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SUMMARY

Droplet growth equations are reviewed in the free-molecular, transi-

tion, and continuum flow regimes with the assumption that the droplets are

"at rest" with respect to the vapor. As comparison calculations

show, it is important to use a growth equation designed for the flow

regime of interest. Otherwise, a serious over-prediction of droplet

growth may result. The growth equation by Gyarmathy appears to be

applicable throughout the flow regimes and involves no iteration.

His expression also avoids the uncertainty associated with selecting a

mass accommodation coefficient and consequently involves less un-

certainty in specifying adjustable parameters than many of the other

growth equations.

*Now with Martin-Marietta Aerospace, New Orleans, Louisiana



INTRODUCTION

When condensation is encountered in a wind tunnel, the test gas

may cease to properly simulate flow in ambient-temperature air.

Understanding the condensation process is essential for maximum

utilization of cryogenic wind tunnels because the onset of condensa-

tion effects determines the minimum useful operating temperature which,

in turn, determines the maximum benefits of cryogenic operation (see

references 1 to 4). An experimental program at the NASA Langley

Research Center has utilized the 0.3-meter transonic cryogenic tunnel

to establish a data base for determining the onset of condensation

effects under a variety of test conditions. Proper analysis of the

data from the 0.3-m tunnel and extension of the results to larger

cryogenic tunnels such as the National Transonic Facility (see

references 5 and 6) require the use of equations for droplet formation

and growth. With the assumption of no relative motion between the

droplet and its vapor, this report reviews and evaluates droplet

growth equations as they apply to flow in transonic cryogenic wind

tunnels using nitrogen as the test gas.

The authors would like to express their appreciation of Dr. Gilbert D.

Stein of Northwestern University for his helpful comments during the

preparation of this report.



SYMBOLS

c heat capacity of liquid, J/(kg.K)
P

D molecular impingement rate per unit area, !/(m2.sec)

D molecular evaporation rate per unit area, 1/(m2.sec)
e

k Boltzmann's constant, J/K

Kn Knudsen number, defined in equation (2)

£ mean free path, m

L latent heat, J/kg

m molecular mass of condensing vapor
V

P pressure, N/m2

Pr Prandtl number

i

r distance from the center of a droplet, m

r critical radius of droplet, defined in equation (1), mc

R specific gas constant of vapor, J/(kg.K)
V

t time, sec

T temperature, K

U internal energy, J!kg

velocity, m/sec

x position, m

mass accommodation coefficient

T ratio of specific heats

n gas viscosity, kg/(m_sec)

thermal conductivity, J/(m.K.sec)

thermal accommodation coefficient

p density, kg/m3

G surface tension, N/m

3



Subscripts

d relating to liquid droplet

s relating to saturated value

v relating to vapor



GROWTH ENVIRONMENT

Before the droplet growth equations themselves are presented, it is

useful to review the criterion for droplet growth, the impact of the flow

regime and the composition of the condensing medium on the growth equations,

and the assumption of no relative motion between the droplet and its vapor.

Criterion for Growth

For a droplet surrounded by its vapor, growth is characterized by the

vapor molecules condensing on its surface. Continued growth will be ensured

when the radius of the droplet becomes greater than a critical radius, r ,c

defined in reference 7 as

2_ ¸
r = (i)
c RvTvPd£n(Pv/Ps)

where G is the surface tension, Rv is the specific gas constant, Tv and Pv

are the temperature and pressure of the vapor, Pd is the density of the

droplet, Ps is the saturation pressure at the vapor temperature, and pv/Ps

is the supersaturation ratio. A droplet with radius rd = r will be inc

unstable equilibriumwith its vapor while a droplet of radius rd < rc will

evaporate. The g_owth of a droplet with rd > re is dependent on the size of

the droplet relative to the local mean free path and on the composition of the

surrounding medium. These two factors will be examined individually.

Flow Regime

The first factor governing droplet growth is the size of the droplet.

