETICAL LISTING SENSOR CATEGORY
PAGE

NUMBER

Scanning Multichannel Microwave
Radiometer [SMMR]

Scatterometer, Microwave [SCAT]

Shuttle Imaging Radar [SIR-B]

Spaceborne Laser Ranging System
(OP-16-S)

Stratospheric and Mesospheric
Sounder [SAMS]

Stratospheric Sounding Unit [SSU]

Synthetic Aperture Radar [SAR]

Temperature/Humidity Infrared
Radiometer [THIR]

Thematic Mapper [TM]

Vertical Temperature Profile
Radiometer [VTPR]

Very High Resolution Radiometer
[VHRR]

Visible Infrared Spin-Scan Radio-
meter Atmospheric Sounder [VAS]

Visible Infrared Spin-Scan
Radiometer [VISSR]

Atmospheric Sounders
(Section 5.8)

Scatterometers
(Section 5.3)

Synthetic Aperture Radar
(Section 5.1)

Laser Radars
(Section 5.4) . ,•

Atmospheric Sounders
(Section 5.8) >

Atmospheric Sounders
(Section 5.8)

Synthetic Aperture Radar

Atmospheric Sounders
(Section 5.8)

Imaging Spectroradiometers
(Section 5.7)

Atmospheric Sounders
(Section 5.8)

Imaging Spectroradiometers
(Section 5.7)

Atmospheric Sounders
(Section 5,8)

Imaging Spectroradiometers
(Section 5.7)

5.8-89

5.3-17

5.1-45

5.4-21

5.8-57

5.8-85

5.1-41

5.8-33

5.7-45

5.8-51

5.7-63

5.8-63

5.7-49
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PROGRAM AND DEVELOPMENT INDEX

PROGRAM

AEM/HCMM

GOES/NQAA

GOES/NOAA

Gravity
Gradiometer
Satellite
(Shuttle
OP-02-A)

ITOS/NOAA

ITOS/NOAA

LANDSAT-D

NIMBUS

NIMBUS

NIMBUS

SEASAT-A

SEASAT-A

SEASAT-A

SENSOR

Heat Capacity Mapping Radiometer
[HCMR]
(Section 5.7)

Visible- Infrared Spin-Scan Radio-
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RSDH

Section 4

DEFINITIONS AND.ACRONYMS

Definitions and acronyms presented in this section are basic to the RSDH

in its entirety and arc provided to establish a common framework between a

varying category of users and the information contained in this handbook.

Definitions which pertain to only one sensor category will be covered in the

Introduction Section for that particular sensor group.

4.1 Definition of Terms

Detector T That element in a sensor which is illuminated by the
output of the radiation gathering means and which has an
(electrical) output that is relatable to the intensity of
the input radiation over a frequency range which characterizes
the radiation.

Sensor - A, combination of facilities including an antenna, lens,
focusing mirror or other radiation gathering means, and ? . .. .
detector with auxiliary devices which can be used to collect ';
radiation of a desired nature, produce an output proportional
to that radiation and organize the output into a recognizable
format.

Instrument - A clnss of apparatus including sensors which, in the
broadest sense can be said to be intended to be responsive to
physical phenomena in some consistent way as opposed to a
tool which can be said to be intended to bring about an alter-
ation of physical properties.

Experiment - An experiment is an organized thrust into an unexplored
sphere of knowledge or the utilization of unproven methods with
the purpose in mind to illustrate the plausibility of a concept.
In the area of interest here, an experiment may involve one or
more sensors and other instruments and one or more satellites.

Payload - A space vehicle system payload, in the context of this
handbook, consists of the sensors plus the supportive space-
borne hardware required to maintain them in the desired orbit
and convey their information back to earth (including life
support system where applicable).

REV. NO.: REV. DATE: 31 Jan 1978
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Geoid - An imaginary surface that coincides with the mean sea
level in the ocean and its extension through the continents,
(The geometric figure formed by this surface is an ellipsoid
flattened .at the poles.)

Backscatter Coefficient - The backscattered power per unit area
normalized for antenna gain, range loss, and transmitted power.

4.2 Acronyms

A/D - Analog to Digital

AAFE - Advanced Application Flight Experiments

AASIR - Advanced Atmospheric Sounding and Imaging Radar

ADC - Analog-to-Digital Converter

AD,P - Automatic Data Processing

AEM - Applications Explorer Missions

AFOS - Automation of Field .Operations and Services

ALT - Altimeter

APE - Atmospheric Physics Experiment

ARS - Agriculture Research Service

ASCU * Archive Station Communication Units

ATS - Advanc'ed Technology Satellite

ADS - Agriculture Utilization Subsystem

AVHRR - Advanced Very High Resolution Radiometer

BIL - Band-Interleaved-by-Line

BLIP - Background-Limited Infrared Photoconductor

CCD - Charge-Cdupled-Device

CCT <• Computer Compatible Tape

CDAS - Command Data Acquisition Station

GDDF - Central Data Distribution Facility

CDPF - Central Data Processing Facility

REV. NO.: 3 REV. DATE: 31 July 1978
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CIT - California Institute of Technology

CMG - Control Moment Gyro

CNRS - Centre National de Recherches Spatiales

CONUS - Continental United States.

CPU - Central Processor Unit

CR - Change Request

CW - Continuous Wave

CZCS - Coastal Zone Color Scanner

D* - Detectivity

DACS - Data Acquisition and Control Subsystem

DAPS - Data Processing Subsystem

dBm - Ration referenced to a particular impedance

DDHS - Digital Data Handling System

DEC - Digital Equipment Corporation

DIP - Digital' Information Processor

PIS - Data Input Subsystem

DMD - Digital Muirhcad Display

POD - Department of Defense

DSL - Data Systems Laboratory

EFL - Equivalent I:ocal Length

EOE - Earth Observation Experiment

EOS - Earth Observation Satellite

ESA - European Space Agency

ETA - Earth Terrain Camera

EU - Etovos Units (1 EU = 10"9 gal/cm; 1 gal - 1 cm/sec2)

FFT - Fast Fourier Transform

FOV - Field of View

REV. NO.: 3 j REV. DATE: 31 July 1978
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FMAG - Fluxgate Magnetometer

FMC - Forward Motion Compensation

FNWC - Flee* Numeric Weather.Central

GARP - Global Atmospheric Research Program

.Ge - Germanium

GISS - Goddard Institute for Space Studies

GOES - Geostationary Operational Environmental Satellite

GRAD - Gravity Gradiometer

GRE - Ground Resolution Element

GSFC - Goddard Space Flight Center

HCMM - Heat Capacity Mapping Missions

HCMR - Heat Capacity Mapping Radiometer

HDDR - High Density Digital.Tape Recorder

HDDT - High Density Digital Tape

HPT - High Density Tape

HDTR - High Density Tape Recorder

HgCdTe - Mercury-Cadmium Telluride

HIRS - High Resolution Infrared Radiation Sounder

HRE - High Resolution Etalon

HRPT - High Resolution Picture Transmission

IFOV - Instantaneous Field of View

InAs - Indium Arsenide

InS - Indium Sulfide

InSb - Indium Antimonide

IPD - Information Processing Divison

IR - Infrared

ITOS - Improved TIROS Operational Satellite

REV. NO.: 3 I REV. DATE: 31 July 1978
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ID - Investigative Unit

JPL - Jet Propulsion Laboratory

J-T - Joule-Thompson

Kbps - Kilo bits per second

LaRC - Langley Research Center

LEST - Large Earth Survey Telescope

LIPAR - Light Detection and Ranging

LSI - Large Scale Integration

MA - Multiple Acess (TDRSS Mode)

MASR - Microwave Atmospheric Sounding Radiometer

Mbps - Mega bits per second

MDHS - Meteorological Data Handling System

MHz - Mega Hertz

MLE - Maximum LikelJhood Estimator

MMIPS - Man-Machine-Interactive Processing System

MPF - Multispcctral Photographic Facility
*

MRE - Medium Resolution litalon

MRIR - Medium Resolution Infrared Radiometer

MSS - Multispectral Scanner

MSSCC - Multicolor Spin-Scan Cloud Camera

MSU - Microwave Sounding Unit

NADUC - NIMBUS/ATS Data Utilization Center

NASCOM - NASA Communications Link

NEDT - Noise Equivalent Differential Temperature

NEP - Noise Equivalent Power

NESS - National Environmental Satellite Service

NIR - Near Infrared i f~
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NOAA - National Oceanographic and Atmospheric Agency

NMRT - NIMBUS Meteorological Radiation Tape

NRL - Naval Research Laboratory

NRZ - Non-Return to Zero

NSSDC - National Space Science Data Center

NWS - National Weather Service

OP - Ocean Physics

OPBR - Optical Bar Panoramic Camera

P/B - Playback

PbS - Lead Sulfide
i .

PbSe - Lead Seleni.de
j

PbSnTe - Lead Tin Telluride

PGM - Pulse Code Modulation

PDPF - Project Data Processing Facility

POPS - Project Data Processing System

PGDF - Product Generation and Dissemination Facility

PI - Principle Investigator

PIXEL - Picture Element

PM - Pulse Moduleation

PMT - Photomultiplier Tube

PMC - Pressure Modulated Cell

PN - Pseudorandom Biphase Modulation

POCC - Project Operations Control Center

PPU - Patch Panel Unit

PSK - Phase Shift Keyed

QE - Quantum Efficiency

RAU - Remote Acquisition Unit
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RCU - Revision Control Unit

RMS - Root Mean Square

RSDH - Remote Sensing Data Handbook

R§D - Research and Development

SAMS - Stratospheric and Mesospheric Sounder

SAR - Synthetic Aperture Radar

SASS - SEASAT-A Satellite Scatterometer

SATCOM - Satellite Communications

SCAT - Scatterometer

S/DB - Synchronizer - Data Buffer

SDPF - Satellite Data Processing Facility

SDR - Supplementry Data Record

SEOS - Synchronous Earth Observation Satellite

SESS - Satellite Field Service Site

Si - Silicon

SIPS - Satellite Input Processing System

SIR - Shuttle Imaging Radar

SIRS - Satellite Infrared Sounding

SIU - Serial Interface Unit

SMMR - Scanning Multichannel Microwave Radiometer

SMS - Synchronous Meteorological Satellite

S/N - Signal to Noise

SOCC - Satellite Operations Control Center

SOPS - Satellite Output Processing System

SRI - Standford Research Institute

SSU - Stratospheric Sounding Unit

STDN - Spaceflight Tracking and Data Network

TBD - to be determined
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TELOPS - Telemetry On-Lftte Processing System

TORS - Tracking and Data Relay Satellite

TDRSS - Tracking, and Data Relay Satellite System

TGS - Triglycine Sulfate

.THIR - Temperature/Humidity Infrared Radiometer

TIR - Thermal Infrared

TLM - Telemetry

TM - Thematic Mapper

TTY - Teletype

TWT - Traveling Wave Tube (Amplifier)

ULE - Ultra Low Expansion
t

USB - Unified S-Band

VUSDA - United States Department of Agriculture

UT - Universal Time

UV - Ultra Violet

VAS - Visible Infrared Spin-Scan Radiometer Atmospheric Sounder

VDM - VISSR .Digital Multiplexer

VHRR - Very High Resolution Radiometer

VIC - VISSR Ingest Computer

VIP - Versatile Information Processor

VIS - Visible

VISSR - Visible Infrared Spin-Scan Radiometer

VTPR - Vertical Temperature Profile Radiometer

VTU - Video Terminal Unit

WFC - Wallops Flight Center

WWB - World Weather Building

ZIP - CZCS Information Processor

ZnSe - Zinc Selenide
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Section 5

SENSOR CATEGORIES

Section 5 consists of ten sensor categories as listed in the Table of

Contents. Each category is identified by an index tab and contains three basic

parts; an introduction, a listing of research material and RSDH Data Sheets.

The introduction provides the user with a general overview, operating

principles and other background information for a particular category of sensors.

The listing of research material, which follows the introduction is made up of

the following:

• Active Contributors - A partial list of workers in the
discipline who have distinguished themselves by their
leadership.

• References - These lists identify those publications of which
specific mention is made in the introduction and/or data
sheets. Numbers in brackets (e.g., [13]) in the text refer
to this list. . ;• .:.

• Bibliographies - These lists are documents and papers relevant
to the sensor category. In some cases, Bibliographies are
broken down to show applicability to particular sensors.

• Illustration Credits - This list provides acknowledgement
of the sources for illustrations used in the RSDH. The
listings consist of four columns. The first two give the
figure number and page with respect to the RSDH. The second
two columns identify the research material (reference number
and page) from which the illustration was drawn.

All pages in Section 5 arc numbered consecutively with the section number

preceding the page number (e.g., 5.2-1, 5.2-2, etc.)-

Specific information on infrared detectors is presented in Appendix A.
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Section 5.1

INTRODUCTION TO
SYNTHETIC APF.RTtJRE RADAR (SAR)

The wavelengths in the microwave region of the spectrum are long compared with

the size of scattering centers associated with most weather phenomena. As a result,

remote sensors built to operate in this spectral region have the potential to

provide an all-weather capability because the relatively long waves are not effect-

ively reflected or scattered by the small centers. Most weather phenomena are,

therefore, transparent to microwaves. Microwave remote sensors can provide

operation on the dark side of the earth as well as the lighted side. Various

radiometers measure passive microwave radiation to determine atmospheric temperature

and these devices are addressed in another section. This section deals with an

active microwave sensor known variously as the Synthetic Aperture Radar (SAR),

coherent radar or sidelooking radar. As with conventional radars., the area' of ../i:'",-.

interest is flooded with microwave radiation of controllable characteristics and

the return reflections are operated upon. As will be shown later, it is primarily

the processing at the receiver which gives the SAR its uniqueness. Advantages other

than all-weather operation are gained using microwave energy rather than visible or

infrared radiation. One such advantage is the capability of the longer wavelengths

to penetrate solids and liquids, and return radiation from beneath the surface.

This characteristic can be utilized to map subsurface terrain features as on the

Apollo Lunar Sounder where a SAR was operated at other than microwave frequencies

(5 MHz, 15 MHz, and 150 MHz) in an environment of low attenuation surfaces to

realize deep penetrations of the order of several meters. The reflection and absorp-

tion of terrestrial soils have been found to vary with water content, salinity,

chemical composition and other factors. Researchers have recognized the potential

REV. NO.: __2 I REV. DATE: 31 Jan 1978
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of microwave sensors for mapping soil moisture for agricultural purposes, for

locating soil salt problems caused by irrigation water, for determining the type

of rock in certain outcfoppings and for penetrating vegetative cover.

The SAR is a microwave imager and has much in common with the Multispectral

Scanner and Thematic Mapper in that the output product is a photograph of a sub-

satellite swath. The image has its own set of unique characteristics owing to the

properties of the interaction of the radiation with the ground targets. Images can

also be developed using passive microwave devices where a highly directional antenna

is scanned and the output of the detector is plotted against scan angle. Conven-

tional radar may also be used to produce images. The problem with'both of these

alternatives is'resolution. The beam width in a "straightforward" radar or a

'microwave receiver is proportional to.the size of the antenna and the wavelength

of the radiation. For a given antenna size (diameter), as the wavelength is reduced,

• 'the beam width is reduced but the influence of small scattering centers is increased

If wavelength reduction is used as a method of improving resolution, weather

penetration capability suffers. Likewise, we are limited by structural consider-

ations in increasing antenna size to improve resolution. The constraints of nature

then, limit even the potential for improving microwave imaging unless a more subtle

approach is utilized. In the following paragraphs, we will attempt to aid the

reader in visualizing the principles upon which the SAR is founded. A rigorious

or even thorough treatment of these principles is beyond the scope of this manual

and the reader whose requirements are hot satisfied by this coverage is referred

to more detailed material [1], Goodyear Aircraft Corp., The University of Michigan

and the University of Illinois figure heavily into the first work with synthetic

apertures in the early fifties. The hardware was first approached with airborne

equipment using an x-bahd coherent radar, a conventional oscilloscope and film
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camera for display with a tape recorder used as a memory in processing the data.

The object of the early experiments was to demonstrate the concept of Doppler beam

sharpening. The geometry of a typical airborne SAR operation is shown in Figure

5.1-1.

GROUND
RANGE

FIGURE 5.1-1 SAR Operation Perspective View

The antenna is placed and pattern chosen so that radiation leaving it illumin-

ates a strip parallel to the flight path (shaded area Figure 5.1-1). Scan of the

strip is achieved by the forward motion of the spacecraft. The antenna is not scanned

nor is it rolled or yawed to compensate for spacecraft motion."These errors, together

i REV. NO.: 1
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with spacecraft velocity variations, will be dealt with later. For now, let us

assume ideal circumstances.

As shown in Figure 5.1-2, the wavefront leaving the antenna propagates onto

the illuminated area along slant range R . If the reflections from the ground

were specular, angle of incidence and reflection would equal and no return would

be received, but for the majority of targets in the strip, the reflection is

diffused. -The wavefront is disturbed and individual reflections from points within

the strip are returned to the antenna at times proportionate to slant range R .

The round trip propagation time between the antenna and the target is

CD
L

where C is essentially the speed of light (propagation speed for the medium) and

can be visualized at about one foot per nanosecond.

FIGURE 5.1-2 SAR Operation Rear View
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Were the transmitted pulse a single wavefront, all the returns from various

targets at different slant ranges would be distinct and separable. However, since

the transmitted pulse is a sequence of wavefronts, it has a finite length or thick-

ness and two or more targets at different yalues of R will be illuminated simul-

taneously and, therefore, will not be separable. In theory, reflections from targets
v

are separable if they are staggered in tandem by a distance greater than the trans-

mitted pulse length. .Since the echos have traveled the round trip to the targets,

they will be sufficiently staggered if they originate from targets whose slant

ranges are different by an amount equal to one half the physical length of the pulse

(2)

We can call this separation slant range resolution or

' D = — (3)r 2 -

and the corresponding ground range resolution is •

CT 'pg = — cos ¥ . (4)

where ¥ is the antenna depression angle as shown in Figure 5.1-2. The pulse width

or wavefront'thickness is reduced by using wide' bandwidth radars and pulse compres-

sion techniques [2].

The along-track dimension or azimuthal cross section (horizontal plane

dimension of the pulse) is determined by the antenna pattern. As shown in Figure

5.1-3, the width of a pulse produced by an antenna, with half-power beamwidth of

S radians, at range R is 1. = pR..* s -•»

If L is a measure of the along-track resolution (px), then the only recourse

open for use in "straightforward" radars is to make 8 small. Beamwidth is related

to antenna aperture in a diffraction limited system: one where the errors in the

REV. NO.:
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FIGURE 5.1-3 SAR Operation Plan View

reflecting surfaces are essentially noh-existant. The relationship, which is known

as the Rayleigh Criterion, was first applied in optics and simplifies to :

$ = =r radians ,

where X is the wavelength of the radiation and D is the dimension (aperture) of the

antenna in the plane being considered (horizontal).

Therefore, we can rewrite the expression for along-track resolution as:

px * \ 6 (S)

a
D

(6)
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As was pointed out earlier, to keep 8 small, X may be reduced or D increased but

both of these alternatives become unattractive if carried beyond certain limits.

Therefore, to improve 3 beyond the limits of the Rayleigh Criterion, we employ a

synthetic aperture technique.

If the radar emits a sinusoid at a frequency f , then since the spacecraft

is in motion with some velocity v,"~the reflected signal will have undergone a

shift in frequency.

RADAR

*0

SPACECRAFT
MOTION

FIGURE 5.1-4 SAR Operation Side View

The amount of Doppler shift is proportional to the propagation speed C and

the relative velocity between the source and the point of observation. If the

point of observation were on the ground at point A, the Doppler shift would be

proportional to the rate of change of R .

D R
FD ' -V fo (?)
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Since the "observation" point is on- board the spacecraft, not on the ground, the

radiation travels twice R and the shift is doubled. The change in R can be
5 ' 5

equated to spacecraft velocity v as follows:

D R = v Cos Y (8)

and the expression for the Doppler shift from a specific target can be rewritten:

. •
Cos Y = Sjj50- • (11)

and fo - XTs
 (X'V ^

Clearly then, if a projection is made abeam the spacecraft, echos from targets

not lying on the projection are undergoing a Doppler frequency displacement from

the original radiation and echos from targets lying on the projection are not

shifted. We can, therefore, exclude some returns by a narrow bandpass filter

centered at f . The passband of the filter determines the frequency limits of

"acceptable" signals. The received signals then are discriminated against linearily

as a function of x-x for any value of range. The radar beam then can be said to

be collimated.

The synthetic aperture technique, although first conceived from the Doppler

viewpoint, can also be approached from an entirely different but mathematically

equivalent viewpoint. Following froft Figure 5.1-1, observe that a reflection at

range R is illuminated by the radar while the latter moves through a distance of

L = BRS.

If the physical antenna is regarded as one element of a linear array which is

elongated only in the direction of 'flight-, occupying in time sequence all the

I REV. NO.: 1 | REV. DATE: 30 Sept 1977
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elemental positions germane to the array, then intuitively, it should be possible

to "synthesize" an aperture of length L by suitably storing the received signal

before processing the data. The processed data then has nearly all the qualities

of data that would have been generated by :m antenna of length L. Actually, the

data is better in several ways.

In a physical array, n equally spaced dipoles transmit signals in phase (thus

the beam is normal) to the array, all n dipoles receive signals from a target and

all these signals are added in the antenna itself. In the synthetic antenna, n

signals are transmitted in sequence (one for each radar pulse), received in

sequence and stored in such a manner that their phases and amplitudes are preserved.

Finally, during the signal-processing operation the stored signals are added

together, thus reconstructing the effective aperture.

By manipulating phase upon readout, the synthetic aperture radar can be made

to focus on any range to further improve the resolution at that range. These

focused SAR's have the requirement that small pcrtubations in the flight path of

the spacecraft must be taken into account in Image reconstruction. An accelero-

meter compensates for positional shifts along the flight path by altering the

phase of the transmitted or received pulses.

r B- i i g a
i M ! i !

J i i 8 I 9

SUMMING
POINT

ALL TRANS-
MISSION LINES
ARE SAME LENGTH
SO DELAY TIMES IMAGE
ARE EQUAL. POINT

EXTRA LENGTH
INDICATES DISTANCE
RAY WOULD TRAVEL IN
SPACE DURING TIME
TO TRAVERSE LENS (AT
REDUCED SPEED).

FIGURfi 5.1-5 Comparison of Broadside Antenna
Array with Lens Focused at Infinity
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Most real aperture radar antennas are focused at infinity, as illustrated in

Figure 5.1-5, but synthetic aperture antennas (see discussion below) often are

focused at a nearer point, as shown in Figure 5.1-6. For the lens seen in the

figure, the paths from object 0 to image point I through a, b, c, d and e all

experience the same delay,"the extra delay for the shorter path through c being

due to an extra distance traveled in the low-:velocity path within the lens. For

the antenna the.same effect can be achieved by adjusting the lengths of the trans-

mission lines from the various elements to the summing point. Thus the delays •

along paths (OaS, ObS, OcS, OdS, and OeS are all the same. Hence, the antenna is

focused at point 0.

o o

!i
/ l \

\M// _
SUMMING . ^TX ' 'MAGE

POINT ^̂ [S POINT

FIGURE 5.1-6 Comparison of Focused Antenna
Array with Lens Focused at Point 0

The synthetic aperture can be built either in the form of an array focused at

infinity, as in.Figure 5.1-5 (called an unfocused synthetic aperture), or in the

form of an array focused at some closer point, as in Figure 5.1-6. The element

positions of the array (a-e in the figures) are not simultaneously occupied by

physical antennas. Rather, the radar travels first to a, then b, then c, then d,

then e, etc. The signal received at each point is compared in phase with the signal

I REV. NO.: 1 | REV. DATE: 30 Sept 1977
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transmitted at that point, and the result stored in a memory.. Either in the space-

craft or on the ground, the signals 'stored in the memory are processed to achieve

the equivalent of the transmission line lengths shown in Figures 5.1-5 and 5.1-6.
v

A common way to store this information is on signal film.

To focus at a closer point like the antenna of Figure 5.1-6, a method must be

devised to use all the information available from the time the target first enters

the beam of the real antenna until it leaves this beam. Not only will this give a

better resolution, but also it does not waste power as docs the system diagrammed in

Figure 5.1-3. Figure 5.1-7 is a simplified illustration of the way in which the

focused synthetic aperture system operates, as viewed from a Doppler frequency point

of view. Here we assume that each of the sketches represents what happens in the

general vicinity of one of the points (a through e) of Figure 5.1-6. Actually, this

means that each of the points shown in Figure r. .1-6 represents tens or hundreds of

elements for this situation; otherwise there would be insufficient samples to* «

achieve the Doppler filtering of-Figure 5.1-7. Figure 5.1-7(a) shows the situation

when the target 0 has just been illuminated by the real aperture. At this time the

set of Doppler frequencies (relative velocities) corresponding to the forward edge

of the real aperture is filtered and used for target 0. Range lines are also shown

The point P on the ground track of the spacecraft is the foot of a perpendicular

from point 0. The spacecraft has not yet reached this point. In Figure 5.1-7(b).

corresponding to point b of Figure 5.1-6, the Doppler frequencies used are those

midway through the forward part of the beam, and the spacecraft is closer to point

P. In Figure 5.1-7(c), the spacecraft is directly over point P and abreast of

point 0. The Doppler filter here is the same as that of Figure 5.1-5. In Figures

5.1-7(d) and 5.1-7(e), the mirror-image situation prevails as the spacecraft

moves on past P. The results of each of these five filtering operations are stored

and combined in the processing system to produce the equivalent focused synthetic

| REV. NO.: 1 REV. DATE" 50' Sp: I:'7?
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O

FIGURE 5.1-7 Operation of Focused Synthetic-Aperture System
from a Doppler Point of View (a-e Have Same Meanings as in Figure 5.1-6)

1REV. NO.: 0 REV. DATE: 30 June 1977
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aperture. In a real system the filter moves continuously rather than incrementally

as indicated here. Furthermore, additional filters arc at work for each of the

elements within the real aperture. Obviously, the mechanization is quite compli-

cated.

The type of storage used depends on whether the synthetic aperture processing

is to be performed immediately or on return of the data to a ground station. With

immediate processing the information may he stored in a recirculating del.'iy line,

which may also serve as part of the processor. Storage can also be achieved by

separately gating returns from each range element into a capacitor with a long

decay time constant. A technique for temporary storage that appears more suitable

for a fully focused processor involves the use of one or more storage tubes.

Storage for later processing can be achieved by recording the signal pn mag-

netic tape if the tape recorder has sufficient "bandwidth. This is reasonable with

the present state-of-the-art as long as the range resolution is not:too fine. • r;'v

Recording the received signal on film with the same type of recorder employed for

the real aperture system permits use of a wider band width than docs magnetic tape.

At present this is the most commonly used method for focused synthetic aperture

systems. Systems presently planned for spacecraft application (SEASAT-A) are

designed to transmit SAR output video directly to Earth on a separate wide-band

data link with no storage whatever. The film record is produced on the ground

upon receipt of the video signal.

The returning radar signals will have a bandwidth determined by the range-

resolution capability built into the radar systvm. A photographic process permits

recording of wide-band signals with greater ease than is possible with certain

other recording systems; consequently, it is well suited for use with synthetic

aperture radars, provided one can tolerate some of the film-processing inconven-
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iences. Photographic recording also permits high-density storage, another quality

which is desirable in fine-resolution imaging systems.

The radar receiver output is a sequence of reflected range pulses; these are

used to intensity-modulate a cathode-ray tube, the electron beam of which is swept

synchronously with the returning pulses. Successive range traces are recorded

side-by-side, producing a two-dimensional format in which the dimension across the

film represents range and the dimension along the film represents the along-track

dimension. This format is shown in Figure 5.1-8.

START Of SWEEP
RANGE

INTENSITY
MODULATION

AZIMUTH

BIAS + BIPOLAR VIDEO

FIGURE 5.1-8 Radar Signals are Sent Through a Biased CRT,
and then Recorded on Film for Subsequent Optical Processing

The film recording of the output of the coherent detector is like a hologram

in that the phase information is contained in interference fringes on the film

[3], This point is illustrated by Figure 5.1-9 which shows how a hologram is

constructed. With the hologram a sample of the illuminating beam is mirrored

onto the photographic plate, where it interferes with the scattered light

from the object viewed to produce the well-known holographic interference

fringes. In the radar the same effect is achieved by the homodyne receiver, in

which the interference is between the sample of the transmitter signal and the

scattered signal received on the antenna.
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Just as an image is reproduced from the hologram by illuminating it with

monochromatic light, so an image can be produced from the radar film by similar

illumination.

The film recorded at the output of the synthetic-aperture receiver, which is

in effect a microwave hologram, is called signal film. Like an optical hologram,

it is an interference pattern which is difficult to interpret when viewed by itself.

Thus, it must be processed to produce an image film for use by the interpreter.

Each scattering object on the ground produces a one-dimensional Fresnel zone plate

corresponding to the range of the object, and with a focal length proportional to

this range. Reflectors, at the same range but with different along-track coordin-

ates appear as zone plates with displaced centers; their radar cross sections are

manifested in the modulation intensity of the :one plate.

When this collection of one-dimensional holograms is illuminated by a co-

herent, collimated beam of light, a one-dimensional wavcfront reconstruction takes

place. The spatial pattern associated with each reflector generates a real and

virtual image, each having a focal length proportional to range.

The conventional optical processor configuration using conical, cylindrical,

and spherical lenses is described elsewhere, [4], [7], (2). The description given

below represents the current state-of-the-art in optical processing and will be

utilized for Seasat-A SAR data by the Jet Propulsion Laboratory in Pasadena,

California.

Although the applicability of optical processing for future missions (because

of the increasing resolution and accuracy requirements) is questionable, the

technique has significant heritage and its requirements are well understood.
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FIGURE 5.1-9 Top diagram (a) depicts conventional optical setup for
producing a hologram. Hologram (b) can, in turn, reproduce both a
virtual and a real three-dimensional image.

Figure 5.1-10 shows a block diagram of optical processing data flow. The

processing is simplified by maintaining a constant film speed to spacecraft speed
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ratio. In this way, the azimuth focus in the correlator remains constant through-

out the pass. If this were not done, it would be necessary to compensate dynamic-

ally in the correlator for the azimuth focus. The signal film, then, is processed

through the optical correlator, and the image can be digitized or exposed on

photographic film to obtain a transparency.

VELOCITY

PRF

TIME CODE

•»• CCT

FIGURE 5.1-in Optical Processing

Figure 5.1-11 is a simplified diagram of an optical processor. A collimated

laser beam illuminates the signal film. The film is tilted to take into account the

linear increase in the azimuth focus with increasing slant range. The first lens

transforms the data, and the phase correction is made for range migration in the

transform plane. Both azimuth and range-frequency filtering is performed. The

p— TRANSFORM PLANE PHASE CORRECTION
lIH'.OMPf NSATt FOH RANGE MIGRATION

r SIGNAL FIIM IMAGE WITH
RANGE CUHVATURE REMOVED

TRANSFORM ICNS

VJ V

INVERSE
TRANSFORM LENS

CYLINDRICAL LENS TO CORRECT
FOR DIFFERENT RANGE AND
AZIMUTH FOCAL LENGTHS

OUTPUT OR
IMAGE FILM-

FIGURE 5.1-11 Simplified Diagram of Optical Processing
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transform of a point target with the range curvature corrected is a uniform ampli-

tude light wave with quadratic phase variation in the range and azimuth dimension.

The second lens then transforms the data after it has been partially processed.

A cylindrical lens telescope then images the data in azimuth to bring the range

and azimuth focal lengths into coincidence. The input and output film planes are

tilted with respect to each other to compensate for change in the azimuth focal

length with range.

Figure 5.1-12 shows the generation of multiple looks by optical means. The

phase history of a point target is spread out over the distance indicated by the

double-headed arrow. If the aperture is stopped down to look at only one quarter

of that distance with the laser beam, the light would focus through the correlator

to a point at one quarter of the full resolution. Illumination of any one of these

four "segments would produce a different pixel intensity at the output focus. Thus,

four looks could be obtained at the output focus by moving the beam across the

signal. Instead of doing that, however, the film is moved past the beam,: the focus

point moves at the output in the same direction as the output film so that the

different speckle intensities are averaged by photographic integration on the film.

The film can detect only intensity, not phase.

D
POINT TARGET SPECKLE
INTENSITY FOR LOOK 2

LOOK1 T
PHASE

LOOKS HISTORY

LOOK A

D
_L

D

D

FIGURE 5.1-12 Optical Multiple-look Generation
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Another technique is to illuminate the full area, in which case the spot size,

i.e., the resolution, would decrease by a factor of four. Then, the output film is

moved at a velocity different from the image so that the data is integrated for

four cells, resulting in the same resolution as the previous technique. Instead of

an average of four cells, the result is a linear, integration along a four-cell

length in azimuth. This process does not necessarily yield a discrete number of

looks. Rather, it is a continuing process almost equivalent to an infinite number

of dependent looks. If a pulsed laser were flashed exactly once per look, then

exactly four looks are obtained. However, there is an improvement because the

integration is continuous as opposed to an averaging of four separate cells.

Figure 5.1-13 shows a more detailed drawing of the correlator. The laser

beam goes through a beam expander and a spatial filter primarily to produce a high

quality plane wave. The signal film is moved past the beam, and the two spherical

lenses, which are the transformer and re-transformer, can be considered as compris-

ing a single one-to-one telescope. The telescope relays the image after it is

filtered in both range and azimuth, weighted, and corrected for range migration,

and relays that to the output where cylindrical optics of the azimuth telescope

BE AM EXPANDER

MIRROR

LASER

RANGE TELESCOPE
AZIMUTH TELESCOPE

MAP FILM

FIGURE 5.1-13 Tilted Plane Correlator
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then operate on the data to bring the range and azimuth focal points into coin-

cidence so that they are focused on the imaged film.

Normally, the signal film is stretched by some factor in azimuth; therefore,

the cylindrical lenses also perform an additional function of obtaining a one-to-

one aspect ratio in range and azimuth.

The range migration correction can be done perfectly at only one range to

the target. The correction increasingly degrades the data with increasing distance

from the center. Therefore, the data probably has to be processed in more than one

range swath to .prevent the degradation of the resolution by the correction. If all

the data were processed in one swath with just one correction, the resolution

would be degraded at the beginning and the end of the swath. The number of cor-

rections required varies with the latitude of the data area because of the Earth's

rotation. Correction' in four sections is sufficient to correct for a 100 km swath

to maintain a 25 m resolution for all latitudes. [8]

Synthetic Aperture Radar systems proposed, for the 1990's are currently under

investigation by a number of NASA centers, contractors, and a few of the larger

universities throughout the U.S. The primary focus is on data processing because

of the impact on present data systems, i.e., Seasat-A SAR, and more importantly

the effect on future systems, by the volume of imagry to be generated by free-

flyers (automated payloads) and Spacelab in the future.

During the period from August 1975 to May 1977, NASA .sponsored numerous work-

shops to define future technology requirements for sensing and detection from

space, user needs, and projected NASA missions. As a result of these workshops, a

major thrust into three particular areas has been proposed: 1) provide a ten-fold

increase in mission output through improved sensing accuracy, resolution, and

spectral range by 1985; 2) reduce information system cost by 1 to 2 orders of
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magnitude through extensive integration of sensor and on-board processing tech-

nology by 1985; and 3) provide the capability for near realrtime, low-cost global

surveys through multipurpose, all-weather, active/passive microwave systems by 1990

[6] [11]. Current activities which support these goals will be addressed in the

remainder of this section.

Synthetic Aperture Radar systems perceived for free-flyer applications in the

1990's will include a digital processing capability. Free-flyers will be particu-

larly useful in monitoring the dynamic features of our environment, such as sea

state, soil moisture, biological growth, etc. These applications rely on timeli-

ness of the image product so that near real-time processing and subsequent trans-
•

mission to an appropriate site represents a highly desirable system capability.[li]

Several NASA contractors and commercial companies are active in developing

hardware and software for ground digital processing and limited on-board (aircraft)

processing [7] [8]. "•'• ••'••'' '• • ' . - . • , :.,•...•,. .......;;.-,Vv. ,-••'-:,;•.;:•: -Q^Sr

The Jet Propulsion Laboratory (CIT) has proposed an effort to develop a

stand-along real-time SAR digital data processor capable of producing 4-look, 25

resolution with 20 km swath width imagery utilizing Seasat-A digital raw data with

an architecture such that it eventually could be used on spacecraft. Real-time

production of 100 km swath width imagery will be required by 1990.

Figure 5.1-14 is a functional diagram of a digital processor. The analog to

digital unit converts the analog signal from the data link to a digital format.

Data corresponding to a swath interval is stored at a real-time rate in a buffer

and transferred at a continuous lower rate to the digital recorder. The data is

processed as a two-dimensional array as indicated in Figure 5.1-15. In the

correlation process, the locus of points that the trace will go through in memory

will follow a curved path.
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FIGURE 5.1-14 Digital Processor Functional Diagram

The azimuth correlation path depends on the range from the antenna to the

correlation point and on the antenna boresight angle to the zero doppler line.

Eiach^vimage resolution cell has a unique correlation path and correlation function

so that it is necessary to preserve the data as the correlation is made.

RANGE

AZIMUTH

1
T

RANGE
RESOLUTION

AZIMUTH
RESOLUTION

1 FIGURE. 5.1-15 SAR Digital Data Processing

The procedures involved in digital processing are shown in Figure 5.1-16. Range

compression may be accomplished before (as shown) or af̂ er azimuth compression.
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OUTPUT
DEVICE

FIGURE 5.1-16 SAR Data Processing Flow

Table 1 lists the requirements for the processor if the data were processed for

four separate looks and then added together. The assumptions made are: 1) 6 bits

are required after range compression; 2) computation of 10 doppler spectra at 10

locations is sufficient to determine the ccntroid; 3) there is a 32'point inter.-,

polation accuracy between data points; 4) the matched filter has 5-bit accuracy.[8]

memory consists of a very large array. Addressing is determining which element

from the array will be pulled out for operations. Addressing has to be done with

sufficient precision for interpolation within 1/32 of a sample between one data

sample and the next. It has not been determined yet exactly what interpolation

accuracy is required, but early indications are that a 32-point interpolation is

more than required. The items that take a large amount of memory are the signal
Q

array, which stores about 10 bits, and the range migration correction. Although

the range migration correction data is about one order of magnitude higher than the

signal array, the number of operations is determined primarily by the azimuth

compression, where 6.4 x 10 additions are needed to do one second of data. The

image formatter for this system has a fair amount of memory because the entire
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TABLE 1 Requirements for SAR Digital Processor,
Four Separate Looks

Input rate for Number of
Dynamic range, 1:1 output, data-element, Number of operations

Element bits/sample^ bits/s bits per second

Formatter

Range
compression

Signal array

Memory
addressing

Spectral
analysis

6

31

1.1 x 1.08 6.69 x 104

1.1 x 108 8 x 1.04

2.34 x 108 1.17 x 108

1.98 x 1ft6 • 4.8 x 104

2.2 x 10

3.29 x 103-16 KFFT

1.65 x 108-x

8.2 x 10?-+

2.34 x 108 Xfers

1.6 x 1010 Xfers

100-4 KFFT

2.4 x 10 -x

1.2 x 106-+

Range-
migration
correction

31

Matched filter 5
computation

Azimuth 9
compression

Image
formatter

11

83.88 x 10

,111.9 x 10

1.75 x 108

1.2 x 10'

3.88 x 10

4.25 x 10"

8

2 x 10
8

3.88 x 10 Xfers

3.88 x 1.0 look ups

6.4 x 1010-x

3.2 x 1010-f

8 x 10 -x

5.9 x 107-+
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image has to be stored for three-quarters of the synthetic aperture length. As

the phase history of the tree comes in to the signal array, the first image begins

to form. When one quarter of it passes through, an entire image for one look has

already been generated. Now, that entire image needs to be stored while the

remaining three quarters of the phase history is processed into the other three

looks. Although this poses a memory problem, the number of operations for the

image formatter is quite low.

Table 2 gives the processor requirements when the data is processed at full

resolution and then four lines are added together to achieve the four looks. First

of all, the image formatter is no longer necessary to store entire images. How-

ever, in azimuth compression, it is necessary to operate over four times as large

an area for each image. If all the operations in this table were added together
g

for the full resolution processing, the total data storage would be about 2 x 10

9
bits as opposed to the four-look storage, which is only about/I x 9 . bits. . ::;r;r.

Although the number of thousand-point transforms (KFFT) is the same, the number

of transfers is more for the four solution method.

The growth of space-borne systems has been less dramatic than that of ground-

based systems. Characteristics of some current or developmental space-borne

computers are shown in Table 3, and projections are shown in Table 4. The progress

in LSI technology and system architecture has made possible the design of on-board

processors with high throughput rates. With the emphasis on the Shuttle program

and the anticipated large volume of data collected onboard a spacecraft, NASA has

contracted the General Electric Company to develop a processor for on-board real-

time data processing applications. The GE processor employs a pipeline arrange-

ment to perform arithmetic functions at a speed of 250 nsec. per function, with

expectations to halve it to 125 nsec. The operational data rate is 100 megabits

per second.
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TABLE 2 Requirements for SAR Digital Processor,
Full Resolution

(pixel size - 8-m range, 5-m azimuth)

Element

Input rate Data number
Dynamic range for 1:1 of elements
bits/sample input-output MIG, bits

Formatter 5 1.1 x 108/sec 6.69 x 104

Range (5 in) 1.1 x I'D8 bits 8 x 104

compression v. .
' • ^O OUt

Signal array >6 234 M bits 4.68 x 108

Memory
addressing 31 — —

Spectral 6 1.98 x 106bits 4.8 x 104

analysis

Range- 31 — 1.2 x 109

migration
correction

Matched filter 5 3.88 x 108 3.88 x 108

computation

Azimuth 11 7.66 x 1011 1.3 x 105

compression

Image 11 2.13 x 108 5.2 x 105

formatting :

Number of
operations per sec

2.2 x 107

3.29 x 103-16 KFFT

1.65 x 108-x

8.2 x 107-+
Q

2.34 x 10 replace

6.39 x 1010Xfers

100 - 4 KFFT

2.4 x 106-x

1.2 x 106-+

3.88 x 10 transfers

3.88 x 10 look ups

2.56 x 1011-x

1.28 x 1011-*

7.76 x 107-x

3.88 x 107-+
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TABLE 3 Current or Developmental Spaceborne Computers

Type

IBM 4P1/EC

Bunker Ramo BR1018

CDC 469

Honeywell HOC -7 01

Word
Length
(bits)

32

18

16

12

Add
Time

(US)

5

6

2.4

2.4

Multiply
Time
(US)

10

28

10.4

10.8

Memory
Cycle
Time
(PS)

2.5

1.0

1.6

0.6

Memory
Capacity
(Words)

16K/132K

4K/131K

0.5K/64K

4K/16K

TABLE 4 Projections of' Spaceborne Computers

Year

1975

1980

1985

1990

Gate Delay
(ns)

- .

4-6

1.5-2

0.8-1.5

Add Time
(ns)

2 ,.400

100

22-30

12-22

Multiply
Time (ns)

10,800

770

400-320

170-520

Memory Cycle
Time (ns)

600

100

50

20

With the development of spuce-qu.-iJified microprocessors, expected by 1980,

the trend will be to decentralize the on-board computing. Individual processors

will be used to replace hardwired logic in more and more of the instruments and

subsystems. This form of distributed computing is comparable to the current Earth-

based federated computer systems in which processors are dedicated to performing

largely independent functions but can intercommunicate via data buses. Distributed

computer configurations using identical microprocessors will offer increased

capability at a lower cost in both hardware and software.
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FIGURE 5.1-17 Performance of Spaceborne Computers

The use of a single, highly complex and expensive computer to perform a large

number of computing tasks has been characterized by high costs in software develop-

ment, verification and simulation. With a network of identical processors, all

performing largely independent functions and operating at less than their full

capacity, the software can be developed on an independent function-by-function

basis using common software tools at a substantial reduction in effort and com-

plexity.

The distributed computer system also offers an increase in overall system

reliability. The loss of a single processor would not cause a complete system
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failure as it would in a centralized computer system. Simple block redundancy

would also be more e'asily implemented on a selected basis. The application of

more complex forms of system architecture to provide higher levels of fault toler-

ance, as in the JPL STAR computer, is not expected to occur until the late 1990's..

Control Data Corporation (CDC) has developed a processor which will handle range

migration corrections and interpolations hut not multiple look functions. CDC

is currently operating an on-board (aircraft) computer which provides partial,

or pre-processing of raw SAR data.

Other commercial companies working on SAR digital processing include Westing-

house (Baltimore, Md.), and Goodyear, Aerospace Div. Though both are presently

concentrating on ground processing, their efforts are centered around handling

small resolution elements (i.e., 5x7 meter) under conditions of large swath

widths (50 to 100 km). .

The use of Charge Coupled Device (CCD) transverse filters provides a very

powerful computational tool in the implementation of the correlators required in

a SAR processor. [12] Texas Instruments, Inc., has built and tested a laboratory

feasability breadboard, and an aircraft engineering model of a modular processor

capable of analyzing SAR image data. The CCD filters utilized in these experiments

are four-phase surface channel devices having split electrode weighting.

The achievement of high range resolution implies the use of wideband chirp

signals for a pulse compression radar. The use of a surface wave device range

chirp correlation filter is an alternative capable of accommodating the required

bandwidths. However, the time windows commensurate with the achievable range

resolution are typically tens of nanoseconds, and are difficult to handle with A/D

conversions and digital techniques.

The use of a modular processor concept in which each module processes on the

order of 200 range cells, makes it possible to sample the radar video at a high
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rate during a small time window corresponding to the module's swath width once

each Pulse Repetition Interval (PRI). The number of samples to be stored is the

number of samples required to cover the swath plus the number of bits in the range

correlator. While the input sampling rate is constrained by Nyquist considerations,

the output data rate is constrained by the PRI making time expansion of the video

possible in order to reduce the processor module's data rate to one commensurate •

with CCD transversal filter operation. Subsequent processing speeds may easily

be handled with present CCD technology. Another advantage of such a buffering

technique is that radar data from an appropriate range swath may be recorded on a

.conventional instrumentation tape recorder having a few hundred kilohertz bandwidth.

In order to form a 200 x 200 element picture with this breadboard, a TI 960A

computer with 28K memory used in conjunction with a 1,100,000 word disk memory

and a nine-tracki 800-BPI magnetic tape unit were used. The simulated radar echo

pulses were transferred from the tape to the disk. The simulated radar bursts

correspond to radar returns from a swath of interest at sequential azimuthal

locations. By recirculating this sequence of bursts to the breadboard while

sliding the azimuth read-in time window across the swath time, a complete picture

can be processed-an azimuth column at a time, to reconstruct the picture, the

output of the azimuth correlator is digitized and stored in memory. The memory can

then be used much as a scan converter to refresh a CRT display.

The time required to process a 200 x 200 element picture is 1 1/3 hours due

to the long azimuth correlation time. Real-time processing could be accomplished
;

by expanding the system to 200 azimuth correlators.

Improvements in SAR processors may be expected in the areas of improved resolu-

tion, multiple look imagery, focusing, motion compensation, and wider dynamic range.

Software development for image processing is still in the preliminary stage.

Goodyear's Sapphire Program nearly meets current requirements but lacks the
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capability of correcting for range migration. Of the possible algorithm candidates

which may be utilized only two support a moderately complex processor, these are: /

1) the maximum likelihood algorithm; and 2) the table look-up algorithm. The

former is a statistical procedure based on the probability density function of the

data. For the case of Gaussian data, which is a-valid model for microwave imagery

of the earth's surface, only first and second order statistics are required. A

system based on this approach is designed by calculating these statistics from

data samples of known classes and then assuming that all data from the same class

have these same statistics. This approach seems well suited to large area sea-

state data processing. The table look-up algorithm essentially stores in a large

table (computer memory) all possible outcomes of the data and associates with

each possible outcome one of the classes associated with each of the possible

values of the input data. Subsequent data are then classified by using the

data point to address the memory to look up the classification. Both algorithms

require a significant amount of computation, mainly additions, multiplications

and comparisons. The table look-up algorithm requires a much smaller amount of

computation but significantly more memory.

The wavelength of SAR transmitters is a subject of prime concern not only as

a function of reflection from the illuminated phenomenon but,also from the stand-

point of power consumption and reliability. The Seasat-A SAR is an L-band system

(X - 23cm) and allows use of solid state amplifier components such as TRAPATT

(Trapped. Plasma Avalanche Triggered Transit) and IMPATT (Impact Avalanche Transit

Time) devices. For applications requiring shorter wavelengths such as Ku-band for

ocean windfields the current state-of-the-art demands klystrons or TWT's. Both

of these devices require higher operating power and offer lower reliability than

the longer wavelength solid state devices. Figures 5.1-18 and 5.1-19 illustrate

the projected advances in solid state and TWT amplifiers,
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During the next decade, continued development of present microwave solid-

state devices will increase their frequency and power capabilities and lower their

noise figures. As we have learned from the past, however, technology is an ever-

evolving phenomenon and it can be expected that the present solid-state concepts

will give way to newer and better ones. Bulk effects will be discovered which will

increase solid-state power performance. Even now, traveling-wave effects are being

found and explored for higher solid-state gain. Low-loss matched front ends are

required for improved performance of both active and passive microwave systems.

Integrated microwave circuits can achieve this goal by eleminating cables, con-

nectors, matching elements, and discrete components which degrade overall system

performance. Integration also implies miniaturization, which results in better

thermal stability. Feasibility demonstrations of advanced, space qualified front-

end hardware are scheduled for September 1980. [10] [14]

; ,, Multiple ifr.equency band SAR operation, is. a realty now (i.e.,^aircraft and
"" " ' "" " ""'i ''"'*' ' ''"' "'' '"" '•'": ""-••••'-'-' •• • ••'•'" ••••'•>• .•••:•..--.•;•....:•.- •-,.-,.,;..- ...-•-wv--;•-.. .:r_;:::.;,.:.:.•...,•/;,.;,:;

ground tests) and is already planned fpr Shuttle applications in the 1980's. [10]

Multiple frequency, dual polarization, and decreasing resolution size are the main

drivers behind current antenna design. The chronology for multipurpose radar imag-

ers will initially be Shuttle sorties, and w i l l ultimately be used operationally

on longer duration earth orbiting platforms.

SAR antenna design represents a particularly active area in the development

of future sensors. User agencies have needs for high-resolution, wide-swath

imagery. Present antennas cannot meet these needs, especially in the L- and Ku-

band region. Currently under investigation are deployable, large, electrically

steered phased arrays.. A combination of antenna elements with distributed

active devices can provide low-noise passive and high-power active capability.

An initial study of phase array antennas will be completed June 1979,- followed
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by a hardware feasibility study in 1980, and flight feasibility tests in September

of 1981. [10] Paralleling this effort is a planned (1982), agriculturally

oriented Shuttle Imaging Radar (SIR) employing a dual frequency SAR. [14]

Scientists at the Remote Sensing Laboratory, University of Kansas, are currently

gathering ground truth information with a vehicle mounted SAR in support of future

SAR configurations. [6] the Space-borne Imaging Radar scheduled for 1979 is a

geology experiment utilizing a modified (look angle) Seasat-A SAR.
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(1) SENSOR NAME, ACRONYM: SEASAT-A Synthetic Aperture Radar - SAR

(2) DISCIPLINE: Earth- and Ocean Physics (3) SUBDISCIPLINE: Ocean Dynamics

(4) APPLICATION AND OBJECTIVE:

The SAR is put into near polar earth orbit and earth-oriented to obtain microwave
imagery at 1275 MHz of the sea surface. This data is to be conveyed to ground
stations in real time. The object is to discern the length and direction of ocean
waves, the size, location and speed of sea ice, oil spill and coastal features.

(5) HERITAGE/KEY PERSONNEL: The only satellite-borne SAR flown prior to 1976 was the
Apollo Lunar Sounder Experiment. It produced profiles on the lunar sub-surface
at 5, 15 and 150 MHz.

Instrument Rep: Frank T. Barath (JPL) 215-554-5431 or Frank Schutz 213-354-5392

(6) SENSOR DEPLOYMENT:

The SEASAT-A satellite, bearing the SAR is to be launched to attain a near-polar
orbit of 108° inclination and altitude of 790 km. The period will be approximately
100 minutes resulting in 14 1/2 orbits per day. This yields complete ocean coverage
in 12 hours.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

Using an antenna measuring 10 m (azimuth) x 2 ra (elevation) the SAR
receives reflected radiation from a swath of 100 km width, starting 250 km off
nadir. Data is transmitted directly to ground via S-band link, video pass band
is 2-21 MHz. No on-board storage is provided due to high data rates. The average
on-time is 10.85 min. over each of the following STDN: Alaska, Goldstone, Rosman,
Madrid and Orroral.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

The swath is illuminated by 1275 MHz microwave pulses of 32 microsecond duration
occurring at 1400 pps. The transmitter is operated at a peak power level of 800
watts. Azimuth compression ratio is 155:1. Range compression ratio is 576:1.
Transmitter operates in 4 modes: standby, on, operate, calibrate. Mode is
selectable by ground command.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

Spatial resolution of the system is 25 m. System noise figure is 2 dB.

SECTION NO.: 5.1 SENSOR CATEGORY: Synthentic Aperture Radars
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DATA SHEET

SHEET 2 OF 4

i SENSOR DATA StfJEASUREftfE.SHr AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

DOWNLINK Z287£ MMt
TELEMETRY TRACKING,
COWHANDS
ANTENNA

:127SMH>
SAR ANTENNA

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:
S-Band Rx:

a~^ Carrier 2106.4 MHz
b - Shortsterm frequency stab = ±1.5 x 10"
c - Phase-Locked-Loop Bandwidth = 800 kHz ± 20%
d - Command channel threshold = better than -114 dBm
e - Command frequency resp. » 1 kHz to 30 kHz down 3 dB from regular of 16 kHz
f - Ranging channel threshold = -90 dBm

Command:
16 KHz subcarrier bi-phase modulated by up to 2 kbpsNRZ command bit rate (PCM/PSK/PM;

S-Band Transmitter for Regular Telemetry and Tracking:
a - Carrier 1 watt, 2287.5 MHz
b - B. W. = ±3 MHz about the carrier

Telemetry;
a - 25 Kbps real-time data stream bi-phase modulating a 1.024 MHz subcarrier

which in turn phase-modulates the carrier (PCM/PSK/PM)
b - 690 kbps tape recorder playback phase modulates the carrier

SAR Transmitter: a - Carrier 5 watts, 2265.1 MHz
b - Bandwidth ±10 MHz about carrier

SECTION NO.: 5.1 SENSOR CATEGORY: Synthentic Aperture Radars

REV. NO.: 2 REV. DATE: 31 Jan 1978



RSDH
DATA SHEET

SHEET OF

(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

2265.1
MHz

9 METER
ANTENNA

PRF PULSES
COHERENT TRIGGER
SAMPLE CLOCK (45.5 MHz)

SDF CONTROL UNIT

PARAMP/DOWN-CONV/
MULTI-FUNCTION
RECEIVER (MFR)

COHERENT SAR
DEMODULATOR

WIDEBAND
DIGITAL TAPE
RECORDER (WBR)

BACK-UP
WBR

SAR DATA
FORMATTER (SOF)
A -D CONVERTER

TO JPL VIA
COMMERCIAL
CARRIER
3-10 DAYS

STDNS process the following Data Streams for SEASAT-A;
1 - Low-rate real-time telemetry (32 kbps max.)
2 - Low-rate playback telemetry (640 kbps min., 800 Kbps max.)
3 - SAR Analog (2-21 MHz')
4 - Command data (1-2 kbps)
5 - Range/Range rate tracking:data :".'• •.-;•';.; v

Output of the Demodulator consists of the following:
(a) Analog radar return signal 2-21 MFIz,
(b) Pulses occurring at the PRF of the SAR sensor,
(c) A coherent trigger signal which is coincident with the desired leading edge

of the radar return signal,,
(d) A sampling clock which is coherent with SAR sensor timing and equal to half

the SAR sensor STALO frequency (i.e., approximately 45.5 MHz).

