
NASA TECHNICAL
 

MEMORANDUM 

NASA TM-78208 
(NASA-TM-78208) TRANSFER FUNCTION TESTS OF 

THE JOY LONGWALL SHEARER (NASA) 88 p HC 
N79-14504 

A05/MF A-01 CSCL 081 
Unclas 

G3/43 41040 

TRANSFER FUNCTION TESTS OF THE JOY 
LONGWALL SHEARER 

By Paul H. Fisher, Jr.
 
Electronics and Control Laboratory
 

December f978 C, 

NASA
 

George C. Marshall Space Flight Center
 
Marshall Space Flight Center, Alabama
 

MSFC - Form 3190 (Rev June 1971) 



TECHNICAL REPORT STANDARD TITLE PAGE 
1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. 

NASA TM-78208 _ 

4 TITLE AND SUBTITLE 5. REPORT DATE 

Tafi December 1978T 
Transfer Function Tests of the Joy Longwall Shearer is.PERFORMING ORGANIZATION CODE 

7. AUTHOR(S) S.PERFORMING ORGANIZATION REPORT 
Paul H. Fisher, Jr. 
9. PERFORMING ORGANIZATION NAME AND ADDRESS 1o. WORK UNIT-NO. 

George C. Marshall Space Flight Center 11. CONTRACT OR GRANT NO. 

Marshall Space Flight Center, Alabama 35812 
Is, TYPE OF REPORT & PERIOD COVERED 

12 SPONSORING AGENCY NAME AND ADDRESS 

National Aeronautics and Space Administration Technical Memorandum 
14. SPONSORING AGENCY CODEWashington, D.C. 20546 

15. SUPPLEMENTARY NOTES 

Prepared by Electronics and Control Laboratory, Science and Engineering 

IS. ABSTRACT



A series of operational tests was performed in March 1977, on the Joy longwall shearer 
located at the Bureau of Mines in Bructon, Pennsylvania. The purpose of these tests was to 
determine the transfer function and operational characteristics of the system. These charac
teristics will be used to generate a simulation model of the longwall shearer used in the 
development of the closed-loop vertical control system. 

17. KEY WORDS Ia. DISTRIBUTION STATEMENT 

Unclassified - Unlimited 

19. SECURITY CLASSIF. (of thDerpt 20. SECURITY CLASSIF. (of this Pae) 1. NO. OF PAGES 22. PR ICE 

Unclassified Unclassified 1 87 NTIS 
MEiC - rorm32 #2 (Rev flecember 1972) For sale by National Technical Information Service, Springfield, Virginia 11151 



TABLE OF CONTENTS



Page



INTRODUCTION ................................... 1



DESCRIPTION OF TEST SETUP ......................... I



DESCRIPTION OF TESTS PERFORMED ...................... 4



CONCLUSION ..................................... 8



APPENDIX A - TRANSFER FUNCTION MODEL OF THE


LONGWALL SHEARER ....................... 71



PR8EC-DN 3GPAGE BLANK NOT FIL&lt, 



LIST OF ILLUSTRATIONS



Figure 	 Title . . . ... . ... ... Page 

1. Longwall shearer at Bruceton, Pennsylvania ........... 	 10



2. Longwall shearer measurement schematic ............ 	 11



3. Left boom pressure sensors .................... 	 12



4. Left boom cylinder and sensors .................. 	 13



5. Right boom cylinder and sensors ................. 	 14



6. Temperature probe and pressure sensors .........		 15



7. Left boom acceleration, velocity, and position sensors . 16



8. Calibration curve for the rate gyro for... .............. 	 17



9. Calibration curve for the rate gyro for L .............. 	 18



10. 	 Test and recording equipment ................... 	 19



11. 	 Longwall shearer frequency response for a CL input .... 20



12. 	 Condensed simultaneous Brush recorder plots for the


left and right booms for Rutis-1 through 18 and Run-20 . . . 21



13. 	 Dynamic response of the left boom for Run 1 ......... 	 27



14. 	 Pressure response of the left boom for Run 1 ......... 	 28



15. 	 Dynamic response of the right boom for Run 1 ......... 29



16. 	 Dynamic response of the left boom for Run 2 ......... 	 30



17. 	 Pressure response of the left boom for Run 2.......... 	 31



iv 



LI ST OF ILLUSTRATIONS (Continued) 