The Knudsen number, Kn, is a parameter used to define different regimes

of droplet growth, and is given as

£= (2)
2r d
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where _ is the mean free path and 2rd is the droplet diameter. A growing

droplet formed by the condensing vapor will initially be smaller than the

mean free path of the vapor, and therefore Kn >> l, This defines the

free-molecular regime. The growth of the droplet is determined by molecular

processes at the surface of the droplet, and kinetic theory provides the

governing equations in this case. As the droplet grows, it will eventually

become larger than the mean free path of the surrounding vapor and then can

be considered to be in a continuum flow regime, where Kn << 1. Macroscopic

transport phenomena will describe the further growth Of the droplet and

molecular processes will no longer be necessary for the analysis. The

situation where the droplet diameter is approaching and then surpassing the

mean free path, Kn = l, is called the transition regime. Here the importance

of a molecular description lessens while a macroscopic description becomes

more important.

For many condensation problems, it can be assumed that the droplet is

entirely confined to the free-molecular flow regime during its lifetimm,

thus avoiding the transition and continuum regimes. However, the

cryogenic nitrogen-gas transonic wind tunnels offer a different environ"

ment than normally encountered for droplet growth. The two primary differences

are the higher densities and longer dwell-times involved. In the 0.3-meter

tunnel for example, where typical stagnation conditions might be T = 120 K

and P = 5 x 105 N/m2 for a test section Mach number of 0.8, the mean free

path for nitrogen gas is on the order of i0-8 m in the test section. For

many of the past condensation investigations in supersonic and hypersonic

tests, the mean free path has been on the order of 10-7m (see references 8

and 9). This difference in mean free path implies that the droplets, by
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equation (2), physically do not have to be as large to attain a given

value of Kn. Also, since the molecular mean free time between collisions

is also porportional to mean free path, the smaller mean free path

will lead to higher collision rates and provide a higher growth rate.

Furthermore, whereas times for growth in supersonic and hypersonic

tunnels are often on the order of l0-4 sec (see, for example, reference 8),

the times for growth in the test section of the 0.3-m transonic tunnel can be as

long as 10-2 sec. When the longer dwell-times are coupled with the smaller mean

free path, the assumption that a free-molecular analysis is sufficient is no

longer valid. Thus what is needed for transonic cryogenic tunnels is a
i

growth equation or equations that describe droplet growth in free-molecular,

transition, and continuum regimes.

Composition of Condensing Medium

While the flow regime is important for droplet growth, the compo-

sition of the medium surroundingthe droplet is also important. The

0.3-meter tunnel uses nitrogen as the test gas and is consequently a

single-component system. A more common situation described in the

literature is the two component system which has the condensing vapor

dispersed in an inert carrier gas, where "vapor" is used to refer to the

condensable component and "gas" refers to the noncondensable component.



In free-molecular flow, condensation is determined by the kinetics

of molecular collisions. Once a droplet starts growing, it can only

continue to grow if the latent heat released by the condensing vapor

molecules is taken away. Heat can be removed from the droplet in two

ways - by evaporation or by collisions with either vapor or gas molecules

where the rebounding molecules receive heat energy from the droplet. The

presence of an inert carrier gas can increase the probability that a

vapor molecule will condense on the droplet because the inert molecules

can be continually removing the latent heat way from the droplet.

In continuum flow, growth depends on the transport processes of mass

diffusion and heat conduction. With an inert carrier gas present, heat

is again carried away by the gas so that vapor-droplet collisions are

likely to result in condensation. On the other hand, the limiting factor

for growth with an inert gas present becomes the diffusion of the

condensable vapor through the gas - the droplet can grow only as fast as

the vapor molecules can diffuse to it. With no carrier gas present,

diffusion is not important but the heat generated by condensation must

be carried away before the droplet can grow. Therefore, with pure

nitrogen gas, heat conduction is the limiting factor for droplet

growth in the continuum regime as well as in the free-molecular

regime.

Droplet Relative Motion

An additional assumption used to simplify the problem of droplet

growth concerns the relative motion of the droplets with respect to the

8



vapor. It is normally assumed that the droplets are "at rest" relative

to the surrounding medium so that convective heat transfer effects can

be neglected. Consequently, it is necessary to examine under what

conditions this "at-rest" assumption will be valid. The breakdown will

occur when the forces entraining the droplet in the flow are not strong

enough to keep its velocity the same as the velocity of the vapor. For

small droplets with Kn _ l, the molecular forces are normally sufficient

to keep the droplet at the vapor velocity. For a continuum environment

with Kn << l, the droplet will stay with the vapor as long as the viscous

forces tending to keep the velocities the same are as strong as the

inertial forces on the droplet. The larger the velocity gradient en-

countered, then the smaller the droplet has to be to stay with the vapor,

as can be seen by equating the inertial force term to the viscous drag

term as determined by Stokes equation. Following the reasoning of Wegener

and Mach in reference 7, one arrives at_the following expression for the

maximum allowablevelocity gradient for negligible velocity difference:

dx 2 Pd r2

where _d is the velocity of the droplet, _ is the velocity of the gas,

n is the gas viscosity, Pd is the liquid density of the droplet, and

rd is the droplet radius. If it is assumed that the velocity of the droplet

should not differ from _ by more than i%, the following table for

maximum velocity gradients for nitrogen _low at i00 K can be constructed:
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rd(m) (seo-l)

10-5 4 x i00

lO-6 4 x lO2

10-7 4 x lO4

l0-8 4 x l06

Assuming Stokes flow in constructing the above table is a conservative

assumption because as the Reynolds number of the droplet approaches

and then surpasses l, the actual aerodynamic drag on the sphere will

become larger than that predicted by Stokes flow (see reference 10)

and will consequently allow the droplet to experience larger gradients

than tabulated above.

To summarize, for transonic cryogenicwind tunnels using nitrogen_as

the test gas, there is no inert gas present and heat conduction away from

the droplet will be the limiting factor for the rate of droplet growth.

Because of the highdensities involved and the long dwell-times, droplet

growth in the continuum regime, as well as the free-molecular regime, must

be considered. The equations for droplet growth, as presented below,

will only be valid if the velocity gradients are less than those given

in the above table for the droplet size of interest.

EQUATIONS

Growth equations applicable to the environment of interest in cryogenic

wind tunnels are outlined along with the fundamental assumptions made by

10



the respective investigators. The equations are presented according to

their flow regime of applicability.

Free-Molecular Regime

Droplets formed by the condensing vapor (homogeneous nucleation)

normally begin growing in the free-molecular regime, where rarefied gas

assumptions hold. In particular, kinetic theory (see reference 9) pro-

vides an expression for the mass that crosses unit area per second toward

one side. This molecular impingement rate per unit area, D, on a droplet

is given by

P
D = v (4)

kT,)1/2v v

where the values of the variables are taken from the condensing vapor and

m is the molecular mass and k is Boltzmann's constant. In order to
V

determine the flow rate leaving the droplet, it is assumed that at

critical radius, r , the droplet is in quasi-equilibrium and evaporatesc

at the same rate as impingement occurs. Then the evaporation rate per

unit area, D , can be taken to be equal to the impingement rate on thee

droplet, or

De (2WmvkTd)i/2 (5)
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where Td is the droplet temperature and Pr_Td) is the value of pressure

which would just make the droplet of radius rd a critical-sized droplet. Thus,

the difference between the condensing, incoming mass and the evaporating,

outgoing mass is used to calculate the growth rate. In order to complete

the growth rate equation, a mass accommodation coefficient, _, is also

needed. The value of a indicates the fraction of molecules that actually

penetrate into the droplet when they strike it. Altogether, for the

free-molecular regime the growth rate is given by

_u _ [ % _(_)] (61d_ _ _ _d (21_kW V _ / 2 -- (2_mvkT dl )ll/2J

A disadvantage with this expression is that the droplet temperature, Td,

is an unknown quantity.

Hill, in reference ll, extends the above results by providing an

equation to solve for the droplet temperature, Td. He does this by

balancing the net rate of energy flux to the droplet with the rate of increase

of its internal energy. The energy equation he obtains, after being

simplified for a single component gas, is

_(1 -- _ _)I-- _(i -- _) _ (_ - I )

Pr(Td)T_--•

+_(1-__)(A-l)__---_=o (7)
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where

IX+IK =
v 2y-l'

is the mass accommodation coefficient, _ is the thermal accommodation

coefficient, and

A=(¥-1)L
yRT

V

where L is the latent heat of the condensing vapor. The first term in

equation (7) shows the energy difference between molecules condensing

on the droplet and molecules evaporating from the surface of the droplet.

The second term is the energy of reflected vapor molecules from the

surface of the droplet. The last term is the increase of the internal

energy of the droplet neglecting the energy needed to raise the

temperature of the droplet, which is shown to be negligible for the small

droplets expected in free-molecular flow. In order to solve for rd,

Td, and Pd' an iteration procedure is required.