(11) RECEIVING AND PROCESSING - NARRATIVE:

Recorded information includes (in addition to raw radar return):

a - Frame synchronized low rate real-time telemetry,
b - Predicted operational orbit information from tracking data processor,
c - Universal time tag of the coherent trigger signal, accurate to within

1 millisecond and containing day of year information,
d - The PRF/STC delay words which are extracted from the real-time data

stream and used to set-up the demodulator, and
e - Configuration status of the ground station equipment, including STDN

I.D. and operational parameters of the demodulator and ADC.

SECTION NO.: 5.1 SENSOR CATEGORY: Synthentic Aperture Radars
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

HDDT FROM GSFC

SDR FROM POPS

•JPL
PROCESSING

FILM AND DUPES

REQUESTS

SAR
EXPERIMENT
TEAM

FILM

LIBRARY

HDDT SIGNAL RECORDS
FILM IMAGE RECORDS
(ORIGINAL)
FILM IMAGE RECORDS
(FIRST GENERATION)
FILM IMAGE RECORDS
(SECOND GENERATION)
MICROFILM BROWSE
FILE
COPY OF ALL CCTS
SAR SUPPLEMENTARY
DATA RECORDS

NOAA

7-10
HOURS

NATIONAL
WEATHER
SERVICE

7-10
DAYS

ENVIROMENTAL
DATA
SERVICE

OPERATIONAL
USER
COMMUNITY

(13) DATA DISTRIBUTION - NARRATIVE:

The optically processed film supplied by JPL will not be fully corrected geometri-
cally or radiometrically. These films will be provided in strips covering 30 to
50 km of the radars' 900 Ion swath. Photo mosaics are created by matching appro-
priate film strips.

SECTION NO.: 5.1 SENSOR CATEGORY: Synthentic Aperture Radars
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(1) SENSOR NAME. ACRONYM: -Shuttle Imaging Radar (SIR)

(2) DISCIPLINE: Earth Observations (3) SUBOISCIPLINE: Land 'Monitoring

(4) APPLICATION AND OBJECTIVE.

The SIR is a synthetic aperture imaging radar which will utilise a spacecraft
platform. The purpose of the SIR will be to gather image data at microwave
frequencies for application to a variety of .earth observation studies planned
for the Space Shuttle.

(5) HERITAGE/KEY PERSONNEL:

Principle Investigator: Dr. K. Krishen, NASA-JSC 512-483-6287

(6) SENSOR DEPLOYMENT:

The SIR will be deployed by the Shuttle (sortie) and will have a variable orbit from
200 to 400 km at inclinations of 90°. The SIR will be designed for 7-day sortie
missions with a useful life of approximately 5 years with refurbishment. The
engineering model is planned for 1981 and the operational model is projected for
1982.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

. , The SIR will; transmit: Ijiorizontal ,pr;yertical;"pqlarizedv-ppwer;:at:;:3Cr:;and:,'l,-;band' d:,
frequencies and receive the backscatter data with dual-polarized, dual frequency
antennas. The returned signals are received, amplified, and converted to digital
format for later conversion to Image data. On board monitor functions are also
provided.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

Traveling Wave Tubes (TOT) provide tho X-band (10 GHz) and L-band (1 GHz) microwave
energy. Simultaneous transmission in the form of a pulse (15-2Sps) with a
repetition rate of 1200-1880 kHz allow nearly identical swaths to be illuminated
for correlation after the returns arc processed. Four different antennas are used
for X-band transmission providing horizontal and vertical polarization at 25° off
nadir. A beam width of 38° results in a total X-band coverage of 7° to 60° off
nadir. Scanning is provided through vehicle motion. Two L-band antennas are sited
at (TBDJof nadir with a beam width of (TBD).

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

Receivers for both bands are similar. The sequence in processing the microwave
return is: pre-amplification, single conversion super-heterodyne, and pulse
compression (4000:1 ratio) with range gates. Noise temperatures are 1100° and
1600°K and noise figures arc 2:5 and 4 for L and X band respectively. Bandwidth
for either receiver is >35 MHz (TBD) and dynamic range is >50 dB (8 bit conversion),

SECTION NO.: 5 .1 SENSOR CATEGORY: Synthetic Aperture Radars
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIA6RAM:

OSCILLOSCOPE
ANDDVM

L-BAND RADAR
CONTROL PANEL

DIGITAL TAPE
RECORDER

IINPUTS

DATA AND
HOUSEKEEPING
INTERFACE PANEL

INPUTS

DIGITAL TAPE
RECORDER

X - BAND RADAR
CONTROL PANEL

I RADAR CONTROL J
[CONSOLE . [

[ANTENNA ""
'SUBSYSTEM

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

Data will be digitized on-board and stored on magnetic tape (240 Mbps tape
recorder in development).

SECTION NO. 5.1 SENSOR CATEGORY: Synthetic Aperture Radars
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DATASHEET

-.. • SHEET 3 OF 4

(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

Not Applicable.

(11) RECEIVING AND PROCESSING - NARRATIVE:

Data is stored on tape on-hoard and w i l l be returned to ground via Shuttle.
Correlation with other image data w i l l be accomplished by ground processing.

SECTION NO.: 5.1 SENSOR CATEGORY: Synthetic Aperture Radars
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(12) DISTRIBUTION OF. DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

This space intentionally left blank.

(13) DATA DISTRIBUTION - NARRATIVE:

This space intentionally left blank.
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Section 5.2

INTRODUCTION TO ALTIMETERS

The current state-of-the-art in altimetry takes the form of a microwave radar.

In all activities to date, the role of altimetry has been visualized to include

detection of dynamic ocean features (tides, waves, currents, etc.) or mapping of

permanent mean ocean surface topography (geoid). Also, subsurface geological

features, known to affect the ocean geoid, have been affirmed with the Skylab

altimeter and could result in new applications of altimetry for bathymetric posi-

tioning of underwater topographic features, fl]

Data collection techniques, while limited to nadir viewing, provide accurate

global mapping in the range of centimeters for altitude and meters for wave height.

The precision with which geophysical units are inferred, however, is dependent on

ground support 'systems and techniques such as laser tracking, ephemeris data,

ground truth, orbit calibration, etc.

Initial experiments in altimetry relied on short-pulse (or pulse-limited)

techniques to achieve required range resolution. This technique is described

below. With the evolution of satellite measurement systems a new method of

resolving range for sea state information developed called chirp radar. The result

of this method is an effective compression of the transmitted pulse width. This

technique is also described, along with further explication relating to a specific

sensor program.

An orbiting microwave altimeter transmits a pulse with an effective spatial

length that is short compared to typical wave heights (e.g., less than 0.5 m). As

the pulse interacts with waves beneath the satellite, it is scattered back toward

the satellite by specular points on the larger gravity waves. The short pulse is

"stretched" temporarily by the ocean waves, and the degree of this stretching is a

=C o -\ 1 REV. NO.: 0 I REV. DATE: 30 June 1977
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direct measure of the mean heights of the waves at the suborbital point.

The radar cross section can be expressed as a function of the height of the

radar pulse interaction region, as shown in equations (1) and (2). From specular-

point theory, backscattered strength from N specular points is

r— S £2k z. cos 6)^Og = Z irgj e* o i ; (1)

where:

g. - curvature at the ith specular point

Z. = height of the ith specular point above mean surface

k ='radar wave numbero

6 « angle of incidence from vertical

When equation (1) is squared, written as a distribution over height, and averagedj

it becomes

.. rj" (Z) = nj" n(Z,g)gdg (2)

where T)° (Z) is the average backscatter cross section per unit area per unit height

increment at height Z, and n(Z,g) is the average number of specular points per unit

area for heights between Z and Z+dZ and for Gausian curvature between g and g+dg.

The physical illustration of a radar pulse of spatial width AZ cos 9 = (ct)/2

advancing over the ocean is shown in Figure 5.2-1. If this model is used, and it

is assumed that a symmetric Gaussian distribution of sea-wave heights exists, the

expression in equation (3) is obtained for the average radar cross section of the

sea as a function of time. Radar altimeter power return (H « a) is

Hx
C3)

REV. NO.: 0 REV. DATE:30 June 1977
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ADVANCING RADAR
RESOLUTION CELL AT
POSITION ~

• FIGURE 5.2-1 Physical Illustration of Specular:Point
Scatter (Specular Points arc Highlighted)

where: ' - '•; • -•'-:•'.. ' .-.v '. .•-"''':

G = antenna gain ;:< a function of time ,.4 .

o(t)

H

average radar cross scrtion tas a,function of•time,

height of the rauar altimeter , V

"radio" r.idius of the earth

total slope .

a =

s2 =

(1)

t = (2H2T2)/c .'; '"' :
 :;'- \': •V'::;j'o; ' .:

= [(8 In 2)/'f2| + (1/s*)-, where Y/and Y'R are shown.;in. Figure 5.2-2

h2 = mean-square sea wave height '-'.- ; . / •••••-..:. :, , " = • : . .

(|>(x) = error function of argument x . : ' .•-

Two constants t and t appear in this model, t is much larger than t_; thisp s s . p

defined as the "pulse limited" mode of the average radar.cross section as a function

of time in equation (3) is as shown in l-'igure 5.2-3. The slope of the leading edge

of tlio signal is a I'uiu-lioii ol t lie s ii-.n i l'ic:nil s'oawavo lioights H,/- at the sub-

T REV. NO.: 0 REV. DATE: 30 June 1977
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orbital point. This portion of the signal is the one that must be used to extract

"sea state." •

A-—- RADAR ALTIMETER ANTENNA

ANTENNA ILLUMINATION PATTERN

BEAMWIOTH

EDGE OF EFFECTIVE SPECULAR SCATTERING
AREA ̂  (COMBINATION OF ANTENNA ILLUMINATION PATTERN AND

ANGULAR DISTRIBUTION OF REQUIRED SPECULAR SCATTERERSl

ADVANCING RADAR
/RESOLUTION CELL

FIGURE 5.2-2 Interpretation of Altimeter Model Constant ts •

The constants t and t have simple geometric interpretations that help to

explain the nature of the received signal. As shown in Figure 5.2-4, t represents

the amount that the1incident signal (propagating vertically downward) gets stretched

by ocean waves 6f height h. The constant t is a measure of the time that the radar

echo is being received from the sea, as shown in Figure 5.2-2. In the pulse-limited*

mode (t « t ), this return will be received from a spherically advancing resolu-

tion cell as long as (1) there are specular points with slopes large enough to

backscatter, and (2) the antenna'beamwidth is great enough to permit illumination

of the sea. For pulse-limited operation, the length of the trailing edge of the

pulse shown in Figure 5.2-3 is essentially t .

Because the information on significant sea-wave height for pulse-limited

altimeter operation is contained in the slope of the leading edge, one way of

REV. NO.: Q \ REV. DATE: 30 june 1977
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LEADING EDGE RISE
TIME DETERMINED BY
ROUGHNESSA.

TRAILING EDGE: DECAY TIME DETERMINED
BY ANTENNA BEAMWIDTH

h • 1.6 M (H1/3 - 4J5M.Vt * 10 M/SEC)

h - 3.6 M (H1/3

- 10.2 M. W - 1S M/SEC)

• 0.4M(H1/3-1.1M.W-5M/SEC>

LIMIT FOR h < OJ M (H1/3 < OJ M. W < 2J M/SEC)

•60 60 ^ 250
TIME DELAY. NSEC

1000 2000

FIGURE 5.2-3 Average Radar Cross Section as a Function
of Time (Where H , is Significant Wave Height and W is Windspeed)

retrieving the height distribution information is to differentiate (as a function

of time) the averaged leading edge. This derivative is then essentially a pulse

that is directly proportional to the ocean-wave height probability density function.

This effect is shown in Figure 5.2-5, in which a more realistic height distribution

that the symmetric Gaussian function is now used. Oceanographers have known that,

for greater wave heights, the height probability density function is skewed toward

AVERAGE SCATTERED
PULSE AFTER
STRETCHING BY
SEA WAVES

CT

INCIDENT
ALTIMETER
PULSE

FIGURE 5.2-4 Interpretation of Altimeter Model Constant t
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heights above the mean plane.. This skewness can be described by a parameter 6,

which can be as high- as 0.4. Hence, the upper graphs in Figure 5.2-5 show wave

probability density functions (with and without skewness) for various wave heights.

The lower graphs show the time derivative of the averaged leading edge of the

received signal for a 10-nsec transmitted pulse (in the absence of noise). This

signal, for greater wave heights, is stretched in direct proportion to the width

of the height probability density function. However, note that when the height

density function is skewed (dashed curve), the radar return is also skewed, but

in the opposite direction. This has been observed experimentally, where the radar

"centroid" of the measured altimetry return appears to move toward the troughs and

away from the wave.crests. The theoretical model explains this shift and can be

used as a correction to quantitatively determine the error factor introduced by

wave skewness for the purpose of determining the mean sea position.

§8

I1

6-04 f 6 = 0.0

-3.0

H1/3 - 4* CM

-3.0 0 3.0 -6JO -3JO 0 3.0 -12.0 4 JO -GJD -3.0

SURFACE HEIGHT, M
3.0 6.0 9.0

W 1 M/SEC

* *> QAM
H1/3 - 1.1 M

W • 6 M/BEC

h •> 1JBM

H1/3 - 4.6M

10 M/SEC

h - 34 M
H1/3 - 105 M

W « 16 M/SEC

2gS
29

8
•20 0 20 40 0 20

.-.-6 = 0.4 6 K 0.0

•20 0 20 *0 <0 -»0 -20 0 20 40 60
TIME DELAY. MSEC

FIGURE 5.2-5 Wave Probability Density Functions
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The specular-point model, and its extension to radar altimetry, therefore,

adequately explains the interaction mechanism with the sea and can permit both

the design of the sensor and the interpretation/extraction of sea-wave height
•

information from the received signal.

Results from recent experiments (i.e., AAFE) have shown that a more efficient

way of measuring sea state may be attained with a chirp radar system. A chirp

system allows a S/N improvement by transmitting a relatively long pulse, but

retains the characteristics of the pulse limited system through pulse compression.

A detailed analysis of this technique is given by [2], with only a cursory descrip-

tion provided below for the sake of continuity.

It is the broad frequency content, or bandwidth, of a short radar pulse that

accounts for its high resolution capabilities. It follows, as a consequence of

Fourier analysis, that a long pulse of constant carrier frequency contains a

narrow bandwidth and, therefore, possesses poor resolution properties.; However,

the spectrum of this long signal can be.significantly broadened by introducing

modulation. To utilize the transmitting device efficiently, this modulation must

take the form of frequency modulation (FM). By this method one cah introduce the

frequency spread characteristics of a short pulse within the envelope of a long-

duration signal. The linearity of a radar system permits one to realize the poten-

tial of this shorter pulse by a suitable phase equalization in the radar receiver.

Darlington's model for such a system is illustrated in Figure 5.2-6. The transmit-

ted signal consists of a sequence of adjacent pulses each possessing a unique

carrier frequency, f (see Figure 5.2-6). To realize the short pulse potential,

one imagines that the received signal is passed through a network possessing a delay

versus frequency character, as illustrated in Figure 5.2-6. Although the frequency

f is the first to be received, it is just this frequency that is delayed the long-

REV. NO.: 2 REV. DATE: 31 Jan 1978
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t t

H

*<,

THNE FREQUENCY

FIGURE 5.2-6 (a) Model Chirp radar signal composed of five adjacent pulses
each possessing a unique frequency, (b) Suitable delay equilizer for the
signal in (a). The output of this network is qualitatively a pulse of
increased amplitude with a pulse width of T seconds. The network is
illustrated for the particular case where fn * f ..

est amount by the network. In this manner each pulse of distinct carrier frequency
. . . • • - . , t . . . . - . - . •

"is made to "wait" until the highest-frequency component arrives, whereupon all the

short pulses emerge simultaneously. Thus following the delay equalization, the

original signal of Figure 5.2-6(a) will be compressed in time, and, by energy con-

servation, the collapsed signal will be necessarily increased in amplitude.

For several practical as well as theoretical reasons the signal chosen for the

Chirp system is characterized by a linear frequency modulation, as illustrated by

Figure 5.2-7. This important case consists of a rectangular envelope of T seconds

duration [see Figure 5.2-7(a)]. Within this envelope the instantaneous frequency

is modulated in a linear manner covering a band of frequencies A, centered at a

frequency f [see Figure S.2-7(b)]. Figure 5.2-7(c) schematically illustrates a

signal in a limiting form of the one illustrated in Figure 5.2-6(a). A suitable

delay-equalizing network for the signal with linear FM is given, therefore, by a

limiting form of the equalizer in Figure 5.2-6(b). The delay characteristic of

this limiting network is shown in Figure 5.2-8(a). This response envelope is given

analytically by the absolute value of D [(sin uAt)/(TAt)] and is illustrated in

L REV. NO.: REV. DATE: 31 Jan 1978
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t

z j
o;

ui
§.t

TIME ^

Figure 5.2-7 (a) Ideal envelope of actual Chirp signal, of T seconds
duration and chosen to be of unit amplitude, (bj Instantaneous frequency
vs. ,time characteristic of Chirp signal; a band of frequencies, A,
centered at fQis lineariyswept during, the pulse ''duration.T (c1) Schematic:

diagram of a signal having the properties indicated in.(a) and (b).

Figure 5.2-8(b). In this expression, I), called the dispersion factor, is defined

by the product TA and represents a parameter of fundamental significance. The

collapsed pulse width, T, is of the order of I/A. Consequently, there has been a

pulse width reduction given by the ratio T/T ~ TA = D, and a signal amplification

given by (D)1/2.

A typical state-of-the-art pulse compression ratio is 1000:1. That is, the

1 of the transmitted pulseeffective pulse width of the received signal is _

width.

Figure 5.2-9 shows schematic geocentric relations of the various surfaces

associated with satellite altimctry. TM is the raw altimeter range which has to

be corrected for laboratory instrumental calibration, electromagnetic effects,

L REV. NO.: 0
1
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•3/A •a/A •I/A
FREQUENCY

0
TIME

I/A 2/A 3/A

FIGURE 5.2-8 (a) Network delay vs. frequency characteristic suitable for
phase equalization of the Chirp signal in Fig. 2; ideally, this network
is chosen to have a flat loss characteristic, (b) Envelope of output
response from the network in (a); this pulse now has a pulse width about
I/A and an amplitude increase given by>/Z), where D = TA is called the
dispersion factor.

sea state, and periodic sea surface influences to give TS. S represents the

non-periodic "sea level." CT and CE, the geocentric radii of the altimeter and

E, its subsatellite point on the reference ellipsoid, are computed from satellite

tracking information. EG is the absolute gcoidal undulation to be computed from

this investigation, while SG is the quasi-stationary departure of the mean

instantaneous sea surface from the geoid - the "undisturbed" mean sea level. It can

be seen from the Figure 5.2-9, that the required geoidal undulations are given by

EG = ET - TO - MS - SG

where, MS represents the sum of the calibration constants and the orbit uncertain-

ties, if any. SG represents the deviation of the surface to which the measurement

is made from the geoid. Since we do not have any information on SG which is not

considered to vary significantly over the length of profiles corresponding to

different submodes of observations, the sum (MS + SG) is considered as the

calibration constant.

The geoid to be determined must be in absolute position or geocentric

(i.e., centered at the earth's center of mass) and have correct scale, shape and

REV. NO.: Q | : 30 June 1977
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T SATELLITE ALTIMETER

SATELLITE ORBIT

SURFACE REPRESENTED BY
UNCALIBRATEO ALTIMETER
MEASUREMENT

E - GEOCENTRIC
REFERENCE ELLIPSOID

EARTH'S
C CENTER OF

GRAVITY ./

MEAN INSTANTANEOUS
SEA SURFACE (MISS)

H.ICURIi 5..--0 Schi.Mr.at ic Geocentric Relations of Surfaces
. . . . Involved..Kn::S;itoHi:t

:v '.'Vltime.try • .••......;,.-..•.

orientation in order to meet the goal:-, of geodesy and also make contributions to

the solution of problems in earth .gravity model ing, geophysics, oceanography,

etc. Correctness of shape depends on the precision of the altimeter and, in theory,

absolute centering and orientation arc dopi-mlcnt -on the satellite orbit ephemeris.

The correctness of geoid scale requires tliat the orbit ephemeris and the altimeter

cither have no biases or systematic errors, or that such biases and systematic

errors must be known to an accuracy bolter than the error tolerance of the geoid

to be computed. Currently and for some time to come, these two'scalar conditions

cannot be met because of unknown systematic errors or biases in tracking station

geocentric coordinates, the earth's gravity model, the tracking systems and the

altimeter itself. There is, there.-To re, a need for other sources of scale and

orientation control. Such a need can be satisfied by the use of terrestrial marine

REV. NO.: REV. DATE: 30 June 1977
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geodetic data to obtain scale and orientation control in the computation of the

marine geoid (i.e., the geoid in the ocean areas) from satellite altimetry.

three types of terrestrial geodetic parameters are required for this scale

and orientation control: (1) the best available estimates of the figure of the

earth in terms of the size and shape of a reference ellipsoid, (2) geoid heights

referenced to this ellipsoid, and (3) maring geodetic controls. The first two

of these are required as a priori inputs to provide a coarse scale. The third

serves as benchmarks establishing the fine scale and misclosure errors. This is

akin to leveling practice on land. Satellite altimetry is simply geodetic leveling

from space. [3]

Measurement features and atmospheric parameters which must be addressed to

,,.both calibrate .the altitude •measurements and to verify the sea state measurement

capability are satisfied through ground truth inputs. The term "ground trufh"

originated in the field of aerial photography, and if applied strictly, means

direct "in situ" data taken for verification of remote measurements. For satellite

applications, the definition has been extended to encompass all reference data

(including remote sensing by aircraft and, in some cases, even other satellites)[4].

The Skylab S-193 experiment proved the worth of space-borne altimetry while

the follow-on GEOS-3 experiment provided the necessary hardware experience to gather

accurate altimetry data on a global basis. The SEASAT-A Altimeter should provide

the degree of accuracy required for a global ±lm geoid determination. Benefits

derived from an accurate geoid model include; (1) adjustment of the North American

Datum, used for surveying, mapping, engineering operations, navigation, and

resource development, (2) the extension of control points and determining their

three-dimensional coordinates to offshore areas as well as the determination of

'."" national and international marine boundaries, (3) accurate knowledge of absolute

I REV. NO.; 2 | REV. DATE: 31 Jan 1978
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deflection of the vertical at sen, which could provide the orientation for all

national datums [5].

Other applications which would benefit from a more accurate geoid include

gravity field, mean 'sc.i level, and plate tectonics and ocean trench determination.

The SEASAT follow-on (B) will probably include an on-board Maximum Likelihood

Processor (Mil-:) for near rc:i l-t imc processing with format tod and corrected geo-

physical units as an output [6j.

REV. NO.: 2 REV. DATE: 31 Jan 1 78
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ATA SHEET

SHEET l OF

01 SENSOR NAME. ACRONYM: Radar Altimeter, ALT

(2) DISCIPLINE: Earth and Ocenri Physics (3) SUBDISCIPLINE: Ocean Dynamics

(4) APPLICATION AND OBJECTIVE:

The SEASAT-A Altimeter will survey the earth's oceans for the purpose of measuring
significant wave heights and mean sea level, and to detect tides, currents and
storm surges in support of global forecasting. Additional correlative data will
allow a precise orbital measurement and refinement of the geoid model.

(5) HERITAGE/KEY PERSONNEL: The SEASAT-A Altimeter i.s the result of the Skylab-S193 and
GEOS-3 experiments in altimctry. The most notable efforts in aircraft altimetry
measurements from the sea surface arc the AAFE-Wnllops/NRL experiments.
Experiment team leader-Dr. Sam Smi'th/NWL; tnst. rcp.-W. F. Townsend/Wallops

(6) SENSOR DEPLOYMENT:

The SEASAT-A satellite bearing the ALT is to be launched to obtain a mean circular
orbit with a 108° inclination, mean altitude ot" 790 km and approximate ground
speed of 6.6 Km/sec. An orbital period of 104 minutes results in 14 orbits/day.
Seven orbits are required for complete (mission) ocean coverage.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The ALT
;from a
dependent
the source of data records for the low nite telemetry link as the satellite passes over
selected tracking stations (STDN). Correlative data from the other 4 SEASAT-A sensors
in addition to sea truth data and precise orbital information from laser tracking sites
nre necessary to reduce the ALT data to accurate geophysical units (i.e., waveheight,
altitudo'L ' ' .

|7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

A frequency synthesizer drives the SAW dipersivc delay line in the transmitter section
producing a short pulse of the required shape and frequency spectrum. This FM pulse
is applied to the modulator and up-converted, and finally to the TWT. The resultant
transmitted energy takes the form of a 3.2 us burst with a 13.5 GHz carrier
frequency modulated at 100 MHz/us. I'cnk power is 2 Kw and the pulse repetition fre-
quency is 1031 Hz. The antenna is a circular, parabolic reflector type providing
39.5 .dB effective gain and 1.6° beam width.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

Receiver bandwidth is ± 160 MHz centered at 13.5 GHz with an allowable inband noise
level £ -82.75 dBm. For an average backscatter coefficient of 6 u"B (min), the signal-
to-noise ratio is approximately 13 dli. Following IU;, IF, arid AGC stages, the return
signal is compressed (1000:1), then segmented by range gates into aquisition, plateau,
altitude, and noise video, then sampled at a 2U Mliz rate. A- 10 bit A/D converter
provides the required 60 dB resolution.

SECTION NO.: 5.2 SENSOR CATEGORY: Altimeters
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM.

NADIR
VIEWING

RECEIVER
RF/IF AGC,
RNG. GATES

10 BIT A/D CONV.

UP-CONV
<X4)

TRANSMITTER

MODULATOR

UP-CONV
SAW-DDL
FREQ SYN

5 MHz

INTERFACE
AND
CONTROL

USE
TRANSPONDER!

5 MHz

2106.4 MHi
UPLINK; COMMAND,
TRACKING

2287.5 MHz
DOWNLINK; TLM, TRACKING

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The leading edge of the impulse response corresponds to the integral or the
specular point density. During processing the half power point measures
altitude,-and an estimate of wave height is obtained by measuring the rise
time of the leading edge. A/D conversion provides an average data rate output
of 8 kbps. The normal tape utilization will be to record data in a forward
direction and to playback in reverse. Data will be restored to the forward
direction on the ground. The downline telemetry carrier power is 1 watt with
a bandwidth of ±3 .MHz. During real-time transmission, a 1.024 MHz subcarrier
is bi-phase modulated at 25 kbps'.. The sub-cs.rrier then phase modulates the
carrier. In the.playback mode, the carrier is phase modulated at a rate of
690 kbps.
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(10). SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

TLM. COMMAND. TRACKING

I

GSFC
STDN

LOW RATE
TELEMETRY
RECEIVER

TELOPS
640 Kbps P/B

25 Kbps R/T
NASCOM

INFORMATION PROCESSING
DIVISION (IPO)

PROJECT OPERATIONS
CONTROL CENTER (POCC)

640 Kbpi

JPL

ALT
DATA

I
SATELLITE
PARAMETERS

EPHEMERIS
DATA

CORRECT MEAN
BACKSCATTER
COEFFICIENT
FOR PATH LOSS

TABLE OF WAVE
HEIGHT STATISTICS
CORRELATIVE AND
SEA TRUTH DATA

MAXIMUM
LIKELIHOOD
ESTIMATION
PROCESSOR ALTITUDE.

WAVE
HEIGHT,
LOCATION

(11) RECEIVING AND PROCESSING - NARRATIVE:

Low rate telemetry is received hy the Sate l l i te Tracking Data Networks (STDN)
at 640 kbps (IV B). The I PI) w i l l construct a Master Data I-'ile in time-order as
generated hy the satellite. A da i ly data package is sent to JPL. The PDPF at
JPL w i l l produce a s ingle processed data rcrord in geophysical units (ie., wave
height, alti tude, e t c . ) .

lixpected Performance:

Parameter Altitude

Range

Accuracy

761-858 km

68% wi th in ±10 cm

Significant
Wayojicjgjvt_

1-20 m

0.5 m or ±101

Backscatter

-S5 t CT < -20 dBm

il dB
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DATASHEET

SHEET OF

(12) DISTRIBUTION OF DATA FROM GROUMD STATIONS - BLOCK DIAGRAM:

FROM
GSFC

SURFACE
TRUTH AND
EXPERIMENTAL
DATA BASE

ALT EXPER-
IMENTAL
TEAM

SCIENCE
TELEMETRY.
ORBIT.
SEA TRUTH

1' 7-10 DAYS

NATIONAL
WEATHER
SERVICE

ENVIRONMENTAL
DATA
SERVICE

OPERATIONAL
USER
COMMUNITY

(13) DATA DISTRIBUTION - NARRATIVE:

JPL receives edited and time-^smoothed TLM data from GSFC. The 4 primary
functions of the Project Data Processing Facility (PDPF) are:

(a) produce an Experimental Data Record for each team,

(b) produce supplementary data for each experiment (i.e., sensor earth
located footprint, engineering data, etc.),

(c) produce a single processed data record in geophysical units for each
experiment, i.e., altitude, wave height, etc., and

(d) produce validated algorithms to independent raw data users (e.g., FNWC)
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Section 5.5

INTRODUCTION TO SCATTIiROMETERS

Active microwave sensors have been used ro measure range, reflection or

scattering coefficient and shape of the returned.pulse from various objects

or scenes. The ability with which a scene or object scatters incident micro-

wave energy can be assessed by measuring the radar-scattering cross sections

at various frequencies, polarizations and incident angles. A microwave scatter-

ometer is a special-purpose radar that is used to quantitatively measure the

target reflectance or scattering cross section. Long-pulse and continuous-wave

scattcromcters have been used to measure the scattering signatures of rough

surfaces such as terrain or the ocean. The quantity of interest is the radar-

backscatter coefficient, which is the backscatter power per unit area normalized

for antenna gain, range Joss-ami-,the transmitted power. .-; .. . .... . ,

Ocean waves may hc% defined as undulations of the surface with time scales in

the range from 10 ms to 25 see., corresponding to wave lengths in the range from

0.5 cm to 1000 m, respectively. These are subclassified as (1J'gravity waves,

with time scales in the range of O.I to 25 sec., length -vales from 2 cm to 500 m

and heights to 30 m, and (2) capillary waves, with time scales in the range from

-1 -i10 to 10 ~ sec., length scales from 0.5 to 2.0 cm, and heights of less than

1.0 cm. Ocean waves arc random, and a time ivcord of the ocean-surface displace-

ment in a storm region may contain wave periods in the entire range indicated.

Far from a storm center, waves become more organized as the longer waves propagate

more rapidly out of the region. Long waves occurring away from storm centers are

referred to as swells. Long waves approaching a coastline are influenced by the

drag of the bottom and become shallow-water waves. Wave energy is eventually

dissipated through breaking in an active near-shore area called the surf zone.
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Wave energy is also dissipated offshore through viscous effects and by breaking,

which is evidenced by the presence of whitecaps.

Capillary waves have been traditionally investigated by theoreticians and

experimentalists with academic interests. More recently, and with the onset of

microwave instruments as remote sensors, capillary waves have attracted more

attention from a more practical point of view. The roughness of the sea is

interrupted by the density and structure of capillary waves, which respond to

windspeed.

Capillary spectrum components are readily related to the radar wavelength

by the Bragg scattering condition that the radar return from adjacent crests of

the most important ocean components add in phase. This leads to the condition: .

A sin 6. = n A/2 (1)

where A = ocean wavelength (component of spectrum)

A = radar wavelength

6. = angle of incidence (from local vertical)

The first order perturbation theory shows results only for n = 1, although intui-

tively one might expect higher order "Bragg resonances" also to be important. At

an incident angle of 30° this means that the "Bragg wavelength" for the ocean is

the same as the probing radar wavelength. Consequently, the Bragg wavelengths at

that angle are, for the frequencies considered here, in the capillary region of

the ocean wave spectrum.

Measurements taken to date reveal the following information about the depen-

dence of the backscattering cross section from the ocean on windspeed:

(1) A range of radar wavelengths exists for which backscatter is
primarily dependent on surface windspeed and relatively
insensitive to large-scale roughness.

(2) Backscatter at or near the vertical (0° incident angle)
monotonically decreases with increasing windspeed.

^̂ ^̂ ^̂ afm̂ maâ m̂̂ mt̂ m̂ammmmmmmmaamatmat REV. DATE: 31 Jan 1978
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(3) Backscattcr from incident angle:-:'greater ."than 20°
(nominally) from the vertical, monotonically increase
with increasing windspecd.

(4) The upwind, downwind ;MU| crossuind'viewing directions
give different v.-ilue* for hackscatter cross sections
and are sensitive to windspccd.

A representation of these features of ocean'backscatter as a function of

windspeed and incident angle for 2-3 cm wavelength radar illumination is shown

in Figure 5.3-1. For windspeeds less than 1 m/sec, essentially no sensible

MIRROR SPECULAR GREATER THAN
3ACKSCATTER

MIRROR SPECULAR LESS THAN
BACKSCATTER

ANGLE OF
/INCIDENCE » 0°

HYPOTHETICAL ANGLE

i| CONSTANT

U BACKSCATTER
;•?•,:•.-'•,.•: .j,.—̂ .

2 4 8 10 20 40 80 100 200
WINDSPEED AT 20 M ABOVE

THE MEAN SEA LEVEL, M/SEC

FfGURF. 5.3-1 Ucpresentation of Approximate Magnitude
of Backscnttor Cro^s Section from the Ocean at

2- to 5-rm r;i(!;ir wavelengths

backscatter is seen at any angle of incidcncv: the strong radar return at 0° is

from specular mirror reflection (shown as dotted line). As the windspeed increases

toward 2 m/scc, patches of roughness begin to appear on the surface where turbulent

gusts of the surface exceed the threshold for wind-to-water coupling. The small

REV. NO.: 2 REV. DATE: 31 Jan 1978
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capillary waves generated by these gusts produce some backscatter at all angles

of incidence with very rapid rates of change of backscatter as compared to wind-

speed. The local slope of the curves at high windspeeds shows that extremely

accurate measurements of the backscatter must be made to sense a small range of

backscatter values: Alternatively, the local slopes at low windspeeds show that

less accurate measurements are required to sense small percentage changes.

Backscatter measurement sensitivities with respect to windspeed and direction

are shown in Figure 5.3-2. An interesting observation is that the upwind-downwind

i
Is:

-10

III

£° -IB

-20

WINDSPEED
13.9 M/SEC

•l

-90 0 90 180 270

RADAR AZIMUTH ANGLE RELATIVE TO UPWIND, DEC

FIGURE 5.3-2 Langley Research Center Values of o° Compared
to Wind Heading (Vertical Transmit/Vertical
Receive Polarization; Incident Angle of 40°)

? dependency was predicted and explained more than 20 years ago at NRL, assuming

specular points as the backscatter mechanism and wave tank measurements of the

probability distributions of surface facets as compared to windspeed. However,

the crosswind dependency was not predicted so that with perfect instrumentation

(that is, no error in the backscatter measurement but no knowledge of the viewing

direction) a radar cross-section data spread of many decibels will be obtained.

"..For example, in Figure 5.3-2, a 6-dB spread exists upwind to crosswind at a 13.9

in/sec windspeed, 40° incident angle, with an average backscatter coefficient over
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all wind heading angles of -10 uti, whereas, at <S.S m/sec windspeed, the average

is approximately -15.5 dB, with an upwind-to-crosswind spread of 4 dB.

This problem can only be solved either by knowing the viewing direction with

respect to wind directions or by viewing the surface from enough different direc-

tions so that the upuir.d, downwind, and crosswind curves can be obtained as input

data. [1]

Scattcrometer resolution at angles away from vertical is given by

Resolution ='Rp0 fî gj , . (2)

where R is the slant range, 00 is the beam width in the cross-track direction,

T is the pulse Jurat ion, and 8 -is the 5 dIJ beam width along track. The expression

in equation (2) is not appropriate at nadir, however, and may be determined by

pulse duration rather than beam width. The radius of surface illumination

corresponding to pulse duration at Vertical is given by

r - (crh)1/2 (3)

The SF.ASAT-A Scattaromcter (see data sheet) represents the current state-of-

the-art in measuring ocean backscatfir with a microwave radar. The SASS design,

deployment, and data h^p.Jling to intVr wind vectors \\i\i be discussed as an

example of current techniques.

In concept two radar measurements at dilTorent azimuths are sufficient to

determine the ocean surface wind vector; however, the near sinusoidal scattering

characteristic often yields multiple Kind vector solutions from these radar

measurements. These multiple solutions are approximately equal in speed but

different in direction, l-'requent ly, the quadrant of wind direction can be deter-

mined from conventional meteorological data and/or satellite obtained cloud mosaics,

thereby providing a means for selecting the correct solution.

S.,3-5,
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To infer wind vector from satellite radar measurements requires both forward

and aft looking antennas to obtain data of two azimuth angles for each resolution

cell. An optimum implementation uses antenna beams, each oriented 45° relative

to the sub-satellite track, to provide observations which are separated in azimuth

by 90° (Figure 5.3-3). The time between illumination of a given resolution cell by

the forward and aft beams depends on the cells position along the fan beam illumin-

ation. Thus, the scatterometer must be designed in order to make the forward and

aft beam cells cross at the same geographic site. Each resolution cell (50 km)

must have two footprints on it, (not required at the same time, however) giving

a° data at azimuth angles 90° apart.

The Doppler cells along the fan beam are adjacent so that the cross track

grid spacing (center-to-center) can be kept to 50 km and the along-track grid

spacing is set at 50 km by the scatterometer digital controller.

The resolution cell size is larger than the doppler cell size due to the

smearing of the cell caused by satellite motion during the measurement period.

The Doppler cell size is determined by the antenna beamwidth (1/2°) and Doppler

bandwidth of the filters.

Resolution cell size is also controlled by the orientation of the doppler

lines within the beam illumination which varies along the beam (Figure 5.3-3).

For the inner cells (low incidence angles) the Doppler line is oriented approx-

imately 45° to the central beam axis. For the outer cells (high incidence angles),

the orientation is about 13° with respect to the beam central axis. The Doppler

bandwidths are designed so that the 50 km x 50 km resolution cell size requirement

is satisfied over the primary measurement zone (~25° to ~55°). At angles beyond

55°, Doppler bandwidths are .held constant so the resolution cell size does increase

slightly beyond the 50 km limit.
5-3-6,
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In addition to the 12 Popplcr cells needed for wind determination, three

more will be used for o° measurements near nadir (0°, 4°, 8° incidence angle).

This completes the complement of.angles required to develop a data library of a°

as a function of incidence angle (0° to 65°) for the full range of ocean surface

conditions. From these data one can determine whether geophysical parameters

other than local winds affect the scattcromet^r measurements and as a result

establish rcore definitive design boundaries (by optimizing incidence angle,

polarization, wind speed measurement range, etc.) for future scatteromcters.

One of the more important quest ions concerning every remote sensor is whether

or not it is operating properly. Intensive in-flight house-keeping data are being

provided routinely by the sc.irtiromeU-r in addition to planned subsystem level and

system level performance validation ami diagnostic activities.

An array of three land-based receivers is planned to verify transmitter

performance as well as'the antenna giiin arid pattern shape, tnis technique was"7'' !'

used on the Skylab RADSCAT experiment and it offers the only means of evaluating

the transmitter and antenna on a subsystem basis, l-'or diagnostic .purposes, the

SEASAT-A scattcromctcr can be operated in a radiomctric mode (transmitter inhibited)

in order to isolate the receiver for performance verification. Two test conditions

arc possible in this mode: (1) antenna not deployed and looking into deep space

with a target brightness temperature- ~5°K and (2) antennas deployed and looking

at the ocean surface with a target !>i Lghtncss temperature -,125 - 175°K. A 5°K

target offers high sensitivity for verification of antenna arid receiver losses and

VSWR. Receiver losses and noise temperature stability can be monitored throughout

the mission, independent of the internal calibration source, by using the radio-

metric mode with the sea surface as a target. There are certain minimum require-

ments that must be met in order to certify the scatterometer as an operational

| REV. NO.: 2 | REV. DATE: 51 Jan l!' -8
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instrument after it is placed in orbit. During the one year period, aircraft

underflights are required so that direct comparisons can be made between a well

calibrated (±0.5 dB) aircraft scatterometer and the satellite scatterometer. .Direct

comparison of aircraft and satellite a° data will be used as an absolute calibra-

tion of the satellite scatterometer thus removing any fixed biases from the data.

Long term instrument stability characteristics will be determined from periodic

comparison of aircraft and satellite o*° values.

It has been demonstrated with extensive aircraft data that 0"° measured at

8° to 12° incidence angle is relatively insensitive to ocean surface roughness

and wind conditions. Consequently, long and short term stability information,

independent of aircraft underflights, will be gathered routinely using data

from-^the ;8° J'near-nadir" Doppler cell.

'The quality of the SEASAT-A scatterometer data can be further evaluated using

measurement results from other sensors on the satellite. Altimeter a° data,

for example, can be compared with the scatterometer nadir data to reveal bias

in either instrument and the time variation of these biases. Secondly, Scanning

Multifrequency Microwave Radiometer (SMMR) data may be useful for correlation

with scatterometer data during high wind speed measurements.

The software for inverting raw scatterometer data to a° and for converting

cre to wind vector must also be validated under all measurement conditions. Figure

5.3-4 is a flow diagram showing the steps necessary in this process. This

processing is conveniently separable into the conversion of raw data to scattering

coefficient and the conversion of 0° to geophysical units (wind vector), which

allows each to be designed and evaluated independently.

Prior to launch the scatterometer will be calibrated in terms of the ratio

of received power to transmitted power, PR/
P
T; thus, the first step is to convert

I REV. NO.: 2 | REV. DATE: 31 Jan 1978
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raw data to PR/PT using pro-Flight calibration information. Satellite parameters

such as attitude, ephemoris data and various instrument and physical constants

are used to determine cell locations on the earth, range, cell length, incidence

angle, and antenna look angle. This information along with pertinent housekeeping

data are used to determine antenna gain and .-ire inputs for calculating a° and RMS

error for use in the geophysical algorithm.

The first step in converting a 0° matrix to a wind vector map is to use both

the visible/infrared and microwave radiomctric data from other SEASAT-A sensors to

make a path loss correction to the values of oc. Conversion to wind vector will

be accomplished using algorithms that have bri/n developed using several theoretical

approaches with each algorithm hoing evaluated during the mission. These initial

values will contain aliases caused l>y the multi-valued relationship between o~° and

wind speed and direction. Several methods for rcmovcl of these aliases and the

generation of wind fields are being considered. [3] [6]

The future of microwave scattoromctcrs (through the 1980's) will probably be

dependent on the performance and data quality of the SUASAT-A SCAT. Although

radar techniques arc well established, laser scattcrometers are currently being

investigated as an alternative. The latter ti-rliriiquc relics hcavi ly on

an accurate geoid model (e.g.. ±10 cm) and state-of-the-art spacecraft attitude

control and measurement, which JTC exactly the expected achievements of the SEASAT-A

SCAT.

I REV. NO.: 2 REV. DATE. 31 J-;n
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808 KM

SPACECRAFT

//\ ^\\\

HIGH WIND SWATH

HIGH AND LOW WIND SWATH

TOP VIEW

FOOTPRINT NO. 1

SATELLITE SUBTRACK

HIGH WIND HIGH AND
SPEED ONLY WINDS

FIGURE S.S-3 Scatterometer Fan Beam Geometry
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DATA SHEET OF POOR QUALITY.

SHEET 1 OF

(1) SENSOR NAME. ACRONYM: Microwave Scatterometcr, SCAT

(2) DISCIPLINE: Earth and Ocean Phvsics (3) SUBOISCIPLINE; Ocean Dynamics

(4) APPLICATION AND OBJECTIVE:

The SEASAT-A Satellite Scatteromotcr (SASS) provides a periodic and spatially
distributed measurement of the radar backseatter coefficient (power return) for
the determination of wind speed and direction (i.e., wind vector) at the sea
surface. Wind vectors are a key parameter for improved weather forecasting, hazard
warnings, ocean pollution monitoring, and navigational routing and scheduling.

(5) HERITAGE/KEY PERSONNEL: The functional design of the SASS is the result of
4 major experimental efforts, these are: (a) AAFE RADSCAT, LaRC, (b) 15.3 GHZ SCAT,
JSC, (c) SEA. CLUTTER STUDY, NRL, (d) S-193, SKYLAB;
Exp. Team Leader - W. L. Grantham, LaRC 804-827-5651

(6) SENSOR DEPLOYMENT:

The SliASAT-A Satellite, bearing the SASS is to be launched to obtain a near circular
orbit of 108° inclination and mean altitude of 794 km. The orbital period is 104
minutes resulting in approximately l-l orbits per day. Seven orbits are required
for complete ocean coverage.

(7) SENSOR CHARACTERISTICS

<7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The SASS employs 4 dual polarised, fan beam, stick antennas. The primary measurements

. swath is 500. km.: wide? begjimhig 200 ;km olT -tho ..satellite : sub- track.."Sequential .antenna
addressing provides orthogonal footprint crossings to the right, left, fore, and aft.
These star-like patterns define 100 <» (.'.rid spacing and 50 m resolution Doppler cells
with incident angles of 25° to 55°. Sea State Information is supplied from 3 resolu-
tion cells at and near nadir from side lobes generated by each antenna pattern. Also,
a high winds swath (55°£l)j5650) though less accurate provides additional data and
increases tho effective coverage to over 1500 m. _____ •__

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

The measurement swath is illuminated with a 5 ins burst of microwave energy at a
repetition rate of 40 Hz. The transmitted power, 100 W peak at 14.6 GHz is applied
sequentially with appropriate polarization to 4 stick antennas. The illumination
pattern is 25° x 0.5° directed -12° off nadir and aligned 45° across the satellite
sub-track. Side lobes from the four stick arrays provide sea state information near
nadir.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

.Received RF energy from the- proper antenna is directed to a preamplifier, band pass
filter, and first conversion mixer. The resulting IF signal is fed to the SASS
processor consisting of 15 band-pass Hoppler filters, square-law detectors, DC
amplifiers and signal integrators. Antenna gain is 32 dB with an efficiency of 48%.
Receiver band is 14.6 GHz ± 250 MHz. In-band noise is less than -155 dBm in any
2.5 kHz band within 14.6 GHz ± 1 MHz.

SECTION'NO.: 5.3 SENSOR CATEGORY: Scatteromctcrs
Preceding page blank
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

SCATTEROMETER (SASS)

LOW RATE
DATA SYSTEM

USB
TRANSPONDER

DUAL
4 x 108 BIT
RECORDERS

DOWNLINK
22875 MHz

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

S-Band Transmitter for Regular Telemetry and Tracking:

a - Carrier 1 watt, 2287.5 MHz
1 b - B. W. = +3 MHz about the carrier

\ Telemetry;
^ a - 25 kbps real-time data stream bi-phase modulating a 1.024 MHz
: subcarrier which in turn phase-modulates the carrier (PCM/PSK/PM)

b - 690 Kbps tape recorder playback phase modulates the carrier

SECTION NO.: 5.3 SENSOR CATEGORY: Scatterometers
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

TLM

MO
_.„ TCI rMit

LOW RATE
TELEMETRY
RECEIVER

)N

26 Khps

NASf.GM
WIDtbAND
LINES

( M

IPO

PROJECT
OPERATIONS
CON 1 ROL
CENTER/GSFC

ro JPL v IA

QS,

SURFACE

PAGE R
QUALITY

r

CORRECT MEAN
BACKSCAJTER
COEFFICIENT
FOR PATH LOSS

MATCH CELLS
FROM FORE AND
AF T ANTENNA

CONSTANTS
PATH LOSS MODEL
SEA TRUTH AND
eXP. DATA

CONVERT TO WIND VECTOR

I

B

,••:"..".*"'•'';

. *

DETEf
WIND
SPEED

_ '

' • "'.-,' '"'» * ' ." . ' - , ' ' ' ' - . ' ' . - '"• • •• '

•
4MINE DETERMINE

WIND
DIRECTION

1

'•''?

./
\

VWIND
VECTOR

(11) RECEIVING AND PROCESSING - NARRATIVE

The STDN sites receive Low-Rate playback TLM data at 640 at 800 kbps during
contact periods. Received'TLM data i.-; retransmitted to il'l) at. <;SFC via TELOPS.
IPI) will preproccss the TI.M d.ita to proilucc t i me-smoothed and quality-checked
telemetry, A master data file is constructed on a daily basis and sent to JPL
via surface delivery.
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(12) DISTRIBUTION OF .DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

LOW RATE
TLM FROM
POCC
(GSFC) ^
3-10 ^
DAYS
SURFACE
DELIVERY

SURFACE
TRUTH DATA
BASE

PROJECT DATA
PROCESSING
FACILITY (JPL)

LIBRARY

SCIEWCE.TLM,
ORBIT, AND
SEA TRUTH
DATA

ACCUMULATED
MISSION DATA
BASE FILES

25 HRS. SCAT
EXPERIMENTAL
TEAM

7 DAYS

7-10
HOURS

1
NOAA

NATIONAL
WEATHER

^SERVICE

OPERATSONAL
USER
COMMUNITY

I
7-10
DAYS

ENVIRONMENTAL
DATA
SERVICE

OPERATIONAL
USER
COMMUNITY

(13) DATA DISTRIBUTION - NARRATIVE:

JPL receives edited, time-smoothed TLM data from GSFC. The four primary functions
performed by JPL are:

a - produce an Experiment Data Record for each team,
b - produce supplementry data for each experiment (i.e., sensor

earth located footprint, engineering data),
c - produce a single processed data record in geophysical units, for

each experiment, i.e., wind speed/direction, surface temperature,
etc., and

d - produce validated algorithms to independent raw data users
(e.g., FNWC).
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Section 5.4

fNTRODUCTION TO LASER RADARS

CLIDAR)

Until recently, optical remote sensing has been restricted only to passive

techniques in which either radiation emitted or attenuated by the target has

been measured in order to provide signature information. However, recent progress

in the development of ;nore rugged and stable lasers, suggest the use of laser

radar as tools to actively probe the environment.

The laser radar or 1.1DAR is similar to a microwave radar, but operates at

optical wavelengths ̂ oncrated by a pulsed laser. The LIDAR has several unique

features which mnke it use ail and [.Tactical ns a remote sensing instrument.

Among these are the abi lit;v; to operate Independently of external signal sources,

to operate at night covertly, to operate in.spectrally narrow wavelength bands,

to eiiminate shndbWiTiR;and"-t6:' itl^iow one; to mofelatê dr?̂

laser light can be emitted in very short pulse of high energy and thereby good

spatial resolution is obtained. The high pulse energy permits coverage of long

distances, and the hi^h enei^y density of the laser beam offers the possibility

of realizing the Raman-lidar. The laser light is monochromatic which makes it

possible to eliminate background light by narrow band filters in the receiver.

It can be well collimatcd .which gives angulnr resolution and reduction of

background light by use of narrow receiver lobe. The low divergence of the

laser beam permits the tracking or" comparatively small objects.

Various remote sensing techniques are currently used, proposed and/or

under study, depending on the specific applications, the nature of the optical

effect or process utilized, the spectral range, the type of laser as a

radiation source and the relative positions of the radiation source and the

detector. Laser radars as applied to the hydrosphere, can be used to provide

'I REV. NO.: 3 | REV. PATE: 51 July 1978
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shallow-water bathymetric measurements, to detect and identify oil slicks, to

detect algae, to measure and track subsurface currents and to measure water

turbidity. As applied to the atmosphere, the laser radar can be used to study

the composition, structure and dynamics of the atmosphere. The optical effects

that may be utilized include emission, absorption, Raman scattering, fluorescence,

arid elastic scattering of the Rayleigh and Mie types depending on the wavelength

of the incident radiation and the nature of the target. The spectral range

extends from the near ultraviolet to the infrared. The lasers can be either

fixed frequency or tunable frequency, and they can operate either in the

C-W output mode or in the pulsed output mode. The fixed frequency lasers include

the chemical lasers, gas lasers and the solid state lasers. Tunable frequency lasers

include the organic dye lasers, parametric oscillators, semiconductor diode and

spin-flip Raman lasers, harmonic generation and frequency mixing, bulk

semiconductor laser (optically pumped), and high-pressure gas lasers (electron

beam pumped). The position of the radiation source relative to the detector

classifies the system as single-ended active or doubled-ended active. In

the single-ended active system, the radiation source and the detector are located

together and backscattered radiation is measured. In the double-ended active

system, the radiation source and the detectors are on opposite sides of the

target and the attenuation of the laser beam by the target is measured.

PRINCIPLE OF OPERATION

Optical remote sensing using lasers is based on the principle that photons

interact with atoms, molecules and particles to produce various types of optical

effects depending on the wavelength of the incident radiation and the nature of

the target. A laser beam is emitted from a transmitter, scattered back by

REV. NO.: 3 REV. DATE: 31 July iy/e
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certain media and measured in a receiver. From the signal received, one is able

to make a statement on the backscattered medium (target).

Basically, a LIDAR system consists of a pulsed laser transmitter, a tele-

scope receiver, detector(s) and data system to record the backscattered light

as a function of distance or range. Examples of various applications will be

discussed here.

Laser altimeters and other ranging devices can operate on the phasing prin-

ciple or upon pulse time of travel. Both have their equivalent. The phasing

principle is illustrated by Figure 5.4-1 where the output of a solid state or gas
»

CW laser is amplitude modulated at some frequency f . Absorption type modulators

are common in gas lasers due to the difficulty of direct (current) modulation.

