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ABSTRACT

During earlier stages of this contract, efforts were
focused on the development and application of a three-dimensional
numerical model for predicting pollutant and sediment transport
in estuarine and coastal environments. To successfully apply
the pollutant and sediment transport model to Rhode Islénd
coastal waters, it was determined that the flow field in this
iegion had to be better described through the 'use of existing
numerical circulation models.

As a first effort in this regard, a nested, barotfopic
numerical tidal model has been applied to the southern New
England Bight (Long Island, Block Island, Rhode Island Sounds,
Buzzards Ba&, and the shelf south of Block Island). The numeri-
cal scheme employed is that of Greenberg (1977). This explicit
finite difference scheme employs forward time and centered
spatial differences with the bottom friction term being
evaluated at both time levels. Horizontal friction and advec-
tive terms have been neglected.

Previous numerical studies of the tidal dynamics in this
region were limited by inadequate information for the tide
height boundary condition between Montauk Point, Block Island
and Ma£tha's Vineyard. Using existing tide records on the.
NewﬁEngland shelf, adeguate information was available.to specify
the tide height boundary condiéion further out on the shelf. .
Preliminary results are generally within the accuracy of tﬁe
National Ocean Survey (NOS) tide table data. Modeled co-range

and .co-tidal lines also agree with available data.
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CHAPTER I -- INTRODUCTION

During earlier stages of this research, efforts were
focused on the development and applicétion of a three-dimen-
sional numerical_model for predicting pollutant and sediment
tranéport in estuarine and coastal environments (Hunter and
Spéulding, 1975; Pavish-and Spaulding, 1977). .This ﬁumerical
procedure was verified by running numerous test simulations
for which analytical solutions were available. In addition,
the model was used to predict the long term diffusion and-
advection of dilute neutrally and negatively buoyant suspended
sediment clouds resulting from an inétantaneous release of
barged dredge spoil at Brown's Ledge in Rhode Island Sound,
an area which is under consideration by the U.S. Arﬁy Corps of.
ﬁngineers as a disposal gite for dredged spoil material.

It was determined that the accuracy of such predictions
%ould be seriously limited by the accuracy of the prescribed
flow field. - With this motivation, effort was undertaken to
better describe and predict the flow field in the Rhode Island
Sound reéion by use of existing numerical c¢irculation models.
As\a first effort, a nested, barotropic nume;ica; tidal model
'has been applied to the Southern New England Bigh£ (Long Island,
Block Island, Rhode Island Sounds, Bugzzards Bay, and the Shelf
south of Block Island). Figures I.1 and 1.2 show the location‘

of the Southexrn New England Bight and its component water bodies.
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CHAPTER II -- REVIEW OF PREVIOUS OBSERVATIONS AMD COMPUTATIONS
) IN THE SOUTHERN NEW ENGLAND BIGHT
II.1 Field Studies

Tides and curxents in the southern New England Bight have
been studied quite extensively. A brief summary of the studies
is presented here. A more detailed description may be found
in Beauchamp (1978).

Table II.1 presents a synopsis of the major observations
of tides and currents in the southe?n New Enéland Bight to -
date. A number of these stﬁdies have specifically addressed
tides and tidal currents -- others have dealt with residual
currents (Cook, 1966; Hollman and Sandberg, 1972; Pryterch,
1929; Larkin and Riley, 1967; Paskausky and Murphy, 1978) and
wave induced flows in the bottom boundary layer (Griscom, 1977).
These residual and wave indgced.current measurements are not
0f primary importance in the présent numerical modeling effort
but are listed in Table II.l1 for completeness since future
efforts to predict sediment and pollutant transport must add-
ress time scales 1onger‘and shorter than those of the tides.

The: primary sources of data used in this study are the
.tide data compiled by N.0.A.A. National Ocean Survey (NOS,
1978) used for model verification and the tide data reported
by Hicks {(1968), Swanson (1976), Beardsley, et al (1977), Calla-
way (1977), Mofjeld (1977), NOS, (1977) and Brown (1978) used
to prescribe tide height boundary conditions.

In addition, a comprehensive study of tidal currents was
performed by NOS in Long Island Sound in 1965 through 1967

{Long, 1978). Approximately 160 stations were occupied during
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the course of that investigation, and harmonic constants have
been determined for many of these stations. Beauchamp (1978)
has made use of this data set for verification of his numerical

modeling study.

