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1. - INTRODUCTION

in the absence of aerosol particles and ions in the atmosphere,
condensation of water vapor will occur only if the supersaturation
reaches several hundred percent. However, in the atmosphere, there are
abundant foreign particles to serve as ready-prepared nuclei for con-
densation and prevent the large supersaturations from being achieved.
The peak supersaturation that will be attained in an air mass containing
a population of condensation nuclei will depend upon the temperature
and the rate of cooling of the air, and upon the concentration, size
distribution, and nature of the particles (Mason, 1971).

Recently, the characteristics of aerosol particles have been
extensively studied, and it is clear that atmospheric aerosols cover a

3

wide range of particle sizes, from about 10” pm radius for the small
ions consisting of a few neutral air molecules clustered around a charged
molecule to more than 10 um for the largest salt and dust particles.
Their concentration also covers anenormous range, from less than 1000

3

per cm3 over the ocean, to perhaps ]06 per cm” in the highly polluted

air of large industrial cities. The small ubiquitous ions almost certainly

play no part in atmospheric condensation because of the very high super-

saturation (about 300 percent) required for their activation, while

particles of radius greater than 10 um, having fall speeds of several

cm/sec, are able to remain airborne for only a limited time (Mason, 1971).
The purpose of the present studywas to numerically simulate how

the concentration, particle size, mass of nuclei, and chemical composition

would affect the dynamics of warm fog formation, in particular the for-

mation of advection fog.



Among all fog occurrences worldwide, warm fog (temperature above
the freezing point of water) accounts for about 95% (Sax, et al., 1975).
Among the categories of fog according to the standpoint of dispersal,
warm fog is the most stable cloud system in the atmosphere. In contrast
to supercooled fog, there is no latent phase instability in warm fog
that can be exploited to promote the artificial dissipation process.

Warm fog dispersal methods are necessarily "brute force' in character.
Whatever energy is required to dissipate the fog must be supplied by
the dispersal method.

It is most economical to use computer simulation techniques to
study the characteristics of warm fog, in particular how the microstructure
of advection fog is influenced by the supersaturation spectrum of cloud
condensation nuclei (CCN) in the air. Recently, Baker (1977) and Eadie
et al. (1975) proposed boundary layer models of advection fog. In
these models, water vapor in excess of the saturation amount is immediately
and completely condensed (i.e., the air never becomes supersaturated) on
a population of existing droplets.

Contrary to the boundary layer models treated by previous investi-
gators, a one-dimensional Lagrangian model of the formation and evolution
of droplet spectra in advection fog was proposed by Fitzgerald (1978).
This model incorporates the physical processes governing the formation
and evolution of fog droplets from a population of cloud condensation
nuclei contained in a parcel which is advected with the wind. The effects
of vertical diffusion transfer, momentum transfer, and energy transfer

are completely ignored in this model.



In the present study, computer modeling of warm fog is used to
investigate a two-dimensional model of fog formation and the evolution
of droplet spectra. A description of the vertical and ho?izontal'
turbulent transfer of heat, moisture and momentum, together with the
growth of fog droplets from a microphysical point of view, have been
included in this model. Both advection and infrared radiation effects
are also taken into account. The driving force for the fog formation
is a prescribed time rate of cooling on the ground.

This model is being used to study how chemical composition, mass
of nuclei, particle size, and the concentration of aerosol particles
affect the formation and deveiopmeni of advection fog. The present model
also can be used for prediction purposes using as input the following
initial data: (1) temperature profile; (2) wind profile; (3) relative
humidity; (4) cooling rate of the ground; (5) chemical composition, mass
of nuclei, particle size and the concentration of CCN.

Numerical simulation of the formation of advection fog was
accomplished using different input parameters such as the mass of the nuclei,
particle size, number density and chemical composition.

