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ABSTRACT



During earlier stages of this contract, efforts were



focused on the development and application of a three-dimensional



numerical model for predicting pollutant and sediment transport



in estuarine and coastal environments. To successfully apply



the pollutant and sediment transport model to .Rhode Island



coastal waters, it was determined that the flow field in this



region had to be better described through the use of existing



numerical circulation models.



As a first effort in this regard, a nested, barotropic



numerical tidal model has been applied to the southern New



England Bight (Long Island, Block Island, Rhode Island Sounds,



Buzzards Bay, and the shelf south of Block Island). The numeri­


cal scheme employed is that of Greenberg (1977). This explicit



finite difference scheme employs forward time and centered



spatial differences with the bottom friction term being



evaiuated at both time levels. Horizontal friction and advec­


tive terms have been neglected.



Previous numerical studies of the tidal dynamics in this



region were limited by inadequate information for the tide



height boundary condition between Montauk Point, Block Island



and Martha's Vineyard. Using existing tide records on the



New England shelf, adequate information was available to specify



the tide height boundary condition further out on the shelf.



Preliminary results are generally within the accuracy of the



National Ocean Survey (NOS) tide table data. Modeled co-range



and.co-tidal lines also agree with available data.
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CHAPTER I -- INTRODUCTION 

During earlier stages of this research, efforts were



focused on the development and application of a three-dimen­


sional numerical model for predicting pollutant and sediment



transport in estuarine and coastal environments (Hunter and



Spaulding, 1975; Pavish and Spaulding, 1977). This numerical



procedure was verified by running numerous test simulations



for which analytical solutions were available. In addition,



the model was used to predict the long term diffusion and­


advection of dilute neutrally and negatively buoyant suspended



sediment clouds resulting from an instantaneous release of



barged dredge spoil at Brown's Ledge in Rhode Island Sound,



an area which is under consideration by the U.S. Army Corps of-


Engineers as a disposal site for dredged spoil material.



It was determined that the accuracy of such predictions



would be seriously limited by the accuracy of the prescribed



flow field. With this motivation, effort was undertaken to



better describe and predict the flow field in the Rhode Island



Sound region by use of existing numerical circulation models.



As a first effort, a nested, barotropic numerical tidal model



has been applied to the Southern New England Bight (Long Island,



Block Island, Rhode Island Sounds, Buzzards Bay, and the Shelf



south of Block Island). Figures 1.1 and 1.2 show the location



of the Southern New England Bight and its component water bodies.
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CHAPTER II --	 REVIEW OF PREVIOUS OBSERVATIONS AND COMPUTATIONS 
IN THE SOUTHERN NEW ENGLAND BIGHT 

II.1 Field Studies



Tides and currents in the southern New England Bight have



been studied quite extensively. A brief summary of the studies



is presented here. A more detailed description may be found



in Beauchamp (1978).



Table II.1 presents a synopsis of the major observations



of tides and currents in the southern New England Bight to'



date. A number of these studies have specifically addressed



tides and tidal currents -- others have dealt with residual



currents (Cook, 1966; Hollman and Sandberg, 1972; Pryterch,



1929; Larkin and Riley, 1967; Paskausky and Murphy, 1978) and



wave induced flows in the bottom boundary layer (Griscom, 1977).



These residual and wave induced current measurements are not



of primary importance in the present numerical modeling effort



but are listed in Table II.1 for completeness since future



efforts to predict sediment and pollutant transport must add­


ress time scales longer and shorter than those of the tides.



The-primary sources of data used in this study are the



tide data compiled by N.O.A.A. National Ocean Survey (NOS,



1978) used for model verification and the tide data reported



by Hicks (1968), Swanson (1976), Beardsley, et al (1977), Calla­


way (1977), Mofjeld (1977), NOS (1977) and 'Brown (1978) used



to prescribe tide height boundary conditions.



In addition, a comprehensive study of tidal currents was



performed by NOS in Long Island Sound in 1965 through 1967



(Long, 1978). Approximately 160 stations were occupied during
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the course of that investigation, and harmonic constants have



been determined for many of these stations. Beauchamp (1978)



has made use of this data set for verification of his numerical



modeling study.



11.2 	 Modeling Investigations



Early analytical studies were performed to investigate



the resonant response of Long Island Sound (LeLacheur and



Sammons, 1932; 'Redfield, 1950), tidal wave propagation in Long



Island Sound (Redfield, 1950) and tidal interference phenomena



in Vineyard and Nantucket Sounds (Redfield, 1953). More



recently, Swanson (1971) has estimated the primary seiche



period for Long Island Sound using the Defant Method (Defant,



1961).



A summary of numerical circulation models applied to



regions within the southern New England Bight is given in



Table 11.2. A detailed description of these modeling inves­


tigations may be found in Beauchamp (1978). The most complete



numerical investigation of tides and tidal currents is that



of Beauchamp (1978). H& employed Leendertse's multi-operational



finite difference scheme for the entire southern New England



Bight using 1.9 Km (1 N.M.) grid spacing. Model results were



compared in detail with NOS tide data (NOS Tide Tables, 1978)



and NOS .tidal current data (Long, 1978).



