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SUMMARY

The validand invalidapplicationofthe Mikhailovcriterionto linear,time-invariant

systems with time delays isdiscussed. The Mikhailovcriterionis a graphicalprocedure

which was initiallydevelopedto examine the stabilityof linear,time-invariantsystems

with no time delays. For these systems,there are two equivalentformulationsof the

criterion.Attemptingto applythe second formulationwhen thereare time delaysin the

systems can leadto erroneous results,as shown by an example. However, thefirstformu-

lationremains validfor time-delayedsystems ofthe retardedtype,with the unde:.'standing

thatthe Mikhailovcurve need not necessarilyalways rotateinthe counterclockwisedirec-

tionfor a stablesystem. At present,applicationof the Mikhailovcriterionto neutralsys-

tems has notbeen justified.

INTRODUCTION

The Mikhailov criterion is used to examine the stability of dynamical systems that

are described by linear ordinary differential equations with constant coefficients.

Kashiwagi (ref. 1) indicates that this criterion can be used with only limited success when

there are constant time delays in the system. Yet recently, Chen and Tsay (ref. 2) have

shown that a modified Nyquist criterion, which is similar to the Mikhailov criterion, does

have valid application to time-delayed systems. Why is there a discrepancy between the

earlier and recent works? The purpose of this paper is to remove the confusion related

to the valid application of the Mikhailov criterion to time-delayed systems.

SYMBOLS

A,Aj,Bj real constants

i imaginary unit,

j integerindex

k real number



L(s) characteristic polynomial for system with no time delays, or characteristic

quasi-polynomial for systems with time delays

Ll(S),L2(s ) parts of L(s) shown in equations (42) and (43)

M number of roots of L(s) with positive real parts

N order of system with zero time delays

s complex variable

sj jth root of L(s) = 0

X(w) real part of L(iw)

Y(w) imaginary part of L(iw)

angle in figure 2

damping parameter

O(w),Oj(w) change in arguments of L(iw) and iw - sj, respectively, as w increases
from zero

_,_j total change in arguments of L(iw) and iw - sj, respectively, as w varies
increasingly from zero to infinity

real part of s

a asymptote of real part of large modulus roots of L(s)

7,_j constant real-time delays

w imaginary part of s

ANALYSIS

By referring to the complex geometry involved, Popov (ref. 3) gives insight into the

Mikhailov criterion for a system with no time delays. Kashiwagi used Popov as a basic



reference. Hence, in order to appreciate the earlier thoughts on the Mikhailov criterion,

it is necessary to first examine the criterion for no time delays as viewed by Popov.

Mikhailov Criterion (No Delays)

Let the characteristic polynomial of a linear system be expressed as

L(s)--A0sN+ AI sN-I +... + AN_IS + A N (A0 > 0) (I)

with real coefficients, or in factored form as

L(s)=A0(s- Sll(S- s2) ... (s- SN) (2)

where the complex rootsappear in complex conjugatepairs. With s = iw, equation(1)
can be writtenas

L(iw) = X(w) + iY(w) (3)

where

X(w) = A N - AN_2W2 + AN_4¢o4 - . . .

J (4)
Y(w) = AN_lW - AN_3 w3 + . . .

and equation (2) becomes

Now consider the plot of L(iw) in the complex plane as w is increased from

0 to 0% as depicted hypothetically in figure 1. This is the so-called Mikhailov curve.

The argument of L(iw) is simply the sum of the arguments of the linear factors of

L(iw) in equation (5), that is,

N

argL(iw)= _ arg (iw-sj) (6)
j=l



Let O(w) and 0j(w) denote the changes in the arguments of L(iw) and iw- sj,
respectively, as w increases from zero. Then,

N

= Z ej( ) (7)
j=l

(The argument of the real number A0 > 0 is zero.) Furthermore, if 0 and _j denote
the total change in the arguments of L(iw) and iw - sj, respectively, as w varies
from 0 to % then

N

= _ 0j (8)
j=l

Consider the following two special cases to gain insight into the contributions of _j
to 0 in equation (8).