The correlation of fog formation and CCN with different chemical
compositions was investigated and compared with the results obtained from
using sodium chloride nuclei. It was found that the value of the ratio
of the Van't Hoff factor to molecular weight plays a very important role
in the fog formation dufing nucleation and condensation time period. The
formation of characteristics of advection fog using hygroscopic chemicals

with various values of the ratio of the Van't Hoff factor to molecular

weight were simulated and are discussed.



11. - MATHEMATICAL MODEL

A theoretical model has been developed which describes the evo-
lution of potential temperature, water vapor content, liquid water con-
tent, and hqrizontal and vertical winds as determined by the processes
of vertical turbulent transfer and horizontal advection of momentum,
energy and moisture, as well as radiation cooling, growth of water droplets
based on microphysical processes, and drop sedimentation.

The mathematical model is two-dimensional in the X-Z plane, and the
boundary layer model is assumed. All the quantities are uniform in the
Y direction. The diffusivity coefficient is the same for liquid water
droplets as for vapor.

The fundamental equations governing the macrophysical processes of
the evolution of wind components, water vapor content, liquid water con-
tent and potential temperature under the influences of vertical turbulent
diffusion transfer, turbulent momentum transfer and turbulent energy
transfer can be expressed in the following three sets of conservation
equations:

(a) Mass conservation equation of the air and diffusion equations

for water vapor and liquid water contents

BUX BUZ
E (1)
acva acva acva ] aCva

3t Ux ox Uz 0z +'3; Kd 0z - ch (2)
oC oC aC acC

wa _ _y _wa_ _wa 3 [, "“wa

ot X 9x ‘2z 0z 9z d 23z

; .
+29 (p
oy (Dt cwa) + ch

4



(b) Momentum conservation equations

au ou ou 3 ou
3t=—Ux Bx—Uz Bz+$<Km 9z + flu -u) (5)
auZ=_Uauz_Uauz_l—a£+i Kauz ©)
at X ox z 9z o 9z oz m dz
(c) Energy conservation equation
96 _ 96 U 98 ., 9 K 36
ot X 09X zoz 0z h 9z
oR
1 ,1000,2/7 _ f)
e N (R (7)
p
where
o}
=V
cva T p (8)
C = p—wlm N(r)rzdr-]— 2 N r3 (9)
wa p 3 i 9j )
0 i

Here, Ux is the wind component in t_he horizontal x-direction; Uy, the wind
component in the horizontal y-direction; Uz’ the wind component iﬁ the vertical
z-direction; cva’ water vapor-air mixir_lg ratio; cwa’ liquid water-air
mixing ratio; Km, turbulent exchange coefficient for vertical turbulent

transfer of momentum; Kd, turbulent exchange coefficient for turbulent

|



transfer of water vapor diffusion and liquid water diffusion; Kh, turbu-
lent exchange coefficient for turbulent transfer of heat flux; f, Coriolis
parameter; Ug’ velocity of geostropic wind; ch, source function for con-
densation and evaporation for water vapor; ch, source function for

condensation and evaporation for liquid water; U_, mean terminal velocity

t
of fog drops; P, water vapor density; pw, liquid water density; N,
number density of water droplet which is a function of droplet size;
r, radius of water droplet; s radius of nucleus; 6, the potential tempera-
ture; and Rf, net upward flux of infrared radiation.

Equation (1) is the expression of incompressible fluid for the
continuity equation of dry air. This expression is true only when the
wind velocity is much less than the speed of sound. |In this case, the
wind velocity up to 100m altitude is in general less than 10m/sec
which is less than 3% of the speed of sound.