11.3 	 Summary of the Tides and Tidal Currents of the Southern



New England Bight



The primary circulation inducing mechanisms in the Southern



New England Bight are the tides, wind and horizontal density



variations. Although the predominant energetics are at tidal
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frequencies, the wind and horizontal density variations may



be important in driving the residual flow. The importance of



wind and density induced circulation relative to the tidal



.flow varies depending on the specific location within the



.Bight. For example, it is well established (Paskausky and



Murphy, 1976; Gordon and Pilbeam, 1975; Wilson, 1976) that



Long Island Sound exhibits a two-layer density induced circu­


lation. Also, .Ianniello (1977) recently determined the import­


ance of tidal non-linearties in inducing residual circulation



in eastern Long Island Sound and Block Island Sound. 
 Cook



(1965) suggests that wind forcing is important in maintaining



the residual flow in Rhode Island Sound. The present study,



however, is solely concerned with tidal prediction, and wind



and density variations will not be addressed.



The tides in the area range from semi-diurnal to mixed,



mainly semi-diurnal. Defant's criterion (Defant, 1961) for



determining the type of tide is:



K1 + 01 
R=M+
M2 + S2 

where K1 and 01 are the principal diurnal harmonic constitutent



amplitudes and M2 and S2 are important semi-diurnal harmonic



constituent amplitudes. Swanson (1975) arbitrarily defines



semi-diurnal tides as having values of R from 0 to 0.25 and



mixed, mainly semi-diurnal as R from 0.25 to 1.5. Table III.1



shows the major tidal constituents for locations used as model



boundary conditions. Also listed are the R values for each



of these stations (refer to Fig. III.5-for location of these



stations). It is seen that Wobds Hole (located in Vineyard
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Sound) is strongly mixed, mainly semi-diurnal while the shelf



stations (MIT3, EPA2A, EPA2B, LT4, LT5, PICKET and KELVIN) have



an average R of 0.26. Progressing into shallower watersi the



tidal wave becomes much more-strongly semi-diurnal as illus­


trated at Willets Point, located at the western end of Long



Island Sound, which has an R of 0.12..



Propagation of the tidal wave in the study area may be



observed from the co-range and co-tidal lines shown in Figs.



11.3 through 11.5. The tidal wave first enters Rhode Island



Sound from the shelf between Block Island and Martha's Vine­


yard. It then proceeds radially across Rhode Island Sound



to the mouths of Vineyard Sound, Buzzards Bay, and Narragan­


sett Bay and to the eastern boundary of Block Island Sound.



There is a slight amplification of the wave along the northern



side of Rhode Island Sound due to decreasing depth. The wave



then continues to progress up Buzzards Bay and Narragansett Bay



where it is further amplified by shoaling and narrowing of these
 


embayments. This same wave also progresses west to east through



Vineyard Sound and is diminished due to interference with the



progressing tidal wave entering Vineyard Sound from the Gulf



of Maine (Redfield, 1953). The tide wave also progresses east



to west into Block Island and Long Island Sounds. The progres­


sion of the tidal wave into Block Island Sound is relatively



unimpeded through the Block Island - Rhode Island (north-south)



transect relative to the shelf boundary between Montauk Point



and Block island (east-west transect). This is caused partially



by the tidal interaction with Long Island Sound and partially due



to the predominance of the east-west channel'in the bathymetry



of Block Island Sound.
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The tidal wave is predominantly progressive on the shelf



and in Rhode Island Sound. Tidal currents in these regions



are rotary. The wave is relatively undistorted on the shelf



except in the region'just south of Nantucket (Nantucket



Shoals). -Western Block Island Sound and Long Island Sound



exhibit strong standing wave characteristics. Redfield (,1950)



showed this region to be near resonance with the M42 tidal period



(12.42 hours-) with a characteristic length of about one quarter



of the tidal wavelength. Consequently, a velocity node and



amplitude maximum exists in western Long IslandiSound and a



velocity maximum and amplitude node exists in eastern Long



Island Sound near the Race. Studies of the resonant periods of



Long Island Sound show a first mode at about 10 hours 
 (Beau­


champ, 1978).



Magnitudes of the tidal currents are roughtly 30 - 50



cm/s in Central Long Island Sound, 150 cm/s in the Race, 30 
 -


50 cm/s in Block Island Sound, 20 cm/s in Rhode Island Sound



and 30 cm/s in Buzzards Bay.



The bathymetry of the area is illustrated in Figs. II.1



and 11.2. Rhode Island Sound has a relatively smooth bottom



with depths of around 55 m. where it meets the Southern New



England Shelf and depths of 20 m. or less at its northern and



western-perimeter. Buzzards Bay also has a.smooth bottom with



maximum depths of 15 - 20 m. at its boundary with Rhode Island 

Sound and minimum depths of less than 8 m. at its eastern end. 