Negative real root.- The change in the argument of the factor iw - Sl, when s 1 is
a negative real number, is examined by using figure 2(a). It is geometrically clear that

as w varies from zero to infinity

7/

_1 = lim 61(w ) = _ (9)0,)-*- oo

Complex conjugate roots.- Consider the angular change in the arguments of the two

factors (iw- s2) and (iw- s3) , when s2 and s 3 are complex conjugate roots with

negative real parts, as indicated in figure 2(b). Geometrically, it can be seen that for

w = 0, the argument of the complex vector iw - s 2 is -7. As w increases from zero
to infinity, the change in the argument is

= lim
02 w-_ 02(w) = 2 + $ (10)

Similarly, for the vector iw - s3,

= lim 7r
_3 w-_ 03(w) = 2 - 7 (ii)



Hence,

n 77 (12)_2 + _3 = _ +

It is indicated by equations (9) and (12) that each root of L(s) with a negative real

part contributes _ to the argument of L(iw) in equation (8). By similar geometry, it

can be seen that any root of L(s) with a positive real part will result in an argument
7/

change in L(iw) of -_ as w goes from 0 to _. Popov (ref. 3) also discusses the

effects of a zero root, purely imaginary roots, and an infinite root, but these cases are
not presented here.

Suppose there are M roots of L(s) in equation (1) with positive real parts, and

N - M roots with negative real parts; then it is not difficult to infer geometrically that

n 77 (N - 2M) 2 (13)_= (N- M)_- M_=

In order for the systems under consideration to be stable, all roots of L(s) must

have negative real parts. In this respect, Popov (ref. 3) writes: "For stability of an

nth-order linear system it is necessary and sufficient that the Mikhailov curve plotted for

the characteristic equation of the given system pass through n quadrants in succession

counterclockwise, circling the origin of coordinates." Thus, since n = N in this paper,

L(iw) completes a rotation by the angle

77

= N_ (14)

which is equation (13) with M = 0 (no roots with positive real parts). This is the first
formulation of the Mikhailov criterion.

The roots Sl, s2, and s 3 of L(s) are shown in figure 2 and have negative real

parts. The associated vectors iw - Sl, ice - s2, and iw - s 3 always rotate counter-

clockwise as w increases; or equivalently, 01, 62, and 03 always increase. There-
fore, from equation (7), if all roots of L(s) have negative real parts, it is not possible

for the vector L(iw) to ever rotate by any amount in the clockwise direction; that is, the
vector L(iw) continually rotates in the counterclockwise direction as w increases

n (eq. (14)). This leads to the second formulationfrom 0 to _, and O(w) approaches N_-

of the Mikhailov criterion, which states that a necessary and sufficient condition for a

linear, time-invariant system with no time delays to be stable (characteristic roots with

negative real parts) is that the real part, X(w), and the imaginary part, Y(w), of L(iw)

in equation (3) alternately vanish a finite number of times.
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Transcendental Characteristic Equation

Previous works (refs. 3 and 4, for example) interpret the Mikhailov criterion in

terms of a polynomial characteristic equation. Difficulty occurs in trying to apply this

interpretation to systems with time delays (ref. 1).

Suppose the system has time delays so that the characteristic function is, for

example, the transcendental characteristic quasi-polynomial

L(s) = s 2 + 2_se -Ts + 1 (15)

where _- is a constant time delay. Unlike equation (1) which has exactly N roots,

equation (15) has an infinite number of roots because of the exponential term introduced

by the time delay.

For illustration, let _ = 6.2 and _ = 0.2 in equation (15). In this specific case,

all the roots of equation (15) have negative real parts, making the system stable (ref. 1).

The Mikhailov curve corresponding to equation (15) is shown in figure 3. Notice

that the curve moves in both the clockwise and counterclockwise directions even though all

the roots have negative real parts. This could never happen if L(s) were a polynominal

with negative real parts. To approximate the curve in figure 3 very closely with a poly-

nomial would require that the approximating polynomial have an unstable root (positive

real part) in order that the approximating curve ever move in a clockwise direction over

any portion of the solution.