The change of the water droplet radius, in Equation (9), due to

condensation/evaporation is governed by microphysical processes, and

is given by (Fletcher, 1966)

dr _ _a_, b
I’a—t-— G (SS r + r3) (IO)
where
2
p K,L"p M
G = Kd ~ 1+ _£L__E£L_9_ ()
Pw R Tk
v
Here
20 M
- o . =51
a= pRT~3.3xlo T (12)
WV



imM

b - Toom = h30 (13)
$S =5S-1 (15)
and
P:;t - z;f = Cva ;;t (15)
v v v

at corresponding temperature. Here, a denotes the effect of water droplet
curvature which is a function of temperature; b, hygroscopic material
solution on the growth of the water droplet; k, the thermal conductivity
of air; Rv the gas constant for water vapor; o, surface tension of the
water droplet; Mo’ gram molecular weight of water} m, the mass of hygro-
scopic nucleus; i, Van't Hoff factor of hygroscopic nucleus; M, gram
molecular weight of the hygroscopic nucleus; SS, the supersaturation

ratio; S, the saturation ratio; piat

, saturation water vapor density at
temperature T. The approximate expressions given in Equations (10)-(15)
are accepted simplifications of the more complicated relationships that
are thoroughly described by Fletcher (1966) (Weinstein and Silverman, 1973).
The fundamental equations governing the macrophysical processes
given in Equations (1)-(7) are similar to the fundamental equations
employed by Eadie, et al., (1975) with three exceptions whichwere not
considered by them. These three exceptions are as follows: (1) the mass
conservation equation of air; (2) the vertical wind component (This

difference makes the convective term become ux(a/ax) + UZ(B/BZ) instead

of UX(B/Bx),as for their case. Reinstallation of Uz(Blaz) is particularly



important because of the strong vertical dependence in our case. This

will ensure the effect of vertical convection due to steep vertical
gradients.)g (3) The evolution of water vapor-air mixture and liquid water-
~air mixture which is governed by the dynamics of turbulent thermal diffu-
éion, Kd, rather than the turbulent heat flux exchange, Kh’ which they
used.

The application of the macroscopic equations (1)-(7), in particular
the evolution of the turbulent transport coefficients, for the study of
the dynamical behaviors of warm fog are given in Hung and Vaughan (1977).
The microscopic equations (10)-(15), in particular the initial stage of
the growth of the water droplets, is discussed in Hung and Huckle (1977);
while the growth and decay of water droplets in terms of the seeding of
hygroscopic chemicals and aerosol particles is discussed in Hung et al.

(1978).

I11. - SODIUM CHLORIDE AND FORMATION OF ADVECTION FOG

it was discussed by Japanese workers that the prominent nuclei of
fog which occurs in coastal areas is sodium chloride with masses between
10_7 and ]0-6 ug (lsono, 1957; also Mason, 1971). Sodium chloride has
also been proposed as one of the most important seeding materials for fog
modification. In this study, sodium chloride with various spectra was
used to numerically simulate the formation of advection fog.

In this computation, the method of implicit integration of the
finite difference equations has been used to solve the governing partial
differential equations. The numerical technique is essentially similar

to that of Richtmyer (1957). The initial values of the wind profile,




temperature profile, and relative humidity use the results of field
measurements taken along the California coast by Mack et al. (1973),
Mack et al. (1974), and Mack et al. (1975).

In the horizontal geometrical x-coordinate, the initial tempera-
ture at the ground was 149C everywhere, and decreased to 13°C within 2
hours linearly at the location of the temperature sink 3 km < x < 6 km.
The source terms of Equations (2) and (3) were assumed to be zero at
time, t = 0; and ch = ch at time, t > 0. Reasonably large time steps
have been used to obtain a computationally stable solution.

The visibility is computed by using the relation

visibility = %‘—2- (m) (16)

where B is related to the drop size distribution, N(r), and Mie scattering
efficiency, SM’ which is important for droplets larger than 1 um, accord-

ing to

o

B = Lm f SMN(r) rdr. (17)
(o}

A wide spectra of sodium chloride, in which concentrations in
the range of 10 to 100 particles/cm3; masses of nuclei in the range of
IO-A to 10-9 Hg; and radius of nuclei in the range of 0.1 to 5 um,
were chosen for the computation.