Block Island Sound and the eastern part of Long Island



Sound contain a more complex bathymetry characterized by steep



bottom slopes. A channel of 35 m. or greater extends from
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Rhode Island Sound through Block Island Sound reaching a maxi­


mum depth of over 100 m. in The Race. This channel then ex­


tends through Eastern Long Island Sound to Mattituck Sill. 

Mattituck Sill separates Eastern Long Island Sound from the 

broad, flat Central Basin. The Central Basin reaches depths 

of around 30 - 40 m. within 4 - 8 Km.- of the Long Island shore. 

In the western portion of Long Island Sound, the bathymetry



becomes more complex with depths less than 20 m.





CHAPTER III -- -NUMERICAL SCHEME



III.1 	 Schematization



The nested finite difference grid system employed in this



study is shown in Fig. III.4. As can be seen, two grids of



differing grid spacing are meshed together. The larger grid



is spaced at intervals of 5.6 km (3 N.M.), and the smaller



grid is spaced at intervals of 1.9 km (1 N.M.). This'grid



spacing was chosen in order to obtain sufficient resolution



to describe gradients in the dependent variables as well as



bottom and planar topography tihile maintaining computational



arrays small enough to allow easy computability. The smaller



grid, which spans the southern New England Bight, is 158 x



28.in size. The larger grid is 38 x 20.



Concurrent with this.study, Beauchamp (1978) was also model­


ing the tides in southern New England Bight with a 1.9 km (1 N.M.)



grid spacing. He had difficulty in adequately specifying the



surface elevation boundary condition along the large open boun­


daries extending from Montauk Point to Block Island and from



Block Island to Martha's Vineyard (Fig. 1.2). Variability in



range and phase,of the tidal wave along this boundary is seen



in Figs. III.1 through 111.3. It was decided that it would be



desirable to extend this boundary further out onto the shelf



where there existed less variability in the tide wave, hence



the motivation for the nested grid procedure.



The bottom topography was represented by recording a re­


presentative depth value for each corner of the grid system.



The depth data was obtained in digital format from N.O.A.A.



Environmental Data and Information Service (Lawrence, 1977) when
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available and from National Ocean Survey navigational charts



otherwise The configuration of the boundaries along the shore­


line was drawn so as to maintain as closely as possible an



equivalent surface area in the model. It should be noted that,



because of a lack of information regarding the tide, the boun­


dary betweeni Marthals Vineyard and-Nantucket Sound,was taken



as closed. The implications of this simplification are explored



in Chapter IV - Results.



111.2 	 Finite Difference Equations



The vertically integrated equations of motion and continuity



used in.this study are:



x momentum



a pg u (u2 + v
 ) / 2 
= 
.at v- - 2 	 i



c (h +) 


y momentum



S Pg v(u 2 + v21/2 (2) 

c (h +) 

continuity 

a-[ 	 (h_+ u]x 	 + 90 (h + E) v + @3)-t = (3)


with a Cartesian Coordinate System being applied with the ver­


tical axis positive in'the upward direction. The vertical



reference datum is taken as mean sea level. The following no­


tation is employed:



t - time



x,y,z - a right handed Cartesian Coordinate System



with z positive upwards



h - the depth of the undisturbed water
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- the elevation,of the water surface 

u,v - the depth averaged currents in the x and y 

directions, respectively. 

1^ 1 vz)d 

u(z) v = -h Viz)U-h+ -h dz; hh + - dz 

p - the density of the water 

f - the Coriolis coefficient (20 sin where 0 is 

the angular velocity of the earth and 4 is 

the latitude) 

g - acceleration of gravity 

.c - Chezy bottom roughness coefficient related 

to the Manning coefficient (n) by: 

C n ml//s 

It has been assumed that the water is of constant density and



that direct tidal forcing is negligible. Wind stresses and



the effects of variations'in atmospheric pressure are not con­


sidered. The convective acceleration terms in Eqs. (2) and (3)



have been assumed to be negligible (see Chapter V - Summary for



further discussion of this approximation).



Equations (1) through (3) were put into the following fi­


nite difference form (Greenberg, 1977) using the grid notation



illustrated in Fig. III.l:



!t + At) 1 r(t)Ci1j j =i d~t) u~t) - dd t u(t). 
At = Ax i, i-lj i-l,j]~ -

14)
1 et) v(t) - v!t 
Ayji i' 1-ii,j- i, i",





u(t + At) _ uCt) 	 (t + t) (t + At) 
At if - frt , i lj Ax i_ _ 

+ At) u 2 (t) +2 (t) 1 I /2pg u t 
2g uij + ri j 

v (t + 	 At) v (t) (t + At) _ t + At) 
At 	 i,j = _ fst+ At) _ g ij j+l 
At i A) 	 Ay 

(6)


2(t) + 	 v (t)] 1/2 

Pg V(t + At) S2 
j i,9 + ieI


Si~j 	 + Ci~j+ I )  el j 

where



+di,j (hi,j + ij hi+lj Ei+l,j ) 

+ei,3= 	 (h i + Eij + hij+l Ei,j+l 

1rij = (vi 1 j 1 + Vi~l.1 1 + vij + Vi.~. 	 _e. (U: + U + h U 

= (Ui-lj + + Uilj+1 + Uij+ 

The calculation procedure for surface elevation and hori­


zontal velocity components is illustrated in Fig. 111.2.



