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JSC -	 Johnson Space Center

Kbps -	 Kilo bits per second
Kg -	 Kilogram '	 .

KSC -	 Kcnnedy Space Center
km -	 Kilometers

Lbf -	 Pound-Force
Lbs -	 Pounds	 )a

`	 L/D -	 Length/Diameter
LES -	 Low Energy Stage
LH -	 Left Hand

MCDS -	 Multifunction CRT Display System
MCEM -	 Mechanical Cost' Evaluation Methodology
MDM -	 Multiplexer-Demultiplexer
MFBA -	 Mobile Flat Bed Assembly
MHz -	 Mega hertz
MLI -	 Multilayer Insulation
m -	 Meters
MMH -	 Monomethylhydrazine
MMS -	 Multimission Modular Spacecraft
MMSE -	 Multimission Support Equipment
mps -	 Meters per second
MSDP -	 Mission Station Distribution Panel
MSFC' -	 Marshall Space Flight Center

_ R

N -	 Newtons
nm -	 Nautical Mile

!	 NSI -	 NASA Standard Initiator

0&CF -	 Operations and Control Facility
OMS -	 Orbiter Maneuvering Subsystem
OPEN -	 Origin of Particles in the Earth Neighborhood
OPAF --	 Ordnance Payload Assembly Facility
OPF -	 Orbiter Processing Facility 	 x
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ABBREVIATIONS AND ACRONYMS (CONT'D)

PCM -	 Pulse Code Modulation
PCR -	 Payload- Change ovt Room
PCU -	 Power Control Unit
PDI -	 Payload Data Interleaver
PGHM -	 Payload Ground Handling Mechanism

' PK -	 Perigee Kick
PKM -	 Perigee Kick Motor
P/L -	 Payload
PRICE -	 Programmed Review of Information for Costing

and Evaluation
PSDP -	 Payload Station Distribution Panel
PSI -	 Pressure Systems, Inc.
Psi -	 Pounds per square inch

' psig -	 Pounds per square inch, gage

RCS -	 Reaction Control System
RCVR

-	
Receiver

RF Radio Frequency
RFI -	 Radio Frequency Interference

E RHCP -	 Right Hand Circular Polarization
t RMS -	 Remote Manipulator System

R -	 Retrieval
rpm -	 Revolution per minute

SAEF -	 Spacecraft Assembly Encapsulating Facility
SCOOP -	 System Technology Office Confirmation of Optical Phenomenology
S/DIU -	 Signal/Data Interface Unit
SDP -	 Special Defense Program
Sec " -	 _ _Second
SIO -	 Serial Input/Output
SOP -	 Standard Operating Procedure
SPST -	 Single Pole Single Throw
SRB -	 Solid Rocket Booster
SRM -	 Solid Rocket Motor
SSUS-A -	 Spinning Solid Upper Stage - Atlas Class
SSUS-D -	 Spinning Solid Upper Stage - Delta Class
STDN' -	 Space Tracking and Data Network

s	 ' STS -	 Space Transportation System

TCD -	 Technical. Characteristics Data
Td -	 The Time (moyzths) to design and develop or produce a WBS'item
TIG -	 Tungsten Inert Gas

t TM -	 Telemetry

xii



r.

r

ABBREVIATIONS AND ACRONYMS (CONT'D)
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TRS	 -	 Teleoperator Retrieval System 	 ,}
Ts	 -	 The Lead Time (months) measured from the start of cost accused

for the.item to the launch milestone date, for the initial item
TSP	 -	 Twisted Shielded Pair	 r+
Tx	 Transmitter

UARS	 -	 Upper Atmosphere research Satellite
UDS	 -	 Universal Documentation System	 #`

VPF	 -	 Vertical Processing Facility	 1

VPHD	 -	 Vertical Payload Handling Device
V	 -	 Revisit	 i

WBS	 -	 Work Breakdown Structure
WTR	 -	 Western Test Range

AV	 _ Delta Velocity	
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INTRODUCTION

This volume describes the work in Task 3, Conceptual Design c

Selected Propulsion Modes, Task 4, Interface Analyses and Task 5, Grc

Flight Operations. In Task 3, low energy conceptual stage designs wE__

developed and performance established. Additionally, adaptation to existing/

planned Shuttle upper stages were developed and performance established.

Task 3 also includes a discussion of integral propulsion stages. In Task 4,

selected propulsion modes and subsystems were used as a basis to develop ASE

design concepts. Orbiter installation and integration (both physical and

electrical interfaces) were defined. Task 4 also included development of

adaptations of LES using existing/planned ASE and Orbiter interfaces. In

Task 5, selected low energy stages from Task 3 and ASE from Task 4 were used

to define and describe typical ground and flight operations for a LES program.

The report is contained in five volumes and organized as follows:

VOLUME	 TASKS	 CONTENTS

I	 -	 Executive Summary

II	 1	 Requirements Definition

2	 Candidate Propulsion Modes

I:II	 3	 Conceptual Design

4	 Interface Analysis
	

i

5	 Ground and Flight Operations

IV	 6	 Cost Benefit Analysis

7	 Recommendations

V	 -	 Program Study Cost Elements

A listing of references applicable throughout the report is included at the

end of each volume.
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4.0	 TASK 3:	 CONCEPTUAL DESIGN OF SELECTED PROPULSION MODES

s

In this task the bipropellant and monopropellant concepts
a:

i selected in Task 2 were refined and conceptual designs established. 	 Four

primary efforts were addressed:	 evaluation of the requirements of the re-

vised payload mission model, refinement of each of the selected concepts,

selection of propulsion subsystem component and selection of other subsystems

components.	 The feasibility of using the propulsion system in an integrated

_ payload/propulsion mode was investigated and the impact of the low energy

stage on payload design trends assessed.	 Outputs of this task used in sub-

sequent tasks were the mass properties, performance and conceptual designs

of the selected propulsion modes.	 {

4.1	 REVISED PAYLOAD MISSION MODEL

As stated in Volume II,	 Paragraph 2.0, a revised LES Pay-

load Mission Model was provided for use in Tasks 3 through 6 which incor-

porated the payloads of the Space Transportation System 487 Model of 1978."

This payload mission model, Reference 22, was developed by Battelle Columbus

r Laboratories_ and was provided by the NASA in April 1978.	 The LES Mission	 1

4 Model. covers the time period 1980 - 1991.

Like the original payload mission model used in Tasks l ,and

f
2, the new model included a variety of payloads from small, Scout-class	 tj

automated spacecraft to large free-flying laboratories and observatories.