It is quite interesting to show how thewind profile varies as the

nucleation and condensation proceed. Figures | and 2 illustrate hori=-

zontal velocity profiles for times, t = 1 hr, and t = 2 hrs, respectively.
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Figure 1. Horizontal wind velocity profile for condensation nuclei,

NaCl, with mass of nucleus 10_6 p1g, radius of nucleus

0.5 KM, and number density 50 partic]es/cm3, at time t=1hr.
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Figure 2. Horizontal wind velocity profile for condensation nuclei,

Nagl, wi th mass of nucleus 10—6 pg, radius of nucleus 0.5 um,
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and number density 50 particles/cm™, at time t = 2 hrs.
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This computation is based on the spectrum of sodium chloride with a

3

number of nuclei, 50 particles/cm ; mass of nucleus, IO—6 Ug; and radius
of nucleus, 0.5 um. These figures show that the cooling effect at the
ground acts as a major force to drive the nucleation and condensation
processes through a strong exchange in vertical diffusion, vertical
turbulent momentum, and vertical turbulent energy transport. These
enhanced vertical transports cause highly disturbed wind profiles down-
stream and inside the boundary layer portion of the temperature sink.

Two-dimensional expressions of temperature profile and visibility
are shown, assuming one out of three parameters (numbers of nuclei,

mass of nucleus, and radius of nucleus) as a variable.

A. Numbers of Nuclei as Variable

Sodium chloride with nucleus mass, 10_6 Hg, and size, 0.5 um
radius, is chosen as the example. Figures 3 and 4 compare the temperature

3

profiles for number densities of 50 and 100 particles/cm” at times, t=1
hr, and t = 2 hrs, respectively. These two figures show that vertical
energy transport is more predominant for a number density of 100

3

particles/cm3, than for 50 particles/cm”, as the nucleation and conden-
sation proceeds and the other parameters remain constant.

A comparison of visibility is also made for the case of different
nuclei number densities. Figures 5 and 6 illustrate the visibility profiles

3

for a nuclei number density of 50 particles/cm” at times, t = 1 hr, and
t = 2 hrs, respectively. Figures 7 and 8 show similar visibility profiles
for a nuclei number density of 100 particles/cm3 at times, t = 1 hr, and

t = 2 hrs, respectively. Comparison of Figures 5 and 7, and Figures 6 and

8, for one and two hours, respectively, after the cooling started, show

12



TEMPERATURE PROFILE  ( TIME: 1 wR) MaCL
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Figure 3. Comparison of temperature profiles of condensation nuclei,

NaCl, between numbers of nuclei, 50 and 100 particles/cms,

with constant mass of nucleus 10 My, and radius of nucleus

0.5 um, at time t =1 hr.
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Figure 4.

TEMPERATURE PROFILE ( TIME: 2 wrs ) NaCL
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Comparison of temperature profiles of condensation nuclei,
NaCl, between numbers of nuclei, 50 and 100 particles/cm”,
with constant mass of nucleus 10-6 M9, and radius of nucleus

0.5 um, at time t = 2 hrs.
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Figure 5. Visibility profile due to condensation nuclei, NaCl, with

mass of nucleus 10 Mg, radius of nucleus 0.5 um, and number

density 50 particles/cmB, at time t =1 hr.
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Figure 6. Visibility profile due to condensation nuclei, NaCl, with

mass of nucleus 10—6 pg, radius of nucleus 0.5 pum, and

3

number density 50 particles/cm”, at time t = 2 hrs.
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number density 100 partic]es/cm3, at time t = 1 hr.
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Figure 8. Visibility profile due to condensation nuclei, NaCl, with

mass of nucleus 10—6 p9, radius of nucleus 0.5 um, and

3

number density 100 particles/cm”, at time t = 2 hrs.
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that a denser advection fog is formed for the cases with higher nuclei
number densities.

Overall comparison of both temperature and visibility profiles
indicate that higher numbers of sodium chloride nuclei per unit volume
induce stronger vertical energy transfer and more favorable conditions
for the formation of advection fog.