111.3 	 Nesting Procedure
 


In setting up the nested grid system for this study, the



overlapping region was made to run along the x direction (Fig.



111.4). The two grids are interactive; in other words, the de­


pendent variables are solved in both grids at each time step,
 


and an interpolation scheme is used so that the computations



are "continuous" across the interface.
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Figure 111.3 shows the interface between the coarse and



fine grids. Note that the points underlined are those depen­


dent variables obtained by linear interpolation. Note also



that, for the particular procedure employed, a 3 to 1 grid



spacing ratio must be employed., Because the grid'interface



has been oriented in this x direction, only the y component of



the horizontal velocity (v) and the surface elevation (E) must



be interpolated. In order to insure conservation of volume in



the overlap region, the interpolated velocities are adjusted



in an iterative fashion so that the-entire overlap strip obays



conservation of mass. The procedure employed proved to be very



stable numerically. Additional details can be obtained from



Greenberg (1977).



111.4 	 Order of Computation



The sequence of computation is as follows:



1. 	 , u, v specified at t = 0 (initial conditions). 

2. 	 along open boundaries is prescribed for t + At
 


(boundary conditions).



3. 	 Calculate E on coarse grid from continuity equation



at t + At.



4. 	 Calculate C on fine grid from continuity equation at



t + At.



5. 	 Calculate u on coarse grid from x-momentum equation



at t + At.



6. 	 Calculate u on fine grid from x-momentum equation at



t + At.



7. 	 Calculate v on coarse grid from y-momentum equation



at t + At.
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8. 	 Calculate v at edge of coarse grid using y-momentum



equation and interpolating u and at t + At.



9. 	 Calculate v on fine grid from y-momentum equation at



t = At.



10. 	 Linearly interpolate v and and iteratively adjust



v to satisfy continuity of volume in the strip between



the coarse and fine grid at t + At.



11. 	 Increment time by At and proceed from step (2).



111.5 Initial Conditions



The model was'operated from still water conditions, i.e.



null velocities, and constant elevation. In some longer runs



results from previous runs were used as initial cbnditions to



speed convergence.



111.6 	 Boundary Conditions



Tidal elevations at the open boundaries of the model grid



(see Fig. IV.l for boundary locations) were specified usihg



available tide data. Figure 111.5 shows the locations for



which tide data, in the form of harmonic constants, was avail­


able. (Stations are marked with an "x".) Table III.1 lists



the amplitude and phase of the major constituents for these



locations.



For ithe simulations discussed in Chapter IV, a mean tide



boundary condition was employed. The mean tide was deduced by



sampling the predicted tide at twelve intervals per tidal cycle



an& averaging a year's worth of these tidal cycles (Swanson,



1977). At all locations, a mean tidal period of 12.42 hours



(M2) exists. Figure 111.6 illustrates the mean tidal curves used



in specifying input boundary conditions.
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In specifying the large shelf boundary conditions, it was



found that shelf tide stations (LT-4, LT-5, EPA2, MIT3 and



PICKET in Fig. 111.5) were in phase and uniform in amplitude.



Redfield (.1953) notes, however, largb changes in phase and



amplitude in'the vicinity of Nantucket Island. The model



boundary condition in the vicinity of Nantucket was deduced



from Redfield's (1953) co-range and co-tidal lines.



111.7 	 Time Increment



-The restriction on the time increment At is that of Courant­


Friedrich-Lewy:



At > 2g H2M-g
x 
 
. (7)



Taking account of the maximum depth of water, HMAX' en­


countered within the model, a value of 
 At = 47.06 secs. was 

employed to-insure that the numerical solution was fully stable 

at all times. 
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CHAPTER IV -- MODEL RESULTS
 


IV.1 Tide



Time histories at seven locations in the model grid were



developed to observe the model performance during start up and



to establish that a quasi-steady state had been reached. These



locations are shown in Fig. IV.l, and the Lime histories are



shown in Fig. IV.2. The initial transients are clearly seen,



and these damp out in all locations by the third tidal cycle



(step number 2280). High frequency oscillations due to seiching



are seen in the transients at Newport (NPT) and Cape Cod Canal



(CCC). 

