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FOREWORD 

The findings of a study which was performed to evaluate the feasibility and the 

advantages associated with incorporating trough reflectors on the NASA-MSFC 

(LWSC) lightweight SEP Solar Array are summarized in this final report. The 
baseline design developed is for a concentrator enhanced solar array which will 

provide 25 kWat 1 AU. This document was prepared in compliance with the JPL 

Contract No. 955110 Statement of Work. Its content is not necessarily endorsed 

by the Jet Propulsion Laboratory, California Institute of Technology, or the 

National Aeronautics and Space Administration.. 
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Section 1 

SUMMARY 

The work reported herein pertains to the analysis and preliminary design of a 25 kW 

concentrator enhanced lightweight flexible solar array. The design and analysis 

activity were based on adaptation and minor modification of the NASA-MSFC lightweight 

Solar Electric Propulsion (SEP) array technology for reflector augmentation. The 

JPL Contract Teclical Manager for this study was Mr. J. H. Stevens. The study 

was organized into five major tasks which ran somewhat concurrently during the 

four month study span. The tasks were: (1) assessment and specification of design 

requirements, (2) mechanical design, (3) electrical design, (4) concentrator design, 

and (5) cost.projection. The study incorporated three oral working reviews at LMSC 

and a final study presentation at JPL in September 1978. The tasks were conducted 

in an iterative manner so as to best derive a baseline design selection. The objectives 

of the study are discussed in Section 2 and comparative configuration and mass data 

on the SEP array design, concentrator array design options, and configuration/mass 

data on the selected concentrator enhanced solar array baseline design are presented. 

In Section 3, which is the major section of this report, design requirements, supporting 

design analysis and detailed baseline design data are discussed. Section 4 contains 

the results of the cost projection analysis and Section 5 contains a discussion of new 

technology. 

STUDY CONCLUSIONS 

The primary finding of this study is that it is feasible mechanically with modifications 

to incorporate concentrators on the SEP array, and that the resultant system is more 

effective from a weight and cost standpoint. A 25 kW Concentrator Enhanced Solar 

Array (CESA) system provides 81.5 watts/kg whereas an equivalent planar SEP 

provides 69. 5 watts/kg, for over 17% increase in power density associated with the 

mass of the systems. Through reflected energy augmentation it is possible to reduce 

the number of solar cell panels in the CESA array, 22 panels less, and realize over 

22% reduction in cost from (ROM) 11.057 million for a SEP flight set to (ROM) 8. 548 

million for a CESA flight set. 
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The other significant conclusions of this study are as follows: 

* 	 The problems associated with reflector distortion and poor planiarity can 
be eliminated by the use of reflector guide wires, intermediate reflector 

joint ribs, and proper reflector blanket tensioning. 

* 	 A trough type reflector is the simplest type to use with the SEP array 

without adversely impacting array aspect ratio. 

* 	 Unbalanced reflected illumination on solar arrays can have as significant a 
power throttling effect on concentrator arrays as does shadowing. However, 
this effect can be eliminated by greater reflector width or preferably, with 

minor power reduction, lower reflector angles. 

* 	 For 1 AU to 3 AU the SEP baseline circuit module and panel design can be 
used directly with CESA and will comply with the 200 to 400 volt system 

requirement. 

* 	 A counterbalance/cable system can be used to offset the eccentric loads that 

trough reflectors impose on the array deployment mast, and result in an 
overall lighter system. 

* 	 Fixed position (concentrator angle) reflector mechanisms are inherently less 

complex and more reliable than adjustable angle systems that would be 

required with defocussing. 

RECOMMENDATIONS 

To technically substantiate the very high payoffs associated with the use of a CESA type 
of lightweight array for a variety of missions including the comet ion drive applications, 

the following work should be initiated. 

* 	 A full-scale reflector blanket design and suspension design should be fabri­

cated to evaluate producibility and deployment-planiarity factors. 
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Root section full scale models of the reflector box hinge-staging mechanisms 

should be fabricated and subjected to static load tests. 

A three dimensional model should be set up for the CESA and dynamic 

analysis run for selected systems in 5 kW increments from 15 to 40 kW. 

Work should be initiated on spectrally selective reflector surfaces to assess 

technology readiness on this approach to enhanced power gain without adverse 

temperature penalties. 
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Section 2 

INTRODUCTION 

2.1 OBJECTIVES 

The purpose of the study was to conduct a conceptual design and analysis associated 

with incorporating a concentrator system on the NASA-MSFC (LMSC) SEP Solar Array. 

The concentrated solar array system thus derived is intended for use on ion drive 

propelled Comet mission spacecraft. It can, however, have application on a variety 

of mission applications where solar photovoltaic power systems are required and it 

will result in lower weight and lower aspect ratios. In this general power domain the 

use of concentrator augmented solar arrays will also result in lower cost, photovoltaic 

power systems now and for the future until significant price reductions occur for solar 

cells. 

The major study objectives were as follows: 

* 	 Develop conceptual designs for a solar array concentrator - Using the SEP 

solar array as a baseline, a primary objective was to assess concentrator 

concepts that could be integrated with the basic array in a manner which 

would have minimum impact on the developmental and qualification status 

of the SEP array. 

" 	 Perform supporting concentrator analysis - Another major objective was to 

conduct an extensive analysis of conceptual concentrators to assess the effects 

on performance of a broad category of geometrical parameters of the con­

centrator reflectors such as size, concentrator angle, and concentrator 

distortion. 

* 	 Select a baseline 25 kW design - A paramount objective in the study was to 

perform iterative mechanical configuration tradeoffs with the findings of 

concentrator analysis to derive the most feasible baseline -concentrator 

enhanced solar array which would provide 25 kW at 1 AU. As a part of 
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baseline selection it was also necessary to perform supporting dynamic, 
thermal, structural, and electrical analysis to verify the design integrity 

of the baseline. 

* 	 Generate performance and mass data for the baseline - Taking the baseline 

selected, an objective was to develop BOL power performance characteristics 

from 1 AU to 3 AU based on solar cell characteristics and temperature 

projections. It was also an objective to develop the design in sufficient 

'detail 	 so that a detailed weight summary could be prepared. 

* Perform a cost projection analysis - The last objective, based on the 

baseline concentrator enhanced solar array, was to develop a preliminary 

cost projection incorporating relative nonrecurring and recurring cost 
projections. These projections were prepared to provide an input for 

technical and management assessment of concentrator vs planar array 

relative advantages, and to provide ROM cost numbers for planning purposes. 

2.2 CONCENTRATOR ENHANCED SOLAR ARRAY (CESA) 'OVERVIEW 

A brief discussion is provided here of the NASA-MSFC Lightweight (SEP)Solar Array, 
concentrator configurations which were reviewed as possible candidates for power 

enhancement via the use of reflectors with planar arrays, and an overview description 

of the selected baseline CESA concept. A summary is thus provided early in this study 

report of the basic design that was to be modified for incorporation of reflectors, 

concentrator/reflector concepts available for consideration and a description of the 

baseline concentrator enhanced solar array that evolved. 

2.2.1 . NASA-MSFC Lightweight Solar Array (SEP) Design 

The baseline SEP array is described briefly herein to identify the design which was 
studied and modified to incorporate concentrator (side trough) reflector enhancement. 

This array is a flat-pack as opposed to a drum type array. The array folds in "firehose 
fashion and is contained within a rectangular storage box, the lid or cover providing 

the interface with the deployment mast to which the outboard panel is attached. The 

development of this array has been under the technical direction of NASA-MSFC and 
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it was 	 originally configured for SEP missions and is referred to within this study, 

interchangeably, as the NASA-MSFC Lightweight Array and the SEP array. At this 
time this report was prepared, the array was under consideration for multiple mission 

applications including the JSC-Payload Extension Package (PEP), Shuttle-associated 

Power Module (PM) arrays, plus the original SEP mission. 

The major assemblies and components of the SEP array are shown in Figure 2-1. To 

more easily depict the extension/retraction mast and guide wire systems, the view is 
from the back or inactive (electrically) side of the solar array. The-basic building 

blocks of the solar array are independent but identical solar cell panels containing 3060 
each 2 x 4 cm wraparound solar cells. The panels are interconnected mechanically 

along their long axis, transverse to the major deployment axis, at panel hinge lines. 
They are connected electrically at each of their outer edges to power feeder harnesses 
routed along each edge of the array. A detailed description of this basic planar array 

is incorporated in paragraph 3.3. 1. 

2.2.2 Solar Array Concentrator Configuration Options 

Several concentrator-enhanced solar array configurations were considered for design 
selection. The simple trough configuration is preferred due to lowest complexity of 

implementation. 

A. 	 The trough configuration is a flexible cell blanket which has planar reflectors 

adjacent to each side 6f the blanket. These side reflectors can be canted at 

angles of 450 to 900 to add illumination intensity to the cell blanket. 

B. 	 The sawtooth configuration uses reflectors labeled "in-blanket" reflectors. 

These reflectors are also effective at angles from 450 to 900. 

C. 	 The double trough configuration is two troughs side by side, but the same 

area as A. 

D. 	 The side and in-blanket reflectors of the previous configurations may be 

combined to form a 3-dimensional reflector system or a sawtooth/trough 

configuration. This system offers high geometric concentration possibilities. 
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E. 	 Compound parabolic concentrators are attractive because of their high 

average concentration. The precise curved reflector shapes required and 

the inherent-intensity variations associated with this system are a drawback 

to this configuration. To overcome this disadvantage and to eliminate the 

complexity of deploying the compound reflectors a segmented compound 

reflector (SCR) system can be considered. 

F. 	 The W configuration has planar reflectors which are perpendicular to the 

cell blanket. The reflector/cell blanket i then positioned to a sun angle 

between 00 and 450. A feature of this system is that the light both directly 

incident on the cell and reflected onto the cell arrives at the same angle of 

incidence.



All of the foregoing configurations are depicted in Figure 2-2 with their geometric 

concentration ratios, CR's, indicated. Effective ratios are lower due to reflection 

and surface losses. 

2.2.3 CESA Baseline Conceptual Design 

The effort described in this report resulted in a conceptual design of a 25 kW, 1 AU, 

(BOL) concentrated solar array for use on space missions. The array is composed of 
two wings with a total mass of 306.92 kg (including tiedown pyrotechnics, erection 

trunnions, and actuators). Each wing is stowed in a package with overall dimensions 

of 163. 348 inches wide by 35. 50 inches deep by 45.20 inches high. When deployed, the 

27 panels of the flat-folded arrayi wing become planar and are augmented by two flat 

aluminized Kapton reflectors in a trough configuration. The deployed CESA system 

is shown in Figure 2-3. 

A continuous coilable longeron mast provides the necessary rigidity and motive power to 

withdraw the solar array and reflector blankets from their stowed condition. When 

fully deployed, the mast provides support and tension to the three blankets ensuring 

planarity -and adequate fundamental natural frequency. 
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The total spacecraft is carried aloft by STS/Twin Stage Inertial Upper Stage (IUS). 

The IUS spent 2nd stage is retained until full array deployment is complete to 

capitalize on the attitude-control capability-present. 

The reflector is positioned 570 out of the array plane. It is sized to produce full 

solar array illumination with up to 40 total misalignment of the solar vector. It is 


constructed of 0. 0003 inch thick aluminized Kapton by splicing 48 inch wide stock into 


a blanket 147. 176 inches wide by 815 inches long. 


Control of the solar array and reflectors during deployment is provided by tension 


cables stored on spring loaded storage reels. 


The reflectors are stored in separate containment boxes which are swung out to the 


570 angle prior to mast deployment. These boxes are divided into two parts and con­


structed of honeycomb. The two parts provide the structural support for the deployed 


reflector. One part deploys with the mast tip and the other remains behind with the 


array base. 


A counterbalance, which provides cancellation of the moment introduced to the mast tip, 


is used to reduce overall system mass. 


Support of the folded array blanket and reflectors during launch is provided by friction 


developed by a packing pressure of 1. 5 psi. The packing pressure is developed by 


pyrotechnic release tiedowns which apply compression forces to the outer containment 


box squeezing all elements of the stack against the side of the spacecraft interstage 


adapter. 


The concentrated array is constructed using most of the technology of the SEP array. 


Certain measures were taken to provide mounting piovisions for the reflectors. 