I1.2 Mode;ing Investigations

Earxly analytical studies were performed to investigate
the resonant response of Long Island Sound (LeLacheur and
Sammons, 1932; Redfield, 1950}, tidal wave propagation in Long
Island Sound (Redfiéld, 1950) and tidal interference phenomena
in Vineyard and Nantucket Sounds (Redfield, 1953). More
recently, Swanson (1971) has estimated the primary seiche
period for Long Island Sound using the Defant Method (Defant,
1961).

A summary of numerical circulation models applied éo
regiéns within the southern New England Bight is given in
Table II.2. A detailed description of these modeling inves-—
tigations may be found in Beauchamp (1978). The most complete
numerical investigation of tides and tidal currents is that
‘of Beauchamp (1978). Hé emploved Leendertse's multi-operational
finite difference scheme for the entire southern New England
Bight using 1.9 Km (1 N.M.) grid spacing. Model results were
compared in detail with NOS tide data (NOS Tide Tables, 1978)
and NOS .tidal current data (Long, 1978).

IT.3 Summary of the Tides and Tidal Currents of the Southern
New England Bight ;

The primary circulation inducing mechanisms in the Southern

New England Bight are the tides, wind and horizontal density

variations. Although the predominant energetics are at tidal
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frequencies, the wind and horizontal density variations may
ge important in driving the residual flow. The importance of
wind and density induced circulation felative to the tidal

. flow varies depending on the specific location within the
.Bight. For exampie, it is well established (Paskausky and
Muxrphy, 19765 Gordon and bilbeam, 1975; Wilson, 1976) that
Long Island Sound exhibits a two-laver density induced circu-
lation. Also, .Ianniello (1977) recently determined the import-
ance of tidal non-linearties in induciné residual circulation
in eastern Long Island Sound and Block Island Sound. Cook
(1965) suggests that wind forcing is important in maintaining
the residual flow in Rhode Island Sound. The present study,
however, is solely concerned with tidal prediction, and wind -
and density variations will not be addressed.

The tides in the.area range from semi-diurnal to mixed{
mainly semi-diurnal. Defant's criterion (Defant, 1961) for
determining the type of tide is:

Kl + O1

M2 + 82

R =

whe;e K4 and 0l are the principal diurnal harmonic constitutent -
amplitudes and M, and 82 are importan£ semi-diurnal harmonic
constituent amplitudes. Swanson (1975) arbitrarily defines
sgmi—diurnal tides as having values of R from 0 to 0.25 and
mixed, mainly semi-diurnal as R from 0.25 to 1.5. Table ITT.1
shows the major tidal constituents for locations used as model
boundary conditions.” Also listed are the R values for each

of these stations (refer to Fig., III.5 for location of these

stations). It is seen that Woods Hole (located in Vineyard
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Sound) is strongly mixed, méinly semi-diurnal while the shelf
stations (MIT3, EPA2A, EPAéB, LT4, LTS5, PICKET and KELVIN) have
an average R of 0.26. Progressing into shallower waters; the
tidal wave becomes much more. strongly semi-diurnal as illus-
trated at Willets Point, located at the western end of Long
Island Sound, which has an R of Q.l2. 

Propagation of the tidal wave in the study area may be
observed from the co-range and co-tidal lines shown in Figs.
IT.3 through II.5. The tidal wave first enters Rhode Island
Sound from the shelf between Block Island and Martha's Vine—
yard. It then proceeds radially across Rhode Island Sound
to the mouths of Vineyard Sound, Buzzards Bay, and Narragan-
sett Bay and to the eastern boundary of Block Island Sound.
There is a slight amplification of the wave along the northern
side of Rhode Island Sound due to decreasing depth. The wave
£hen continues to progress up Buzzards Bay and Narragaﬁsett ﬁay
where it is further amplified by shoaling and narxrrowing of these
embayments. This sawe wave alsc progresses west to east through
Vineyard Sound and is aiminished due to interference with the
progressing tidal wave entering Vineyard Sound from the Gulif
of ﬁaine (Redfield, 1953). The tide wave also progresses east
to west in?o Block Island and Long Island Sounds. The érogres—
sion of the tidai wave into Block Island Sound is relatively
unimpeded through the Block Island - Rhode Island (north-south)
transect relative to the shelf boundaryv between Montauk Point
aﬁd Block Island (east-west transect). This is céused partially
by the tidal interaction with Long Island Sound and partially due
to the predominance of the east-west channel in the bathymetry

of Block Island Sound.
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The tidal wave is predominantly progressive on the shelf
and in Rhode Island Sound. Tidal currents in these regions
are rotary. The wave is relatively undistorted on the shelf
except in the region just south of Nantucket (Nantucket
Shoals). -Western Block Island Sound and Long Island Sound
exhibit strong standing wave characteristics. 'Redfield (1950)

showed this region to be near resonance with the M, tidal period

2

(12.42 hours) with a characteristic length of about one quarter
of the tidal wavelength. Cénsequently, a velocit& node and
amplitude maximum exists in western Long Island Sound and a
velocity maximum and amplitude node exists in eastern Long
Island Sound near the Race. Studies of the resonant periods of
Long Island Sound show a first mode at about 10 hours (Beau-
champ, 1978).