Comparison between the observed and computed tide are



illustrated in Figs. IV.3 through IV.8. Figures IV.3, IV.4



and IV.5 show observed and computed co-range, high water inter­


val and low water interval lines, respectively. Figures IV.6,



IV.7 and IV.8 are a comparison of range high water and low water



intervals vs. distance along the x-axis of the 1.9 Km (1 N.M.)



grid.



Agreement in range between observations and model results



are uniformly good throughout the grid system with a mean dif­


ference of 0.09 m and a maximum difference of 0.27 m (in western



Long Island Sound). Agreement in high water interval is not as



uniform. Due to the poor resolution of topography in western



Long Island Sound, the 16.5 hour line is computed to be too



far east (refer to Fig. IV.4). In-addition, high water occurs



about 0.5 hours too early uniformly throughout Rhode Island



Sound (refer to Fig. IV.7). The high water interval in the



vicinity of Nantucket is off by approximately 1.5 hours. This
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is due to a poor specification of the surface boundary condition



in that region. Further refinement of this boundary condition



should rectify this error. In addition, a tidal height speci­


fication should be specified in the region between Martha's



Vineyard and Nantucket. Other regions in the model grid show



better agreement. The mean differenc 
in computed and observed



high water interval is 0.29 hours with a maximum difference of



1.06 hours (in western Long Island Sound). Agreement in observed



and computed low water interval is better than that for high water



interval. The worst discrepancy occurs at the 10 hour line (see



Fig. IV.5) in western Long Island Sound. The mean difference in



.computed and observed low water interval is 0.29 hours with a



maximum difference of 0.76 hours (in western Long Island Sound).



A comparison of observed (NOS-tide stations) and computed tidal



range and phase is summarized in Table IV.l.



IV.2 Velocity



Figures IV.9 through IV.14 show the velocity field at in­


tervals of two lunar hours 
(12 lunar hours= 12.42 solar hours).



A prominent feature is the high velocities in eastern Long Is­


land Sound and western Block Island Sound (vicinity of The Race),



near Montauk Point, in Vineyard Sound and just south of Nan­


tucket (Nantucket Shoals). The tidal velocities in.Rhode Island



Sound are quite weak .(of order 20-30 cm/s). Figures IV.12 and



IV.14 illustrate the phasing difference between Long Island Sound



and Buzzards Bay. 
 -

A comparison between observed and computed tidal currents



has not been made; however, Beauchamp (1978) has made such com­


parison for a somewhat similar modeling effort.
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CHAPTER V-- SUMMARY



The model results for tidal elevation were generally with-'



.in the accuracy of NOS data. High and low water phasing were



also within the-accuracy of existing data with the exception



of western Long Island Sound, the area in the immediate vicinity



of Montauk Point and Nantucket Shoals.



Beauchamp's (1978) grid coincides with the small grid used



in this study. The addition of the larger grid (to take advan­


tage of existing shelf tide measurements) improved the descrip­


tion of the tide in southern New England Bight over that of



Beauchamp. Specifically, range prediction in the vicinity of



Montauk Point is improved by roughly 0.2 m, high water interval



is improved by about 0.5 hours in Block Island Sound and low



water interval is improved by about 0.5 hours in Rhode -Island.



Sound. Also, a better representation of tidal phasing in western



Long Island Sound is accomplished.



Western Long Island Sound -is the region most poorly repre­


sented by the model. This may be attributed to the complex



bathymetry and planar geometry of the region which is not ade­


quately resolved by the 1.9 Km grid.



The non-linear convective acceleration terms were not in­


cluded in the finite difference-equations employed in this study



since they are of second order importance. This can be con­


cluded by comparison with Beauchamp's (1978) results which were



obtained using Leendertse's multi-operational scheme for which



the convective acceleration terms are retained. It should be



noted, however, that although the convective acceleration terms



are not of primary importance in describing tidal fluctuations,





they are of primary importance in determining tidally induced



residual flow, especially in the vicinity of The Race.



The numerical procedure required 448K main storage on .the



University of Rhode Island's ITEL-5. Twenty minutes of central



processor time was required to simulate one tidal cycle (950 time



steps per tidal cycle).



This work constitutes a further refinement in supplying an



accurate velocity field for use in the numerical transport models



of Hunter and Spaulding (1975) and Pavish and Spaulding (1977)



which were developed in an earlier stage of this contract.
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FIGURE I.1 LOCATION OF THE SOUTHERN NEW ENGLAND BIGHT ON THE


EAST COAST OF THE UNITED STATES
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TABLE 11.1 SUMMARY OF OBSERVATIONS OF TIDES AND


CURRENTS IN SOUTHERN NEW ENGLAND BIGHT



Reference 
 Variables 
 Location 
 Dates

Measured


Pruterch (1929) 
 V 
 Central Long Island Sound 
 -­
(Drifters)


Lelacheur & 
 , V Long Island and Block Is-
 Prior to 1932

Sammons (1932) 
 land Sounds


Haight (1936) 
 C , V Narraqansett Bay, Buzzards 
 Prior to 1936

Bay, Vineyard and Nantucket

Sounds


Cook (1966) 
 V 
 Rhode Island Sound 
 -­
(Drifters)