Unneeded items associated with SEP peculiar requirements were removed. Con­


centrator peculiar items were added. The most significant feature of this concentrator 


array design over the planar SEP array is the major reduction in wing span accomplished 


by being able to remove 11 solar array panels from each wing and maintain the power 


level at 25 kW. 
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The stowed configuration of a SEP array is depicted in Figure 2-4. The stowed 

configuration of the CESA (concentrator enhanced solar array) is shown in Figures 

2-5 and 2-6. A view of a fully deployed CESA is presented in Figure 2-7. 

• . COVER 

/A CONTAINER 

ORIGINAL PAGE I 
OF POOR QUALITY 

Figure 2-4 Stowed SEP Solar Array
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Figure 2-7 Fully Deployed Two-Wing CESA Array System 

A summary of the weight of one CESA wing is provided in 'Table 2-1 and that of a 

25 kW SEP wing in Table 2-2. The weight deltas for increasing or decreasing CESA 

array length in panel or meter increments are also listed as well as the delta (0. 999 kg) 

associated with additional deployment of a 27 panel wing, to place its center of pressure 

further outboard for total system center of pressure balancing or to avoid inboard 

shadowing. For a detailed baseline design description and a detailed CESA weight 

breakdown refer to paragraph 3.3.2. A 25 kW CESA array system, two wings, 

would weigh 306.92 kg and a 25 kW SEP 976 panels using 12 percent cells would 

weigh 359.64 kg, 81.45 watts/kg and 69. 51 watts/kg respectively. 
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TABLE 2-1



MASS SUMMARY- -CESA 25 kW ARRAY-SYSTEM27 PANEL WING)



KG 

MAST/CAN ISTER/COUNTERBALANCE 26.64 

ARRAY GUIDEWIRE MECHANISMS (2) 1.53 

REFLECTOR GUIDEWIRE MECHANISMS (4) 2.85 

FULL TENSION MECHANISMS (2) 0.75 

TENSION TRANSFER (8) 0.03 

COVER ASSEMBLY (1) 7.33 

CONTAINER (1) 12.72 

SOLAR CELL BLANKET (1) 78.05 

INTERCONNECT HARNESS 4.00 

MISCELLANEOUS NUTS & BOLTS 0.99 

REFLECTOR ASSEMBLY (2) 13.27 

REFLECTOR ATTACHMENTS 1.89 

DEPLOYMENT MECHANISM (1) 3.41 

TOTAL 153.46 

A MASS FACTORS PER 
MODULE (WING) KG/M KG/PANEL 

CONCENTRATED ARRAY 4.912 3.716 
UNCONCENTRATED ARRAY 4.692 3.549 
ADDNL DEPLOYMENT 

OF FIXED SIZE CON-
CENTRATED ARRAY 0.999 
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TABLE 2-2



MASS SUMMARY - SEP SOLAR ARRAY SYSTEM (38 PANEL WING)



KG 

MAST/CANISTER 

ARRAY GUIDEWIRE MECHANISM (2) 

INTERMEDIATE TENSION MECHANISM (2) 

FULL TENSION MECHANISM (2) 

TENSION TRANSFER 

36.85 

1.66 

3.45 

.74 

.02 

MAST TIP FITTING 

COVER ASSEMBLY 

CONTAINER 

.84 

8.57 

11.62 

SOLAR CELL BLANKET 

INTERCONNECT HARNESS 

MISCELLANEOUS NUTS & BOLTS 

109.64 

5.44 

.99 

TOTAL 179.82 kg 
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Section 3 

CONCENTRATOR ARRAY DESIGN 

The major results of the study are incorporated in this section. These results pertain 

to the basic design requirements, the findings of the analyses which were conducted to 

select the optimum design and the mechanical configuration of the selected baseline 

design. The major emphasis in the study was on concentrator design and analysis, 

and on developing a conceptual mechanical design to the extent that it could go directly 

into a definitive detail design phase in the future. The electrical portion of this design 

study was minimal and primarily in the area of system sizing analysis because the 

basic SEP solar cell module panel design and power harness design are directly 

applicable, without modification, to the CESA system. 

DESIGN REQUIREMENTS 

Incorporated into the study were two types of requirements, those which were 

established at the initiation of the study and those which wete coordinated and agreed 

upon by JPL and LMSC during the engineering and technical interface at working 

reviews as the study progressed. The primary requirements are as follows: 

1. 	 The concentrator enhanced solar array baseline shall be configured such 

that it is modular in design for purposes of growth and for scale up or 

scale down to make it amenable for alternate mission applications. 

2. 	 The CESA shall be capable of multiple deployments and retractions but does 

not require intermediate deployment positions. 

3. 	 The design of the CESA shall be such that it can be simply and reliably 

integrated with the NASA-MSFC lightweight array. 

4. 	 The baseline design shall be compatible with shuttle launch and staging loads. 
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The three major derived requirements are as follows: 

1. 	 When the solar -array is- retracted-it is not required that the ascent pretoads 

be reapplied. 

This coordinated-requirement resulted in major simplification and improved 

reliability of the design and greatly enhanced the interface of the reflector 

containers with the main array containment box. 

2. 	 The CESA reflector design shall be such that significant power reductions 

will not occur with solar vector misalignments up to ± 4'. This incorporates 

a d: 20 tracking sensor and drive link errorplus a =I2' deployed array wing 

twist. 

This requirement was derived as an outgrowth of early concentrator and 

conceptual mechanical design and analysis wherein it was found that severe 

power reductions occurred when tight off angles and high concentration 

ratio CR angles near 600 were mandated. It was found that two solutions 

were available, (a) holding the high reflector angle and folding the reflector 

back on itself so it had a higher deployed width or (b) reducing te reflector 

angle. The latter was selected because of reduced complexity, nominal 

impact on power output and adaptation of achievable tracking tolerances as 

denoted above. This analysis factor is discussed in more detail in the 

concentrator analysis section. 

3. 	 The C.ESA system sizing shall assume-the use of 12% efficient solar cell 

assemblies. 

Both the SEP array and the CESA array cell assembly baseline is an 8 mil 

wraparound solar cell with a 6 mi cover. However, the SEP design has 

used an 11. 4% cell efficiency. It was jointly decided that in the intervening 

years since the designation of the 11.4%that significant advances in cell 

performance have occurred and that 12% was a ,more realistic, yet still 

conservative, power conversion efficiency. 
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DESIGN SUPPORT ANALYSIS 

An extensive concentrator analysis was conducted to develop parametric data on the 

broad variables associated with trough type concentrators. This enabled the activity 

on the mechanical'design to avoid false starts and to eliminate effort being expended 

on reflector geometries that would result in imbalanced illumination. The second 

major category of analysis was on those variables associated with temperature, 
electrical performance, dynamics and stress that directly impact total system size, 

and size and configuration of subassemblies. 

3.2. 1 Concentrator Analysis 

Several areas of concentrator evaluation including concentration ratio versus con­

centrator geometry, reflector materials and properties, various reflector distortions, 

and some suggestions for possible future studies are discussed in this paragraph. 

Considerable work has been done for terrestrial concentrator applications and some 

work has been done on space concentrators such as the "Extended Performance SEP 

Solar Array Study, " NAS8-31352, done by LMSC for Marshall Space Flight Center. 

These studies pointed out some areas of concern in concentrator evaluation, parti­
cularly the importance of reflector material optical properties, the high degree of 

tracking accuracy required, and the need for -uniformlight intensity across the cell 

blanket. 

As a result of the work done in this section, a baseline concentrator and concentrator 
performance were defined. The original baseline for this study was a 600 concentrator. 

After adding on the extra width to accommodate a misalignment of ± 40, the reflector 

width became longer than the cell blanket width. This meant that the 'reflector now 

had to be folded, which added substantial complexity to the design. 

A 57' concentrator was chosen to eliminate folding the reflector, as even after a 31 

percent size increase to accommodate = 4' misalignment, the reflector was shorter 

than the cell blanket width. There is actuallystill room for additional reflector 

width so that either a ± 5° misalignment could be tolerated or a 57.70 concentrator 

could be constructed. 
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At 570, the geometric CR is 1. 813. The reflector efficiency was assumed to be 92% 
and the angle-of-incidence effects were assumed to degrade the reflector performance



by 6.5 percent. - An.effective CR of 1. 7 -was-taken as the baseline.



The baseline SEP blanket is 159.50 inches wide. Allowing for :L 40 misalignment and 
offset for a five inch harness width, the reflector was calculated to be 147. 176 inches 
wide. Since edge curl was found to not be a problem, no-additional reflector width 

was required. 

The reflector blanket is composed of 48 inch by 148 inch panels. The panels are joined 
with 1/2 inch reinforced seams every 47. inches. The seams provide beam-like 
stiffness to the reflectors and along with the reflector guide wires eliminate reflector 
buckling and convex or concave distortions. 

Concentration Ratio. Considering the array to be a trough with both the reflectors and 
the cell blanket being essentially flat, the concentration ratio (CR) can be computed from 

CR = (4 sin2 0 - 2) (RE) (AI) + I where: 

6 = reflector angle (acute angle from cell blanket plane) 

RE = reflector efficiency (reflectance)



Al = angle-of-incidence effects



The Al factor is the ratio of the incident light absorptance with a concentrator angle ­

to normal incident light absorptance or Al = 1 - ro . The relationship between CR 

I ­ r 0 


and 0 is shown in Figure 3-1. 


The optimum reflector width, R, can be calculated from R = L (2 sin2 6- 1)/cos 6 
where L is the cell blanket width. The optimum reflector width is the width where a 
light ray striking the upper end of a reflector ends up illuminating the opposite edge 

of the cell blanket. 

As can be seen from the formulae the CR increases like the sine of the angle while the 
reflector width increases as the tangent (with increasing 6). A point of diminishing 
returns is soon reached after a concentrator angle of about 70* as the reflector width 

increases rapidly. 
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Figure 3-1 Concentration Ratio vs Angle 

Reflector Materials. Metalized plastic films were chosen as the best reflector materials 

in a previous study with aluminized polyimide film being the most desirable. Aluminum 

was chosen over other metals because of its excellent reflectance and its environmental 

stability. A polyimide film was selected over polyester and other films due to its 

high strength and low creep properties and its ability to operate continuously in a -250 

to 300'C temperature range. 
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Figure 3-2 plots the reflectance of a sample of aluminized Kapton 0 over the wave­

length range of 0.29 to 1.8 microns. The measurement was made using-a Cary 14 

spectophotometer with an integrating sphere. The solar reflectance was calculated 

using the Johnson solar spectrum and found to be 0.92. For cell power calculations, 

it would be more correct to integrate the reflectance curve over the cell response 

area (0.35 to 1.2 microns) factoring in the spectral response of a cell for reflectance 

rather than using ps. This study, however, used ps for both power and temperature 

calculations. 

0.90



., 2 MIL ALUMINIZED KAPTON 

Z a = 0.080 
b-- S 

2 0.8 -- = 0.040 

0.7­


.30 .32 .34 .36 .38 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
WAVELENGTH, MICRONS 

Figure 3-2 Aluminized Kapton Spectral Reflectance 

The frontside emittance was measured using a Gier-Dunkle DB-100 reflectometer.



The normal infrared emittance of this sample was 0. 04.



0) Registered trademark of DuPont 
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A program has been underway at NASA/MSFC to evaluate materials for advanced 

solar arrays and concentrator systems. Outgassing, UV, and proton tests were 

performed on 0. 5 mil aluminized polyimide and reported on in "Evaluation of Materials 

for High Performance Solar Arrays, "A. Whittaker, et al. These tests and their 

results are shown in Table 3-1. The performance criterion for the UV-and proton 

tests were thermo/optical properties and the results of the tests showdd no degradation 

of the samples. 