B. Mass of Nucleus as Variable

In this simulation, sodium chloride with nucleus size 1 um

3

radius, and numbers of nucliei, 100 particles/cm”, is chosen for the

computation. Figures 9 and 10 show the differences in the temperature

6 and 1077

profiles between masses of nucleus of 107 ug at times, t=1 hr,
and t = 2 hrs, respectively. These figures show that steeper temperature
profiles are associated with the larger mass size. This also indicates
that vertical energy transport is more enhanced for the larger mass

size with the other parameters remaining constant.

Visibility changes resulting from the nucleation and condensation
processes in the atmosphere were also computed. Figures 11 and 12 show
the visibility profiles for a nucleus of mass 10-6 Hg at times, t = 1 hr,
and t = 2 hrs, respectively. Figures 13 and 14 show similar visibility
profiles for a nucleus of mass 10_7 Hg at times, t =1 hr, and t = 2 hrs,
respectively, after the initiation of cooling shows that lower visibility
resulted for the case with the larger mass.

It can be concluded from this study that nuclei with heavier
masses produce stronger vertical energy transport and also more favorable

conditions for the formation of advection fog than nuclei of lighter

masses.

19



TEWPERATURE PROFILE ( TIME: 1we)  MalL
—_——— w1004 om0 W= 100/cc
w=107me  me=1.040  N=100/cc

1001 N N
\ \
50F \ \
\ \
\
! \
l '
1} ! '
H ;
/ 1
x 5 / i
- / |
3 / X
= ’/ )
2 1
2ar ] i
i
Sf )
]
1
[}
i
Bos 1.0 §.5 100 5 1.0 T 1Bo| D55 1.0
e’ )
—X=1 L—x=3 = X = 4.5 l—X =6 l—x =8

HORIZONTAL DISTAMCE  ( xn )

Comparison of temperature profiles of condensation nuclei,

-7

Figure 9.

NaCl, betwecen masses of nuclei, 10_6 and 10 p#g, with con-

stant radius of nuclcus lp.m, and number density 100

3

particles/cm”, at time t = 1 hr.

20



TEMPERATURE PROFILE ¢ TIME: 2 ms ) MaCL

— 10'5ps ne~ 1.0un N = 100/cc

————— - 10'7;5 K= 1.04m N = 100/cc

lﬂT “ |

50 ¢ ! 1

/ 1

I4 1

Vi !

’ [}

4 I

nr / !
- ,, '
zs | |
| I
4 !
£ | [
= !
1

St ’

|

[
!

s N N | S
13.5 13,5 14.0 13.5 140 L 13.5 14.0
) .,
-x-1 3 X =45 - g5 TEPCO
HORIZONTAL  DISTAMCE ( xkm )

Comparison of temperature profiles of condensation nuclei,

7

Figure 10.

NaCl, between masses of nuclei, 10°° and 10~ Mg, wWith
constant radius of nucleus 1 um, and number density 100

particles/cm3, at time t = 2 hrs.

21



100(
VISIBILITY  ( TIME: 1 e )
50r  MaCL
n-lo's,as
R L0 750 - 1000 m
K = 100/cc
101
Sb
=
]
=
=
R 5
5L
BELOW 375 m
Y 1 1 A 1 A )
1 2 3 i 5 3 y
HORIZONTAL DISTANCE ( ku )
Figure 1l. Visibility profile due to condensation nuclei, NaCl, with

-6
mass of nucleus 10 ~ ug, radius of nucléus I um, and number

density 100 particles/cmz’, at time t= 1 hr,

22



100

VISIBILITY ¢ TIME: 2 ms )
Ml

0F u= IO'G,ue
n= 1.0m
N = 100/cc

10

g
2
1
SH
1 2 3 ¥ 5 6 T s
HORIZONTAL DISTANCE ( xm )
Figure 12. Visibility profile due to condensation nuclei, NaCl, with

mass of nucleus ]0_6_pg, radius of nuclé¢us 1 um, and

number density 100 particles/cm3, at time t = 2 hrs.