Magnitudes of the tidal currents are roughtly 30 - 50
cm/s in Central Long Island Sound, 150 cm/s in the Race, 30 -
50 cm/s in Block Island Sound, 20 cm/s in Rhode Island Sound
and 30 cm/s 'in Buzzards Bay.

The bathyﬁetry of the area is illustrated in Figs. II.1
and II.2. Rhode Island Sound has a relatively smooth bottom
-with depths of around 55 m. where it meets the Southern New
England Shelf and depths of 20 m. or less at its northern and .
western- perimeter. Buzzards Bay also has, a. smooth bottom with
maximum depths of 15 - 20 m. at its boundary with Rhode Island
Sound and minimum depths of less than 8 m. at its eastern end.

Block Island Sound and the eastern part of Long Island
Sound éontain a more complex bathymetry characterized by steep

bottom slopes. A channel of 35 m. or greater extends from
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Rhode Island Sound through Block Island Sound reaching a maxi-
mum depth of over 100 m. in The Race. This channel‘fhen ex-
tends through Eastern Long Island Sound to Mattituck Sill.
Mattituck ‘Sill separates Eastern Long Island Sound from the
broad, flat Central Basin. The Central Basin reaches depths

of around 30 - 40 m. within 4 - 8 Km.. of the Long Islana shore.
In the western portion of Long Island Sound, the bathymetry

becomes more complex with depths less than 20 m.
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CHAPTER ITII --.NUMERICAL SCHEME

ITIT.1 Schematization

The nested finite difference grid system eﬁployed in this
study is shown in Fig. III.4. As can be seen, two grids.of
differing grid spacing are mesﬂed together. The larger grid
is spaced at intervals of 5.6 km (3 N.M.), and‘the smaller
grid is spaced a£ intervals of 1.9 km (1 N.M.). This grid
épécing was chosen in order to obtain sufficient resolution
to describe gradients in the dependent variables as well as
bottom and planar topography while maintaining computational
arrays émall enough to allow easy computability. The smaller
grid, which spans the southern New England Bight, is 158 x
28. in size. The larger grid is 38 x 20.

Concurrent wi£h this .study, Beauchamp (1978) was also model-
ing ﬁhe tides in southern New England Bight with a 1.9 -km (1 N.M.)
grid spacing. He had difficulty in adequately specifying the
surface elevation boundary condition along the large open boun-
daries extending from Montauk Point to Block Island and from
Block Island to Martha'é Vineyard (Fig. I.2). Variability in
range and phase of the tidal wave along £his boundary is seen
in Figs. III.1 through III.3. It was decided that it would be
desirable to extend this Boundaxy further out onto the shelf
where there existed less variability in the tide wave, hence
the motivation for the nested grid procedure.

The bottom topography was represented by recording a re-
‘presentative depth value for each corner of the grid system.
The depth data was obtained in digital format from N.O.A.A.

Environmental Data and Information Service (Lawrence, 1977) when
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available and from National Ocean Survey navigational charts
otherwise. The configuration of the‘boundaries along the shore-
line was drawn so as to maintain as closely as possible an
eguivalent surface area in the model. It should be noted that,
because of a lack of information regarding the tide, the boun-
dary between Mattha;s Vineyard and- Nantucket Sound, was taken

as closed. The implications of this simplification are explored

in Chapter IV - Results.
III.2 TFinite Difference Equations

The vertically integrated equatiohs of motion and continuity

used in .this study are:

X momentum

U _ 3 _ pg u (u2 + v2)1/2 :
: ¢ (h + £)
Yy momentum
EAA fu = 13 py v(u2 + vz)l/2 (2)
E I 2
c¢” (h + ©)
continuity

el

—a%[(h#g) u] +%[(h+g) v1+g

with a Cartesian Coordinate System being applied with the ver-

=0 (3)

r’-

tical axis positive in®the upward direction. The vertical
reference datum is taken as mean sea level. The following no-
tation is employed: ‘
t - time
X,¥,2 - a fight handed Cartesian Coordinate System
with z positive upwards |

h - the depth of the undisturbed water
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£ - the elevation of the water surface
u,v - the depth averaged currents in the x and Yy

directions, respectively.

u = 1 IE G(z) dz; v = 1 %(z) dz
h+¢& 4 ! h + & ~h

o '~ the density of the water

£ - the Coriolis coefficient (20 sin ¢ where @ is

the angular velocity of the earth and ¢ is
the latitude) ‘

g - acceleration of gravity

< — Chezy bottom roughness coefficient related

to the Manning coefficient (g) by:

, 1/6 -
L ‘ [ml/2/s:{

n

It has been assumed that the water is of constant density and

that direct tidal forcing is negligible. Wind stresses and

the effects of variations in atmospheric pressure are not con-

sidered.