TABLE 3-1 
REFLECTOR MATERIAL ENVIRONMENTAL STABILITY 

TESTS 

* 500 SUN-HRS OF UV AT 1 SUN INTENSITY 

* 1500 SUN-HRS OF UV AT 3 SUN INTENSITY 

* 1016 P/SQ CM FLUENCE 

* THERMAL/VACUUM OUTGASSING TEST 

RESULTS 

- ACCEPTABLE OUTGASSING 

* NO UV DEGRADATION OF ALUMINIZED SIDE 

* NO PROTON DEGRADATION OF ALUMINIZED SIDE 

Coverslide Reflection. The reflection off the coverslide, r, was calculated using 

Fresnel's formula, the sine law, and considering the first surface reflection from 

the coverslide AR coating (MgF 2 ) only. Additional interface reflections or light 

polarization effects from the aluminized reflectors were not included in the calcula­

tions. Figure 3-3 shows the.percentage of light reflected versus the concentrator 

angle, 0. For the baseline 57' concentrator r is equal to 10. 5% for an AT factor of 

0.92. This factor appears to be conservative; however, as previous solar cell 

angle-of-incidence data shows that for an incident angle of 660 (570 concentrator) the 

power loss is only 6.2 percent which would indicate an Al of only 0. 938. An Al of 

0. 935 or 6.5 percent reflection will be used as the baseline. 
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Figure 3-3 Coverslide Reflection vs Concentrator Angle 

A:rray Misalignment. One of the array subsystems that is substantially impacted by 

a concentratfng design is the array, sun-tracking system. A planar array can deviate , . 

over 180 off sun normal before'a 5 percent power reductioft whereas'an uncompensated 

conc&ntrator array would lose more than 5 percent power for only a 2°non-normal position. 

For a misalignment study, a 600 concentrator was chosen and sized f6r normally' 

incident light. The liglht was then allowed to vary from ltol0 degrees off normal 

and the light intensity across the'cell blanket was calctlated and plotted in Figure 3-4. 

As can be seen in the figure, even a small misilignment produces a severe non-uniform 

intensity across the cell blanket. 
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Figure 3-4 Effect of Array Misalignment 

The array misalignment can be compensated for in two ways: oversizing the reflectors 

and/or allowing some inactive area on the cell blanket between the cells and the reflector 

edge. The current SEP blanket already had some inactive edge area taken up by the 

power harness but some reflector oversizing was necessary to compensate for a 
.misalignment of + 4 Allowing for the approximately 5 inch harness dead space and 

the reflector box offsets, the reflector was oversized by 31 percent. The light intensity 

changes by less than 1 percent for a 40 misalignment with this concentrator geometry. 

The light intensity also remains uniform across the blanket. 
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Reflector Wrinkles. 	 An attempt was made at quantifying the effect of wrinkled 

reflectors. A 600 concentrator angle was -chosen as'the baselifie fgt this study. 

Sofme sinusoidal noise was added to the angle' across the reflector to simulate 

wrinkles. The concentrator angle at location n is then described byOn = 60 + A 

arc sin (B n W/100) where A = wrinkle, amplitude (.1, .3, or . 5 for this study), 

B = frequency (600 for I reflector, 450 for the other), and W = width of reflector. 

Noangle-of-incidence effects, reflector efficiency, or polarization effects were 

included in this analysis. The CR across the blanket vas calculated and plotted in 

Figure 3-5. The CR decreases with increasing wrinkle amplitude but remains 

relatively uniform across the blanket. With the baseline reflector tensioning there 

will probably be no wrinkles and no degradation losses are taken in the baseline 

design. If for some reason wrinkles do develop, they cause no severe degradation 

and are not a cause for concern. 

AMPLITUDE.0 ­

0.1 
0 

0.3<-


0.5Z 

0 
I-, 
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Z 
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0 	 10 20 30 40 50 60 70 80 90 100 
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Figure 3-5 Effect of Wrinkled Concentrators 
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Mal Positioned Reflectors. Since focussing and defocussing of the reflectors has been 

considered in some programs as a way of regulating temperature and power, the 
effects of under- and over-extending the reflectors were determined. For this study 

the reflectors were sized for a 60' concentrator and then positioned at angles greater 

and less than 600. 

Figure 3-6 shows the effect of under-extended reflectors (0 < 600). The intensity 

decreases with decreasing 0 but remains uniform across the cell blanket. 

2.0 DEGREES UNDER-EXTENDED 
1 

2 

3
1.8 
­ 40 

-~5 

z 6 
o 1.6 

7 

z - 8 
o 9z 1.4 
O 10 

1.2 
<60 

1.0 II I I 
0­ 10 20 30 40 50 60 70 

I 
80 

I 
90 

I 
100 

% DISTANCE ACROSS ARRAY 

Figure 3-6 Effect of Under-Extended Concentrators 

Figure 3-7 shows the effect of over-extending the reflectors (0 > 60'). The average 

CR decreases with increasing 0 but more significantly there is a step-function 

variation in the CR across the blanket. 
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Figure 3-7 Effect of Over-Extended Concentrators 

Malpositioning of the reflectors is not a problem with our 570 concentrator baseline 

as focussing and defocussing was determined to be not necessary. The reflectors can 

be locked into position and the deviation from 570 will only be the manufacturing 

tolerance. 

Reflector Distortions. While all of the previous analysis and design dealt with 

essentialfy planar'reflector surfaces, it is recognized that the reflectors have the 

potential to assume concave and convex surfaces without proper stiffening. This 

analysis deals with the effects of concave and convex reflector surfaces. 

A convex reflector surface was modeled by allowing the reflector tops to flex away 

° 
 from the array centerline from l to 100. The deflection varied linearly from the 

reflector root to its tip. The CR was calculated across the cell blanket and is shown 

in Figure 3-8. A convex distortion does decrease the average CR but the intensity 

remains relatively uniform across the blanket until deflections greater than 5'. 
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Figure 3-8 Effect of Convex Concentrator Distortion 

A concave reflector distortion is modeled exactly like a convex reflector except that 

the reflector tips were allowed to flex towards the array centerline. This distortion 

causes much more severe problems, however, as not. only is the overall CR reduced 

but the CR varies tremendously across the cell blanket. The concave case is depicted 

,in-Figure 3-9. 

Concave and convex distortions can be avoided through the use of reflector stiffeners, 

adequate reflector outriggers, adequate reflector guidewire tension, and sufficient 

reflector tension. These items were considered during the baseline design of the 

array and it is felt that these distortions have been minimized or eliminated. In the 

event that further study or testing proves the design marginal, there is still room for 

additional stiffeners or tension. 

Concentrator Tests. Several concentrator tests were conducted during the "Extended 

Performance SEP Solar Array Study" by both LMSC and NASA/MSFC to verify analytical 

predictions.- Two of the five tests, shown in Table 3-2 had reflector material reflectance 

measured and all tests had a geometric CR, effective CR, and an overall efficiency 
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Figure 3-9 Effect of Concave Concentrator Distortion 

TABLE 3-2 
CONCENTRATOR TESTS CR RESULTS 

OVERALLCONCENTRATOR TEST REFLECTOR GEOMETRIC EFFECTIVE EFFICIENCY 
p CR" CR PERCENT 

NASA/MSFC 2.00 0 - 1.71 71 

NASA/MSFC - 3.0 2.49 - 75 

LMSC/36-CELL 0.9 3.83 3.4 ,85 

LMSC/20-CEL L 0.92 3:83 3.5 88. . 

LMSCi/10.-CELL - "'2.0: I1:73 - 73 

BASELINE 0.92 1.81 .7 86 
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calculated. The overall efficiency is actually the product of Al and RE, and is the 
percentage of light being utilized by the cells from what is intercepted by the reflectors. 
The two tests which had their reflector reflectance measured also had the highest 
overall efficiencies 85 and 88 percent. It is strongly suspected that the lower 
efficiencies of the other tests were due to poor reflectors; either non-specular 
or low reflectance. 

Assuming a highly specular, reflective surface can be maintained for the baseline 
array, an overall efficiency of about 86% was estimated for the baseline array This 
efficiency factor, again, is equal to (RE) times (AI). With RE equal to 0. 92 and an 
AI of 0.935, the efficiency equals (0. 92) (0.935) or 0.86. 

Reflector Edge Curl. One problem encountered in tensioning thin plastic films is 
the tendency of the free edges to curl. On a concentrated array a curled reflector 
edge would-have to be compensated for by increasing the reflector width. To assess 
this problem a simple reflector model was made as shown in Figure 3-10. Three 
36 by 47 inch panels of 1/2 mil aluminized Kapton were jointed with 1/2 inch widths 
of double-sided Kapton tape. Of interest was the edge curl in the middle panel 
when a 2 lb load was applied to the edges of the outside panels. 

" MAXIMUM MATERIAL AVAILABILIT.Y-48 IN. 

* PANEL SIZE 47 IN. (0.5 IN. EACH END FOR JOINT) STIFFENERS 
(0.5 X 0.012 IN.) 

-2 LB - 9 MODEL 0.0005 IN. ALUMINIZED KAPTON 

36 

-2 LB -2 LB 

Figure 3-10 Reflector Edge Curl Investigations 
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Essentially no edge curl was observed in any of the panels and so the addition of 

compensating material is not necessary. 

Future Studies. Future concentrator studies may want to include higher CR's, GaAs 

solar cells, and selective reflectors among other potential variations. Figures 3-11 

and 3-12 show some preliminary work which helps scope the concentration rati6s 'which 

should be considered. 

Figure 3-11 shows relative power versus concentration ratio for a family of silicon 
solar cells operating at 1 AU. Both aluminized Kapton and a selectively reflecting 

surface are considered as reflectors. For an aluminized Kapton reflector a CR of 

2 to 3 is optimal while a CR of 4 to 5. 5 is best for a selective reflector. 

Figure 3-12 shows relative power versus concentration ratio for a family of GaAs 
solar cells operating at 1 AU. For GaAs and aluminized Kapton reflectors a CR of 

about 15 is optimal. A CR range of 35 to 45 is maximum for GaAs cells anda elecive 

reflector. 

The selective reflector properties in this example are those of an OCLI product. The 

transmittance and reflectance of this material is shown in Figure V13. The reflector 

was assumed to reflect 60 percent of the light in the cell response area ad 40 percent 

of the total solar spectrum. 

.One way to achieve the higher CR's indicated in Figures 3-11 and 3-12 is to go to 

parabolic concentrators. Using a reflector on four rather than two sides will also 

increase the CR. The parabolic concentrator has an inherent intensity variation 

problem which is undesirable, however. An approximation of that parabolic surface 

using two segments overcomes the intensity problems while still allowing higher 

CR's than a planar reflector. This dual-angle or compound trough concentrator is 
shown in Figure 3-14. For CR's above 2. 5 a compound trough concentrator is a 

more area efficient concentrator than its single plane counterpart. Choosing a 

reflector area to cell blanket area ratio of 8, Figure 3-14 shows that a standard 
trough has a CR of about 2. 8. A compound trough has a CR of 3.34 for the same 

amount of reflector material. A four-sided standard concentrator would have a CR 
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of 5'7 with the same area ratio. These CR's cover the silicon solar cell's optimum 
range only and it would still be necessary to go to single cell concentration with 
parabolic concentrators to achieve GaAs's optimum. 

3.2.2 Dynamic Analysis 

The mathematical model, shown in Figure 3-15, cohsists of a central cantilever boom, 
with rigid inboard and outboard lateral members that support the solar blanket and the 
two reflector panels. For modeling purposes, the reflectors are oriented in the plane 
of the blanket, and all offsets are ignored. The results of the 2-dimensional modeling 
will be conservative as no 3-dimensional array stiffening effects will be included. 
With the constraints of rigid member supports for the blanket and reflectors and 
uniform tensions for each, single-curved displacement patterns permit closed form 
solutions which are obtained in the form of four equilibrium equations (which are 
solved exactly) and twelve boundary conditions. The statement of the boundary 
conditions results in a 12 x 12 matrix whose determinant must be zero. This resulting 
frequency equation is solved by iteration. The rather simplified model used for this 
study does indicate that the desired frequency limit can be reached with reasonable 
pretensioning. The truly 3-dimensional nature of the array along with proper con­
sideration of eccentricities will probably require finite element modeling. Still 
another aspect of the problem which ultimately must be addressed is the in-plane 
stiffness of very thin panels. Static testing of representative panels is suggested. 