Figure Title Page 

18. Dynamic response of the right boom for Run 2 ........ 32



19. Dynamic response of the left boom for Run 3 ......... 33



20. Pressure response of the left boom for Run 3 .......... 34



21. Dynamic response of the right boom for Run 3 ........ .35



22. Dynamic response of the left boom for Run 4 ......... 36



23. Pressure response of left boom for Run 4 ......... 37



24. Dynamic response of the left boom for Run 5 ....... .. 38



25. Pressure response of the left boom for Run 5 ....... .. 39



26. Dynamic response of the left boom for Run 6 ...... ... 40



27. Pressure response of the left boom for Run 6 ....... .. 41



28. Dynamic response of the left boom for Run 7 ..... .. .42



29. Pressure response of the left boom for Run 7 ........... 43



30. Dynamic response of the left boom for Run 8 ...... .. 44



31. Pressure response of the left boom for Run 8 ......... 45



32. Dynamic response of the left boom for Run 9 .... ..... 46



33. Pressure response of the left boom for Run 9 ....... .. 47



34. Dynamic response of the left boom for Run 10 ......... 48



35. Pressure response of the left boom for Run 10 ...... .. 49





LI ST OF ILLUSTRATIONS (Continued)



Figure Title Page 

36. Dynamic response of the left boom for Run 11 ......... 50



37. Pressure response of the left boom for Run 11 ........ 51



38. Dynamic response of the left boom for Run 12 .. ....... 52



39. Pressure response of the left boom for Run 12 ........ 53



40. Dynamic response of the left boom for Run 13 ...... 54



41. Pressure response of the left boom for Run 13 ........ 55



42. Dynamic response of the left boom for Run 14 .... .... 56



43. Pressure response of the lefttboom for Run 14 ........ 57



44. Dynamic response of the left boom for Run 15 ......... 58



45. Pressure response of the left boom for Run 15 .... 59



46. Dynamic response of the left boom for Run 16 ....... . 60



47. Pressure response of the left boom for Run 16 ........ 61



48. Dynamic response of the left boom for lun 17 ........ 62



49. Pressure response of the left boom for Run 17 . ........ 63



50. Dynamic response of the left boom for Run 18 ........ 64



51. Pressure response of the left boom for Run 18 ........ 65



52. Dynamic response of the left boom for Run 20 ........ 66



53. Pressure response of the left boom for Run 20 ........ 67



vi 



LI ST OF ILLUSTRATIONS (Concluded) 

Figure Title Page 

54. Needle and check valve ........ .............. 68



55. Pilot check valve ..... ....................... 69



A-i. Control valves and actuator ........... .......... 76



A-2. Boom dynamics ......... .... ................ 77



A-3. Command to left boom ........................ 78



A-4. Boom cylinder displacement .................... 78



A-5. Rate for left boom operation - individual operation ..... 79



A-6. Rate for left boom operation - simultaneous


operation ................................. 79



vii 



LI ST OF TABLES



Table 	 Title -Page 

1. 	 Symbol Identification ......................... 	 2



2. 	 Tests 'Performed to Investigate Linear and Nonlinear


System Characteristics ............. . .......... 5



A-i. 	 Valies of Gains for KC for the Left and Right Booms .... 72



A-2. 	 Listing of Values and Constants for the Simulation


Model . ................................... 73



viii 



TECHNICAL MEMORANDUM 78208 

TRANSFER FUNCTION TESTS OF THE JOY


LONGWALL SHEARER



INTRODUCTION



A_seriesof operational tests was performed in March 1977 on the Joy 
longwall shearer located at the Bureau of Mines in Bructon, Pennsylvania. The 
purpose of these tests was to determine the transfer function and operational 
characteristics of the system. These characteristics will be used to generate 
a simulation model of the longwall shearer used in the development of the closed
loop vertical control system. 

DESCRI PTI ON OF TEST SETUP



The longwall shearer after in'strumentation is shown in Figure 1. The 
figure shows the left and right boom, cutting drum, left and right control panels, 
the conveyor pans, and rack. All tests were performed in this work area and 
no external loads were applied to the cutting drums or booms. Before the tests, 
the tilt cylinders (ROLL) were positioned so the chassis was horizontal and 
the cowl was rotated to a vertical position to permit the boom to be lowered to a 
horizontal position. 