The convective acceleration terms in Egs. (2) and (3)

have been assumed to be negligible (see Chapter V - Summary for

further discussion of this approximation).

Equations (1) through (3) were put into the following fi-

nite difference form (Greenberg, 1977) using the grid notation

illustrated in Fig. ITT.L:

(t + 88) _

: £ (1) . .
i3 i3 o _ L q0) (8 _ S0 (1) ]
At Ax i,] i;j i“"lrj i"lrj
(4)
b (£) (£} (%)
Ay | ©i,3-1 Vi, -1 7 ©4i, ] "ij,j]‘



=11~

(t + At) _ (%) (t + t) _ . (t + A%)
uirj uifj - fr(t) - Ej-'l'lrj Eirj :]
) At irj ) Ax
. (5)
g ult ARl 2 () 2 (t)] 1/2
_ i, i, i3
1 32
[ 7 ©Co5* Cons] 93
o EH Aty (%) _ - gt + 48} (bt + %)
i, i3 o - gt ¥ 0E) _ [ i, i,j+1 ]
At i, g Ay
y (6)
1/2
oY vgt.+ At) S% .(t) + v? .(tY]
- 1,7 1,7 1r]
1 7 2
L2 ©og7Ca ] 2y
where
d. . =%(h, . +E. .+ h bog )
i, 3 2 “YiL3 i i+1,5 7 Ci+l,J
e, . =41 (h., . ; E. + h + £ )
i,3 2 i,J i, ] i,j+l i,j+1
r. . = l-(v + v + v + v )
i,j 4 i,Jj-1 i+l,j-1 i,3 i+1,3
S, . = L (U + U + U + U )
i, j 7 ‘“Yi-1,3 i, i-1,3+1 i, 3+1

The calculation procedure for surface elevation and hori-
zontal velocity components is illustrated in Fig. ITI.Z.
ITI.3 Nesting Procedure

In setting up the nested grid system for this study, the
‘overlapping region was made to run along the x éirection (Fig.
III.4).‘ The two grids are interactive; in other words, the de-
pendent variables are solved in both grids at each time stepf
"and an interpolation scheme ié used so that the computations

are "continuous" across the interface.
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Figure III1.3 shows the interface between the coarse and
fine grids. Note that the points underlined are those depen-
dent variables obtained by linear interpolation. WNote also
that, for the particular procedure employed, a 3 to 1 grid
spacing ratio must be employed. Because the grid interface
has 5een oriented in this x direction, only the y component of
the horizontal velocity (v) and the surface elevation (g) must
be interpolated. In order to insure conservation of volume in
the overlap region, the interpolated velocities are adjusted
in an iterative fashion so that the'entire‘overlap strip obays
conservation of mass. The procedure employed proved to be véry
stable numerically. Additional details can be obtained from

Greenberg (1977).

ITTI.4 Order of Computation

The sequence of computation is as follows:

1. &, u, v sﬁecified at t = 0 (initial conditions).

2. & along open boundaries is prescribed for t + At
"(boundary conditions).

3. Calculate § on coarse grid from continuity eguation
at &t + At.

4. Calculate £ on fine grid from continuity equation at
t + At. ‘

5. Calculate u on coarse grid from x-momentum eguation
at + + At,

. 6. Calculate u on fine grid from x-momentum equation at

t + At.

7. Calculate v on coarse grid from y-momentum eguation

at t + At.
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8. Calculate v at edge of coarse grid using y-momentum
equation and'interpolating u and £ at t + At.
9. Calculate v on fine grid from y-momentum equation at
t = At.
. 10. Linearly interpolate v and § and iteratively adjust
v to satisfy continuity of volume in the strip between
the coarse and fine grid at & + At.

ll: Increment time by At and proceed from step (2).

IIT.5 Initial Conditions
The model was operated from still water conditions, i.e.
null velocities, and constant elevation. In some longer runs

results from previous runs were used as initial conditions to
I

speed convergence.