The torsional stiffness of this array has not been addressed as it requires a 3-dimensional 
model. Given that the array is a 3-dimensional system, however, with its reflector and 
mast counterbalance systems, torsional rigidity is not thought to be a problem. 
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* REFLECTORS PRELOADED TO 6 LB 

Figure 3-15 Array-Reflector Dynamic Model 

The plot of frequency versus preload and boom radium, Figure 3-16, show that for a 

radius of 4.5 inches the desired frequency of .04 Hz cannot be reached. Higher values 

of preload tend to stiffen the solar array blanket, which would raise frequency, but 

tend to decrease the boom stiffness due to column action. Beyond a radius of 6. 5 

inches, the boom tends to act as a rigid support and so the required preload appears 

to approach an asymptotic limit. The low values of blanket preload (approximately 
2-1/2 pounds for a frequency of .04 Hz) as compared with PCR (Eler load) indicates 

that the fundamental mode is essentially a blanket mode with very little deflection 

of the boom. The reflectors with a pretension of 12 pounds and a combined weight 
of only 3 percent of the blanket weight have a much higher resonance than the values 

investigated in this study. 
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Figure 3-16 Array Natural Frequency 

3.2.3 Thermal Analysis 

Mathematical models were developed to calculate the distribution of solar energy 

entering the cavity, temperatures of reflectors and solar cell blanket, and electrical 

output. These 	 models incorporate the details of geometry, solar distance, optical 

properties, and solar cell efficiency which is in turn a function of temperature and 

solar flux density. The specific assumptions and ground rules which define the 

relationship of the mathematical model to the physical problem or which limit the 

range of the parameters are: (1) All surfaces are flat and are assumed to be 

isothermal, (2) 	 Constant surface optical properties areused (no angular dependence), 

(3) Solar vector deviates off normal only in the direction of the primary reflector 

with the maximum angle limited to the angle of the reflector, (4) Solar cells were 
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assumed to be perfectly diffuse (specular reflectance), (5) All incident energy is 
divided into three components upon striking a surface Qi = aQi + ps Qi + pd QI. The 
absorbed energy (Qi) is used directly in the thermal energy balance. The reflected 
energy is divided into diffuse (pdQi) and specular ( psQi) components. The diffuse 
portion is assumed to stay diffuse and will be absorbed and reflected by other surfaces. 
The specular portion is treated as incident energy which strikes another surface(s) 
and again assumed to divide into three components, (6) The geometric view factors 
for the simple trough are calculated directly by the program, (7) No conduction heat 
transfer between reflectors and solar cells. Conduction through the cell and backside 
has been included, (8) Steady state conditions only, (9) Solar cell efficiency curves 
with an input bias factor are based on data representative of the solar cells to be 
used. Figure 3-17 is a simplified sketch of the array thermal model. 

0 

1 PDIFFUSE 

4PDIFFUSE 

* 4-NODE THERMAL MODEL 

* SPECULAR AND DIFFUSE COMPONENTS ACCOUNTED FOR 
* 57" REFLECTOR GEOMETRY USED FOR VIEW FACTOR CALCULATIONS 

Figure 3-17 Array Thermal Model 
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Shape Factor Variation Across Array 

An analysis was done to determine the maximum temperature variation across the 
cell blanket width due to a non-uniform shape factor. Two cases were considered: 
(1) perfectly diffuse reflectors and (2) reflectors with an IR emittance of 0.04. The 
results of the analysis, plotted in Figure 3-18, show the perfectly diffuse reflectors 
to cause a maximum blanket AT of 2. 5*C while the specular reflectors caused a maxi­
mum blanket AT of 20C. 
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Figure 3-18 Thermal Shape Factor Variation Across Array 
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Solar Cell Temperature Predictions 

The concentrated and planar array cell temperatures -wereestimated using LMSC 

developed multi-nodal thermal analysis computer programs and are shown in Figure 

3-19. The cell's al/ was assumed to be 0.74/0. 81 and the blanket backside 

emittance was assumed t6 be 0. 80. For the thermal analysis, the light intensity 

on the cell blanket was 1. 7/(A. U. )2 for the 57 degree concentrator design. The 

cell efficiency at the various distances were factored into the overall energy balance. 

An accounting was also made of the specular and diffuse portions of the light reflected 

from the concentrators. The reflector material had an p, E , and a of 0.92, 

0.04, and 0.08, respectively. For a variation of 1 to 3 AU, the concentrated solar 

cell temperatures ranged from approximately 1000C to -60°C, respectively. The 

planar solar cell temperatures ranged from 450C to -90°C for the same distances. 
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Figure 3-19 Solar Cell Temperature Predictions 
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3.2.4 Electrical Power Analysis 

System Voltage Compliance. Several factors must be considered in analyzing electrical 
power output from a concentrator solar array as a function of distance from the sun. 
A primary set of variables is the change in solar cell parameters under changing solar 
intensity and corresponding temperature changes. Extensive SEP wraparound cell 
characterization tests were runby Boeing under NASA-MSFC Contract NAS8-31670. 
The results of this program are incorporated in report No. D180-20573-1, "Solar 
Cell Selection and Characterization for Solar Electric Propulsion. " From this report 
the Vmp, maximum power voltage, for OCLI and Spectrolab SEP wraparound cells, 
corresponding to distance from the sun are referenced. This data was used directly 
to assess acceptability of the SEP baseline series-parallel panel circuit design to 
evaluate operational panel voltage ranges. 

The desired array operating voltage range is 200 to 400 volts. Below 200 volts the 
power conditioning equipment weight becomes a concern and above 400 volts factors 
of corona, plasma leakage, etc. must be considered. The cell blanket electrical 
design will have to be configured so that given a cell's Vmp range, the array's voltage 
will stay in the desired range. Figure 3-20 plots the Vmp behavior for three cells 
over a temperature/intensity range with a 570 concentrator. At 1 A.U. the baseline 
306 cell series string (module) operates at about 107 volts and so it will be necessary 
to series two circuits (panel) for a voltage of 214. At 3 A.U. each string operates at 
180 volts (Boeing data) and 2 circuits will be at 360 volts. The SEP circuit/power 
layout can be used without change for the CESA 1 to 3 A.U. application. 
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Figure 3-20 Solar Cell Maximum Power Voltage versus Distance 

Array Panel Configuration. The nomenclature associated with the SEP solar array 

panel design is depicted in Figure 3-21. A panel, made up of two modules, contains 

3060 each 2 x 4 cm wraparound electrode solar cells. Power feeder harnesses run 

down the outboard edges of the panels and each module is brought inboard as an 

electrically independent unit. The placement of the harnesses along the edge of the 

array blanket simplifies the incorporation of reflectors by allowing an offset (gap) at 

the point of intersection of the array plane and reflector planes. It also diminishes 

the criticality of reflector container length, helping to keep reflector assembly length 

within the same profile length as the stowed solar array. 
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Figure 3-21 Array Panel Configuration 

Array Power Projections. The array power projections were made based on the 

previously developed temperature data and the Boeing solar cell characterization



data cited above. A 570 concentrator with an effective CR of 1. 7 was assumed.



A 7.2 percent loss was included to account for assembly, isolation diode and



harness losses. In order to provide a 1 AU crossover of 25 kW minimum the



concentrator array contains two each 27 panel wings and the planar array contains 

two 38 panel wings for total array complements of 54 panels and 76 panels respectively. 

The planar SEP array is reduced from 82 panels (41 panel wings) to 76 (38 panel wings) 

by going from an old baseline 11.4% efficient wraparound to a conservative 12 percent 

cell. Significant improvements in cell efficiency have occurred since designation of 

the 11.4%baseline. The power available from the CESA (concentrator) and the SEP 

(planar) array systems are depicted in Figure 3-22. It is very significant that the 

concentrator type array is much more efficient at higher distances from the sun 

than the planar array. 
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Figure 3-22 Estimated Array Power 

Electrical Analysis Tests. Two investigative tests were run with a small solar cell/ 

trough reflector assembly to assess the effects of imbalanced illumination and the 

effects of misalignment with the solar vector. 

The first investigative test was, run using a small solar cell assembly, 5 each I x 2 cm 

solar cells in series by 2 cells in parallel, to evaluate the effects of incremental, 

unbalanced illumination on the cell assembly. Using an X-25 light source and with 

both right hand and left hand reflectors of the test unit set at 600 and initially shrouded 

with black covers, the increase in short circuit current was monitored-while the 
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shrouds were removed such that the cells in the string received reflected light--one 

cell at a time. After the L. H. reflector was fully working a 36% increase in power 

occurred and the add in of the R. H. reflector resulted in a 73 percent increase in 

power overall. The most significant finding of this test was the dramatic increase 

(or decrease) in power associated with illumination of the last cell in the,string 

showing the impact of imbalanced illumination even though hard shadowing was not 

occurring. The results of this test are depicted graphically in Figure 3-23. 
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Figure 3-23 Increase in Power vs Reflected Illumination Cell by Cell 
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The second investigative test was also run with a small cell assembly with reflectors 

set at 600 and the effective reflector length precisely adjusted so that there was no 
reflected light overshoot beyond the edge cells. The assembly -was then -rotated­

through : 5* one degree at a time and the associated reduction in Ise was plotted 

as shown in Figure 3-24. The lack of symmetry in the data was attributed to 

reflections of an adjacent light colored wall. With a 5' off angle power is reduced 

almost 20 percent whereas for a planar unconcentrated array response is very flat 

with less than 1/2 percent change at 5*. From these two tests and from the con­

centrator analysis it is very important in concentrator array design that reflector 

positioning and length is such that imbalanced illumination does not occur due to 

tracking error. It is better to open up the angle from 600 or greater to less than 

600 such as the 570baseline, take some reduction in CR, but be less sensitive to 

tracking errors, misalignment and imbalanced illumination. 
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Figure 3-24 Power Reduction Resulting from Array Misalignment 
3.2.5 Structural Analysis 

Structural analysis considers the loads imposed on the system throughout its service 

life, the failure modes that elements of each concept might experience, and safe 

sizing of each component. 
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3.2. 5.1 Loads. Ground handling loads expected during integration of the spacecraft 

and its subsystems into the Space Shuttle are limited t6 4: 1 g laterally and 1 : 1. 3 g 

vertically dependent upon the type of transportation employed. 

Launch loads caused by events such as gust loading, engine ignition and cutoff, 

separation and docking will-induce low frequency transient responses in the Space 

Shuttle vehicle. Sinusoidal vibration will achieve a frequency range of 10-200 Hz at 

a level of 1. 5 g peak with a sweep rate of 1 octave/minute in all 3 principal axes. 

Raidom vibration arises mainly from engine generated acoustical noise plus, to a 

minor degree, structural transmitted vibration. A definitive random vibration 

environment must be determined on a case by case basis. Preliminary values for a 

200 kg stowed array are as shown in Table 3-3. 

TABLE 3-3



LOAD LEVELS



Frequency (Hz) Level 

50-200 +9 dB/oct


200-450 0.1 g2 /Hz



450-900 -6 dB/oct



900-1200 0. 024 g2 /Hz



1200-2000 -6 -dB/oct



Composite 8.4 g RMS 

duration - 180 seconds per flight 

Acoustic sound pressure within the cargo bay can be considered reverberant. The 

spectrum varies during launch with respect to level and shape achieving an overall 

peak sound pressure of 149 dB within one second of liftoff. It then decreases rapidly 

to 119 dB at t = 21 sec, but increases once more reaching a peak of 135 dB at t = 

51 sec. 

3-33 

LOCKHEED, .MISSILES & SPACE COMPANY. INC. 



LVISC-D665407



Shock loads are imposed by pyrotechnics, landing, and on-orbit operations. Pyro­
technics may be involved in the ejection of the spacecraft from the cargo bay,. in the 
release of the sblar array from its stowed position, and in some of the deployment 
sequences thereafter. Although the basic mission is non-return, the possibility of 
shuttle abort exists and landing loads of 0.2 ± 1. 3 g axial, =L 0.7 g lateral, and 2 ± 2 g 
vertical should be successfully resisted without equipment failure. In case of Shuttle 

crash, all payload equipment must resist impacting the flight crew upon experiencing 
ultimate loads of 9 g forward, 1. 5 g aft, L 5 g lateral, 4. 5 g up, and 2 g down. On­
orbit shock loads are a function of the payload handling and jettisoning procedure 
which is TBD. 

Acceleration loads at liftoff are: 3 + .15 g axial, ± 1 g lateral, and 1 1.65 g vertical. 
On-orbit maneuvers may produce accelerations up to 1. 3 ft/sec2 (0. 04 g). 

Once placed in independent orbit, the IWS provides attitude control and thrust to the 
spacecraft. The IUS configuration chosen for this mission is a two motor propulsion 
system with a hydrazine attitude control subsystem. The maximum accelerations 

experienced during its burn is 5. 09 g axial and -12.09 g lateral. The dynamic limit 

load (composite sum of all dynamics and quasi-static accelerations) for the stowed 

solar array is 13.0 g. 