Hicks (1967) 
 V 
 Long Island and Block Island 
 1965 - 1967

Sounds


Larkin & 
 V 
 Central Long Island Sound

Riley (1967) 
 (Drifters)

Hicks (1968) 
 Rhode Island Sound, Buzzards
 

Bay, Southern New England Shelf 
 August 1964


Shonting (1969) 
 V 
 Rhode Island Sound 
 1967


Hardy (1971) 
 V 
 Long Island Sound 
 --

Swanson (1971) 
 V 
 Eastern Long Island Sound 
 1965, 1976


Gross & 
 V 
 Long Island Sound 
 March and October, 1969

Bumpus (1972) 
 (Drifters)


Hollman & 
 V 
 Eastern Long Island Sound, 
 1970, 1971

Sandberg (1972) 
 (Drifters) 
 Block Island Sound

* surface elevation 

V horizontal velocity




--

--

--

Reference 
 

Bohlen (1974) 
 

Gordon & 
 
Pilbeam (1975)



Raytheon (1975) 
 

Bowman (1976) 
 

Paskausky & 
 
Murphy (1976) 
 

Swanson (1976) 
 

Beardsley, et 
 
al (1977)



Callaway (1977) 
 

Griscom (1977) 
 

Mofjeld (1977) 
 

NOS (1978) 
 

NOS (1978) 
 

TABLE 11.1 SUMMARY OF OBSERVATIONS OF TIDES AND


CURRENTS IN SOUTHERN NEW ENGLAND BIGHT (CONT.)



Variables 
 
Measured



V 
 

V 
 

V 

, V 

V 
 
(Drifters)



C 

C 

V 
 

C 

C 

V 
 

Location 
 

Eastern Long Island Sound, 
 
Block Island Sound



Central Long Island Sound 
 

Block Island Sound 
 

East River (Western Long 
 
Island Sound)



Long Island Sound 
 

Long Island and Block Island 
 
Sounds, Southern New England


Shelf



Southern New England Shelf 
 

Southern New England Shelf 
 

Rhode Island Sound 
 

Southern New England Shelf 
 

Tide Tables 
 

Tidal Current Tables



Dates



1971, 1972, 1973



1975



1959



1973, 1974



Winter, 1974



1973



1976



1975, 1976





TABLE 11.2 SUMMARY OF NUMERICAL CIRCULATION MODELS


FOR SOUTHERN NEW ENGLAND EIGHT



Reference 
 

Laevastu & Calla-

way (1974) 
 

Hurlbut & 
 
Spaulding (1975) 
 

Lin & Skridulis 
 
(1975) 
 

Wang & White 
 
(1976) 
 

Leendertse & 
 
Liu (1977) 
 

Beauchamp & 
 
Spaulding (1978) 
 

Murphy (1978) 
 

Present Study 
 

Legend:



Model Description-See Legend 
 

H-2T-FD Explicit 6.6 km Grid 
 
Spacing 
 

H-2T-FD Leendertse's Multi-

Operational Scheme, 1.9 km 
 
Grid Spacing



H-lT-FD & H-2T-FD Leendertse's 
 
Multi-Operational Scheme for


Storm Surge



H-2T-FE & H-3T-FE, 3.7 km 
 
Node Spacing



H-3T-FD, 1.9 km Horizontal 
 
Grid Spacing



H-2T-FD Leendertse's Multi-

Operational Scheme, 1.9 km


Grid Spacing



H-2T-FD Leendertse's Multi-

Operational Scheme



H-2T-FD Explicit (Greenberg's 
 
Method) Nested Grid, 5.6 km 
 
Grid Spacing on Shelf, 1.9


km Grid Spacing in Bight



Location of Application



New York Bight Including Long


Island & Block Island Sounds



Block Island Sound, Rhode Island


Sound & Buzzards Bay



'Long Island Sound



Block Island Sound



L Long Island Sound



Southern New England Bight



Long Island Sound



Southern New England Bight &


Part of New England Shelf



H - Hydrodynamics 1T - One Dimensional, Transient FD - Finite Difference 
2T - Two Dimensional, Transient FE - Finite Element 
3T - Three Dimensional, Transient 
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FIGURE 11.3 OBSERVED CO-RANGt CHART OF THE STUDY AREA
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FIGURE III.1 
 FINITE DIFFERENCE GRID LAYOUT AND INDEXING
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FIGURE 111.2 CALCULATION PROCEDURE FOR SURFACE ELEVATION AND
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(1977)) 
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MEAN TIDAL CURVES 
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TABLE I11.1 