In reference 9, Wu has developed a set of equations that bypasses

the iteration necessary for Hill's expression. Wu starts with kinetic

theory and defines a new mass accommodation coefficient, _', as
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and calls it the "effective" mass accommodation coefficient. The last term

is the ratio of the evaporation rate over the condensation rate. The

growth equation can then be written as

drd m P
= _, __vv v

dt Pd r k v i/2

Next, Wu specifies the conditions of the droplet and its environment so that

simplifying assumptions can be made. With these assumptions Wu modifies _'

by developing four separate equations based on different assumptions.

Referring to figure l, the assumed conditions of the droplet include

thermal and near-thermal equilibrium in addition to saturation and near-

saturation temperature. For the present case of no inert carrier gas,

Wu's approximation of the droplet being close to saturation temperature

is satisfactory. With this assumption, Wu finds that _' becomes

+ G g Lmv _Lmv i_ (lO)

where Ts is the saturation temperature for a droplet of radius rd at a
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vapor pressure of P . (The curve labeled P in figure i describes pressures
v rd

at which a droplet of radius rd is just critical-sized. That is, for a giwm

value of Td, if P > P then the droplet will grow. If P < P , then the
v rd v rd

droplet will evaporate. )

In another method, Oswatitsch in reference 12 also used kinetic

theory but in a different way. Oswatitsch took the expression for heat

transfer and matched it to the expression for mass increase times the

heat of vaporization. This resulted in the following equation for growth

rate:

v R (ll)
dt - 8 pd5 _-- d- _v "V

This equation was specifically derived for a droplet condensing in its

vapor without a carrier gas. Oswatitsch also derived an expression

for droplet temperature by including the Clausius-Clapeyronvapor-pressure

curve along with the heat transfer equations. This combination resulted

in the following equation,

T -T (R__) 2

s v 31

Td-T -i+_ (i2)v

i5/



which may be readily solved for Td. The value of Ts used by Oswatitsch

in equation (12) is just the vapor-pressure curve temperature, T (rd = _,S

P ) and does not take into consideration the droplet radius. Consequently,
V '

drd

Td and _ are both independent of droplet size.

Continuum Regions

In reference 12, Oswatitsch has also developed an equation for

continuum flow in which droplet growth is determined by thermal conduction

on a macroscopic scale. The final expression is

2 2 _v(_d- Tv)

rd = L Od t (13)

or

drd Xv(T d - Tv)
- (l_)

dt L Pd rd

where I is the thermal conductivity of the vapor. Unfortunately, Oswatitschv

does not give an expression for Td for this case as he did for the free-

molecular case. Consequently, Td will be assumed in the present paper

to be equal to Ts (rd, Pv ). Oswatitsch proposed that his first expression,
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equation (ii), be used while the droplet is in free-molecular flow while the

second equation (13), be used for continuum flow, but there fs un-

certainty in describing droplet growth in the transition regime•

Fuchs in reference 13 does a survey of evaporation (or condensation

in reverse) of droplets in the presence of an inert carrier gas. Although

the inert carrier gas invalidates many of his equations for the present

single component system, the beginning of Fuchs' derivation starts with

an equivalent to equation (14) before he begins to make assumptions

appropriate for the presence of an inert carrier gas.

All Flow Regimes

Gyarmathy in reference 14 uses diffusion and heat conduction to

develop a continuum equation which closely approximates droplet growth in the

free-molecular regime as well. For a pure vapor Gyarmathy's droplet growth

equation reduces to

r
c

• (15)

:--
2 8¢g- mn

dt PdL i + .5 Prg _ y

where Pr is the Prandtl number for the gas, T is the corresponding
g s

value of temperature for a value of P on the vapor-pressure curve, andv

y is the ratio of specific heats. The fact that the applicability of

this equation extends from the continuum regime to the free-molecular

17



regime makes it the most useful of the equations reviewed. Also, equation

(15) does not depend on the mass accommodation coefficient. However,

Gyarmathy's expression neglects (as do Oswatitsch's continuum equation

7

and all of the free-molecular equations) the change in internal energy

of the droplet due to a varying droplet temperature

-(16)AUd= 3 %CpA¢d ,

where C is the heat capacity of the liquid.
P

While Gyarmathy states that this assumption is excellent for droplets of

radius 10-6 m or less, if droplets much larger than 10-6 m pass through

significant temperaturegradients in the flow, then the droplet growth

equation should be expanded to include this term.