Destination orbits range from altitudes of a few hundred kilometers to a

few thousands kilometers with inclinations from 2.9 to more than 100 degrees.

Likewise, geosynchronous transfer orbits were not included in this new model.

The primary data base for the LES Payload Model was the NASA 	 3

487 Payload Model.	 However, some of the data in the 4 87 model required

clarification and/or changes for use in this study.	 Battelle contacted cog-

nizant individuals within the NASA and other appropriate organizations and

reviewed the mission data'.	 Since	 Scout payloads are not included in the

487 model, a list of planned Scout missions and supporting data was obtained

s
from the NASA Scout Program Manager and these missions were included in the

Battelle Low Energy Mission Model. 	 Information relative to unclassified DOD
4,7

payload missions (included in the 487 modelonly in general terms) was pro-

vided to Battelle by the Aerospace Corporation.

F^
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Table 4-1 compares the revised LES Payload Mission Model

with the original model used for Tasks 1 and. 2.	 Launch schedules by year

(1980 - 1991) are shown for ETR, WTR, and Scout launches. 	 The principal

differences between the models is a higher WTR launch rate in the revised
t

LES model in the mid-to-late 1980 1 s.	 This results from,a higher projected

number ofolar and sun-synchronousi s'p 	 m missions sponsored by non-NASA/non-DOD

users in the 487 model.

4.1.1	 Model Description ^•:

The payload/mission model, Table 4-11, covers a period ex-

tending from 1980 through 1991 and includes missions sponsored by NASA, U.S.

Government/civil organizations, DOD, and foreign organizations. 	 Planned

and potential Scout missions, both NASA and DOD, are listed. 	 The payloads

are identified by their mission names, sponsoring organizations, and by

their STS launch configurations, payload codes, and classes. 	 The mission
41

?

line items are numbered. sequentially and are referred to by these numbers

in Tasks 3 through 6. 	 `he data shown for the mission line items are annual

launch rate and schedule, mass and size of the payloads, the currently

planned launch system and the destination orbit (perigee, apogee, and in-

clination).

The launch schedules also were primarily taken from the NASA

487 Model.	 This fact produced some problems in that the schedules in some

instances reflect the expected need for retrievals and revisits of space-

craft.	 These requirements are reflected in Table 4-11 launch schedules as

"R" (retrieval) or "V" (revisit) whereappropriate.	 Since the Low Energy

Stage Study groundrules specify that the low energy stage be baselined as

an expendable stage, retrieval missions were excluded from the analysis. 	 Re-

visits, on the other hand, were assumed to represent additional LES missions

equivalent to the original spacecraft launch. i	 r

The above assumptions regarding_ retrieval missions and re-

visits-are reflected in the payload totals in Table 4-11. 	 Thus, in the

case of line item ##12 ("Gamma Ray Observatory") the three primary launches,

two retrievals and three revisits shown produce a total of only 6_LES pay-

loads - the retrievals not being counted.
4
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LAUNCH SCHEDULE

Sub
80 81 82 83 84 85 86 87 88 89 90 91	 1 92 Total

487 _LES MODEL

ETR 1 1 3 3 3 4 3 8 3 7 4 6 46

WTR - - - 4 6 7 8 9 11 8 10 11 74

SCOUT CLASS 3 3 4 1 - - - - - - - - 11

ORIG. LES MODEL

ETR 1 3 3 3 7 4 5 5 6 5 5 7 54

WTR 1 1 2 ` 5 6 8 5 6 4 9 6 58

SCOUT CLASS 5 3 4 1 — 1 — 1 — 1 — 1 17

Total

i

a

131

129



DELIVERY
nnwtr

MISSI(M SAS SPONSOR

/LAUNCHLAUNCH SCHEDULE LE Sw
PAYLOAD
TOTAL

MASS

kR

LENGTH STS
CONFIG-
URATION

APOGEE
INCL.
deg-

1

LAU3G1
SITE

PAYLOAD
CODE

PAYLOAD
CLASSAO 81 1 82 83 84185 1 86 87 88 1 89 1 90 91 92

DIA. PERIGEE
km

Extreme VV Explorer NASA-OSS 1 1 310
0_g/

.4.6 FF	 1
550/

 550 28.5 ETR AA.AOI P+A EC

High Ener	 • Explorer NASA-OSS I 1 1 1 4
4.61 63/

Low Ecercv Explorer NASA-OSS 1 1 2
1.8/ 56/

44 PT; :s%t00 o+s r.

C saic Background
Ex plorer (CCBE) NASA-CSS i 1 1 3, 816

2.9/

4.4 FF
3001

900 99 WT V-AFOI ?+A EX

IR Astronomy Explorer NASA- OSS 1 1 2 900
2.5/

1.51 FF
700-900

a8-99 ."rR AAAFO2 P+.k ry

-clectrotena^ic!.Explorer A SASA-OSS 1 1 2 680
1.8/

1. FF
00/

204 90 WTR r ;AF03 ?+A E:{

Lravity Prob e B
(Relativity) ZASA-OSS 1 1 910

3.6
2 FF

520/
520 00 IM 3CAF02

571/
?+A/ FF

Advanced Relativity NASA-OSS 2 2 910
3.6/

2.2 FF
520/

520 90 17LR ASAF33
S}1/
Pte;/SF

Piasca Frobe B \AS:\-OSS 1 1 300
3.07-

4. S-D
29,600/

370 90 HIR AG
5YJ

P-A/FF

Solar >:axl=um NASA-OSS R 1 R I R 1 R 1 4 2047
4.01

2.2 1015
463

463 28.5 ETR Ar_A-*Ol
S:1/
P.A OSS

Vppe r At.cspnere
Research Sat (CARS) \ASA-OSS 1 1 2400

5.01
4.0 MS

400-625
circ 52 ETR AE—;:02

S"7
P+A OSS

Ga=_..a Ray Observatory NASA-OSS 1	 1 1 R' I	 1 V V R 1 V 6 110000
7.3/

4.3 FF
400/

400 28.5 ETR ACAAO1
;:E3
P+A OBS

1.2M .l'-F.iv Observatory `KkSA-OSS 1 RL V V R 1 -5 10000
12.4

4.3 FF
500

500 28.5 ETR ADAAOL
LG
P+A OBS

Space Telescope NASA-OSS 1 R 1 V V' 4 9400 •4.57 FF
0

500 28.5 ETR ABAAOI
LG
P+A 03S

Large Solar Obs. \ASA-OSS 1 1- 9825
16.2

4.6 FF
350

350 28.5 ETR AD;A02
LG
P+A 03S

70TALS(LES PAYLOADS)'. ) 1 2 3 4 2 7 4 5 4 7 39



16.