23



oo

sl VISIBILITY C TIME: 1 e )
MaCL

n=107u6

re= 1.04M

N = 100/cc

10k

ALTITUDE (m)

BELON 400 M

2 3 4 5 6 7 8
HORIZONTAL DISTANCE ( xn )

Figure 13. Visibility profile due to condensation nuclei, NaCl, with
mass of nucleus 10-7 K9, radius of nucl¢us 1 um, and

numbe r densfty 100 particles/cmB, at time t = 1 hr.

24



wl
5 VISIBILITY ( TIME: 2 wms )
[
L 10'7#5
Re= 1.04m
N = 100/cc
500 - 1000 n
01
5 3
=
g
=
1+
.St
BELOW 150 M
2 1 ) A 4 X 1
1 2 3 4 5 [ 7 B

HORIZONTAL DISTANCE ( xm)

Figure 14, Visibility profile due ‘to condensation nuclei, NaCl, with
mass of nucleus 10_7;19, radius of nucle@us 1 um, and number

density 100 particles/cmB, at time t = 2 hrs.

25



€. Radius of Nucleus as Variable

Effects of differences in radii of nuclei are studied using a
constant background of sodium chloride with a nuclei number density of
100 particles/cmB. Nuclei with radii of 0.5 and 1 um and masses of
5.56 x 10-7 and 4.45 x lO-6 ug, respectively, are used. Figures 15 and
16 compare the temperature profiles for nuclei with radii of 0.5 and 1 um
at times, t = 1 hr, and t = 2 hrs, respectively. The vertical energy
transport is more dominant for the nucleus with the radius of 1 um than
for the one with the 0.5 um radius.

Comparison of visibility due to the nucleation and condensation
for different size nuclei was also accomplished. Figures 17 and 18 show
the visibility profiles for the nuclei with a radius 0.5 um at times,
t=1hr, and t = 2 hrs, respectively, while Figures 19 and 20 illustrate
similar visibility profiles for the nuclei with a radius of 1 um.
Comparison of Figures 17 and 19, andFigures 18 and 20, for one and two hrs,
respectively, after the air started to cool off, show that advection fog
formed from nuclei with a radius of 1 um had a much lower visibility
than that formed from a nuclei with a radius of 0.5 pm.
Simulation of the nucleation and condensation process using different

size sodium chloride -nuclei shows that the nuclei with larger radii cause
(1) a more pronounced vertical energy transport, and (2) a lower visibility

than the nuclei with smaller radii.

IV. - AEROSOL PARTICLES WITH HIGHER RATIO OF THE VAN'T HOFF FACTOR TO
MOLECULAR WEIGHT THAN SODIUM CHLORIDE AND THE FORMATION OF
ADVECTION FOG
In the early stages of growth of a hygroscopic nucleus, the

dependence on the Van't Hoff factor is very important. The Van't Hoff
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factor depends on the chemical nature and the degree of dissociation
(i.e., on the concentration) of the solute. The ratio of the Van't Hoff
factor, i., to the molecular weight of the hygroscopic nucleus, M, can
be used as a measurement of nucleation and condensation for various
species of hygroscopic chemicals. Table 1 shows i/M values of some
hygroscopic chemicals and the values compared with that of sodium chioride.
In this sgction, computed values of the vertical energy transport and
visibility for hygroscopic chemicals of higher value i/M ratio than
soidum chloride are compared to the values for sodium chloride. Similar
computations for hygroscopic chemicals with lower values of the i/M
ratio are compared with that of sodium chloride in the next section.
Lithium chloride has an i/M ratio of 0.0482, and sodium chloride

has an i/M ratio of 0.03257. The ratio of (i/M) to (i/M) whi ch

LiCl NaCl

is 1.502, was chosen as an example in this study (Low,l1969). All the
background conditions and geometries are similar to Section Ill. The
nucleation and condensation processes using LiCl nuclei were compared
to those using NaCl nuclei. The items compared are the same as A and

B in Section ItlI.