Clearly, from figure 3, X(w) and Y(w) do not alternately vanish; and, conse-

quently (by counterexample), the second formulation of the Mikhailov criterion definitely

does not apply in general. However, as noted in the section entitled "Mikhailov Criterion

for Delayed Systems," with proper interpretation, the first formulation of the Mikhailov

criterion can be applied.

Mikhailov Criterion for Delayed Systems

Recently, Chen and Tsay (ref. 2) derived a modified Nyquist stability criterion which,

in the context of this paper, is similar to the first formulation of the Mikhailov criterion.

The criterion was shown to hold for characteristic functions L(s) for which:

(1) L(s) has no purely imaginary roots.

(2) L*(s) = L(s*), where * means complex conjugate.

(3) L(s) acts like As -k as s - oo in the right half of the s-plane; that is,

6



lim L(s) _ A _ 0 (a _->0) (16)
s-oo s-k

where A is a nonzero constant and k is an integer.

Chen and Tsay (ref. 2) show that, as w increases from 0 to % the vector L(iw)

rotates by the amount

(17)
= (-k - 2M)_

where M is the number of roots with positive real parts.

Equation (17) indicates a stable system if and only if M = 0; that is

(18)= -k_

It is important to note that there is no requirement that _ result only from counterclock-
wise rotations.

With respect to the characteristic polynomial in equation (1), k = -N in equa-

tion (16), and equation (18) becomes

= N -_ (19)2

which is the same as equation (14). Now, from Popov's view of the Mikhailov criterion,

it is clear that _ in equation (19) will, indeed, consist only of counterclockwise rotations.

However, this is not explicit in the derivation (ref. 2) of equation (18).

Retarded systems.- Consider a system with a characteristic quasi-polynomial of

the form

N N-I

Z Z
j=O j=O

where A N_0 and 7j >0 (ref. 5). The dominant term in equation (20) as s- oo is

AN sN. To show this, consider the magnitude of the ratio of any remaining term in equa-

tion (20) relative to ANsN. Thus, note that for j ig N,



AsL I,I1lim -- = lim - 0 (21)

Isl-ooANsN1 Isl-_°_ Isl_-j

since N- j >0. Also,

L I,lim _--_N e = lim e - 0 (22)
Isl-ooANS Isl-oo_ IslN-j

where _ is the real part of s. Hence,

lim L(s)_ AN _ 0 (a =>0) (23)
s-oo sN

for the retardedsystem, and itfollowsfrom equation(16)that k = -N. Therefore,from

equation(18),the system is stableifand onlyif

= N _- (24)
2

For example, suppose the retarded system has the characteristic quasi-polynomial in

equation (15). Then, equation (24) indicates that L(iw), which is shown in figure 3, should

rotate by the angle 2(_)= _ for stability. The real part of L(iw) in figure 3 is

increasing much faster than its imaginary part; therefore, the change in the argument of

L(iw) as w varies from 0 to ooappears to be approaching _. This conjecture is veri-

fied algebraically as follows. With s = iw, equation (15) becomes

L(iw) = (1 - w 2 + 2_w sin wT) + (2_w cos wT)i (25)

The real part of L(iw) in equation (25) is

X(w) = 1 - w 2 + 2_w sin wT (26)

Notice in equation (26) that if

w2 > 1 + 2_w sin w_- (27)



then XCw) < 0. Certainly, equation (27) will be true if

w2 > 1+2_w (28)

The right-hand side of equation (28) dominates the left side as 0) approaches 0. How-

ever, as 0) increases, the left side will eventually dominate the right, and equation (28)

will be valid. Equation (28) is valid for all 0) > tom, where 0)m is the largest positive
real root of the polynomial equation

0)2 _ 2_w - 1 = 0 (29)

and is given by

0)m - _ + _/_2 +1 (30)

For the specific example being considered, _ = 0.2 and _-= 6.2. Thus, equations (26)

and (30) become, respectively,

X(0)) = 1 - 0)2 + 0.4w sin 6.20) (31)

¢om = 1.2 (32)

The real and imaginary parts of L(iw) are parametric equations in w, with 0)

increasing along the Mikhailov curve in figure 3. After 0) increases to 0) = w m = 1.2,

the corresponding X(w) value is X(0)m) = 0.056. Thereafter, 0) > 0)m and corre-
sponding values of X(w) will remain negative. In other words, if continued, the

Mikhailov curve in figure 3 will remain in the left half plane (second and third quadrants).