17.

18.

19.:
20.

21.

22.

23.

24.

25.

26.

27.

TABLE 4-11 LES PAYLOAD MODEL (CONLD) SPACCr:RAFr
PAR127ETERS

DELIVERY
ORBIT

!MISSION NAME SPONSOR

LAUNCH SCHEDULE LES(c)
PAYLOAD
•An

!MASS
k9

LENGTH STS
CONFIG-
ORATION

APOGEE
INCL.
deg-

LAUNCH
SITE

PAYLOAD
CODE

^•^•
80 81 82 83 84 85 1 86 87 88

1
89 1 90 1

91 92
1

DIA.
m

PERIGEE
km

Earth Radla[ ion
=•-^^P	 Sa	 =z3SS NASA-OSTA 1 1 1	 454

4 . 3/
2 , 1 FF

704/
56 ETR APCAO1

LC/
+??;F

a	 a;, o NASA-OSTA 1 60
0.8

FF 5431
56 ETR ARCA01

SM
gpnrrr

LA;:DSAT D NASA-OSTA R1 R 1 R1 3 1700a ~	 2.2 KMS 704/
98.2 WTR BECBOI ;LPPIoBZ

Soil Moisture NASA-OSTA 1 1 1400
4.6/

1	 1.8 FF 570/ 98 WTR APCA02
LG1
AP?/r -

n1GSkT NASA-OSTA 1 1 270 0 ' 9/ FF 344/ 99 WTR ARCA02

V,i
A??] FF

SEaS;T B ::RSA-OSTA 1 1 3400
8.01

3.0 2415 7401	
0 85 {?R ACQF03 A^3%FF

TIROS O NASA-OSTA 1 1 1100/
162

7.0/
6

FF or
MIS

830 or
1700

99 or
103 G?R ACQE01

"r0 /
•Ce'?!FF

Envircnaental SA-OSTA 1 1 , 1 3
1600-
2000

S.2/
2.3 MMS

590/
56 ETA ACQ302 -'_DI

A? `FF

Es:th Sure SAS;:-05 TA 1 1 2 772 3.01 FF 910/210 100 WTR ARCF02
1

A??/FF

GLc-al R^sources
NASA-OSTA 1 1,

1600-
2000

6.1{/
4.0 1MS

700/
700 98.2 GTR APCE02

LC/
?.P?IFF

GRAVSAT h;SA-OSTA l 1 2 2000 2.2/ NyS 300/ OO 90 WTR APCBOl HP

TOTAL 1 3 3 3 1 2 1 1 2 17

NASA-OAST

S?ace Te chnology
yea	 h -RASA-OAST... 1 R1 RL 3 4500 3 ' 6/

2.4
FF 426/

426. 28.5 ETR A203A01 ..-!)/TECH
03S

TOTAL Y 1 1 3

%RSA SL?_C+RY

OSS Total 1 2 3 4 2 7 4 5 4 7 1	 39

DA Tntal 1 3 3 3 1 2 1 1 2 17

OAST Total 1 I 1 1 1 3

.-q SA TOTAL 2 51 6 7 3 1 10 1	 5 7 1	 6 81 59

(a) Includes P`!-1 propulsion module to be used for on-orbit attitude control and
ecationieeping only.

(b) Circular orbit.
(c) Retrievals not included.

o-



MISSION NA%fE SPONSOR

LAUNCH SCHEDULE LES{c j'

nA\'►.OA
TOTAL

!-ASS
,K

LENGTH STS
COSFIC-
URATION

APOGEE
ISCL.

629•
LALSCH
SITE

PAYLOPM
CODE

PAYLOAD
C!-^SS

R' 85186 P? 8 89 90 91

DIA.
m

PERIGEE
km

Tiros Operational NOAA I 1 1 I 1 1
1100/
MM

7.0/
3.6 FF or MS

830 or
1700d

98 or
Tn a BC E03

M!
Gnvt'Earth 1 R I R 1 3 1700b

4.3 / 500-700 97-
ca a	 e	 t

:ED!
e

Colt Earth
_ n 2 1700b

4.3/
2,2 "S

505-700 97-
nca 1.?R BrFE02

=!

Ccct Earth- C 2 17nob
4.3;

S
500-700 97-

ca WTR- BCRE03

oco TTr•._.	 cr c •	 i T R 3 3400b
8.0/

3.0 S 740 cir PIS VrR a Rp

SL; q U.S. Cott 1 RI Rl 3 3400 b
8.0/

WTR _cCRM5

`a'

-r	 o

v{-j	 Tn.; q	 SFASA U.S. Coot L RI RI 3400 b
8.0/

,T i	 t 85 WrR BC-E0
D

G- O'S

T 1 -7 :AT 1 International 1 R 1 2 _ 1700b
4.3/ 500-700 97-

a UT

"=71

I^tT_S ►T 8 International 1 R I 1 1700
b 4.3/

2 . 2
500-700 97'

a WTR	 I BOu9 (:^

I_ ?LSAT C International 1 R f 1 1700 b
4.3/ 500-700 97-

a UTR P.D9E03
!CD/
c c-s

ti^. :,7z^' $TN 
(l ow) CoT-me 1 R _ 1 2 170ob

4.3/
INS

500-700 g oca C	 OM

-r
(^L

?RIVATE ziM
.D Cf_5 --	 nv Commercial I R b

4.3/
T

500-700 97-
a WTR F^ii°GS ^^cr0_S

TOTAL 6 31 61 4 61 3 29

28

29

30

31

31

33

34

35

36

37

39

39
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TABLE 4-11 LES PAYLOAD MODEL (CONCLUDED) 	 sPACecRAFr.	 DELlvERY
DADAMCTCOC	 ADDf!

40.

41.

42

43.

44.

45

46

47

Cb 48.

49.

50.

51.

52.

53.