A. Case with Concentration of 50 ug/m3 and Size of Nuclei of
0.5 pym Radius

In this case LiCl and NaCl with the same concentration, 50
Ug/m3 (mass of nucleus, 10_6 ug, and number of nuclei, 50 particles/cmB)
and nuclei size, 0.5 pm radius were used to study changes in vertical
energy transport and visibility as the nucleation and condensation
processes progressed. Figures 21 and 22 compare the temperature profiles
for the LiCl nuclei and NaCl nuclei at times, t= 1 hr, and t = 2 hrs,

respectively. These two figures show that the vertical energy transport

was stronger for the LiCl nuclei than for the NaCl nuclei.
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Table I. Comparison of Ratio of Van't Hoff Factor to Molecular
Weight for Some Typical Hygroscopic Materials

Hygroscopic *Van't Hoff Molecular Ratio Comparison of (i/M)
Materials Factor, | Weight, M i/M With NaCl
Ca(N03)2 2.638 1641 0.01608 0.4937
KCt 1.823 74.56 0.02445 0.7507
CaCl2 3.228 i1 0.02908 0.8928
NaCl 1.904 58.45 0.03257 ]
LiCl 2.074 2.4 0.04892 , 1.5020

*
Van't Hoff factor is measured at 25%, ] .atm, and 1 molality.
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Figures 23 and 24 show the visibility profiles for the LiCl nuclei -
at times, t =1 hr, and t = 2 hrs, respectively. Comparison of Figures
23 and 5, and Figures 24 and 6, shows that denser advection fog is formed
by the LiCl nuclei than by the NaCl nuclei.

B. Case with Concentration of 100 ug/m3 and Size of Nuclei of
1 um Radius

In this case LiCl and NaCl with the same concentration, 100
ug/m3 (the mass of the nucleus, 10—6 ug, and number of nuclei, 100
particles/cm3) and nuclei size, 1 um radius, were used. Figures 25 and
26 compare the temperature profiles for LiCl and NaCl nuclei cases at
times, t = 1 hr, and t = 2 hrs, respectively. These figures also show
that the vertical energy transport was more enhanced for the LiCl nuclei
than for the NaCl nuclei.

Visibility resulting from the nucleation and condensation on LiCl
nuclei for this particular case is shown in Figures 27 and 28 for times,
t=1hr, and t = 2 hrs, respectively. Comparisons of Figures 27 and 11,
and Figures 28 and 12, show that a lower visibility advection fog was
formed from the LiCl nuclei than from the NaCl nuclei.

It can be concluded from the present study that aerosol particles
with higher ratios of i/M than sodium chloride cause more pronounced

vertical energy transport and also denser fogs.

V. - AEROSOL PARTICLES WITH LOWER RAT10 OF VAN'T HOFF FACTOR TO MOLECULAR
WE I GHT THAN SODIUM CHLORIDE AND THE FORMATION OF ADVECTION FOG

Two hygroscopic chemicals with lower ratios of (i/M) than that of
sodium chloride are chosen in this study. The chemicals chosen were

calcium nitrate, (i/M) = 0.01608 and calcium chloride, (i/M)

Ca(N03)2

0.02908. The ratio of (i/M)

CaCl, ~

to (i/M) is 0.4937; and ratio

Ca(NO3), N_C1
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of (i/M) to (i/M) is 0.8928. All the background conditions and
CaCl2 N CI

geometries used are similar to Section l1l. The items of comparison are

also from A and B in Section 11il.

A. Case with Concentration of 100 ug/m3 and Size of Nuclei of
0.5 um Radius

In this case Ca(N03)2 and NaCl with the same concentration, 100

ug/m3 (mass of nucleus, 10-6 g, and number of nuclei, 100 particles/cm3)
and nuclei size, 0.5 um radius were used. Figures 29 and 30 compare the
temperature profiles for the Ca(N03)2 nuclei and NaCl nuclei at times,
t=1hr, and t = 2 hrs, respectively. These two figures indicate that
the vertical energy transport was more enhanced for the NaCl nuclei than
for the Ca(N03)2 nuclei.