With solid state (injection) lasers, common practice is to simply modulate the

current through the laser diode. The output of the laser is propagated at the

velocity of light in the medium and a wave of length"X characteristic:of f-;is

generated in space. The laser's energy is reflected off a target located at

"A". A corner cube reflector is normally used as a target because of its capa-

bility to reflect a beam of light back to its origin. The returned beam, detected

in the receiving optics, produces an electrical signal S-. The output of the

laser is sampled and produces signal S_. The differences between S^ and S- are

in amplitude (which is compensated for) and in phase which is proportional to the

distance (D) between the laser and the reflector, if D changes by an amount smaller

than X, the change can be read directly on the phase meter. However, if D is

longer than X, an ambiguity exists which can be resolved by determining the phase

between two other S., S. signals at some other frequency f^. Normally, phase

measurements at four different frequencies are used in -.calculating "D" This

technique is often called tone ranging.

I REV. NO.; 3 | BEV. DATE: 31 July 1978
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RECEIViNG
OPTICS

REFLECTOR

A «*

OUTPUT
SAMPLING OPTICS

[ LASER

i i

MODULATOR

' S

AMPLITUDE
ADJUST

PHASE
METER

FIGURE 5.4-1 Laser Ranger (Laser)
\

A second ranging technique is illustrated by Figure 5.4-2 where a short pulse

is emitted from a ruby or similar laser. The output is again sampled and this

trigger starts a counter totalizing the pulses produced by an oscillator. The

laser output reflects off the target at "A" and is detected in the receiving otpics

where it stops the counter, thereby completing one determination of "D". The

frequency of the oscillator driving the counter can be selected so that the number

of pulses counted during the time of flight of the laser output pulse (to the target

and back) numerically corresponds to the distance D in centimeters or other units.
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FIGURE 5.4-2 Laser Ranger (Time of Flight)

Owing to the shortness of the wavelength, pulses produced by lasers can be

physically very short, which leads to good resolution of target position. Rangers

•of either; type- can be madeiiaê rate to withm^ .

kilometers. For these reasons, laser rangers have been used for determining the

distance from the earth's surface to extraterrestial bodies like the moon and other

satellites. In these experiments, the laser is mounted on the earth and the

cornercube reflector is mounted on the satellite. Laser rangers have also been

selected for use in earthquake detection schemes where they would be used in

connection with a satellite to measure the motion of the plates making up the

Earth's crust.

Another form LIDAR can take is essentially a scatterometer as shown in Figure

5.4-3. Here, energy emitted by the laser reacts with the medium through which it

passes. The radiation thus produced is monitored at the laser site for such things

as polarization rotation, backscattered radiation intensity and wavelength. Depend-

ing upon the nature of the interaction of the laser output radiation with the

I REV. NO.: 3 | REV. DATE: 51 July 1978
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medium and/or the target, the radiation received might not be the same wavelength

as that emitted by the laser. There are basically two interaction phenomena

of interest, florescence and Raman scattering.

RAMAN

BEAM

BACKSCATTERED .. ^
LIGHT ^

'
1

TRANSMITTED^^
LIGHT

FILTER 2 ̂  PMT D|OD

SPLITTER . \ ,-? -

TEM.TTING '««""».
E^rT j, BALAMCE
^T-J * TEST PULSE
'FIBER OPTIO

PMT fc> RAMAM

1 SIGNAL 1
? FILTER 1

"ELESCOPF = FILTE

PMT
3

L

V LASER HEAD • — *

BA^/I Cif*ftJ • BJtF

"SIGNAL ,
>| 1— ==**> OUTPUT PULSE
u — -J SIGNAL

PHOTODIODE

FIGURE 5.4-3 Optical Design Schematic

Florescence occurs when the laser light reacts with the surface in

such a way that radiation is re-emitted at a wavelength significantly

different from that of the laser. This characteristic is being employed and

practical," experimental sensors have been built to detect the florescence of oil on

;kwater. This florescence has an output signature characteristic of the type of oil

[and the implication is that it will be possible to develop oil spill detectors
I
capable of classifying the type oil involved. As an example, in one such experiment

a N laser emitting at 3370 Angstroms excited twenty-nine different grades of oil

into florescence at wavelengths ranging from 4000 to 6000 Angstroms. An example

of this kind of system is shown in Figure 5.4-4 [3]. In the configuration shown,

the support systems required for operation, the power requirement, size and

complexity make it difficult to imagine this evolving into spacecraft borne system.

| REV, NO.; 3 | REV. DATE: 31 July 1973
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A variation of the system described above is the Raman LIDAR. These have

been developed [1] to monitor air temperature and the turbidity of water. The

application to air temperature measurement can be conducted along a horizontal

path (unlike a VTPR) but it lacks advantages which would obviate the VTPR.

Temperature accuracy and vertical height range of measurements made by LIDAR

are inferior to vertical temperature profiling radiometers but the spatial resolu-

tion claimed for the Raman LIDAR is superior.
TELESCOPE

UV BLOCKING FILTER

IMAGE S4.ICER

POWER
SUPPLY

IMAGE
DISSECTOR

BEAM FORMING OPTICS SPECTROMETER

GRATING _ WAVEFORM

UV LASER CHANNEL
OSCILLOSCOPE

LASER BEAM
DIRECTOR

FLUORESCENT
RETURN SIGNAL

• AIRFRAME

LASER BEAM

RECEIVER FIELD OF VIEW

LASER ILLUMINATED AREA

FIGURE 5.4-4 Schematic of Experimental Airborne
Laser Remote Sensing System

OIL SPILL
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The LI^AR system for atmospheric monitoring, shown in Figure 5,4-5 uses a

doubled [5] ̂ narrowband frequency tuned laser pumped by a doubled Nd:YAG laser.

The laser emits a monochromatic, high power and highly collimated beam of low '•

divergence. . The beam goes to the folding optics where it is reflected to the

transmitter optics for further collimation. A portion of the laser beam goes

through the folding optics to the laser power monitor.

The pulsed high power laser beam, after being spatially filtered, is focused

onto a narrow column of the atmosphere by the transmitter optics. Molecules and

aerosols absprb and/or scatter this radiation (i.e. the emitted laser pulses

undergo Mie scattering, Rayleigh scattering, Raman scattering and resonance Raman

and/of resonance fluorescence). A portion of the light is scattered back from

the atmosphere and is collected by a receiving telescope which is coaxial or

adjacent to the transmitter.

The collected backscattered light is focused at a field of view-limiting

aperture, then passed through a narrow band filter (to reject unwanted stray

light of different wavelengths) and then through a narrowband interference filter

to a fast response radiation detector(s).

The detector(s) transform the received photons into photoelectrons. The

output signal (photoelectrons) is processed in an analog fashion or by the

pulse counting technique depending on the level strength of the returned signals.

The strong signals are processed in the analog fashion in which the photoelectrons

are amplified, filtered, fed into a two sample hold and then into a highly stable

analog-to-digital converter (ADC). The digitalized output of the ADC is trans-

ferred into a 16-bit register. The weak returns can be processed using pulse

counting techniques in which the photoelectron are amplified, discriminated,

pulse shaped and fed into two 8 bit counters and then into a 16-bit register.

j REV. NO.: 5 j REV. DATE' 51 July

5.4-8



RSDH

*m*3>?
0 jw
£ f c ££ «• 2
§°3

i r

^
a ee o
iu ui OC
<• * •- fc

i*§

•«. £
1 !g
ui O -1 ZK- IU 5

S 5*

*A ' ,;

• i^--- ' -^-- '? "-'••-. • • • • • • . - • • • • - : ' } ,
. , , . , . ,
>-s|s
?§*2
Mil• ci3i

i

T§sio ^ C !"•

: 2*5-U. < u|
ice

(

4
cc .
Ul

- o

• H

I ̂

/

X
oe ^
gS
•v yj

rf O

i«So
«• i •' t_.i j.

tc. S
U4 «|

li
«

.

v: v «.-..->•>• - ^ • — : '-

L s« -
« E< -> 3 s

7

t.

_i <e 3
*«<

^_ ., ~ ul *•

2 -• z« z <

CKTGINAE PAC»E t '
*-vw crvilR. QTJ AiiljC
V*' i>-^>*v m

tft-
i r i' «5

0- ,,.;t°,..̂
Ul

iujf z^£

28* — > I?*
855 ig! 1
2: < i°5 S5c is ^

Jk t i -
. ' , - ' - . . - • ' • • • • ' ' , • • ' • ' ' - . - . • • ' •

•:•:-..-.,,.. A,---. V r - . , ~ •.••^•^,>. •-.-,,

ee *•£o

52
1 ^ »,

*3§
|«S
r o S
- 8 3

| REV. NO.: 3 RE

ti<a
*«̂i

' k

X

g
w
t-

Q

f

1,

.,

z-
§33ls<

Ul

: -fi
.̂

c»g
U. il -J

s*<
Ul

-v.'v^-.^iv

1

£.
_ u«

O w S ••S S S d
2 < i iT

kl^
•<k

t
I
UJ
X

"•'S
1
i

-
j 

R
E

C
E

IV
E

R
~
"^

| 
O

P
T

IC
S

L
A

S
E

R
R

E
T

U
R

N
^

""•
EC

HO

V. DATE:

cu
^j
10

W

cd

cd
CA

<U
W
cd
Nj

cd
M-l
o

cd
• • • ' • - " , ••'•! .-. .• • ' bfl '.
.--J" " . • .- i •.! •- . .' E. ••; -'.CO ".'•

•H
Q

o
o

I— t
09

- ' r— 1
M
c
o
•rt
+->

C

u.

1

tn

0-)

3

t— i
U.

31 July 1978

5 4-9



RSDH

A range bin clock activated by a laser-has-fired pulse transferred the contents of

the 16-bit register, into a shift-register storage buffer at intervals corresponding

to 250 m of lidar; range. After sufficient time has elasped for acquisition of all

return-signal data, the shift register will be clocked into the experiment computer

through a RAU or through a High Rate Multiplexer. The scientific data from the
•, I

LIDAR is based on the time when the pulse returns (i.e., time delay between trans-

mitted and received pulses), the amplitude of the return pulse and the pulse width.

The signal obtained from the LIDAR system is a time history of the inter-

action of the transmitted light pulse as it propagates through the atmosphere. By

knowing the speed of light in the atmosphere, the time history of the backscattered

radiation can be converted to distance, and thus the LIDAR can be used to measure

the spatial distribution of the scattering media in the atmosphere. The light,

backseattered by the Atmosphere will have spectral characteristics representative

of the gas from which it is scattered. The characteristics of these spectra, line

center, width and intensity lead directly to the determination of motion, tempera-

ture and abundance of the scattering species. By analyzing the spectra.as a

function of the transit time (i.e. time delay between transmitted and received

pulses) various altitude regions will be explored.

I REV. NO.: 3 I REV. DATE: 31 July 1978
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DATA SHEET
SHEET 1 OF

(1) SENSOR NAME. ACRONYM: LIDAR (APE-01)

(2) DISCIPLINE: Atmospheric Sciences (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:
[he laser radar is designed to determine atmospheric winds, temperature profiles and
:onstituent abundanc'es by measuring the Doppler shift, width and intensity of the back-
scattered LIDAR returns. These measurements are important to provide information con-
:erning the dynamics, structure and composition of the atmosphere. It will be also used
:o determine cloud top altitudes, cirrus cloud reflectivities and thickness, and
vertical profiles of atmospheric aerosols using backscatter LIDAR returns.

(5) HERITAGE/KEY PERSONNEL: At present only simple versions of this sensor exist, which
are the outgrowth of military airborne laser designator technology coupled to laboratory
demonstrated dye laser tuning technology. Exp. Team Leaders: M. Chanin, CNRS, France

Fiocco Laborotorio Plasma Spazio, Italy, G. Swenson, NASA, MSFC, R.D. Hake, SRI

(6) SENSOR DEPLOYMENT:

Tie laser radar.is tentatively scheduled to be launched in 1981 as part of the Spacelab,
into a circular orbit, at altitude 250-275 km and inclination between 38-57 degrees,
t will be hard mounted to the pallet with its optical axis parallel to the orbiter
Z-axis.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
Fhe laser radar includes fixed, multiwavelength and tunable emitters operable at UV,
VIS and IR wavelengths, 1 mrad FOV, high resolution dispersive elements, 1 m diameter
receiver, narrow band filters, .photomultiplier tubes and photodiode detectors, signal
>rbcessirig and electronics. It can operate day or night and preferably no moon at night
["he sensor will be oriented either at the nadir or 45° to the nadir. A total of 18
tours of operation will be allowed due to power constraints.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

The laser radar transmits a short burst (< 2ys pulse width) of collimated, mono-
chromatic energy (U) at a 1 to 10 Hz repetition rate. The spectral width is <.
Power efficency is 0.1 to 1%, and beam divergence is 1 x 10"4 radians.

01 nm.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: The detectors will measure the intensity
of the backscattered lidar signals. They can be either photomultiplier tube (PfcTT) or
photodiode depending on the wavelength of the incoming signal. The PNfT is used when
the incoming photon is in the UV or visible, with 20% quantum efficiency (QE) at 530
nm, 2% QE at 1060 nm, sensitivity 5 counts/sec and dynamic range from less than 1 photon
per second to 103 photon per sec. When the incoming light is in the IR, the photodiode
is used, with sensitivity >10 uw/cm , dynamic range from less than 1 yw/on to greater
than 1 kw/cm2. Possible IR detectors are the InS (1000-3000 nm) InSb (2000-2500 nm),
Hg Cd. Te (7000-14000 nm), Pb Sn1 Te (2000-12000 nm). Data generated is digital

X 1 "X X 1 *"X
and is approximately 5.4 Kbps. . . . _ .

— Preceding page blank —
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DATA SHEET

SHEET 2 OF

(8) SENSOR DATA MENSURAL AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

ORBITER | SPACELAB LIDAR

REGISTER S-Hem

(9) MENSURAL AND TRANSMISSION SYSTEM - NARRATIVE:

"The detector output can Be either an analog signal or calibrated pulses depending
whether the photon counting method is used or the parameter to be measured is the
peak power.

the calibrated pulses are fed into two 8-bit, counters and then its contents are
transferred into the 16-bit register. The signal is then routed via a buffer to
the High Rate Multiplexer. The analog signal is fed into a two sample hold and
then to 8 bits analog-to-digital converter. The digital output is transferred to
a 16 bit register and then to the High Rate Multiplexer via a buffer. The science
data, corollary data, voice and timing, form a composite data stream which is
transferred to the Ku Band signal processor for downlink.

SECTION NO.: 5.4 SENSOR CATEGORY: Laser Radar
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DATA SHEET

SHEET

(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

TORS OOMSAT

(11) RECEIVING AND PROCESSING-NARRATIVE: The Spacelab and orbiter flight data is
transmitted to the TDRSS ground station via TORS on the KU Band. The data stream is
demultiplexed inside the TDRSS ground station and outputed as follows: The high rate
multiplexer wideband data stream and the video/analog 4.2 MHz data are routed to the
Payload Operations Control Center (POCC) at JSC and to the Data Processing Facility
(SDPF) at GSFC via the Domsat. Alternately, the low rate data is routed via land lines
to JSC and GSFC. The POCC performs the time critical payload data processing. POCC
-operations include monitoring, recording and demultiplexing the payload data.

The SDPF (See Figure 1 on next page) supports the non-time-critical data from the
Spacelab payloads. SDPF operations include quality checking, editing, chronologically
ordering and formatting of the experiment and ancillary data. It performs conversions
and transformations of the ephemeris/attitudes data. SDPF contains two major systems:
Spacelab Input Processing System (SIPS) and a Spacelab Output Processing System (SOPS)

(continued on next sheet)

SECTION NO.: 5.4 SENSOR CATEGORY: Laser Radar
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SHEET 4 OF S

CONTINUATION SHEET:

(11) continued

The SIPS performs- the preprocessing functions required in SDPF, SIPS operations
include data capturing, data quality monitoring, accounting demultiplexing.and
analog/video/voice product generation. Output products are generated by SIPS
for shipment and further processing at other facilities. Their output products
include: Unedited digital tapes and analog/video/voice tapes. The SOPS performs
editing, time validation, formatting and digital product generation. Edited
digital tapes are generated by SOP's for shipment to the principal investigators.

POOR

VACEIA8INTUT
PROCESSING lYITtM HITS)

FIGURE 1 SPACELAB DATA PROCESSING'FACILITY (SDPF)

SECTION NO.: 5.4 SENSOR CATEGORY: Laser Radar
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DATASHEET

SHEET 5 OF

(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

- SPACELAB CAMERA PHOTO-
GRAPHS (CLOUD OISTRN & HT)

-AIRCRAFT DATA

-OTHER SATELLITE DATA

L GROUND STATION DATA

/SPACELAB\
(EPHEMERISr

TAPES

-ALTITUDE

-ATTITUDE

-TIME

-GEOGRAPHIC
LOCATION

CLOUD PROPERTIES
(CLOUD HEIGHTS. REFLECTIVITIES
OPTICAL DEPTHS)

• AEROSOL SCATTERING
FUNCTION

HEIGHT. TIME
GEOGRAPHIC LOCATION

- WEATHER CONDITIONS

CALCULATED UNCERTAINTIES
IN THE INDIVIDUAL MEASUREMENT

.
j

k—I

_J

- TEMPERATURE

(13) DATA DISTRIBUTION - NARRATIVE:

The output tapes are shipped to the Principal Investigators (PI) . The PI will
process the LIDAR data tapes to reduce scientific and engineering data to usable
form and will then analyze the data and document the results in a form LIDAR
experiment report.

The data processing and analysis program is approximately six months long.
Preliminary results will be reported by LIDAR team within 90 days of the
mission with final results to be published within 6 months after comparison
with ground truth.
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SHEET 1 OF 5

User Altimeter/Prof ilometer .Experiment
Spaceborne -lAser Rangjng Svsfem

(OP-06-S)

(2) DISCIPLINE: Earth § Ocean Physics (3) SUBDISCIPLINE: Ocean Processes/Geodynamics

(4) APPLICATION AND OBJECTIVE: The laser radar'is used to determine range, height or
depth using backscatter LIDAR returns. These measurements are essential to provide
for active sensing of directional sea state, ocean and coastal bottom topography,
subsurface ocean temperature profiling, fish school detection and track, marine plankton
productivity, oil and hazardous materials detection, ocean currents mapping, solid
earth dynamics and earthquake events.

(5) HERITAGE/KEY PERSONNEL:
At the present there is no forerunner sensor. However there are various types of laser
systems available for the precision measurement of distance. Team Leaders: Frank L.
Hoge, J."T. McGoogan, NASA, WFC; M. W. Fitzmaurice, NASA, GSFC

(6) SENSOR DEPLOYMENT:
The laser radar is planned on a seven day mission in 1981, 1982, 1983 aboard the
spacelab pallet. The sensor will be mounted on a pointing mount or fixed on the
pallet with a gimbal mirror pointing system. It will be at an altitude of 200 Km
and 50 degrees inclination.

(7) SENSOR CHARACTERISTICS

PAVCAPABILITIES AND CONSTRAINTSi OF THE SENSOR TO ACQUIRE'THE MEASURED PARAMETER:
The laser radar .includes fixed, multiwavelength and tunable emitters operable at UV,
Vis and IR wavelengths, 1 mrad FOV, nigh resolution dispersive elements,.1 m. diameter
receiver, narrowband filters/, photomultiplier - tubes' and; phbtodiode;v,dejt;ectprs, signal
processing and electronics. The sensor requires an altitude reference system, 3-axis
Gyro Star Tracker, Global Mirror Pointing System (or Pointing Mount and a high-speed
electronic package). The sensor will be used during ocean surface darkness and will be
oriented earthward, on ocean surfaces and towards nadir (San Andres fault in Southern
California). It requires roll and pitch stabilization.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

The laser radar transmits a short intense, highly directional, monochromatic and well
collimated flash of light operating at energies of 1 J, with 1 to 10 Hz. repetiion
rate, less than2ys pulse width, spectral width from 10 pm to 1 pm, efficiency from
0.1 to 1% and 10""rad beam divergence.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: The detectors will measure the intensity
of backscattered LIDAR signals. They can be either photomultiplier tube (PMT) or
photodiode depending on the wavelength of the incoming signal. The PNTT is used when
the incoming photon is in the UV or visible, with 20% quantum efficiency (QE) at 530
nm, 2% QE at 1060 nm, sensitivity 5 counts/sec and dynamic range from less than 1
photon per second to 103 photon per sec. When.the incoming light is in the IR, the _
photodiode is used, with sensitivity >10 uw/cm , dynamic range from less than 1 uw/cm
to greater than 1 kw/cm . Possible IR detectors are the InS (1000-3000 nm) InSb
(2000-25000 nm), Hgx Cdj Te (7000-14000 nm), Pbx Sn^ Te C2000-12000 nm) Data gener-
ated is digital and is approximately 54.4 Kbps. ~ ._ .

—• Preceding page blank —
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(8) SENSOR DATA MENSURAL AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

ORBITER | SPACELAB UDAR

. O m ,JB j., 2 m >
g| SS! g
s£ ?« »

PCM

<

MCC
DATA

,

IWK

64KBPS

SOMBPS r

2MBW |

COMPOSITE
. DATA

STREAM

•

INPUT/0

TIMING

i •

MENT
IOTPUT
IT

COROLLA;
(STATE VE

r .

VOICE
ANNOTATION

SCIEW

1 EXPERIMENT
| RAO'S

IY DATA
CTOR ETC.)

HIGH
RATE
DATA

RECORDER

:EDATA 1 Ss
3

REGISTER =:

(9) MENSURAL AND TRANSMISSION SYSTEM - NARRATIVE:

The detector ^output can be either an analog signal or calibrated pulses depending
whether the .photon counting method is used or the parameter to be measured is the
peak power.

The calibrated pulses -are fed into two 8-bit counters and then its contents are
transferred into the 16-bit register. The signal is then routed via a buffer to
the High Rate Multiplexer. The analog signal is fed into a two sample hold and
then to 8 bits analog-to-digital converter. The digital output is transferred to
a 16 bit register and then to the High Rate Multiplexer via a buffer. The science
data, corollary data, voice arid timing, form a composite data stream which is
transferred to the Ku Band signal processor for downlink.
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SHEET

(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

TORS COMSAT

1 ---- , _J
LANDLINES

(11) RECEIVING AND PROCESSING-NARRATIVE: The Spacelab and orbiter flight data is
transmitted to the TDRSS ground station via TORS on the Ku Band. The data stream is
demultiplexed inside the TDRSS ground station and outputed as follows: The high rate
multiplexer wideband data stream and the video/analog 4.2 MHz data are routed to the
Payload Operations Control Center (POCC) at JSC and to the Data Processing Faculity
(SDPF) at GSFC via the Domsat. Alternately, the low rate data is routed via landlines
to JSC and GSFC. The POCC performs the time critical payload data processing. POCC
operations include monitoring, recording and demultiplexing the payload data.

The SDPF (See Figure 1 on next page) supports the non-time critical data from the
Spacelab payloads. SDPF operations include quality checking, editing, chronologically
ordering and formatting of the experiment and ancillary data. It performs conversions
and transformations of the ephemeris/attitudes data. SDPF contains two major systems:
Spacelab Input Processing System (SIPS) and a Spacelab Output Processing System (SOPS),

(continued on next page)
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CONTINUATION SHEET:

(11) continued

The SIPS performs-the preprocessing functions required in SDPF. SIPS operations
include data capturing, data quality monitoring, accounting demultiplexing and
analog/video/Voice product generation. Output products are generated by SIPS
for shipment and further processing at other facilities. Their output products
include: Unedited digital tapes and analog/video/voice tapes. The SOPS performs
editing, time validation, formatting and digital product generation. Edited
digital tapes»are generated by SOP's for shipment to the principal investigators.

IS
OF, POO*

VACELAB INPUT
mdcEoiNG (vrrEM wrti

I

FIGURE 1 SPACELAB DATA PROCESSING FACILITY (SDPF)
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

SPACELAB
EPHEMERIS

TAPES

-ALTITUDE

-ATTITUDE

-TIME

LtDAR
QINEER

ING UNITS
TAPES

- SPACELAB CAMERA PHOTOGRAPHS

-AIRCRAFT DATA

-OTHER SATELLITE DATA

- GROUND STATION DATA

INTENSITY VERSUS TIME & RANGE

DEPTH

RANGE

HEIGHT. TIME
GEOGRAPHIC LOCATION

. WEATHER CONDITIONS

CALCULATED UNCERTAINTIES
IN THE INDIVIDUAL MEASUREMENT

i—i

-INSTftEXP
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FORM OF VOLTAGES
ft CURRENTS

SIGNAL IN
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1-PRESSURE

(13) DATA DISTRIBUTION - NARRATIVE:

The output tapes are shipped to the Principal Investigators (PI). The PI will
process the LIDAR data tapes to reduce scientific and engineering data to usable
form and will then analyze the data and document the results in a form LIDAR
experiment report.

The data processing and analysis program is approximately six months long.
Preliminary results will be reported by LIDAR team within 90 days of the
mission with final results to be published within 6 months after comparison
with ground truth.
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Section 5.5

INTRODUCTION TO MULTlSlHiCTRAI. ANU MAPPING CAMERAS

The uniqueness of the perspective offered by :icrin] photography has made it

useful for planning purposes for a very long time. The first aerial cameras were

borne aloft by balloons before the invention of the airplane and the progress of

aerial reconnaissance and that of aerial platforms have been in parallel since the

first of this century. Techniques for interpreting and correcting aerial imagery,

the equipment and personalities involved in the acquisition and utilization- of

it have all developed around film and the camera. The roots of remote sensing are

found in the photographic technology. Photographic imagery and at least some

visual interpretation techniques arc presently useful and will probably.continue to

be useful in remote sens"ing. for 'some time;. Photographic emul'sion',deposited '•;

uniformlyupon a stable backing material is in no uncertain sense a, valid remote

sensor. Film alone has the capability to directly correlate the geometry of a

subject with its radiance. This capability makes film a reasonably dense storage

medium which, together with the variety and complexity of surface-based film imagery

analysis equipment now in use, are the reasons for considering cameras in this

handbook.

The intention of this section is to identify in capsule form the major

aspects of a photographic remote sensing system so thai rho user of the

handbook could broadly determine the tools likely to be available to him in any

given application, the limits of the capabilities of these tools and the litera-

ture that will lead to more detailed information. Discussions of the fundamentals

of optics and photo-chemistry are available elsewhere and will not be dealt with.

Techniques vary widely from one application to another and the degree of success

I REV. NO.: 2 | REV. DATE: 31 Jan 1978
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reported in the literature ranges over a broad scale. Therefore, recommendations

of methods are not made.

Cameras used on spacecraft are for the most part variations of those

developed for aircraft use. Some aerial cameras that are in use in 1977 are

changed little from the mid-1930"s versions of the same cameras. The variety used

in space flight includes small hand-held 70mm cameras and larger types, mounted

to the spacecraft, using large film formats. The Earth Terrain Camera (framing

camera) used on. Sky lab/ for example, was referred to as the S190B experiment and

was basically a high-performance reconaissance camera. The 46-cm focal length lens

was chromatically corrected over the extended wavelength range of 0.40 to 0.90 mi-

crons. The. shutter was a bidirectional focal plane with speeds of 1/100, 1/140 and

•1/200 second. Taking into account the subtrack velocity of the vehicle, a shutter

speed of 1/200 second allowed "smear" of the image which was large compared to the

lens-film combination resolution capability of up to 180 lines/mm. (This translates

to a ground resolution of six meters for that particular mission.) The method used

to compensate for this smear was to rock the entire camera body and lens cone about

a pivot at a rate which would cause the film to move at the same rate as the image.

This is called rocking-camera forward motion compensation (FMC).c. Characteristics

common to this group of framing cameras are high resolution and low geometric

distortions. Table 1 summarizes the capabilities of representative cameras and

Table 2 lists compatable lenses.

Another kind of function which cameras perform is spectroradiometry. In this

usage, more than one image is formed with all images normally being the same size.

The light forming each of the images comes from spectral bands selected by filters.

One method of forming a multiplicity of images is to use a number of cameras, all

boresighted together with matched lenses. An alternative is to use one camera

j REV. NO.: 2 REV. DATE: 31 Jan 1978
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body with a number of lenses forming separate images on a single piece of film.

The multiple camera scheme has the advantage offered by the flexibility of being

able to select an optimum film/filter combination for each camera to achieve the

desired results. One disadvantage is that small differences in shutter actuation

time from one camera to another will reduce the degree of registration that can

be realized. An example of a multispectral camera put together from off the shelf

components is the S065 experiment on Apollo 9. This unit consisted of four

conventional Hasselbland 2 1/4" x 2 1/4" (70mm) cameras equipped with 80mm fL

lenses and Wratten filters. These were attached to a ring which was then mounted

in-flight to a hatch window in the command module. Experiment S065 took the first

multiband pictures of earth on film from space. Ground resolution of the equipment
s

varied between 50 and 125 meters depending upon-the band. A state,-of-theTart

example of a multispectral camera of this type is the Itek Multispectral Photographic

Facility (MPF) built for NASA'S S-I90A experimentV it "consists of six cameras', : v' : •

taking imagery in non-overlapping optical bands. Its performance character^-

istics are summarized in Table 3.

Still another form of multispectral camera is one where a multiplicity

of identical lenses (usually four or more) are mounted together on a common lens

board. In conjunction with a common focal plane shutter, they expose multiple

images on a single piece of film. Filters placed in front of each lens assign-

spectral coverage to each lens. One advantage of this arrangement is that the fast

transit time of the shutter minimizes differences in time of occurrence and duration

of exposure of various images. Also, since images appear together on the same

sheet of film, then except for dimensional changes in the film (which should be

small) the images have fixed relative positions and can be registered. Character-

istics of two such cameras are summarized in Table 4.

1REV. NO.: 2 REV. DATE: 31 Jan 1978



RSDH

TABLE 3 Design Specifications for S190A
Multiband Camera for Skylab

fBSGBW P*c^ s?

Area imaged

f nuaber (ainifeiM

Focal length

Fit* width

Base thickness

luge distortion

Registration

JBORC plane
i rrodianec

RorcsiRhting '*'

Repetition rate

Stop openings

Forward notion
coapensat ion

Shutter speeds

ISO x 150 KB from 5.35 KB altitude

2.8

ISOm

70 oa

60 \m or 100 u«

o.on
All bands registered to <12 un

Uniformity better than +8*. including any
vicwctting effects

Optical axes all fall within a cone of 1
arc min full-Annie

1 franc per 2 sec

Matcrhousc stops at 1/2 stop increments
from f/2.B to f / ld accurate to + 1.5".
Hrror S'.

2.5, 5, and 10 •* accurate to 5*. with
+2.5". repeatability. Six shutters syn-
chronized to 4 AS

Ground
Film Resolution

n/tinc pair**

3414
3414
2424
2424
3443

SO-242

2(1
20

110
110
95
SO

* Six other filters can he provided for selecting different wave*
length hands in addition to tbn*c specified here.

** t - t t imntc: not part of JWSJV s|K*cif k-uriuiK. Note' that
flln .M14 wax not used on S1'M)A, It is listed here to indicate
roughly what could he obtained if the system is used in future
orbital experiments.

Films used for remote sensing purposes include both black and white and color.

In both types, films are available with response extended into the infrared region

of the spectrum up to approximately 1.0 micrometer wavelength. Photographic

response to wavelengths longer than this is normally not possible because the

lower energy of the radiation fails to bring about the chemical changes in the

emulsion. Imagery at the far-infrared wavelengths beyond about 1 micrometer can be

accomplished using a scanner. (See section on Imaging Spectroradiometers.)

Films are distinguished by defining the following group of variables:

(1) packaging .

(2) sensitivity

(3) grain size

1
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(4) spectral response

(5) backing material

(6) chemistry of development

(7) resolution

(8) size

P̂ GE IS
QUALITY

'*':'

TABLE 4 Multispectral Aerial Cameras

Foraat <«•)
film imgth {•)
Ian* rhtekana (|M)
FraM*/Roll

Cyeio tta» (IK)
F»C Typ.
VIC Rat* (M/MC)

F1U

• Trpa of MU
Coapnibla ICIIMS
Manuftcturvrt*)
Poe»4 ttottli (•)
f/No. Rmi*

SfMMtral Data
•ultiipectrai

1.9 I 1.9
76
100
IU
A-SA or A-0

2.0
•win* rn*
2.S - 700

ISO. 100
2.8 - 16

forty aval tabu.

Ctt.fc* used Woofp
color,ftlat - •- .
Can bt utrt -/[«
color fiUT
Chaatn af foau
nqulnd for II
enter fll»F

I/2S - 1/3S ar
I/ISO ' I/ISO

I/ISO . I/MM
foral plan*

uootar
SchMidcr
ISO, 100

0.4-0.7 MTt,
0.47-O.S9 «i,
O.S9-O.M •«.

varln «/focal

I/ ISO .
I/ISO '

I/ISO (A).
I/WO (I)

focal plaaa
{2 typta: A,II

block 1R la 1 I

With this many variables, a detailed discussion of the subject is beyond the

scope of this handbook. For details of items one through seven, the reader is

referred to Reference [3]. Some of the film formats in use in cameras as well as

some other remote sensors are shown in Figure 5.5-1. For more information on

formats, see Reference [4].
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FIGURE 5.5-1 Sensor Film Formats
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Optical filters can be of either the pass-band or stop-band variety depending

upon whether their function is to pass or block selected radiation. These two types

may be implemented by an absorption or interference phenomenon. Included in the

absorption filters are colored glass filters (Coming, Schott, Baird atomic) and

Wratten (Kodak) filters.

Colored glass filters can be produced by ions in true solution or by sub-

microscopic crystals suspended in the glass melt.. Wratten filters are actually

a dried gelatin stained with an organic dye and laquered for protection. Frequently,

these are mounted between layers of protective glass. The two types have relatively

broad bandpass characteristics. These filters are in wide use for color separation

in the visible wavelengths and for color correction in both the visible and in-

visible portions of the spectrum. Absorption̂ /î Lter characteristics are elaborately
- .̂.2>

depicted in.references [5], [6], [10] and [12]. #

Interference filters consist"of a transparent-substratei covered with alternate

layers of dielectric of different indexes of refraction. The layers are vacuum

deposited and operate on the principle of the Fabry-Perot interferometer. They

have the electrical analogy of a filter where the number of stages of the filter

is equivalent to the number of layers of dielectric. These filters are selective

by reflecting unwanted radiation. They are typified by narrow bandpasses and steep

skirts. Interference filters are frequently built with a total passband of only

SO angstroms. The reflection phenomenon is produced by reinforcement by adjusting

the spacing of the dielectric to a specific relationship with the wavelength of

light to be passed. When the incident light is not normal to the surface, the

spacing of the dielectric becomes improper for the design wavelength. The result

is that off-axis light sees a "detuned" filter, one not operating at the intended

wavelengths. Temperature also tends to "de-tune" interference filters.

j REV. NO.: 2 | REV. DATE: 31 Jan 1978
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Most filters, absorption type and interference type, pass radiation outside

the prescribed passband. These spurious outputs can be surpressed with another

filter used in combination to eliminate the unwanted radiation. Other types of

auxiliary lenses are (1) antivignetting filters which are used with particular

lenses to even out the light distribution in the image plane and (2) Polarization

filters which are used to remove some of the effect of haze by discriminating

against the naturally polarized component in sunlight.

In addition to the manual visual interpretation of photographs, there is a

large demand for machine processing. In this process, a measurement is made of the

density of the transparency and the coordinates of the measurement are correlated

with it. This can be done manually one point at a time or a conversion to video can

be made using a flying-spot scanner or a television camera. Once the conversion is

made to video, the data can be treated as high resolution video and such operations

as the following can be performed:

(a) density slice

(b) false color

(c) edge enhancement

(d) reverse polarity

(e) contrast enhancement

(f) gray level conversion

(g) horizontal and vertical measurements

(h) change magnification

(i) cursor

To digitize multispectral records,, more than one transparency must be scanned.

This can be done with a separate video camera for each transparency. However, the

geometric distortions in the rasters must match in order to preserve the registration

REV. NO.: 1 I REV. DATE: 30 Sept 1977
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An alternative is to utilize a flying-spot scanner where a raster is generated on

a CRT with good spot definition and short phosphor decay time. The image of the

raster is focused upon the transparencies to be analyzed by using beam splitting

mirrors. A photomultiplier tube behind each transparency picks up the video for

that particular channel. In this way, geometric .distortions present in the raster

will be projected equally to each transparency.

Visual multispectral image reconstruction can be accomplished using an additive

color combiner. A projector is used to project each transparency onto a screen

and the images are registered spatially. Filters are placed in front of each

projector and the intensity of each projector's output is adjusted to produce the

desired effect. Multispectral photographs where all records appear in the same

piece of film simplify the registration problem from one image to the next since

the relative positions of the images are fixed.

REV. NO.: 2 REV. DATE: 31 Jan 1978
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(1) SENSOR NAME. ACRONYM: Metric Camera (EOE-1)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Land Use

(4) APPLICATION AND OBJECTIVE:

The Metric Camera-is designed to produce small scale maps from space photographs and
tD'test the capability of cartographic mapping and map revision from these photo-
graphs at scales 1:50000, 1:100000 and smaller with respect to topographic and thematic
data.

(5) HERITAGE/KEY PERSONNEL:
The Metric Cajnera is presently available and is essentially a stock Zeiss Model RMK
30/23 Photogrametric camera. Minimum modifications are presently studied. Exp. Team
Leader ESA

(6) SENSOR DEPLOYMENT:

The Metric Camera will be aboard Spacelab -1, planned for launch in December 1980,
at altitude 250 kilometers and 57 degrees inclination. The camera will be placed
inside the module, and on a suspension mount under the optical window. Pointing
direction is local vertical to within ±1 degree.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The Zeiss RMK 30/23 Camera utilizes a TOPAR A lens having a focal length of 305 mm
and aperatures of f/5.6, f/8 and f/11. The maximum lens distortion within the .23 cm
X 23 cm film format: is 3 urn. "Angular coverage is ; 56° across the diagonal arid;; 41/3- on ft
each side. Uniformity of scene illumination in the focal plane is controlled by lens
deŝ gnjand by anti-vignetting filters to within one-half f stop over the entire
visftfe^range and into the near infrared. No further compensation is necessary when
changing film from panchromatic to infrared. Three magazines will be carried on

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS): N/A' 7(A) Continued:
board. Photomission planning calls for strip targets ranging in length from 1800-2300
km. 80% overlap is planned. A total of 1650 exposures will be produced of points
of interest in all facts of the earth where sun angles between 15° (for desert areas)
and 68°. Film emulsions used in any one strip will be the same throughout the strip
because changing films requires a change of magazine and filter. The mounting shown
in Figure 1 allows nadir viewing ±1°.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:
Filter, emulsion and film base selections have not been made at this writing but it
is reasonable that types 3443 and 2445 represent the type that will be employed.
Forward Motion Compensation is not used in the RMK 30/23. Consequently, shutter
speeds will be limited to 1/500 sec or faster. With a ground track velocity of 7.7
km/sec, image smear during shutter opening, combined with the resolution of the lens/
20 m with the slower shutter speeds. Automatic exposure control is incorporated.
Exposure sequence timing is shown in Figure 2. ; •, .

Preceding page blank
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FIGURE 1 Metric Camera Mount
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FIGURE 2 Exposure Sequence
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

.

MANUAL ADJUSTMENTS

T POWER

REMOTE
CONTROL

UNIT

1 "
POWER

i-

CAMERA CONTROL ^
FILM ANNOTATING- *
DATA *

MANUAL

GROUND ELAPSED TIME ^AUTOMATIC
FRAME NUMBER AUIUMAJJC
•«™ ,«e EXPOSURE CON1
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EXPOSURE TIME AND CAMERA

PROL

I FILM
MAGAZINE

REMOTE
INDICATOR
FOR FILM
TRANSPORT

CAMERA
BODY

AUTOMATIC
EXPOSURE
CONTROL

FILTER

SUSPENSION
MOUNT

WINDOW

EARTH RADIATION

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

Sensor output is in the form of a latent image on photographic film. This film is
returned to the surface for processing. No data is downlinked but voice recordings
are coordinated with sequences.

SECTION NO.: 5.5 SENSOR CATEGORY: Multispectral and Mapping Cameras
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

FILM
MAGAZINES

SURFACE-
BASED
LABORATORY

APPROX.
550
ORIGINALS
EACH ROLL

m

#2

#3

PROCESS #1

PROCESS #2

PROCESS #3

DUPLICATION

ADDITIONAL
ANNOTATION

JL

GEOGRAPHICAL COORD. •
SUN ELEV AND AZIMUTH ANGLES
GROUND TRACK VELOCITY
ALTITUDE
SPACECRAFT ATTITUDE

(11) RECEIVING AND PROCESSING - NARRATIVE:

Film types have not been selected. Processes 1.2 and 3 may not be identical.

SECTION NO. 5.5 SENSOR CATEGORY: Multispectral and Mapping Cameras
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

ANNOTATED
DUPLICATE

DISTRIBUTION

"RAW" DATA USER

EDIT FOR
CLOUD COVER

ADDITIONAL
PROCESSING

EDITED AND
ANNOTATED
DUPLICATE

RECTIFICATION

REPRESENTATIVE ADDITIONAL PROCESSING

(13) DATA DISTRIBUTION - NARRATIVE:

The stated purpose of the metric camera on the Spacelab-1 mission is proof of
concept for mapping purposes. Plans for additional distribution beyond that
objective are incomplete.
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(1) SENSOR NAME. ACRONYM: Earth Terrain Camera (S190B)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Land Use

(4) APPLICATION AND OBJECTIVE:
The Earth Terrain Camera (ETC) is designed to provide high resolution photographs
•of land areas that can be used for urban and regional planning and for the revision
of maps with scales of 100,000 to 10,000,000.

(5) HERITAGE/KEY PERSONNEL:

The ETC is the same camera flown on Skylab. The only required modification will be
the addition of pressurized housing. Team Leader TBD, NASA, JSC.

(6) SENSOR DEPLOYMENT:

The ETC is tentatively proposed to fly as part of the Shuttle Mission No. 4. It
will be rigidly fixed on the pallet. It will be operated from 443 Kilometers (239
nautical miles) altitude and 48 degrees inclination and it will point towards the
nadir with pointing accuracy nadir ± 2 degrees.

(7) SENSOR CHARACTERISTICS

(7A» CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The ETC is a mapping camera and is equipped with a f/4 lens with a focal length of
45.7 centimeters (18 inches). Its- field of view of 14.2 degrees across flats pro-
viding ground coverage of about 111"kilometers' (60 nautical miles) square surface
coverage. The camera compensates for spacecraft forward motion through programmed
camera rotation. Sequence photography rates of 0 to 25 frames per minute are possible,
thus providing up to 85% overlap between frames providing stereo photography. Shutter
speeds are selectable at 5, 7 and 10 milliseconds with a curtain velocity 292 cm/sec

(continued on next page)

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The ETC uses 12.7 centimeters (5 inches) film of 2.6 mil base supplied in cassettes
of approximately 450 frames each. Total film capacity is 12.7 cm x 61 m (5 inches
x 200 feet) thin base. The picture size (format) is 11.4 x 11.4 cm (4.5 x 4.5 inches).
The camera is designed to use the following film types and filters combinations:

(continued on next page)

! Preceding page blank
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(7B) continued

(115 inches/seconds). Photographs of the land areas will be obtained in the
summer hemisphere when the sun elevation angle is greater than 30 degrees, and
in the winter hemisphere when the sun elevation is greater than 20 degrees and
cloud coverage of less than 30 percent,

(7C) continued

Film Film Type Wavelength Wratten Filter No.

S0242 Aerial Color High 0.4-0.7 ym Neutral
Resolution

EK3414 Black and White 0.5-0.7 urn W-12

or

EK3400 High Definition Aerial 0.5-0.7 urn W-12
Black and White

EK3443 Aefochrome IR, Color 0.5-0.88 W-12

The expected ground resolution for the proposed film and filter combination
will vary from 10 meters to 46 meters (37 feet to 150 feet).
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FILM MAGAZINE
(SHOWN PARTIALLY
EXTENDED)

CAMERA
BODY

CONTROL
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(8) SENSOR DATA MENSURAL AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:
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(9) MENSURAL AND TRANSMISSION SYSTEM - NARRATIVE;

Sensor output is in the form of a latent image on photographic film. The film is
returned to the surface for processing. Housekeeping analog and digital data are
downlinked. Voice recordings are coordinated with sequences.
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

FILM
MAGAZINES

SURFACE-
BASED
LABORATORY
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#1 '

EK3443
#2

EK 3414 OR
EK3400
#3

PROCESS #1

PROCESS #2

PROCESS #3

DUPLICATION
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ALTITUDE
SPACECRAFT ATTITUDE

(11) RECEIVING AND PROCESSING - NARRATIVE:

The film will undergo initial processing, sensitometry and densitometry testing,
screening and quality control, preparation of screening masters, annotation and
duplication.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:
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(13) DATA DISTRIBUTION - NARRATIVE:

The annotated duplicates are subjected to both radiometric and geometric corrections
which becomes the raw or base data and is used primarily by the USGS. The Bureau of
Census requires further processed outputs. The black and white and color composite
maps at 1:24,000 scale are generated. Cultural data is superimposed on the thematic
maps from which the census tract scenarios and enumeration plans are derived. The
completion of the flow includes the actual census field work and the issuance of
standard census data products.
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.(1) SENSOR NAME. ACRONYM: Multispectral Photographic Facility (S190A)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Land Use

(4) APPLICATION AND OBJECTIVE:
The Multispectral Photographic Facility (MPF) is designed to obtain precision
multispectral photographs of land areas that can be used for urban and regional
planning.

(5) HERITAGE/KEY PERSONNEL:
The MPF is a modified S190A camera flown on Skylab. Two modifications are being pro-
posed: Increase the focal length from 15 centimeters to 33 centimeters and the addition
of a pressurized housing. Team Leaders: TBD, NASA, JSC

(6) SENSOR DEPLOYMENT:
The MPF is tentatively proposed to fly as part of Shuttle Mission No. 4. It will be
rigidly fixed on the pallet with its long axis parallel to the velocity vector. It
will be operated from 443 kilometers (239 nautical miles) altitude, 48 degrees inclina-
tion and it will point towards the nadir with pointing accuracy nadir ± 2 degrees.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The MPF consists of an array of six precisely matched and boresighted 70 millimeter
•cameras with Asynchronized shutters and individual, film magazines, .and filters that ,;r
simultaneously photographs the same area, each viewing a "di'ffefr'e'ht waveleh'gth; ;Tne
15.24 centimeters (6 inches) focal length f/2.8 lenses have a field of view of 21.2
degrees across flats providing a square coverage of about 166 kilometers by 166 kilo-
meters (90 miles by 90 miles) from the altitude of 443 kilometers (239 nautical miles)
Data can be taken in discrete spectral bands from 0.4 to 0.9 micrometers by varying
films and filter combinatious. Exposure times can vary from 1/400 to 1/100 seconds,

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS): N/A (7A) continued on next page:

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The cameras utilize 70 millimeter film of a 4-mil base in cassettes holding approxi-
mately- 400 frames each. Photographic formatv size is 70 millimeters by 70 millimeters
(2 1/4 by 2 1/4 inches). The cameras are designed for the .following bandwidth/film
combinations:

(continued on next page)
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(7A) continued;

and framing overlap up to 88 percent can be achieved. The resolution of this
camera will vary from 21 meters on the visible color image to 58 meters on
three longer wave images. Photographs of the land areas will be obtained
in the summer hemisphere when the sun elevation angle is greater than 30 -
degrees and in the winter hemisphere when the elevation is greater than 20
degrees. The cloud coverage is less than 30 percent.

(7C) continued

Camera

1

2

3

4
f

5

Wavelength
(Micrometers)

0.7-0.8

0.8-0.9

0.5-0.88

0.4-0.7

0.6-0.7

0.5-0.6

Film Type Filter

IR Aerographic Black fi White (B&W) EK2424 CC

IR Aerographic Black 5 White (B&W) EK2424 DD

Aerochrome IR Color EK3443 EE

Aerial Color (high resolution) 150242 FF

PANATOMIC-X Aerial B§W EK3400 BB

PANATOMIC-X Aerial B§W EK3400 AA
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(8) SENSOR DATA MENSURAL AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:
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(9) MENSURAL AN'D TRANSMISSION SYSTEM - NARRATIVE: *•"

Sensor output is in the form of a latent image on photographic film. The film is
returned to the surface for processing. Housekeeping analog and digital data are
downlinked. Voice recordings are coordinated with sequences.
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:
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(11) RECEIVING AND PROCESSING - NARRATIVE:

Tiie-film will undergo initial processing, sensitometry and densitometry testing,
screening and quality control, preparation of screening masters, annotation and
duplication.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:
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"(13) DATA DISTRIBUTION - NARRATIVE:

,The annotated duplicates are subjected to both radiometric and geometric corrections
'which becomes the raw or base data and is used primarily by the USGS. The Bureau of
Census requires further processed outputs. The black and white and color composite
images are subjected to rectification, mosaicing and scale changes where thematic
maps at 1:24,000 scale are generated. Cultural data is superimposed on the thematic
maps from which the census tract .scenarios and enumeration plans are derived. The
completion of the flow includes the actual census field work and the issuance of
standard census data products.

5.-S
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(1) SENSOR NAME. ACRONYM: Optical Bar Panoramic Camera (S163)

(2) DISCIPLINE: Earth Observations (3) SUBOISCIPLINE: Land Use

(4) APPLICATION AND OBJECTIVE:

The Optical Bar Panoramic Camera (OBPC) is designed to obtain high quality stereoscopic
and/or monoscopic photographs of land areas that will allow delineation of all urban
areas, identification and location of new homes, streets and roads.

(5} HERITAGE/KEY PERSONNEL:

The proposed OBPC is an existing Apollo camera designed with heaters and insulation
to operate in the external environment.
Team Leader: TBD. NASA. JSC

(6) SENSOR DEPLOYMENT:

The OBPC is tentatively proposed to fly as part of the Shuttle Mission No. 4. It will
be rigidly fixed on the pallet and it will be operated from 443 kilometers (239nautical
miles) altitude and 48 degrees inclination. It will be pointed towards nadir.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The OBPC is a scanning mapping camera containing a f/3.5 lens with a focal length of 61
centimeters (24 inches). The shutter is a scanning focal plane, variable slit-width
shutter. The design includes V/h sensing, automatic control, forward motion compensa-
tion and gaseous nitrogen supply for the film transport. The camera takes panoramic
cross track strips by rotating the lens around an axis parallel to the flight path. The
images produced cover a field of view 1.88 radius cross track and 0.188 radians (10
degrees 46 minutes) along track. The mode of operation is autocycle with constant
overlap along track. The frame rate varies from 1 frame every 17.5 seconds to 1 frame

(7B)'ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS): N/A (7A) Continued:
every 3,5 seconds. Exposure time varies from 0.35 to 29 milliseconds.

Photographs of the land areas will be obtained in the summer hemisphere when the
sun elevation angle is greater than 30 degrees and in the winter hemisphere when the
elevation is greater than 20 degrees. The cloud coverage will be less than 30 percent.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The OBPC uses 12.7 centimeters (5 inches) film, EK 3414, Black and White. The film
cassettes contain 1650 frames. Total film capacity is 165 meters (6,500 feet) of
thin base. The format is 11.4 by 127.7 centimeters (4.5 x 50.26 inches). The ground
resolution is 50 feet.
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CONTINUATION SHEET:

A1AS
ELECTRICAL SYSTEM
ENCLOSURE 2

A1A8
LIGHT SENSOR

A1A9
UPPER
COVER

A1A2
SHUTTLE

A1A1
GIMBAL

A1A7
V/h SENSOR

BELLY PLATE
P/0 A1A3

A1A11
STEREO
DRIVE

A1A4

A1A12
METERING
ROLL A1A20

SUPPLY SPOOL
DRIVE ASSEMBLY

A1A21
SUPPLY
SENSOR ARM

A1A17
TAKEUP
SPOOL
DRIVE
ASSEMBLY

A1A3
LOWER COVER

A1A16
POWER SUPPLY
AND FILTER

ELECTRICAL SYSTEM
ENCLOSURE 1

Optical Bar Panoramic Camera (OBPC)-(S163)
Illustrations

10° 46 108°

GROUND
TRACE
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(8) SENSOR DATA MENSURAL AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

MASS MEMORY

EXPERIMENT
COMPUTER

TELEMETRY 64 Kbpi
I/O UNIT

CONTROL CAMERA CONTROL f

UNIT FILM ANNOTATING
' T -r— ' DATA

POWER 1

GROUND ELAPSED TIME
FLIGHT ALTITUDE
SPACECRAFT ATTITUDE
FRAME NUMBER

- APERTURE
EXPOSURE:TIME 'i;

LIGHT
SENSOR

t

FILM CASSETTE

FILTER

CAMERA BODY

AUTOMATIC
EXPOSURE
CONTROL

LENS

i ,

v/h SENSOR]
t \'

EARTH RADIATION

(9) MENSURAL AND TRANSMISSION SYSTEM - NARRATIVE:

• V_ • -

Sensor output is in the form of a latent image on photographic film. The film is
returned to the surface'for processing. Housekeeping analog and digital data are
downlinked. Voice recordings are coordinated with sequences.
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(10) SENSOR DATA,RECEPTION AND PROCESSING - BLOCK DIAGRAM:

FILM
CASSETTE

SURFACE-
BASED
LABORATORY

1650
FRAMES
EK 3404

PROCESS #1 DUPLICATION
NASA

ADDITIONAL
ANNOTATION

^GEOGRAPHICAL COORD.
SUN ELEV AND AZIMUTH ANGLES
GROUND TRACK VELOCITY
ALTITUDE
SPACECRAFT ATTITUDE

.Vt-

(11) RECEIVING AND PROCESSING - NARRATIVE:

The film will undergo initial processing, sensitometry and densitometry testing,
screening and quality control, preparation of screening masters, annotation and
duplication.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

GROUND
CONTHOl
OAt»

RAW URIAH DATA
THEMATIC M*n TO
GENERAL USER
COMMUNITY

PUBLIC
' OOVTS

(13) DATA DISTRIBUTION - NARRATIVE:

The annotated duplicates are subjected to both radiometric and geometric corrections
which becomes the raw or base data and is used primarily by the USGS. The Bureau of
Census requires further processed outputs. The black and white and color composite
images are subjected to rectification, mosaicing and scale changes where thematic
maps at 1:24,000 scale are generated. Cultural data is superimposed on the thematic
maps from which the census tract scenarios and enumeration plans are derived. The
completion of the flow includes the actual census field work and the issuance of
standard census data products.
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Section 5.7

INTRODUCTION TO IMAGING SPECTRORADIOMETERS

The classification of Imaging Spectroradiometers includes nonphotographic

iraagers which monitor reflected solar radiation in more than one region of the

spectrum simultaneously through one optical system. Contrast this with (for

example) Multiband Return Beam vidicon. Rather than use film as the radiation

detecting mechanism, light sensitive electronic devices such as diodes, photo-

voltaic cells or photomultiplier tubes are used. The outputs of the detectors

are transmitted in combination with synchronization pulses so that the viewed

image can be reconstructed at a remote point.