The dual boom system showing the sensor locations and input commands 
are shown in Figure 2. Table 1 identifies the symbols in Figure 2. The location 
of the sensors on the longwall shearer are shown in Figures 3 through 6. Input 
commands to the system (8 V) were selected from a pulse generator (which 
provided for a selection of various pulse durations and frequencies) or from a 
sine wave generator (for a range of frequencies and amplitudes). These inputs 
were used to drive the right and left booms individually or simultaneously. The 
input command to the left boom (CL) and right boom (CR) were interfaced 

through an Oceanic connector to the control valves and recorded on magnetic 
tape with the other system parameters. 



TABLE 1. SYMBOL IDENTIFICATION



Channel 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Recorder A 

Reference Pulse 

Piezoaccelerometer 

Servoaccelerometer 

Radial Accelerometer 

Rate Gyro of Left Boom 

Boom Cylinder Position 

Pressure between Needle 
Check Valve and Pilot 
Check Valve 

Between Needle and Check 
Valve and Boom Cylinder 

Lower Boom Pressure 
Line 


Supply Pressure 

Command to Left Control 
Valve 


Symbol 

APL 

ASL 

ARL 
 

L 
 

XL 
 

Pj 
 

P2 

P3 

P 

C 

Recorder B Symbol' 

Reference Pulse 

Piezoaccelerometer APR 

Se rvoacceleromete r ASR 

Radial Accelerometer ARR 

ate Gyro of Right Boom r 

BoomA Cylinder Position XR 

Pressure between Needle P4 

Check Valve and Pilot 
Check Valve 

Between Needle and Check P 5 

Valve and Boom Cylinder 

Lower Boom Pressure P 6 

Line 

Left Boom Position Pot YL 

Command to Right Control 
Valve 

C 
R 



The system pressures were monitored with pressure transducers call
brafed from 0 to 2500 psi for a 0 to 5 V output from signal conditioners. The 
supply pressure regulator was set at 2200 psi, but the pressure sensor (F 5 ) 

was located between the pump and the regulator. Other pressure sensors 
(Pi)i + 1 . . . 6 were located as shown in Figure 2. During several tests, 

pressures exceeding 2500 psi within the system saturated the pressure sensors. 
Hydraulic temperature (T) was monitored in the return line. The hydraulic tem
peratures were found to be excessive and a heat exchanger was installed. 

The position of the boom cylinders was obtained by mounting linear 
potentiometers to the cylinder body and the slider to the boom cylinder rod. 
The boom cylinder stroke is 9. 5 in. and, when extended, the potentiometer out
put was set at 4.5 V. The resultant boom angle (P) is 36.3 deg. A boom angle 
of zero occurs when the boom is collinear with the chassis. The potentiometer 
output is then 0.8 V and the boom cylinder stroke is 3.25 in. The boom cylinder 
position for the left (X L) and right (XI) boom is shown in Figure 2. The 

boom cylinder stroke (S) is related to the cylinder positions (XL, R) provided 
in this report by: 

S = 0.6579X + 3.25. 

The left boom pressures are shown in Figure 3. The vertical actuator in Figure. 
4 is one of two tilt cylinders (ROLL). The left and right boom cylinder position 
potentiometers are shown in Figures 4 and 5. The locations of the temperature 
probe and the supply pressure transducer are shown in Figure 6. Several pro
tective side panels were removed from the longwall shearer to provide access 
for mounting the sensors. 

The boom height potentiometer (Y L) in Figure 7 was monitored on the 

left boom to detect boom position relative to the ground reference. A potentiom
eter stand for low boom angles and a stand extension were used for larger boom 
angles to support the potentiometer (Y L). A scale factor of 1. 724 in. /V was 
used for this output. 

Angular boom rates were detected at the rate gyro package shown in


Figure 7 (4L ). The operational range of this sensor is +20 deg/sec with a



natural frequency of 23 Hz. Calibration curves for the rate gyros are shown in 
Figure 8 for 1l and Figure 9 for 
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The sensor disc, which contains the rate gyro and the tangential and nor 7 

mal accelerometers, was aligned such that the tangential accelerometers were 
perpendicular to the centerline of the boom. The output voltage from the 
accelerometers was scaled from 0 to 5 V by the signal conditioners such that 
zero acceleration was 2.5 V. The recorded outputs in this report of ASR and 

ASL has had the Earth' s gravity input biased out. The accelerometers are shown 

in Figure 7 for the left boom. Two d-5 g sensors were used for AS and A and a 

:1 g sensor for AR. Higher frequencies (above 20 Hz) were sensed with the 

piezosensor A while the lower frequencies (0 to 100 Hz) were sensed with the 

servoaccelerometer AS. 