LAUNCH SCHEDULE LES(c) LENGTH STS APOGEE

PAYLOAD MASS CONFIG- INCL. LAUNCH PAYLOAD PAYLOADDIA. PERIGEE
MISSION SASE -SPONSOR BO 81 ''82 1 83 84 85 86 87 88 89 90 91 92 TOTAL kg m URATION km deg. SITE CODE CLASS

"an3dian Scientific Canada 1 1 2 400 1.2 FF 550 90 WTR AZLA01 SM/F/FF

ur3pean Scientific Europe 1 1 1
3 ' FF 550 28.5 ETR AZLA02 Si/F/FF

_:Alan Micro.ace Canada 1 1 2

±,02

 FF 909 99 NIR TJAPFOI lSED/F/FF

Ses ;{ Alcor Canada 1
1  FF 800 98.5 WTR BAPGOI MEOW"

earth. Rc^^urea•
arei¢a ( Lor)

-Foreign 1 1 1
3 1042 1.5 1	 FF 910 99 WTR AZ%r03 S?/F/FF

TOTAL 1 1 2 1 2 4
11

(a)

- Space Test
1 1

'510- MT - -
Pr^:ran DoD 1 1 1 1 1 1 1 1 1 1 1 1 12 1000 4.0 FF Circ. 100 WTRd BT DoD
»F Xeteoro ogical
Satellite DoD 1 1 1 1 1 1 1 1 1 9 1150 3.0 FF 750750 98.4 G'TR BT DoD

TOTAL 1 1 1 2 2 2 2 2 2 2 2 2 21

- rco Dn OSS 1 1 50-60
1.5/

0 8 Scout
27,000/

420 2.9 SH Scout

_San Marco D OSS 1 1.5
1 1 200 0.8 Scout 800/230 2.9 SDt Scout

_alai -Mesosphere Explorer OSS 1 1_5
1 165 0.8 .Scout 1 500/500 97 WTR Scout

A OSS 1 r	 )
1 54 0.8 Scout e200 2.9 S1 Scout

B OSS 1 r
- 1 66 0.8 Scout -200 2.9 SD1 Scour

ransit DoD 1 2 1 1
4 170-20C 0.8 Scout 1000 90 1A"IR DOD

TOTAL 3 3 2 1
9

71-1 TT.A7 SCOUT
1.

--anadian Scientific 2 1 2 145 0.8 Scout 550 90 WTR AZLA01 Scout

(a) Battelle 3/78 best esti--ate of unclassified low energy DoD missions. 	 (c) Retrievals not included.
(b) 296 if Shuttle launched. 	 (d) Launches in 1980-1982, 1984, 1986, 1988. 1990 were assumed

to be from ETR. The remainder were assumed to be from WTR.



The NASA portion of the LES Model includes a total of 27 STS

line items and 5 Scout Line items for a total of 64 payloads (59 STS pay-

loads, 5 Scout). Forty-five are small-to-intermediate size automated space=

craft and observatories (less than 3000 kg) and 19 are larger observatories.

The Solar. Maximum Mission (item #10) is to be the first use of 	 f

NASA's MultiMission Modular Spacecraft (MMS), which is currently under de-

velopment. The first spacecraft in the Solar Maximum program will be launch-

ed on a Delta expendable launch vehicle in.1979 (no ELV launches except Scout

are shown in Table 4-IL). All subsequent missions are to be performed by

the STS and are included in Table 4-II, beginning with the retrieval of the
i

Delta launched spacecraft. The MMS is a modular spacecraft bus intended to
1

be adaptable to a variety of applications. In addition to the Solar Maxi-

mum mission, use of the MMS is planned or is being considered as an option

on a number of NASA missions: Upper Atmosphere Research Satellite (item

#11), LANDSAT D (#18), SEASAT B (#21), TIROS (#22), Environmental Monitor	
i

Satellite (#23), Global. Resources Monitoring Information (#25), and GRAVSAT

(#26). In addition, MMS usage is projected in the 487 Model (and the LES

Model) to carry over to non-NASA missions evolving as follow-ons to NASA

programs such as LANDSAT, TIROS, and SEASAT.

The development of one or more optional propulsion modules is

included in MMS planning. A small propulsion module known as the PM -I is
j

already being developed and a larger module, PM-II is underconsideration.

PM-I will be used on LANDSAT and is intended to provide only in-orbit atti-

tude control, orbit maintenance, and the capability for minor orbit adjust-
a

ments. PM-II would be intended to perform orbit transfer from the Shuttle
to spacecraft operational altitude (and perhaps return). The PM-II was con-

sidered a candidate for the launch of MMS payloads in the LES Study.

In some instances, MMS spacecraft definitions shown in Table i

4-II include the PM-I,. Those cases are identified in the table with a foot-

note. The inclusion of the PM-I has no impact on the LES Study, since it is
9

not being considered for orbital transfers: The PM-II is not included in

any spacecraft definitions in Table 4-II.

9

I
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The non-NASA portion of the model includes 19 STS line items

and one Scout line item (Transit, item #52) for a total of 67 payloads (61

STS payloads, 6 Scout). Twenty-nine of these payloads are in the U.S. Govern-

ment/Civil User category. These are all envisioned as operational follow-

ons to the NASA TIROS, LANDSAT, and SEASAT programs. Consequently, the

mission definitions shown (spacecraft parameters, orbit parameters) corres

pond to those specified for the precursor NASA programs.

The TIROS Operational Spacecraft (item #28) represents the

only case in Table 4-II where the LES model launch schedule differs from

that shown in the NASA 487 Model. The 487 Model contains three line items

(ITOS A, ITOS B, and ITOS C) which have been replaced by the single TIROS

Operational line item in Table 4-II. The ITOS A-C series included STS

launches beginning in 1983. Current NOAA plans include one series of space-

craft beginning in 1978 and continuing through 1984 or 1985, and a second

series to be launched in the 1988-1991 time frame. The first series (now

in production) will be launched on Atlas F boosters and were therefore

omitted from Table 4-II. The second series will be STS launched and have

been included in Table 4-II.

DOD programs in Table 4-II include two representative line

items ( #45 and #46). In addition, four Scout "Transit" launches are shown

in (item #52).

There are a total of 5 STS line items (items #40-44) and one

Scout line item ( #53) representing foreign payloads in the model. These items

produce a total of 13 payloads (11 STS payloads, 2 Scout). Actually, items

40 and 53 could be merged as.they represent two phases of the same program, 	 l
d

"Canadian S.cientific". Table 4-III presents a summary of payload launches
by STS user and Scout launches furnished by Battelle for the LES Study.