The solar array is deployed prior to IUS separation to capitalize on the relatively stiff 
attitude control capacity of the IUS. Deployment of the solar array involves functioning 
of at least four pyrotechnic devices per wing impacting shock loads to the spacecraft. 
Sequential events requirements of the total deployment procedure may involve additional 

pyrotechnics. 

When the array is fully extended, the IUS is separated by functioning explosive nuts. 
The maximum shock imparted to the payload is 4000 g at 10 kHz due to pyrotechnic 

spacecraft separation events. 

Finally, the electric propulsion system is turned on producing 0.26 to 1. 3 lbof thrust 

to the spacecraft dependent on the number of ion engines energized. 
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Besides the loads imposed on the solar array by the various environments and 

transportation devices, certain other loads must be imposed to produce a viable


concentrated array system. An analysis was performed to determine the tension


field in a Kapton panel with loads applied at the 4 corners as shown in the figure.


Since there is symmetry around both the X- and Y-axis only 1/4 of the reflector was


modeled (reference Figure 3-25). Seams every 47 inches were included in the model


and treated as small bean-like stiffeners (area = 0.006 sq. in.). Only one area of


compression was found near the loaded corner. The rest of the panel was in biaxial


tension except for the seam/stiffeners which are each under axial compression. A


2 lb force was chosen as the baseline corner force pulling at 30' from the Y-axis.


For a 0. 0003 inch thickness, the X and Y stress are 6 and 75 psi, respectively.


REFLECTOR TENSION ANALYSIS 
2 LBX 

4 	 AREA MODELED 

157"1 

12:: 	 _ ____-Y ____ ___ 

1575" 

FINITE ELEMENT 

MODEL: 	 - 4 ELEMENTS IN X-DIRECTION
 

- 33 ELEMENTS IN Y-DIRECTION


- 0.006 SQ. IN. BEAM LIkE STIFFENERS EVERY 47 IN.

PARALLEL 	TO X-AXIS


Figure 3-25 Reflector Tension Analysis


The dynamic analysis discussed in section 3.2.2 developedthe need for 0.75 lb


of array blanket tension in addition to the 6 lb of force in each reflector system (2 lb


each corner plus 2 each 1 lb guidewires) to meet the minimum lateral fundamental


natural frequency requirement.


3.2.5.2 Structural Failure Modes. The primary structural failure mode of the 

reflector is in ultimate tension originating most likely at a stress riser and propagating 

rapidly across the entire sheet. Introduction of the corner loads must be accomplished 
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carefully with adequate doublers. Raw edges should be doubled over and bonded to 
eliminate rip propagations from minute discontinuities in the sheared edge. Splices 
shouldbe accomplished so that load transfer is uniform. Ultimate tension in the 

reflector is probably limited to the capability of the splice joint adhesive. Tefisile 
yield strength of unreinforced polyimides (Kapton) range from 7. 5 to 13 ksi or 2.25 
to 3.9 lb per inch for 0.0003 inch thick film. Peel strength for dry film adhegive is 

2. 5 lb per inch. 

The booms which support the deployed reflector are quite long (152. 9 in) and necessarily 
cantilevered. Although the loads are small, the bending moment is large (-410 lb-in) 
and the small available cross section indicates a high bending stress at the root.' 
Deflection of the boom tip must be restricted, or compensated for, to maintain 
adequate reflector tension. The root moment must be successfully transferred 
from the reflector boom through the boom rotation hinge into the array blanket 
outer support beam. An analysis of the hinge lugs must be made to insure no 

bearing or hinge pin shear failures occur. 

The array blanket outer support beam transfers all reflector and blanket tensions, 
guidewire forces, and moments into the deployment mast. 

Th deployment mast, which is a coilable lattice structure consists of 3 S-,glass/epoxy 
resin composite longerons joined into bays by battens constructed of the same material. 
Six flexible diagonals of stainless steel cable stabilize each node of each bay. The 
nominal mast radius (R) refers to a circle through the centerlines of the three longerons. 

In addition to the mast parameters listed in Table 3-4 the following stiffness characteris­
tics are representative for the continuous longeron mast. 

Mast torsional stiffness GJ = 0.020 EI El in lb-in2 

Mast shearing stiffness GA = 301 R2 R in inches 

The mast stiffness is normally sized by the extended array natural frequency requirement. 
Failure of the mast either as an euler -column, combinatioh loaded beam, or in local 
crippling must be investigated for each application. 
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TABLE 3-4 
DEPLOYMENT MAST PARAMETRIC DATA ORIGINAL PAGE IS 

OF POOR QUALITY 
BAY SPACING 1.25 R 

MAST WEIGHT 7.19 X 10- R2 (LB/FT) RIN IN. 

MAST STIFFNESS El = 7530 R4 (LB-IN. 2 ) RIN IN,. 

CRITICAL AXIAL LOAD PCR = 5.348 R2 (LB) RIN IN. 

MINIMUM BENDING 
2 67 5 3STRENGTH MCR = . R (LB-IN.) R IN IN. 

CANISTER HEIGHT H = 0.022L + 3.3R (IN.) L&R IN IN. 

CANISTER DIAMETER D = 2.36R RIN IN.can


CANISTER WEIGHT W = 5.21 X 10- 4 LI + 0.553 R2 (LB) L&R IN IN.
 
can 
MAST/CANISTER /INLR\

INTERFACE BENDING K = 0.729 (EI)9 "3/ ADIAN) El IN LB-IN.2



STIFFNESS



Protection of the solar array blanket and the reflectors from the launch and staging 
loads is accomplished by flat pleat folding them and separately squeezing the pleated 
stacks between two resilient pads. When sufficient normal force is developed, the 
resultant static friction retains the folded blankets from lateral movement. 

The backup structure for the squeeze pads provides a point of integration for deploy­
ment devices and spacecraft attachment. 

The major mass of the assembly is in the solar array blanket and containment box. 
Consequently the containment box is chosen as the main structural support member. 
It is directly fastened to the spacecraft, and all other items are supported from it. 

3.2.5.3 Component Sizing. Preliminary sizing of certain elements has been 
accomplished. These include the reflector boom, hinge, tensioning unit, and the 
mast and counterbalance. The original SEP array containment design was not 
examined except where major changes were made. 

The reflector boom is 152.9 inches long with reflector tensioning loads at the ends, 
and guidewire loads at quarter spans. It is supported at one end by a hinge/actuator/ 

latch system in a cantilever mode. The beam cross section available to resist these 
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loads is limited to less than four inches wide by one inch deep. Volumetric demands 

in the inboard reflector boom for storage of the flat folded reflector and a cable 

passageway reduca this area-to .-3s8 inches-wide by 0.88 inches deep. The outboard 

boom requires no cable way so its available cross section is 4 inches wide by 0. 88 

inches deep. Boom loading is shown in Figure 3-26. 

AREA AVAILABLE
FOR STRUCTURE 

0.375 152.9 

/X 7.8 111.4 148.8 33 

1. 0.88 

2LB I LB I LT 30 T 
Figure 3-26 Reflector Boom Loading 

Concern over stress and deflection of the reflector boom caused various outrigger and 

guy wire concepts to be postulated. However, the complexity of erecting these 

devices caused them to be considered as a last resort. Consequently, the boom was 

designed with a known 3 inch tip deflection which could be compensated for by either 

trimming the reflector or adjusting the outboard fixed tethers to match the deflected 

boom. The former was chosen so as to better maintain the 300 off angle tension. 

Design of a honeycomb sandwich structure involves determination of the required 

flexural rigidity and then selecting combinations of total sandwich thickness and 

facing thickness for various types of facing materials. Hexel Corp. document 

TSB121 describes the process in detail. The bending deflection constants (KB) 

tabulated in this document did not cover the case of multiple loaded cantilever 

beams. 

Therefore, a constant was derived using Castigliano's first theorem. From this 

theorem we. know that 

4 4 Wn 32 3 

Ytotal E = Yn L - EI (3an n) 
n=1 n=1 6 E 
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Loads and deflections are summarized in Table 3-5. ORIGINAL PAGE IS 

OF POOR QUALITYTABLE 3-5 

LOADS AND DEFLECTIONS DATA 

n Wn (Ib) an (in) Y. (in) M. (lb-in) 

1 1. 73 (2 cos 30') 0.4 20.6/El 0.7


2 1 37.8 97,304.0/EI 37.8


3 1 111.4 692,889.2/El 111.4


4 1.73 148.8 1, 899,912.6/EI 257.4 

Total 5.46 2,690,126.4/El 407.3 

and from TSB121 

ETY 

KB - 3 

Substituting data from the table into the expression for KB we find: 

KB EI (2,690,126) 

SEI (5.46)(148.8)9 = 0.15 

Using this derived constant, a flexural rigidity was obtained and for a total sandwich 
height of 0. 88 inches, facing thickness of various materials were determined and 
presented in Table 3-6 and Figure 3-27. 

TABLE 3-6 

HONEYCOMB SANDWICH FACING MATERIAL CANDIDATES 

Material E (106 psi) tf (in) 

Aluminum 10 0.070 

Titanium 15- 0.050 
Graphite/epoxy 25 0. 030 (by interpolation) 
Steel 30 0.023



Of these candidates, graphite epoxy was chosen as the least weight candidate. 
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Figure 3-27 Effect of Facing Stiffness On Facing Thickness Requirements 

The next step was to select a honeycomb core. Based on the total shear load of 

5. 64 Ib, 3. 38 inch .beam~width, and core thickness of 0. 82 inch, the minimum 

required honeycomb shear strength is less than 10 psi. The lowest density aluminum 

core material commercilly available (1. 0 lb per ft 3 ) has a minimum shear strength 

of 20psi. Suitable core materials would be 0. 0007 inch thick 5052 or 5056 aluminum 

foil configured in 0. 38 inch hex cells. 

As a final step, the stress in the facings was checked. For an allowable compressive 

stress of 55, 000 psi, a maximuma bending moment of 407.3 Ib-in, and a core thickness 

of 0. 82 inch, the required facing thickness is 0. 010 inch. The facing thickness of 

0. 030 inch selected earlier is more than adequate to resist the bending stresses. 
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The reflector boom hinge must react 407.3 lb-in of moment. The hinge pin is 0.25 
inch diameter and is placed in quadruple shear. The maximum lug shear, S, is: 

s = MY max 407.3x1.75 = 155 lb Y1 =0.825 in. 

-3" 4.60 
2Y Y2 = 0. 925 in. 
n 

Y3 = 1.75 in. 

The lug bearing stress is 6200 psi. These values represent a safe design, so a 
more rigorous analysis is not pursued. 

Analysis of the tensioning unit involves selection of a spring, output drum, take up 
drum and a cable reel which do not exceed allowable strength values. The total 
extension of the tensioning unit is 40 inches, which when applied to a 1. 0 inch 
diameter reel results in 12.75 revolutions. The force required is 1. 73 lb, or a 
torque of 0. 86 lb-in. The smallest spring available which equals or exceeds this 
torque is 0. 31 inch wide and 0. 007 inch thick. This spring is high carbon steel 
rated for a life of 4000 cycles when used on a takeup drum 1. 09 inch diameter and 

output drum 1. 82 inch diameter. 

The mast radius for the SEP solar array is 7.2 inch. Shortening of the solar array 
blanket from 41 to 27 panels per wing stiffens the system considerably. However, 
an end couple produced by the eccentric tension loads of the array blanket, and 

reflectors counters some of this benefit. 

The dynamic analysis (paragraph 3.2.2) not only established blanket tension (0.75 lb), 
but also showed that minimum frequency (0.02 Hz) could be met by mast radii as small 
as 4. 5 inch. If a 4.5 inch radius mast is elastically stable, then considerable weight 

may be saved. 

Figure 3-28 shows the manner of loading of the mast where moment M results from 

the various tensioning loads in the system. 
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Figure 3-28 Combination Loaded Mast 

The moment is derived from the individual loads acting about the mast centroid as 

shown in Figure 3-29. The total moment is 943.52 lb-in. The root moment is 

amplified from the tip moment loading because of the combined nature of the applied 
loads. This amplified moment must be compared with mast minimum bending 

strength. 