AMPLITUDE AND PHASE OF THE MAJOR TIDAL CONSTITUENTS FOR 
LOCATIONS USED AS MODEL BOUNDARY CONDITIONS 

DIURNAL SEMI-DIURNAL QUARTER- SIXTH-
DIURNAL DIURNAL 

K I1 N2 M2 M4 M6 

Station H(m.) K(°) H K H K H K H K H K R 

Woods Hole 0.065 114.1 0.065 133.6 0.077 239.2 0.236 250.6 0.049 65.5 0.019 333.9 0.44 

Willets Point 0.101 119.0 0.061 130.0 0.231 306.0 1.119 329.0 0.032 214.0 0.071 83.0 0.12 

MIT3 0.083 97.8 0.068 108.3 0.105 184.8 0.422 202.1 -­ .. .. .. 0.29 

EPA2A 0.080 84.4 0.052 113.0 0.091 191.2 0.467 202.6 0.010 92.9 0.010 137.5 0.25 

EPA2B 0.066 83.5 0.037 92.5 0.083 191.0 0.431 204.6 0.003 54.5 0.004 117.5 0.24 

LT4 0.080 90.4 0.056 110.5 0.120 187.9 0.485 201.6 .. .. .. .. 0.23 

LT5 0.084 99.9 0.060 114.7 0.113 189.0 0.471 203.9 .. .. .. .. 0.27 

Picket 0.077 79.2 0.061 120.1 0.121 192.3 0.495 209.6 0.014 61.1 0.006 112.0 0.23 

Kelvin 0.093 91.5 0.080 112.8 0.115 189.1 0.465 207.6 1 0.004 12.5 0.002 133.5 0.30 
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FIGURE IV.1 LOCATION OF STATIONS WITHIN THE MODEL GRID FOR WHICH SURFACE ELEVATION TIME,


HISTORIES ARE PLOTTED
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COMPUTED SURFACE ELEVATIONS
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TABLE IV.1 


COMPARISON OF OBSERVED (NOS TIDE STATIONS) AND 


COMPUTED TIDAL RANGE AND PHASE 


I 3 ID 0 SWITO LAY LONG RANGE 111GII 40TI1 109 WATER 

(m) INTERV AL. (HR.) trHTEflq (H., 
009 COME GINN 083 COoP DIPP 0BS CElP DIFp 

1 143 6 106G GAT HEAD0 41 21 70 s0 0.00 1.04 0.15 12.67 12.14 0.S3 6.79 6.04 0.76 

2 150 10 1073 CPDARPT?0 NECK 41 26 70 42 0.67 0.82 0.15 12.94 12.74 0.19 7.58 6.91 0.65 

3 148 11 10.7 1AUPAOLINCOV! 1 30 70 46 0.f6 0.04 0.27 12.95 12.40 0.4' 7.43 6.70 0.72 

4 141 13 1107 PPT1%KESV S1L1ND 41 27 70 55 1.04 1.14 0.10 12.49 12.34 0.15 .5.78 6.15 0.30 

5 155 20 1111 WEST FAtLMOtlI RADO 41 36 70 39 1.22 1.30 0.08 13.12 12.49 0.53 6.30 6.51 0.16 

6 155 25 1115 ADIP L. LEDGE 41 42 70 40 1.14 1.34 0.15 12.95 12.54 0.31 6.31 6.59 0.28 

7 154 26 1121 GREATMILL 41 43 70 43 1.25 1.34 0.09 13.05 12.70 0.35 6.29 6.66 0.37 

A 153 23 1125 BIRD ISLAND 41 40 70 43 1.28 1.31 0.03 12.05 12.59 0.27 6.01 6.52 0.51 

M 144 21 1133 CLOOIOSPoI 
M 

41 36 70 54 1.13 1.19 0.06 12.02 12.43 0.39 6.0 6.35 0.26 

10 142 18 1141 nI1mPiII9 ROCKS 41 32 70 5 11.1 1.16 0.0 13.45 12.39 1.06 6.01 6.29 0.28 

11 129 17 1147 SANO"ST 41 20 71 12 0.94 1.05 0.11 12.55 12.17 0.30 6.03 5.03 0.20 

12 121 IQ 111 OEAVTFWPAILPOINT 41 27 71 24 1.07 1.06 0.00 12.69 12.14 0.54 5.80 6.01 0.13 

13 115 14 1179 POINT JUTDIII MARRON 41 22 71 29 0.94 1.02 0.07 12.60 12.13 0.47 6.33 5.00 0.45 I 

14 109 S 11941 BLOCK 7Q9LD (0D HR 41 10 71 31 0.0 0.94 0.06 12.49 17.01 0.47 6.24 5.97 0.27 G At 

1S 97 16 1105 M1C HIL. POINT 41 1 71 52 0.79 0.07 0.07 13.45 12.48 0.47 7.31 7.04 0.27 1 0 

16 92 18 1189 OARK, NTSTIC RIVER 41 19 71 5q 0.70 0.01 0.11 14.17 14.16 0.04 8.45 0.00 0.45 

17 89 15 11-2 571l1 ERL1POND, Pis 41 19 72 2 0.70 0.02 0.12 14.22 14.16 0.06 8.51 8.06 0.45 