The outputs from the sensors were routed to the signal conditioner and 
distribution box and then to the two Ampex 1300 tape recorders. Selected 
parameters were monitored and recorded on an eight channel Brush recorder. 
The Ampex recorder speed provided a 20 000 fz frequency response, but data 
acquired on the Brush is flat out to only 55 Hz. 

Eleven channels of data were recorded on each tape recorder. Channels 
I and 11 were calibrated for ±8 V and the remaining channels were calibrated 
+5 V. Recorder playback scale factors are 3. 53 for the =5 V channels and 5.66 
for the +8 V channels. The data channel identification is given in Table 1. The 
data recorders and support equipment are shown in Figure 10. 

DESCRI PTION OF TESTS PERFORMED



The closed-loop vertical control system will be used to detect the differ
ence between a desired cutting depth of coal and the actual cutting depth that 
occurs and maintain that difference within prescribed limits. Commands from 
the controller to the longwall shearer control valve will be constant in magnitude 
but of variable duration. Since the present longwall shearer control valve is a 
proportional valve, a series of system tests was performed to investigate the _ 
linear and nonlinear system characteristics. (A list of these tests is given in 
Table 2.) These tests resulted in the identification of characteristics needed 
to develop an improved simulation model of the longwall shearer. A systems 
analysis to identify or explain the reason for the characteristics observed or 
recorded is not intended in this report. This would require a more indepth 
study than has been directed for this task. 
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TABLE 2. TESTS PERFORMED TO INVESTIGATE LINEAR


AND NONLINEAR SYSTEM CHARACTERISTICS



1. Raised and Lowered Right and Left Booms 

A. Individually and Simultaneously 
B. Continuous Command 
C. Pulsed Command 

2. Oscillate About a Reference Position 

A. Boom Horizontal 
B. Boom Raised 
C. Sinusoidal Input 
D. Pulsed Input 
E. Simultaneous Commands 

3. Command Threshold 

A. Pulsed Input 
B. Sinusoidal Input 

4. Frequency Response 

5. Translation of Longwall Shearer on Track 

A. Minimum Speed 
B. Mid-Speed 

C. Maximum Speed 

The frequency response of the left boom is shown in Figure 11. This 
was obtained from a constant amplitude input CL for selected frequencies over 

the range indicated. The predominate effects are the attenuation that occurs 
above 0.6 Hz and the coupling of the signal and response of the riglt boom. 
This is listed in Table 2 as Item 4. 

A series of runs identified in Figure 12 were plotted on the Brush 
recorder during the tests. These selected parameters provide a ready insight 
to the system' s response. An expanded time scale and additional parameters 
of these runs are included in Figures 13 through 53. The needle and check 
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valve and the double pilot check valve are shown in Figures 54 and 55. The 
resultant response of the system parameters Iisted in Table 2 follows Figure 17. 
Before these runs were made, a set of tapes (IA and IB) were made to obtain an 
understanding of the system. As a result of these preliminary runs,. a double 
pilot check valve was replaced on the right boom. An internal leakage prevehted 
the boom from maintaining a constant position. An unbalanced rate between 
raising and lowering the boom was balanced by adjusting the needle check valve 
(Figs. 2 and 54). An activation threshold was identified for both on-off and 
proportional control valve operation. Small amplitude inputs to the proportional 
valve (chatter) resulted in a boom oscillation whenever the boom was lowered. 
Although several needle valve positions were selected, there was always an input 
amplitude that excited this limit cycle condition when the boom was lowered. 
This characteristic is not excited when the system is operated in the on-off 
mode. The needle valve was set for balanced rates before data tapes 2A, 2B, 
3A, and 3B were made. An increase in hydraulic temperature occurred during 
initial system tests prior to tapes 2 and 3 and the temperature was allowed to 
reach 2000 F before tests were terminated. The Shell Tellus No. 33 oil used in 
the system has an operational temperature range from 0 to 220°F. (The Tellus 
oil No. 33 has been designated as No. 68 since January 1977.) As shown in 
Figure 2, a heat exchanger was added to the system which maintained the 
monitored temperature point below 150°F during successive runs. An observed 
hot spot in the area of the hydraulic pump occurred during the acquisitions of 
data and, although the temperature probe recorded less than 150°F, data 
gathering was discontinued. The following day, an equipment shut-down occurred 
prior to making transverse runs on the track. This shut-down was attributed 
to a thermal overload. 