MAST CENTROID
A RRAY'B LAN KET 

REFLECTOR 
2LB LB T ] LB 2LB 

0.75 LBL 
1 LB I1LB 

1 LB 1 LB 

2 LB P p = 14.75LB 2 LB 

M =py = 943.52 LB-IN. 

Figure 3-29 End View Array Tension Loads 

Using 1. 25 as a safety factor, an expression for R may be written using the parametric 

data of Table 3-4. 

M = 943. 52 lb-in 

L = 943 in1.25 M 
 
R = 12.675os L P = 14.75 lb.[2 7t53OR 4 
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And a solution for R is, 7.9 inches. OF POOR QUALITy 

A smaller mast radius can be achieved by reducing the end couple either by reducing 
blanket/reflector tensions, or by countertalancing. Reducing reflector corner tension 
from 2 lb to 1 lb results in an end couple of 639 lb-in. P declines to 10.75. The 
expression for R becomes: 

- 1/3


B =1.25 x 639 2 943 _
[ P

R 2. 675 cos 943V



530 R4



10.75 j 
With a solution R = 6.9 inch. 

If the reduced corner tension in the reflectors cannot be accepted, then a counter­
balance erected on the opposite side of the mast centroid could be mechanized to 

alleviate all end couple. 

With the elimination of end couples, the mast system now becomes a straight forward 

column design problem. 

From Euler 
= 

C 7r2 El Pe Critical Buckling Load Q1b) 
Pe = L2 C = End fixity coefficient 

EI = Column stiffness (lb-in2 ) 

L = Column length (in) 

C = 0.25 for one end fixed, one end free 

The most practicable counterbalance design produces an additional load of 9 lb on the 
column. Thus 

Pe must= 1.25 (14. 75+ 9) 
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Inserting mast parameters in the Euler equation and solving for R we find: 

- 225-(14. ) = 025 x530 R4 29.7 lb.(943)2 

R = 6. 2 in. 

All that remains is to check for crippling 

PCR = 5.348 (6.2)2 =205 lb. 29.7 lb 

The counterbalance is illustrated in Figure 3-30 showing how the composite reflector 

and array blanket tensions (PI) acting at an effective eccentricity (e) are balanced by 

load P2 acting at the end of the counterbalance mast. 

2 I COUNTERBALANCED MAST 

o BY ERECTING COUNTERBALANCE, M - 0, BUT P-. ,25 LB, 

ALTHOUGH P < PCR' SLENDERNESS RATIO INDICATES 

CLASSIC EULER COLUMN ACTION 

• ""- Cr El 
" EULER EQ FOR ONE END FIXED, ONE END FREE, C = 1/4 PC 2 

L2P 

Figure 3-30 Counterbalanced Mast 


The choice of alternatives must be based on weight, complexity, and reflector per­


formance considerations as summarized in Table 3-7. 
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TABLE 3-7 
MAST CANDIDATE WEIGHT COMPARISON



R (IN.) WM (LB) Wcan (LB) OTHER (LB) ZW (LB) REMARKS



7.9 35.26 37.14 0 72.40 	 HEAVIEST 

6.9 26.90 28.77 0 55.67 	 REDUCED REFLECTOR TENSION 

6.2 	 21.72 23.53 5 50.25 COUNTERBALANCE


COMPLEXITY



The counterbalanced design (R = 6.2) is selected on the basis of least weight and 

delivery of adequate reflector tension at the cost of some deployment complexity. 
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3a BASE-LINE MECHANICAL DESIGN 

The baseline mechanical design uses the basic Solar Electric Propulsion (SEP) solar 
array technology which has been under development since 1973. This solar array 
provides a departure point from which the unique requirements .of this study may be 

applied. Through relatively minor modifications it was found that the SEP array may 

be utilized for Concentrator designs. 

3.3. 1 SEP Array Description 

The SEP solar array wing shown in Figure 3-31 extends and retracts either fully or 
partially to a predetermined point depending on-the specific mission requirements. 
It tensions a flat-folding blanket of solar cells, 31. 6 m by 4 m, to provide a natural 
frequency equal to or greater than 0.04 Hz. It is capable of automatically restowing 

the blanket and preloading it for return to earth via a shuttle spacecraft. 

The wing consists of five major components; array blanket, mast, tensioning 
mechanisms, containment box, and box cover. The blanket is folded in 81 layers 
and stowed in the container for ascent. The padding on the individual blanket panel 

halves serves as separation between the cell-coverslide assembly surfaces and as 
protection against cell damage during ascent loading in the shuttle bay. The folded 

blanket is preloaded (compressed) between the storage containment box floor and 
the containment box cover to prevent slippage during the ascent phase of the mission. 

Preload force is maintained to the cover by four levers which are integrated to the 
mast tip by an interface fitting, pivoted by a linkage to the box cover assembly, and 
which bear against fixed lugs on the containment box. The preload is released by 
actuating the mast for extension. The mast is a continuous longeron lattice structure, 
32 m (105 ft.) long designed by AEC-Able Engineering Company, Inc., Goleta, California. 
The coilable truss structure is stowed in a canister and is extended by a rotating nut 

driven through a gear system by two electric motors. The rotating nut interfaces 

with small rollers mounted on the longerons at each bay (every 9 inches of longeron 
length) to extend or retract the mast. As the mast extends, the levers release the 
preload and then become the load path from the tip of the mast to the cover. The 
box cover now serves as support for the outer end of the array blanket when tensions 
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are applied to the blanket. Two guide cables attached to the cover and tensioned by 

negator powered reels are used to maintain a positive position of the unfolding blanket 
in -zero-gravity. Continued mast extension unfolds the stowed array panels as shown 

in Figure 3-32 until a predetermined intermediate tension point is reached. Two 

negator powered reels and tension cables provide up to 37. 8N (8.5 lbs) force for tensioning 
the blanket sufficiently to meet the 0.04 Hz minimum natural frequency requirements. 

Further mast extension will eventually fully extend the blanket. At this point two 
more negator-powered reels and cables will tension the blanket to assure the 0.04 Hz 
minimum natural frequency requiremeit. Upon command the mast will retract either 

back to the intermediate tension point or to the fully retracted position. Retraction 

will result in folding of the untensioned individual blanket panels in a random sequence 

below the intermediate tension point. After the partial extension point is passed, 
folding of the remaining outboard array panels occurs in random sequence to the 
fully stowed position where the cover locking levers will again preload the stowed 

blanket and the mast will be automatically stopped. The wing will then be ready to 

survive the reentry loads applied within the shuttle bay. 

3.3. 1.1 Blanket. The blanket assembly shown in Figure 3-33 consists of 41 panel 
assemblies which are folded into 82 half panels for ascent stowage. Each panel con­
tains 3060 solar cell and cover assemblies welded to a copper interconnect system. 

For ascent and reentry phases of the-SEP mission a form of cell protection from the 
environment is provided by criss-cross padding as shown on the panel assembly. 

The criss-cross padding alternates between adjacent panel halves so that, when they 

are folded in the stowed position, the pad patterns cross each other providing cell 

separation. 

Stiffening of the panels is necessary for zero-gravity fold-up. The baseline concept 
provides stiffening along the fold and hinge-lines and at the guide wire positions. 

The stiffener elements near the wire harnesses were removed because sufficient 
support was given by the harness. Although the height of the stiffeners is limited to 

the cell/coverslde height due to stacking limitations, the stiffener element width 

capabilities have been increased from. 064 to. 13 inches along the hinge and fold 
areas and from 0. 064 to 0. 3 inches at the guide wires. Each panel is also thermally 

set into a crease at its fold-line to enhance proper fold direction. 
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Along the mating edges of each panel is a fiberglass cloth hinge, with alternating long 

and short cutouts between equal length hinge lobes. As shown in Figure 3-3, the 

short cutout and its adjacent lobes are spaced to fit between the long cutout of its 

mating hinge and are spaced on 4.00 in. centers. The short cutouts then accept the 

attachments of the intermediate and bottom tension distribution bars. The 41 panels 

are attached to each other mechanically by a hinge pin ('IS" glass-epoxy rod, 0. 032 in. 

in diameter). 

At the outer end of the blanket, where it interfaces'with the cover, a leader of Kapton 

with a fiberglass hinge, configured the same as those on the panels, provides sufficient 

distance from the cover to preclude shadowing by the cover up to angles of 23. 5 degrees 

with the sun vector. 

At each hinge line there are two tabs with eyelets for the guide wires which provide



control of the blanket position during extension and retraction in zero-gravity.



3.3.1.2 Tensioning System. The blanket tension and guide cable systems are all 

negator powered. They differ in the amount of cable travel and force required. There 

-	 are 3 pairs of mechanisms; 2 guide, 2 intermediate tension, and 2 bottom tension. 

Each guide cable mechanism provides a 4. 4 N (1 lb.) force to a cable which passes 

through an eyelet at each hinge line in the foldable blanket. Two negators power a 

central cable reel which is appropriately sized based on the length of cable necessary 

to guide the panels to their fully deployedposition. The negator spring lengths and 

the two negator drum diameters are sized to provide sufficient tension and revolutions 

to the cable take-up reel. The shafts for each reel end drum are directly attached into 

the containment box honeycomb floor to minimize the system weight. Inserts are tooled 

into the floor to provide parallelism to the mechanism shafts. Solid film lubricants are 

used throughout to minimize friction within the assembly. The components are fabricated 

from the materials listed below. 

Negator springs - 301 stainless steel



Negator support drums -beryllium



Shaft - A286 stainless steel



Cable - braided dacron 0.025 in. dia.



Cable Reel - beryllium
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The tension mechanisms provide tension to the extended blanket. Each mechanism 

applies a force to a tension distribution system (see Figure 3-34) which distributes 

the two local loads over the blanket width. The local loads from the mechanism are 

introduced to a graphite-epoxy tube through a fitting. The-loads from the tube are 

then transferred to a blanket hinge line by 38 spring assemblies. The spring rates 

of the assemblies are sufficiently low such that straightness tolerances in the blanket 

and tube, and tube deflections will not represent large tension variations across the 

blanket. One end of the spring assembly is permanently fixed to the graphite tube, 

while the other end is clipped to a blanket hinge-pin. In the stowed position,- the 

tubes are guid6d to rest on stops within the container by the tension mechanism cables 

as shown in Figure 3-35. The tension distribution springs conform to the blanket 

hinge-line position. The tension mechanism uses the same principles, construction, 

and materials as the guide wire mechanism. The reels and drums are appropriately 

sized for the forces and lengths involved and the number of negator springs used per 

cable reel is five. 

The bottom tension mechanisms located at the bottom of the blanket each provide a 

force'of 37. 8 N (8. 5 lbs.) to this tension distribution system. The reels and drums 

are appropriately sized for the forces and lengths involved and here the number of 

negator springs per cable used are four. 

3 . 3.1.3 Array Blanket Support. The array blanket is supported in the folded con­

dition during ascent and reentry phases of the SEP mission to ensure its survival for 

satisfactory performance. In orbit it is also. supported and tensioned to assure a 

system minimum natural frequency of 0.04 Hz and proper alignment to the sun 

vector. The mast described in paragraph 3.3.1 is a major support element in these 

"mission phases along with the box cover and containment-box. 

A preload of 1.03 N/cm 2 (1.5 psi) average is created-over the folded blanket between 

the box cover and the container floore. This force is created by the mast during 

retraction. It is transferred from the mast through a tip fitting to four levers which 

pivot on the mast tip fitting and engage 4 strikes as shown in Figures 3-36 and 3-37. 
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The cover, shown in Figure 3-38, is made up of graphite-epoxy channels laminated 

to that thickness that produces a reasonable balance between stiffness and weight. 

An aluminum honeycomb core with graphite skins i§ the cover base for pressure 

distribution. The blanket side of the cover is faced with 0.5 cm (0.19 in.) thick 

polyurethane foam covered with Kaptonto prevent UV degradation. 

The array containment box (Figure 3-39) provides an equal and opposite reaction 

capability in stiffness to work together with the box cover. It supports the mast and 

tension mechanisms and interfaces with the spacecraft. The floor of the container is 

a 2. 54 cm (1.00 in.) thick honeycomb panel with graphite skins and aluminum core. 

The blanket side is faced with polyurethane foam for cell protection with the blanket 

stowed. The guide wire, intermediate, and full tension mechanisms are mounted on 

the underside of this honeycomb panel. The central section of the container is tri­

angular with graphite-epoxy skins and formers. The main support fittings are also 

made of a laminated graphite-epoxy construction. 