III.6 Boundary Conditions

Tidal elevations at the open boundaries of the model grid
(see Fig. IV.1l for boundary locations) were specified using
available tide data. Figure III.5 shows the locations for
which tide data, in the form of harmonic constants, was avail-
able. (Stations are marked with an "g".) Table III.l lists
the amplitude and phase of the major constituents for these
locations.

For #he simulations discussed in Chapter IV, a mean tide
"boundary condition was employed. The mean tide was deduced by
sampling the predicted tide at twelve intervals per tidal cycle
and averaging a year's worth of these tidal cycles (Swanson,
1877). At all locations, a mean tidal period of 12.42 hours
(M2) exists. Figure III.6 illustrates the mean tidal curves used

in specifying input bopndafy conditions.
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In specifying the large sheif bounéary conditions, it was
found that shelf tide stations (LT-4, LT-5, EPA2, MIT3 and
PICKET in Fig. III.5) were in phase and uniform in amplitude;
Redfield (1953) notes, however, large changes in phase and
amplitude in the vicinity of Nantucket Island. ‘The model
boundary condition ih fhe vicinity of Nantucket ﬁas deduced

from Redfield's (1953) co~range and co-tidal lines.

IXTI.7 Time Increment
" - The restriction on the time increment At is that of Courant-

Friedrich-Lewy:

Ax .
it >.2-V 2g HMAX {7)

Taking account of the maximum depth of water, en-

Hyax’
countered within the modél, a value of At = 47.06 secs. was
employed to -insure that the numerical solution was fully stable

at all times.
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CHAPTER IV —— MODEL RESULTS

Iv.l Tide

Time histories at seven locations in the model grid were
developed to observe the model performance during'start up and
to- establish that a guasi-steady state had been reached. These
locations axe shown in Fig. IV.1l, and the time histories are
shown in Fig. IV.2. The initial transients are clearly seen,
and these damp out in all locations by the third tidal cycle
(step number 2280). High frequency oscillations due to seiching
are geen in the transients at Newport (NPT) and Cape Cod Canal
(ccey .

Comparison between the observed and computed tide are
‘illustrated in Figs. iv.3 through IV.8. Figures IV.3, IV.4
and IV.5 show observed and computed co-range, high water inter-
val and low water interval lines, ?espectively. Figures IV.6,
Iv.7 and IV.8 are a comparison of range, high water and low watexr
intervals~vs. distance along the x-axis of the 1.9 Km (1 N.M.)
grid. .
Agreement in range between obsexrvations and model results
are uniformly good thioughout the grid system with a mean dif-
ference of 0.09 m and a maximum difference of 0.27 m (in western
Long Island Sound). Agreement in high water interval is not as
uniform. Due to the poor resolution of topogréphy in western
Long Island Sound, the 16.5 hour line is computed to be tdo
far east (refer to Fig. IV.4). In addition, high water occurs
about 0.5 hours too early uniformly throughout Rhode Island
Sound (refer to Fig. IV.7). The high water interval in the

vicinity of Nantucket is off by approximately 1.5 hours. This
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is due to a poor specification of the surface boundary condition
in that region. Further refinement of this boundary condition
should rectify this error. 1In addition, a tidal height speci-
fication 'should be specified in the region between Martha's
Vineyard and Nantucket. Other regions in the model grid show
better agreement. The mean difference in computed and observed
high water interval is 0.29 hours with a maximum difference of
1.06 hours (in western Long Iéland‘Sound). Agreement in observed
and computed low water interval is better than that for high water
interval. The worst discrepancy occurs at the 10 hour line (see
Fig. IV.5) in westerﬁ Long Island Sound. The mean difference in
_coﬁputed and observed low water interval is 0:29 hours with a
maximum difference of‘b.§6'hours (in western Loﬁg Island Sound).
A comparison of observed (NOS- tide stations) and computed tidal

- range and phase is summarized in Table IV.1.

Iv.2 -Velocity
Figures IV.9 through IV.14 show the velocity field at in-
tervals of two lunar hours (12 lunar hours =12.42 solar hours}.
A prominent feature is the high velocities in eastern Long Is-
land Sound and western Block Islaﬁd Sound (vicinity of The Race),
near Montauk Point, in Vineyard Sound and just south of Nan-
tucket (Nantucket Shoals). The tidal velocities in, Rhode Island
Sound are quite weak (of order 20~36 cm/s). Figures IV.12 and
IV.14 illustrate the phasing difference between Long Island Sound
and Buzéafds Bay. ‘ ‘
A pomparison between observed and computed tidal currents
has not been made; however; Beauchanmp (1978) haé made such com-

parison for a somewhat similar modeling effort.
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CIHAPTER V' —— SUMMARY

The model results for tidai elevation were generally with-'
. in the accuracy of NOS data. . High and'low water phasing were
also within the accuracy of existing data with the exception
of western Long Island Sound, the area in the immediate vicinity
of Montauk Point and Nantucket Shoals.