19 76 20 1200 5A111O4 JETTY 41 16 Y2 21 1.07 1.07 0.01 15.67 15.40 0.27 9.33 9.15 0.18 

99 76 22 1202 LINE!, IIGIU0 PR100? 47 19 72 21 V.94I 1.00 0.14 75.90 15.141 0.49 9.75 9.11 0.64 

21 69 20 1215 WO0KISLAND 41 15 72 29 1.37 1.30 0.07 15.70 15.70 0.09 9.47 9.42 0.05 

21 62 20 1219 P7IK1P ISLAND 41 11 72 39 1.65 1.52 0.13 15. 9 16.03 0.03 9.64 9.03 0.19 

22 58 21 1221 NO?.Y TQLND ISis 77 45 1.71 1.64 0.06 16.03 16.14 0.12 9.61 9.96 0.29 

23 90 24 1275 NIV [189'N 1101R40 l.HT 41 llI 72 59 1.04 1.79 0.10 16.04 16.29 0.21 9.02 10.13 0.31 

44 24 I0 124" 0111.1 'LT " 41I 1 31 27 2.19 2.15 0.04 16.19 16.4 0.37 10.00 10.46 0.Q2 

2c 1 10 1251 G'4PAT 'kPAIN ISLAND 40 49 71 37 2.21 2.25 0.02 16.21 16.60 0.37 10.07 10.50 0.42 

IQ 0 1 12S7 '"I 1,IqII.I,. 40) S. 71 07 2.19 2.32 0.12 16.21 16.61 0.40 10.41 10.56 0.14 

27 1 12 1261 rTl',I9 40 "1l "1 7.19 2.33 0.13 16.56 16.61 0.05 10.1 4 10.60 0.04, 

24 . 11 1111 1'11­l lU' ? I1.)100 1 "1 7.16 7.11 0.15 16.56 16.f,3 0.07 10.64 10.60 0.04 



TABLE IV.1 (CONT.) 

COMPARISON OF OBSERVED (NOS TIDE STATIONS) AND 
COMPUTED TIDAL RANGE AND PHASE 

29 q 14 1317 ?%'COTON ROCKS 40 53 73 44 2.23 2.31 0.09 16.51 16.61 0.10 10.56 10.55 0.01 

30 25 14 1347 PATOJS RICKPOINT 10 57 73 24 2.16 2.12 0.04 16.26 16.60 0.30 10.19 10., 8 0.29 0 

31 40 17 1357 STPrFORD SHOAL 41 1 73 6 2.01 1.92 0.09 16.13 16.46 0.13 9.90 10.30 0.36 d 

32 39 12 I39 PORT7.3F.RS0 11A090 10 50 73 5 2.01 1.92 0.09 16.26 16.51 0.25 10.07 10.36 0.29 

33 50 9 1369 lIEOOD OAT 40 50 72 50 1.80 1.72 0.00 16.09 16.42 0.32 9.82 10.25 0.42 

34 62 0 1171 rRTTITCCK MINET 41 1 72 34 1.50 1.49 0.10 16.29 16.27 0.02 9.99 10.10 0.11 

35 68 10 1373 HORTON POINT 41 5 72 27 1.22 1.31 0.09 15.00 16.1 0.27 9.51 9.07 0.36 

36 71 11 1315 TnUHAN .POCH, 41 8 72 19 1.00 1.18 0.1. 15.51 15.91 0.00 9.22 9.63 0.01 

37 n0 12 1377 PLO COT IARBOR, ILO 41 10 72 12 0.79 0.81 0.02 14.95 15.14 0.19 885 886 0.01 

38 05 13 1379 LTTTL GULL ISLANOD 41 12 72 6 0.61 0.75 0.08 14.70 14.57 0.13 8.21 8.38 0.16 

3S 76 5 1307 CROWS POINT 01 2 72 16 0.76 0.70 0.02 15.23 15.31 0.97 9.03 9.06 0.03 

40 79 5 139q TflpPSNIt 90R2., GARD 41 2 72 11 0.73 0.75 0.02 14.85 15.21 0.36 8.61 8,93 0.31 

01 03 2 1001 PQOMISFD LANDO,NAPERA 0l 0 72 1 0.70 0.63 0.01 10.27 10.07 0.20 O.q5 8.26 0.19 

42 89 3 1405 MONT2AUK, PORT P0D 8 41 3 71 58 0.60 0.61 0.03 14.02 14.25 0,23 8.10 8.10 0.00 

I0 
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IV.9 COMPOTED VELOCITY VECTORS AT LUNAR HOUR 1.
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IV.1O COMPUTED VELOCITY VECTORS AT LUNAR HOUR 3.
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IV.12 COM4PUTED VELOCITY VECTORS AT LUNAR HOUR 7.
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IV.13 COMPUTED VELOCITY VECTORS AT LUNAR HOUR 9.
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