Imaging Spectroradiometers usually takes the form of a multi-spectral scanner

and are used in those applications where: (1) orbital motion of the spacecraft

can provide scan along-track,. (2) a number of well-defined spectral bands is to

be monitored, (3) high radiometric uniformity over the viewed area is desirable,

(4) a wide field of view is desired, (5) radiation into the infrared spectrum is

to be monitored. The broad spectral coverage and good spectral and spatial

resolution of imaging spectro-radiometers makes them attractive for applications

where a phenomenon can be recognized by its reflected or emitted radiation. Typical

applications include (1) mapping of geophysical features, (2) crop inventorying,

(3) hydrological surveys, (4) mineral resource searches, (5) urban population

pattern studies, (6) land-use classification, and (7) location of marine life.

The output of most imaging Spectroradiometers consists of a video voltage

with synchronization for each of the optical passbands being used. These video

signals are not at standard TV rates, owing to the fact that the inertia terms in

electro-mechanical scanners will not allow the fast TV line rates. Moreover,

the high resolution capability of this type scanner would make data rates excessive

L REV. NO.: 0 1
REV. DATE: 30 June 1977

5.7-1



RSDH

if standard TV line rates were used. It is convenient to convert the detector

outputs from analog-to digital and multiplex them if transmission over a distance

is required. Currently, signal to noise ratios can support digital quantization

to the six-bit level.

No clear separation exists between the development of imaging spectroradio-

meters and the^development of imaging electro-optical scanners. The later dates

back into the late nineteen twenties and includes early television experiments.

For our purposes, little additional insight is to be gained by going back further

than late 1959, when the first earth observation instrument to return usable data

from space was flown on Explorer 7. Since then, thirty-six instruments, of twenty

different designs, which can be classified as imaging radiometers with mechanical

.scanning,, have flown on twenty different orbital missions.

The basic imaging spectroradiometer is exemplified by the spectroradiometers

aboard the early TIROS (2 through 7) and NIMBUS (1, 2 and 3) flights except that

separate imaging optics were used for each spectral band. These instruments, called

Medium Resolution Infrared Radiometers (MRIR), were relatively simple and are

useful for illustration purposes.

They are of two basic styles. The earlier units, those that flew on TIROS two

through seven, contain no scanning mechanism whatsoever, as they were designed for

use on a spin-stabilized spacecraft, where the spin provided the cross-track scan

while line advancement is provided by orbital motion. The Nimbus MRIR, on the other

hand, is similar in layout to the earlier spin-scan instruments, but since it was

installed on a three-axis stabilized spacecraft, a scanning mirror was added to

provide cross-track scan. Line advancement is still provided by orbital motion

(see Figure 5.7-1).

9
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FIGURE 5.7-1 Satellite Scanning Modes
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Figure S.7-2 is an idealized and simplified pictoral diagram of the early

Tiros radiometers. The centerline of the instrument is installed parallel to the

center of rotation of the spacecraft. A flat mirror deflects the optical center-

line of the imaging optics to a path orthagonal to the axis of rotation. Radiation

FILTER LENS APERTURE

FLAT
MIRROR DETECTOR

CHOPPER WHEEL
(TILTED FOR ILLUSTRATION*

FIGURE 5.7-2 Early Tiros Radiometer Schematic

enters the radiometer via the mirror and is focused by the individual objective into

an aperture, which"defines the size of the "instantaneous field of view" (IFOV).

The aperture allows only the imaged radiation which falls within the clear diameter

of the aperture to pass to the detector and be registered as an output voltage.

The Ground Resolution Element (GRE), or smallest feature which can be isolated on

the surface of the earth, is directly related to the size of this aperture and the

Equivalent Focal Length (EFL) of the imaging lens system by the "lens makers

formula." [1] Image - object relationships are illustrated in Figure 5.7-3.

"g REV. NO.!" 2 j REV. DATE: 31 Jan 1978~
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f - EFL

IF b»«. a-f AND ̂ j - -

FIGURE 5.7-3 Image - Object Relationships

One convenient way to look at the IFOV and the GRE is to regard the GRE as

the projection onto the earth of the image of the limiting aperture. It is evident

from the sketch that for uniformly illuminated fields, as the diameter of the

aperture is increased, more light falls on the detector, increasing sensitivity •

but decreasing spatial resolution. The optimum selection of the aperture diameter

will be determined by the light gathering capacity of the imaging system (objective

diameter) and the type of detector used. A filter is used in this illustration to

limit the spectral bandpass of radiation allowed to be imaged. Since the incoming

radiation is normal to the plane of the filter, an interference type filter [2] [3]

could be employed for good spectral resolution. These filters can be made quite

selective. Other types of filters, such as color filters, can be employed or the

spectral response limits of the detector itself can be used to define the spectral

resolution. See the section on Multispectral and Mapping Cameras for more refer-

ences on filters.

The chopper wheel alternately switches the radiation entering the detector

from scene radiation to the light level (or temperature) of the chopper disc. The

detector output correspondingly swings between a level defining scene radiation

L REV. NO.: REV. DATE:5Q June 1977

5.7-5



level and a near-zero level. Successive amplifier stages can be A-C coupled and

can, therefore, have'higher stable gains and lower noise figures than would be

possible with D.C, coupling. D.C. restoration can be used for calibration if

shutter irradience (temperature) is known. On early Tiros flights, there was no

on-board radiometric calibration per se, but as the optical centerline of the

radiometer was rotated around to the "back side" of the sweep, it was pointed

away from earth into deep space, and the resulting detector output was taken as
i

representing a zero level. On the later Nimbus flights, the wideband radiation

of the sun itself was used as an in-flight reference.

Figure 5.7-4'illustrates that the radiometers aboard Nimbus flights were

similar in principle to the Tiros radiometers except that a scanning mirror
SUN REFERENCE FOR
INFLIGHT CALIBRATION

' I ' • " '• '

SCANNING

^MIRROR IMAGING OPTICS APERTURE

DETECTOR

\J 1

CHOPPER WHEEL

__ -j

FILTER

FIGURE 5.7-4 Nimbus Radiometer Schematic
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rotating at 8RPM, placed.in front of the 1.7 inch diameter individual Cassagrain

objectives was used to sweep the optical centerline of the system. The axis of

rotation of the mirror was alligned parallel to the spacecraft velocity vector.

In both of these instruments, the outputs of the detectors are digitized and

recorded on tape recorders for delayed playback.

Spectroradioraeters Of advanced design include the Landsat Multispectral

Scanner (MSS) and the Thematic Mapper. These sensors differ from earlier designs

in numerous ways, as shown by Figure 5.7-5. A nutating mirror provides cross-track

TYPICAL X.24
PM TUBE

MIRROR OSCILLATES
±2.89° 9 13.62 Hi

WEST /

FILTER

FIELD OF VIEW (FOV)

EAST

APERTURE
MASK

TO
ELECTRONICS
24 CHANNELS

\
TWENTY-FOUR
PROJECTED APERTURES

FIGURE 5.7-5 Landsat-1 MSS

scan while orbital motion provides the along-track component. In the case of

Landsat-1, the mirror's frequency of oscillation is 13.62 Hz, and the amplitude is

±2.89°. This yields a field of view of 11.56°, which form an altitude of 925 km,

translates to a cross-track swath width of'925 km x Sin 11.56° = .2 x 925 = 185.4km,

which is the published swath width. As the mirror deflects the optical centerline

across the swath, in half the period of oscillation (1.2 x 1.13.62 = 36.7 milli-

5 . - J - 7 I REV. NO.: 2 | REV. DATE: 31 Jan 1978
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seconds) the spacecraft generating a subsatellite track traveling at 6.47 km/sec,

skews the sweep by an amount equal to:

1 6.47 km/sec .._ m .
2 X 13.62 Hz " 237 meters

on the second half of the mirrors oscillatory cycle, (retrace) an additional

equal skew is introduced, such that during a single oscillatory cycle of the

mirror, the along-track advancement is 474 meters. To improve the along-track

resolution, six adjacent cross-track lines are scanned simultaneously as shown in

Figure 5.7-6. In this way the along-track dimension of each line is:

474
6 79 meters

LINE TRANSITION TIME ° -—= SEC - 103875

SIX LINES
PAINTED AT
ONE TIME

ACTIVE SCAN
RETRACE

SATELLITE
MOTION

VELOCITY AT
SUBSATELLITE POINT

- 6.47 KM/SEC

ADVANCEMENT OF SUBSATELLITE
POINT DURING ONE CYCLE OF
THE MIRROR -

METERS

SIX LINES

78 METERS/LINE474
6

FIGURE 5.7-6 Landsat Scan Pattern
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The aperture mask is arranged so that the apertures of the six detectors

devoted to each 'spectral band project onto earth as shown in Figures 5.7-6 and

5.7-7. Each additional spectral band being monitored through the MSS requires

another six detectors if the same spatial resolution is to be maintained. For

any band, fewer than six detectors can be used if the along track dimension of the

aperture is changed accordingly. For example, in Landsat C, a thermal band is added,

extending spectral response to include 10.4 to 12.5 ym. Only two detectors (which

are cooled by passive coolers) are used. The apertures for their detectors are

three times the size of the apertures for the other four channels and, consequently,

the ground resolution element for this band is 240 meters rather than 80 meters.

The apertures for the various spectral bands are arranged as shown in Figure 5.7-7

for the Landsat MSS. Fibre optics couple the radiation falling on the aperture

mask to the detectors.

BAND NO. 1

1

2

3
LINE
NO.

FIGURE 5.7-7 Aperture Mask

As Figure 5.7-7 implies, there is one detector required for each line generated

in each band. In the case of Landsat C, twenty-six detectors are utilized.

Analog to digital conversion and multiplexing are required to organize these out-

puts into an intelligent format. When choosing the parameters of the A-D converter,

one method for insuring that all available information is contained in the output

is to choose the sample rate such that there is more than one sample per picture

element (Pixel). For example, if the aperture mask dimensions are such that the

L REV. NO.: 2 REV. DATE: 31 Jan 1978



fundamental pixel size is 80 meters square on the ground and a single line is

185 x 10185 km in length, there are - gz — = 2300 elements per line, generated at a

rate of 6 lines per 37.7 milliseconds = — — = 366 -j -04 8 elements per second

per band and with four bands the pixel rate is 4 x 366̂ 048 = 1,464,192 pixels per

second. If we set the sample rate at 1 1/2 samples per pixel,, then the sample

rate is 1,464,192 x 1.5 = 2,196,288 samples per second, If the digital quantiza-

tion is six bits, the bit rate is 2,196,2-8 x 6 - 13.2 x 10 bits per second for a

system like that in Landsat 1 and 2.

A significant measure of the quality of a mechanical scanner is the repeata-

bility and predictability of the scan produced by the oscillating mirror. This

quality determines the band-to-band registration and geometric fidelity which,

together with amplitude resolution and spatial resolution, describe the performance

of an imaging spectro-radiometer.

Band-to-band registration is a statement of the ability of an instrument to
*

successively position field stop apertures associated with one band so that they

spatially agree with the field stops of other bands in order to bring each area

on the earth's surface under the scrutiny of all bands. Spectral signature analysis

with an imaging spectro radiometer is dependent upon the capability of the

instrument to achieve good band-to-band registration.

Geometric fidelity is the accumulated errors of six sources which contribute

to the distortion of the image. Scan linearity errors, caused largely by torque

produced in the scan mirror support pivots, are systematic and can be compensated

out. The remainder of the geometric errors, random cross-scan jitter, scan- to- scan

repeatibility, scan start and scan end variation, sampling uncertainty and

detector alignment are uncontrolled but relatively small and together constitute

a total error in H-andsat 1 and 2 of only twenty--six meters.

REV. NO.: 2 REV. DATE: 31 Jto 1978
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Electronically self-scanned detector arrays will influence future designs

by removing the- restrictions imposed by some of the mechanical properties of

instruments which now use oscillating mirrors. Included in this type of array

are both hybrid arrays of individual detectors and the batch-processed Charge-

Coupled-Devices (CCDs) on silicon. CCD's now include built-in sequential inter-

rogation circuits and several hundred individual sensor diodes with center-to-center

spacings of the order of 25 microns used with an optical system equivalent to that

aboard Landsat-2, even current CCD array designs yield cross-track resolutions of

25 meters. We can project that with a 185 km swath, such an array would be required

to have

185 x 105 , . ,_3=c =7.4 x 10 diodes

and would be 7.4 x 10 x 25 x 10~ = 18.5 cm in length. Mercury-Cadmium Telluride

detector arrays .withelements^ on 10Q-micrpn centers .are currently availably. -, ';Such

arrays would function in the 10-12 micron region of the spectrum and could yield

spatial resolutions of 100 meters with current technology.

Arrays of detectors function as "push-broom" scanners where the along-track

motion is provided by orbital motion and the cross-track scan is accomplished by

sequentially addressing the detectors in the array. Multiband coverage could be

obtained by providing one detector array per band. The fast scan rates which are

realizable with diode arrays will obviate the requirement to scan more than one

line at a time.

Folded reflective optical systems are in universal use and will probably

continue to be. Folded systems like the Dall-Kirkham are uniformly responsive to

broad spectra because the incoming radiation does not pass through any material

except the atmosphere. The optical surfaces are usually silvered and have high

reflectivity over wide optical bands. Another feature of folded systems which makes

REV. NO.: REV. DATE: 31 Jan 1978
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them attractive is their compact dimensions and resulting stiffness and ruggedness

and ease of thermal compensation. The state of optical fabrication technology is

such that the accuracy of curve generation achievable in these telescope designs

does not represent a limiting factor in resolution. The primary mirror in the

Landsat 1 and 2 MSS is 22.5 cm in diameter. Other instruments are planned with

objectives up to one meter diameter.

5.7.1 GROUND PROCESSING

In a discussion of the demand on a data system, one must consider not only

the capability of the sensor to generate streams of data at given bit rates but one

must also consider the kind of job that the sensor together with its data system

is being called upon to do. In the current programs involving Landsat type missions.
• »

•£the emphasis is upon vegetation analysis, timeliness of data, frequent coverage and

precise data registration and overlay for analytical purposes. The applications

of the data are in the area of:

• Monitoring world-wide food productivity

• Mapping agricultural land use

• Monitoring rangelands

• Surveying forest resources

• Managing critical watersheds

• Detecting land-use changes

• Oil/Mineral exploration

If we assume that these applications are basic and that the needs placed' upon

> data systems of the future will continue to be of the kind of need now planned to

satisfy mission requirements, then we can depict a representative ground system.

The system illustrated is not necessarily tied to any particular program but is

written around the Thematic Mapper [4].' It incorporates basic features which are

L REV. NO.: 2 REV. DATE:31 Jan 19 8



RSDH

common to all multiband high-resolution imaging systems. A top-level functional

diagram of a representative ground system is presented in Figure 5.7-8. The five

major subsystems included are the Data Input Subsystem (DIS), the Central Data

Processing Facility (CDPF), the Product Generation and Dissemination Facility (PGDF)

the Data Management Subsystem (DMS), and the Agriculture Utilization Subsystem (AUS)

Each of these subsystems is briefly described below.

TDRSS
DATA
MANAGEMENT
(OMU)

• CONTROLS GROUND SYSTEM
• MAINTAINS SYSTEM STATUS

DATA
INPUT
SUBSYSTEM
(DIS)

CENTRAL DATA

(CDPF)

PRODUCT GENERATION
&
DISSEMINATION FACILITY
(PGOF)

• RAOIOMETRIC
CORRECTION

• COMPUTE GEOMETRIC CORRECTION • DATA FORMATTING
• CLOUD COVER DETECTION • PRODUCTS FOR SPECIAL
• EDIT/SELECT DATA USERS

-^ FORESTRY
•HYDROLOGY
• OTHERS

• USER PRODUCTS ON DEMAND
• DIGITAL ft FILM
• LOCATION OF SYSTEM ARCHIVE
• APPLY GEOMETRIC CORRECTION

AGRICULTURE DATA
UTILIZATION SUBSYSTEM

• SAMPLE SEGMENTS
• APPLY GEOMETRIC CORRECTIONS
• ACCEPT NON LFO DATA
• GENERATE CROP PRODUCTION ESTIMATES

FIGURE 5.7-8 Ground System Functional Diagram

The Data Input Subsystem (DIS) receives data from the TDRSS via dedicated cable

interconnection. In the early 1980's, these rates are expected to be of the order

of 135 Mbps. Later, as resolution is improved, rates may go to 400 Mbps. The prime

functions of the DIS are to record the raw input data, to perform cloud cover detec-
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tion and scene editing and to compute geometric correction matrices on a per

swath basis.

The Central Data Processing Facility (CDPF) receives edited data from the

DIS and performs standard operations to all data. Thiese operations include

radiometric correction and data reformatting to a band-interleaved-by-line (BIL)

format.

The Product Generation and Dissemination Facility (PGDF) is the main interface

between the ground system and general users. This facility provides imagery data,

in either digital tape or film format, to users on demand. The data, which may be

geometrically corrected to various map projection systems or enhanced as requested

by the user, is available in a variety of sizes, formats, and media. The PGDF also

houses and manages the system archive.

The Data Management Subsystem (DMS) provides the central point of control and

data base management for the ground system. Its prime functions include manage-

ment of user demand, the system archive, system communications and system redun-

dancy. The DMS also maintains system status, production statistics, operations logs

and administrative services.

The Agriculture Utilization Subsystem (AUS) receives data directly from the

CDPF and performs those operations necessary to produce world crop production fore-

casts on a periodic basis. The operations to be performed include geometric

correction, sample segment extraction, multispectral analysis and areal and

statistical analyses. It is included here as part of the ground system because it

represents the first major user.

Details of these major functions are delineated in the following

paragraphs.
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5.7.2 DATA MANAGEMENT UNIT

The Data Management Unit provides the central point of control and data base

management in the Data Processing Facility design. The Data Management Unit is

interfaced to the Demand User Subsystem, Archive Management Subsystem, Communication

Management Subsystem, Redundancy Management Subsystem and the Operations Control

Center as shown in Figure 5.7-9. The DMS accepts user produce demand requests

from the Demand User Subsystem, issues archive retrieval requests to the Archive

Management Subsystem and generates processing schedules for the Product Generation

and Dissemination Facility (PGDF). The DMS maintains the Data Processing Facility

configuration table in its database and is updated by the Redundancy Management

Unit in the event of any system anomaly. The Communication Management Subsystem

offloads the DMS from the front-end communications handling functions associated

with the DIS, CDPF, and PGDF. The Archive Management Subsystem which consists of

the Multiple Archive Station Communication Units (ASCU's) allows the DMS to monitor

the generation of all digital tape products and to identify and track the processing

of the HDDTs, HDTs'and CCTs throughout the system.

The DMS accepts predicted ephemeris data from the OCC and routes the data to

the Swath Correlator Unit via the Communications Management Unit. The DMS receives

Geometric Correction information and cloud cover statistics form the DIS on a

periodic basis and generates the header information and editing schedules utilized

in the CDPF. Radiometric correction coefficient tables are routed to the Radio -

Metric Correction Control Interface Unit on a per scene basis via the Communications

Management Unit.

The Data Management Unit also served as a general housekeeping, management and

accounting facility within the ground system. It maintains system status and an

up-to-date inventory of system spares. Production statistics and operations logs
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are computed and maintained for the entire ground system and are available on a

continuous basis to system operators. Finally, the Data Management Unit is used to

assist in administrative services such as accounting, payroll, benefits, management

reports, trend analysis, etc.

5.7.3 DEMAND USER SUBSYSTEM

The Demand User Subsystem provides the primary interface from the DMS to the

outside world. The Demand User Subsystem consists of the Local Transaction Unit

and their associated peripherals and data links. The Local Transaction Unit and

the External Transaction Unit both function as front-end processors or transaction

concentrators which accept remote or local terminal inputs, then format and issue

product or service requests to the DMS. The Local Transaction Unit supports a

number of output devices utilized by the administrative services office to monitor

the operation of the ground;system. . , . : v .

5.7.4 ARCHIVE MANAGEMENT SUBSYSTEM

The Archive Management Subsystem provides the capability to monitor the

generation of archive tapes, automatically identify and track each individual tape,

request tape retrieval from the archive, and issue instructions to tape unit

operators. The Archive Management Subsystem consists of a network of interrelated

processors and functions within the ground system. The key elements include the

Data Management Unit, Communication Management Unit, Archive Station Communication

Units (ASCU) Tape Scheduler Unit, Tape Certification Subsystem and the tape archive.

The DMS monitors the generation of tapes via the Tape Scheduler Unit and the Archive

Station Communication Unit.
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5.7.5 COMMUNICATION MANAGEMENT SUBSYSTEM

The Communication Management Subsystem is the front-end transaction processor

in the ground system. It interfaces directly with the Data Management Unit,

Redundancy Management Unit and all processing units in the DIS, CDPF, and PGDF

including the Geometric Correction Subsystem, the Tape Duplication Subsystem, th.e

Tape Reformatter Subsystem, the Browse Generator Subsystem, the Film Generation

Subsystem and the Image Enhancement Subsystem. The Communication Managenent Unit

provides command and data distribution functions in response to transfer requests

from the DMS. All incoming interunit messages to the DMS are buffered, formatted

and routed to the DMS for processing. Additional functions include down-line

loading for the ground system, system safing in the event of Data Management Unit
• %

failure and alternate interunit routing of failure messages to the Redundancy

Management Unit in the event of Redundency Management Unit link failures.

5.7.6 REDUNDANCY MANAGEMENT UNIT

From a reliability standpoint, the most critical area in the ground system is

the Data Input Subsystem (DIS), since the data stream from the TDRSS is continuous

and uninterrupted. A failure of equipment here would result in data loss which

cannot be made up.

In examining the DIS, it is seen that data flow from subsystem input to tape

is straightforward from input, through patch panel, to the appropriate HDDR,* and

onto tape.

Status from the other subsystems is supplied to the Redundancy Management

Unit through the Communications Management Unit and the databus. Although no actual

*There are two types of high data recorders, HDDR is used to refer to the 120
Mbps (42 track) recorder and HDTR is used to refer .to the 20 Mbps (14 track)
recorder.
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switching of data results, the Redundancy Management Unit can direct the Communi-

cations Management Unit to halt a processing operation due to failures or equipment

malfunctions which are detected.

5.7.7 THE DATA INPUT SUBSYSTEM (DIS)

The Data Input Subsystem receives and records data from TDRSS, generates

cloud cover statistics, locates control points, and provides information to the

Communications Management Unit regarding status of input data. Figure 5.7-10,

The Data Input Subsystem, is a block diagram of this subsystem.

5.7.8 THE CENTRAL DATA PROCESSING FACILITY (CDPF)

The Central Data Processing Facility (CDPF) accepts input data on High Density

Digital Tapes (HDDT), converts the serial bit stream to 8-bit types in a Serial

Interface Unit (SIU) and .performs..data .reformatting in the; Lin ..Commutator-Unit. ._

changing the data format from band-sequenced-by-detector to band-interleaved-by-

line. This rearranged data is then processed in the Radiometric Corrector Unit

which utilises the standard radioraetric correction algorithms developed by NASA.

The radiometrically corrected data then drives a Video Terminal Unit (VTU)

for operator observation, and another SIU which converts the 8-bit back into a

12 Mbps data flow. These data are routed back through the Patch Panel Unit (PPU)

to another High Density Digital Tape Recorder (HDDR).

Signal flow for the above can be observed in Figure 5.7-11, The Central

Processing Data Facility. Other elements of the subsystem are relatively

straightforward, operating at data rates of 15 Mbps. The radioraetric correction

is done in a "pipeline" fashion which eliminates the rather extensive system

timing problem which would be formidable otherwise.
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5.7.9 THE PRODUCT GENERATION AND DISSEMINATION FACILITY (PGDF)

5.7.9.1 GEOMETRIC CORRECTION SUBSYSTEM

The basic, working part of this subsystem is the Geometric Corrector Unit.

The balance of the units comprising the subsystem are simply interface devices

with this unit.

Information flow through the Geometric Correction Subsystem begins with-the

input tape being played back on the High Density Recorder (HDDR) as shown in

Figure 5.7-12. Data and time code information are input to the Tape Control

Subsystem, providing commands to the Patch Panel Unit, the recorders and back to

the Communication Management Unit. The serial data stream is converted to 8-bit

bytes in the Serial Interface Unit and the data is'then ready to enter, the Geo-

metric Correction. Unit. <>

5.7.9.2 TAPE DUPLICATION SUBSYSTEM '

The Tape Duplication Subsystem, shown in Figure 5.7-13 , accepts data input

in HDDR or HDTR system tape media and converts it to suitable input to the Magnetic

Tape Units for the Generation of Computer Compatible Tapes (CCT). The Tape Dupli-

cation Subsystem can also duplicate the original HDDR or HDTR input tape, or

duplicate a CCT. Control of the subsystem comes from the Communication Management

Unit and is based upon copy requests submitted from various users.

5.7.9.3 TAPE REFORMATTER SUBSYSTEM

Data input and output from the Tape Reformatter Subsystem is controlled by

the Tape Control Subsystem under instructions received from the Communication

Management Unit, as shown in Figure 5.7-14.

Input data after routing in the Tape Control Subsystem is processed by a Serial

.Interface Unit and then fed into the Line Decommutator Unit. This unit separates

REV. NO.: 2 REV. DATE: 31 Jan 1978

5.7-22



1 L^
123

1 TA
P

E
 S

C
H

E
D

U
LE

R
U

N
IT

LJ

o
OS
U tu

J

52 §1 * a
53 « ,i||;£* *s iisl

iol^ •£ u

>- >-1 x 2S o

e
0)

CO

c
O

u
V

O
u

Q)

O
a)

o

H

i
t--
LO

U
o:
ut—»
u.

REV. NO.: 0 REV. DATE: 30 June 1977

5.7-23



RSDH

i -HJ
§
e

1

MHs52
S5 _
g§>-3
5§^<

!̂

=5—6=

«

«

g>

s8
^ i

2̂

OC
P

,<:

*«:

E 0 |

"1

V
\

ff
sJtoi
3tM

10
>»
in
.a

C/5

o

rt
u

a

cu
CO

.c
H

1-3 Oo

.(- u,U. = JUJ t 5
= ™«c & < E Z (-8

Q£s
I—I
U.

"I REV. NO." 0 \ REV. DATE: 30 June 1977

5.7-24



I+j
U)
X
tn
&
10

Vi.
o

"o
Di

O

rr
*H
I

LO

OJ

=>

u.

86 1
U9 1
^ S5

i T
A

P
E

 S
C

H
E

D
U

L
E

R
U

N
IT

 
|

REV. NO.: 0 REV. DATE: 30 June 1977

5.7-25



band interleaved data (interleaved line-by-line) to separate lines in each band.

Each band output is'then stored on disc, and output to the Band Commutator Unit

in a band-sequential format. The Band Commutator Unit recommutates the data, which

passes through.another Serial Interface Unit, converting the data back into serial

format. It then re-enters the Tape Control Subsystem and is recorded on an HDTR.

5.7.9.4 BROWSE GENERATOR SUBSYSTB!

The Browse Generator Subsystem converts tape recorded data to photographic

film images, corrected for each rotation effects and outputs them for scene

quality assessment and generation of scene "shopping lists". Data input to Browse

Generation Subsystem is through a Tape Control Subsystem which provides interactive/

control from the Communications Management Unit as shown in Figure 5.7-15. Serial

output -data from the HDDR is routed through a Serial Interface Unit, where it is

converted to 8-bit bytes, and through a decommutator in order to select pixels from

the desired spectral band. Spacecraft location is provided by Communications

Management Unit to a Central Interface Unit which establishes the amount of cor-

rection required for earth rotation. The data is then modified to correspond to

this, and converted to latent film imagery by the Electron Beam Recorder.

5.7.9.5 THE FILM GENERATOR SUBSYSTEM

The Film Generator Subsystem accepts data tapes as input and processes them

under Communications Management Unit control into latent image output (See Figure

5.7-16). Input data is routed through a Serial Interface Unit where it is converted

into 8-bit bytes. This data provides the driving signal to a Laser Beam Recorder

which produces high quality, high resolution latent imagery on photographic film.

Annotation of the imagery with sensor, satellite, time and other information is also

provided to the recorder.
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All operational commands to the Film Generator Subsystem originate in the

Communications Management Unit and are started when the input tape reel label is

read by the band input device in the Film Generator Subsystem's Archive Station

Communication Unit.

5.7.9.6 THE IMAGE ENHANCER SUBSYSTEM

The Image Enhancer Subsystem provides the capability to perform image enhance-

ments for non-standard image products. The subsystem is shown in Figure 5.7-17.

Typical of the class of enhancements are "gamma compensation," "level slicing"

and digital filtering. Requests for special enhancement products are handled by

the DMS in a manner similar to normal product requests, in that requests are

received by the Data Management Unit from the Local Transaction Unit or the

External Transaction Unit. The Data Management Unit then schedules the processing

and issues,a tape retrieval request to the archieve via the:proper Archive Station

Communication Unit. Once the archival input tape is mounted and registered, the

Data Management Unit will issue a process request to the Image Evaluation Subsystem

and monitor the status of the output tape product.

5.7.10 FUTURE SENSOR

The configurations of imaging spectroradiometers that have already flown,

including such conspicuous examples as the four band MSS and virtually every

radiometer designed for wavelengths shorter than 20 urn, has been some form

of coaxial reflector, predominantly cassegrain, where the primary is concave and

secondary in convex. Depending upon requirements, these take the form of Dall-

Kirkham or Ritchey-Chretien designs. Nothing that is planned for flight during

the eighties suggests any significant departure from this practice. The largest

earth-oriented design being developed for use up to 1990 is the Large Earth Survey
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Telescope (LEST) which has a diameter of 1.5 meters. Beyond that, there are space-

oriented instruments that are up to 2.4 meters in diameter. The weights associated

with these two satellites are 3300 kg and 9500 kg, respectively, and one can see a

rough correlation between weight and mirror area in this one example. Due to

fabrication complexities induced by weight limitations, it is probably reasonable

to expect that we will not see earth-oriented optical systems appreciably larger

than 1.5 meters until the 90's.

Apertures as large as that on the Thematic Mapper (40 cm) have been object-

space scanned. That is, scanning is accomplished by an oscillating diagonal mirror

interposed (at 45°) between the entrance aperture of the telescope and the object.

There is a strict requirement for flatness of this mirror as it oscillates as well

as for linearity of motion and low induced vibrations. The smaller dimension of

the eleptical diagonal mirror is equal to the diameter of the primary mirror arid

the other .â is is ,1.414...times, as Jarge.̂  -;;T̂ e probiemsvobyipusly

meter of the primary increases. Considering the technology in other areas, it is

probable that these large aperture telescopes will utilize something other than a

mirror for scanning object space. One alternate method is pushbroom scanning

which has the prerequisite that there be one detector for each pixel in a scan

line. [9] These detector's IFOV's are "swept" through the image space electronic-

ally by sequentially addressing each detector in turn. This line of detectors is

then caused to scan the object by spacecraft attitude control or by spacecraft

orbital motion. Figure 5.7-18a illustrates the former while 5.7-18b illustrates

the latter.

The diode arrays that will be used for these pushbroora scanners are in some

cases monolythic arrays of many hundreds of diodes, each coupled to a common bus

through a switch. These arrays are commonly referred to as Charge Coupled Devices

(CCD) owing to the electronic technology associated with the switch. CCD detector
M"""™"'"ni REV. NO.: 2 j REV. DATE: 51 Jan 1978
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FIGURE 5.7-18a Example of Object Space Scan
by Satellite Attitude Control
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FIGURE 5.7-18b Example of Object Space Scan by Spacecraft Oribtal Motion'
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arrays meeting 1980 requirements are essentially available for wavelength bands

froin 0.4 to 1.0 ym, but will not be available for bands above 1 ym for 2-3 years.

Fairchild has made 1728 element monolithic silicon arrays using a buried channel

structure and a distributed floating gate amplifier that are capable of NES values

below 100 electrons. Monolithic CGD arrays for the infrared bands at wavelengths

longer than 1 urn are not available at present for the configurations required for

mid 1980 because monolithic structures fabricated in narrow bandgap semi-conductor

material are not well developed. However, there is considerable work on hybrid

arrays where discrete HgCdTe and PbSnTe elements are "hardwired" to a silicon CCD.

Hughes-Santa Barbara is fabricating InSb arrays for the 1.0-5.5 ym region and

has achieved near BLIP performance on a developmental 8-element array cooled to

77°K. Honeywell recently received a contract from GSFC to develop 9-element hybrid

arrays using both photoconductive and photovoltaic HgCdTe detectors coupled to

buried channel CCD registers. A tentative specification defining detector require-

ments was submitted to Honeywell to determine if hybrid IR-CCD detectors meeting

SEOS-LEST requirements would be available in 2-3 years. Their conclusion based on

current work at Honeywell and Hughes-Santa Barbara is that detectors better than

these requirements would be available during the nineteen eighties.

Detector size available near term is 15 ym for Silicon and 30 ym for IR de-

tectors. If primary mirror diameters stay under 1.5 meters and system speed is

F5 or better, focal lengths of the order of 7 meters can be expected. With a

geosynchronous altitude of 35,000 km, 15 ym detector size and 7 m focal length,

the ground resolution that can be obtained is 75 meters. The same parameters

applied to a telescope deployed in a Landsat-like orbit yields ground resolutions

of 1.5 meters. We can say that a Landsat-like future orbiter carrying an advanced

pushbroom scanner would have its resolution limited by political rather than

technical factors.
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Current and projected user needs are indicating requirements of up to twenty

spectral bands. Only about half these bands would be required for any specific

application of the data so that it may be possible to economize on downlink band-

width requirements in this way. "Scene noise" or random variation of radiance

values is larger than t»S%. Therefore,, it appears that for earth-oriented obser-

vations radiance quantitizations above the eight-bit level would be superfluous.

With these limitations, data rates for any coverage desired can be calculated.
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(1) SENSOR NAME. ACRONYM: LANDSAT-D Thematic Mapper - TM

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPUNE: Land Monitoring

(4) APPLICATION AND OBJECTIVE:

The EOS-A Thematic Mapper is a multispectral high resolution scanner capable of
fulfilling the observational requirements of the EOS program, i.e., improved land
use, water resources and food supply/distribution/management by imaging filtering
and detecting reflected solar radiation from the surface of the earth in several
spectral bands simultaneously through the same optical system.

(5) HERITAGE/KEY PERSONNEL:

LANDSAT MSS, Oscar Weinstein (GSFC), (301) 982-4108

(6) SENSOR DEPLOYMENT:

The observatory will complete 14 6/17 orbits per day in a circular, sun synchronous,
near-polar orbit at an altitude of 705 km aboard a 3 axis stabilized spacecraft.
The local solar time at the north-to-south equatorial crossing is to be
1100 ±:30 hrs.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
Area scanned is 185 Km swath width centered at nadir. Ground resolution element for
the first five bands is 30 m and 120 m for band 6. Radiometric measurements of these
elements are made to within 0.5%of F.S. radiance and quantitized to an .8-bit level.
Line rate is TBD/sec. TBD lines are scanned simultaneously with scan efficiency of TBD,
A low data rate mode ("night only") of 15 Mbps is available wherein band 6 only is
utilized. Maximum data rate is 120 Mbps including overhead, telemetry and calibration
information and including bits for a future seventh band of 30mresolution. Dummy band
7 data is included in the data stream even before band seven is added. -
(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

Bands are defined as follows:

Units are micrometers: Band 1: .45-.52, Band 2: .52-.60, Band 3: .63-.69, Band 4:
.76-.90, Band 5: 1.55-1.75, Band 6: 10.4-12.5. Square wave modulation response for
Bands 1-5 is 35% for 30 m targets and for 120 m targets in Band 6.

Silicon diodes used as detectors in Bands 1-4. And mercury cadmium telluride detect-
ors for Bands 5 and 6, cooled to the region of 100°K by radiative cooler.

5. 1-M&/
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(8) SENSOR DATA MEASURSMgNT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:
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(9) MEASUREMENT AND TRANSMISSION S VSTEM - NARRATIVE:

The EOSA Wideband Communication Subsystem accepts, processes and transmits data
in real time froth the TM and a MSS. Three independent spacecraft-to-ground RF
links are provided. A link via TDRSS 1*hich gives extra-continental coverage and
two identical STDN links for TM and MSS. Four antenna subsystems are employed.
The TDRSS antenna provides an S-band T/R 'feed via the diplexer shown; a wideband
transmit only feed at Ku coaxial with the S-band feed; a monopulse tracking horn
with electronics for pointing the 8-foot furlable reflector and a broad beam CW
beacon source.
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X10) SENSOR DATA RECEPTION AND PROCESSING-- BLOCK DIAGRAM:
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(11) RECEIVING AND PROCESSING - NARRATIVE:

This section intentionally lef^-blank.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:
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(13) DATA DISTRIBUTION - NARRATIVE:
Data Operations within the CDPF:

(a) provide geometric and radiometric correction,
(b) convert all data to HDDT,
(c) convert HDDT to imagery as required,
(d) convert HDDT to CCT's as required,
(e) annotate imagery with alphanumeric data per location code, grey scale image

quality and cloud assessment,
(£) provide extractive processing for selected themes,
(g) generate one band of all imagery from each SEASOP for catalog purposes,
(h) establish and maintain catalog of processed imagery.

Note: Radiometrically corrected tapes are geographically corrected by the CDPF

using s'•"••" resampling to space oblique mercator projection. Tapes are
also available with geographic correction data included but not applied.
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(1) SENSOR NAME, ACRONYM: Visible-Infrared Spin-Scan-Radiometer (VISSR)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

The VISSR provides visible and IR images of the earth from geosynchronous orbit.
Since the instrument is stationary relative.to a point on the earth's surface,
the instrument observes movement of weather across the earth.

(5) HERITAGE/KEY PERSONNEL: Advanced Technology Satellite (ATS) iMulticolor Spin Scan
Cloud Camera (MSSCC)

Instrument Rep.: Larry Rouzer (GSFC) (301) 982-6114
Ground Systems: Ed Bisone fGSFCI f50n 982-4581

(6) SENSOR DEPLOYMENT:

The VISSR is designed for geosynchronous orbit on a spin stabilized satellite
(100 rpm) (SMS and GOES). Instruments are currently in operation on SMS-2, GOES-1,
Launches are planned in June, 1977 (GOES-2) and January, 1978 (GOES-3). Attitude
is maintained to within .1° with a stability of .5 arc sec. maximum.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The Spin of the satellite provides on W-E -scan of the earth. On each scan, 8-scan
lines of visible data and 1-scan line.of IR data are collected.. Following each scan,
the field of view is stepped to the next southerly adjacent set of scan lines. The
full earth disk or any portion may be scanned as directed by ground command. 19.93
minutes is required for full scan and scan return. Each visible channel has an IFOV
of .021 x .025 mrad. (.9 km at satellite sxibpoint) and the IR has a IFOV of .192 mrad
(8 km). There is a 20% underlap in the FOV of the adjacent visible scans. Scan limits
are-*10° of the subpoint, 1821 latitude steps are required for a full earth scan.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: The visible channel detector consists of
eight S-20 photo multiplier tubes (PMT) arranged in a: linear array, and sensitive to
radiation on the .55 to .75 micron range. Each PMT is ,.025 x .021 milliradians. The
dynamic range is 3-80% Albedo. Calibration is by direct solar illumination via prisms
designed to provide 50% Albedo. Signal bandwidth is 210 kHz.

The IR detectors f2) are HgCdTe, cooled to 95°K. The noise equivalence radiance is
1 x 10 watt cm"2 sterad. Each detector is 192 radians x 192 radians and measures
thermal radiance with 10.5 to 12.6 micron range,
detectors simultaneously.

Lenses send the same IFOV to both
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:
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(9) MEASUREMENT AND TRANSMISSION SYSTEM -NARRATIVE:

The Ritchey-Chretien Telescope (Aperture = 16 inch, focal length = 114.7 inch)
focuses the visible radiance onto 8 filter optical cords that are incident upon
the 8 PMT detectors. The .06 x .06 mm dimensions of the fiber form the visible
band field stops. The IR'bands are filtered and routed by lenses to each of the
HgCdTe detectors. The video analog output of all detectors is routed to the VISSR
Digital Multiplexer (VDM). The VDM sequentially samples the inputs, sampling each
visible line every 2 microseconds and each IR line every 8 microseconds. The
samples are multiplexed and converted to digital values, 6 bits for each visible
band value and 8 bits for each IR value.

The VDM operates in either of two modes, as commanded by the ground station. Mode
1 multiplexes all eight visible line outputs into the output stream. Mode 2
averages adjacent visible lines before converting to digital values and reduces
the data rate to 14 Mbps from the 28 Mbps of Mode 1. Track and hold logic within
the VDM holds the signal level of a sample constant while it is converted to
digital format. The values are merged with a scan line identifier, sun pulse
data (calibration) and synchronization data for each scan line. The formatted

(continued on next page)
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CONTINUATION SHEET:

(9) continued

output for Mode 1 is shown in Figure 1 (below). All data is immediately transmit-
ted to ground, there is no buffering nor on board recording. The data is collected,
processed as just described and transmitted to ground during the time that the earth
is in view (±10° of the subpoint) which is about 5% of each scan.

Commands from the ground can select the mode 1 or .2, focus the optical system,
select the scan volume to be viewed. The starting of each scan frame requires a
command from the ground.

16 bits 12 bits . 8 bits 20 bits
01010101 01 (Sync) (mirror position) (Sun data) (filler)

preamble. , •. ' Word 0 • '

8 bits 6 bits
cvis3) cvis4) (viss) - -

Word 1

(vis8)

(Sync) (VIS ) ---- (VIS )
°Word 2

(IR2)

(Sync)

) ---- (VISg)

Word 3 - 1

) - -c- - (VISg)

Word 4 - *

(IR ) (VIS ) - - - - (VIS )
l II Word 5 1 . . etc. to Word 3822

FIGURE 1: VISSR Data Output Sequence [2]
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(10) SENSOR DATA RECEPTION-AND PROCESSING - BLOCK DIAGRAM:

See-Block Diagram .on Sheet 10.

(11) RECEIVING AND PROCESSING - NARRATIVE:

The Wallops Island Command Data Acquisition Station receives the 28 Mbps or
14 Mbps data stream transmitted by the satellite. The signal is transformed into
machine readable bits by a four phase Demodulator/Demultiplexer and transferred
to the Synchronizer-Data Buffer (S/DB). Within the S/DB, the IR and visible data
are separated. The visible data is calibrated to adjust for the bias, etc., of
each detector, sampled and placed in an output buffer. The output data can be
sampled at equal time intervals or equal angle intervals. Three interpolation
methods are provided to maintain the selected resolution regardless of the sampling
method chosen. Similarly, special purpose hardware samples and interpolates the
IR data. A GTE TEMPO computer adjusts each IR response for individual detector
characteristics and uses a lookup table to convert the raw data to temperature.
Corrections are inserted for spacial alignment of sensors and satellite spin rate
flunctuations.

(continued on next page)
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(11) continued-

The data is entered into-an^output buffer along with auxiliary information giving
spacecraft status and housekeeping, data. The added information includes an Earth
locator gridding for IR data. The gridding is a -9th bit that indicates whether
a contrasting spot (boundry) is to be set in this location.

The data resolution can be changed as commanded. The available resolutions are:

Visible Data .9 km (Mode A)
1.9 km (Mode B)
3.7 km (Mode C)

IR Data 8 x 4 km (Normally Chosen)
8 x 8 km (Mode D and NESS Find

t.»y J Line)
*• ' 4

.Thê  8 .x 5 IR data is output in all modes, including D. The two IR channels can
be averaged or individually selected. The IR data is formatted by special com-
puters and sent to the Satellite Field Service Sites (SPSS) and to the Central
Data Distribution Facility (CDDF).

The CDA retransmits the processed data at 2 MHz, to the NESS facility at Suitland
(Figure 2) via the satellite. The NESS facility relays the data via microwave to
the Central Data Distribution Facility (CDDF) in the World Weather Building (WWB)
at Marlow Heights, MD. In normal operation, the WWB receives a full disk image
every 30 minutes over the microwave link and sectorizes, enhances (if requested)
and transmits the images to the Satellite Field Service Sites. Each of 18
spectral purpose digital electronic units called Sectorizers extract, from the
received, high resolution, "full disc" images, two data sections of specified
geographical areas (sectors) at resolutions of .9, 1.9 or 3.7 km (See Figure 3).
In normal operation, seven of the .9 km sectors or 4 of the 1.9 km sectors cover
the continuous 48 states. A 3.7 km resolution sector covers the Western U.S.,
Alaska S Eastern Pacific. These sectors plus one sector covering Puerto Rico are
generated every 30 minutes, unless the satellite is commanded to a special scan
mode to monitor severe weather in a given area. Each sector includes grid
information inserted at the CDA. The sectorizers require about 9 minutes to
receive the data and then 17 minutes to process and transmit it. This time span
is within the 30 minute spacecraft imaging interval. Numerous sectorizes are
located at the CDDF and are controlled from a central console and automated
scheduler. Both visible and the equivalent IR data may be sectorized. (The
full disk IR provided to the SFSS;s from the CDA's bypasses the sectorizers.)
IR data is normally used when visible data is not available (night).

The CDDF photographic laboratory provides sequences of negatives of the images
produced on modified photorecorders, as film loops, showing the motion of the
weather. A PDP-8 minicomputer and 16 mm camera system are used to generate the
film loops. The 8 km IR and 4 km visible image sequence are used. Each loop

(continued on next page)
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LAND-LINE
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VISSR
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FIGURE 2: VISSR Central Site Processing
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(11) continued

includes 6 images taken as a 2 1/2 hour period. The first and last frames are
repeated 20 times and each intermediate frame is displayed twice.

Upon request, the sectorizers can enhance an image to emphasize selected features.
The procedure implements an enhancement curve which re-assigns grey scale values
to increase the contrast between small temperature variances in a selected range.
Normally,, the temperature magnitude is represented by 256 values of grey scale.
Small changes in temperature cannot be distinguished on displays. By reassigning
the magnitude values associated with selected features in a manner that increases
the grey scale differences between values, the brightness contrast between the
values is increased. The specific magnitudes assigned (enhancement curves) are
defined to be proportional to the temperatures in the ranges associated with the
features being enhanced. Currently 13 operational enhancement curves are main-
tained. Applications currently include enhancement of cloud images at specific
altitudes, hurricane development, snow melt images and coastal upwelling.

In addition to being transmitted to the WWB, the VISSR data is transferred within
the NESS facility to the VISSR Ingest Computer (VIC) where all IR data and selected
p̂ortions (sectors) .of visible data are transferred at various resolutions1 to tape.
The IVC can then, read the data from tape, reformat it, and transmit it to a
facsimile device or to a Muirhead Film recorder. The tape is taken to the 360/195
for further- processing. (Full earth 8 x 4 km IR images are always present on the
tape.)

At the 360, the data are mapped into either polar stereographic or Mercator maps
(option) using the following procedure. Picture elements are located on the earth
by using the time, scan line number, sample number and spacecraft location and
attitude data*to calculate the image's latitude and longitude. Currently each
16th sample of each 16th.scan line is located for the 4 or 8 km resolution that is
being mapped. This requires 15,000 locators to be processed and uses 20 seconds
of CPU time on the 360/195. (Over 40 minutes would be required to locate each
sample.) IR and visible data are mapped identically (visible data is expanded to
8 bits). A map storage buffer array of 11.25 mesh per degree (8 km resolution) is
defined. The located samples are used to assign each raw data sample mesh coordin-
ates by interpolating its position between the located samples. The interpolating
algorithm has been highly optimized to provide efficient mapping. The current
mapping program requires 425,000 bytes of main memory and usually requires about
1.25 minutes of CPU per image. The output map consists of 1302 1913 array of
picture elements (full disk). The data is placed on disk for use in building the
output products.

1For 1 km data, resolutions are 1 km for 1/8 of earth, 2 km for 1/2 of
earth.or 4 km for all of .earth. For 2 km, resolution is 2, 4, 8 km for 1/2
or all of: earth.

* (continued on next page)
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Total processing for each frame requires about 10 minutes. This local 360
processing is used for research and other non-operational processing. The
major operational data is provided through the microwave link to the CDDF at
the World Weather Building.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

RAW VISSR DATA
14-24 MHi

i r r i i
(3 KHs C-» LINES)

i»i | L
tlfll ' L

TO SFSS ANCHORAGE

-»• TOSFSSSFO

TO SRS *£, MO. t

.' «». TO SFSS MIAMI

TO SPSS HONOLULA

(3 KH>. C-S LINES)

I II I If
(VISIBLE SECTORS)

J

(13) DATA DISTRIBUTION - NARRATIVE:

Each SPSS has its own set of regularly received sectors from the 12 standard
sectors that are routinely provided. In addition, each SPSS has two floater
sectors that can be centered at any requested point on the earth disk. (Ref.
6 provides a detail definition of the sectors available at each SPSS.)

Full disk IR data and sectorized images are available to VISSR users. The IR,
unsectorized, image data is transferred directly to the Satellite Field Service
Sites (SPSS) where the data is forwarded to the appropriate Weather Forecast
Service Offices. The unmapped images are transmitted each 30 minutes or more
often in case of severe weather. 1500 mi sectors are transmitted to each
corresponding SPSS. The transmission of a single sector requires a dedicated C-S
telephone line. Each SPSS must be connected to the CDDF by a number of C-5 lines
in order to receive multiple sectors each 30 minutes. Each SPSS has photorecorders
to allow redisplay of an image.wttile discussing its interpretation with the WSFO.
This same data is available to any user that taps into the system at an SPSS (GOES-
TAP) via a C-5 full duplex line. . (continued on next page)
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(13) continued

The CDDF photographic laboratory provides sequences of negatives of the images
produced on modified photorecorders, as film loops, showing the motion of the
weather. Each day, two film strips are generated for each VISSR and 15 film loops
for wind traction. These are archieved. The data distributed by the VISSR is
listed in Table 1.

The NESS Satellite Winds Section is supplied with images to evaluate wind magnitude
and direction. A Man-Machine-Interactive Processing System (MMIPS) is used to
determine wind velocity and altitude for three synoptic times per day (OOOOz,
1200z, and ISOOz). The information is used to prepare synoptic analysis and
forecasts for the Global Telecommunications System. Two special sectorizers and
four digital Muirhead devices are dedicated to the Winds processing. Inputs are
.received each 30 minutes.

A C-5 land-line "link from the-NESS Central Facility to the CDA is used to transmit
control and image data. The control data is used at the CDA and consist of such
items as grid points, spacecraft commands and CDA operational commands. The image
data consists of processed images that are transmitted by the CDA via the satellite
WEFAX capability to users with modified (to receive S-Band) APT receiving stations.
The: satellite WEFAX capability is available only when the VISSR is not acquiring
data. Currently eight 10-minute time slots of WEFAX data are made daily. The data
products available by this link include 8 km resolution IR and visible data. This
year, plans are to expand this service to provide 6 hour repetitive IR coverage and
12 hour visible coverage of the full earth disk. This coverage would require 12-Tcm
minute time slots daily.

The Satellite Data Services Branch of the Environmental Data Services National
Climatic Center must archieve VISSR data. Table 1 (on the next page) identifies
the products that are archieved and the volume of data involved for each product.
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(1) SENSOR NAME, ACRONYM: Very High Resolution Radiometer (VHRR)

(2) DISCIPLINE: Earth Observations (31 SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

The VHRR provides day and night high resolution images in the visible and infrared
spectrum. It is designed for use mainly with local .stations for real-time read-out
of the images. Applications are related to cloud images and sea surface temperature
studies.

(5) HERITAGE/KEY PERSONNEL:

Instrument Rep.: A. Martin Eiband (GSFC) (301) 982-5981

(6) SENSOR DEPLOYMENT:

Near Polar Orbit, sun synchronous at altitude of 1464 km, the sensor is designed
for 3-axis earth stabilized orbit (i.e., the spacecraft rotates about pitch axis
once/orbit so that the instrument is always pointed toward earth). Pitch attitude
is maintained within ±1/2°. The VHRR is currently deployed aboard the ITOS/NOAA
series of satellites.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The sensor scans cross track at:400 scans per minute, .The IFOV for both the IR and
visible channels is .87 kmf at siibpoirit''-andVI.'33 km̂ ;-at'the;JSciui'-:iim'its'i; '̂̂ S.cannihg"O'f:'-"-

:

the full earth is provided except at the equator where 320 km gaps occur between suc-
cessive orbits. The scanning mirror revolves 360° so that the earth is in view about
1/3 of the time. The VHRR S/N degrades when both visible and IR channels are active,
so the current NOAA series uses two instruments viewing the earth alternately: one
measuring in the IR channel and the other in the visible channel. The system gathers
69.8131 IFQV's tier millisecond while observing the earth.
(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: Two detectors are used: a mercury-cadinum-
tellerude detector in the IR channel (10.5-12.5 microns) and a Silicon Photo Diode in
the visible channel (.6-.7 microns). The Noise Equivalent Differential Temperature
(NEAT) for the HgCdTe is .5 (at 300°K) to 2.0° (at 185°K) with only one channel active,
and degrades to 4°-25° with both channels active on a single instrument. The operating
temperature of the HgCdTe detector is 105°K. The detector size of both detectors is
,6.milliradians. On each scan, the zero output level is set while the instrument is
viewing space. The output of the VHRR is the difference between the radiating target
and space. Once per orbit an on-board target is illuminated for calibration purposes.
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(8) SENSOR DATA MEASUREMENT AND TRANSMISStON SYSTEM - BLOCK DIAGRAM.

VHHR
RECORDER

IMBSMHs
B60KBPS
(VHRN DATA)

MAND
TRANSMITTER

*-l

«.i i

3M

VHR
PROCESSOR

VISIBLE VHBR

|R -i 1

VISIBLE
SIM
ENHANCEMENT

i .

.ELLIPTICAL
SCAN MIRROR

DAHL
KIRKHAM
OPTICAL
SYSTEM

IR
DETECTOR

FIELD STOP

FILTER

DICHRO1C
BEAM
SPLITTER

FILTER FIELB
STOP

VISIBLE
DETECTOR

WEIGHT: 22 Ib
AVE POWER: -24* V. 265 mA
DIMENSIONS: ABB CM X 324 CM X 274 CM

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The scan mirror rotates at 4̂ 00 rpm. In current configurations, two instruments are
used to maximize S/N ratio. One is 180° out of phase with the other. The first
instrument views earth with its IR sensor active, and while it is viewing space
the second instrument views earth in the visible spectrum. Ground Commands allow
either channel (or both) to be active in either instrument. Normally, output is
transmitted directly to ground. Under control of ground supplied commands up to
8 minutes of data may be recorded. The recorder is played back at the record speed.

The VHRR can be programmed by ground commands to provide image data for a full i
orbit or for selected segments (8 per orbit) of a full orbit.