4.1.2	 Model Review

The revised LES Mission Model (Table 4 -II) was reviewed to es

t

N

f+

! I
^t

a

tablish a more precise definition. of line items mass and orbital =characteris-
t ics, since some payloads had a range of mass values and/or a range of orbit
characteristics;. The following changes were made to arrive at a single pay-

load weight and/or orbit characteristics:

10



TABLE 4-1I1 1

MISSION CATEGORY 80 81 8

NASA

U.S. Govt/Civil

Foreign

DoD 1 1

Scout Class 3 3

TOTAL 4 4

TABLE 4-IV LES PAYLOAD MODEL SUMMARY - USED IN STUDY

LAUNCH SCHEDULE

MISSION CATEGORY TOTAL'80 81 82 83 84 85 86 87 88 '89 90 91

NASA 2 5 5 7 3 10 4 7 6 8

3

57

U.S. Govt/Civil 1 6 3 6 4 6 29

Foreign 1 1 2 1 2 4 11

DoD 2 3 2 2 2 2 2 2 2 2 21

Scout Class 3 3 4 1 11

TOTAL 3 3 8 9 8 11 11 17 13 1 15,14 17 12 9

F^e



o	 Line Items #22 and #28 (TIROS 0 or TIROS Operational) -

1100 kg and 830 km X 830 km X sun-synchronous inclina-

tion was selected to reflect a Free-Flyer STS configura-

tion.

o	 Line Items #23 and #25 (Environmental Monitor SAT (Low)

and Global: Resources Monitor Inforamtion System) - An

 average weight of 1800 kg was selected to reflect a

typical mass.

o	 Line items #45, #47 and #52 (USAF Space Test Program,

San Marco DM, and Transit) - Since a small weight spread

was indicate., the larger was selected for each case.

o	 Line Items #29, #30, #31 and #35 through #39 - An

average orbit of 600 km at sun-synchronous inclination

L was selected, since all of these payload missions were

characterized by the same 500 to 700 km circular orbit.

Teo additional modifications were made to the Battelle model

to arrive at a representative LES mission model. 	 These modif i cations were

J

made to reflect amore realistic LES requirement.- n

o	 Line Item #45 (USAF Space Test Program) - Since this line

item represents a spectrum of DOD space test payloads that

are not clearly defined, the launches in 1980 and 1981 were5';

moved to 1982 and 1983 respectively to be consistent with

the rest of the LES Payload/Model.

a	 Line Item #26 (GRAVSAT) t An orbit requirement of 300 km

(162 rim) circular was indicated which is essentially the

same orbit as the standard Shuttle orbit - 296 Kin (160 nm).

Therefore, the two launches were not included in the LES

model since a low energy stage system would not be required.

The LES Payload Model is summarized in Table 4-IV showing the

launch schedule by year, 1980-1991, for the various sponsors including DOD

and Scout.	 The resulting revised LES Payload Model includes a total of 129

individual payload launches.

12
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4.1.3	 Performance Requirements

The LES Study Mission Model derived from the Battelle Model

provided the payload mass for each of 'the missions as well as the destination

orbits. This information, together with standard Shuttle mission destination

orbits, provided the basis for establishing the energy required to effect an
orbit transfer for each payload mission.

'

	

	 The standard Shuttle mission destinations, defined in Ref-

erence 23 for Tasks 3 through 6 are shown in Table 4-V.

TABLE 4-V STANDARD SHUTTLE ORBITS

LAUNCH SITE	 CIRCULAR ORBIT ALTITUDE	 INCLINATION

ETR	 296 km (160 nm)	 28.5°
56.0°

WTR	 296 km (160 rim)	 90.00
98.0°

A

The only difference between these standard, Shuttle orbits and those pre-

sented in Volume II, paragraph 2.1.3 is the change from 104 degrees WTR	
a

inclination to 98 degrees. This change was the result of the large number
of payload missions requiring sun-synchronous inclination orbits in the new
LES Model. The 98 degree inclination standard Shuttle orbit is approxi-

F,
	 mately in the center of the LES mission model sun-synchronous payload

't

	

	 missions and therefore is more representative of the expected Shuttle opera-

tion for these missions.

As in Task 1, the payload energy requirements were computed
based on the four standard Shuttle inclinations and the initial operational
date for the WTR launch site (1983). The required -velocity increment (AV)
was computed for orbit transfer from the ,Shuttle orbit altitude (296 km) and
standard inclination to the payload destination 'orbit altitude and inclina-
tion. Again the inclination change requirements were held to a minimum by
assuming that the Shuttle orbit inclination was the one closest to the pay-

load destination orbit inclination. The velocity increment for each payload
of the LES Mission Model is presented in Figure 4.1, where the data points
are identified according to the Line Item number of Table 4-II.

13
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A review of the velocity increments required for the revised

LES mission model as compared to the original mission model shows that there
is a tighter grouping of payloads in the 1000 m/sec or less range. This
grouping tends toward a smaller velocity requirement for the revised model

in the range of 500 m/sec or less. Additionally, there are fewer payloads
requiring very large velocity increments from 4300 to 5400 m/sec in the

i	 revised model, since the number of identified Scout-class payloads is re-

duced. However, three Scout-launched payloads remain in the revised model

to be launched prior to 1983 (Shuttle operational from WTR). Four Scout
payloads are in the 3100 to 3300 m/sec range with the energy requirement

for one slightly higher due to a weight increase from 64 kg to 200 kg.
A further examination of these velocity increment require-

ments presented in Figure 4.1 led to a more realistic definition of the
r	 Low Energy Regime for purposes of LES concept refinements in Task 3. A

generalized velocity increment requirement was superimposed on the LES mission
model requirements of Figure 4.1 reflecting the velocity, increment re-

quired to provide an inclination change of 28.5 degrees as well as to pro-
vide a typical orbit altitude of 1111 km (600 nm) representing the lower
fringes of the Van Allen belt. This velocity increment, approximately
3650 m/sec, is shown in Figure 4.2 along with several other generalized
velocity increment requirements: to change altitude only (up to 1000 km),
to achieve a 1000 km orbitwith 12 degree inclination change, and to earth
escape from the Shuttle orbit with no inclination change. The region bounded

by the solid line was taken as the new "Low Energy Regime" definition for

Task 3. The energy requirements for the three payloads which appear outside
the boundary (Payloads number 49, 52 and 53) reflect the energy required
to deliver these payloads with the STS from ETR into polar or sun-synchron-
ous orbits. After 1982 (when STS is operational from WTR) the velocity re-
quirement for payloads of this category is less than 1000 m/sec. The pay-
load missions are coded, in Figure 4.2 to reflect ETR and WTR launches.
4.1.4	 Payload Characteristics and Requirements

A review of the LES payload model was conducted to determine
if the payload size, mass and destination accuracy requirements should be	 a

changed from those established in Task 1. The review revealed a trend to

i5
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larger diameter and shorter length payloads for those payloads planned for

i ,

	

	 the later half of the twelve year launch period. This trend is toward a

payload shape which more efficiently utilizes the volume of the cargo bay.