The following runs were obtained from No. 2 data tapes: 

Run 1 - Left boom up then down, stopping before full stroke. of the 
actuator. 

Run 2 - Right boom up then down, stopping before full actuator stroke. 

Run 3 - Simultaneous command to lower left boom and raise right boom. 
The left boom lower rate is the same as Run 1; however, a 
reduced rate occurs in the right boom during simultaneous 
operation. 
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Run 4 - Simultaneous command to raise the boom to end of stroke. The 
left boom extended to the hard stop before the right boom is 

extended to the end of stroke. 

Run 5 - Pulsed input to the right boom, increasing pulse duration until 
response occurs. The threshold was determined to be 300 msec. 
A -response is also noted in the left boom rate but not the boom 
cylinder position. 

Run 6 - A 300 msec pulse command to raise the right boom then a


simultaneous continuous raise then lower left boom command.
 

Cross coupling is evident between both booms.



Run 7 - Pulsed input increased to 500 msec to raise right boom, then


adjusted down pulse time for a sustained oscillation of a low


boom position. The down pulse duration was 760 msec.



Run 8 - The right boom was raised and maintained the same duration


pulses as in Run 7.



Run 9 - A continuous command to raise and lower left boom while the 
right boom is pulsed about a fixed position. The pulses of right 
boom are the same as in Run 7. 

Run 10 - The left boom threshold was determined to be a 260 msec pulse. 

Run 11 - A continuous command to the right boom to raise, then lower the 
left boom pulsed to raise the boom. 

Run 12 - A 500 msec up pulse and a 600 msec down pulse permitted the 
left boom to oscillate about a constant position. 

Run 13 - Raised boom to new position to check oscillation about a new 
position. 

Run 14 - Continuous command to raise, then lower right boom while left 
boom oscillates at pulsed times given in Run 12. 

Run 15 - Left and right boom oscillate about a point for a pulse time given 
in Runs 7 and 12. Both booms are dropping but at a different 
rate. 
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Run 16 - Left and right boom oscillate about a point for a 1 sec duration 
up pulse. The down pulse was adjusted to maintain a constant 
position on the right boom. 

Run 17 - Left and right boom oscillate about a point for a 1 see duration 
up pulse for the left boom. 

Run 18 - The 1 sec duration pulses when applied simultaneously to both 
booms resulted in an in-phase pulsing and resultant decrease in 
the position of each boom. The individual oscillations about a 
point in Runs 16 and 17 could not be maintained when commanded 
together. 

Run 19 - Not recorded. 

Run 20 - Same as Run 18 but with both booms in a lower position. 

Additional runs and data are available and are recorded on tape; however, 
it cannot be included in this report because of the bulk of the material. Any 
additional information or data that are on the tapes can be obtained upon request 
to EC24. 

A simulation model of the longwall shearer was developed from these 
test results and is provided in Appendix A. 

CONCLUSION 

The data obtained during this investigation were for an unloaded condition, 
since the drum was not cutting coal or driven into the coal seam by the linear 
drive along the track. The magnitude of the observed coupling between the booms 
is expected to change in the operational mode when the cutting drums and boom 
are under load. The loads on the system will result in higher system tempera
ture and hydraulic pressures than have been indicated in this report. 

It has been determined that the needle check valve is a significant com
ponent in the dynamic response characteristics of the system. The needle valve 
can be opened such that the rates to lower the boom exceed those to raise it. A 
decrease in boom rates occurred when the booms were raised simultaneously, 
but this did not occur when they were simultaneously lowered. The complete 
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closing of the needle valve restricts the flow so that the boom can only be raised. 
The needle valve position determines the down pulse duration for sustained 
oscillation, the rate the boom can be lowered, the frequency response curve, 
and the chatter level for a proportional input command. 