The perimeter of the honeycomb floor is a shield for large contaminant protection 

during ground operations with the stowed array wing. One end of the shield is 

removable for attachment of supports for ground extension of the wing. The shield 

is also fabricated from graphite-epoxy laminate. 

The mast support struts and end fittings are fabricated from graphite-epoxy. They 

interface with the graphite epoxy container and an aluminum canister with graphite­

epoxy gusset fittings. 

The mast tip fitting is also fabricated from graphite epoxy laminates. It interfaces 

at the three mast longeron fittings at the mast tip and the inner locking lever ends. 

The array wing-assembly container configuration is shown in Figure 3-40. 
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3.3. 1.4 Extension Mast. The selection of a continuous coilable longeron mast 

for the SEP Solar Array was based on its minimum weight for the application. An 

additional advantage of this mast is the minimization of dead band around zero 

deflection as compared to a metal articulated lattice structure design. The 

development of a high temperature polyimide resin system in the coilable 

longeron and batten material was accomplished by Able Engineering Co., Inc. 

Mast survival has been greatly enhanced by increasing the mast temperature 

capability from 93 0C (epoxy resin) to3020C (polyimide resin). The extension 

mast design developed by Able Engineering Co., Inc. is illustrated in Figure 

3-41. 
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This procedure resulted in a reflector length of 147. 176 inch as shown. The reflector 

is contained (and deployed) between two sections of a honeycomb beam 4 inches wide 

by 152.-9- inches long. -The ends of the reflector are tethered to take a final position 

0. 5 inch from the edge of these members. Guidewires and splices are on the shaded 

side of the reflector. Deployment hinge axes locations are chosen to result in 

symmetrically stowed reflector containers when swung onto the solar array contain­

thent box. The stowed locations of the reflector containment boxes do not exactly 

line up with the edge of array containment box cover. The sunward unit overhanges 

2. 848 inches and the shadeward unit underhanges 0. 529 inches. This variation results 

from the need to pivot the reflectors from different stowage locations to arrive at 

symmetrically equal deployed locations. Neither reflector box, when stowed, reaches 

the full length of the array containment cover. Growth potential is 5. 071 inches. 

When stowed, the complete system must fit within the confines of Space Shuffle 

Oribter Cargo Bay. Payload envelopes, including all dynamics, within this vehicle 

are limited to a cylinder 180 inches in diameter. For purposes of preliminary designs, 

an arbitrary limit of 172 inches (86.0 inch radius) has been imposed. 

The Ion Drive Interface Adapter is represented by a 90 inch by 41 inch cross section. 

An additional 1.0 inch-allowance for array tiedown structure results in the array being 

located 21. 5 inches from cargo bay centerline. The transverse alignment of the stowed 

array is required by spatial requirements of other elements of the spacecraft both 

forward and-aft of the Interface Adapter. ,Sufficient space exists between the payload 

envelope and the stowed concentrated array to install hinges, actuators, and other 

mechanisms necessary for reflector deployment. Since all SEP preload hardware 

has been discarded, it is necessary to compress the entire assembly against the 

Interface Adapter to develop the 1. 5 psi stowage pressure on the folded array blanket, 

and the folded reflector. This pressure is transmitted first to the reflector containment 

boxes, then-through the solar array containment cover to the solar array containment 

box. 

Three concepts for deploying the reflector stowage boxes were examined. In Figure 

3-43 the two reflector boxes must be sequentially rotated to position. In Figure 3-44 

the boxes are first translated and then rotated to position. An attempt to produce a 

flat surfaced array cover is shown in Figure 3-45. In this concept, the reflector 
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containment boxes are integrated into a notch in the array cover. The first concept


was chosen to be developed by this design.



Details of the reflector hinges are shown in Figure 3-46. 

Rotation, or swing out, of the reflector containment boxes is accomplished by action


of a combination spring actuator and viscous damper. 
 An externally adjustable orifice 
on the damper permits fine tuning of rotation rate. One actuator is required.for each


reflector and is mechanized to drive the inboard half of the reflector stowage box.


Synchronism of the inboard and outboard halves of the reflector containment boxes


during swing out is provided by tapered indexing pins. These pins disengage during


the first events of reflector deployment.



Due to the variation in hinge axis location, and reflector stowed locations, each hinge 

set is different. The sunward reflector containment, shown in Figure 3-46, is 

supported from the overhanging section on the bottom (inboard half), 
 and the side 
(outboard half). Offset structure built into the moving halves of these hinge sets transfer 
loads to the stationary halves via quadruple shear of a 0.25 inch diameter hinge pin. 
Dry film lubricants are used throughout the reflector system to minimize frictional 

loads. 

Rotation is stopped and locked by an over center 4 bar linkage set in each hinge. These 
links are nested within the hinges before rotation commences. At the limit of rotation, 
they are taut, and slightly overcenter providing firm and accurate control of final 
rotational position. An adjustment in the linkage mounting provides fine tune capa­
bility of reflector angle during assembly procedures. The outboard half of the 
reflector containment box which must deploy with the array cover, is affixed to 
the edge of the cover. The other half of the reflector containment box is affixed 
to the array containment box end. Whenever possible, items which could be located 
on either the outboard or inboard halves of the reflector containment boxes were 
selected to be located inboard. This helped to minimize tip mass and consequently 
increase array natural frequency. Following this philosophy, the reflector guide­
wire mechanisms were installed in the array containment box in the same manner as 
array guidewire mechanisms. As mentioned earlier, the array intermediate tensioning 
system was discarded. In its place, and elsewhere on the honeycomb panel are located 
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the four new guidewire mechanisms engendered by the reflector additions. Two 

guidewires dre directed out of each end of -the array--containnnt box. The wires 

are threaded through a series of pulleys to route them around the hinge axis and 

into the inboard half of the reflector containment box. The routing within the 

containment box will be discussed below. The guidewire tension is arbitrarily set 

at 1 lb each. This tension provides assistance to the actuator during swing out. 

The shortening of the guidewire is taken up by the storage reel. 

The linkage on the shadeward stowed reflector box, shown in Figure 3-47, is similar 

in function to that of the sunward reflector. It differs only in that the interface 

between hinge and box is on the box end rather than side or base as described earlier. 

The other major difference is in the arrangement of the actuator. In this case, the 

actuator is located below the hinges and provides rotation counter-directional to the 

sunward assembly. The rotational stops, guide wire routing, indexing taper pins, 

and hinge arrangements are all functionally similar to the sunward reflector. However, 

the unique geometry produced completely different moving hinge designs. 

Figure 3-48 shows the details of the reflector blanket. The blanket is composed of 

17 full panels, and one short panel spliced in 17 places. Total length of the reflector 

is 815 inches with the ends being trimmed at a slight angle to compensate for the 

deflection of the reflector stowage box halves. Each panel is 47 inches long by 

147. 176 inches wide by 0. 0003 inch thick constructed from a 48 inch width roll of 

aluminized Kapton. The material is produced by numerous vendors to commercial 

specifications. 

The splices are shown in section D-D and incorporate a stiffening member 0. 012 inch 

by 0.5 inch. These stiffeners contribute to the absence of reflector edge curl. 

The edges of each panel are reinforced by folding back 0.5 inch of the material and 

bonding to itself with dry film adhesive as shown in section C-C. This procedure 

precludes edge tears from propagating from micro-irregularities in edge shearing. 

The ends are reinforced as shown in section B-B by inclusion of a 0. 012 inch 

stiffeners in a 0. 5 inch fold back of reflector material. The outboard end is 
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tethered with fixed length tethers cut to maintain the 300 off angle tension relationship 
after stowage box deflection has occurred. Guidewires are fastened to this same box 
and pass through holes in the splices providing control over the blanket as it is being 
deployed. As previously mentioned, the guidewires are fed from storage reels 
located in the array containment box and routed around the hinge area by a system 
of pulleys. The inboard reflector end is tensioned by tethers directed 300 off angle 
and connected to a full deploymeht blanket tensioning mechanism located in the inboard 
reflector containment box tip. 

This device is shown in Figure 3-49. The tensioning cables are routed to two separate 
cable reels. Connected to, and sharing the same mounting post is the negator output 
drum. Feeding the negator spring material to it is a negatot take up drum. The 
capacity of the tensioning system as well as the guide wire and other systems permits 
the fully deployed array and reflector to be moved outboard at least one meter to fine 
tune spacecraft center of pressure. 

The folded reflector has 244 folds and is 147.176 inches long by 3. 857 inches wide when 
folded. Each panel is folded 14 times between splices. Due to the increased thickness 
-of edges, ends, and splices, the folded reflector thickness varies. A sculptured 
resilient pad covered with Kapton, accommodates the thickness variation while 
developing the required 1. 5 psi packing pressure. Cable roiting and pulley installa­
tions are located in the inboard stowage box directly under the tethers and guidewires. 
A root hinge attach insert provides a universal fitting for interfacing the various hinge 
attachments whether it be from end, side, or base. An alternate design involves 
placement of one full deployment cable tensioning mechanism in the outboard and 
one tensioning mechanism in the inboard halves of the reflector containment box. 
The fixed tethers would be changed to accommodate this alternative. The benefit 
of this alternate would be twofold. First, the box length could be reduced 1. 5 inches 
from 152. 9 to 151.4 inch. Second, the box halves could then be made identically, 
reducing the part count by a factor of 2. 

The stowed CESA solar array module is shown in Figure 3-50. The similarity to SEP 
is clearly indiciated. The same array containment to mast canister arrangement is 
retained. The containment cover is different with the upper surface being completely 
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flat. An extension of the cover to the side provides the structural connection to the 

mast tip. The preload mechanism and strikes are removed-and- launch preload of 

both solar array blanket and reflector blankets is provided by compressing the module 

against the Interface Adapter and retaining this compression until hold downs are 

released.



The mast counterbalance system is shown stowed in the top view in Figure 3-51. 

It consists of a two piece telescoping tube assembly held in the stowed position by 

a bumper bearing against the shadeward stowed reflector box. 

A spring driven actuator/damper, similar to those ofithe reflector system, rotates 

the counterbalance 900 to a position directly away from the sun. Ai over-center 

4 bar linkage controls ultimate position, similar to the reflector mechanisms. 

The inner telescoping member is extended by an internal spring. Near the root of 
the counterbalance a tensioning mechanism is installed. This mechanism is designed 

to produce the ultimate tension and to provide for I meter excursions for C. P. 

adjustment as mentioned earlier. 

The tension cable from this mechanism is led through ferrules mounted on the counter­
balance over a pulley at the tip. When swung out, the cable is in alignment from the 

ultimate tensioning mechanism to-the tip pulley. The tension cable is directed to 
the base of the mast canister where it is wound on a negator powered cable storage 

reel similar to a guidewire mechanism. The tension produced by this mechanism is 

1 lb. As the array is deployed, cable pays off the storage reel until a predetermined 

stop is encountered. From this point on, the full tension mechanism comes in effect 

and counter balances the full tension couples created in the reflector and solar array 

blankets. 