18¸



RESULTS AND DISCUSSION

The droplet growth rates predicted by the various growth rate

equations are presented for a pure nitrogen gas with P = 2 x l05 N/m 2v

and T = 73 K. The different rates are compared to the rate predicted by
V

Gyarmathy, equation (15), because equation (15) is designed to be applicable

in all of the flow regimes. Shaded areas representing uncertainty in the

equations are also shown to indicate the degree of uncertainty that

exist in specifying parameters used in the various equations.

The comparisons between the free-molecular expressions of Hill,

Wu, and Oswatitsch and the equation of Gyarmathy are shown respectively

in figures 2, 3, and 4. Theuncertainty in what value to assign to

mass accommodation coefficient, _, is responsible for the large un-

certainty bands in the three graphs.

It is not clear what the value of _ should be or whether it should

be the same for one-component or two-component flows. For the

case of a single component test-gas, steam, Hill found that experimental

nozzle flow data correlated best with his growth equation if _ was

taken to be 0.04. Similarly, Oswatitsch stated that his own data with

steam suggested a value for a of 0.03 in order to match the data to

the predictions of his equations. On the other hand, Wegener and Wu

in reference 15 recommend a value of _ of 0.7 for growth equation developed

by Wu. The presence of an inert gas in their data may be responsible for

some of the difference in a.

In recent years, determination of mass accommodation coefficients

from film condensation experiments have led to estimations of _ much

higher than 0.04. For example, Mills and Seban in reference 16 have

19



suggested that the value of G for steam should be somewhere between

0.45 and unity. This range of values, if also applicable for droplet

condensation, would seem to support the value recommended by Wegener and

Wu but would raise some questions about the experimental comparison of

Oswatitsch and of Hill in addition to questioning the accuracy of

equation (15) for both the free-molecular and transition regimes.

Consequently, in constructing the uncertainty bands for the free-

molecular calculations shown in figures 2, 3, and 4, a heavy line is

drawn for the value of _ used by the respective author while the un-

certainty band extends over a range of a from 0.03 to 0.7. While the

choices of _ vary between Hill, Wu, and Oswatitsch, the uncertainty band

regions are very similar between the three authors. Also, at small values

of r, equation (15) falls inside the uncertainty regions with the exception

of the one calculated from Oswatitsch, which does not depend on the radius

drd
of the droplet and consequently predicts a constant value of d-_- " This

is in error at the smaller values of rd approaching rc, where Td = Tv

and where the droplet should have a zero growth rate.

In order to present a comparable uncertainty band in the continuum

expression of Oswatitsch, an examination of the probable derivation of

equation (14) was undertaken to see if any possible difficulty existed

in specifying the continuum parameters as occurred for _ in the free-

molecular expressions. As shown in the appendix, a problem does appear

in having to assume that _ is independent of temperature in order
V

to arrive at equation (14). However, in most cases _ is nearly
V

2O



porportional to temperature, so if one assumes that

(T)=  v(md) (IT)
v Td

then the following growth equation can be derived (see the appendix)

drd  2v) (18)
dt 2L PdrdTd

Nevertheless, as seen in figure 5 where the heavy line represents the

original equation of Oswatitsch and the uncertainty band extends to the

line corresponding to equation (18), there is not a great deal of

difference between equations (14) and (18) for the present P and
V

T conditions. Values for the parameters in these equations were taken
V

from, or extrapolated from, reference 17.

As seen in figure 5, equation (14) and equation (15) asymptotically

approach one another as the continuum regime is reached. This agreement is

to be expected as the two equations are equal in the limit of Kn . 0
r

and _ . 0.

rd

A similar attempt was made to determine what assumptions had

been made in deriving equation (15). Unfortunately, reference 14
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cited for Gyarmathy does not contain the necessary information to

retrace a derivation, so his assumptions could not be examined. In

particular, it is not clear how the numerical factor 1.5 in the

denominator of equation (15) is determined. Nevertheless, as a rough

approximation to the possible uncertainty in equation (15), one may

substitute into the equation a range of values for the parameters

Pr and y (_, the thermal accommodation coefficient, is consistently
g

recognized to be unity in the literature so no change was made to this para-

meter). If the derivation of equation (15) assumed an ideal gas, then perhaps

y should be taken to be 1.4 instead of the real-gas value of 1.53.