The requirements for longitudinal accelerations, orbit in-

sertion accuracy and spin capability established earlier in Task 1 and as

shown in Volume II, Table 2-VI were still valid for use in the conceptual	 9

design efforts of Task 3.

Grouping the payloads as shown in Table 4 -VI permitted the

establishment of a reduced number of payload envelopes and masses for the

trade studies with various stage configurations to arrive at arrangements

of stage/payload combinations which could be installed in the Orbiter cargo

bayin the most cost effective manner. A composite payload envelope is

shown later in Figure 5.3.

4.2	 REFINEMENT OF SUBSYSTEM CONCEPTS

The bipropellant and monopropellant concepts selected in Task

2 were refined by re-sizing for the revised mission model, propellant tank

arrangement, refined structural and subsystem weights, and the consideration

'r
	 of a vertical launch capability. Guidance and control system refinements

i	 were reviewed and a guidance subsystem selected.

4.2.1	 Shuttle Cargo Bay Packaging Arrangement

The modular bipropellant and monopropellant -concept] were

evaluated and selected in Task 2 without consideration of a vertical cargo

bay installation capability for either approach. Vertical installation`
	 -1

versions of these selected concepts were evaluated. Net cost savings of

approximately 20 $M compared to the launch costs of the Task 2 mission model

indicated that a vertical launch capability be included in the concept re-

finements. Two vertical installation approaches were selected. The first

centered around the rearrangement of the modular structure and tankage of

'Volume II - Figures 3.14 and 3.15 for minimum cargo bay length when install-

a

	

	 ed vertically. The arrangements for both bipropellant and monopropellant

stages are shown later in ` Figures 4,26 and 4,32, respectively. The second

approach was centered around the modular bipropellant stage and its capability

to generate a'very high velocity change for equatorial orbit payloads weigh-

ing up to 15 0 kg (331 lbs.). The higher weight and lower specific impulse

17
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MISSION NUMBER LENGTH
M	 (ft)

DIA
M	 (ft)

MASS
Kg (lb)

NO. OF
LAUNCHES
131

VERT.
C2
26
6 FIRST

YEAR

17 0.8	 (2.6) 0.8	 (2.6) 60,(132) 1 1 83

20 0.9	 (3.0) 0.9	 (3.0) 270 (595) 1 1 84

1 0.9	 (3.0) 4.0	 (13.1) 310 (683) 1 82

45 1.0	 (3.3) 4.0	 (13.1) 1000 (2205) 12 80

53	 47,	 48	 49	 50,	 51,	 52 1,5.(5.0) 0.8	 (2.6) * 11 11 80
1,t14^	 60	 20-6 	16^	 54	 66	 200} -
{320}{132}	 {441}	 {364}	 {119) {146} {441}

40,41 1.5	 (5.0) 1.2	 (3.9) 400 (882) 5 5 82

3,	 6 1.8	 (6.0) 1.4	 (4.6) 1000 (2205) 4 4 86
26 2.2	 (7.2) 4.0	 (13.1) 2000 (4410) 2 84

S 2.5	 (8.2) 1.5	 (5.0) 900 (1984) 2 2 88
24 3.0	 (9.8) 1.5	 (5.0) 772 (1702) 2 2 87
4 2.9	 (9.5) 4.4 (14.4) 816 (1800) 3 84

9 3.0	 (9.8) 4.6	 (15.0) 300 (662) 1 85
7, 8 3.6	 (11.8) 2.2	 (7.2) 910 (2007) 3 87

27 3.6	 (11.8) 2.4	 (7.9) 4500 (9921) 3 87
42 4.0	 (13.1) 1.5 (5.0) 15.23 (3358) 2 85

16 4.3 (14.1) 2.1	 (6.9) 454 (1001) 1 82-

10 4.0	 (13.1) 2.2	 (7.2) 2047 (4513) 4 84

18,29,30,31,35,36,37,38,39 4,3 (14.1) 2.2	 (7.2) 1700 (3748) 17 83

19 4.6	 (15.1) 1.8 (6.0) 1400 (3086) 1 84

2 4.6	 (15.1) 4.6	 (15.0) 2270 (5004) 4 83

11 5.0 (16.4) 4.0	 (13.1) 2400 (5291) 1 85
23 5.2 (17.1) 23	 (7.5) 1800 (3968) 3 85

46 6-.0	 (19.7) 3.0	 (9.8) 1150 (2535) 9 83

25 6.1 (20.0) 4.0	 (13-.1) 1800 (3968) 1 85

22, 28 7.0	 (23.0) 3.6	 (11.8) 1100 (2425) 7 85

12 7.3	 (24.0) 4.3	 (14.1) 10000 (22046) 6 83
21, 32, 33, 34 8.0	 (26.2) 3.0	 (9.8) 3400 (7496) 10 83

44 8.2	 (26.9) 1.5	 (5.0) 1042 (2297) 3 87

43 9.0	 (29.5) 4.0	 (13.1) 3110 (6856) 1 88

13 12.4	 (40.7) 4.3	 (14.1) 10000 (22046) 5 85

14 12.9	 (42.3) 4.5	 (15.0) 9400 (20723) ;4 84

15 16.2 (53.2) 4.6	 (15.0) 9825 (21660) 1 90

t

t

i
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1

1
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of the monopropellant concept precluded its consideration in this appli-

cation. Propulsion and other subsystem components for this modul -2 con-
figuration were the same as-the horizontal bipropellant stage except for

a rearrangement for vertical installation. A twelve tank version of this

approach is shown later in Figure 4.27. A four tank version of this arrange-
ment, through removal of the upper and lower rows of tank pairs, uses the

same primary structure.