Data collection rate is approximately 70,000 samples (IFOV's) per second per channel
during the time the earth is in view. This gives a data rate equivalent to 1.1 Mbps
of information. (The information remains in analog form until it is converted at
the receiving station.) The information is buffered and the necessary buffering
and merges the data streams from IR and visible channels of the two instruments.

SECTION NO. 5.7 SENSOR CATEGORY: Imaging Spectroradiotneters
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

MRPT 1617.5 MHt
CENTER FREQUENCY-

RHC
POLARIZATION

MKHlBN- 140 KHI

TRACKINO
ANTENNA
PARABOLIC
DISH
» FT. DIAMETER AT COA'S
18 FT. DIAMETER AT SFO SSPS SW - 140 KHl

SMI/GOES SECTORIZER HARDWARE
DISPLAY SYSTEM
{DIGITAL INTERFACE EQUIPMENT)

4 I/O BUFFERS OF
ax WORDS
EACH . . . . •

DC TO
35 XHl

LOCAL NESS/SUITIANO
USERS 120 RPM
130 RPM DISPLAYS
DISPLAYS

CE BOOK

(11) RECEIVING AND PROCESSING - NARRATIVE:

High Resolutio.n Picture Transmission (HRPT) Receiving Stations have been implement-
ed by NOAA at each CDA (Gilmore Creek, Alaska and Wallops Island, Va.) and at the
NESS San Francisco Field Service Station. The recorded data is played brack at the
CDA's. While the playback transmission is in progress, the signal strength is
degraded so that stations with smaller antenna and less sophisticated systems
cannot receive data. (HRPT stations can be built by any user that so desires.)
The receiving stations are capable of continuous autotrack down to 5° of the
horizon. The input signal is processed to maximize S/N and converted to 8-bit
digital values. All values at the NOAA sites are saved on digital tape as shown
in (10) above. ""*""

Approximately 66 ms of data is generated each scan (for both IR and visible data)
at 1.1 Mbps- The data is received in the input buffers at 7,040 bytes per scan.
Four I/O buffers are used, giving a total of nearly 30,000 bytes of buffers. The

(continued on next page)
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(11) continued

data is packed, telemetry information is added and the results (5,340 byte per
scan for both IR and visible data) is written to tape. The number of samples per
line is adjusted by averaging so that when the image is displayed, the horizontal
scaling will equal the vertical scaling (250 IFOV's per inch). The two digital
tapes (1600 bpi) can hold up to 17.5 minutes of data which is sufficient to record
one full pass of maximum duration.

Following the satellite pass, the tapes are played back simultaneously for display
and transmission to the central site. The Murhead M112 displays provide 2500 lines
in the vertical dimension and the horizontal spacing is scaled equal to the vertical.
The image, plus Up to 100 lines of tabular display data, is fed through a D/A
interface to the display and the C-5 line transmitter. The tabular data includes
orbit and time identification, and HRPT label.

About six-minutes of data is displayed in each image. Each image is centered at the
satellite subpoint and displays an area about 2,580 km on a side. 30 minutes of
processing is required for each 6 minutes of received data. The 8-bits of magnitude
provide for 256 shades-of-grey to be displayed.

the Wallops, VA and. the SFO SPSS stations receive five passes per day and the
Gilmore Creek Alaska station receives eight. The central NOAA facility at Suitland
provides the HRPT stations with satellite orbit characteristics, satellite command
schedules and overlay map guides.

The HRPT stations are designed to allow growth to more advanced sensors and more
elaborate processing in the future.
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(12) DISTRIBUTION-OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

ITOS
RECEIVING
STATION

• CDA - GILMORE CREEK, ALASKA
• CDA - WALLOPS ISLAND, VA

SATCOM-
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A
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VHRR
RECEIVING
STATION

MAIL

SUITLANO MD.

• SFSS-
SAN FRANCISCO

4Kz
C-5
LAND
LINES

(13) DATA DISTRIBUTION - NARRATIVE: The images are transmitted from the CDA's to the NESS
Central Data Distribution Facility and to local users. The VHRR is used only for
research and no general distribution of the data is normally made. Transmission to
the CDDF is:

a - via an analog tape transmitted through the mail (raw data) and injested
on the Image Information, Inc. High Resolution Image Processing at CDDF,

b - over channel A of the SATCOM lines at 8:1 slowdown (normally not used
because of the load it places on the lines),

c - recorded at Wallops Island and playback through the ATS digitizer at a
4:1 slowdown through 48 kHz digital lines to the ATS digital picture
terminals, and

d - via 4 kHz C-5 land-lines.

At the CDDF, the images can be viewed on several available display terminals and
film transparencies can be produced on the Digital Murhead Display (DMD). The data
is used for research purposes and is not further distributed.
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(1> SENSOR NAME. ACRONYM: Heat Capacity Mapping Radiometer (HCMR)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Land Monitoring

(4) APPLICATION AND OBJECTIVE:

The purpose of the HCMR is to conduct a thermal mapping experiment with high
spatial resolution in an orbit optimized for Earth resources sensing rather than
meteorological sensing. Measurements of surface temperature will be made during
successive day and night passes for determination of surface temperature variation.

(5) HERITAGE/KEY PERSONNEL: Similar to the High Resolution Surface Composition Mapping
. Radiometer (HRSCMR) which has already been developed for NIMBUS-E.

Project Scientist - Dr. W. A. Hovis

(6) SENSOR DEPLOYMENT:

The Heat Capacity Mapping Mission (HCMM) will place the HCMR into a 600 km circular
sun synchronous orbit with a nominal 2:00 p.m. ascending node. A six-month minimum
operational lifetime is planned. -The launch vehicle will be a Scout-F launched
from the Western Test Range(WTR). The HCMM launch is planned for the second
quarter of 1978. •

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The HCMR will have a small instantaneous geometric field of view, less than 1 x 1 •
.milliradians, high radiometric accuracy and a wide enough swath coverage on ;the .
ground so that selected areas are covered within the'twelve-hour period correspond-
ing to the maximum and minimum of temperature observed. The sensor will operate
in two channels, 10.5 to 12.5 micrometers (IR) and 0.8 to 1.1 micrometers (visible)
The visible channel is matched to the LANDSAT MSS Band 4.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

Not Applicable

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: ,

The visible channel optics consist of a long wavelength-pass (>0.8um) interference
filter, a parabolic focusing mirror and an uncooled silicon photo diode. The two
10.5 and 12.5 IR channels are provided by inserting a second beam splitter in the
reflected beam of the first. The two beams are focused onto the HaCdTe detectors
using germanium lenses. Final focusing and spectral trimming is accomplished by
germanium band pass filter and germanium aplanats located at the detectors.

SECTION NO.: 5.7 SENSOR CATEGORY: Imaging Spectroradiometers
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i SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM.
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HCMR Block Diagram

(0) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The HCMR is comprised of four major subassemblies mounted in a common housing.
These subassemblies are:

• Scan Mirror and Drive
• Optics .r . •, y. * • >
• Electronics
• Radiant Cooler

; The scan mirror drive assembly provides cross-course scanning of the instantaneous
field of view with reference ito the subsatellite ground track. The optical sub-

! assembly provides increased ground resolution and spectral definition of the three
channels, "the electronics subassembly contains the data amplifiers and housekeep-
ing telemetry and formats the analog sensors data such that it is compatible with
the HCMR data system. The radiant cooler subassembly provides detector operating
temperatures of approximately 115°K.

Scan Drive Subassembly
The scanner design uses an elliptically shaped plane mirror set at 45° to the axis
the scan mirror is fabricated from berythium and is Kanogen coated. The mirror

•.. - - . • : . . , fcontinued on next page")
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(9) continued

is driven by an 80-pole Schaeffer motor which is synchronized to the space-
craft two-phase clock. Angular momentum compensation of the scan mirror is
provided by a separate motor driving a compensation mass. Scan mirror position
is monitored once each revolution by a magnetic pick-up.

Optics Subasserobly
The optical subassembly (see Figure 1) is catadioptric collecting with an afocal
reflecting telescope. The telescope is a modified Dall-Xirkham configuration
which reduces the optical beam from an eight inch to a one inch diameter.
Spectral separation is provided by a dichroic beam splitter positioned in the
collimated beam from the secondary mirror which acts as a folding mirror for
the 10.5 to 12.5 micrometer band and transmits energy at shorter wavelengths.
The electronic and radiant cooler subassemblies are discussed in information
cell #11.

17.0"

IR DETECTOR COOLER

••>*.

FIGURE 1 HCMR Optics Subassembly

SECTION NO.: 5.7 SENSOR CATEGORY: Imaging Spcctroradiometers

5-"I' L REV. NO.: 2 REV. DATE: 31 Jan 1978



SHEET 4 OF

(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

See information cell #8.

(11) RECEIVING AND PROCESSING - NARRATIVE:

Electronic Processing
The detectors produce a small AC electrical signal which is proportional to the
difference in radiant energy between the scene and space. The electrical sig-
nals from the detectors are amplified in each video amplifier to a level required
for processing. Each video amplifier contains a low noise preamplifier, video
filter and postamplifier. A space clamping technique is also used which estab-
lishes the DC zero level once every rotation of the scanner by clamping the out-
put to zero when viewing cold space and holding this level for the duration of the
scan. The overall video amplifier gain will be such that the highest energy scene
will produce a 6-volt output signal. Calibration signals consisting of a 6-step
staircase waveform will be inserted at the amplifier input as well as at the amp-
lifier output on every scan line to provide constant calibration and complete
assessment of the amplifier performance. At the amplifier output, synchronizing
pulses are also gated in along with the output calibration to make up the composite

(continued on next page)
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(11) continued

video. Output buffer amplifiers with unit gain and low output impedance
are used for the output interface to the data system.

The calibration circuitry consists of an accurate, stable digital-to-arialog
converter which will generate a staircase of six one-volt steps for insertion
at the amplifier input and output.

Radiant Cooler
The radiant cooler is designed to cool the patch to 110°K. The patch will be
controlled in temperature to 115°K by a temperature control circuit which
monitors temperature with a thermistor and supplies heat to the patch.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

HCMR ANALOG
TAPES RECORDED
AT GRND STATIONS

ANALOG TAPES
ARRIVED AT
GSFC

I
ANALOG TAPES
ARRIVED AT HCMM
CONTROL CENTER

I HCMM/HCMR Analog Data Flow

HCMR SURVEY
PICTURES
PRODUCED

I
PRELIMINARY
ANALYSIS OF
HCMR DATA

I

SELECTED TAPES
PROCESSED ON
E.I.S

HARD
COPY
PIX

ANALOG TAPES
TO IPD WITH
INSTRUCTION

I
MASTER DATA
TAPES TO
SIOUX FALLS

IPD DIGITIZING
LINE MAKES
DIGITAL TAPES

\

DIGITAL TAPE
PROCESSING

V./
HARD
COPY
CONTOUR ,
PLOTS.
COLOR
PIX, ETC

(13) DATA DISTRIBUTION - NARRATIVE:

Data will be 'collected in real time only, when the spacecraft is within the range
of one of the stations equipped to receive HCMM data. Stations presently equipped
are Rosman, N.C., Mojave, California, Gilmore Creek, Alaska, Honeysuckle, Australia
and Madrid, Spain. Data will be collected in analog form only. Data tapes will
be mailed to GSFC in all cases arid some direct recording at GSFC can be accomp-
lished using the wide band link from Rosman to GSFC.

Data will be Collected at each station for every pass where the station is oper-
ating and where cloud cover is not so extensive as to cover 70% to 80?« of the area
that would be seen.

Pictures from each data pass will be produced directly from the analog tapes to
determine if the data quality is sufficiently good to merit digitization and
further processing. The analog pictures will be made on the EIS machine where a

. . - . : . (continued on next page)
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(13) continued

black and white positive and negative are made simultaneously at a rate of
three minutes per frame. In no case will a station pass result in more than
three frames.

The black and white positives will be scanned to determine if the data is of
good quality and the cloud cover sufficiently small to merit further processing.
The negatives from this uncalibrated picture will be washed and stored for
possible further use.

The positive survey pictures will be utilized to prepare instructions for the
digitization line in the Information Processing Division (IPD). Instructions
normally contain the tape register number, the number of the tracks containing
the data of interest and the start and stop time from be spacecraft time code
recorder on the tape. The tapes and the instructions for processing will be
transported to the digitization facility in the event that the survey picture
facility and the digitization line are not co-located.

Digitization of the analog data will be carried out with the digitization line
established for the Nimbus 5 Surface Composition Mapping Radiometer (SCMR).
The data will be digitized in the format utilized for the SCMR so that the
software developed for the SCMR can be utilized.

The digitized data will be processed first into thermal maps utilizing the
instrument internal calibration for thermal calibration and,the;spacecraft
altitude and attitude information to correct the data to a uniform scale and
grid the data. Based on past Nimbus experience, it is estimated that 20 to
25 usable frames of data will be acquired each day. The processed data will
be converted into calibrated imagery in the facilities of the Information
Processing Division.

Duplicates of the processed tapes will also be produced in the facilities of
the Information Processing Division. With the exception of scale correction,
this may be necessary because of the non-circular orbit possible with a Scout
launch, software for all operations up to this point already exists.

Processing for thermal inertia mapping will require registration of data from
overlapping orbits from a day and night overpass of the same area. The scale
correction and location gridding already applied will be utilized as the first
step in registration. Since the day and night orbits will cross at an angle
of approximately 30° one of the two scenes will be rotated to coincide with
the other. Software for this operation will be developed in cooperation with
the Information Processing Division. The registered frames will be processed
with an algorithm to extract thermal intertia from the temperature measure-
ments and the daytime albedo measurements. From the 20 to 25 frames of useful
data per day an estimated 2 pairs will be sufficiently cloud free and occur in
an area where thermal inertia measurements will be of use.

(continued on next page)
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(13) continued

The processed thermal inertia data will be produced to provide imagery and
magnetic tapes. The imagery will be produced in black and white with gray
scale annotation. Annotation will also include gridding and the times at which
the frames were taken. Data tapes will be duplicated for the primary users
in the IPD facilities. Further duplication will be carried out at a data
depository.

Data Dissemination
Processed data in the form of pictures or magnetic tapes will be sent to the
EROS Data Center, Sioux Falls, S.D. Distribution of the data to investigators
other than at GSFC or the USGS will take place through the Data Center,
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(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Ocean Monitoring

SHEET 1 OF.

(1) SENSOR NAME. ACRONYM: Coastal Zone Color Scanner (CZCS)

(4) APPLICATION AND OBJECTIVE:

The CZCS is a passive imaging, scanning, visible/infrared, spectroradiometer.
Its' purpose is to gather radiometric data to map chlorophyll concentration,
sediment distribution, gelbstoffe (yellow substance) concentration as a salinity
indicator, and temperature of coastal waters and the open ocean.

(5) HERITAGE/KEY PERSONNEL: Similar to Nimbus-5 Surface Composition Mapping Radiometer
(SCMR).

CZCS Applications Scientist--Dr. Warren A. Hovis--(301) 982-6465

(6) SENSOR DEPLOYMENT:

The CZCS is one of nine (9) sensors aboard Nimbus-G, scheduled for launch in
October 1978. Nimbus-G will operate in a sun-syncronous, circular orbit at an
altitude of 955km and 100° inclination. Mission lifetime is scheduled for one
year and CZCS duty cycle is 30%.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The CZCS has six (6) spectral bands, five(5) sensing reflected solar energy and one
sensing thermal emission. Ppur of the five, reflectance solar bands have their
dynamic range set for water targets and will saturate over.mos.t land: scenes. .The
fifth band (700-800nm) has the same spectral location as band 6 of the Landsat MSS
and its dynamic range is set for land targets. Band 6, centered at 11.Sura, will
measure the temperature of coastal waters and ocean currents over the range of
270-305°K, and with the same spatial resolution as the reflectance bands.

(continued on next
(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

Not Applicable

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

the detectors for bands 1-5 are silicon photodiodes. The thermal emission
detector (band 6) is a Mercury Codmium Teluride (HgCdTe) photoconductor. Inter-
ference filters provide the spectral selectivity shown in Table 1. Reflected
solar energy and thermal radiation are collected and focused on the detector
assembly with Cossegrain objective system with a clear aperture of 17.8cm and a
focal length of 71cm Calibration measurements:

(continued on next page)
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7 (A) continued

Swath width for all. bands is ± 800 km about the nadir. The distance between
sub-orbital tracks is 490 km at the equator and the orbit repeats at six day
intervals so that a particular scene might be viewed in passes on three
successive days. At higher latitudes successive day coverage is greater
than at the equator. The scan parameters and view axis geometry are
illustrated in Figure 1 (Sheet 3).

7(C) continued

Table 1

SPECTRAL CHARACTERISTICS

Band No .

Bandwidth

Accuracy

Sensitivity
[mw/(cm2svum)]

NEP (1)

Spectral
Parameters
Observed

1

443±10

.4

11.46

2.1X10"11

Chlorophyll
Absorption

2

520±10

.4

7.64

1.7xlO"n

Chlorophyll
Correlation

3

550+10

.4

6.21

l.SxlO"11

Gelbstoffe

4

670+10

.4

2.86

1.2X10-"

Chlorophyll
Absorption

5

750+50

l.SxlO"10

Surface
Vegetation

6

1150*1

(2)
1.3xlO"12

Surface
Tempera-
ture

(1) NEP - Noise-Equivalent Power (dimensionless quantity)

(2) Band 6 shall have a noise equivalent temperature difference (NETD) of
0.25°K or better at 270°K.
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1.4rad(80°)

+Y «*• -Y

NOTE: FLIGHT DIRECTION COMING
OUT OF PAGE.

+X
FLIGHT DIRECTION

NADIR
(a)

-X

NADIR
(b)'

FIGURE 1 CZCS Scan and View Axis Geometry
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

FREQUENCY
D!STRJBUT!ON

COMMAND CLOCK
COMMAND i/F
UNIT & CROSS
STRIP

REAL TIME CZCS 800 KB/S

NIMBUS-G Spacecraft Data Handling System

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The high data rate ocean color sensor data (SOOkbs) are processed and stored for
a portion of the orbit (approximately 10 minutes). Input and output cross-strap-
ping provides alternate signal routing in the event of failure of a tape recorder
or transmitter. The routing of CZCS data through the NIMBUS-G onboard system is
illustrated in the block diagram above.

The ZIP is part of the data processor subsystem (DAPS), which is the primary
communication system for observatory data. The ZIP is a special purpose processor
for handling CZCS sensor data- In general, the ZIP multiplexes the six channels
of CZCS digital radiometric data, removes nonsensible data, gates-in calibration
and synchronization data, and compresses the resulting output to a rate compatible
with the spacecraft tape recorders and S-band transmission system.

Separate ground data handling equipment will be used to process or display VIP,
and CZCS data for evaluation purposes.
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

REALTIME
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LOCAL READOUT
DAY/NIGHT

CLOUDCOVER
PICTURES

COMMAND
AND

DATA ACQUISITION
STATIONS

I

DATA

COMMANDS

NIMBUS TECHNICAL
CONTROL CENTER
GOODARD SPACE
FLIGHT CENTER

NIMBUS DATA
HANDLING
STATION

GODDARD SPACE
FLIGHT CENTER

NIMBUS DATA
UNIQUE SYSTEM

SPACECRAFT
ENGINEERING

DATA

1

WORLD
MAPS:

.

SENSOR
DATA

*SCIENTIFIC AND TECHNICAL USERS

NIMBUS PROGRAM DATA FLOW

(11) RECEIVING AND PROCESSING - NARRATIVE:

r--

The data from CZCS will be received via 'the NIMBUS Program Data Flow, illustrated f]
above, and will be processed with algorithms developed from field experiment I.
data to produce maps .of chlorophyll absorption. f.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

IMAGES

TAPES

ARCHIVES
NSSDC
(GSFC)

GISS USERS

(13) DATA DISTRIBUTION - NARRATIVE:

NIMBUS Program Data is distributed by the NADUC at GSFC. The following functions
are generally performed for NIMBUS data users:

• Accounts for and distributes experiment data processed by the MDHS

• Processes all photographic data through to archival products

' Reproduces and distributes photographic data to NASA-approved users

• Provides special technical services to the experimenters and data users

• Maintains a complete photographic data reference file
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(1) SENSOR NAME. ACRONYM: Advanced Very High Resolution Radiometer (AVHRR)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

The AVHRR is a four channel scanning radiometer which will have night and day
capability of obtaining high resolution radiometry for determining sea surface
temperature and ice, snow, and cloud information.

(5) HERITAGE/KEY PERSONNEL:
The AVHRR is an extension of the VHRR flown on ITOS missions.

Principal Investigator: Dr. A. Arking, TIROS Office, GSFC

(6) SENSOR DEPLOYMENT:

The AVHRR is to be deployed on the TIROS-N which is planned for launch during the
first quarter of 1978. The AVHRR will be deployed at an altitude of 830 km in a
sun-synchronous, 98.77° retrograde orbit with a period of 100 minutes.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The AVHRR utilizes a- continuously rotating scan mirror in front of a common tele-
scope. The various channels are separated with, dichrpncis and defined with filters.
The two IR channel detectors utilize HgCdfe and InSb with cooling, the visible
channels use silicon detectors.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

Not Applicable.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The AVHRR has four channels as follows: (1) 0.55 - 0.7um, (2) 0.72 - l.Oum,
(3) 3.55 - 3.93um, (4) 10.5 - 11.Sum. The AVHRR will have an Instantaneous Field
of View (IFOV) of l.Smrad2 and a scan rate of 360 RPM. Duty cycle will be con-
tinuous with a design life expantancy of two years.

SECTION NO.: 5.7 SENSOR CATEGORY: Imaging Spectroradiometers
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18) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:
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(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

IR channels look' at cm-board calibration target built into instrument. No on-
board visible calibration targets are provided. High and low resolution down-
links are provided. Data averaging done on spacecraft for low resolution
information.
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(1) SENSOR NAME. ACRONYM: Large Earth Survey Telescope (LEST)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Land/Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

LEST is a conceptual future system for providing multispectral imagery, atmospheric
sounding and data collection for earth resources and meteorological applications.
Since from its synchronous orbit position, the LEST maintains a constant position
with respect to earth» sites of interest may be viewed on command, continuously
or repeatively. NOTE: All information refers to the "Full Up" configuration.

(5) HERITAGE/KEY PERSONNEL: This is a conceptual design and bears little resemblence to
anything in existance. Elements of the design are found in the Space Telescope and
the Thematic Mapper. Detailed planning is incomplete. Diagrams shown here are
representative only. Milt Ritter, GSFC 301/982-4382.

(6) SENSOR DEPLOYMENT:
Deployed into geostationary orbit (35.9 x 103 km) over the equator at 105° West
longitude. LEST is the 'primary sensor on the Synchronous Earth Observation
Satellite (SEOS), planned for a mid-1980's launch by either Titan Hie or Shuttle/
Tug Combination.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The telescope used with the detector system is a 1.4 meter diameter f/l.S Cassegrain
having a primary constructed of ultra low expansion (ULE) material, using eggc.rate
techniques. Telescope pointing and; E-W scan is provided, by spacecraft motion
produced by control moment gyro (CMC). N-S scanning is accomplished by pushbroom
arrays in three different focal planes: f/5 for visible f/2 for two of the near-IR
bands and f/1.3 for the far IR and one of the near-IR bands. In all, 22 bands are
provided with simultaneous operation in up to ten bands. Switchable filters are

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS): N/A 7(A) Continued:
provided to allow operation in alternate modes; e.g., Earth Resources and Meterolo-
gical. Ground resolution element size for visible-bands is 100 meters and 1000
meters for thermal bands. A non-imaging 23-channel atmospheric sounder is also
incorporated.

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:
Four different detector materials are utilized in linear arrays composed of discrete
detectors, sequentially interrogated by integrated CCD switches or by hybrid devices.
The material used for the visible band is Silicon (Si). Lead Sulfide (PbS) and
Indium Antimonide (InSb) are used for the near-IR bands and Mercury Cadmium, Tellur-
ide (HgCdTe) is used for the thermal IR bands. One of the InSb arrays and the HgCdTe
arrays are cooled to 110°K by passive radiative cooler. Optical bandpass is limited
by filters mounted in arrays and can be selected on command.
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(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The LEST combines 22 channels of imaging optics in the visible and infrared and an
atmospheric sounder. For imaging, three different images are formed in different
focal planesi Five different kinds of pushbroom arrays, constructed of four
different detector materials, scan the images. Narrow band filters are called up
by ground command as appropriate to these modes of operation: (a) earth resources,
(b) meterological search, including 13-band IR sounder, (c) meterological monitor
and(d) 23-band IR sounder. Not all bands are downlinked simultaneously. A max-
imum of 23 channels are sampled by the A-D converter. Available choices of
combinations of channels along with the slew rates are summarized in Table 1.

5.1
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(10) SENSOR DATA .RECEPTION AND PROCESSING - BLOCK DIAGRAM:
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(11) RECEIVING AND PROCESSING - NARRATIVE:

The portability of the sensor, in geostationary orbit, combined with the TIR
capability, produce a high volume data generator capable of imaging phenomena
in real-time in the Western Hemisphere on a continuous basis both day and night.
Ground facilities capable of handling these data streams will be dedicated facili-
ties. Pointing accuracy is ±1 km at the subpoint. Scanning is accomplished by
alternate E-W, W^E scans as shown in Figure 1 (see continuation sheet 5/6).
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FIGURE 1 Pointing/Scanning Pattern of LEST
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

This space intentionally left blank.

(13) DATA DISTRIBUTION - NARRATIVE:

Planning of ground stations, image preprocessing and data product distribution is
incomplete and unavailable at this time. For representative examples of the type
of facilities which will be required, see the Thematic Mapper and VISSR/VAS data
sheets.
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Section 5.8

INTRODUCTION TO ATMOSPHERIC SOUNDERS

In 1959, Lewis D. Kaplan of the Massachusetts Institute of Technology wrote

a paper which appeared in the Journal of the Optical Society of America in which

the first suggestion was made that the temperature structure of the atmosphere

could be inferred from radiation measurements. Soon after that, the literature

reflected an abundant interest of some segments of the technical and scientific

community in using radiation measurements made from a satellite to infer the

distribution of temperature along a vertical line starting at the earth's surface

and going up to 30-45 km. Tl̂ ere is current interest in the region of the atmos-

phere up to 100 km. The obvious motivation for the majority of this interest is

the study of weather phenomena on a world-wide basis. With rapid global coverage

by satellites, the potential of studying the.world-wide oceans of\air currents,

that determine our weather is enormous. In this country and in other selected

locations, measurements of the atmosphere can be made by radiosonde. It is apparent

that these free-flying balloons routinely make direct, multi-parameter measurements

of atmospheric properties to the 10 millibar level (> 30 km). However, on-the two

thirds of the globe which is covered by water and in soire foreign countries, the

network of sites from which radiosonde launchings are made is too course to produce

the fine scale temperature reconstructions upon which numerical weather information

is based. Geostrophic wind shear fields cannot be evaluated in these remote areas

without the thermal gradient information. At this writing, instrument design has

progressed to the point that intercomparisons of data derived from satellite and

from radiosonde soundings are basically favorable. Horn et al [1] indicate that

the use of these satellite data has the potential for producing significant improve-

ment in numerical weather predictions, if the general characteristics and accuracy
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of the data are properly assessed. Imprudent mixing of satellite data with con-

ventional data, it is claimed, can be counter-productive, offsetting any advantage

provided by the additional data.

Many comparisons have been made [2] between satellite measurements and

manual soundings. In one study, 150 pairs of radiosondes were released simulta-

neously within a distance of 100 km. RMS differences between pairs ranged from

1.3°C to 2.3°C in various layers between 1000 and 100 mb (SL-150001) [3]. The

differences could be caused by several factors including small-scale atmospheric

variability along the path of the rising balloons and minor differences in the

instruments. Little significance, then, should be attached to differences between

satellite soundings and radiosondes which are smaller than 2°C. On the other hand,

more complete'data comparisons that take into account vertical resolution and the

impact' of the data on models can be complicated and difficult to understand [1] [4].

It should be emphasized here that the method utilizing radiative properties does

not measure specific temperatures at specific altitudes. Rather, a vertical temp-

erature structure is inferred.

Remote soundings from satellites depend for the most part upon reradiation of

solar energy by gasses which are uniformly distributed in the atmosphere. Carbon

dioxide is known to be present in the atmosphere up to 30 km and uniformly mixed

to within 1 or 2 percent. Its -emission spectrum when viewed from above will depend

only on the vertical distribution of atmospheric temperature [4]. In literature

written primarily by Clark, Hilleary, Hanel, Conrath and Houghton, it has been

illustrated that by 1970, the mean temperature of a 200 mb thick layer could be

measured to within 2eK

The spectrum Of solar radiation as it arrives at the surface of the earth is

shown in Figure 5.8-1. Of the radiation which arrives at the earth's surface,
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SOLAR SPECTRUM
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FIGURE 5.8-1 Solar Spectrum

approximately 45% is reflected back into space and 55% is absorbed by the earth to

maintain its temperature. The earth acts essentially as a blackbody, and all of

its emitted radiation is in the infrared and much of it in spectral regions where

the atmosphere absorbs strongly. Much of it is thus absorbed by the atmosphere and

is in turn re-radiated by the atmosphere in amounts depending upon the concentration

and the temperature of the absorber. The absorber of interest here is CO , the

transmission characteristics of which are showri in Figure 5.8-2. As can be seen

1
I

CO*

I _L

1 3 5 7 9 1 1 1 3 1 5 1 7

WAVELENGTH. MICRONS

FIGURE 5.8-2 % Transmission - CO

from the figure, the atmosphere is essentially opaque in a narrow band centered

at about 15 ym. As viewed by a satellite, the Earth's radiation is represented

by Figure 5.8-3.
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FIGURE 5.8-3 Earth's Radiation as Viewed by a Satellite

The principle upon which the inference is based can be understood by consider-
•*

ing an atmosphere of uniformly distributed absorptive gas (in this case (CO.) which

is horizontally stratified and in thermal equilibrium as shown in Figure 5.8-4.

O
SATELLITE (POINT OF MEASUREMENT)

lv•- TOTAL INTENSITY

RE-EMITTED RADIATION

LIMITS OF INTEGRAL

(EARTH)
RADIATION

DIFFUSING SURFACE

FIGURE 5.8-4 Earth Radiation and Atmospheric Absorption
Viewed by a Satellite

At the spectral frequency v where the absorption coefficient is Ky, Kirchoff's

Law states that the emitted intensity from the slice shown in Figure 4 in the ver-

tical direction will be

where By = Planck function at frequency v and temperature T. Of this radiation,

a portion Tv will reach the top of the atmosphere.
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TV = exp (-lKvdu)

The limits of the integral in this expression are from the slice to the top of

the atmosphere.

If we integrate over all such slices to determine the total radiation (I )

at frequency v reaching the top of the atmosphere, we have:

Iv *J Bv(T)Kv du

i

Bv(T)dTv

TV = 0

It is convenient to use an altitude dependent variable y =-ln p where p is

the pressure in atmospheres. In this case:

-/Kvdu)

= J Ryfl1) K(y) dy ;

In other words, Iv is the weighted average of the blackbody intensity, \the 'weight-

ing function K(y) being -j-̂  , It can be demonstrated that the radiation of a given

wavelength reaching the top of the atmosphere is distributed in elevation according

to a curve similar to that shown in Figure 5.8-5. In the example shown, it can be

10-

100-

1000

WEIGHTING FUNCTION

FIGURE 5.8-5 Weighting Function
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seen that the majority of the radiation of the particular wavelength reaching the

top of the atmosphere originated at the 100 mb level or about 16 km. Had another

wavelength been chosen, the majority of the radiation reaching the top of the

atmosphere would have originated at some other altitude. To further illustrate

this, refer to Figure 5.8-6. Here are illustrated the vertical distributions of

radiation at six different wavelengths as viewed from the top of the atmosphere.
0.01,
.01

1000

2 - 14.762JU

3 - 14.39M

4-14.119/1

6 - 13.786JZ

6 - 13.38J1

FIGURE 5.8-6 Weighting Functions at Several Wavelengths

The flux F fW Cm Sr ) incident on a radiometer sensitive to a narrow

spectral interval A v centered at frequency v can be related to an equivalent

radiometric temperature T by the relation

F = Bv (T) A v

where Bv(T) is the Planck function appropriate to frequency v and temperature T.

In order that T be derived with a maximum error of 1°K, if we are dealing with

CO in the 15 urn band, F must be measured with a maximum error of about 1%. If

errors are greater than these (particularly the relative errors between different

spectral channels) serious degradation of the information content of the measure-

ments will result [4].
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For measurements in upper atmosphere, the weighting functions must be well
• • ^*

defined. This can be enhanced by selecting observed spectral regions where the

absorption coefficient of the gas whose emission is being observed is as nearly

uniform as possible.

The device for limiting the spectral input to the various detectors (filters,

grating, etc.) must be reasonably narrow spectral bandwidth (of the order of 2000

angstroms). An argument can be made [5] [6] that measurements of five or six channels

are required to adequately describe the atmospheric temperature profile up to 50

under cloud-free conditions, and that additional channels add little except when used

to assess cloud cover, or to describe the water vapor level. In addition,, the

measurements made in the several channels must be acquired from the same field of

view.

Objects whose temperature is above absolute zero radiate microwave energy in

addition to the radiated infrared. As a result, the rationale developed above

can be applied to microwave frequency as well as to optical frequencies and a set of

weighting function curves similar to Figure 5.8-6 can be developed in the microwave |
3

frequencies. One band which is in use in the 60 GHz (5 mm wavelength) 0 absorption]

band. The advantage of using microwave is that coverage can be obtained under all jj

weather conditions and frequency discrimination is simplified. Current remote

sensors for temperature profile.work are combining microwave channels and optical

channels help in solving the anomolies caused by cloud cover.

An illustrative sample of a simple VTPR designed for use on early ITOS vehicles

is shown diagramatically in Figure 5.8-7. It viewed earth in the nadir direction

from the stabilized vehicle in eight optical channels. Six are in the 15 ym

CO- band, as described above, one channel is in the rotation band of water vapor at

5.7 microns for cloud detection and one is in the atmospheric window at 11.12
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• PRIMARY SPHERICAL MIRROR
(GOLD PLATED)
(ELECTROFORMED)

REFLECTIVE PYRAMID
(ELECTROFORMED)

SECONDARY SPHERICAL MIRROR
(GOLD PLATED GLASS)

*- BLACK CHOPPER

FILTER WHEEL

PIVOTED MIRROR
(ALUMINUM. KANIQENIZED
ft GOLD PLATED)

IRTRAN 4 FIELD LENS

ON AXIS RAY.S

FIGURE 5.8-7 ITOS VTPR - Optical Layout

microns for detection of the surface temperature. The wavelength intervals and

widths are determined by the characteristics of interference filters mounted on

the rim of a wheel rotating at 60 RPM. The advantage of using the single detector

and changing filters is that relative measurement accuracy between channels is a

constant and detector calibration considerations are minimized. In operation, a

column of the atmosphere is viewed by an f/3 folded telescope of 2.6 inch diameter

sequentially through the eight filters on the wheel. A chopper wheel mounted

directly in front of the detector chops the radiation at a rate which is high
/ *

compared to the filter rate. The pulsating voltage thus generated at the output

of the detector is transmitted to earth using digital telemetry. The field stop
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which limits the radiation arriving at the detector is sized to provide a 2.2°

field of view which is scanned beneath the satellite by an oblique mirror.

Measurements are averaged over eight cycles which, together with satellite motion,

gives the instrument an equivalent of 4° FOV in the along-track direction. The

power consumption of this ten pound instrument is two watts. The accuracy of

spectral radiance measurements is 0.5%.

Sounders can be implemented on both geosynchronous and polar orbiting satel-

lites. Polar orbiting sounders scan cross-track to collect measurements along a

line about ±700 km from nadir. The forward motion of the spacecraft provides the

along-track progression of the scan. Each orbit a 1400 Km wide swath around the

earth is sounded, providing total earth coverage each 12 hours. (Depending on the

cros.s-track scan width, there .may be small gaps in the coverage at the .equator.)

Current polar orbiting sensors are in view of each ground station for about 20

minutes of each 2 hour orbit". 'Future polar satellites 'will use^geo synch'rorioiis'

communication satellites to lengthen communication time with ground stations.

Data rates from polar orbiting sounders are less than 1000 bits per second.

Geosynchronous satellites are limited by the resolution they can achieve at

their high altitudes (35,000 km). However, the fact that they are stationary

relative to a point on the earth allows them longer integration periods, improving

the signal to. noise ratio and compensating for the altitude. The determining of

accurate geographic position of geosynchronous soundings requires a highly stable

spacecraft with precise atitude control. Geosynchronous systems now being planned

will use earth landmarks to achieve geographical locating accuracy of less, than 1km..

The geosynchronous sensors have more flexible scanning capability than polar orbit- !:
?

ers. Commands from ground allow the user to immediately look at a selected geograph|

ic area on the earth at a selected repetition frequency. (Coverage is limited to the[i
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earth disk in the view of the satellite.) The resolution of the satellite

decreases rapidly as the sensor is scanned off the subpoint. (Maximum coverage

is about 40° lat:) In general, the scanning and temporal flexibilities of the

geosynchronous sensors give them an advantage when monitoring current weather

development for storm warning and mesoscale forecasting, while global coverage

provided by the polar orbiting satellites is valuable for synoptic weather

monitoring and prediction.

Data rates produced by the sounding sensors are low compared to imaging

devices. The existing polar orbiters produce about 12,700 measurements per orbit

and require about' 1 1/2 hours of 360/195 computer time to produce about 3000

.soundings each day. With improved resolution to 25 km (which appears to be the

highest;,resolution* required by the users) the data rates and processing requirements

would increase by a factor of four, still well under today's data rates for imaging

radiometers. Geosynchronous satellites which have the potential for resolution

finer than 25 km are probable candidates for monitoring severe storms. But as reso-

lution is increased, integration time can be expected to increase and the data rates

would decrease. The integrated signals are transmitted to the ground for process-

ing into atmospheric soundings. Ground processing procedures for both geosynchronous

and polar orbiting sounding data satellites are similar.

Figure 5.8-8 is a block diagram of the ground processing required;to generate

atmospheric soundings. An ingest program receives, error-checks and formats the

data transmitted from the sensor. The raw data is normally recorded as it is

received and the ingest system has the capability to play back the recorded data
; «»..•'-•

into the normal data processing paths. Most of the sounders perform calibration

The assumption is made that integration of the signal over time is performed
on board the spacecraft.
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FIGURE 5.8-8 Outline data flow for analysis of sounding data. In the
case of data from a polar orbiting spacecraft, orbit and attitude data
will be made available from external sources.
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measurements at regular intervals, normally once per- scan. In most cases, space

is viewed to get a cold temperature measurement and an interior object is viewed

to get a known warm temperature. These measurements are multiplexed into the data

stream. These calibration data along with other calibration data determined before

launch, are used to adjust the voltage readings for variances between detectors

(detector bias) or spectral channel variations. The adjusted raw voltages more

consistantly and accurately represent the actual radiation sensed by the detector

sensor in each spectral band. These voltages can be converted to radiances by the

application of a matrix of coefficients.

The measurements are geographically located to the earths surface using

altitude and orbit parameters of the spacecraft. Normally time information is

transmitted with the sounding data to allow the ground system to determine the

position of the spacecraft for each measurement. For geosynchronous satellites,

image data landmarks will be correlated with soundings and used to locate the

satellite IFOV on the earth.

The ground processing system uses a matrix of measurements (8 x 8) to generate

each sounding. The matrix smooths the reading of the individual radiance profiles

and helps relieve the problem of cloud cover. Current sounders, operating in

the IR spectrum, cannot penetrate solid, opaque clouds. While they can penetrate

light clouds and broken clouds, the clouds will bias the radiance profile toward

the cold temperature associated with their altitude. The procedure for adjusting

for partial cloud cover is based on two principles:

(1) the radiance in a column is a linear function of the cloud
amount in that column (within limits), and

(2) the magnitude of the effect of partial clouds is dependent
upon and unique to spectral band.
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A graph is plotted of the values of intensity (I) for a window channel vs. the

intensity received in a second spectral channel from the same IFOV's. Where the

the changes in intensity are due only to cloud cover variations, the plotted points

will define a straight line (see Figure 5.8-9). Using a first guess temperature

profile and a surface temperature measurement, the theoretic clear-atmosphere

radiance is computed'for the window channel. This window channel radiance

defines a point on the plotted line that gives the corresponding clear-atmosphere

radiance for the second spectral channel.

CALCULATED CLEAR-AIR
RADIANCE USING SURFACE
DATA

INTENSITY

WINDOW CHANNEL

FIGURE 5.8-9 Technique for Calculating Clear Atmosphere Radiances

A second technique can be used to eliminate the need for the first guess

profile values and the surface temperature. Two measurements are taken in each

of two window channels and the straight line is plotted as in the previous method.

For these window channels, a plot is generated of the intensities produced in each

channel by identical brightness temperatures of an opaque surface. (The Planck

Function values of the waves.) The point of intersection of the straight line and

the Planck Function is the value corresponding to clear column measurement of the
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surface (see Figure 5.8-10). Line plots of each sounding channel vs. the window

channel can then be developed and the clear column values determined for the window

channel can be used to determine the clear column values on the sounding channels

as in the first method.

60'.

40

Ja 30 .

50

FIGURE 5.8-10 Determining Clear Column Radiance in a Window Channel

With the clear column radiances developed, the actual temperature profile can

be generated. There are two basic methods for generating the profile: Regression

Method and the Minimum Information Solution Method.

The Regression Method has been the most successful. Basically, a set of

regression coefficients are generated by processing a number of co-located radio-

sonde and satellite measurements. The radiosonde measures atmospheric temperature

from which brightness temperatures are developed for fifteen levels of the

atmosphere. Coincident satellite measurements in all 8 spectral channels are

regressed against the brightness temperatures to achieve a 15 x 8 matrix of
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coefficients relating satellite sensed radiance to brightness- temperature at 15

levels of the atmosphere. These coefficients are applied to independent satellite

measurements to get the desired profile.

The Minimum Information Solution guesses at a profile, then applies the

transmittance characteristics of the atmosphere against the guess to determine if

the radiation generated by the guess profile is consistent with that sensed by the

sounder. If not, the guess is modified and the process repeated. The first guess

may come from (a) existing forecasts, (b) surface based measurements that are inter-

polated in time and space to the location of interest, and (c) a regression of

historical data. The first guess is used to modify the transmittance functions

because they are slightly temperature dependent. The transmittance functions are

applied to the guess profile and integrated to the surface of the atmosphere to

obtain total radiance at the top of the atmosphere. The calculated radiance is

compared to the measured radiance and if the values agree within some acceptable

delta, the guess profile is considered as the actual temperature profile. If the

values do not agree the guess is modified and the process repeated.

This section has thus far addressed only the meteorological applications of

sounders. Another major application of optical spectrographic-type instruments is

in the detection of chemical constituents in the atmosphere. Several methods are

presently being developed including active laser methods which will be discussed

under the LIDAR section. Methods which can be covered in this section include inter-

ferometric schemes and laser heterodyne methods.

From a detailed study of the spectrum of light from a gas mixture, one can

deduce: [16]

(a) Composition (what molecules are present, e.g.
02, N2, H20, C02, NH3, CH4, etc.)
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(b) Abundance (how much of each molecule, including
isotopes)

(c) Temperature

(d) Pressure

(e) Velocity (how fast the gas mixture producing the spectrum
is moving toward or away from us)

(f) Turbulence (how fast one part of the mixture is moving
relative to another part)

(g) Field Strengths (magnetic or electric)

These spectra are of two basic types: (a) absorption (dark line) spectra where

light passing through the mixture is attenuated at wavelengths characteristic of the

gasses and (b) emission (bright line) spectra where the heated gas re-radiates light

energy at wavelengths which are characteristic of the gas. Astronomers have for
• • . • - • .

years made detailed studies of the spectra of light from planets to deduce the

chemical composition of their atmospheres. Recently, new information and methods

have changed traditional thinking about some of these measurements.

A typical spectrometer as shown in Figure 5.8-11 consists of a radiation

collection means, a dispersion element such as a prism, gracing or similar

device for .breaking up the incoming light according to wavelength and an analyzing

device which could be film (except that for infrared energy will not register) or

a detector. A slit is used in front of the detector to limit the spectral width of

light entering the detector and thereby improves resolution. High spectral resolu-

tion is attained by.narrow slits, which reduces the amount of light reaching the

detector. As slit Widths are reduced to increase spectral resolution, the light

reaching the detector decreases and eventually cannot be seperated from background

radiation.

| REV. NO.: 2 j REV. DATE; 31 Jan 1978

5.8-16



RSDH

CONDENSER COLLIMATOR

ENTRANCE
SLIT

EMITTING WAVELENGTHS
X« cm, XM CBI, Aj cm,... etc.

X

DISPERSING
ELEMENT

CONDENSER
DETECTOR

OUTPUT

EXIT
SLIT

FIGURE 5.8-11 Schematic Representation of a
Photoelectric Dispersing Spectrometer

An alternative which provides relief from this impasse is the Fourier Spectrometer

which is shown schematically in Figure 5.8-12. It consists of an entrance aperture

FIXED PLANE MIRROR

CONDENSER

ENTRANCE
APERTURE

EMITTING WAVELENGTHS
A* CM, A^ CfH, A« Ctn, ... AtC.

(7///7/1
' : i

MATOR ,
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> i

icrrsj

< ,
__

/

PLANE MIRROR
MOVING WITH
VELboTY
V. em/me

CONDENSER

| DETECTOR

OUTPUT FREQUENCIES

f • V/X C/S

*3'V/X3C/S

FIGURE 5.8-12 Schematic Representation of a
Fourier Interference Spectrometer

and lens (or mirror) which can be large, a Michelson interferometer, a lens or

mirror for condensing the radiation a circular exit aperture and a photoelectric

detector.
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The Michelson interferometer was the invention of A. A. Michel son, the first

American Nobel Laureate. It consists of a plate which reflects half and transmits

half of the incident radiation (called a beam splitter) and two flat mirrors which

intercept these two beams and reflect them back to the beam splitter (see Figure

5.8-12), As a consequence of the phenomenon known as interference, the fraction of

the radiation which is again reflected from, or transmitted by, the beam splitter is

controlled by the difference in the distances of the two flat mirrors from the beam

splitter (called the path difference). As the path difference changes, so does the

relative proportion of the two beams transmitted or reflected. The transmitted

fraction passes to the detector. If light of only one wavelength is incident on the

system, and if one' of the flat mirrors moves at a constant velocity with respect to

the other, the output of the detector will vary in a periodic fashion at a rate which

depends only on the wavelength and the mirror velocity. Consequently, if now two

or more individual wavelengths are incident on the same system, the detector will

produce periodic signals that are related to the relative wavelengths. Therefore,

if we know either (a) one of the incident wavelengths, or (b) the mirror velocity,

we can find the unknown wavelengths and their relative intensities. A spectrum is

precisely this: a plot of wavelength against relative intensity. If the incident

radiation is continuous (that is, comes from a hot body such as a tungsten filament

lamp), the outgoing frequencies will also form a continuous set. By means of a

Fourier Transformation (whence comes the name Fourier Spectroscopy) and a digital

computer, one can produce the required spectrum. A typical output, called an inter-

ferogram, is shown in Figure 5.8-13. To overcome some of the physical difficulties

of building the classic Michelson interferometer, a variation known as the "cat's

eye interferometer" was developed. In the cat's eye, the flat mirrors are replaced

by retroreflectors, which are more tolerant to misalignment. Early models of this
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FIGURE 5.8-13 A typical output from a Fourier Spectrometer.
The plot is called an interferogram and, iji this case, was
generated by observing a hot tungsten filament in the neigh-,
borhood of 2-2.5 y wavelength (1 M = lO'̂ cm).

were built in the late sixties at JPL. A later version, shown schematically in

Figure 5.8-14 is not unlike the unit to be flown as the ATMOS instrument aboard

Shuttle.

The laser which is shown in the diagram is a monochromatic source which is

directed through the interferometer along with the radiation being analyzed. The

effect on the laser's radiation is measured and is used to null the servo which

drives the movable retroreflector.

Satellite experiments planned for the near term on Nimbus-G (1978) and AEM-B

(1979) will concentrate upon measurements in the stratosphere [18]. These will

include vertical profiling of stratospheric H_0, 0 , oxides of nitrogen, HNO , CO

and aerosols using atmospheric horizon viewing (limb) instruments: the Stratospheric

and Mesospheric Sounder (SAMS) and the Limb Infrared Monitoring of the Stratosphere

(LIMS), and the Stratospheric Aerosol Measurement Radiometer (SAM II). Also, further

stratospheric Ojmeasurements are planned for Nimbus-G: Solar Backscatter Ultra-
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violet (SBUV) and Total Ozone Mapping Radiometer Spectrometer (TOMS).

At this stage the NASA program plan includes a mid-term (1984) multisensor

environmental monitoring satellite which will include both stratospheric and

tropospheric pollution profiling measurements. The experiment definition for this

major spacebome pollution mission will be based upon the results of the near term

experiments planned for Nimbus-G, AEM-B and shuttle spacecrafts, as well as upon

aircraft flight programs and ground based measurements.

High resolution interferometer measurements of stratospheric trace constituents

(0_, CH , HNO , CO, C0_, NO ) have been conducted from aircraft and are planned for
«J *t J £ . A

the 1980 Shuttle-I experiment: Atmospheric Trace Molecules Observed by Spectroscopy

(ATMOS) which will include, in addition, the measurement of HC1 and chlorofluoro-

methanes (CFM). Another technique, correlation spectroscopy, reduces the effects of

interfering gases by placing a sample cell containing the gas of interest (CO, HC1,

N_0,. S0_) in: a portion of the optical path of- the instrumjent/(Gas Filter Correlation

Radiometer, Correlation Interferometer). A spaceflight test of this technique as a

tropospheric pollution experiment is planned for the Shuttle OFT-2: Measurements of

Air Pollution from Satellites (MAPS). This will be the first tropospheric experi-

ment from space. Another version of the gas correlation technique using two sample

gas cells at different pressures (differential correlation radiometer (OCR)) is under

development for operation in the sun viewing or reflected solar radiation modes.

The OCR has the potential to profile twelve pollutants with much greater sensitivity jj

I
to pollution concentrations close to the earth's surface. Other pollution profiling

techniques being developed are limb scanning radiometers that observe in the infrared

and microwave regions and a high spectral resolution technique using laser heterodyne

detection in the infrared. Another future stratospheric experiment for measuring

HC1, HF, CFM and others is the Halogen Occultation Experiment (HALOE) which observes |

solar radiation through the atmospheric limb.
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Near and mid-term development efforts have concentrated upon passive sensors

i.e.., sensors that passively observe signals originating in the atmosphere or from

the sun. Passive techniques suffer a severe fundamental limitation in vertical

profile resolution and consequently vertical profile accuracy. Long term efforts

will stress techniques with the potential for much higher vertical resolution and

accuracy, namely: active experiments which use a laser as the radiation source or

probe. Such laser experiments have the capability of making direct vertical profile

measurements when operated in a pulsed radar mode, a technique known as Light

Detection and Ranging (LIDAR), and using a combination of atmospheric absorption and

scattering of the laser radiation called Differential Absorption and Lidar (DIAL).

Microwave sensors which will be used in the near-term and mid-term for

(primarily) meteorological purposes are in an advanced state of development. Their

use.is expected to expand in the 1990's for measuring water vapor and liquid water.

Area's; of increased interest during this time will include the boundry layer of the

atmosphere consisting of the first three hundred meters.

One can project that accuracies of soundings can reach the .5°C level before

the 1990's and that vertical resolutions capable of being reached are described in

terms of one or two meters. Opinion in the scientific community is divided on

the timing of advances in on^board processing of temperature data. The thought is

widely held that an on-board processor is a prerequisite to sounders which are sig-

nificantly advanced over present configurations. If the assumption is made that the

solution of the on-board processing problem in the next decade will allow direct

transmission of profiles, an estimate of data rates using current satellite coverage

can be made. ,
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DATA SHEET

SHEET 1 OF 5

(1) SENSOR NAME, ACRONYM: Temperature/Humidity Infrared Radiometer (THIR)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

14) APPLICATION AND OBJECTIVE:

The THIR provides images of cloud cover, measures temperature of cloud tops,
land and ocean surfaces and provides information on the moisture content of the
upper troposphere and stratosphere for the location of jet streams and frontal
systems.

(5) HERITAGE/KEY PERSONNEL:

NIMBUS 5, 6, G

Instrument Rep.: M. Freidman (GSFC) (301) 982-4211

(6) SENSOR DEPLOYMENT:
This sensor is normally deployed in a sun-synchronous orbit of 1100 km altitude
with an orbital period of 107.25 min. (NIMBUS-G). Pitch and roll axis are
maintained within .5 degrees and yaw axis within 1 degree.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER: ,.,..,,..,

The THIR scans cross track, using a .7 mrad. IFOV for the 11.5u channel. The scan
is continuous from horizon, to horizon, but degradation in resolution at the limits
of the scan limit the usable scan <angle

:to +37.5°-from the satellite; subpoint.,:..v<:'
Figure 1 (see next page) shows deg'radation of resolution as a function of scan
angle. 48 scans are completed each minute (approximately 21% of the scan time is
used for data collection over the area ±37.5°). Both spectral bands are sampled
simultaneously.'

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

Two Geranium-Immersed thermistor bolometer detectors are used, one for each band.
The detectors are uncooled, operating at 290°K. The field of view is defined by
the field stop: .7 mrad for the 11 urn channel and 20.5 mrad for the 6.7 ym channel
Calibration measurements are taken each scan by viewing the sensor housing and
space. . '__

Preceding page blankW.I / — *^J • 1 IWVWti"!^ j»~0«» .........

SECTION NO.: 5.8 SENSOR CATEGORY: Atmospheric Sounders .
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:
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SIZE: 19.0cm X 17.8cm X 39.6cm

WEIGHT: eU*B ;

AVERAGE POWER: 8J W

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE: ;

The ellipical scan mirror rotates at 48 rpra to scan 360° in a plane perpendicular
to satellite motion. The scan alternately views the sensor housing, space and
earth. Calibration sequences are executed each scan during the periods that the |
earth is not in view. A DC restorer circuit provides a zero signal reference during!
the portion of the scan where the optics are viewing space.. The output of the •
detectors is amplified and corrected to provide the required frequency response.
The output voltage is routed to on-board recorder(s) or can be relayed through |
the geosynchronous satellite to ground stations in real time. !
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

VMI8

SATELLITE

STDN
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NON-REAL-TIME
MICROWAVE LINK

STDN
ROSEMAN
N.C.

LJ.

REAL-TIME
WIDEBAND
DATA LINK

MOMS
GSFC, MD.