Beauchamp's (1978) grid coincides with the small grid used
ig this study. The addition of the larger grid (to take advan-
tage of existiﬂg‘shelf tide measurements) improved the descrip-
tion of the tide in southern New England Bight over that of
Beauchamp. Specifically, range prediction in the vicinity of
Montauk Point is improved by roughly 0.2 m, high water interval
is improved by about 0.5 hours in Block Island Sound and low
water interval is improved by about 0.5 hours in Rhode Island
Sound. Also, a better representation of tidal phésing in western
Long Islanq Sound is accomplished.

Western Long Island Sound .is the region most poorly rebre—
sented by the model. This may be attributed to the complex
bathymetry and planar geometry of the region which is nét ade=-_
gquately resolved by the 1.9 Km grid.

The non-linear convective acceleration terms were not in-
c;uded in the finite difference equations employed in this study
since th;y are of'second'order importance. This can be con-
cluded by comparison with Beauchamﬁ's (1978) results which were
obtained usiné Leendertse's multi-operational scheme for which
the convective acceleraﬁion.terms are‘retained. It should he
noted, however, that although the convective acceleration terms

are not of primary importance in describing tidal fluctuations,
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they are of primary importance in determining tidally induced
residual flow, especially in the vicinity of The Race.

The numerical procedure required 448K main storage on .the
University of Rhéde Island's ITEL-5. Twenty minutes of cen?ral
processor time was required to simulate one tidal cycle (956 time
steps per tidal cycle).

This work constitutés‘a further refinement in'supplying an
accurate velocity field for use in the numerical transport models
of Hunter and Spaulding (1975) and Pavish and Spaulding (1977)

which were developed in an earlier stage of this contract.
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FIGURE I.1l LOCATION OF THE SOUTHERN NEW ENGLAND BIGHT ON THE
EAST COAST OF THE UNITED STATES
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ORIGINAL PAGE IS
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BLOCK ISLAND

LONG ISLAND SOUND

THREE-DIMENSIONAL VIEW. OF BATHYMETRY IN THE WESTERN FORTION OF THE SQUTHERN

NEW ENGLAND BIGHT

FIGURE II.2a
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FIGURE II.2b THREE-DIMENSIONAL VIEW OF BATHYMETRY IN THE BASTERN PORTION OF THE SOUTHERN

NEW ENGLAND BIGHT



Reference
Pruterch (1929)
Lelacheur &

Sammons (1932)

Haight (1936)

Coock {1966)
Hicks (1967}
Larkin &

Riley (1967)
Hicks (1968)

Shonting (13%69)
Hardy (1871)
Swanson (1971)

Gross &
Bumpus (1972)

Hollman &
Sandberg (1972)

TABLE II.l

CURRENTS IN SOUTHERN NEW ENGLAND BIGHT

*
Variables
Measured

v
{Drifters)

£,V

E,V

v
(Drifters)

v

v
(Drifters)

£

< < <

v
(Drifters)

v
(Drifters)

* ¢ surface elevation
V horizontal velocity

SUMMARY OF OBSERVATICNS OF TIDES AND

Location
Central Long Island Sound
Long Island and Block Is-—
land Socunds
Narragansett Bay, Buzzards
Bay, Vineyard and Nantucket
Sounds
Rhode Island Sound
Long Island and Block Island
Sounds
Central Long Island Sound
Rhode Island Sound, Buzzards
Bay, Southern New England Shelf
Rhode Island Sound
Long Island Sound
Eastern Long Island Sound
Long Island Sound

Eastern Long Island Sound,
Block Island Sound

D

Prior to l932

Prior to 1936

1965 -

August
1967

1965,

March and Qctober, 1969

1870,

ates

1876

1971

_9 z_



Reference
Bohlen (1974)
Goxdon &
rilbeam (1975)
Raytheon (1975)
Bouwman (1976)
Paskausky &
Murphy (1976)

Swanson (1976)

Beardsley, et
al (1977)

Callaway (1977)
Griscom (1977)
Mofijeld (1977)
NOs (1978)
NOS (1978)

TABLE II.1 SUMMARY OF OBSERVATIONS OF TIDES AND
CURRENTS IN SOUTHERN NEW ENGLAND BIGHT (CONT,)