4.2.2	 Structural Arrangement and Weight Refinement

Figure 4.3 shows . the modular LES structural arrangements

evaluated in Task 3. Each stage configuration_ was analyzed for a critical
payload/stage combination selected from Table 4-II. The structure was

designed to have strength and stiffness 'to withstand the environment dur-

ing prelaunch ground operations, Orbiter boost and shutdown, and deployment

from the cargo bay followed by free flight boost. Normal and emergency land-

ing conditions were considered for abort or options where LES was not de-

ployed from the Orbiter.

4.2.2.1	 Structural. Criteria - Structural design and environmental

criteria used to size the structure are found in Johnson Space Center docu-
ments, References 24 and 37. The critical design condition is for emergency
landing, a load condition where the ultimate factor of safety is 1.0. Table

4-VII shows the ultimate linear and angular accelerations for this condition
as compared to the boost (max), a critical normal operating condition where

the ultimate factor of safety is 1.4. The Gx acceleration for boost is
slightly higher (4.62 vs 4.5) yet the combined loads are greater for emer-

gency landing. Shipping and ground handling conditions were not critical

for the stage design.

TABLE 4-VII LES DESIGN LOADS ULTIMATE'

i

i

i

LINEAR - g ANGULAR-RAD/SEC2

-CONDITION X Y Z X-X Y-Y Z-Z

Boost (max) -4.62 -0.28 -1.05 -0.28 -0.35 -0.35

Emergency +4,5 +1;5 +4._50 +4.5 +0.738 +2.215
Landing
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Qualification structural static and dynamic tests were assumed	 1

to require two test articles. The static test article would be tested to

ultimate loads to qualify the structure for handling, flight, and landing

conditions. This article would be tested to failure. The structural arti-

cle would have actual or simulated systems for performing dynamic, vibro-

acoustic, and fatigue testing. This article would be refurbished and used

later as an operational unit.

4.2.2.2	 Structural Arrangement and Weil*ht Refinement — Parametric

weight variations, baled on empirically derived equations, were used in

Task 2 for the comparison of the many propulsion approaches under considera-

tion. In Task 3 a structural loads analysis and structural member sizing

was performed to determine the detail structural weights for the selected

concepts. Additionally, structural arrangement versus weight trade studies

concluded that an all truss structure as shown in Figure 4.3 was the optium

structural configuration. The parametric stage structural weight compari-

sons of four structural concepts are shown in Figure 4.4. The flat cross

(concept 1) was selected for the 8-tank horizontally mounted configurations.

Modules of these stage structures are removed to form the 2-and 4-tank

stage vertical and horizontal configurations. This modularity is shown in

Figure 4.3. The weight data of Figure 4.4 includes a 10% contingency for

.additional stiffness requirements for dynamic loads which were not con-

sidered in the analysis.

The all truss was selected for its structural efficiency to

support a wide variety of stage components requiring a large volume struc-

tural system.	 In addition, the truss structure provides access to fuel

tanks and system components without weight penalties associated with access

panels for monocoque and semi-monocoque structure.

Aluminum material (2219) was selected for the swaged tube

truss members because of its weldability, and high specific stiffness and

i	 strength.	 Joints and mechanical parts use the same material so that the

'	 joints can be welded or mechanically joined as dictated by fabrication

assembly requirements. 	 Approximately 70% of the joints are considered to

be welded to take advantage of weight savings.	 Weight efficiencies for six x

`	
I	

welded and mechanical joint configurations are presented in Figure 4.5. From
a
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this data the welded ball cruciform joint ® was selected for welded joints

and the Butt Plat e/Gusset Joint o was selected for mechanical joints.

Alternate materials to be considered in future study should

include titanium and graphite composites to determine the cost/benefits of

lighter but more costly construction. Titanium Ml -OgV) has similar speci-

fic stiffness but higher cost than 2219 aluminum. However, joint weld
r

strength and specific tensile strength of titanium could result in a lower

structural weight'at a higher unit cost. Graphite composites have a poten-

tial of 20% to 25% weight saving but also have a much higher unit cost and

additional higher development risks.

LES stages structural weight is affected by the stage, pay-

load and ASE interface. The weight impact is minimized by using ASE which

has support points for both the stage and for the larger payloads. The LES

modularized ASE cradle assemblies #1 through A, shown later in Figure 5.10,

provide variable geometry for supporting horizontal and vertical mounted
9

stage/payloads. Large horizontal payloads are supported near the cg so that

loads in the stage do not exceed the design condition where the stage sup-

ports a 200 kg (441 lbs.) payload without the additional ASE support at the

payload cg. The ASE is configured with a walking beam including a sliding

pivot joint to prevent Orbiter torsional and thermal deflections from load-

ing the stage structure.
Adaptation configurations of SSUS-A, SSUS-D and the LES stage

use existing SSUS ASE cradles which do not have additional support points

for payloads. However, these configurations are used to launch small pay -
loads weighing 200 kg (441 lbs.) or less which do not pe nalize the LES

stage structure.

4.2.3	 Stage Accuracy Requirements and Error Budgets

A pointing error budget of 2.5 0 (most stringent accuracy re-

quirement) at apogee kick ignition coupled with altitude, inclination and

velocity error accumulated throughout initialization deployment and flight

will meet typical three sigma Scout payloaddelivery accuracies as depicted

in Volume II Table 2-VI which was based on orbital mechanics analysis. The

error budget for the guidance and control Portion of the accumulated error

are shown in Table 4-VIII.
j
r
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TABLE 4-VIII LES ERROR BUDGET

ERROR SOURCE
3a MiOR: BUDGET,

(DEGREES)

Shuttle Cargo Bay Alignment Uncertainty 2.00

Shuttle IMU Error 0.5

LES Deployment	 Trip-Off 0.92

LES Guidance'Error 0.5

LES ASE Alignment Uncertainty (Alignment 0.5
between cargo bay and the stage)

RSS Value 2.37

11.2.4	 Guidance Subsystem Selection

A trade study comparing the advantages and the disadvantages

of spin stabilization versus 3-axis stabilization concluded the 3-axis 	 j

stabilization approach was the optium guidance system for the LES configura-

tions. Early in the study it had been assumed that a spin stabilized stage

with an active nutation control, similar to that used in SSUS, would probably

be adequate. However, additional analysis shows that the LES must have a

more sophisticated guidance system than the SSUS. Table 4-Ix is a compari-

son of the SSUS mission and the LES mission and shows that the requirements

are essentially the same through perigee kick (Ph) burr_. The missions are

different after this point in the flight. The SSUS mission is finished

after perigee burno ut but the LES mission continues through apogee kick (AK)

burnout, de-spin, and separation. In the case of the LES, it must be maneu-

vered to the correct attitude for orbit injection just prior to ignition

of apogee burn. Because of this attitude reorientation requirement, the

LES must contain accurate information from the time it is ejected from the 	 M

Shuttle until apogee burnout. The attitude reference must not accumulate
more than an additional one (1) degree error at apogee burnout to remain 	 V.