(1.1) RECEIVING AND PROCESSING-NARRATIVE: The information is read back from the TDRSS at
32 x the record rate. (Real-time data may be relayed via ATS to ground). The data is
received at the Spaceflight Tracking and Data Network (STDN) at one of two stations as_
shown. At the Alaska station, the data is recorded (analog) and then transmitted to
GSFC. The Roseman station transmits directly to the Meteorological Data Handling
System at GSFC. The MDHS integrates the data with geographic grid marks a CDC 924
computer calculates the location of grid marks and superimposes them onto the THIR data
in analog form. (No registration or correction for spacecraft attitude is performed.)
The grid and THIR image are output to 70 mm filmstrips line-by-line. The THIR analog
data is converted to digital and a digital tape is prepared by the CDC 924 Computer.
The digital tape is processed by an IBM-360 computer which produces a NIMBUS Meteorolo-
gical Radiation Tape (NMRT-THIR). This tape contains spacecraft attitude and orbital
information, scanning angles, scan time, longitude and latitude, THIR data values and
calibration data. (The digital data are only processed on special orders because of
the expenses. Grid print maps may be produced from the digital data, showing the
approximate geographic location of THIR measurements for single or multiple orbits.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

03} DATA DISTRIBUTION - NARRATIVE:

The MDHS distributes the THIR data to the Goddard Institute for Space Studies for
use in Numerical Forecast Modeling and GARP support. The main distribution of
THIR data is performed by the Nimbus/ATS Data Utilization Center (NADUC). The
NADUC performs the necessary reproduction and technical services required to
prepare final products from the MDHS outputs. The data products are delivered to
the National Space Science Data Center (NSSDC) for archiving and delivery to
selected users.
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(1) SENSOR NAME. ACRONYM: Advanced Atmospheric Sounding and Imaging Radiometer (AASIR)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

• Provide visible and infrared imagery and temperature and humidity soundings from
geosynchronous orbit altitudes with a temporal resolution consistant with small
scale weather events, (i.e., severe storms) for real-time observation and short-
term storm forecasts.

(5) HERITAGE/KEY PERSONNEL: The AASIR evolved from the Visible Infrared Spin Scan
Radiometer (VISSR) of GOES-A and the VISSR Advanced Sounder of GOES-D

Instrument Rep.: Jack Over (GSFC) (301) 982-2372

(6)SENSOR DEPLOYMENT: Planned for launch in 1982 on STORMSAT Satellite, geosynchronous
3-axis stabilized (using Multimission Modular Space Craft). Short term (8 sec) plat-
form stability is 4.2 urad in pitch and roll and 25 urad in yaw; Long term (20 min)
stability is 11 urad in pitch and roll and 87 urad in yaw. Real-time attitude must be
determined to within 525 urad in pitch and roll and 315 urad in yaw. Ground location
error will be reduced to less than 10 km (1 km) by using ground control points.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The AASIR simultaneously gathers visible and IR image data and IR temperature soundings|
The scanning mirror scans in the S-N and N-S directions.. The IFQV for visible data, is
15.6 rad; for sounding data, 347 rad; and for IR image 125 rad. Table 1 (see Sheet
3 of 11) converts this angular value to spacial coverage at various latitudes and long-
itudes relative to the satellite subpoint. Scan limits and location of scan is
selected by ground command by identifying the N-S scan length, number of E-W steps,

(continued on next page) i. , . .
(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: Table 3 (see Sheet 5 of 11) gives the spectral:
bands and Noise Equivalent Radiance for the AASIR. An array of 24 silion photodiodes :
detect visible image data. The detectors are arranged in a single linear array. The ;
detector array subtends a field of view of 375 urad. An array of three detectors pro-
vide IR image data. Each detector has a 125 urad field of view (giving 375 urad
coverage for the array). An array of 18 detectors provide sounding data (12 HgCdTe and
6 InSb). Each detector provides a 375 urad field of view. The sounding detectors are
arranged in 3 rows of 6 detectors each, with each detector separated from the next by
one IFOV. Detectors are located to an accuracy of ±0.13 cm.

SECTION NO.: 5.8 SENSOR CATEGORY: Atmospheric Sounders
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(7ft) continued

and the pointing angle of the center of the frame. Table 2 (see Sheet 4 of 11)
gives the identified scan option, time per frame and IFOV's (pixels) collected
per frame for five examples. The time to complete a N-S scan is constant (1.29
sec) regardless of the length of the scan. Sample time is shortened as the scan
length increases, reducing S-N (accuracy). The E-W or W-E scan is stepped in
4.5 mrad units at the end of each 12 N-S scans (see information cell 9).

Each N-S scan collects the following data:

6 lines of sounder data (3 spectral bands sampled on each scan)
3 lines of IR image data
24 lines of visible image data

Data Rate is a maximum for the full earth scan and decreases proportional to the
frame size selected. (The scanning logic is described in more detail in informa-
tion cell 9.)
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TABLE 3 Spectral Bands and Detector
Noise Equivelant Radiance for the AASIR

FUNCTION

VISIBLE IMAGING

IR IMAGING

C02 SOUNDING

C02 SOUNDING

C02 SOUNDING

C02 SOUNDING

CO SOUNDING

CO. SOUNDING

CO SOUNDING

CO SOUNDING

C02 SOUNDING

C02 SOUNDING

CO SOUNDING

C02 SOUNDING

C02 SOUNDING

H20 ABSORPTION

H20 ABSORPTION

WINDOW

NUMBER
OF

CHANNELS

15

3

1

1

1

1

1

••'"•• :-. 1- •' -.•.-'.

1

1

1

1

1

1

1

1

1

1

SPECTRAL
' BAND
CENTER

yra

1.0

11.1

14.95

14.70

14.49

14.22

13.96
.* .

•13:64 •"•.••••
13.35

12.66

4.23

4.39

4.46

4.52

4.56

7.75

6.71

3.79

AASIR
CALCULATED

NEN*

.067

2.51

0.45

0.255

0.214

0.152 '
;.; 6; 154, -.:••.:•-

0.152

0.138

0.0033

0.0047

0.0073

0.0073

0.0073

0.065

0.022

0.0004

2 -1*Noise Equivelant Radiance in Units of ergs/sec - cm - sr - cm

' "'.' '•'., .••
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(8) SENSOR DATA RAiASUREMENT AND TRANSMISSION SYSTEM) - BLOCK DIAGRAM:

IK eOLLIMATIWG
LENS

PIKED
FOLDING

-MIRROR
STEPPING SCAN MIRROR
±1.15

IR POLO-OUT
FOLD-IN
MIRROR

AVGPOWEB
60 WATTS

PEAK POWER
100 WATTS

HEIGHT
180 LBS

FILTER
WHEEL
(A) 80° ROTATION
AND EXPANDED

INNER RING
3.7PM WINDOW
6 SHORT-WAVE
COj BANDS

DETECTORS

(B)

(B) 90° ROTATION
3 IR IMAGING AND EXPANDED
DETECTORS -̂

IB SOUNDING.
DETECTORS

OUTER RINGS EACH
CONTAIN 1 WINDOW
CHANNEL *6
SOUNDING CHANNELS

;j

(8) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The AASIR uses a 40.6 cm diameter Ritchey-Chretian telescope. Because of heat
problems associated with a 3-axis stabilized spacecraft, active focus control is
provided in the IR and visible channels. The sounding spectral bands pass through
a filter wheel consisting of 3 rings of filters with six filters per ring. .The
sounding detectors are arranged so that the outer two rings filter the signal
incident on the two rows of HgCdTe sounding detectors (the top two rows in B in
the block diagram) and the inner ring filters the signal on the InSb detectors.
The detectors in each row are separated from the adjacent line by one line-width
(375 yrad). At the end of each N-S scan, the filter wheel is advanced to the next
filter. When all filters have been used (six N-S scans), the entire AASIR is step-
ped in the E-W direction one step (i.e., one N-S line) and six N-S scans are made
observing the areas between the previous six lines. When these lines have been
scanned for all filters, the AASIR is stepped in the E-W direction by eleven steps
and the process, is repeated for the next twelve lines.

t • '

Twenty-four lines of visible image data and three lines of IR image data are
collected for each N-S sounder scan. Following each N-S scan, a separate stepping

(continued on next page) .
SECTION NO.: 5.8 SENSOR CATEGORY: Atmospheric Sounders
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(9) continued

mirror steps the IR and visible image data two E-W steps (750 urad). Thus, in the
12 scans necessary to sample 12 continuous sounder lines, 36 lines of IR data are
sampled and 288 lines of visible data are sampled.

Each IFOV is measured twice to provide the data necessary to adjust for blur due
to satellite motion. Each measurement is converted to digital form (eight bits
for visible measurement, 10 bits for all others) multiplexed and transmitted to
the ground station. Measurements are segmented into minor frames (estimated to be
4.5 x 4.5 rad segments) and proper synchronization, error and labeling bits are
inserted at the start of each minor frame.

Calibration measurements are taken at 2 different blockbody temperatures over
each scan and merged into the data stream. Maximum data rate of the sensor to
ground transmission is about 7 megabits/second and is achieved for the full earth
disk scan. (The maximum rate for cloud scale scan is about 1/36 the full disk.)
The data rate is proportional to the rate of the N-S scan. The maximum data rate
is achieved at the center of the scan and slow at scan limits to about 70% of the
maximum. Filler data may be added to maintain a constant scan rate.

Ground initiated commands are provided to select the scan limits and pointing
directions.

5/3 >-* . |
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

GROUND
CONTROL
SUBSYSTEM

DATA RECEIVE
AND ERROR
CHECKING AND
FORMATTING

7.0 MBPS (PEAK)
(33 AVG) AUXILIARY DATA

DATA BUFFERING
AND PREPROCESSING

DATA QUALITY
REPORTS

DATA FLOW

INFORMATION FLOW
USED TO CONTROL
INSTRUMENT OPERATION

1.7 BPS

PARAMETER
EXTRACTION

IMAGES
WIND
TEMP
HUMID

TO MODELING.
ANALYSIS AND
FORECASTING
SUBSYSTEMS

(1!) RECEIVING AND PROCESSING - NARRATIVE:

All data are transmitted in real time to Goddard Space Flight Center (GSFC). The
receiving station for AASIR data must support a data input rate of at least 7 Mbps
from the AASIR. The RF signal is down-converted to IF and demodulated into an
encoded digital signal. Error checking bits incorporated into the input stream
are monitored and removed from the signal and indications of data quality are out-
put by the receiver. The receiver monitors the signal locating the start of a
minor frame. Following frame synchronization, the data is demultiplexed and sorted
by spectral band. Visible data (8-bits/Pixel) is packed 2-pixels/byte and IR and
Sounder data (10 bits) is placed into a 16-bit word by zeroing leading bits. The
data, "sorted" by spectral band, and some associated bits describing'error'fates,
signal strength, etc., are output.

(continued, on next page)
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(11) continued

The received data must be further formatted to be usable for meteorological
processing. This pre-processing must not delay data thruput. Current estimates
are that all pre-processing must be completed within five minutes of the end of
the scan frame. Pre-processing includes:

(1) recording of raw data to high density analog tapes for short
term storage (until the quality of processed data is known),

(2) consolidating and formatting of a header record of ancillary
data for each frame (giving attitude, location, time, etc.),

(3) calculating of calibration coefficients from the received
calibration measurements and applying those coefficients
to the raw data,

(4) using the dual measurements of each IFOV to eliminate (reduce)
blur (this filtering will reduce the data rate by 50%),

(5) converting the input sequence to be compatable with GOES,

(6) transfering of data to the meteorological processing
system. • . ' - - ' ' - " . • • • • • - . • . • • • • • , • . • • • •

Of the functions, the converting of the input sequence (5 above) is the most
stressing. GOES, instruments;,scan from west to east beginning withjthe northern.;,.
most latitude and stepping south. To be compatible, the AASIR output, every other
scan (i.e., the S-N scan) must be reversed, and the entire frame must be transposed
for a N-S scan with E-W stepping (or W-E) to a E-W scan sequence with N-S stepping.
This process requires large storage areas for full frames of data.

The planned hardware for the pre-processing system is based on the scan averaged
bit rate of about 3.3 Mbps (vs. the peak rate per scan of 7.1 bps) for the full
disk scan. The processing system must be able to process the data as received and
will require a minicomputer in the class of PDP11-70 or Interdata 8/32 (.6 - .8
Million Operations per Second). Special processors will be used for filtering
and I/O functions. About .5 x 10 bytes are required to hold a full earth scan
(i.e., one N-S scan) of measurements. Current estimates allow multiple buffers for
input, buffers for processing and additional buffers for output of processed data
to disk. When the reduction in data volume due to filtering is included, the
resulting buffer requirements are between 3 and 4 Mbytes (8'bits/byte).

A separate processor will provide transposition of the data elements to the VISSR
format. Nearly 200,000 bytes of memory buffers are required. A small minicomputer
would provide the necessary processing capability, but very fast I/O capability will
be required to perform the transposition of data. (Disk I/O rates of 370 K bytes
per second to store a full frame of AASIR data.) About 5 Mbyte of disk storage is
required for each frame. To maintain this rate, a 1.2 Mbyte/sec disk is required
(due to losses in head positioning, etc.) and a minicomputer (such as Interdata 8/32,'
LEL 32/55) that have sufficient I/O bandwidth.

(continued on next page)
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(11) continued

Definition of ground system requirements is still in progress at this time and
the above figures are subject to change.

The parameter extraction processing consist of determining wind velocity and
temperature profiles. The wind velocity is extracted by tracking the movement of
clouds. An interactive mode is used in which the process is automatic, but may
be controlled by the operator. Soundings are generated using the AASIR and MASR
data to achieve maximum accuracy for all cloud extents. All image data may be
displayed for visual analysis by the meteorologist. Special aid to enhance the
image, provide selected altitude slices, etc., will be provided. All output data

, is buffered and used for model inputs to generate short range forecasts.

The meteorological processing hardware will include two displays and a minicomputer
(PDF 11/70 class) for wind extraction and cloud analysis. A similar configuration
for analysis of individual spectral images and control of sounding data processing.
These computers are connected to the disk data base through redundant data base
management computers.

v.The,-interactive, analysis and forecasting subsystem adds .two more display subsystem
s: (i.evV;2 pah of displays and 2 minicomputers). From these displays, the forecaster
may watch more crops or view any data on the memories of the other display sub-

1 systems. One of these display subsystems will be connected into the NOAA weather
communication return.

•
Between 15 and 50 minutes of CPU time is necessary (estimate) for wind extraction
on a POP 11/70 scale computer. Sounding are expected to require about 20 minutes
of CPU time for each mesoscale (1000 x 1250 km) frame.(15,000 profiles per hour at
4000 operations per profile). The sounding CPU also supports image spectral anal-
ysis. The estimates for this processing is dependent on the classification
techniques used.

The data base computers will require moderate minicomputer processing capabilities,
but must support high I/O bandwidths (1.2 Mbytes/sec). The estimated on-line disk
storage is

On-line image data for analysis
Meteorological Parameter Supporting

Forecast Models
Sounding Data
Contents, coefficients,- etc.

Total

425 Mbytes

200 Mbytes
225 Mbytes
100 Mbytes

1,000 Mbytes

The estimated CPU and on-line storage would provide full analysis and forecasting
capabilities to GSFC.

The Ground Control Subsystem will allow meteorologists to implement pointer commands
within -I min of the request, and will transfer tables and coefficients required for
attitude and location stabalizing by the on-board computer.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

GSCF
GROUND
PROCESSING
SITE

0 TEMPERATURE SOUNDINGS
• WIND VELOCITIES
• VISIBLE AND IR IMAGES
• WATER VAPOR SOUNDINGS
e PRECIPITATION
« ETC.

REAL-TIME
COMMUNICATION
LINES TO NOAA-NWS,
AFGWC. NFWC

(13) DATA DISTRIBUTION - NARRATIVE:

Data output consists of visible and IR images, and IR sounder radiances. They
are provided in CCT format and as hard copy photographs. The final products of
wind, temperature, water vapor, pressure and precipitation are available. The
users and data distribution lines are defined at this time. Existing lines will
probably be used (AFOS) for NWS and DOD distribution.

The system is designated for real-time operation (1 hour) and much of the data
will be used at the data reception site.. High density digital tapes will be
generated.
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(1) SENSOR NAME. ACRONYM: Vertical Temperature Profile Radiometer (VTPR)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

The ITOS-VTPR is used to obtain temperature and water vapor measurements at 15
altitude levels of the atmosphere (up to 30 km).

(5) HERITAGE/KEY PERSONNEL: NOAA-3 11-06-73 (ITOS-F) NOAA-4 11-15-74 (1TOS-G)
NOAA-2 10-15-72 (ITOS-D) NOAA-5 11- -76 (ITOS-H) NIMBUS-5 (NEMS)
Inst. Rep.: Gary Cunningham (GSFC) (301) 982-6778 NIMBUS-6 (Adv. Atmos.
Ground Systems: A. Webcrwetzki (NOAA) (301) 763-5433 Sounder)

(6) SENSOR DEPLOYMENT:

The ITOS satellites are launched into sun synchronous orbit at an inclination of
101.7 degrees, at an altitud.b of 1463 km. The satellites are 3-axis stabilized
(< ± 1°) and complete 12.5 orbits per day. Global coverage is provided by each
satellite in 12 hours.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

One complete measurement (8 bands) is completed each 1/2 second. The scanner is
stepped after each measurement by 2.235 degrees, using 23 steps to cover the . -
complete cross-track scan of 62.9 degrees. Each scan requires 11.5 sec. plus one
sec. for return. Ground resolution is 59 km at the satellite subpoint. Ground
coverage for each scan is approximately 1400 km. Only measurements taken over the
ocean can be used.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: The VTPR measures .spectral radiation in 8
hands: 12 urn, 13.8 urn, 13.4 urn, 14.1 ym, 14.8 ym, 14.4 ym, 14.97 ym, 18.7 ym.
62.5 ms are required for each band measurement, allowing one set of 8 measurements
each 1/2 second. (Following the 8th band measurement, the scanner steps to the next
scan cell.) The single pyroelectric detector (triglysene sulphate) has a Noise
Equivalent Power of less than 1.5 x 10~10 W(HZ)"3* and operates at a temperature of
290°K (uncooled). Its effective area is 1.5 mm. The detector is modulated at 16 Hz.
Space (40°K) and internal black (258°K) body calibration is performed each 15 sec.
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<8) SENSOR DATA MEASUREMENT AND TRANSMESS8ON SYSTEM - BLOCK DIAGRAM:

REFLECTIVE
PYRAMID

MIRROR
CHOPPER

ECAN868WO
MIRROR Tt^Tl^

Sanni
PRIMARY /
MIRROR FILTER

DETECTOR

INTEGRATOR
OPTIMIZE
S/W

BUFFFR
AfWPUFIER

SP9ft & SPACECRAFT
STATUS DATA

BEACON
TRANSMITTER
137.14 MHz

VHP SIS bpe
(160 bps OF VTPR DATA)

A/0
10 BITS/SAMPLE
(160 bp»)

TO
GROUND

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVErThe VTPR uses a Cassegrain Telescope
(6,6cm) with a wheel of eight filters and a single pyroelectric detector. The
wheel rotates at 120'rpm, putting one filter into the field of view each 62.5
milliseconds (allowing one full measurement of 8 bands each 5 sec.)- Compensation
for orbital motion is achieved by using a spiral mask in the filter wheel which
indexes the system field stop so as to track a spot on the earth's surface for a
filter wheel sequence. The chopper is viewed for 31.25 milliseconds. The chopper
and filter wheel are synchronized so that the transition between filters occurs
during the chopper viewing time. Chopper frequency is 16 Hz. The filter and
chopper are mounted on thermoly insulated hubs and surrounded with a black housing
to control the temperature (30'8°K).

The detector is located at the truncated opening of a reflective pyramid. The
detector output is shaped and equalized by an analog signal processor. The signal
is maximized for S-N and converted to 10 bits digital for each measurement. The
digital signal is recorded on the scanning radiometer recorder and is transmitted
in real-time over the VHP link.
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

VHP
BEACON

S-8AND
10.667 KBPS
(800 BPS OF VTPR DATA)

512 BPS
(160 VTPR BPS)

REMOTE
GROUND
STATION

LAND-LINES
(TTY)

p

r
CDA
GILMORE
CREEK
AL.

CDA
WALLOPS
ISL.

A

I

\ r 2C-8DUP

SATCOM
WIDEBAND
LINK
(X-136)

NESS
(SUITLAND)

(2400 CPS)

48 KHz CHANNELIZED

A - VHRR, VTPR. SR. SPM(10.687 BPS)

B • REAL-TIME BEACON (512 BPS)

C - F & W

D- STATION EVENTS

DATA
ANALYSIS AND
PROCESSING
FACILITY
(DAPAF)

SATELLITE
OPERATIONS
CONTROL
CENTER

(11) RECEIVING AND PROCESSING - NARRATIVE:

The VTPR data is recorded on the scanning Radiometer Recorder as it is sensed and
is also transmitted in real time over the VHP beacon link to direct ground stations
on command from the CDA. The Direct Ground Station is designed to serve local
users only and no further distribution of its output occurs. The NESS Central
Data Distribution Facility provides satellite status, location and orbit location
data to the ground site via TTY.

Direct ground stations receive the raw voltage measurement values. The user
processing of VTPR data consists of three steps:

(a) conversion of raw voltage counts to radiances,

(b) correction (or elimination) of radiances for cloud effects,

(continued on next page)
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(11) continued

(c) conversion of the resulting clear radiances to temperature and
moisture profiles,

NESS provides sets of calibration coefficients for (a) above. To correct the
measurements for cloud cover (b above), NESS recommends the user select a spacial
array of 8 x 8 complete measurements. The user then compares the radiance of the
11 urn window band to the Plank function value, B, at that spectral band and asso-
ciated surface temperature to determine where the area is not entirely overcast.
The radiance values closest to B can be considered as clear-column radiances.
The regression coefficient matrix is multiplied by the clear radiance vector to
get a single temperature profile vector for each array of radiance values. Normally
4- or 5 17-minute, data periods can be received by a user each day. The area covered
by each pass is about 1400 km wide and 5000 km long.

Two command and data acquisition (CDA) stations acquire the VTPR (and all other
satellite outputs) for the central processing facilities of NOAA. (During Blind
orbits, a station in France acquires and transmits VTPR data.) The CDA's operate
in one of three modes as directed by the Satellite Operations Control Center (SOCC):

a) acquire real-time direct broadcast only (APT, HRPT, Beacon-VTPR/SPM,
spacecraft telemetry), ' .

b) acquire real-time direct broadcast and playback single orbit of VTPR
data (and SR, VHRR), or

c) acquire real-time direct broadcast and multiple orbits of VTPR data
(and SR, VHRR).

The selection, of mode is dependant on the orbital path of the satellite. On some
orbits the VTPR does not pass over either CDA so that on the following orbit, mode
C is necessary. During other orbits, the satellite passes over both stations,
allowing mode A to be commanded for one of the stations.

The real-time VTPR data is multiplexed with beacon data for transmission to ground.
The real-time beacon data is recorded on magnetic tape as it is received. The
beacon data is demodulated/ recorded on paper chart recorders, and transmitted via
channel B of the SATCOM Longlines to the NESS facility at Suitland.

Up to 201 minutes of VTPR data can be recorded on the on-board recorders as
controlled by ground commands transmitted via CDA's and stored on-board for
execution at the specified times. The recorded data is played back, oh command,
at 20 x the record rate (10.667 kbps). Both SR and VTPR data are received and
recorded at the CDA on a separate magnetic tape recorder (at 60 ips). Both CDA
stations compensate for speed flunctuation of the NOAA recorders. The CDA amplifies
and demodulates the input signals before recording. Following the satellite data
acquisition, the recorded SR/VTPR data is played back and transmitted to the NESS
Suitland Facility and to Global Weather Central at Offutt AFB.

(continued on next page)
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(11) continued

The data enters the NOAA facility at the Digital Data Handling System (DDHS) of
the Data Processing and Analysis Facility. The DDHS separates and formats the
VTPR data for processing by a central large-scale computing facility. The DDHS
is a completely redundant system. Each of the systems can operate simultaneously
to process both NOAA satellites when both are over a CDA station. As the data is
received, it is recorded to an analog recorder, converted to digital form and
formatted for input to an EMR-6130 computer. (UNIVAC 6000 series). The EMR-6130 is
a mid-scale computer, 16-bits/word with expanded I/O capabilities. The VTPR data is
output to disk along with satellite time information.

There is no buffering of data before the 6130 processing. The occurance of input
from the SATCOM lines interrupts the 6130 and initiates immediate processing of the
data. Approximately 12,700 VTPR measurements are received each orbit, corresponding
to 127,000 bits of VTPR data + the time words for each scan. This data requires a
reel of 800 bpi tape for one orbit of data and two reels when a blind orbit has been
encountered.

The stored values are later output to the NOAA 360-195 complex over a direct
communications:'Channel: There; the ^PR data; is geographically registered' to ;" \
locate the position of the soundings to be developed and locate known sea-surface
temperatures for associated soundings. Calibration data taken by,the sensor is used
.to verify...the >tatus of the instrument arid;̂
channel, surface temperature and first guess;values* of temperature arid humidity
profiles are used to calculate the clear radiance of the other channels for an
8x8 array (approximately 600 km x 600 km). A single temperature sounding is
generated for each array. The temperature profile is used to determine the moisture
profile of the array. Soundings are generated for 15 levels of the atmosphere: |
1000 mb, 850 mb, 700 mb, 500 mb, 400 mb, 300 mb, 250 mb, 200 mb, 150 mb, 100 mb, |
70 mb, 50 mb, 30 mb, 20 mb, 10 mb.

<

The Central Computing Facility (360/195) requires about 1 1/2 hours per day to
process the 152,400 daily measurements into 2,600 temperature soundings. (The
exact number varies depending on claud coyer, etc.)

* 1st Guess values for the northern hemisphere as taken from NMC forecasts.
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FOR SPACE
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TAPE 2 1800-0600 QMT)
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(9) CLEAR RADIANCgg
(C) PROFILES

(13) DATA DISTRIBUTION - NARRATIVE:

The major product is a Satellite Infrared Sounding (SIRS) that contains location,
heights, temperature, and dewpoint temperature depression at levels up to 40 mb,
and then contain heights and temperatures up to 10 mb. (Only data on the oceans
are included.) The data are prepared at the SOCC by the National Environmental
Satellite Service in various formats required by users. The NWS tape is prepared
in as a teletype message, the other tapes are prepared as shown. The NWS, NMC,
and GISS tapes are transmitted .as each orbit of processing is completed. The tape
to the NCC is .transmitted weekly.

Data products developed by users that have access to direct receiving stations
are not controlled or distributed by a central organization.

Soundings are transmitted twice daily via GTS of the WWW by the NMC.
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(1) SENSOR NAME, ACRONYM: Stratospheric and Mesospheric Sounder (SAMS)

(2) DISCIPLINE: Earth Observations (3) SU8DISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

The SAMS is used to determine temperature profile and composition of the atmosphere
between the 10km and 120km altitude levels (i.e., the vertical concentrations of
H.O, NO, CH., CO and NO). The sensor will attempt to measure doppler shift of
emission lines to determine the zonal wind shift in the 50-100 km region.

(5) HERITAGE/KEY PERSONNEL:

Instrument Rep.: Richard White (301) 982-4520

(6) SENSOR DEPLOYMENT:

SAMS is designed for 3-axis earth stabilized platforms in a near polar sun-
synchronous orbit at an altitude of 900-1200 km. First deployment will be on
NIMBUS-G (3rd quarter of 1978).

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO.'ACQUIRE THE MEASURED PARAMETER:

The SAMS scans in a vertical plane at right angles to the direction of spacecraft
motion. The sensor will normally scan an angle of 2.6° in 32 equal.isteps as shown in
Figure 1, but will have the ability to scan an angle of 6° to insure that the nominal
scan volume can be scanned given attitude and orbit errors. Each scan position defines
three 28 mrad x 2.8 mrad (100 km x 10 km) simultaneously (see Figure 2). A second
integration time is required for each measurement. Scan speed, nominal scan volume and

(continued on next page)

<7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

Six detectors measure the input signal in the following spectral bands: 4.3um (C02),
5.3um (NO), 2.7um (HO), 25-100um (HO), 5.Sum (NO), and 7.6-7.Sum (CH ). The
detectors consist of 4-Triglysene Sulphate (uncooled) 1-Lead Sulphide (Hooled to 273 K)
and 1-InSb (cooled to 160°K). Two separate signals are output by the detectors, one
at 250 Hz (chopper frequency) and one at the Pressure Modulated Cell (PMC) frequency.
Calibration measurements are taken by viewing space and an internal black body.
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(7A) continued .

scan step size are set by ground commands. Minimum step size is 1/2 IFOV.
An azimuth scan is used to measure doppler shift in the emission spectrum.
The scan can begin at a minimum angle of 75° to the direction of spacecraft
motion and can scan horizontally to a maximum angle of 105°. The scan is
continuous with the rate of scan compensating for the velocity of the space-
craft. Scan time for the full horizontal scan is 240 seconds. The scan is
under control' of ground command.
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DIRECTION OP FLIGHT
IS INTO PAGE

SCAN RANGE 75 STEPS. 6°

HORIZONTAL AT SATILLITI

gARTH
NOMINAL
SCAN VOLUME
32 SCAN STEPS.

FIGURE 1 Scan Geometry

i
LOCAL
VERTICAL

A. 100 KM X 10 KM

B. 100 KM X 10 KM

C. 100 KM X 10 KM

1 KM

t
1KM

FIGURE 2 Orientation of IFOV's Viewed Sinrultaneously
on Plane V (see Figure 1) as one scan position
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The incoming radiation is incident upon a scan mirror 202 by 185 mm. The IR input
is modulated, at two points to obtain two outputs from each detector. The chopper
modulates 5% of the incoming signal at 250 Hz. The signal is split into 3 fields
of view. These three outputs are passed through a series of Pressure Modulated
Cells (PMC) and beam splitters to filter the signal so that the desired spectral
band is directed to its associated detector. The PMC's are modulated at 30 Hz
The output of the detectors is passed through a Hi/Lo bandpass filter and demod-
ulated into two signals. The 250 Hz modulation gives a signal in which all spectral
bands were modulated, the PCM modulation affects only the spectral range associated
with the PCM. These two outputs enable emissions from interfering gases within a
spectral interval to be eliminated.

Commands allow the PMC's to be selected and modulated as desired, and control the
scan logic at the SAMS. 27 commands are defined.
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SAMS
RECORDED
DATA

FAIRBANKS, AL.
ROSEMAN, N.C.

GSFC
CENTRAL
PROCESSING

(11) RECEIVING AND PROCESSING - NARRATIVE:

The SAMS data are transmitted to GSFC and then immediately transmitted to the
England facility. There it is formatted and pro-processed and then returned
to GSFC for processing. (The data is also processed in England.) (See THIR,
Section 8 for more information.) The two separate signals output by each detector
are compared to eliminate emission generated by interferring within a given
spectral interval.

Zonal wind measurement is accomplished by analyzing the doppler shift introduced
between the emission lines of the atmosphere (as sensed by an azimuth scan) and
the absorption lines in the PMC's.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

See THIR (no additional data available at this time)

(13) DATA DISTRIBUTION - NARRATIVE:

See THIR (no additional data available at this time)
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(1) SENSOR NAME. ACRONYM:Visible Infrared Spin-Scan Radiometer Atmospheric Sounder (VAS)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

The VAS operates at Geosynchronous Altitudes to provide atmospheric soundings,
sea surface temperature measurements, cloud top temperatures, and High Resolution
Earth Images for meteological use.

(5) HERITAGE/KEY PERSONNEL: The VAS is a modification of the Visible Infrared Spin-Scan
Radiometer (VISSR) flown on SMS-2 and GOES-1. The visible imaging is identical on
both, sounding capability was added to the VISSR to obtain the VAS.
Instrument Rep.: Larry Rouzer (GSFC) (301) 982-6114

(6) SENSOR DEPLOYMENT:

The VAS is designed for geosynchronous orbit (altitude of 35,000 km) on a spin
stabilized spacecraft. Attitude is to be maintained to within .1° with a
stability of .5 arc sec. maximum. First deployment will be on GOES-D, planned
for 1980.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The VAS depends on spin (100 rpm) of the satellite for its E-W scan and steps in
the N-S direction. IR imaging has a resolution of .192 milliradians (8 km at the
subpoint), visible images have a resolution of .021 x .025 milliradians (.9 km)...% ;'
The sounding channels (4) have a resolution of 16 km. For soundings, multiple
scans are required to integrate signals sufficiently to obtain the required S-N
ratio. Multiple sets of scans are required to obtain data in all sounding channels
(4 scan integrations per measurements). (For more detail on the imaging capability,

[continued on next page)

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):,

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The Visible and IR imaging detectors are identical to those of the VISSR (see
VISSR data sheets). Four detectors are added for sounding: two HgCdTe and two
InSb detectors. The detectors have a field of view of .384 yrad. These detectors
measure radiance in the 14.7 urn through 3.9 ym spectral bands. Multiple samples are
integrated to achieve required S-N. An onboard black body of known temperature
is viewed once per scan for signal calibration.

SECTION NO.: 5.8 SENSOR CATEGORY: Atmospheric Sounders

| REV. NO.: 2 | REV. DATE: 31 Jan 1978



RSDH
DATA SHEET

SHEET 2 OF

CONTINUATION SHEET:

(7A) continued

see paragraph 7A of the VISSR.) Ground commands control the mode as imaging or
sounding. A complete sounding requires about 150 spacecraft spans for each GLW
line.
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

TO
OPTICS
SUBSYSTEM

Power:
40 Watts

Size:
Scanner 1.5x.65 m
Electronics
30.5x18.8x28.0 cm

Weight:
Scanner 69.0 Kg
Electronics 9.5 Kg

SOUNDER _ _ _
SPECTRAL _
BANDS _ _._

12-POSIT1ON
FILTER WHEEL

(DATA
RATE UNKNOWN
AT THIS TIME)

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The VAS can be commanded to any one of three modes. In the "Normal VISSR" mode the
measurement and processing of image data for the VAS is identical to that of the
VISSR and the reader should refer to the VISSR data sheets for a description of that
processing. This mode is considered a fall-back, mode of operation for the satellite
solar-cell-end-of-life period when power requirements must be minimized.

The "Multispectral Imaging" mode uses two of the four additional IR channels to gain
additional image data. The angular pair of IR detectors (.192 mrad) produce two
lines per satellite E-W scan and therefore need be active for only 1/2 the scans.
Either the pair of .384 urad InSb detectors may bo activated during the unused scans
The data from each pair of detectors is used for imaging.

In the "Dwell-Sounding" mode, the filter wheel is positioned to a selected spectral
band for each E-W scan. The choice of filters and the number of scans each filter
is to remain in the IFOV is programmed by ground commands. Table 1 lists the
spectral bonds covered by the 12 filters. Eight of these bonds can be viewed with
any pair of the six IR detectors, while the other four (1, 2, 11, 12) can be viewed
only with the larger IR detector. Multiple E-W line scans are required to obtain

" (continued on next page)
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(9) continued

the necessary signal to visual ratios for some spectral bands „ The sensor
can be programmed to scan the E-W line from 0 to 255 times. The data is
spacially averaged to obtain 30 km resolution cells. About 120 satellite
spans are required to obtain the necessary number of samples for all filter
positions for each scan line. The 30 km swath requires about 2. 5/ minutes.

The scan limits, filters, scans/filters, etc., result in 59 commands that can
be passed to the sensor. The commands are programmed into VAS memory using
a dedicated command line. A bit stream of 171 bits set the VAS to the desired
program. Approximately 11 seconds are required for program loading.

i

•':•;.-..-;-

•

TABLE 1 VAS Infrared Spectral Bands •

SPECTRAL
BAND

1

2

3

4

5

6

7

8

9

10

11

12 '

O
(cm'1)

680

692

703

715

752

2214

790

895

1380 .

1490

2255

2540

X
(pm)

14.71

14.45

14.22

13.99

13.31

4.52

12.66

11.17

7.25 .

6.71

4.44

3.94

AU
(cm-1)

10

16

16

20

20

20

20

140

40

150

50

440

SINGLE SAMPLE S/N AT
. 320° K SCENE TEMPERATURE

0.192mrad IGFOV
(dB)

NA

NA

31.0

33.3

32.3

32.4

32.6

52.9*

24.7

34.3

N.A.

N.A.

0.384mrad IGFOV
(dB) ;

28.4

36.3 «

37.0

39.3

38.3

38.4 i

38.6 ;

56.6

30.7

40.3 ;

38.5 ;

'i

47.0 ;

REMARKS

.co2
co2
co2
co2
co2
co2
H20

WINDOW

H2°
H20

C02-InSb:

DETECTOR

WINDOW-
InSb
DETECTOR

*FOR 340° K SCENE TEMPERATURE" ^
. - . . . . . • . - '• s
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK. DIAGRAM:

Image Processing is identical to VISSR. No addition of sounding data reception
and processing is available at this time.

(11) RECEIVING AND PROCESSING - NARRATIVE:

Same as (10)

SECTION NO.: 5.8 SENSOR CATEGORY: Atmospheric Sounders
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

Image Processing is identical to VISSR. (No additional information is available
at this time.)

(13) DATA DISTRIBUTION - NARRATIVE:

Soundings with a horizontal resolution of 30 km will be produced by averaging
the 8 or 16 measurements. Accuracy is to within 13° of actual atmospheric temper-
ature. (Further information will be provided as it becomes available.)
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(1) SENSOR NAME. ACRONYM: Microwave Atmospheric Sounding Radiometer (MASK)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

The MASR senses microwave emittences in the oxygen and water vapor bands for
calculation of atmospheric temperature and humidity profiles in clear thru overcast
conditions. The instrument is normally used with data from the AASIR to achieve
necessary accuracy and resolutions for severe storm warning and forecasting.

(5) HERITAGE/KEY PERSONNEL:
Based on the NEMS and SCAMS in the NIMBUS Program

Instrument Rep.: Dr. James Shiue, GSFC (301) 982-6716

(6) SENSOR DEPLOYMENT:

Planned for launch on STORMSAT in 1982. Geosynchronous earth orbit, (see AASIR
data sheet for additional description)

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:
The-IFOV resolution is .7 milliradians (25 lim at the satellite suppoint). The
MASR scans North-South and back-*at 290 jirad/sec,: collecting data (on the fly) in
each direction. Following each scan, the instrument steps in the E/W or W/E
direction by about .7mrad.The scan/step logic describes an image frame. The
location and size of the frame is commanded by ground signals that specify the
direction of the center of the frame and the scan length and number of steps per
frame. Table 1 (next page) shows time required to scan the defined frame sizes.

• (continued on next page)

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The MASR uses detectors at 16 frequencies:

• 8 channels for temperature soundings at 113 to 123 GHz
• 8 channels for humidity soundings at 173 to 193 GHz

SECTION NO.: S.8 SENSOR CATEGORY: Atmospheric Sounders
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(7A) continued

The MASR samples about 7 pixels/sec (700 uradians each) for each spectral bond.
The pointing accuracy is 1.7 railliradians (giving a possible 60 km mis-registra-
tion with AASIR'data).

TABLE 1 Scan Frame Sizes and Speeds

Frame

Minimum

Cloud

Mesos.cale

Regional

Full Earth

Number
Angular of

Coverage (millirad) Pixels

4.5 x 4.5 780

13.5 x 9.0 4,600

36.0 x 22.5 27,000

67.5 x 40.5 89,000

324 x 324 N/A

Time for Full
Frame Scan

•̂ •"™"—«—•—••.̂ •Î ^̂ .̂̂ M.'.

2 rain

11 min

68 min

3.7 hours

N/A
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The MASR converts the sensor measurements to digital values of 10 bits per measure-
ment and transmits in real-time to the ground station. The values are multiplexed
with the AASIR data before transmission.
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

GROUND
PROCESSING
SUBSYSTEM
(SEE AASIR)

GROUND
CONTROL
SUBSYSTEM

(11) RECEIVING AND PROCESSING -NARRATIVE:

The MASR data is processed as described for AASIR sounder data (see AASIR
processing).
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

See AASIR Diagram

(13) DATA DISTRIBUTION - NARRATIVE:

The MASR data is used with AASIR data to generate the high resolution data
products. See the AASIR data sheets for a description of these products and
their distribution. In overcast skies, where AASIR data isn't available, the
MASR provides a 2 to 3 degrees Celcius temperature accuracy, with 4 - 5 km
vertical resolution and 28 km horizontal resolution at the satellite suhpoint;
a 10-15% relative humidity accuracy with 3-4 Km vertical resolution and 18 km
horizontal resolution.

SECTION NO.: 5-8 SENSOR CATEGORY: Atmospheric Sounders
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(1) SENSOR NAME, ACRONYM: High Resolution Infrared Radiation Sounder (HIRS)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE: .

The HIRS provides temperature and humidity soundings, surface temperature measure-
ments, and cloud detection and measurement. The HIRS provides vertical temperature
profile from the surface to 40 km, water vapor profile from surface to 10 km, liquid
water content of clouds, pressure altitudes and amount of clouds, albedo.

(5) HERITAGE/KEY PERSONNEL: NIMBUS V ITPR
NIMBUS VI HIRS

Instrument Rep.: E. Mundy (301) 982-2267

(6) SENSOR DEPLOYMENT:

This sensor is designed for near-polar orbit of 833 ± 90 km, Sun-Synchronous
orbit. (TIROS-N)

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The instrument; scans perpendicular to.the subpoint: track. There are 21 scan ,. ,
elements on each side of the»subpoint track. Each scan element (IFOV) is 1.24°
(25 km at the subpoint, 31.3 km at scan end). Each element is observed for 71 ms,
with a step time of 35 ms between observations.

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

20 channels are sampled. Calibration occurs every 90 seconds. Two detectors are
cooled to 120°K for IR channels. There is one uncooled SI detector for visible
channel.

. Preceding page blanki
*0 '-^ " ~ ~ ~"' - —
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I SiNSOft DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM;

LONGWAVE
CHOPPER

SHORTWAVE
CHOPPER

FIELD STOP

LONGWAVE,
FILTERS-

SHORTWAVE
FILTERS

L .̂

SHORTWAVE X;
DETECTOR

SW BAND II

_7

TELESCOPE

VISIBLE BAND III
VISIBLE
DETECTOR

LONGWAVE
DETECTOR

LW BAND I

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

- Cassegrain telescope

- 12 bit output voltage signal .

- Two amplifier chains - one for long wavelength IR and one for short wave-
length and visible channels

- Output signal is integrated over a number of chopper waveform cycles

SECTION NO.: 5.8 SENSOR CATEGORY: Atmospheric Sounders
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

See THIR

(11) RECEIVING AND PROCESSING - NARRATIVE:

See THIR
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

See THIR

(13) DATA DISTRIBUTION - NARRATIVE:

See THIR
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, (1) SENSOR NAME. ACRONYM: Microwave Sounding Unit (MSU)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

Measure atmospheric temperature (0-20 km) profile through cloud cover with an
absolute error of <2.0°K rms.

(5) HERITAGE/KEY PERSONNEL: NIMBUS 5 Microwave Spectrometer
NIMBUS 6 Scanning Microwave Spectrometer (SCAMS)

Instrument Rep.: R. Ratliff, GSFC (301) 982-2419

(6) SENSOR DEPLOYMENT:

TIROS-N Altitude is 833 ± 90 km, sun-synchronous, near-polar orbit with a period
of 101 min.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

Scans ±47.35° cross track, _25.6 sec/scan in 11 steps.. ,The step angle is 9.47°,
with 1.84 sec per step sampling time. Angular resolution .isT 7:.Sf,;(190 km.at, ,
Nadir to 323 km x 177 km at scan extremes), swath width is 2320 km. The MSU
scans 360P, taking data during the period it is viewing the earth, at a space
calibration point, and at a microwave blackbody calibration point.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

Spectral Bands: 5.96, 5.58, 5.46, 5.18 mm (check against 50.3, 53.74, 54.96,
and 57.95 GHz)

4 Dicke radiometer. Noise Temperature ,3°K.
"gallium arsenide diode" The sensor takes two calibration measurements per scan.
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(8) SENSpR DAtA MEASURIMENT AWD TRANSMJSSJON SYSTEM - BLOCK DIAGRAM:

tin:

wem. MHMILS was it CMS .* tua «a

.1 WORDSAJlEASUMEMENT
rraap. CENSOR.

W8WMT:

• AVB wren: ,s> tune

9) MEASUREMENT AiMD TRANSMISSION SYSTEM-NARRATiVEiThe MSU takes measurements simulta-
neously at each frequency. Data rate is 100 bps. 12 bits per sample. The radiances
and control data are output on two separate streams. Each of the 4 channels can be
operated independent of the.other channels. The channels are identical except for
operating frequency. The DICKE switch modulates the input and reference signals at
1 kHz. The DICKE output is fed through an isolator to a mixer pre-amp. The IF output
is square law detected and the detected signal is amplified and synchronously detected.
The output of the synchronous detector is the difference between the ref. load and the
input (antenna) signal. This signal is integrated for 1.82 sec. and then digitized by
a 12-bit A/D converter, 4 bits of identification are added giving a 16-bit per word
output. The outpu;t of each signal channel is formatted into a data word and multiplex-
ed with the instrument voltage and temperature data (4 words) to form 8-16 bit words
of output per measurement. The output is generated in a 40 ms period between scan pos
itions and shifted into a 128-bit shift register. The TIP reads the shift register at
a 20 word/sec rate (.4 sec to read 128 bits). The output for each scan consists of
14-8 word grc-Tps: 11 groups for the data measurements, 2 calibration measurements and
one system zero test. The 14x8 words for a given scan is shown in Table I. The
average data rate generated by the MSU is 70 bps (8x14x16/25.6 sec/scan? In addition
to the digital data, 10 analog outputs are provided each measuremer':. Tnese are in-
cluded in the spacecraft data stream as shown in Table 2.
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il INST
SER NO.

INDEX

UE
CAL
LO

i£lE
CAL
HI

24 1
— 'XTAL

CH 1+

32J
— 'XTAL

CH 1-

^XTAL
CH 2+

48j
— 'XTAL

CH 2-

56 1
— 'XTAL

CH 3+

64)
— 'XTAL

CH 3-

72)
— 'XTAL

CH 4+

801
-^XTAL

CH 4-

88J
+S Volts

96]
E ZERO

104 |
*S Volts

TABLE 1 MSU Digital Telemetry

4,
CAL
LO

TI
CAL
HI

ORTH
1
TEMP
CH 1-2

L.O.
CH 1
TEMP

L.O.
CH 3
TEMP

OICKE
LOAD
CH 1
TEMP

DICKE
LOAD
CH 3
TEMP

TARGET
1A -
TEMP
CH 1-2

TARGET
2A
TEMP
CH 3-4
ANT

BEARING
TEMP
CH 1-2

MOTOR
TEMP

a.F.
CHASSIS
TEMP
-Z -Y

PROG
TEMP
+z *x

IQSJ
PROG
TEMP
-Z +Y

SECTION NO.: 5 . 8

^T2
CAL
LO

T2
CAL
HI

ORTH
2
TEMP
CH 3-4

L.O.
CH 2
TEMP

L.O.
CH 4
TEMP

DICKE
LOAD
CH 2
TEMP

DICKE
LOAD
CH 4
TEMP

TARGET
IB
TEMP
CH 1-2

TARGET
2B
TEMP
CH 3-4
ANT
2
BEARING
TUMP
CH 3-4

ENCODER
TEMP

R.F.
CHASSIS
TEMP
-Z *Y

PROG
TEMP
-Z -X

.106]
PROG
TEMP
-Z -X

2J
CH 1
DATA

107 |
CH 1
ZERO

iJ
CH 2
DATA

•

108 j
CH 2
ZERO

jj
CH 3
DATA

109 |
CH 3
ZERO

d
CH 4
DATA

(

110 1
CH 4
ZERO

— ' SCAN
POS. 0

SCAN COUNT

i£JSCAN
POS. 1
SCAN COUNT

31].

39]

47J

%

521

63J

Zli

79]

79J

87J

95J

i£lJ SCAN
POS. 12
SCAN COUNT

mJ
SCAN
POS. X
SCAN COUNT

s'.s-si
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Table 2

Analog Outputs

Temp 1

Temp 2

Temp 3

Temp 4

Scan Position
•

Ch 1 Data

Ch 2 Data

Ch 3 Data

Ch 4 Data

Analog Reference

Calibration Target 1 Temp

Calibration Target 2 Temp

Dicke Reference Load 1 Temp

Dicke Reference Load 3 Temp

Antenna Position

50.30 GHz Data

53.74 GHz Data

54.96 GHz Data

57.95 GHz Data

-30° to +75°C

-30° to +75°C

-10° to +75°C

-10° to +75°C

0 - 360°

0 - 350eK

0 - 350°K

0 - 350°K

0 - 350°K

0 - 6 V

Note: Status of the power command relays and certain functions
in the scan system are monitored by spacecraft digital
"B" telemetry.
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

See SSU

<11) RECEIVING AND PROCESSING - NARRATIVE:

See SSU
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(T2) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

See SSU

(13) DATA DISTRIBUTION - NARRATIVE:

See SSU
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(1) SENSOR NAME. ACRONYM: Stratospheric Sounding Unit (SSU)

(2) DISCIPLINE: Earth Observations (3) SUBDISCIPLINE: Atmospheric Monitoring

(4) APPLICATION AND OBJECTIVE:

This instrument provides temperature soundings in the 25 km and 50 km altitude
range.

(5) HERITAGE/KEY PERSONNEL: Selective Chopper Radiometer (NIMBUS V), Pressure Modulation
Radiometer (NIMBUS

Sensor Rep.: F. Cunningham (GSFC) (301) 982-6778

(6) SENSOR DEPLOYMENT:

The SSU will operate aboard TIROS-N at an altitude of 833 km. in a near-polar,
sun-synchronous, circular orbit. Launch is planned for January 1978. Stability =
±.2° of local vertical.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The SSU scans ±40° to either side of nadir in 10° steps (total scan = 1474 km).
Each step has a four second sampling time with 32 seconds required for the full
scan. The IFOV at NADIR is 147 km (diameter); at scan end, the IFOV is 244 km x
186 km. IFOV's are separated in the along-track direction by 210 km.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The three pyroelectric detectors are uncooled at 290°K. Three channels radiances
(14.9 urn for all) are directed onto each of the detectors through PMC cells modu-
lated to three pressures: 100 mb, 36 mb, 10 mb.
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OPTICS
(TBD)

PCW5 CELLS,
OPTICS &WD
DETECTORS
(DET&OL A)

DRIVE
SIGNET

•CELL V!ALL

POS6TIOM SENSOR

DETAIL A:
PCM CELLS, DETECTORS AND

*J ASSOCIATED OPTICS

(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

Data is gathered simultaneously in three channels. A mirror step-scans across
the orbit track-. The image from a single cassegrain telescope is directed to
three separate channels, each containing a PCM cell that is pressure modulated
over the selected absorption band. The voltage output of the detector is digi-
tized into 12 bit values (16 bits are used for each value with the four leading
bits zero) at 480 bits per second. The data is multiplexed with information
from the high resolution radiometer (AVHRR) and recorded. The data is also
transmitted in the VHP Beacon, in real-time and recorded for playback to a CDA.
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(10) SENSOR DATA RECEPTION AND PROCESSING -'BLOCK DIAGRAM:

2.16Mbpi

8.3Kbpt
BEACON

COMMAND
DATA
ACQUISITION
(GILMORE CREEK)

COMMAND
DATA
ACQUISITION
(WALLOPS. IS.)

CONTROL
CENTER :
(DAC)
(SUITLAND, MD.)

COMMUNI-
CATION
SATELLITE

COMMUNICATION

DATA PROCESSING
SERVICE
SYSTEM

(11) RECEIVING AND PROCESSING - NARRATIVE:

The Data Acquisition and Control Subsystem (DACS) consists of ground stations at
Gilmore Creek and Wallops Island recover all the sounder sensor data from the
satellite at 2.4 kbps. The data is recorded in analog recorders. Two Data General
Eclipse 200 computers are used at each site. Image data is sectorized and all data
is transmitted to the central control center. The central control facility at ,n
Suitland contains three Data General computers. An AMPEX teribit memory (18x10
bits) is used for rapid access on-line storage. The computers and equipment at the
data acquisition stations and the control center provide space-craft and sensor
control and data handling capabilities only. The central center computer format
the data and transmit it to the DPSS for processing. A direct communications link
connects the central center and the DPSS. The DPSS contains a POP 11/45, SEL 32,
and a IBM-360 for reduction and analyzing of ITOS data all output products are
prepared- at the DPSS.
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(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

DPSS

NOAA
ENVIRONMENTAL
ARCHIVES

(13) DATA DISTRIBUTION - NARRATIVE:

All data products are distributed to the Environmental Data Archives (NOAA)
and to selected other users as required.
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(1) SENSOR NAME, ACRONYM: Scanning Multichannel Microwave Radiometer (SMMR)

(2) DISCIPLINE: Earth and Ocean Physics (3) SUBDISCIPLINE: Ocean Dynamics

(4) APPLICATION AND OBJECTIVE: The SMMR experiment on SEASAT-A will evaluate passive micro
wave techniques for providing operationally useful ocean surface wind speed and temper-
ature data, polar ice canopy characteristics and maps of atmospheric water vapor and
liquid water over oceanic regions. The SMMR measurements will be interpreted in terms
of various geophysical parameters, such as the ocean wind speed and temperature above.
Microwave emission from the respective parameter has distinguishing spectral and polar-
ization characteristics which allow the individual parameters to be measured.

(5) HERITAGE/KEY PERSONNEL: The SMMR (SEASAT-A) is an outgrowth of the Electronically
Scanned Microwave Radiometers (ESMR), the NIMBUS-E Microwave Spectrometer (NEMS)
and the Scanning Microwave Spectrometer (SCAMS) on NIMBUS E § F, and the SMMR
planned for NIMBUS-G.

(6) SENSOR DEPLOYMENT:
The SEASAT-A satellite bearing the SMMR is to be launched to obtain a mean circular
orbit with a 108° inclination, a mean altitude of 790 km and approximate ground
speed of 6,6 km/sec. An orbital period of 104 minutes results in 1.4 orbits per day.
Seven orbits are required for complete (mission) ocean coverage.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The SMMR simultaneously measures microwave thermal emission from the Earths', atmos-
phere and surface with five(5) radiometer channels. Each channel measures radiation
in two orthogonal linear polarizations. The radiation is collected by an offset
parabolic reflector antenna with an 80cm diameter aperture which is projected normal
to the direction of observation and is scanned 25 degrees to either side of the
direction of satellite motion^. The antenna focuses the radiation into a multi-
frequency feed system which is connected to the radiometer inputs.

(78) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

Not Applicable

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The five channels range in wavelengths from 0.8cm to 4.5cm. The frequencies,
wavelengths and other characteristics are presented in Table 1 (see information
cell #9) for all 5 SMMR channels. The radiometers detect, amplify and convert the
received signals to digital data which is multiplexed with instrument engineering
and calibration data and fed to the satellite data system.
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(9) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE: .'•
The SMMR simultaneously measures microwave thermal emission from the earth's atmos
phere and. surface with five channels having the center frequencies and wavelengths
as given in Table 1.