Variables Location Dates
Measured
v Eastern Long Island Sound, -
Block Island Sound
v Central Long Island Sound 1971, 1972, 1973
v Block Island Sound 1875
E ., Vv East River (Western Long 1959
Island Socund)
|
v Long Island Sound 1973, 1974 it
(Drifters) I
£ Long Island and Block Island -
Sounds, Southern New England
Shelf
£ Southern New England Shelf Winter, 1974
£ Southern New England Shelf 1973
v Rhode Island Sound 1976
E Southern New England Shelf 1975, 1976
E Tide Tables -
v Tidal Current Tables -



Reference

Laevastu & Calla-
way (1974}

Hurlbut &
Spaulding (1975}

Lin & Skridulis
(1975)

Wang & White
(1976)

Leendertse &
Liu (1977)

Beauchamp &
Spaulding {1978)
Murphy (1978)

Present Study

Legend:

H - Hydrodynamics

TABLE II.2 SUMMARY OF NUMFRICAL CIRCULATION MODELS
FOR SOUTHERN NEW ENGLAND BIGHT

Model Description-3ee Legend

H-27-FD Txplicit 6.6 km Grid
Spacing .

H~2T-FD Leendertse's Multi-
Operational Scheme, 1.2 km
Grid Spaecing

H-1T-FD & H-2T7-FD Leendertse's
Multi-Operational Scheme for
Storm Surge

H~2T~FE & H-3T-FE, 3.7 km
Node Spacing

H-37-¥D, 1.9 km Horizontal
Grid Spacing

H-2T7-FD Leendertse's Multi-
Operational Scheme, 1.9 km
Grid Spacing

H~2T-FD Leendertse's Multi-
Operatiocnal Scheme

H-2T-FD Explicit {Greenberg's
Method} Nested Grid, 5.6 km
Grard Spacing on Shelf, 1.9
km Grid Spacing in Bight

Location of application

New York Bight Including Long
Island & Block Island Sounds

Block Island Sound, Rhode Island
Sound & Bugzzards Bay

" Long Island Sound

Block Island Sound

_82_

Long Island Sound

Southern New England Bight

Long Island Sound

Southern New England Bight &
Part of New England Shelf

1T ~ One Dimensional, Transient FD - Finite Difference

2T - Two Dimensional, Transient FE - Finite Element
3T - Three Dimensional, Transient
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FIGURE III.2 CALCULATION PROCEDURE FOR SURFACE ELEVATION AND

HORIZONTAL VELOCITY COMPONENTS (I'ROM GREENBERG
(1977))
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MERN TIDAL CURVES
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TABLE III.1

AMPLITUDE AND PHASE OF THE MAJOR TIDAL CONSTITUENTS FOR

LOCATIONS USED AS MODEL BOUNDARY CONDITIONS

DIURNAL SEMI-DIURNAL QUARTER- SIXTH-
DIURNAL DIURNAL
X 1 Ny My My

Station Him.) X(%) H K H K H K u K H K R
Woods Hole 0.065 114.1 0.065 133.6]0.077 239.2 0.236 250.6 | 0.049 65.5 |0.019 333.9 | 0.44
Willets Point | 0.101 119.0 0.061 130.0{0.231 306.0 1.119 329.0 |0.032 214.0l0.071 s3.0 | 0.12
MIT3 0.083 97.8 0.068 108.3 ]0.105 184.8 0.422 202.1{ -—- N -~ | 0.29
EPAZA 0.080 84.4 0.052 113.0 }0.091 191.2 0.467 202.6[0.010 92.9}0.010 137.5)0.25
EPA2B 0.066 83.5 0.037 92.5|0.083 191.0 0.431 204.6{0.003 54,5}0.004 117.5[0.24
LT4 0.080 90.4 0.056 110.5]0.120 187.9 0.485 201.6 - -— | - -- | o0.23
LTS5 0.084 99.9 0.060 114.7 }{0.113 189.0 0.471 203.9 -- | -- -~ }0.27
Picket 0.077 79.2 0.061 120.1 |0.121 192.3 0.495 209.6 |0.014 61.1l0.006 112.0}0.23
Kelvin 0.093 91.5 0.080 112.8 {0.115 189.1 0.465 207.6 [ 0.004 0.002 133,5 (0,30

_62_
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COMPARISCN OF OBSERVED (NOS TIDE STATIONS) AND
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72
72
77
Exd
11
T
T3
k]