Visibility resulting from the nucleation and condensation caused
by Ca(N03)2' nuclei is shown in Figures 31 and 32 at times, t = 1 hr, and
t = 2 hrs, respectively. Comparisons of Figures 31 and 7, and Figures
32 and 8, show that lower visibility advection fog was formed from th;
NaCl nuclei than from the Ca(NO3)2 nuclei.

Visibility of advection fog caused by CaCl2 nuclei under the same
background conditions, and the same concentration and nuclei size was also
numerically simulated. Figures 33 and 34 show the visibility of the advection

fog due to CaC]2 at times, t =1 hr, and t = 2 hrs, respectively. Com-

parisons of Figures 33, 31 and 7 for the one hour case; and Figures 34,

32 and 8 for the two hour case, indicate that VNaCl < VCaCIz < vCa(NO3)2,
where V denotes visibility, which correlates with the ratios (i/M)NaC] >
(i/M) > (i/M) for a concentration of 100 ug/m3 and a nuclei

CaCl2 Ca(NO3)2
radius of 0.5 um. Similar results are also obtained for the vertical

energy transfer; in this case, the higher the value of (i/M), the more
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pronounced the vertical energy transfer.

3

B. Case with Concentration of 100 ug/m” and the Size of Nuclei

of 1 um Radius

Iin this case CaC]2 and NaCl with the same concentration,

100 ug/m3.(mass of nucleus, 10_6 Hg, and number of nuclei, 100 particles/
cm3) and nuclei size, 1 um radius were used. Figures 35 and 36 compare

the temperature profiles for CaClé and NaCl at times, t = 1 hr, and t =

2 hrs, respectively. The visibility profiles of CaCl2 are shown in Figures
37 and 38 at times, t = 1 hr, and t = 2 hrs, respectively. Comparisons

of the temperature profiles and the visibility profiles of Figures 37 and
11, and Figures 38 and 12 all show the same conclusions as Section IV-A;
the higher the value of (i/M), the stronger the vertical energy transfer

and the denser the fog formed.

VI. - CONCLUSIONS AND DISCUSSfONS

The present study demonstrates the capability of numerically
simulating the formation of warm advection fog. By using observed
initial values of the wind profile, the temperature profile, the humidity,
the possible cooling rate, or the temperature change expected, and the
aerosol particle characteristics, including chemical composition, mass
of nuclei, particle size and the number of nuclei per unit volume, we
are able to produce fogs. The results of the simulations are in reasonably
good agreement with field observations from the California coast made by
Mack et al. (1973; 1974; and 1975), although a detailed comparison is
not possible at this time because of the limited number of time dependent
measurements of dynamic conditions and aerosol data in the vertical

coordinates.
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of nucleus lum, and number density 100 particles/cmB, at
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Figure 36.
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Figure 37.
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This study of the correlation of the characteristics of aerosol
particles and the formation of advection fog provides the following
conclusions:

(1) Hygroséopic chemicals with a higher ratio of the Van't Hoff
factor to molecular weight produce a more enhanced rate of
vertical energy transfer and more favorable conditions for
denser advection fog than chemicals with lower values of
the ratio.

(2) A higher number density of aerosol nuclei increases the rate
of the vertical energy transfer and produces advection fog
with lower visibility during the nucleation and condensation
processes than a lower nuclei number density.

(3) Heavier mass nuclei aerosol particles favor the formation
of advection fog with a lower visibility and a higher rate
of vertical energy transfer than do lighter mass nuclei
during the nucleation processes.

(k) CCN with larger radii cause stronger vertical energy transfer
and a denser advection fog during the nucleation and conden-

sation period than CCN with smaller radii.
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