Similarly, perhaps Pr should be taken to be the ambient temperature
g

value of 0.726 instead of the real-gas value of 0.844. The range in

values that results from the various combinations of the above values

of y and Pr are shown in figure 6, where the heavy line represents
g

equation (15) with the real-gas values of y and Pr .
g

As shown in figures 2 to 6, care must be taken in selecting an

equation to predict droplet growth rate. Serious over-prediction of

droplet growth can result if free-molecular expressions are applied

to either the transistion or continuum regimes or if continuum

equations are applied to the transistion or free-molecular regimes.

In the free-molecular equations, setting the value of e, the mass

accommodation coefficient, is a problem since a range of e between

0.03 and 0.7 can result in a factor of 3 difference in growth

rate. Equation (15) seems to yield reasonable magnitudes of

growth rate in the free-molecular limit as well as in the continuum

limit and appears to be well-behaved in the transition regime. Also,

22



equation (15) has less uncertainty in specifying parameters than the

free-molecular expressions. Consequently, for the present study equation

(15) is the preferred representation for droplet growth in all flow

regimes.

23



SUMMARY OF RESULTS

It is important to use a droplet growth equation that is designed for

the flow regime of interest - free molecular, transition, or conti-

nuum. A serious over-prediction of droplet growth may result if an

equation is incorrectly applied. The growth equation by Gyarmathy appears

to be applicable throughout the flow regimes and therefore offers

an easy solution for droplet growth. The expressionby Gyarmathy also avoids

the uncertainty associated with selecting a mass accommodation coefficient.

Care, however, must be taken when droplets are larger in radius than l0-U m.

First, possible differences in velocity between the gas and the liquid

droplet can occur if pressure gradients are encountered because of the

inertia of the relatively large droplets. Second, the growth rate

equations have neglected the heat capacity of the droplets and this may

lead to inaccuracies if the large droplets encounter temperature

gradients.

24



APPENDIX

CONTINUUM GROWTH EQUATIONS AND THEIR

THERMAL CONDUCTIVITY DEPENDENCE

Expressions for continuum droplet growth may be derived by equating

the latent heat released during condensation to the heat conduction away

from the spherical droplet. The exact form of the equation obtained

depends, however, on whether or not the thermal conductivity, _v' is a

function of temperature. If _ is assumed to be a constant, then
v

the expression of Oswatitsch, equation (14), is readily obtained. If
v

is not assumed constant, a modified version of equation (14) is

obtained.

Starting with Fourier's law of one-dimensional, steady state, heat

conduction, one may write

dT

q = A v (AI)v dr

where q is the heat flow in J/sec, A is surface area in m2, and
dT

V

_-- is temperature gradient in K/m. For a spherically symmetric problem,

equation (AI) becomes

dT

q = _ 4WXv r2 v (A2)dr

25



Since q is just the total heat flux and is not a function of r or

T , one may separate variables in equation (A2) and integrate. The
v

integration, however, depends upon whether or not _ is a function
v

of Tv, and, consequently, r.

Thermal Conductivity Constant

If _ is independent of T -- and consequently r -- the equation
V V

(A2) may be simply integrated from r = r d to r = _ and from T = Td

to T = T . The value of q is simply
v

q = 4w_ - Tv) (A3)v rd(Td

If the heat flow is equated to the latent heat multiplied by the

rate of mass deposition on the droplet, one may write

drd
q = 4_r_ d--_--%L (A4)

Combining equations (AB) and (A4) gives

drd kv (Td - Tv)

= L Pdrd (14)

26



which is just the expression used by Oswatitsch.

Thermal Conductivity Variable

Separating variables and integrating equation (A2) leads to the

following expression when _ is a function of temperaturev

T

q =_4wrd _v _v(T)dT (A5)
Td

For many gases X (T) can be approximated by
v

T

as was done by Penner in reference 18 (see page 282). With the above

assumption, which appears very adequate for nitrogen, the right side of

equation (A5) can be integrated to give

2wrd kv(Td)(T2- T2) " (AT)
q = _ Td

27



Substituting for q,

= 2L O_rd_d (18)

which is just the corresponding droplet growth expression to equation (14)

assuming _v is a linear function of temperature.

28
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