A detailed mass summary of the CESA solar array module is presented in Table 3-8. 
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TABLE 3-8 

DETAILED CESA MASS SUMMARY 

Contin- Contingent 
gendy Mass 

Item No., Description, & Estimated Mass (kg) Factor (kg) Remarks 

Total Module (one wing of 27 panels) -	 153.46 

1.0 	 Mast (1). 	 23.164 1.15 26.64 
1.1 	 Canister (1) 	 11.034 
1.2 	 Mast Element 23.95 m 9.860 R = 6.2" 

(943 in.) (1) 
1.3 	 Mast Balancing System 2.270 

2.0 	 Array Guidewire 1.327 1.15 1.53


Mechanism (2)



2.1 	 Wire 22.28 m (877.06 in.) 0.048 
(2) 

2.2 	 Negator (4) 	 0.641 
2.3 	 Wire Reel (2) 	 0.222


2.4 	 Negator Hub (2) 	 0.132 
2.5 	 Negator Reel (2) 	 0.106 
2.6 	 Shaft (6) 	 0.156 
2.7 	 Washers 	 0.014 
2.8 	 Panel/Wire Retainer (56) 0.008 

3.0 	 Reflector Guidewire 2.478 1.15 2.85 
Mechanism (4) 

3.1 	 Wire 23.04 m (907.06 in.) 0.099 
(4) 

3.2 	 Negator 	 1.327 
3.3 	 Wire Reel (4) 	 0.444 
3.4 	 Negator Hub (4) 	 0.264 
3.5 	 Negator Reel (8) 	 0.212 
3.6 	 Shaft (12) 	 0.104 
3.7 	 Washers 	 0.028 

4.0 	 Full Tension Mechanism (2) 0.650 1.15 0.75 
4.1 	 Wire I m (2) 	 0.002 
4.2 	 Negator (8) 	 0.278 
4.3 	 Wire Reel (2) 	 0.026


4.4 	 Negator Hub (2) 	 0.090 
4.5 	 Negator Reel (8) 	 0.148 
4.6 	 Shaft (10) 	 0.096 
4.7 	 Washers 	 0.010 

5.0 	 Tension Transfer (8) 	 0.024 1.20 0.03 
5.1 	 Pulleys (8) 	 0.004 
5.2 	 Brackets (8) 	 0.016 
5.3 	 Pins (8) 	 0.004 
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TABLE 3-8 

DETAILED CESA MASS SUMMARY (Cont) 


Contin- Contingent 
gency Mass 

Item No.-, Description, & Estimated Mass (kg) Factor (kg) Remarks 

6.0 Cover Assembly (1) 6.373 	 1-15 7.33 
6.1 	 Skin (2) 3.385 Graphite/ 

6.2 	 Core (1) 1.507 
Epoxy 

6.3 	 Sides 0.671 
6.4 	 Adhesive 0.470 
6.5 	 Pad (1) 0.130 
6.6 	 Adhesive 0.210 

7.0 Container 11.060 	 1.15 12.72 
7.1 	 Honeycomb Panel 3.760 
7.1.1 	 Skin (2) 1.800 
7.1.2 	 Core (1) 0.630 
7.1.3 	 Edging 0.440 
7.1.4 	 Inserts 0.450 
7.1.5 	 Adhesive 0.440 
7.2 	 Triangular Beam 6.230 
7.2.1 	 Skin (2) 2.660 
7.2.2 	 Bulkhead (2) 0.330 
7.2.3 	 Longeron (3) 1.000 
7.2.4 	 Support Fitting (4) 0.300 
7.2.5 	 Perimeter Shield (1) 1.130 
7.2.6 	 
7.2.7 	 

Pad (1) 
Adhesive 

0.350 
0.460 

7.3 	 Support Struts 1.070 
7.3.1 	 
7.3.2 	 
7.3.3 	 

Long (2) 
Medium (2) 
Short (2) 

0.500 
0.410 
0.160 

8.0 Solar Cell Blanket (1) 75.046 1.04 78.05 
8.1 	 Upper Leader (1) 0.140 
8.2 	 Upper Attach Bar (1) 0.160 
8.3 	 Bottom Tension Distr 0.650 

Bar (1) 
8.4 	 Lower Leader (1) 0.170 
8.5 	 Panel (27) 73.926 
8.5.1 	 Substrate w/Pad & 14.337 

Stiffening (27) 
8.5.2 	 Solar Cells (3060 31.617 

8.5.3 	 
x 27) 
Cover Adhesive 3.510 

8.5.4 	 
(3060 x 27) 
Coverslide (3060 
x 27) 

22.815 
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TABLE 3-8


DETAILED CESA MASS SUMMARY (Cont)



-Contin-- -Contingent 
gency Mass 

Item No., Description, & Estimated Mass (kg) Factor (kg). Remarks 

8.5.5 	 Hinge (2 x 27) 	 1.566 
8.5.6 	 Hinge Pin (27) 	 0.081 

9.0 Interconnect Harness 	 3.808 1.05 4.00 
9.1 	 Flat Conductor Cable 3.438 

(Power) 
9.2 	 Flat Conductor Cable 0.250 

(Instr) 
9.3 	 Receptacles (4) 	 0.120 

10.0 Misc Nuts & Bolts 	 0.900 1.10 0.99 

11.0 Reflector Assy (KJO08) 	 12. 066 1.10 13.27 
(2) 

11.1 	 Inboard Reflector 5.058 
Storage Box (2) 

11.1.1 	 Facings (2) 2.220 
11.1.2 	 Sides (2) 	 1.230 
11.1.3 	 Core (2) 	 0.244 
11.1.4 	 Liner (2) 	 0.450 
11.1.5 	 Adhesive (2) 0.260 
11.1.6 	 Root Hinge 0.250 

Attach 
Insert (2) 

11.1.7 	 Pad (2) 	 0.040 
11.1.8 	 Tensioning 0.350 

Mechanism 
(4) 

11.1.8.1 	 Cable Reel 0.016 
(4) 

11.1.8.2 	 Output 0.118 
Drum (4) 

11.1.8.3 	 Takeup 0.038 
Drum (4) 

11.1.8.4 	 Post (4) 0.086 
11.1.8.5 	 Guide 0.014 

Pulley/Brkt 
(12)



11.1.8.6 	 Cable 6.3 m 0.014 
(4) , 

11.1.8.7 	 Negator (4) 0.064 
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TABLE 3-8 

DETAILED dESA MASS SUMMARY (Cont) 


Contin- Contingent 
gency Mass 

item No., Description,'& Estimated Mass-(kg) Factor (kg) Remarks 

11.1.9 Guidewire 0.014 
Parts in 
11.1 

11.1.9.1 Cable 0.008 
4.1 m (2) 

11.1.9.2 Guide 0.006 
Pulley/ 
Brkt (4) 

11.2 Outboard Reflector 4.200 
Storage Box (2) 

11.2.1 Facings (4) 2.220 
11.2.2 Sides (2) 1.126 
11.2.3 Core (2) 0.264 
11.2.4 Adhesive (2) 0.268 
11.2.5 Root Hinge 0.282 

Attach Insert 
(2) 

11.2.6 Pad (2) 0.040 
11.3 Reflector (2) 2. 808 
11.3.1 Aluminized 1.710 

Kapton 0.3 mil 
(2) 

11.3.2 Stiffeners (36) 0. 866 
11.3.3 Adhesive 0.232 

12.0 Reflector Attachments 1.646 1.15 1. 89 
12.1 Outboard Sunward 0.146 

Hinge, Moving (1) 
12.2 Inboard Sunward 0.379 

12.3 
Hinge, Moving (1) 
Sunward Hinge, 0.098 

12.4 
Fixed (2)
Indexing Tapes Pin (2) 0.013 

12.5 Pivot Pins (4) 0.054 
12.6 Actuator (2) 0. 043 
12.7 Actuator Clevis (2) 0. 004 
12.8 Guidewire Pulleys/ 0.016 

12.9 
Brkts (14) 
Guidewire 0.003 

12.10 Over Center 0.058 

12.11 
Linkage Set (4) 
Outboard Shadeward 0.179 
Hinge, Moving (1) 
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TABLE 3-8 
DETAILED CESA MASS SUMMARY (Cont) 

Item No., Description, & Estimated Mass (kg) 

Contina­
gency: 
Factor 

Contingent 
Mass 
(kg) Remarks 

12.12 Inboard Shadeward 0. 177 

12.13 
Hinge, Moving (1) 
Shadeward Hinge, 
Fixed (2) 

0.116 

13.0 
13.1 
13.2 
13.3 

Deployment Mechanism (1) 
Pin Puller (4) 
Trunnion (1) 
Actuator (1) 

0.640 
0.920 
1.540 

3.100 1.10 3.41 
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Figure 3-52 a shows the spacecraft configuration after ejection from Space Shuttle 

until such time as IUS first stage is separated. The solar array modules are tucked 

in against the Ion Drive Interface Adapter, and held by four pyrotechnic devices. A 

trunnion links the mast canister to the solar tracking mechanism. The next Figure 

(3-52 b) shows the first step in deployment which occurs after IUS second stage burn. 

The pyrotechnic hold down devices are functioned releasing the solar array modules 

from the Interface Adapter. An actuator rotates the array module 1800 and latches. 

In this position, the containment box will safely clear payload devices, and the 

shadowing effect on the spacecraft will be moderated. The IUS is retained until full 

array deployment to take advantage of its attitude control capability during deployment 

transients. 

Figure 3-53 a shows an end on view of the solar array module while reflector boxes 

are being swung out. The sunward reflector is swung out first to clear a path for the 

shadeward reflector. After the shadeward reflector is swung out, the counterbalance 

is swung out. 

At this stage, the deployment of the reflectors and solar array blanket is possible. 

Figure 3-53 b shows the module partly deployed. The near reflector is removed for 

clarity. The deployment mast driven by electric motors pushes the array containment 

cover outboard causing the folded reflectors and solar array to emerge from their 

containers. Cables are unreeled from storage reels to provide control of the blankets 

during this phase. Full deployment is shown in Figure 3-54. The 18 reflector panels 

are stretched taut. The solar array blanket is pulled flat, and in this view is shown 

edge on. Full tensioning mechanisms in the array, reflector, and counterbalance are 

in effect and the tip couple is nullified. The IUS separation pyrotechnic devices are 

functioned allowing the four bipods to open, and spring push offs establish a separation 

AV. 
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Section 4 

COST PROJECTION ANALYSIS 

The groundrules and assumptions which were used in developing the cost projection 

figures for the CESA system are listed below. 

* 	 1980 dollars 

* 	 Estimates include fee 

* 	 Estimates do not include swing out trunnions, tracking system or power 

transfer, slip ring system 

* 	 Assume one development wing which is refurbed 30% for qual and one 

flight array (two wings) 

* 	 Assume basic SEP'array is completely developed and qualified on other 

programs 

Both 	 the nonrecurring and recurring costs associated with the CESA solar array are 

depicted in Table 4-1. As noted total program cost would be in the range of 17 million 

which includes 8. 548 million for one flight array incorporating two 27 panel wings. 
The equivalent recurring cost for a planar SEP type two wing array would be 11. 057 

million. The major increased:cost is attributed to solar cell cost for the required 
22 more panels, 67,320 solar cell assemblies plus spares. The concentrator type 

CESA array, though somewhat more complex mechanically, is much more cost 

effective costing 2-1/2 million less (22. 6 percent) than its planar counterpart. It 

is noted that definitive formal pricing should be initiated at the time of program 

inception because of the fluidity of rates, burdens and inflation. 
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TABLE 4-1



0 NON 

o RECURRING RECURRING 

. A DESIGN, DRAWINGS, ANALYSIS AND SPECIFICATIONS 4,205K 
m 

B TOOLING DESIGN, FABRICATION AND CHECKOUT 765K 

(/ 
C MFG PLANNING, COORDINATION AND PRODUCEABILITY ENGR 331K 80K 

r 
Pm D ENGINEERING TEST HARDWARE -MATERIAL AND FABRICATION 351K 

E DESIGN DEVELOPMENT TESTING 327K 

F COMPONENT QUALIFICATION TESTING 127K 

m G MAIN UNITS-FABRICATION, ASSEMBLY, DEPLOYMENT AND" 1,237K 8,153K 
o ELECTRICAL TESTING 
0 

H OTHER COSTS - GSE,-1, QA, MFG IN PROCESS TESTS AND 113K 315K 
> PROGRAM MANAGEMENT 
z 
< SUB TOTAL 8,456K 8,548K 

TOTAL 17 MILLION 
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Section 5 

NEW TECHNOLOGY 

During the course of the study one innovative concept was developed during the con­

centrator analysis work that is in a,new technology category. The pertinent data 

pertaining to this concentrator concept is as follows: 

TITLE - Segmented Compound Reflector 

This is an adaptation 'of a simple trough type reflector wherein a supplementary offset 
guidewire is incorporated on the deployed reflector such that each reflector contains 

two planes. This is a simple simulation of a parabolic reflector that provides 

significantly higher concentration ratios than. trough or sawtooth concentrators. It 

is depicted in Figure 5-1. 

INNOVATOR - W. R. Szmyd 

PREVIOUSLY REPORTED - This innovation was formerly reported in the CESA 
Design Study Final Review brochure, 20 September 1978, on pages 12, 13, 34 and 35. 

FINAL REPORT INCORPORATION - Discussions of the Segmented Compound 

Reflector concept ate incorporated in this report, Section 3.2. 1, pages 

DATE OF INITIAL REPORTING - The Segmented Compound Reflector concept was 
first discussed with the JPL CTM at the second contract working review, 19 July 1978. 
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