Since the curve in figure 3 does not encircle the origin, the change in the argument of

L(i0)) as w varies from 0 to 0olies in the interval

-_ < 0 < 3_.._ (33)
2 2

Since the argument of L(i0)) in figure 3 is zero at w = 0, O(w) = arg _(i0))_.

Hence,

cos 8(0)) = 1 - w 2 + 2_0) sin 0)7 (34)

_(2_0)cos 0)'r)2 + (1- 0)2 + 2_0)sinwT) 2



from which it follows that

lim cos 0(co) = -1 (35)

Equation (35), along with inequality (33), implies that O(w) -- _ as w -- _, so that the

system is stable for _-= 6.2 and [ = 0.2.

Kashiwagi (ref. 1) was dealing with retarded systems when he stated that the

Mikhailov criterion could be used with only limited success when there are constant time

delays in the system. He draws this conclusion from the second formulation of the

Mikhailov criterion, which is associated with characteristic polynomials. Indeed, as

substantiated by the example in this paper, the second formulation does not hold in general

for retarded systems; however, the first formulation remains valid if it is recognized

that the Mikhailov curve need not always rotate counterclockwise. The only requirement

is that the curve complete a rotation of N_ (eq. (24)). This appears to be the basic
reason for the discrepancy between earlier and recent works.

The first formulation of the Mikhailov criterion can be used to determine if a

retarded system is stable for a fixed set of time delays. In programing the criterion on a

digital computer, it is not necessary to express the characteristic equation in simplified

form, for example, like equations (1) or (3).

The Mikhailov criterion cannot be used readily to generate stability boundaries.

In this respect, however, parameter-plane methods (refs. 6 and 7, for example) are per-

haps more appropriate.

Neutral systems.- A system having the highest ordered derivative to appear both

with and without a time delay is called a neutral system. A class of neutral systems has

the following characteristic quasi-polynomial (ref. 5):

N N

L(s)- _ AjsJ+ _ BjsJe -_js (36)
j=0 j=0

where AN_0, B N_0, 7j_->0 for j _N, and -rN>0. (For AN{0 and B N= 0,

the neutral system reduces to a retarded system, provided there is at least one Tj { 0
for j 4 N.) These systems are stable if all the roots of equation (36) have negative real

parts and are not asymptotic to the imaginary axis (ref. 8). The stability is uncertain if the

roots are asymptotic to the imaginary axis. However, it appears that a system with such

roots would be too lightly damped. In addition, because of the uncertainty in system coef-

ficients, it seems desirable not to have a root too close to the imaginary axis. Within the

10



context of this paper, this condition is simply considered unsatisfactory. The system is

unstable if any root has a positive real part. (See ref. 9.) A practical example of a

neutral system is examined in reference 10.

The stability of neutral systems has been determined recently by the extended

_--decomposition method (refs. 11 and 12). In this section, the possibility of also applying

the first formulation of the Mikhailov criterion to the class of neutral systems is

examined.

The characteristic equation for the neutral system is L(s) = 0, which can be

expressed as

= N -TNS i + Bje sJ (37)ANsN BNS e + j
j=0

All roots of equation (37) must satisfy the relation

iNfAN[ - iBNIe Is < Aj[+ IBj[e Is] j (38)
j=0

which is obtained by applying properties of the absolute value to equation (37). Implicit in

inequality (38) is the requirement that as IsI - _ (i.e., the modulus of the roots increases

without bound),

lim ANt - B Ne =0 (39)Isl-

From equation (39), a becomes arbitrarily close to

That is, the real parts of the characteristic roots form a sequence which approaches cr .