T

uz
56
55
kL]
'}
43
43
54
55
12
21
2%
31

59

21
21
29
39
us
56
27
3
47
0t

nt

oas

D.00
0.67
0.58
1.04
1.22
1.1
1.2%
1.28
1.1]
1.11

0,90

RANGE
cone
1.04
0.82
0.84
1.14
1.30
1.34
1.34
1.31
1.19
1.16

DIPP
0.15
0.15
0.27
.10
g,08
9.15
.09
0.02
.06
g.0n
9. 11
0.00
0.07
0,06
0.07
g, 11
0,12
0.0%
0 1%
¢.07
0.13
0.06
9,10
Q.04
g.02
0.12
.13
0.1%5

NIGH WATER

LINTEFVAL
0BS CONP
12,67 12.14
12.94 12,74
12.95 12.40
12.49  12.34
13.12  12.59
12.95 12.6%
13.05 12,70
12.05 12.5%
12.R2 12,43
13.685 12,39
12.55 1217
12.69 12.1%
12.60 12.13
12.49 172.01
13.45 12.%8
16,12 14,16
14,22 14.16
15.67 15.80
T5.90 15.41
15,7% 15,70
15,99  16.03
16,03 #6.14
16.08 16.29
16,19 16.%6
16.27 16.60
16,21 16,61
16,56 16,61
16. 56 16.463

(HR.)
DIFPF

0. 5”3
T
0.1
0. 15
0.52
0.3
0,3%
0,27
0.39

bIPP
0.76
0.65
0,72
0.38
.16
0.28
9.37
0.51
0.26
0.28
0,20
0.13
.45
0.27
0.27
0.85
0.45
0,18
0.68
0.0%
0.19
.29
0.1
0.4z
.82
0.15%

0.04

1OW WATEDR
THTERYAT (HB.)

oBs ceny
6.79 6. Ol
T.56 6.97
T.43 6,70
5.78 6,15
6.30 6451
6.31 6.5%
6.29 6.66
6.01 6.52
6.09 6.35
6.01 6. 29
6.03 5.83
5,88 6,01
5.33 5.608
6.24 S 97
T.31 T 0U
B.u45 4,00
B.51 B. 06
9.3 9.15
.75 9. 11
9.57T  9.42
9.64 9.83
9.67T  9.96
9,82 10.13
10.00  10.46
10,07 10,50
10.41 10,56
1040 10, 60
10.68 10.60

G.0U

mE;b—-

nd 900d 40
1 AHVd "TVNIDIYHO

AL



29
3o
n
32
n
3g
%5
36
3T
38
EL
L1
q1
82

25
4o
39
%0
62
69
kAl
an
as
T6
19
B3
a9

w N

1237
1357
1357
1359
1369
1911
1373
1378
1377
1379
131
1399
1301
1405

TABLE IV.1 (CONT.)

COMPARISON OF OBSERVED

BXFCUTTCOH ROTKS
BATORS WWCK POTAT
STPATFORD SHOAL

PORT JRPPFRSOR HARDC
HEROD DAY

PATTITCOCK INLET
RORTON POINT

TRUARK BPATH

PLUN GOT HAFBOR, PLU
LITTL® GULL TSLAND
CEDAR POINT
THRPYKILE HER., GARD
PRONISED LAND, NAPEA

HNHTANK, FORT POND B

COMPUTED TIDAL

40 53 T3 4 2,23
40 57 73 248 2,16
g1 73 6 2.0
g 58 735 2.01
un 54 72 59 1.80
41

-

72 34 1.50

41 S T2 21 1.27
41 8 7219 1.06
K1 10 72 12 ¢.79
¥1 12 T2 6 0.6%
%1 2 72 16 .76
81 2 T2 1 0,73
LR ] 72 % C.70
41 3 T1 58 0,60

(NOS TIDE STATIONS) AND

RANGE AND PHASE

0.09

16.51
16.26
16. 13
16. 26
16.09
16.29
15.89
15,51
14,95
14,70
15. 23
14,85
.27

1%,02

16.61
16.60
16.46
16.51
16,02
16.27
16.18
15.91
15.14
16,57
15.31
15.21
1m.47

14,25

0. 10
0.38
0.3
0, 25
0,32
0.02
0,27
0, 00
0.19
0.13
0.97
0,36
0. 20

0,23

10.56
10.19
9.9%
10,07
9,82
92.99
9.51
9.22
8.85
8.21
903
8.6%
8.05

8.18

10,55
10,48
10,30
10, 36
10,25
10,10
9,97
9.63
B, 86
8,38
9. 06
8.92
8. 26

8,10

0.01
0.29
0.36
0.29
0.42
0.1
0.36
o.a1
9.01
G.16
0.43
0.31
0.9

0.8

_.6 e
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AT LUNAR HOUR 11
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