An increase in the activation threshold for pulsed inputs was observed 
and should be reflected in the simulation model along with the other significant 
characteristics determined by this study. 
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Flgure 1. Langwafl shearer at Bruceton, Pennsylvania. 
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Figure 3. Left boom pressure sensors. 



Figure 4. Left boom cylinder and sensors. 
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Figure 5. Right boom cylinder and sensors. 
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Figure 6. Temperature probe and pressure sensors. 



Figure 7. Left boom acceleration, velocity, and position sensors. 
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Figure 18. flynamic response of the right boom for Run 2.
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Figure 22. Dynamic response of the left boom for Run 4. 
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Figure 23. Pressure response of left boom for Run 4. 
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Figure 24. Dynamic response of the left boom for Run 5. 
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Figure 28. Dynamic response of the left;boom for Runm 7. 
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Figure 31. Pressure response of the left boom for Run 8. 
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Figure 32. Dynamic response of the left boom for Run 9. 
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Figure 85. Pressure response of the left boom for Run 10.
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Figure 38. Dynamic response of the left boom for Run 12. 
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Figure 44. Dynamic response of the left boom for Run 15. 
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Figure 46. Dynamic response of the left boom for Run 16. 
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Figure 47. Pressure response ofthe left boom for Run 16. 
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Figure 48. Dynamic response of the left boom for Run 17. 
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Figure 49. Pressure response of the left bopom for Run 17.
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Figure 50. Dynamic response of the left boom for Run 18. 
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Figure 51. Pressure response of the left boom for Run 18. 
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Figure 52. Dynamic response of the left boom for Run 20. 
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Figure 53. Pressure response of the left boom for Run 20. 
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APPENDIX A 

TRANSFER FUNCTION MODEL OF THE 
LONGWALL SHEARER 

A simulation model has been developed from the results obtained during 
the Bruceton tests of the long-wall shearer. This model is an end-to-end type 
development since the individual component transfer functions were not deter
mined at the time of the tests. Prior to testing the Joy machine it had been 
decided not to break into the system to obtain component characteristics. The 
block diagrams in Figures A-i and A-2 are structured with the components such 
that each may be replaced with its individual transfer function and characteristics 
when they have been obtained. 

The control valve, dual pilot check valve, and boom cylinder are shown 
in Figure A-I. The equivalent spring constant (KEQ), boom inertia (J), and 

boom displacement ( L) are shown in Figure A-2. The control valve in Figure 

A-I has a 30 percent threshold K' and a limited input level of 8 V K . The
DL 

input to K is E such thatLEl = +i( IC I -2.4) Ks for 2.4 < ICLI < 8 V. The 
s 1 1L1 s L 

control valve has a natural frequency of 6 Hz with a 0.9 damping factor. The 
flow to the valve from the pump is QS. Since the control valve is capable of 

10 gal/min flow but the pump flow to the valve is 8 gal/min, the maximum flow 
to the dual pilot check valve occurs before the valve is fully opened. The flow to 
the boom cylinder determines the rate of the actuator displacement. The posi
tion of the boom cylinder piston is XI and has a range from 0 to 9. 5 in. at full 

stroke. When the boom is horizontal the stroke is 3.25 in. and XB and P in 

Figure A-2 is zero. The boom displacement Y is an approximation for small
L

angles. 

If an 8 V command is introduced at t = 0 see and a -8 V command is


introduced at t = 4 see, each for a 2 see duration, then the command CL is as



shown in Figure A-3. The response of the boom cylinder to this command is 
shown in Figure A-4. The deviation from a constant rate is apparent during the 

PRECEDING', PAGE BLANK- NOTILMED.' 
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initial acceleration. It is greater when the boom is lowered as shown by the 

increased peak of boom rate 0 ) in Figure A-5. This figure shows the response 

of the boom rate to the input command of Figure A-3. The oscillation that is 
present in the boom rate of this figurels also present in the height of the cutting 
drum centerline YL 

Simultaneous operation of the right and left boom decreases the boom rate 
to half its valve whenever either is raised. Whenever either is lowered simul
taneously or individually the boom rate is 'not reduced. Figure A-6 shows the 
response of the boom to input command of Figure A-3 when the other boom was 
raised for 8 sec. The response was the same when the other boom was lowered 
for 8 sec. The simultaneous operation of both booms is modeled by duplicate 
definition of the block diagrams shown in Figures A-1 and A-2. The hydraulic 
flow for the booms Q are identified as QPL for the left boom and QPR for the 
right boom model. The boom cylinder constant K is identified as KCL and KCR 

for left and right boom models. The valves of gains for KC are indicated for the 
left and right booms in Table A-i. 