As long as a _ 0, the roots will not be asymptotic to the imaginary axis. However, it
still remains to be determined whether there are any roots with positive real parts

(unstable).

11



Three distinct cases are of interest, namely:

A N
Case 1: --<1 or (x >0 (unstable)oo

B N

A N
Case 2: - 1 or a = 0 (unsatisfactory)

BN oo

A N
Case 3: _ > 1 or cr <0 (either stable or unstable)oo

B N

In equation (40), TN > 0. Thus, for Case 1, qoo > 0 and the neutral system is unstable.

For Case 2, _oo = 0, the roots are located too close to the imaginary axis, and the system

is considered unsatisfactory. Finally, in Case 3, (too < 0 and the neutral system is

either stable or unstable, being stable if and only if all roots have negative real parts.

The remainder of this paper is concerned with Case 3 of the neutral system. If it

could be shown that L(s) in equation (36) satisfies equation (16), then the previous

results of Chen and Tsay (ref. 2) could be used to justify the application of the Mikhailov

criterion. However, as the following analysis shows, this justification was not possible.

For convenience of discussion, define

L(s) = Ll(S ) + L2(s ) (41)

where

( )LI(S) = AN+BNe 7NS s N (42)

and

L2(s) = N_I (Aj + Bje'TjS)sj (43)
j=0

It will be shown that Ll(S ) is the dominant term of L(s) as s - oo in the right

half of the s-plane ((r _->0). Inequality relationships involving the magnitudes of Ll(S )
and L2(s ) are obtained from equations (42) and (43) as

12



-TN_
ILl(S)[->[ANI-BNe ]slN (44)

and

N-1

[L2(s)I_-< Aj + Bj e J Is[j (45)
j=0

If the coefficient of is[N in equation (44) is bounded away from zero (greater than some

positive number) and the coefficient of each [slJ in equation (45) is less than some finite

positive number, then eventually ILl(S)] will dominate IL2(s)l as s - oo in the right
half of the s-plane. There is no conflict with equation (39) because all but finitely many
roots of the characteristic equation are in the left half of the s-plane for Case 3.

For 0<a<oo and since IAN[>]BN[,the coefficient onthe IslN term is
bounded away from zero as

soitisgreaterthanthepositive_initenumberIANI- IBNI
For 0 < a < 0% the coefficient of the ]st j term is bounded above as

[Aj[+IBjle-'rJ°"_-<]Aj[+ IBjl (47)

soitislessthanthe_initenumberIA_+IB_l.Hence,thedom,nanttermofL(s)
is Ll(S ) as s- oo with a_---0, or

lim L(s) - 1 (a ->0) (48)

s-_ sN(A N + BNe -TNS)

Because of theexponentialterm in thedenominator,equation(48)isnot inthe form of

equation(16). Hence, atthispoint,applicationof the Mikhailovcriterioncannotbe justi-

fiedfor neutralsystems on thebasis ofthe resultsin reference2.

13



CONCLUDING REMARKS

The valid and invalid application of the first and second formulations of the Mikhailov

criterion to linear, time-invariant systems with time delays has been examined. It has
been demonstrated by an example that the second formulation of the Mikhailov criterion

definitely should not be applied to systems with time delays. The first formulation,

however, is directly applicable to delayed systems of the retarded type.

These facts appear to be the basis of the discrepancy in earlier and recent works.

The statement that the Mikhailov criterion had limited validity to time-delayed systems

in the earlier work was based only on the application of the second formulation to retarded

systems whereas recent work is equivalent to the first formulation, which does have valid
application for such systems.

At present, application of the Mikhailov criterion to neutral systems has not been

justified.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

November 22, 1978
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Figure 1.- Mikhailov curve.
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s,(f: e,
0 -a

(a)Negativerealroot.

I

S 3

(b) Complex-conjugate roots with negative real parts.

Figure 2.- Complex vector diagrams associated with factors of L(iw).
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Figure 3.- Mikhailov curve for system with time delay.
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