TABLE 1 Center Frequencies and Wavelengths

Channel

1

2

3

4

5

Frequency
(GHZ)

6.60

10.69

18.00

21.00

37.0

Wavelength
(cm)

4.5

2.8

1.7

1.4

0.8

(continued or. next page)
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(9) continued

Each channel measures radiation in two orthogonal linear polarizations.
Channels 1-4 will switch between polarizations on alternate scans of the
antenna beam, and channel 5 will simultaneously measure both polarizations.

The microwave thermal emission from the earth and atmosphere is collected by
an offset parabolic reflector antenna which focuses this radiation into a
multifrequency feed system. The feed system is connected to the radiometer
inputs through orthomode transducers for separating the polarization and then
through polarization, calibration and Dicke switches. The radiometers detect,
amplify and convert the signals-to-digital data which is multiplexed with
instrument engineering and calibration data and fed to the satellite data
system for telemetry to ground.

The offset parabolic antenna has an 80 cm diameter aperture measured normal
to the direction of observation and is scanned 25° to either side of the
direction of satellite motion. The angle of the beam with respect to nadir is
maintained at 42° in order to provide a constant earth-incident angle of 50°.
The beamwidth for channel 5 is 0.7° and gives a surface resolution element
of 17 x 26 km. Resolutions .for.other channels ,are larger in proportion to their
respective wavelengths. ' "•.'".-". •'.-"-' " . . . '•;f:; ':".'•:.'.'

The SMMR measurements will be interpreted in.terms of various geophysical
parameters, such as ocean surface wind speed and temperature, .sea-ice- boundaries
and characteristics, soil moisture content, and atmospheric water content and
characteristics. .Microwave emission from the respective parameters has dis-
tinguishing spectral and polarization characteristics which allow the individual
parameters to be measured. .
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<10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

TUK

LOW RATE
TELEMETRY

RECEIVER

TELOPS _

2SKbpi
NASCOM
WIDEBAND
LINES

IPD

PROJECT OPERATIONS
CONTROL CENTER

(GSFC)

PROJECT DATA
PROCESSING

SUBSYSTEM (JPL)
EXPERIMENT

TEAM

USER DATA
DISTRIBUTION

SUBSYSTEM (NOAA)

OPERATIONAL
USERS

(11) RECEIVING AND PROCESSING - NARRATIVE:

The STDN sites receive Lew-Rate playback TLM data at 640 at 800 kbps during
contact periods. Received TLM data is retransmitted to IPD'at GSFC via TELOPS.
IPD will preprocess the TLM data to produce time-smoothed and quality-checked
telemetry. A master data file is constructed on a daily basis and sent to JPL
via surface delivery. •
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DATA SHEET

(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

LOW RATE
TLM FROM
POCC
<GSFC) _

DAYS
SURFACE
DELIVERY

SURFACE
TRUTH DATA
BASE

I
PROJECT DATA
PROCESSING
FACILITY (JPL)

LIBRARY

SCIENCE.TLM.
ORBIT, AND
SEA TRUTH
DATA

ACCUMULATED
MISSION DATA
BASE FILES

25 HRS SMMR
EXPERIMENTAL
TEAM

7 DAYS

7-10

^ r

NOAA

HOURS

NATIONAL
WEATHER
SERVICE

I
OPERATIONAL
USER
COMMUNITY

I
7-10
DAYS

ENVIRONMENTAL
DATA
SERVICE

OPERATIONAL
USER
COMMUNITY

•13) DATA DISTRIBUTION - NARRATIVE:

JPL receives edited, time-smoothed TLM data from GSFC.
performed by JPL are:

The four primary functions

(a) produce an Experiment Data Record for each team,
(b) produce supplementry data for each experiment (I.E., 5-ensor

earth located footprint, engineering data),
(c) produce a single processed data record in geophysical units for

each experiment, i.e., wind speed'/direction, surface temperature,
etc., and

(d) produce validated algorithms to independent raw data users-
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Section 5.10

INTRODUCTION TO FIELD MEASURING SENSORS

This section contains introductions to various field measuring sensors.

Each introduction to a specific, sensor type is addressed independently. The

intent of this section is to provide a review of the principles of primary

field sensors (gravity, magnetic and electric), although a more general

class of sensors associated with monitoring the space environment above the

ionosphere may be included.

5.10.1 MAGNETOMETERS

The Earth's magnetic field, when accurately known, is an important reference

for navigation. Also, a global map of the Earth's magnetic field, when correlated

with geological and geophysical models of the Earth's crust, can indicate, magnetic

anomalies (potential targets for natural resource exploration). , ;

There are two classes of magnetometers, vector and scalar. Each performs

a valuable function and will be described independently following a brief review *

of the characteristics of the earth's magnetic field. \
|

A theoretical concept that has gained increasing acceptance, especially in

understanding the Earth's magnetosphere, is field-line merging. At the interface

between two different plasmas, regions occur in which there are basically oppositely\

directed fields (e.g., a northward directed field adjacent to a southward directed |

field) and where the field strength is weak. It is thought that plasma can flow ij

into this neutral region from the two sides and then flow out of the region parallel!;

to the boundary (see Figure 5.10-1). In the neutral region, the field lines can be *

thought of as being broken and reconnected. This mechanism can lead to a direct

connection between interplanetary and planetary magnetic fields. As a consequence,
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reconnected field lines leaving the Earth in the vicinity of the magnetic pole

do not return to the opposite pole but are attached to field lines leading off

into interplanetary space (see Figure 5.10-2).

FIGURE 5.10-1 Field line merging at a neutral point. This figure is
one of .the earliest representations of the merging region. The thin
lines represent lines of force of the magnetic field and the thick lines
are the stream lines of the plasma flow. Plasma enters the region from
the left and right and leaves by flowing upward and downward. The mag-
netic fields adjacent to the region are oppositely directed as shown by
the arrows. The field lines are forced together by the inflowing plasma
and the fields originating on opposite sides of the region become con-
nected.

Studies of the Earth's magnetic field have continued at a vigorous pace, in

part because the extraterrestrial field is so accessible to spacecraft, and in part

because of the long record of observations, which cover entire ?jlar cycles, and

the wealth of detail available. In addition, the magnetic fielu is a fundamental
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parameter of great significance to many other scientific investigations such as

studies of trapped and precipitating particles and their interaction with various

species of waves that can propagate in a plasma. There is a close correspondence

between the magnetic field and large-scale electric fields which have been found

to play an important role in the coupling which takes place between the inter-

planetary medium and the region in and above the Earth's ionosphere. As a final

example, the Earth's field and its complement of trapped ambient particles represent

a large number of different regimes available for study as examples of naturally

occurring collisionless plasmas. One of the basic parameters used to characterize

plasmas is the ratio of the thermal particle energy to the magnetic-field energy,

a parameter which varies significantly from one region of the Earth's field to

another. ; • • . , ; . . - . . , :,•.•...,.,:','•,;.•..;..,.:,,.-,. >..^.^^i^--;v;v>/-^ -,•;-• •• -•"••"•'•••:-1;

Before the first measurements in sp:acev the gepmaghetic field had been mapped

•..; extensively using aircraft and -ships ••••'-.arid ah accurate quantitative'-i'epreifentatibn

in terms of spherical harmonics had been derived. Currents above the Earth's sur-

face were known to contribute fields as large as one percent of the internal field.

From surface measurements, much information had been accumulated about transient

irregular variations known as magnetic storms. The storms were known to be

correlated with solar activity and to contain potential information about the

outermost extremities of the Earth's field. It has proved difficult, however,

to infer the location and nature of the currents that were causing the observed

field changes, especially as their distance above the Earth increased.

The outstanding successes from the previous era were the characterization of

at least the horizontal component of the currents in the high-latitude ionosphere

and inferences regarding the confinement of the Earth's field by solar plasma and

the existence of a ring current circling the Earth at several planetary radii.

I REV. NO.: 2 | REV. DATE: 31 Jan 1978 \
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Many magnetic storms were observed to begin with an abrupt increase in the geo-

magnetic field and this was correctly attributed to the compression of the Earth's

field by a cloud of neutral ionized gas emitted by the Sun. During the subsequent

magnetic storm, a slowly varying component was identified corresponding to an

essentially uniform field over the Earth's surface. The source of this field was

thought'to be a current loop that was somehow established at large geocentric

distances during the storm and which then slowly decayed away as the storm ended.

Limited information was also available regarding the existence of relatively

dense low^energy plasma at high altitudes. Lightning discharges have been shown to

give rise to whistling radio signals that propagated along the lines of force of the

Earth^s field between conjugate points in opposite hemispheres. The dispersion
.-..-.... . . . . . . . . . - .. . 2 -3
thatvcharaeterized these "whistlers" implied a density of 10 electrons cm near

the magnetic equator at a distance of about 5r_. It was thought, however', that
' ' • ' ' • •*

these electrons were part of a'static interplanetary medium, a view which is now

known to be incorrect. However, the observations correctly implied that the

Earth's field was still essentially dipolelike at that distance.

One of the major achievements of space research has been the rather complete

characterization of the Earth's magnetic field in space. The presence of plasma

in the space surrounding Earth has a profound effect on the geomagnetic field and

leads to a field configuration that is very unlike a magnetic dipole in a vacuum.

The concept of frozen-in fields implies that the geomagnetic field and its trapped

particles will be excluded from the space occupied by the magnetized interplanetary

medium. This realization has led to the concept of the "magnetosphere," i.e., a

cavity or bubble in the interplanetary medium into which the geomagnetic field

is compressed. In its simplest form, .:he field topology would be closed with the
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boundary, called the "magnetopause," a simple surface of revolution with the Earth's

field on one side and the interplanetary medium on the other.

The actual situation is much more complicated owing to the continual outward

streaming of the solar plasma at supersonic speeds to form the solar wind. Thus

the proper characterization involves, not a steady state, but a quasi-stationary

flow pattern. A reasonable, low-order approximation is provided by the flow of

a supersonic gas past a cylinder or sphere (representing the magnetosphere). In

this gas-dynamic example, a detached bow shock occurs which converts the streaming

energy of the oncoming gas into internal energy and allows the gas to be deflected

around the sides of the cylinder. The other essential features of the interaction

are a boundary layer adjacent to the cylinder and a long wake extending downstream.

The flow could be revealed by means of a snapshot showing .the flow lines, although

it must be recognized the medium is actually continuously in motion. The counter-

parts of all three of these features, including the bow shock, have been observed

to be a part of the solar-wind interaction with the Earth's magnetic field.

Even the aforementioned gas-dynamic analogy is actually far simpler than the

interaction of the Earth with the solar wind because, to continue the analogy, the

solar wind contains a magnetic field and the cylinder is permeable. Particles,

momentum, and energy can be transferred across the boundary and into the cylinder,

apparently as a consequence of a direct connection between the interplanetary and

planetary magnetic fields. The Earth's magnetic field apparently extends through

the boundary and connects the magnetospheric plasma inside with the solar-wind

plasma outside.

A further complication is the existence of processes within the magnetosphere

which effectively represents sinks for the particles' momentum, and energy imparted

by the solar wind. Thus some of the particles are precipitated into the atmosphere,
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in part to cause the aurorae. The momentum transfer leads to an internal circula-

tion (convection) of the magnetic field and plasma in the outermost regions of the

magnetosphere. This convection is the counterpart of the external solar-wind flow

around the Earth. Energy from the solar wind results in the acceleration of

trapped particles to high energies as well as the production of intense currents

in the ionosphere which act as dissipative loads. Thus many features of the inter-

action depend on the nature of the competition between external sources and internal

sinks.

As a final complicating factor, the solar-wind flow is not steady but consists

of strong gusts which occur several times a month in the form of fast streams. To

characterize the interaction properly requires, not a snapshot, but a motion picture,

The enhanced solar-wind flow associated with a stream significantly increases the

transfer of particles, momentum, and energy into the magnetosphere and gives rise

to major transient variations known as magnetic storms. Since the processes acting

as sinks have their own, relatively long characteristic times, it is possible

temporarily to store magnetic energy as well as particles inside the, magnetosphere

even after the solar-wind stream has passed the Earth and traveled onward into

interplanetary space. The main reservoir is thought to be the long magnetotail.

Eventually, however, the Earth tends to relax back to the quiet configuration during

the so-called "recovery phase" of the storm.

An important aspect of the direct connection between field lines inside and

outside the magnetosphere, and a phenomenon which provides evidence for the merging

process, is the observation of "substorms." These are episodes of only a few hours

duration involving basically the same phenomena as magnetic storms (i.e . particle

energization and precipitation, the development of intense current sheets and

electrojets as high latitudes, increased convention inside the majnetosphere, etc.),
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but on a smaller magnitude. The close correspondence suggests that magnetic storms

are actually several substorms occurring sequentially. Observations in space have

shown that substorms can be triggered simply by a random change in the direction

of the interplanetary magnetic field such as to increase the prospects for field-

line merging.

With the aforementioned material as a general background, it now becomes

possible to describe the main features of the Earth's field in the quasi-stationary

state during quiet intervals, as diagramed in Figure 5.10-2. It is convenient to

SOLAR
WIND

FIGURE 5.10-2 Interaction of the solar wind with the Earth's magnetosphere.
The solar wind arrives from the left, crosses the detached bow shock,
and proceeds into the "magnetosheath," a transition region shown here as
dotted. The thin lines represent magnetic fields in a meridian plane and
the heavy lines show the direction of plasma flow. Two neutral regions
are shown, one on the front side of the magnetosphere and the other in
the magnetic tail. The dotted region near the Earth represents the
corotating magnetic field and relatively dense plasma derived from the
ionosphere. An "open" field line is shown which originates in the Earth's
polar region and becomes an interplanetary field line in the magnetosheath.
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describe the topology as a function of latitude, although it should be recognized

that a correspondence exists between latitude and the distance at which the (closed)

fie.ld lines cross the equatorial plane. Thus, at low and moderate latitudes (up

to 60°), the field is dipolelike and corotates with the Earth, carrying with it the

low-energy high-density plasma that represents the upward extension of the ionos-

phere. At latitudes between 60° and 70°, corresponding roughly to the auroral ovals

in the northern and southern hemispheres, convection becomes dominant and, although

the field lines are closed, their motions are no longer simply the result of the

Earth's rotation. At these latitudes, the field lines are returning to the magnet-

osphere, after being reconnected in the tail, and are being convected sunward. At

the highest latitudes, corresponding to the polar cap, the field lines are predom-

.inantly open and are being carried downstream to form the Earth's magnetic tail.

Although there are many details about which scientific opinion is still

divided, some of the current physical explanations for this topology are the follow-

ing. The internal conyective motions are a consequence of a direct connectiong

between the two fields in restricted areas of the magnetopause, called neutral

regions, where the fields tend to be oppositely directed. The field lines passing

near the magnetopause through such regions map back to the Earth at high latitudes.

Once geomagnetic field lines become, tied to interplanetary fields, they are swept

downstream to form the Earth's tail, because the interplanetary field is frozen

into the solar wind and the parts of the field still in interplanetary space travel

anti-sunward at high velocities. The feet of these field lines are transported

across the polar cap, a motion made possible by the presence of the electrically

insulating neutral atmosphere below the ionosphere. Thus the field lines are

conceived of as being severed at the base of the ionosphere.
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Field lines cannot be removed from the magnetosphere indefinitely, especially

since the formation of the tail leads to a configuration consisting of oppositely

directed fields, which is the counterpart of the configuration on the dayside that

originally led to field-line merging. It is thought that merging again takes place

with the ends of the geomagnetic field and the interplanetary field once again

being reconnected geomagnetic field lines takes place at slightly lower latitudes

in the vicinity of the auroral zone. The observed dayside cusp is presumably the

demarcation between open field lines convecting tailward and closed field lines

within the ionosphere giving rise to intense electrojet currents which flow east-

west and to current sheets in which field-aligned currents either enter or leave .

the ionosphere.

All spacecraft have stray magnetic fields due to magnetized permeable material

and to electric current flowing in the power mains and electronic subsystems.

Currents flowing in^solar panels can also contribute stray fields. If the stray

fields were truly steady, a preflight calibration would suffice to determine the

error introduced for all time. Unfortunately, spacecraft fields are typically

unstable and change with time. Some of these changes are due to the magnetization

of permeable material during the launch phase when the presence of the Earth's

field is important together with the vibration spectrum of the launch vehicle.

Changes are also probably introduced by aging and temperature variations of the

permeable materials in space. Current changes due to command switching of circuits

and the aging of electronic components may also contribute to changing fields.

Finally, if the distance from the Sun to the spacecraft changes, the power output

from solar panels will vary.

Control and reduction of stray fields impose stringent requirements on the

spacecraft design. The use of permeable materials must be kept to a minimum. It
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is common practice to use a long boom to place the sensors as far as practical

from the spacecraft body. The design of a suitable boom is a nontrivial problem

since long booms can affect the spacecraft dynamics in complicated ways. On

attitude-stabilized spacecraft, boom vibrations can couple into the servosystem,

while the dynamics of spinning spacecraft are significantly modified by booms.

Nevertheless, instruments other than magnetometers also require booms, and consider-

able effort in the past decade has gone into understanding how to design an

efficient boom.

From the standpoint of currents, their treatment depends upon the type of

measurement to be made and on whether the spacecraft is attitude-stabilized or

spinning. The effect of steady currents upon measurements on an attitude-stable

spacecraft is identical to that caused by magnetized material, although the time

dependence is probably far different. On spinning spacecraft, the fields due to .

currents rotate with the spacecraft and again appear as a quasi-steady field with

the following exceptions. Currents associated with solar panels show a time

dependence because of the rotation and non-constant illumination by sunlight.

Consequently, in the rotating frame of the magnetometer, a ripple may appear. The

harmonic spectrum of the ripple is complex and depends upon the time dependence of

the illumination function. Fortunately, solar panels can be back-wired so as to

reduce this effect. The use of twisted-wire pairs throughout the spacecraft is

an important aid in reducing, current-derived fields. The pitch of the twist is

a critical parameter in the optimum reduction of stray fields. [1]

The flux-gate magnetometer, first built in 1941, has been used in the majority

of space flights where particle and fields research is carried out. 'rhe principle

of operation of the flux-gate is bared-upon a high-permeability core ariven into

saturation by an oscillator feeding current through a primary viuJing at a fre-
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quency of SrlO kHz (Figure 5.10-3). It can be shown that in the absence of an

external field (input field), the output of a secondary coil wound on the saturable

core consists of a series of odd harmonics. When an external field is applied,

it biases the core and the output will contain even harmonics whose amplitudes are

proportional to the strength of the input field.' The second harmonic is syncron-.

ously detected by comparing its phase with the second harmonic of the drive signal.

Feedback is achieved by driving the saturable core with a current proportional to

the detector output thereby maintaining a null condition. A triaxial sensor is

assembled by placing one such element on each of three orthogonal axes. [2]

-<i

SLEC7BICM.LT
SIMULATED
INTUT
FlflO

FIGURE S.10-3 Block Diagram of a Single Axis Flux-Gate Magnetometer

Recent spaceflight magnetometers have used optical pumping of a gas in order

to detect and exploit the Zeeman effect in relatively weak magnetic fields. Basic-

ally, two types of magnetometers have been flown. The rubidium-vapor magnetometer,

which has been used as a scalar instrument to provide a measure of the field mag-

nitude, and the vector helium magnetometer, which measures all three components of

the field. The rubidium magnetometer has commonly been used with low-altitude

earth-orbiting satellites to obtain global maps of the geomagnetic field above

the ionosphere. The vector-helium magnetometer has been flown on planetary-

interplanetary missions to Mars, Venus and Jupiter.
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The block diagram of a representative rubidium magnetometer is shown in

Figure'5.10-4. Intense radiation is obtained by a sustained radio-frequency

'•discharge in a lamp containing rubidium. The resonance radiation (at 794.7 nm)

passes through a circular polarizer and interference filter to an absorption cell

containing rubidium vapor at low pressure and is then focused on a photodetector.

The incident radiation optically pumps the rubidium, preferentially populating one

of the ground-state magnetic levels. The induced magnetic moments cause the pumped

atoms to precess about the ambient magnetic field at the Larmor frequency.

In a common configuration used on satellites, a coil is wound around the

absorption cell and used to produce an oscillating field parallel to the light

beam (optic axis). When the frequency of the oscillating field is equal to the

Larmor frequency, a coherency is introduced that causes a variation in the

. , transparency of the cell and hence a periodic modulation of the light intensity

oumrr SIGNAL

FIGURE 5.10-4 Block Diagram of a Rubidium-Vapor Magnetometer

at the detector. This effect makes it possible to feed the detector output back

to the coils to form a self-oscillating magnetometer. The output is then a voltage

oscillating at the Larmor frequency which is directly proportional to .he scalar

magnitude of the field. Dual cells are used to eliminate the necessity of switch-
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ing the phase of the feedback signal when the sense of the field changes. The

signal strength'is aspect dependent and the magnetometer is insensitive to ambient

fields either parallel or perpendicular to the optic axis. Two independent rubi-

dium magnetometers in a crossed configuration have been commonly used to reduce

substantially the solid angle subtended by the null directions, and hence to

reduce the likelihood that the magnetometer will be unable to measure the field

because of an unfavorable orientation.

CIRCULAR SWEEP
FIELD CURRENT

SWEEP
DRIVE
OSCILLATOR

HELIUM
LAMP POLARIZER

STEADY
NULL FIELD CURRENT

OUTPUT

FIGURE 5.10-5 Block diagram of a vector-helium magnetometer. The circle
enclosing the absorption cell is symbolic of the Helmholz coils which
are driven by both an ac sweep-field and a dc feedback-fieId.

The vector-helium magnetometer (Figure 5.10-5) has many of the same general

elements as the rubidium magnetometer. Intense radiation obtained from a helium-

discharge lamp passes through a circular polarizer, a helium-filled absorption

cell, and is focused onto an infrared detector (the resonant pumping line has a

wavelength of 1.08 urn). Mestable helium atoms are generated in the absorption

cell by a sustained RF discharge. The triplet "ground" state of mestable helium

is optically pumped by the incident resonant radiation.
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The absorption cell is located inside a set of Helmholz coils which are used

to generate a magnetic field at a frequency of a few hundred hertz rotating in the

plane containing the optic axis. Since the optical-pumping efficiency depends on

the angle between the magnetic field and the optic axis, the changing orientation

of this sweep field causes a periodic modulation of the cell transparency and,

hence, a sinusoidal variation in the detector output. Phase coherent detection

is used to determine the phase shift between the detector output and the reference

sweep field which is introduced when a steady ambient magnetic field is also

present. Steady currents are then fedback to the Helmholz coils to null the

ambient field by reducing this phase error to essentially zero. In this closed-

loop mode of operation, the magnetometer output consists of two voltages propor-

tional to the feedback currents and hence to the components of the ambient

magnetic field in the sweep plane. Triaxial measurements are obtained by

alternating the sweep field between two orthogonal planes which intersect along

the optic axis.

One of the more promising types of magnetometers, which may accelerate U.S.

efforts to globally map the Earth's magnetic field, and aid in exploration of

natural resources, is the double-resonance system developed by Anatole Abragam at

the Laboratoire d'Electronique et de Technologic de 1'Informatique (LETI) in

Grenoble, France. Abragam'.s theory exploits the knowledge that protons have a

magnetic momentum which is directly related to the ambient magnetic field. The

concept suggests that field variations can be monitored by measuring the proton's

precession frequency—the movement of its spin axis when affected by a magnetic

field. Although this principle has been researched by others, Abragam was the

first to propose increasing the proton's magnetic momentum by transf rring to the

protons energy from liquids containing protons and free electrras. In some liquids
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the proton's magnetic momentum can be multiplied by a factor of 4000. The French

claim that their double-resonance magnetometer has a resolution of 0.01 gamma,

about 100 times more accurate than conventional magnetometers. [3]

5,10.2 GRAVITY SENSORS

Gravimetry is the science of measuring quantities characterizing the terrestrial

gravitational field. Initially, gravimetry was a section of higher geodesy, deal-

ing with the study of methods for measuring the gravitational force and methods of

applying the results of these measurements to the determination of the compression

of the Earth's figure. [5] More recently, gravimetry has become one of the most

effective methods of studying the interior of the earth, particularly in locating

density variations near the surface which might lead to natural resource deposits.
. . - . . . . , .,;,.'••.:.. \. :-...• > , , , • . , - '. .- .'•-.-. • •• • • \ ' ' ~/ • •-' ''. ' "I ' "I '>?'.} *' '* ''>'' V." ' YV '",' Z ^^ C?T f''̂  ^./A
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surveying.

For the determination of the gravitational force it is possible to use many

physical phenomena which are in some form dependent on it, such as the free

fall of bodies in a vacuum, in air or in a liquid; the oscillations of a pendulum;

the elongation of a spring under the action of a load; the .rise of a liquid in a

capillary; voltage developed as a result of force on a piezoelectric element, and

others. The basic problem of gravimetry is the study of the gravitational force

G, being the derivative of the gravitational potential V in the direction of the

normal to an equipotential surface, passing through a given point A (Figure 5.10-6).

So that one may write:

„ _G
ON
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where the sign of G depends on the choice of the direction of the normal N. The

..outward direction with respect to the equipotential surface corresponds to a
.'

reduction in the gravitational force. Note that the curvature of the equipotential

FIGURE 5.10-6

surface, hence the value of the potential V at any point on the surface (earth)

changes in the course of time. The acceleration constant (g) on the terrestrial

surface .varies approximately 0.53% from about 978 to 983 on/sec2, increasing from the

equator towards the poles and decreasing with elevation above sea level at a rate

of 300 ym/sec per meter. [6]

One objective of geodesy is to determine the variations of the Earth's

gravitational.-potential, which can be expressed in terms of spherical harmonics;

GO Tl CO

V * 21 [1 + Z o£) Z Pnm (sin <J>) [Cnm cos mA + Snm sin mX] (2)
r n=2 m=0

where R is the mean radius of the Earth, Pnm is the normalized Uengendre polynomial,

Cnm and Snm are the coefficients of the harmonic terms, and (r, 4>, A) are the

coordinate positions of the instrument. [7]

The methods used for measurement of the gravitational force are historically

divided into two catagories; dynamic and static. Dynamical methods a~ 2 used for

absolute and relative measurements. Absolute measurements are irtended to

.determine the absolute value of the gravitational force at a point (or integrated
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over an area), whereas relative measurements are carried out when determining the

difference Ag with respect to a given reference.

Static methods are used for highly accurate determination of differences of

gravitational force and are limited, for the most part, to point measurements

on the Earth's surface.

When measuring the variation in the horizontal plane (gradients of the gravi-

tational force) as well as positions of the principal normal sections of the

equipotential surface and curvature differences, a gradiometer relates quite well

and has a predictable relationship to the second order derivatives of the gravita-

tional potential.

The Gravity Gradiometer measures a combination of second spatial derivatives

of the gravitational potential; i.e., the spatial change in acceleration. This

is accomplished by utilizing proof masses to measure the small differences in

acceleration between points in the satellite. [8] . ;

The advantage of gradiometer techniques in obtaining the higher-order

harmonics of the Earth's gravitational field is straightforward. Terms with

increasing N correspond to small scale features on or near the surface. Although

the contribution of these harmonic components to the gravitational potential is

quite small, their contribution to the gravitational force gradient at point

above them is a substantial fraction of the gravitational gradient of the entire

earth.

The Hughes Research Lab rotating gravity gradient sensor [7] is a device for

measuring the second-order gradient of the total gravity potential field. The

sensor consists of a resonant cruciform mass-spring system with a tortional

vibrational mode. In operation, the sensor is rotated about its tortionally
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resonant axis at an angular rate w which is one-half the tortional resonant

frequency. Gradients in the gravitational field excite the structure at twice

the rotational frequency (see Figure 5,10-7). Only the differential torque AT-

between the sensor arms is coupled to the central tortional flexture for conversion

to a measurable voltage. The tortional gravity gradiometer has two significant

0--0
3GEfl m 8

2 *03

FIGURE 5.10-7 A Functional Diagram of the
Hughes Research Lab Rotating Gradiometer

advantages over other gradient sensing instruments. There are no bearing noise

problems, which are the primary source of difficulty in earthbound operation, and,

most important, since the spacecraft is rotating along with the sensor, the gravity

field of the spacecraft is stationary in the frame of reference of the sensor,

hence, oniy the gravity gradient field of the earth is sensed.

The effective resolution of a gradiometer at an altitude of 220 is

approximately 220 km. If a gradiometer were placed in a near po1ar orbit with

1REV. NO.: 2 [ - DATE:
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suitably chosen orbital parameters, it would pass within 220 km of every point on

the earth in 80 'orbits, thus completely mapping the earth in 5 days (see Figure

5.10-8). The track spacing between the half arcs is approximately 250 km, so

there is a good match between track spacing and swath width.

FIGURE 5.10-8 Swath Pattern of Full Coverage Orbit

This, of course, is not realizable since the orbital altitudes will decay because

of drag. A more feasable approach would include an orbital lifetime of from 30 to

50 days following a 330 km launch into a polar orbit. The time spent near 320 km

would be long enough to obtain good coverage of the earth at that resolution
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(640 km wavelength or degree 62). As the altitude decreases, the resolution

would improve steadily. There would be a substantial amount of coverage near

220 km, altitude with excellent resolution (440 km wavelength or degree 90), but

some coverage would be lost because the track spacing at the equator of 250 km
, ' -''' j r ., ,,, ;"v," . ,'( •

is slightly larger than the sensor resolution.
. >̂ .:-;,; - ' • • - . '

A similar type instrument may be constructed from accelerometers. A direct

analogy is obvious if one thinks of an accelerometer as a proof mass sliding on a

frictionless wire. Consider' the Bell Aerospace instrument operating.at a fixed

point in a gravitational field which varies slowly with position (see Fig. 5.10-9).

'The proof mass is centered electronically so that a signal is produced which is pro-

portional to the force required to maintain the .proof mass at the center of the
* • " . • . . " T _

wire. Thus the signal is proportional to, the acceleration relative to the acceler-

ometer housing that the proof mass would experience if free to travel along the

^'sensitive axis. The entire system rotates about the y axis. The acceleration due

to this rotation is radial and the sensitive axes are tangential; thus no signal
•

is produced by the satellite rotation.
'•' " ... .... . ' . -

The 'situation due to the gravitational field is different, and since the

field is slowly varying, one is justified in writing a Taylor's series expansion

for the gravitational potential. This must be carried to at least second order.

By differentiating the Taylor's series expansion with respect to each of the

coordinate axes one obtains the vector acceleration to the proof masses as a func-

tion of position (x,y,z). Substituting expressions for sinusoidal motion in the

x,z-plane as a function of time, and dotting these expressions with a time variant

unit vector in the direction of each accelerometer's sensitive axis (i.e., taking

the vector component of acceleration in the direction of the sensitive xis), one

obtains the four equations shown in Fig. 5.10-9 for the signal of each accelero-

meter.
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SATELLITE WALL SUPPORT STRUCTURE
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FIGURE 5.10-9 The Bell Aerospace Gravity Gradiometer
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The inputs to a gravity gradiometer data reduction program would be as follows:

trajectory data, spacecraft engineering data, science data and the gradiometer

data itself. The output of a gravity gradiometer data reduction program would be

coefficients of the' spherical harmonic expansion of the Earth's gravitational field

Trajectory data will be available from the satellite tracking net observing the

satellite. It will include time of acquisition and angular position at acquisition

for each observation of the spacecraft by each tracking station. The trajectory

data may also include range and angular position at regularly spaced time intervals

throughout the period of observation of the spacecraft by the tracking station.

The spacecraft engineering data will be transmitted by the spacecraft itself

and recorded at the tracking stations. It will include orientation information

relative to the horizon and the sun, spin rate and temperature data useful for

estimating the gradiometer scale factor. Spacecraft engineering data may also

include measurement of the in-plane (relative to the spin axis) drag components

acting on the spacecraft. *

The science data includes all -the ground truth necessary for gravity gradio-

meter data reduction. This includes an initial estimate of the coefficients of the

spherical harmonic expansion of the earth's gravitational field, station locations

for the satellite tracking net and a variety of estimates of the amplitudes of

perturbations acting on the satellite trajectory. These last considerations

include the effects of the sun and moon (which contribute negligibly small grad-

ients), estimates of the atmospheric drag acting on the spacecraft, the effects

of wobbles in the Earth's spin vector, relativistic effects, etc.

The gravity gradiometer data will consist of amplitude measurements at reg-

ularly spaced time intervals from a low circular polar orbit with the satellite

spin vector maintained perpendicular to the plane of the orbit ana the orbital

altitude selected to give repeating ground tracks.
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These four types of data will be processed to obtain an improved estimate

of the coefficients of the spherical harmonic expansion of the Earth's gravitation-

al field. This involves three principle steps. First, the trajectory of the

satellite needs to be estimated. Second, the gradiometer data needs to be adjusted

for non-ideal effects. And third, the data needs to be integrated over a sphere

to obtain harmonic coefficients. Thus, the data reduction system will follow the

flow diagram shown in Figure 5.10-10.

TLM
DATA Q ENGR. DATA

(SPIN RATE. TEMP..
ORIENTATION, ETC.)

GRADIOMETER DATA

ESTIMATE
GRADIENT.
REF. TO A
SPHERICAL
MODEL

Q PRECISION TRACKING
DATA .
(STATION LOCATIONS,
PERTURBATIONS. ETC.)

r GROUND TRUTH DATA-
' AND INITIAL ESTIMATE
I OF COEFFICIENTS
I

CALC
BLOCK
LOCATIONS

INTEGRAL
CURVEFIT

UPDATE
LIBRARY

SCIENCE DATA
OUTPUT

Q HARMONIC
COEFFICIENTS

FIGURE 5.10-10 Data Reduction System Flow Diagram

There are a number of other techniques that have been proposed for obtaining

gravitational data. Direct observation of long term satellite motions from the
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earth has been applied to calculate the gravitational field [9]. The data

reduction technique used involves expressing the orbital elements as Fourier

series whose coefficients are expressed as linear functions of the spherical

harmonic coefficients. This is known as frequency decomposition. The accuracy

of this technique is expected to improve dramatically in the next few years with

the development of laser position determination.

Doppler radar or laser measurement of the range between two satellites has

been proposed as a possible experiment for determining the Earth's gravitational

field [10]. The range rate between an earth syncronous satellite and a low test

satellite could be measured. Alternately, two low test satellites might be used,

one continuously ranging the other. A recent proposal for data reduction involves

parameter fitting to an assumed mass distribution on the ground [11].

A radar;altimeter has been suggested for determination of the earth's gravi-

tational field. Altimetry data contains considerable information about the

gravitational field in the ocean regions where the mean surface height closely

follows the geoid. This information coupled with existing surface data could be

used to improve existing representations of the gravitational field [121•
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DATA SHEET
SHEET l OF

(1) SENSOR NAME. ACRONYM: (Triaxial) Fluxgate Magnetometer, FMAG

(2) DISCIPLINE: Earth and Ocean Physics (3) SUBDISCIPLINE: Global Surveying § Mapping

(4) APPLICATION AND OBJECTIVE:

The vector satellite system employs 3 FMAG's which will measure the global vector
magnetic field in a near earth orbit to an accuracy of approximately * 5 gamma on a
temporal and spatial basis.

<5) HERITAGE/KEY PERSONNEL: IMP, OGO, Explorer, ATS-6, Skylab

Cognizant Scientist: Dr. Joseph Siry, GSFC (301) 982-6662
Project Leader: Dr. Robert Langel, GSFC (301) 982-5600

(6) SENSOR DEPLOYMENT:

The FMAG's will be delivered via SHUTTLE and deployed as a system of 3 satellites
in 400 km circular orbits phased 4 hours apart in local time (120° separation)
and operating simultaneously for 12 months.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:..

The Triaxial FMAG is boom mounted on a satellite."that 'is stabilized with respect
to a 3-axis earth centered coordinate system and: measures the local magnetic .
field to an accuracy of :±5'.! gamma over the range -of ±(15' K - 60 Kj 'gamma:' >

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A
tv

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS:

The magnetic flux induced in the core by the gating field is modified by the
external magnetic field which generates even harmonies on the output winding
as a function of the magnitude of the external field. The discriminated second
harmonic is calibrated to yield the magnitude of the field component parallel
to the sensor axis, while the phase indicates the direction.

SECTION Nb.: 5. SENSOR CATEGORY: Field Measuring Sensors

Preceding page blank \ *•
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM.

FEEDBACK/ 8 SENSED
FIELD 1 AFIELD

OFFSET (~4 BITS)
1

t?» FEEDBACK
gag CURRENT

VOLTAGE
TO
CURRENT
CONV.

12 BIT
A/D
CONV.

•DATA
OUT
(EACH AXIS!

• F
2F

FILTER

SYNC.
DEMOD.

D£.
AMP
FtLTER

r »
FLUX
»ATE
DRIVE

•MASTER
OSCBLLATOR

_____ _^ ___^ ^^ ^^ MAGNETOMETER I

COMMAND AND
TRACKING CONT

(0) MEASUREMENT AND TRANSMISSION SYSTEM - NARRATIVE:

The gating field is driven by a SÔ Wz oscillator and drive coil. The presence of
the ambient field induces asymmetry into the induction cycle when the core is
saturated to maximum magnetic induction. The asymmetry is a measure of the ambient
field and is detected as a second harmonic of the fundamental gating frequency.
The sampling rate is 8 to 25 samples per second and provides for an approximate
600 bps data rate to the TORS. Four bits representing an offset bias plus the 12
bit resolution from the A/D converter provide a 16 bit measurement of each axis
for each sample. .

SECTION NO.: 5.10 SENSOR CATEGORY: Field Measuring Sensors
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DATA SHEET

SHEET OF

(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

TORS

TORSS (WHITE SANDS)

CALIBRATION
TABLES

DATA EDITING
OECOMMUTATION
TIME CONVERSIONS

GSFC ~1

REFORMAT
AND SKEW
REMOVAL

EPHEMERIS DATA

DATA REDUCTION
PROCESS ALTERATIONS

(11) RECEIVING AND PROCESSING - NARRATIVE:

The TDRS downlink frequency is 13.525 GHz ± 125 MHz. NASCOM wideband lines provide
a 56 kbps data transmission link from White Sands to GSFC. The cognizant scientist
analyzes the housekeeping data to determine the process that must be performed on
the scientific data. The calibration tables are from preflight ground calibrations
for each magnetometer. ~

SECTION NO.: 5.10 SENSOR CATEGORY: Field Measuring Sensors
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SHEET 4 OF 4

(12) DISTRIBUTION OF DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

TLM,
B/T COMMAND
AND TRACKING

NETWORK
OPERATIONS CONTROL
CENTER INOCC)
(WHITE SAMDS)

TORSS
MULTIPLE
ACCESS
RECEIVER

NASCOM
WIDEBAND
LINES

(CONUS)

INITIAL
ALGORITHM
AND
PROCESS
ALTERATIONS

IPD

PDPF

GSFC

SCIENTIST

UNIV.

U.S.
GEO. SURVEY

GAS ft OIL CO.

(13) DATA DISTRIBUTION - NARRATIVE:

The TDRSS can provide global, real-time coverage for > 90% of each orbit. For
normal operation, a 24 hour lead time is required from NOOC for periodic real-
time mission requirements.

SECTION NO.: 5.10 SENSOR CATEGOR .': Field Measuring Sensors
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SHEET * OF

(1) SENSOR NAME. ACRONYM: Rotating Gravity Gradiometer, Grad (OP-02-A)

(2) DISCIPLINE: Earth and Ocean Physics (3) SUBDISCIPLINE: Solid Earth Dynamics

(4) APPLICATION AND OBJECTIVE:

The fine structure of the Earth's gravity field will be determined by flying a
Gravity Gradiometer in a low earth orbit (300 km) satellite. The gradiometer, which
is a rotating cruciform configured with tip masses and piezoelectric strain monitors
on the arms, measures the second-order gradient of the gravity potential field. The
satellite is precisely tracked and its position relates the gravity field variations
to the geoid coordinates.

(5) HERITAGE/KEY PERSONNEL:

Cognizant Scientist - Dr. Joseph Siry, LaRC

(6) SENSOR DEPLOYMENT:

The Gravity Gradiometer satellite will be placed in a 300 km, near circular, polar
orbit during the 1980. equinox via shuttle craft. The satellite will be spin-

• stabilized at 2 rps. Further attitude control and spin-speed control is accomplish-
ed with a cold gas reaction jet system.

(7) SENSOR CHARACTERISTICS

(7A) CAPABILITIES AND CONSTRAINTS OF THE SENSOR TO ACQUIRE THE MEASURED PARAMETER:

The rotating Gravity Gradiometer moves through the gradient field sensing the field
components in its plane of rotation. Samples, taken at 5 second intervals contain
two signals in quadrature (sine § cosine terms). One is a measurement of the
difference between two of the diagonal components, and the other measures the cross
product component of the gradient tensor in the coordinate frame of the sensor.
Peak performance is in the range of the 35th to 75th spherical harmonic order and
term.

(7B) ACTIVE SOURCE CHARACTERISTICS (FOR ACTIVE SENSORS):

N/A

(7C) DETECTOR MEASUREMENTS CHARACTERISTICS: The Gradiometer is a resonant cruciform
mass-spring system with a torsional vibration mode. In operation the sensor is
rotated about its torsionally resonant axis at an angular rate of 2 revolutions
per second (1/2 the torsional resonant frequency). Gradients in the gravity field
excite the sensor structure at twice the rotational frequency. The differential
torque (AT) is coupled into the central torsional flexture. The strains in this
flexture are sensed with piezoelectric strain transducers which provide an electri-
cal output. Measurement sensitivity is tO.OlE.U. The gravitational field signa-
ture is expected to be identifiable to crustal variations (mass concentrations) of
the geoid
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(8) SENSOR DATA MEASUREMENT AND TRANSMISSION SYSTEM - BLOCK DIAGRAM:

r - 35 SEC

FRCO*
MACS
(4)

PIEZOELECTRIC
ST
(4)

OMNI-
DIRECTIONAL
ANTENNA

(9) MEASUREMENT AND TRANSMSSSION SYSTEM - NARRATIVE:

The gradiometer resolution is defined as (nominally) equal to the satellite
altitude, 300 km. Position determination of 300 m along-track and cross-track,
and 50 m in the radial direction are required to maintain a data bias below 0.01
E.U. Orbital velocity is approximately 7.75 km/sec> therefore, one resolution
element is passed during one integration period. The A/D converter samples the
integrator output at 5 second intervals with £12 bit resolution which will produce
a global gravity map at the 1 m gal level to degree and order 75 or better. The
primary command, tracking, and telemetry link is accomplished through the STDN •
However, optional links with the TDRSS and/or the orbiter may be utilized. Trans-
mit power is 20 W. Command, tracking and telemetry data are pulse-code modulated.
The data rate is expected to be 1 kbps or less.
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(10) SENSOR DATA RECEPTION AND PROCESSING - BLOCK DIAGRAM:

ORBITER

(SECONDARY

SATELLITE
\ (PRIMARY LINK)

LINKN^X^X \

\
TDRSS

(SECONDARY LINK)"

NASCOM
WIDEBAND LINES
(56 Kbps)

PROJECT
OPERATIONS
CONTROL
CENTER
(POCC)

LaRC

(11) RECEIVING AND PROCESSING - NARRATIVE:

P/B data or R/T data received by either ground station is transmitted in near
real-time to the POCC at LaRC. Transmissions are pre-scheduled and activity is
expected to be at a 1 kbps data rate. Approximately 14 min. of P/B represents the
longest required recording of gradient data prior to the satellite entering the
FOV of an STDN station.
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(12) DISTRIBUTION OB DATA FROM GROUND STATIONS - BLOCK DIAGRAM:

EPH£MERIS
DATA
PRECISION
TRACKING
FROM LIDAR

TELEMETRY

SURFACE GRAVITY DATA

ALGORITHM

COGNIZANT
SCIENTIST

BEST ESTIMATE
©35-78
ORDER & DEGREE

ARCHIEVES,
N.G.S.,
UNIVERSITIES,
OIL, GAS, COAL CO.'S

(13) DATA DISTRIBUTION - NARRATIVE:

Local blocks (localized areas) are calculated from the input parameters and
combined to produce a representation of the global gravity field. Topoligical
features as well as oil, gas, and coal deposits are some of the more important
results expected from accurate data reduction of the gradiometer data.
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APPENDIX A
INFRARED DETECTORS

INTRODUCTION TO INFRARED DETECTORS

The domain of infrared energy in the electromagnetic spectrum extends from

about .75 ]im to approximately 1000 urn as shown in Figure 1.

ULTRAVIOLET -, r VISIBLE
GAMMA RAYS . X-RAYS . \ I INFRARED MICROWAVES RADIO WAVES N

-15-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0

WAVELENGTH (\). 10N cm

2 3 6

. FIGURE 1 Electromagnetic Spectrum

The physical phenomena employed to measure infrared radiation incident upon

a given area can be divided into two catagories; (1) thermal effects, or those

which result from the heating of the device due to absorption of radiation, and

(2) photon effects, which arise from direct interaction between the infrared radia-

tion photons and the energy condition (or state) of the detector material [1],

For an ideal thermal detector, incident energy is absorbed uniformly at all

wavelengths. The resulting increase in the temperature of the sensing element is

thus wavelength invariant, and the signal produced by this temperature change, be

it a change in resistance or voltage, is also wavelength invariant. In practice,

the spectral response of all thermal detectors is not identical, since absorption

by the sensing layer is wavelength dependent and since the energy usually passes

through a protective window which will have its own characteristic absorption.

I REV. NO.: 2 REV. DATE: 31 Jan 1978
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In the case of photon detectors, where incident photon flux interacts with

electronic energy states, one might expect constant signal with wavelength for a

fixed number of incident photons, followed by a rapid decrease in signal, when

incident photons no longer have sufficient energy to excite charge carriers. This

cutoff point, determined by the energy gap of the semiconductor material, may

depend on such factors as element temperature, sample purity, and, for the most

recent ternary compounds, on material composition. For actual detectors the shape

of the response depends on a variety of conditions, such as, element thickness and

preparation of its surface, but once the detector has been constructed, the shape

of the spectral response at the operating temperature usually remains invariant,

except for small changes produced by the aging of the material. [2]

Definition and Evaluation of Detector Characteristics

The design of detection systems is based on the performance of the detecting

element. One needs, therefore, standards by which the capabilities of the basic

components can be measured, not just to compare detectors of one kind, but for the

selection of the type of sensing mechanism which best suits the design requirements.

One such performance parameter which is useful for the art of measurement in

general is the noise equivalent power (NEP). This is a figure of merit which

depends on.operating conditions such detector area, wavelength, bandwidth, etc.,

and so must be specified along with NEP. The manner in which the NEP depends on

these variables follows functional relationships which are the same for many (but

not all) types of detectors.

Definitions and standards have, therefore, been introduced which refer to con-

ditions of normalized variables and hence describe detector performance for at least

one operating'point, although not necessarily for the entire operating region.

Listed below are the more common expressions used to describe detector performance.

1 REV, NO.: 2 "| REV. DATE: 31 Jan 1978
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Responsivity (R)--detector output per unit power of incident radiation. The unit

of measurement is volts/watt (or amperes/watt), or as the quantum efficiency, i.e.,

the number of transition events per incident quantum. The significance of this

performance figure is the information it yields as to the required amplification

or magnification; wavelength dependent.

Noise Equivalent Power (NEP)—a measure of the minimum power which can be detected.

It indicates the power required to generate a signal-to-noise (S/N) ratio of 1,

when the detector noise is referred to a one-cycle bandwidth. The NEP is given by

the following expression:

NEP = PwT*2" WATTS/ (HZ)J/2 (1)

'". : where '••••':•'': •" '•..'; •. ' • • • . . " . . • ' '.;'''''•"••''.'•'. '•••''';'• :' ..v.''••'- *•••'"

( . Ed = watts/cm
2 of surface radiation at the detector .,

surface • ' " ••'••'•'••.••.•.•'•'' • • .- . . , . . ' , , . ; V. :•••- :"•:,•'• '•
A = area of detector sensitive surface in cm2

S = signal voltage developed by the detector in the
radiation field

N = noise voltage developed by the detector
Af = noise bandwidth

'When interpreting NEP values, careful attention must be given to 'the conditions

under which the NEP is measured. Since most detectors are spectrally sensitive, it

is necessary to specify the "type of radiation" employed in making the measurement.

In most cases, the NEP will be evaluated either in the radiation field from a 500°

Kelvin (K) blackbody source, or it will be referenced to a specific wavelength
N.

(e.g., 5 urn). In the former case, the given NEP will be an average sensitivity

over all wavelengths emanating from the 500°K blackbody source, while in the latter

instance the NEP represents an absolute sensitivity. The infrared radiation used

in determining detector NEP values is normally modulated by means of a mechanical

I REV. NO.: 2 | REV. DATE: 31 Jan 1978
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'chopper to permit low-noise amplification of the resulting signal. For most det-

ectors, both detector signal and noise will be frequency dependent, and it becomes

necessary to specify the frequency at which the measurement was made. As a final

requirement, all NEP values are (normally) specified for an equivalent noise band-

width of 1 Hz. Symbolically, noise equivalent power is written as NEP (°K, Hz, 1),

denoting the blackbody temperature, the chopping frequency, and the noise bandwidth,

respectively.

Detectivity (D*)--a term originally introduced to remove the dependence of NEP on

the detector's sensitive area, and is related to NEP by the expression:

D* CD-star) = (Detector Sensitive Area)"2 cm_ (HZ:) */watt (2)

The use of D* as a figure of merit has gained wide acceptance by the detector

industry, and is usually the reference parameter in discussions of detector

sensitivity... As with NEP, test conditions must, be specified in complete detail. [3]

THERMAL DETECTORS

Thermal detectors are energy detectors, and their spectral response is

dependent primarily upon the absorption properties of the detector. Associated

with thermal detectors is a thermal mass which changes temperature as a function

of the incident radiation. Three types of thermal detectors which are currently

in use, and which are applicable to this document, are described below.

• Thermistor Bolometer

Bolometer operation is based on changes in the electrical resistance of the

detector as a function of temperature. Modern' bolometer technology takes advantage

of semicor.Juctor materials which have a high temperature coefficient Cc) of resis-

tivity (p), typically 3.5%/°C. These semiconductor bolometers are ki....m as

I REV. NO.: 2 j REV. DATE: 31 Jan 1978
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thermistor bolometers, i.e., thermally sensitive resistors. The two materials in

common use are known as No. 1 and No. 2 thermistor material and are composed of

sintered oxides of manganese (Mn), cobalt (Co) and nickel (Ni) formed into flakes,

typically 10 urn thick. Two types of mounting structures common for infrared

detection are solid-backed, and immersion as shown in Figure 2a and 2b respectively

WINDOW

SHIELDED
COMPENSATOR
FLAKE

\L
ACTIVE FLAKE GERMANIUM IMMERSION LENS

•ACTIVE FLAKE

SHIELDED
COMPENSATOR
FLAKE

SOLID-BACKED DETECTOR

(a)

IMMERSED DETECTOR

(b)

FIGURE 2 Typical Mounting Structures for
Thermistor Bolometers

The solid-backed thermistors are in the form of small flakes cemented to sapphire

backing blocks. These assemblies are mounted, in turn, in a metal capsule and

hermetically sealed. This construction provides an accurately controlled impedance

between the flakes, as well as a good control of the detector time constant. The

"active" flake is located in the center of the capsule and is exposed to the rad-

iation to be detected (Figure 2a). The compensating flake is located off-center

and is shielded from this outside radiation. Both flakes are connected in a bridge

circuit (Figure 3) providing the active flake with compensation for resistance

changes caused by ambient temperature variations. The immersed detector (Figure 2b)

has its active flake optically attached to an infrared transmitting lens with a

high index of refraction. A germanium (Ge) hemispheric lens is typically used for

REV. NO.: REV. DATE: 31 Jan 1978
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this purpose and the flake is located at the center of the hemisphere's piano

surface. The compensating flake is usually mounted in the detector base.

ACTBVE FLAKE

WWPL8FIER

r"RBULKC

SHIELDED
VD - APPLIED BIAS VOLTAGE PER FLAKE COMPENSATOR FLAKE

FIGURE 3 Conventional Bridge Circuit for Biasing
Thermistor Bolometer Detectors

Compared to a solid backed flake of the same size, detectivity (D*) for the

hemispherieally immersed detector is improved by a factor of four. Also, for a

given detectivity the required area is reduced by a factor of sixteen. Typical

responsivity 'for both types is given in Figure 4.

_1000

i
K 100

10

^
0.01 0.1 1 10

FLAKE AREA - mm2

(a)
TYPE NO. 1 THERMISTORS (2.S MR AT 25°C)

10
0.01 0.1 1 10

FLAKE AREA - mm2

(bl
TYPE NO. 2 THERMISTORS (250 KO ATZ^C)

FIGURE 4 Typical Responsivity vs. Flake Area
for Solid-backed and Immersed Thermistor Bolometers
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Radiation Thermopile

The radiation thermopile can be defined as a collection of thermocouples of

two dissimilar metals connected in series. The "hot" or active junctions of the

detector are blackened to efficiently absorb radiation while the "cold" or re-

ference junctions are maintained at the ambient temperature of the detector. The

absorption of radiation by the blackened area causes a rise in the temperature of

the hot junctions as compared to the cold junctions. The difference in temperature

between the "hot" and "cold" junctions causes the detector to generate a voltage.

The magnitude of this voltage is determined by the thermoelectric power of the

materials used which is commonly characterized by the Seebeck coefficient defined

below.

lira Av dV0 AT (3) ,

In general, radiation thermopiles can be classified into three types:

1. Bulk Type--These are made with wires for the active elements,
typically silver and bismuth, manganese and constantan, or
copper and constantan. In general, these devices are used
for high radiation flux measurements. They are characterized
by long response times, large physical dimensions, low impedance
and good spatial uniformity.

2. Schwartz Type—Consists of two junctions using materials of high
thermo-electric power and a thin gold leaf receiver. Characterized
by high D*, low impedance (usually requiring transformer coupling),
medium speed but considered fragile, thus, limiting their applica-
tion for the most part to laboratory use.

3. Thin Film Devices—The thin film thermopile allows for a high
packing density of junctions within the detector area. The
methods of construction used by the various manufacturers
differ to some extent. However, they all use vacuum deposition
techniques and evaporation masks to apply the thermoelectric
materials—usually bismuth and antimony, which have a reasonable
thermoelectric power and evaporate easily without changing state.
Typically a manufacturer will utilize a high purity aluminum heat
sink and support with an integral aluminum oxide less than .5 urn
thick as the substrate. The hot junctions are evaporated over the

REV. NO.: REV. DATE: 31 Jan 1978
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free standing film and the cold junctions are evaporated over
the combined film-aluminum area. The "hot" junctions are
covered by a black to increase the efficiency of collection
of the radiation.

The following table summarizes the performance characteristics of some typical

thin film devices.