TABLE A-1. VALUES OF GAINS FOR KC FOR THE LEFT 
AND RIGHT BOOM 

+CL -CL +C. -CR IQPL IQPR KCL 
 KCR
 

Individual Commands 

1 0 0 0 1 -O KCL 0


0 KCL
o 0 0 1 0 KK 

o 0 1 0 0 1 0 KC 

O 0 0 1 0 1 I 0 KCICR 

Simultaneous Commands 

o 1 0 1 1 1 KCL KCR 

1 0 1 0 1 1 KCL/2 KCR/2 

1 0 0 1 1 1 KCL/2 KCR 

o 1 1 0 1 1 KCL xCR/2 
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The results given in Table A-1 for the simulation model are based on 
saturation commands of -18V to the control valves and are not valid for propor
tional operation. External loads to the boom may vary the constants in this 
model, but their effects are not kmown at this time. 

A listing of the values 	 and constants is provided in Table A-2. 

TABLE A-2. LISTING OF VALUES AND CONSTANTS


FOR THE SIMULATION MODEL



Symbol Units 	 Definition 

ASL g' s 	 Linear acceleration normal to boom and at drum 
axis 

CL volt 	 Step command to control servovalve, 18 

d ft 	 Moment arm from pivot to boom cylinder tie point, 
0.875 

Ej -	 Input to K
S 

J lb-ft-sec2 	 Moment of inertia of boom, drum, cowl, and 
components, 8886.6 

K lb/in. 	 Spring constant of the boom cylinder
A 

K1 in. / rad Actuator displacement per radian boom rotation, 
10.5 

K in. -mai 
KC sec-gal 	 Actuator velocity gain factor, 0. 933 

Inner loop damping gain factor of control valve,K 1 
D sec 67.9 

K? volt 	 Control valve dead band, 2.4 
D 
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Symbol 

KDB 

KDF 

K 
DV 

KEQ 

KF 

KF0 

K' 

K' 

KFrad

s 

K 
s 

KS 

K
T 

KV 

Units 

1 
see 

1 
KInner 
sec 

1 
sec 

lb/in. 

1' sec 

ft-lb-sec 

volt 

1 
1Sec 2 

2se 
see 

lb/in. 

gal/mi
ft-lb 

1 
sec2 

TABLE A-2. (Continued) 

Definition 

Inner loop damping gain factor, 5.8 

loop damping gain factor, 2.95 

Inner loop damping gain factor of dual pilot check 
valve, 7.04 

Equivalent system linear spring constant, 
610 967 

Outer loop gain of a boom frequency component,
872 

Input gain factor, 3.488 x 10 - 7 

Input voltage limit, 8 

Control valve input gain, 0.179 

Control valve outer loop gain, 1421 

Spring constant of boom structure and pivot 
and actuator tie points 

- 14 
Torque to flowrate conversion factor, 5 x 10

if CL is positive and 7.5 x 10  4 if CL is 

negative 

Outer loop gain factor of dual pilot check valve, 
25.27 
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TABLE A-2. (Concluded) 

Symbol Units Definition 

Li I see Control valve rate limit, 4 

L2 Position limit, 1 

L3 in. Stroke limit, 9.5 

PS psi System supply pressure 

QS gal/min Hydraulic flow supplied to boom control valve, 8 

T L ft-lb Torque on boom cylinder due to weight of boom, 
54 x 10' 

At msec Simulated response time of the dual pilot check 
valve, 140 

Wt lb Weight of boom, drum, cowl, and motors 
12 185 

XA in. (XA = XL) actual position of the boom cylinder 

when T L applied 

x I in. Ideal position of boom cylinder, X = 3.25 when 

YL in. Linear change of boom height at drum center
line 

rad Position angle of boom from a horizontal 
position 

rad/ see Angular rate of boom 

" rad/sec2 Angular acceleration of boom 
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Figure A-3. Command to left boom. 

Figure A-4. Boom cylinder displacement. 
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