TABLE 1 Typical Performance Characteristics

TYPE

GEOMETRY (mm)

ACTIVE AREA (cm2)

NUMBER OF JUNCTIONS

D* (500°K, DC) (cm(Hz)Vwatt)

NOISE EQUIVALENT POWER (w/Hz%)

TIKJE CONSTANT (milliseconds)

RESISTANCE (ohms)

RESPONSIVITY (500°K, DC)
(volts/watt)

1-22

0.2 x 0.2

4 x 10" 3

20

1.6-3.0xlOe

2 - 4 x 10"10

20 - 30

2k - 4k

20 - 28

S-15

1.5 x 1.5

2.25 x 10"2

28

> 1.0 x 108

1 - 2 x 10"9

20 - 40

8k - 14k

8 - 1 2

S-60

6.0 x 6.0

3.6 x 10"1

120

0.3 - 1 x 108

0.9 - 2.2 x 10"8

50 - 70

20k - 30k

1 - 3

The thin film thermopile compares favorably to other types of infrared

detectors in many applications for a number of reasons, these include:

1. Compact physical size offers minimal obscuration in tight
optical systems.

2. Rugged construction makes them suitable for commercial
and space applications.

3. All types of thermopiles act as voltage generators and
Jo not require bias voltage.

4. The higher impedance levels of the thin film devices
(typically 2k-30k, dependirg on the number of junctions)
are easy to'match to discrete low.noise bi-polar amplifiers
or low noise operational anplifiers-

L REV. NO.: REV. DATE: 31 Jan 1978
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5. The noise spectrum of all thermopiles is entirely determined
by Johnson noise (4kTRAf)̂  making them ideal choices for low
frequency or DC applications.

6. Thermopile detectors operate at ambient temperature and do
not require cooling.

7. Thermopile detectors have a broad spectral response making them
suitable for a variety of applications.

Pyroelectric Detectors

In its simplest form, the pyroelectric detector consists of a slab of pyro-

electric material having two opposite face areas coated with conducting layers

(Figure 5). A change in temperature (AT) generates a voltage change (AV) equal to

AV

where •

d = thickness of detector (cm)
e = dielectric constant

dPs/dT = change in spontaneous polarization as a function of
temperature change (pyroelectric coefficient in °C/(cm2 • BK).

The expression for signal current is:

A dPs dT ,_,
1 ' dT ' IT ' dT (5)

FIGURE 5 Simplified Detector Configuration.
The Incident Radiation Generates a Tempera-

ture Change that in turn Generates a Voltage Change.

I REV. NO.: 2 | REV. DATE: 31 Jan 1978
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To optimize the signal, a material should possess a low heat capacity, low

dielectric constant, and a large pyroelectric coefficient. Further, since the

signal current is proportional to the rate of change of the temperature, this

detector is more attractive than other types of uncooled thermal detectors for

higher frequency applications.

Most of the recent efforts on pyroelectric detectors has concentrated on

triglycine sulphate (TGS). Since TGS is a ferroelectric crystal, it exhibits a

spontaneous polarization (electric charge concentration) that is temperature

dependent. Thus, as infrared radiation impinges upon detector surface, a voltage

is generated which is proportional to the changes in radiant energy.

Table 2 gives a comparison of the more prominent pyroelectric materials.

TABLE 2 Typical Characteristics of
Pyroelectric Detectors

Spectral Response (urn)

Responsivity (vA/W-100 Hz)

D* (500, 15, 1) (cm-Hẑ /W)

Power Handling Capacity (W/cm2)

Curie Point (°C)

PVF?

2-30

1-2

IxlO8

.2

55

LiTa03

2-14

1-2

IxlO6

10

80

TGS

.1-300

>2

S.SxlO8

1

49

The magnitude of the pyroelectric effect increases with temperature until what is

known as the Curie point is reached. Beyond this, the polarization of the ferro-

electric crystals disappear.

The detector equivalent circuit (Figure 6a) consists of a current generator in

parallel with the capacitance of the detector. Tradeoffs between volx..ge respon-

L REV. NO.: 2 REV. DATE: 31 Jan 1978
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sivity and speed of response can be made by selecting different high impedance

or low impedance terminations for the detector.

+V

1

1
:c

1

h
•

Rt 1
^— <

"s
(

(a) (b)

FIGURE 6 Equivalent Circuit (a), and Typical
Circuit Configuration (b)

PHOTON DETECTORS :

In all quantum detectors the release or transfer of charge carriers (e.g., ;

electrons) can be directly associated with the absorption of quanta of radiation.

The use of the photoconductive effect for infrared detection utilizes the change

in resistance caused by hole-electron generation. There are two different class-

ifications of photoconductive detectors depending upon whether the excitation of

current carriers is intrinsic or extrinsic. In intrinsic excitation, hole-

electron pairs are generated by exciting an electron from the valence to the

conduction band. In extrinsic excitation, current carriers are produced by

exciting electrons either from or to impurity doping levels which lie within the

forbidden band of the semiconductor.

Review of Simple Band Theory—when two atoms approach one another, as in bonding,

the levels must split so that there will be energy levels to accomodate all of

the electrons of the system. When the system consists of a large number of atoms

L REV. NO.: 1REV. DATE: 31 Jan 1978
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bound together, as in the case in a crystalline material, the. higher energy levels

tend to merge and blend into two separate bands of allowed energies, which are

often separated by an energy gap between the two allowed energy bands. This gap

is often referred to as the forbidden band or forbidden gap. The lower band,

called the valence band, is that band of energies occupied by the electrons that
4

are bound between pairs of atoms, as part of a chemical bond between those atoms.

The upper band is referred to as the conduction band. Electrons that occupy

energy levels in the conduction band are free and, consequently, may take part

in the conduction of electronic currents. The width of the energy gap is a

• '•sensitive measure of the energy needed by an electron to break a chemical bond,

and is very closely related to the relative conductivity of various materials.

The wider the gap, the lower the conductivity. As is shown in Figure 7a, crystal-

line quartz with a band gap of 6(eV), an insulator, shows a bulk resistivity on

-the'.'order of 2 x 1020 fi :cm* On the other hand, in a metallic conductor like
.«'-'• •"•" ''••'•v- ' • • • • ' • •

silver (Figure 7b), the valence and conduction bands actually overlap, indicating

that it is possible for electrons in the chemical)bonds to conduct current. Thus,

silver shows a bulk resistivity of approximately 1 x 10~6 & cm. It is interesting

to note that this resistivity spread of 26 orders of magnitude is one of the widest

variations of any physical quantity ordinarily encountered.

In the region between these extremes is that class of materials known as

"semiconductors."' Unlike the conductors, these materials have a finite gap between

the valence and conduction bands, but the gap is much narrower than that of the

insulators. For example, pure silicon, Figure 7c, with a band gap of 1.1 eV, has

a resistivity of about 2 x 10s ft cm. [15]
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FIGURE 7 Element Characteristics

From the point of view of quantum mechanics, the energy of a quantum of radiation

of frequency v is:

e « hv, (6)

where h 3 6.624 x 10 27 erg sec is the Plank constant.
*

The wavelength associated with a quantum of energy e is accordingly:

x * (7)

Since the energy of the radiation quantum is inversely proportional to the

associated wavelength, it follows that a decrease in photoelectric activity at

some long wavelength is due to the fact that the energy of the quanta is in-

sufficient to set the electrons free.

Photoconductive Detectors

In photoconductive solids the electron becomes "free" for the conduction

process only when the energy it gained from the absorbed quantum exceeds a certain

level, i.e., the energy gap (Hg). Hence, the photoeffect can occur only in

energies greater or wavelengths shorter than a limit Xc given by,

. heAc = =— .
Eg

(8)
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Solid state physicists measure Eg in electron volts rather than ergs. One

electron volt is the energy which a particle carrying one unit of electrical

charge. (4.80 x 10 10 electrostatic units, or 1.62 x 10~19 coulombs) acquires

over a potential difference of one volt. In these terms one electron volt is

equivalent to 1.60 x 10"13 erg, and the Planck constant has a value h ° 4.135

x 10 lseV-sec. (8) may then be written as:

1.24 x IP'

g.

According to this formula, energy of one electron volt corresponds to that

radiation of 1.24 urn wavelength. Energy gaps of some materials that are of

significance in photoconductive detectors and their corresponding wavelength

limits are listed in Table 3.

TABLE 3 Energy Gaps and Long-Wavelength
. Limits of Selected Materials

Material Eg (at 300° 1C), eV Xe , micron

Si 1.1 1.13
Ge 0.68 1.82
Te 0.34 3.65
PbS 0.40 3.10
PbTe 0.31 4.00
PbSe 0.25 4.95
InSb 0.18 6.90

All of the materials in Table 3 are so-called intrinsic semiconductors, that is,

those in which the gap energy is determined by the nature of the material itself

rather than by added impurities. Sometimes small amounts of impurities are

present in the semiconducting material either naturally or by intentional addition

(doping). These then are the so-called impurity semiconductors. Im-urity atoms

which may give off an electron when incorporated into the host crystal (e.g., as
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in Si) produce a material with a slight excess of (negative) electrons (n-type

semiconductors). Other atoms tend to accept electrons from the host material and

thus produce an excess of positive "holes" (p-type semiconductors). Intermediate

energy levels associated with impurities allow electron excitation to take place

at smaller quantum energies than those required with the intrinsic semiconductors.

Thus, by suitable doping the long-wavelength limit can be pushed quite far into

the infrared. For instance, germanium doped with gallium is a p-type semiconductor

with an impurity energy level of 0.65 eV, which makes it useful as a photoconductor

detector to about 19 urn wavelength.

When a semiconductor is illuminated with radiation of quantum energy (he/A)

greater than E , some electrons are excited to the conduction band, and correspond-
o

ing numbers of holes are left behind and made mobile in the valence band. Thus-

the number of charge carriers is increased, and the conductivity of the material

becomes temporarily greater. The responsivity of a photoconductive detector is

then proportional to the excess of charge carrier concentration An. The steady

state concentration is reached when the ratB of generation of electrons by

absorbed photons is equal to the rate at which they are removed from the conduction

process by recombination with holes and by other mechanisms (trapping). If Q is

the number of photons arriving per unit area per sec, ct the optical absorption

coefficient, and r\ the probability of electron excitation resulting from absorption

of a photon (quantum efficiency), then the rate at which electrons are generated

per unit volume is ctriQ, the recombination rate is directly proportional to the

excess concentration An and inversely proportional to the average electron life-

time t in the conduction band. Thus in steady state An/t = anQ, and the (DC)

responsivity is proportional to An/Q,

R0 « (An/Q) = ant. (10)
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In intrinsic semiconductors the absorption coefficient on the short-

wavelength side of the energy gap is very high, typically of the order of

10*l*cmi The radiation intensity or photon density decreases exponentially with

the distance into the material. Consequently, there is no use making the serai-

conducting photodetector much, thicker than a"1, that is, about one micron, [4]

HgCdTe Detectors—the first successful intrinsic long-wavelength infrared detector

was mercury cadmium telluride (Hgn .CdTe). This is an alloy consisting of ali—xj x

mixture of the compounds HgTe and CdTe. CdTe has a relatively wide bandgap

(Eg=1.6eV) and HgTe is a semimetal having a negative energy bandgap of approx-

imately 0.3eV. Alloy crystals made by mixing these two compounds will have an

energy bandgap Which is a function of x intermediate between these two end-point

values.

For a value of xsQ.2, detectors have a 13 urn cutoff wavelength and require
:̂->:̂-!;;̂^ • • • • • ' " ' • • • .
cooling to about 77°K. A typical plot of detectivity as a function of frequency

for a good HgCdTe photoconductor, sensitive in the 8 to 13 urn region is shown in

Figure 8.

i 10"

,10

D

2 10
ut

i

T-77°K

i i
102 103 104 106

FREQUENCY (Mi)
10"

FIGURE 8 Plot of Detectivity as a Function of Frequency
for a good HgCdTe Photoconductor
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The device detectivity is degraded at low frequencies as a result of 1/f noise.

At intermediate frequencies the detectivity is limited by generation-recombination

noise induced by flunctuations of the incident background level. At high frequen-

cies these background flunctuations roll off, like the signal, in a manner deter-

mined by the photoconductive gain. [5]

With normal incident backgrounds, and at operating temperatures in the

vicinity of 77°K, photoconductors made from HgCdTe have two mobile carriers. The

mobility ratio is such that the maximum photoconductivity gain is about 500. The

devices are low impedance, about 50 fl for a typical detector, and hence will

operate effectively into any amplifier with an input impedance exceeding a few

hundred ohms. But even with gain, the device output voltages across the.low

internal impedance are so small that a premium is placed on low-noise preamplifi-

cation. Amplifiers with bipolar input stages and equivalent input noise voltages

of about 10 9V/Hz are commonly used.

PbS and PbSe—are polycrystalline thin-film photoconductors sensitive in the 1 to 3

ym and 1 to 6 urn spectral regions, respectively. Both have high bulk resistance,

generally exceeding 106 ohms per square at 200°K, which increase as the temperaturej

is decreased. These high resistances are present because the granular nature of

the films, and the oxide-rich layers connecting the grains, greatly reduce the

effective majority carrier mobility. The detector is a thin film photoconductor

chemically deposited onto a substrate. Photolithographic techniques are used to

define the active area. Gold electrodes provide noise-free contact between the

lead-out wires and the film. The photoelectric process involves absorption of

photons from the incident radiant energy to generate free carriers in the Pb-S/Se

crystals. A main-band transition occurs whereby an electron is raised from the
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ful 1 band to the crystal ' s

Thus, conduction properties

sensor behaves

induce changes

conduction band. This leaves a hole in the full band.

of the film are changed. As a circuit component, the

like a variable resistor when connected to a bias supply. Photons

in conductivity, which modulate the current flowing through the

detector. Table 4 provides a comparison of the performance ranges of typical

PbS and PbSe detectors.

Element
Temp.
(C°)

+25
-20
-30
-78
-196

TABLE 4

Spectral
Response

(pm)

1-3
i-3.2
Ir3.'4

1-4.0
1-4.5

Typical PbS and PbSe Performance

Lead Sulf ide

D*( p̂k> 750,1)

(xlO^cmHz^W"1)

1-15
2.5-20
3-30
10-10
5-25

Resistance
Per Sq. Area
(megohms)

0.1-10
0.15-25
0.2-35
0.4-100
1-1000

Time
Constant
(vs)

30-1000
60-2500 '
75-3000
100-10,000
500-50,000

Lead Selenide

Element
Temp.
CO

+25
-20
-30
-78
-196

Spectral
Response

(urn)

1-4.8
1-5
1-5.2
1-5.6
1-7

D*(Apk, 1500,1)

(xlOlrnHz^W"1)

5-80
12-200
15-250
80-700
80-600

Resistance
Per Sq. Area

(megohms)

0.05-20
0.2-90
0.25-120
0.4-150
0.5-200

Time
Constant

Cvs)

0.5-10
3-50
5-60
10-100
15-150

(2ir steradians field of view, 25 °C background temperature)

The film can be deposited directly on high index optical materials to obtain

the higher collection efficiency that results from optical immersion Direct

immersion on high gain optics has become a standard production procedure.
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The lead sulfide or lead selenide film is deposited directly on the piano-surface

of a hemispherical lens as shown in Figure 9. There are limits to the extent of

optical gain that can actually be achieved, but the marriage of PbS or PbSe to

strontium titanate has provided excellent results. This optical material has

high transmission, provides a good thermal match-with the sensitive film, and has

a reasonably high index of refraction (n = 2.268 at 2 urn). Referring to Figure 9,

the image on the plane face is reduced by a factor of n in the linear dimensions

(x and y) from that of the object. Strontium titanate allows the PbS film area

to be reduced by approximately a factor of five. Since the signal-to-noise ratio

is inversely proportional to the square root of the detector's active area, a gain

of 2.2 results.

PbS/Sa
FILM

OBJECT
XBY Y

HIGH 8NDEX OF
REFRACTION (n)
MATERIAL

IMMERSED IMAGE

X Y
— BY —
n n

FIGURE 9 Detector Active Area Size Reduction ,
Afforded by Optical Immersion

As may be seen in Table 4, D* improves significantly as the detector is

cooled. An example of state-of-the-art packaging which provides for a cooled

sensor without the inconvenience (and cost) of bulk or liquid cooling is shown
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in Figure 10.

WINDOW

DETECTOR
ACTIVE AREA

COOLER

FIGURE 10 Detector Package—Window, Optical Filter,
Detector, Thermistor and One-Stage

Thermoelectric Cooler

Substantially better optical performance for wide angle systems can often

be obtained with a spherical image surface rather than with a flat detector and

associated field flatteners. Many years ago, researchers found that PbS and PbSe

films could be deposited on very small diameter glass rods without exhibiting any

abnormal behavior. Now, the detector industry provides both single-element

detectors and multi-element arrays deposited on convex or concave configured

substrates to system manufacturers routinely.

One-dimensional and two-dimensional detector arrays provide many advantages

to the system designer and are very often the least expensive means of obtaining

greater system performance. System sensitivity is proportional to the square

root of the number of array elements (N). This results in search syr :em range

increases that are proportional to the fourth root of N. The time required to

"1 REV. NO.: 2 j REV. DATE: 31 Jan 1978

A-20



scan a given field in space with a single detector element is determined by the

time constant of the detector. This time is reduced by a factor of N for linear

arrays and N2 for matrix arrangements. A multiplicity of elements enhances

spatial resolution, which is particularly important in thermal imaging instrumen-

tation.

A sixty-four element linear-single row array is typical of what is offered

by the industry. Element active areas are typically 0.08 nun x 0.08 mm with element

separation of 0.02 mm. Arrays may be optically filtered for a discrete wavelength

or many, filters of different wavelength can be employed to produce a simultaneous

multi-wavelength observation. The multi-wavelength approach results in superior

target identification. e

The granular nature of the films, in addition to providing large detector

resistances, also implies a large surface-to-volume ratio, and hence a large

excess noise component, which constitutes the principal disadvantage of

these detectors. Generally, the excess noise in PbS and PbSe detectors is at

least an order of magnitude larger than that 'in HgCdTe detectors designed for the

same spectral regions. The principal noise components observed in PbS and PbSe

detectors are the excess (1/f) noise and, at higher temperatures, thermal gener-

ation-recombination noise. Background-limited operation at normal or reduced

backgrounds is generally not attainable. [5]

Ge and Si Extrinsic Detectors—are impurity doped photoconductors. Both Ge:xx and

Si:xx, where xx denotes the impurity symbol, exhibit both gain and a large internal

resistance at normal background levels, and are thus excellant photoconductors

[6], [7]. In use the devices are cooled until few of the hydrogenic impurities

are thermally ionized. Photoconductivity is then observed when one of these

-_^.^,--— _-—:
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impurities is optically ionized, and persists until the freed charge carrier is

recaptured by the ionized impurity center.

The principal problems with these devices are their low operating temp-

eratures and the low impurity absorption coefficients available. The

detector noise of thermal origin in these devices results from flunctuations in

the majority carrier population. The impurity absorption coefficient is limited

by the low solubilities of the impurities of interest in Ge. In Si, the solubili-

ties are greater, but if too large an impurity concentration is used, the impurity

energy levels begin to overlap. "Hopping" conductivity in the impurity band

limits the applied field, hence the gain, and also contributes excess noise.

Table 5 lists the most fully developed Ge:xx and Si:xx photoconductors

and their respective cutoff wavelengths. The range of cutoff wavelengths extends

II

TABLE Cutoff Wavelengths and Approximate Maximum
Operating Temperatures (300°K Background,
2ir Field of View) for Various Extrinsic

Gerxx and Sirxx Photoconductors

Photoconductor

Ge:Au
GerHg
Ge:Cd
Ge:Cu
Ge:Zn
Ge:Ga
Si: As
Si:Sb

Xc

9
14
22
31
40
125
24
17

W300°K

60°K
35
24
14
10
4
20
25

from about 10 urn to well over 100 ym for the various impurities. The ipproximate

maximum temperatures of operation for room temperature (300°K) b?ckground radiation
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with a 180° field-of-view falling on the detector are also given. (Note that as

the cutoff wavelength increases, the maximum operating temperature decreases.)

With these incident backgrounds, the resistance of a Ge:Hg detector would be of

the order of 10s ohms, and the maximum gain might be as great as 200. Ge:Hg is

one of the best developed and most useful of the extrinsic detectors. The basic

material purity is good, the recombination time can be adjusted from about 10"7

to 10"11 sec by compensation, and bias fields in excess of 500 V/cm can be used.

The upper limit on the gain is set in practice by the usable bias:field, which

will eventually cause field or impact ionization of the impurity centers. The

gain theoretically saturates at the onset of space charge limited current flow,
•

but the ionization limit is generally reached first;

The Hg solubility limit of somewhat less than 1016 cm"3 in Ge (using con-

ventional growth techniques) implies that these detectors must be several milli-

meters thick to provide complete absorption. Small detectors are therefore very

like tiny matchsticks in form. Nevertheless, staggered linear arrays of one to

two hundred detectors as small as 0.1 mm by 0.1 mm are assembled, and operate very

well.

Extrinsic silicon detectors, though reported first, have received less

attention than Ge:xx until recently, and are still undergoing development. The

primary reason for the renewed interest in Si:xx is the higher solubility of most

of the impurities of interest (e.g., >1016cm~3) and the larger optical absorption

cross section associated with them. The typical detector thickness required for

total absorption in Si:xx detectors is on the order of 100 urn. These detectors

are thus more amenable to large linear array and mosaic fabrication than Ge:xx

detectors. The photoconductive gain in Si:xx detectors tends to be lower than

that in Ge:xx due to lower carrier mobility, shorter recombination time, and
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(at present) lower maximum bias fields. On the other hand, the resistance of a

Si extrinsic detector will be somewhat larger than that of a comparable Ge

extrinsic detector [5].

Photovoltaic Detectors

Photovoltaic detectors possess no current gain mechanism. The detector

capacitance is the diode junction capacitance, which is substantially larger than

that of a photocbnductor. The internal resistance of a photovoltaic detector

(photodiode), if not determined by junctiqn leakage, is a derived quantity related

to the current-voltage characteristic of the junction by

R = ^3V^' ^11^

Thus,' to determine the internal resistance of those detectors, it is necessary to

specify the bias voltage to be applied to the junction. To determine the optimim

'bias, several factors mustbe considered.

Since junction characteristics tend to saturate, or very nearly saturate, at

reverse bias, it might seem desirable to operate the devices at reverse bias so as

to obtain the largest possible internal detector resistance, and hence the largest

possible output signal voltage. In practice, leakage currents paralleling the

thermally generated junction currents are difficult to avoid at any other than

zero bias. Surface passivation techniques designed to eliminate this problem in

infrared detector materials are somewhat primitive and not entirely successful.

Even when these leakage currents are smaller than the thermal junction currents,

so that the junction resistance is not shunted, they often contribute large

amounts of 1/f noise.

With no light incident, the thermal junction current in a pho adiode origin-

ates in part from hole-electron pairs which are thermally generated near the

i

1

4
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junction, diffuse to the junction and are separated by the junction field.

Pairs generated within the junction are separated immediately by the junction

field and also contribute to the thermal junction current. When the diffusion

mechanism dominates, the rms noise generated by the thermal junction current is,

in theory, only half as great at large reverse biases as it is at zero bias;

a reason often cited in support of reverse bias operation. However, photodiodes

are most sensitive in the lower portions of their effective temperature ranges

where their thermal junction currents are often dominated by pair generation in

the junction region (called the generation-recombination regime, although re-

combination contributes current only at forward biases). In such cases more noise

is generated by the device at reverse bias than at zero bias.

Finally, reverse bias operation is sometimes recommended to reduce the

junction.capacitance of the photodiode, extending its frequency response. The

reduced detectivity which results from the increased diode noise at reverse

biases unusually negates this improvement. Use of the photodiode as a high-

speed detector is an exception. In such applications, the photodiode noise is

often less than that of the preamplifier, and advantage may be taken of the im-

proved reverse-bias frequency response without notice of the increased photodiode

noise.

Thus, for maximum sensitivity at low to moderate frequencies it is preferable

to operate photodiodes as near zero bias as possible. [2] When limited by

flunctuations in the incident background radiation, the photodiode has one impor-

tant advantage over the photoconductor. Background-induced noise in a photocon-

ductor arises from fluctuations in carrier generation and recombination. In a

photodiode, the carriers are swept across the junction before recombination can

!
occur. Other things being equal, the rms noise from the photodiode is therefore ]

REV. NO.: 2 | REV. DATE: 31 Jan 1978 j

A-25



a factor of /2~ less than that from the photoconductor, and the detectivity is

V2 larger.

PbSnTe Detectors—are available only in the photovoltaic mode. Successful

preparation has been accomplished by numerous methods including evaporation,

sputtering, vapor epitaxy, liquid epitaxy, vapor bulk, solid state recrystaliza-

tion, and others. Detectors produced thus far have D*Ap in the 1010cmHz3/2W":

range and time constants which are R-C limited in the 10-100 nS range. By using

cooled filters, D* values have been reported [13] which exceed the 180° FOV and

300°K background limited D* values. (The cooled filter was an anti-reflection

coating of ZnS.e deposited directly onto the detector surface.) D* values of

10n cmHz^W -1 .were reported for 10.6 um radiation at a detector temperature of

77°K. [2] Figure 11 indicates the range of spectral detectivity currently

available.

2 4 6 8 10 12 14
WAVELENGTH (MICROMETERS)

FIGURE 11 Range oi Spectral Detectivity for
PbSnTe (PV) Detectors at 77°K, 60°FOV
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Silicon (IR Enhanced) Detectors—are often an economic choice for detection in the

near infrared, i.e., .75 to 1.1 urn. Detection is made difficult by the long

optical absorption path length in silicon in the near IR range. In order to

absorb all incident radiation the silicon thickness must be much greater than

is necessary for shorter wavelength detection. Silicon is particularly reflective

at about 1 um, therefore, an anti-reflection coating must be applied. Typically, a

thick detector base with a 1/4X anti-reflection coating will provide approximately

38% quantum efficiency at 1 um.

Figure 12 shows the construction of two types of Si photodiodes. The

Schottky barrier (Figure 12a) is formed by evaporating a transparent and conducting

gold layer on one side of the silicon wafer and a thick aluminum layer on the

opposite side. When a negative voltage is applied to the gold layer, it behaves

like a step junction and a region depleted of charge is formed in the silicon

over which an electric field exists. When a photon is absorbed, the minority

carrier is swept to the junction, and the majority carrier to the ohmic contact,

producing a current in the external circuit. The gold film thickness is critical

in that it must exhibit maximum transmission of the illumination at the same time

as maximum conductivity of the electrical current. The gold layer is typically

150°A thick and the silicon thickness ranges from 5 mils to 40 mils in different

GOLD
RLM

IMSUL&TSNG .
GUARD

\

ACTIVE ARIA
, DIAMETER

» BKSiQB '
N TYPE SILICON BULK

ALUMINUM METALLIZATION

(A) SCHOTTKY BARRIER

ACTIVE AREA
DIAMETER

DEPLETION
REGION

ALUMINUM METALLIZATION

(B> PLANAR DIFFUSED

FIGURE 12 Construction of Si Photodiodes
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detector types. The relationship between electric field penetration or depletion

depth and applied voltage is d(microns) = 1/2/pV, where V = applied voltage and

p = resistivity of silicon. For example, if 100 volts is applied to a junction

made on 10,000 "ohm-cm silicon, the depletion depth is 500 microns or 20 mils.

This means the detector would be fully depleted at this voltage if the thickness

was 20 mils (.020") or less.

The construction of a planar diffused Si photodiode is shown in Figure 12b.

Here an oxide is grown on the silicon wafer, a hole etched in the oxide, and an

impurity diffused into the silicon thru the oxide that forms a junction. The

back side of the slice is then diffused with an ohmic plus contact. The depletion

depth effect for the diffused device obeys the same equation as does the Schottky

barrier. These two different construction techniques produce differences in

spectral response, capacity, noise, high temperature and high light level operation

WW* 1
d=

- SIGNAL CURRENT

- DEPLETION LAYER CAPACITANCE

- DEPLETION LAYER CONDUCTANCE

- SERIES RESISTANCE IN SILICON AND LEADS

- LOAD RESISTANCE

" LOAD CAPACITANCE

FOR MAXIMUM SIGNAL ACROSS R

R$«RL R, (TYPICAL) « 50-500 R

L "d (TYMCAL) > 10 MEG

FIGURE 13 Equivalent Circuit for Si Photodiode

Figure 13 shows the equivalent circuit for both the Schottky barrier and

planar diffused devices. There is a junction depletion layer capacitance (C.),

a junction parallel conductance (Rd)» which is the effective resistance of the

•
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depletion region itself, and a series resistance (R ), which is the resistance

of the undepleted silicon and any lead resistance. A constant light flux incident

on the cell will generate a constant current.

The generation of current by light in a silicon cell is a quantum effect;

i.e., one incident photon produces one electron hole pair. The incoming light

beam thus represents a stream or current of photon particles that is converted

to a stream of electrons or electrical current. The photon current flow has units

of watts, since each photon is represented by a unit of energy expressed in joules,

and a watt is the flow per second of a joule of energy. Thus the responsivity is

a measure of the effectiveness of the light current to electrical current trans-

duction process in a silicon cell. The responsivity will vary with changes in

wavelength of the incident light and will also vary slightly with changes in

applied voltage and changes in temperature. The reason for the responsivity

change with wavelength is that the light reflection and absorption coefficients

of silicon change with wavelength. The applied voltage affects the collection

process of the photogencrated electron-hole pairs within the silicon and thus

varies the responsivity. Temperature changes affect both the optical constants

of the silicon cell and the collection process, thus varying the responsivity.

Figure 14 shows the characteristic I-V curves for both the Schottky barrier

and planar diffused devices. A load line for the reverse bias mode or photo-

conductive mode is shown on the section of the graph to the right of the zero

voltage line, and a load line for photovoltaic operation (i.e., no bias voltage)

is shown to the left of the zero voltage line.

Several design considerations can be derived from close scrutiny of this

curve. For the forward bias mode the device is acting as a photovoltaic (self

generating) device. If the device is working into a short circuit, corresponding |j
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Figure 14 Shottky Barrier and
Planar Difused Characteristic I-V Curves

to a vertical load line, the current output is linear with increases in incident

illumination. As RT increases, operation becomes non-linear until the openi>

circuit (load line horizontal) condition is obtained. At this point the open

circuited voltage output is proportional to the log of the incident radiation.

In this photovoltaic model of operation there is no dark current, making this

ideal for low level measurements where changing dark currents are a significant

portion of the final current output. This problem is especially significant

where changing ambients can change the dark current by as much as 10% per l"C.

In the reverse bias mode linear operation is maintained so long as the saturation

power is not exceeded, about 10 mw/cm2 and the bias level remains higher than the

product of the maximum signal current and the load resistance.

Indium Antiomonide § Indium Arsenide Detectors--are sensitive in the 1 .o 5.5 pm

and 1 to 3.5 um wavelength region respectively. Both are intrinsic detectors.
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InSb detectors have been made for operation in the photoconductive and photo-

voltaic mode, but only the latter is commercially available. Typical D*w

values for InSb range from 0.55 x 1011 to 1.0 x lO^m Hz12W"a.

InAs have not progressed to the degree of perfection enjoyed by InSb. The

material itself is more difficult to grow, and often contains a high concentration

of low angle grain boundries. [5] The equivalent circuit of either type detector

is the same as that for silicon detectors, discussed previously. Typical circuit

operation provodes for a current mode preamplifier. The InSb and InAs detectors

require cooling to liquid-nitrogen temperatures.

RECENT DEVELOPMENTS IN IR DETECTORS

Heterodyning--is a process by which light waves differing in frequency by Af

produce a photoemissive current modulated at Af. The application of the scheme

in the infrared region provides for a local (tunable) laser beam which is mixed

in the photodetector with the incident radiation. The differential frequencies

can then be analyzed by means of conventional microwave or rf circuitry.

The main requirements for a good heterodyne detector are a high quantum

efficiency and a short response time. For video detection with photoconductors

the responsivity is proportional to the lifetime and the most sensitive detectors

are comparatively slow. For example Ge:Cu grown from extremely pure starting

material (-1012 impurities cm~3) has a lifetime of between 10"6 and 10~? s.

Such a Dhotoconductor is an excel'lcnt vjHoo detector but hss a limited bandwidth

for heterodyne detection. By adding donor impurities such as antimony the life-

time can be reduced to less than 10~9 s and the material is then suitable for

heterodyne systems, but poor as a video detector. By suitable addition of

compensating impurities all the doped germanium detectors can be made high speed.
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Except at 10 ym where carbon dioxide lasers are available as local oscillators

results with heterodyne detection have fallen far short of their theoretical

performance. The chief problems appear to be lack of local oscillator power at

wavelengths other than 10 ym, and the low quantum efficiency of the longer wave-

length extrinsic detectors. Apart from Ge:Cu excellent results [8] have been

achieved using HgCdTe and PbSnTe photovoltaic detectors at 10 urn and GaAs at 337 ym.
(

At wavelengths beyond 125 ym the detectors normally considered for hetero-

dyning are: (1) Josephson junctions, (2) Metal-oxide-metal and metal-semiconductor

point-contact diodes, (3) Schottky diodes. Although good results have been .

achieved with all these devices the theoretical limit is a long way distant.

Figure 15 shows the approximate state-of-the-art of heterodyne detection. The

high NEP achieved by InSb electronic bolometer detectors is worth noting. They

appear to have a good quantum efficiency, and reasonable power local oscillators

iar̂ iiyailable in themillimeter region. The great disadvantage is the very limited

bandwidth of less than 10 MHz. [9]

10-*°

io-19

£
5"'

10-17
in

io-1

io-'4

10-13

OlnSb2.Bnim(15K)

O InSb 1000 pm (1.5 K)
0 HgCdTe 10 tun (77 K)

O JOSEPHSON 337 (an (4 K)

O SCHOTTKY 1200 Jim (300 K)

O Si P D* CENTER (2K) ° *»*** POINT CONTACT 337 pm (300 K)

0 MOM DIODE 337jtm (300K)

OGaAs 337 j«n (4K)

I I
10 30 100 300 1000

BANDWIDTH (MHz)
3000

FIGURE 15 The Present State-of-the-Art of
Infrared Heterodyne Detection
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In Figure 15 one point is labled "Si: P D." This type of impurity photo-

conductor may offer an alternative to Josephson detectors and diodes in the sub-

millimeter region for heterodyne detection. For a quantitative description of

this detector, see [9].

Photon Drag—is a detection mechanism which relies on momentum transfer from

photons to the free carriers in a semiconductor. p-Type germanium is widely used

as a detector material for C02 lasers at 10 urn. Results obtained using an HCN

laser at 337 urn and an H-0 laser at 119 urn show that such detectors will be useful

for measuring the output of CW and pulsed far infrared lasers. [10] The respon-

sivity of a photon drag detector is proportional to the absorption coefficient of

the free carriers in the semiconductor, and the absorption of germanium is some

ten times greater in the 100-1000 urn region than at 10 urn. Figure 16 shows the

expected performance of both n- and p-type germanium photon drag detectors of

2x.2 mm area in the submillimeter region. The limited number of experimental points

are in good agreement with theory. Table 6 gives details of a p-type detector

under investigation at the present time. It has the advantage that with far

infrared lasers pumped by C0_ lasers it can measure the power of both lasers.

Photon drag detectors are very insensitive devices, but they have advantages

as power measuring devices. They can be used from DC to about 109 Hz and their

performance does not change with time. They are cheap and rugged, and operate at

room temperature. More confirmation of their performance in the submillimeter

region is required but poxentiaiiy they appear to be useful comparison devices for

the more sophisticated and much more sensitive detectors required in this region [9].

Charge-Coupled-Devices (CCD's)--with application in readout and signal processing

techniques for infrared detector arrays, have been under investigation since about
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FIGURE 16 Performance of n- and p-Type Germanium
Photon Drag Detectors in the Far Infrared

TABLE 6 p-Type Germanium Photon Drag Detector

Active area'
Length
Resistance
10.6 ym Responsivity
500 ym Responsivity
10.6 ym NEP
500 ym NEP

4 nun2

10 mm
400 ohms
3 x 10'H'W"1

2 x lO'̂ W'1

2.2 x 10~3WHz~1/2

1.5 x 10~*WHz~1/2

1972. The charge-coupling principle basic to CCDs is very simple. Carriers are

stored in the inversion regions (or potential wells) under depletion-biased

electrodes and moved from under one electrode to under the next by appropriate

pulsing of the electrode potentials. The neighboring electrodes must be close

enough1 to allow the potential wells under them to couple and the charges to move

smoothly from one well to the next.
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In imaging, charges are introduced into the device when light from a scene

is focused onto the device's surface. As in all semiconductors, the absorption

of light quanta creates hole-electron pairs which under the influence of the

potential beneath each storage electrode, are collected as a charge packet. The

quantity of charge stored is proportional to the'intensity of the image.

In this manner, a spatial charge representation of the scene is stored in the

device. It is transferred off the device when clock voltages are applied to the

electrodes, moving each charge packet serially from storage site to site until

all charges reach the output diode.

In signal-processing and memory devices, the signal is not light-induced but

is simply introduced into the device by a standard MOS element and then passed

along by pulsing the appropriate electrodes sequentially.

Both hybrid and monolithic arrays of indium antimonide (InSb) and Si (CCD •

readout) have been fabricated, and reported [11] as significant improvements over

current state-of-the-art. In the monolithic approach, the InSb infrared detectors

and the CCD readout are integrated on the same InSb chip. The hybrid approach

integrates InSb detectors and silicon CCD's in a modular assembly using advanced

interconnection technology. Both techniques provide the means for incorporating

self-scanned solid state detector arrays (so called "pushbroom mode") in earth

oriented and planetary exploration remote sensing missions.

Table 7 compares conventional and InSb/CCD arrays. For further (quantita-

t^ve^ inf ̂nsst ** CT* th** r̂ sdsr is rsfs'*"r"'*ci *o fi 11 an^i ri9l.
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TABLE Comparison of Conventional and InSb/CCD Arrays

Spectral : Band (pro)

Type

Responsivity (A/W) R

Number of Detectors N
Scan Efficiency
IFOV Dwell Time (ysec)

Bandwidth (KHz)

Detectivity (cnrHẑ /W)
D*X

1.55 to 1.75

InSb(PV)

1.0

1

0.8

9.0

55

•3.0x10"

InSb/CCD

1.0

16

0.4

4.5

110

1.3xl012

3.6 to 4.1

InSb(PV)

2.3

1

0.8

9.0

55

6xlOn

InSb/CCD

2.3

16

0.4

4.5

110

2.7x10"

DETECTOR COOLING DEVICES AND TECHNIQUES

In general, the long wavelength cutoff and detectivity, as well as other

detector parameters, are determined by the operating temperature. Photodetectors

operating jirrrthe 8 to 13 ym atmospheric window require lower operating temperatures

than those operating in the 3 to 5 ym region. Intrinsic detectors, such as the

ternary alloys, mercury cadmium telluride and lead tin telluride, can operate at

higher temperatures than the extrinsic detectors, such as doped germanium. For

remote sensing applications, future imagers and scanners particularly those operat-

ing in the .8 to.13 ym region will utilize intrinsic photodetectors cooled to 100 K

or below to achieve background-limited performance. [12]

Several devices have been produced for the purpose of providing continuous

cooling of detector elements to temperatures extending from 233° to 50°K. Each

method has its own advantages and disadvantages.

: Thermoelectric

Thermoelectric cooling, utilizing the Peltier effect with dissim5 .ar metallic

conductors (and variously called thermoelectric refrigeration, Peltier-effect
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cooling, or electronic cooling), have found only modest acceptance as a detector

cooling device because they are limited to requirements greater than 150°K. When

designed in conjunction with an infrared detector package, a single-stage thermo-

electric cooler will produce a temperature reduction of almost 50°K, with the hot

junction at 293°K. A larger unit, incorporating two stages of thermoelectric

junctions in cascade, will provide 79°K cooling from a hot-junction temperature of

298°K. [1] The electric power requirements of the thermoelectric coolers are in

the nature of high, closely regulated DC current (5 to 20 amp), with low voltage.

For development of various output capacities, the number of basic elements is

proportionally increased; they all act in parallel, and their outputs add together.

Semiconductor materials, such as bismuth-telluride - selenide and bismuth-antimony-

telluride alloys, are the most common elements employed.

With an input to the device of low-voltage direct current and with heat

continuously abstracted at one junction at ambient.temperature, the other junction

will cool. Essentially each of the two junctions become an "activity cell" in

which at the lower refrigeration temperature level, heat is converted into electri-

cal effect, and at the higher atmospheric temperature, the electrical effect is

converted into heat. This establishes the basis of "heat pump" operation: the

lower-temperature heat requirement must be supplied, essentially as in the

evaporator of a vapor-compression system, by heat withdrawl via heat transfer,

from all connected surroundings.

Joyl e-T'hompson

A Joule-Thompson (J-T) cooler (also called a demand flow cryostat) is a self-

regulating device designed to reduce the temperature of a high-pressure gas by

sudden adiabatic expansion. A thermostatic control element in the device senses

the liquid level in the detector dewar (fused glass) and operates a self-contained j;
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valve in response to changes in heat load and ambient temperature. The J-T

device is passive: no electrical connections are required.

Figure 17 illustrates the functional components of an open-loop J-T system.

MOLECULAR
FILTER

METAL
OUTER
JACKET KOVAR

FLANGES

DETECTOR
ARRAY

WINDOW
(TYPICALLY IRTRAN 2
OR SAPPHIRE

HIGH
PRESSURE
TANK
(TYPICALLY NITROGEN)

RADIAL
FEEDTHROUGH
LEAD

COLD
SHIELD

\

;

FIGURE 17 Functional Components
of an Open-Loop J-T System

A major design problem with open-cycle liquid systems is to achieve the requisite

thermal isolation in a sufficiently rugged dewar package. Extreme care with

insulation systems and ingenuity in the design of mechanical supports are required

to achieve the required thermal isolation. A further problem area with liquid

systems is to determine the location of the vapor phase in the near zero-g

environment, since it is necessary to vent only vapor in order to conserve re-

frigeratio- . Several schemes have been proposed for circumventing the vapor

liquid separation problem, but none have been demonstrated, in a zero „ environ-

ment.
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In a solid-cryogen cooler, the detector is usually mounted on a pedestal

which is thermally connected to a vacuum-insulated dewar containing a solidified

cryogen. The ullage space above the stored solid is evacuated to maintain the

cryogen in its solid state. Heat entering from the detector and the surroundings

causes the cryogen to sublime, and the resulting vapor is vented. A solid-cryogen

dewar comprises an inner vessel containing the cryogen, an insulation system, and

a vacuum shell. A fill and vent tube permits initial filling of the cryogen

vessel and venting of a vapor during operation. Auxiliary cooling lines, through

which a liquid cryogen is circulated, are used during the filling operation and

during prelaunch storage.

Depending on the application, a solid-^cryogen cooler can offer several advan-

tages over alternative systems. It offers a lower weight system compared with

those using stored-liquid cryogens, since the latent heat of sublimation is

greater than the latent heat of vaporization. Additionally, solid systems avoid

the problem of locating the vapor phase under conditions of near-zero gravity.
/

There are several disadvantages to a solid-cryogen cooler in that it imposes

restrictions on the detector mounting and, additionally, methane and hydrogen,

both of which have excellent properties as solid coolants, are hazardous materials

and require special handling.

The fact that the use of lower temperature cryogens results in a significantly

higher weight, plus the fact that the weight of the cryogen is critically depend-

ent upon the temperature of the external shell of the dewar, has led to the use

of dual cryogen systems for applications where low detector temperatures are re-

quired. Such a system results in lower cooler weight at the cost of increased

complexity. In such a system, a higher temperature cryogen, such as ammonia, is

used to cool a thermal shield which completely surrounds a lower temperature

I REV. NO.: 2 REV. DATE; 31 Jan 1978

A-39



RSOH

cryogen such as methane. A multilayer insulation system is placed between the

shield and*the outer shell of the cooler.

Passive Radiators

Conceptually, the simplest way of developing cryogenic temperatures in space

is to radiate power to the low-temperature heat sink of space by use of a suitably

sized emitting surface. This concept is particularly attractive since such a

system.is completely passive, requires no continuous electrical power, and is

potentially capable of high reliability for extended periods. Considerable effort

has been devoted toward the design of passive radiators to maintain the temperaturt

of detectors in electro-optical systems at temperatures in the 70 to 120 K region,

and several such systems have flown.

The effective temperature of the star-speckled sky is less than 10 K. A

suitably sized, cold,plate of high emittance to which one or more detectors are

mounted can be made to radiate to this sink. It is, of course, necessary to

shield the cold plate against heat inputs from the sun, the earth, and the space-

craft. These considerations usually result in a radiator design which is tailored

to a particular spacecraft system. The orbit plane, orbit altitude, and the

location of the radiator on the spacecraft all significantly influence the design

of the radiator.

A typical passive radiator design is shown schematically in Figure 18.

The assembly consists of a conical outer stage mounted to the optical instrument

with low-conductance supports. The outer stage supports a disc-shaped, inner,

low-temperature stage, also mounted with low-conductance supports. The cooled

detectors are mounted on the low-temperature stage.

As shown in Figure 18 , the inner stage has a clear-field-of-view to deep

space. To achieve low'inner-stage temperature, the clear-field-of-view is made
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as large as possible—usually limited only by geometrical considerations pre-

scribed by the-orbit and the location of external appendages on the spacecraft.[12]

CLEAR FIELD OF
VIEW TO DEEP SPACE

EXTERNAL SURFACE RADIATOR

OUTER STAGE
SPECULAR i
SURFACE

INNER STAGE
. LOW TEMP

RADIATOR

MOUNTING
RING

MULTI-LAYER
INSULATION

LOW CONDUCTIVITY
SUPPORT SYSTEMS

INSTRUMENT
INTERFACE

FIGURE 18 Schematic Diagram of a Passive Radiator

Although passive radiators are simple in principle, there are several impor-

tant design problems associated with the development of flight hardware. The

design of the support system is critical since it must support the low temperature

stage with an extremely low thermal conductance and must maintain the detector

** f

Another fundamental design problem is that of preventing contamination of

low-temperature optical surfaces, such as detector capsule windows, by outgassing

from either the spacecraft or the radiator itself. Contaminants on the low-

temperature surfaces can effect the optical signal throughput to detectors, and

can also influence the detector operating temperatures by altering the emittance,
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solar absorptance, or specularity of critical thermal control surfaces. Current

design'practices are based on using protective covers and heaters to prevent con-

tamination during .prelaunch, launch and initial orbital operation.

Closed-Cycle

A closed-cycle refrigeration system pumps the heat from the load temperature

up to the temperature of the space radiator. The heat load, which includes all

energy entering the system, is radiated to space by the heat rejection system.

This system consists of a heat rejection radiator plus a means of transferring

the heat, generated in the refrigerator to the radiator. The transfer media may

be conductive paths, heat pipes, or an active coolant loop in which a heat trans-;

fer fluid is circulated by a coolant pump.

Cryogenic'refrigerators may be classified by two general types; intermittent

flow and continuous flow. Intermittent flow refrigerators use regenerative heat

Exchangers arid are distinguished by the thermodynamic cycle on which they operate.

'The Stifling, Gifford-McMahon, and Vuilleumier (VM) cycle refrigerators have been

•••used'for ground-based, airborne, and space missions. VM cycle refrigerators are

heat-driven derivatives of the Stirling cycle refrigerators. The cycle is attrac-

tive for space use because of the ability for using solar or isotope thermal

energy to drive the thermal compressor directly, thereby minimizing the electrical

power input.

Continuous-flow refrigerators use counterflow heat exchangers. The units

operate on the reversed Brayton thermodynamic cycle or derivatives of it. [12]
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TABLE 8 Common Elements and Compounds
used for Infrared Detectors

THERMAL
DETECTORS

1

SYMBOL

MN

Co

Ni

Au

Ge

Sb

- Te

Bi

PvF,
£

LiTa03

TGS

NAME

Manganese

Cobalt

Nickel

Gold .

Germanium

Antimony

Tellurium

Bismuth

Polyvinylidene
Fluoride

Lithium
Tantalate

Triglycine
Sulfate

. PHOTON
DETECTORS

SYMBOL

HgCdTe

PbS

PbSe

Ge (doped):

Zn

Cd

Cu

Hg
Au

Si (doped) :

As
Sb

InAs

InSb

PbSnTe

NAME

Mercury Cadmium
Telluride

Lead Sulphide

Lead Seleriide

Germanium

Cadmium

Copper

Mercury

Gold

Silicon

Arsenic
Antimony

Indium Arsenide

Indium Antimonid.e

Lead Tin
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6 6 7 8 9

WAVELENGTH (MICRONS)

10 11 12 13 14

1 InAt
2 InAi
3 AuOe
4 InSb
6 InAt

77°K
196°K
77°K
77°K

300°K

6 InAt EMITTER
7 InAt EMITTER
8 PYROELECTRIC
9 THERMISTOR

10 THERMOPILE
11 PbSnT*

77°K
300°K
300°K
300°K
300°K
77°K

FIGURE 19 Spectral Response of
Various Infrared Detectors
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TABLE 9 Typical Infrared Detector Characteristics

TYPE

PbS

InAs

PbSe

InSb

Ge:Au

Ge:Hg

PbSnTe

HgCdTe

Ge:Cd

Ge:Cu

Ge:Zn

Thermistor
Bolometer

Carbon
Bolometer

Thermocouple

SbBi

BiTe

PVF2

LiTaOj

TGS

OPERATING
TEMP. (°K)

295
193
77

77
193

295
193
77

77

77

4

77

77

4

4

4

295

2

295

295

295

• 295

295

295

Xp(ym)

2.4
2.8
3.0

3.0
3.2

3.8
4.8
5.0

5,0

5.0

10.4

10.0

13.5

19.0

21.0

37.0

FLAT

FLAT

FLAT

>40

>50

>30.0

14.0

20.0

D*XP/
(lO^cmHz^Vf1)

8.0 - 15.0

60.0 - SO.'O
60.0 - 80.0

0.1 - 0.5
1.5 - 3.0
1.5 - 3.0

8.0 - 20.0

0.3 - 0.7

1.0 - 2.0

1.5 - 3.0

.5 - 2.0 '

2.0 - 3.0

1.3 - 2.0

1.0 - 2.0

0.6 - 0.8

4.3

.02

> .01

0.009 - .022

.01

.01

.04

T

0.1 - 0.5 ms
2 - 5 ms
2 - 5 ms

5 ys
5 ys

1 - 3 ys
10 - 40 ys
15 - 50 ys

20 - 200 ns

10 - 100 ns

10 - 100 ns

1 - 2 ys

0.2 - 0/8 ys

10 - 100 ns

10 - 100 ns

10 - 100 ns

0.2 - 1.0 ms

10 - 100 ms

10 - 50 ms

20 - 40 ms

50 -.70 ms

0.1 - 0.8 ys

.15 - 1.0 ys

0.1 - 1.0 ys
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TABLE 10 Infrared Detector Types and
Associated Sensor-Program*

THERMAL
DETECTORS

PHOTON
DETECTORS

Thermistor Bolometer

• ERB - NIMBUS
• SR - ITOS
• THIR - NIMBUS

Radiation Thermopile

• IRIS - NIMBUS
• IRIS - MARINER
• NFR - PIONEER

Pyroelectric

• VORTEX - PIONEER
• PMR - NIMBUS
. VTPR - ITOS
• BSU - TIROS
• SSU - TIROS

Photoconductive

• IRIS - NIMBUS
• CZCS - NIMBUS
• HIRS - ITOS
• VHRR - ITOS
• VISSR - GOES
• HCMR - AEM
• MSS - LANDSAT
• VAS - GOES

Photovoltaic

• MAWD - VIKING
• LIR - PIONEER
• HIRS - ITOS
• VAS - GOES
• ASSIR - STORMSAT

e.g., Under the column titled THERMAL DETECTORS, see Pyroelectric. The
Vertical Temperature Profile Radiometer (VTPR) incorporating a triglycine
sulfate (TGS) detector was flown on an ITOS satellite.
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Spie Seminar Proĉ , Vol. 32, p. 9 (1973).

(13) Melngailis, I., "Small Bandgap Semiconductor Infrared Detectors,"
J. Luminesc, Vol. 7, pp. 501-523 (1973).

(14) Annable, R.V., "Radiant Cooling," Applied Optics (1970).

(15) Breckenridge, R.W. (Jr.), "A 3.6°K Reciprocating Refrigerator," Presented
at the 1968 Cryogenic Engineering Conference, Cleveland, Ohio (1968).

. NO.: 2 | REV- PATE: 51 Jan 1978̂  J

A-48



(16) Gabron, F., McCullough, J.E., Merriam, R.L., "Spaceborne Passive Radiator
for Detector Cooling," Proceedings of 20th National Infrared Information
Symposium (IRIS) 1972.

(17) Gessner, R.L., Colyer, D.B., "Miniature Claude and Reversed Brayton Cycle
Turbomachinery Refrigerators," Advances in Cryogenic Engineering, Vol. 13
(1968).

(18) Haddocks, F.E., "Application of Turbomachinery to Small-Capacity, Closed-
Cycle, Cryogenic Systems," Advances in Cryogenic Engineering, Vol. 13
(1968).

(19) Prast, G., The Vuilleumier (VM) Cycle—Cryogenics and Infrared Detection,
Boston.Technical Publishers, Inc., Cambridge, Ma., 1970.

(20) Schulte, C.A., Fowle, A.A., Heuchling, T.P., Kronauer, R.E., "A Cryogenic
Refrigerator for Long-Life Application in Satellites," Advances in Cryogenic
Engineering. Vol. 10, Plenum Press, New York, p. 477 (1965).

REV.NO.; 2 - *"**'• 51

A-49



RSDH

* -

Figure No. Page

2a A-5 ''

2b A-5

3,4 A-6

: 6 A-ll

7 A-13

8 A-16

9,10 A-19,A-20

11 ' A-28

12,13,14 A-29,A-30
A-32

15 A-34

16 A-36

18 A-43

19 A-46

1J.U.S. GOVERNMENT PRINTING OFFICE

. . . ~ rr~ . .,

Appendix A

INFRARED DETECTORS
ILLUSTRATION CREDITS

Reference

Barnes Engr. Co.
Bulletin No. 2-102

Barnes Engr. Co.
Bulletin No. 2-101

Barnes Engr. Co.
Bulletin No. 2-102

New England Research Center
Sudbury, Massachusetts «
Data Sheet: Li TaOs,
Pyroelectric Infrared Detector

[15]

151

Infrared Industries Inc.
Bulletin: PbS...Mr.
Versatility of The Detector World
December 76

Santa Barbara
Research Center-Brochure

, United Detector Technology
"Silicon Photodetector Design
Manual"

19]

[9]

[13]

[3]

1978-64O-081/C26 REGION NO. 4

Page

N/A

N/A

N/A

N/A

.

35

22

N/A

12

1,2,3

462

465

135

6

REV. NO.: 2 | REV. DATE: 31 Jan 1978

A-50