within the error budgets established in paragraph 4.2.3. Table 4-x presents

the advantages and disadvantages of spin stabilized versus 3-axis stabilized 	

g
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SSUS CONCEPT LES CONCEPT

• Erect SSUS in Shuttle Cargo Bay • Erect LES in Shuttle Cargo Bay

• Maneuver Shuttle and Align SSUS to Required • Maneuver Shuttle and Align LES to Required
Perigee Velocity Vector Perigee Velocity Vector

• Spinup SSUS with ASE Spin Table • Spinup LES with ASE Spin Table

• Eject SSUS from Shuttle at lft /sec • Eject LES from Shuttle at 1-2 ft /sec

_Utilize Active Nutation Control for Utilize Active Nutation Control Provided-
Cone Damping by Guidance System for Cone Damping

• Coast SSUS for 25 to 45 Minutes or More • Coast LES for 25 to 45 Minutes or More

-•' Ignite SSUS PKM at Appropriate Time or Position • Ignite LES Perigee Burn at Appropriate
Time or Position

• Separate Payload After PKM Thrust Tailoff
• Rotate LES to less Than 10 of Proper Attitude

• Payload Provides Required Reorientation for for Final Orbit Injection
Orbit Injection and the AKM Burn

• Ignite LES Apogee Burn - Maintain Attitude
Error < 10_,

• Separate Payload After AKM Thrust Tailoff
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LES G & C TYPE ADVANTAGES DISADVANTAGES

Spin-Stabilized with < l° • Fewer RCS Thrusters (1 or ?) • -Requires spin balancing of both the
Attitude Error Accumulation • Less RCS Control Impulse stage and the payload
and AYUM Reorientation • Lower RCS Cost • Requires spin table, spin motor(s)
Capability • Lower RCS Weight and slip-rings in the Shuttle cargo

bay
e Stage and payload must be designed

to withstand centrifugal loads
• Must be rotated (erected) in the

Shuttle cargo bay and thereby re-
quires additional cargo bay length

• Requires air-bearing simulator for
spin stabilization Verification for
each LES/payload combination prior
to flight

• Requires incorporation of payload de-
spin system

• Requires roll stabilized platform
and more complex software

• Inherently less accurate than a 3-
axis system

3-Axis Stabilized with < 10 • No spin balancing required for • More RCS thrusters (4 or more)
Attitude Error Accumulation. stage or payload s Higher RCS control impulse
and AKM Reorientation • No spin table, spin motor(s) or • Higher Cost RCS
Capability slip-rings rewired in Shuttle • higher Weight RCS

cargo bay
• Stage and -Dayload need not be de-

signed for centrifugal loads
• Need not be rotated (erected) in

Shuttle cargo bay resulting in
decreased cargo bay length



LES G & C'TYPE ADVANTAGES DISADVANTAGES

3-Axis Stabilized with < 10 •	 No air bearing simulator required
Attitude Error Accumulation for preflight control verification
and AKM Reorientation •	 No payload despin.system,required
Capability •	 No roll stabilized platform re-

quired and simpler software
(Continued) •	 Inherently more accurate than spin

stabilized system,
•	 Lower guidance system cost
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stages. The principal advantage of the spin stabilized stage is that it

requires a simpler and lower cost reaction control system (RCS). The 3-

axis system requires a more complex RCS but it requires a less complex

guidance system, structure, and Shuttle ASE.
k

As shown in Table 4-XI, the development cost for the'3-axis
stabilized system is $3,959,590 less than for the spin stabilized system

and the recurring unit cost is $581,490 less. This cost benefit is valid

for the 3-axis system provided that only four reaction control thrusters
are required for control. It was assumed that four thrusters could be

oriented to provide the three axis control. 	 This four thruster RCS arrange-

ment is shown in Figure 4.6.	 This is a valid concept provided that appro-
priate moment arms resulting in acceptable control accelerations are avail-
able in each of the LES/Payload configurations.

The 8-tank and the 4-tank bipropellant configurations with

selected payloads were examined using the four (4) thruster RCS installed

at 45 degrees with respect -to the appropriate control axis and the attitude

control Reaction Control System (RCS) fuel quantity was calculated. 	 The

'

Seasat B payload on the 8-tank bipropellant stage required 122 kg ( 270 lbs.)
a I

of RCS propellant assuming all worse case tolerances. 	 This was the highest
E

1
realistic fuel quantity required for the 8-tank configuration and was used

for sizing the propellant tanks for the three-axis stabilized configuration.

The RCS propellant requirement was subsequently reduced to 14 kg (30 lbs.)
by orienting the attitude control thrusters to provide velocity change as

well as attitude control.
Table 4 -XII shows the ,stage unit cost and user cost for the

spin stabilized versus the three-axis stabilized stage with the propellant

tanks sized to accomodate the 122 kg (270 lbs.) of RCS fuel,. 	 The larger y

propellant tanks required for the three-axis configuration result in an - a{
increased stage length and an increased user cost.

The total comparative launch costs of the spin stabilized

versus three-axis stabilized stages are shown in Table 4 -XIII.	 These costs

are based upon the 92 payloads included in reference missions B, C and D of
5

the initial mission model. 	 The total three-axis, configuration launch costs

` are slightly less than the total launch casts for the spin stabilized con-,

figuration. u
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LA)
0

SPIN STABILIZED 3-AXIS
SPIN STABILIZED WITH WITH NUTATION AND STABILIZATION WITH

SPIN STABILIZED NUTATION CONTROL ORIENTATION CONTROL ORIENTATION CONTROL

NON NON NON NON
ITEM RECURRING RECURRING RECURRING RECURRING RECURRING RECURRING RECURRING RECURRING

ACS 134.o 9566.21 ' 323.48 6377.47 252.59

ACCELEROMETERS (26.3) (26.3)

ATTITUDE GYROS (65.0) (65.0)

COMPUTER (122.3) (85.5)

SOFTWARE (1500) (1000)

ROLL STABILIZED PLATFORM (1300)

RCS

100# THRUST UNIT(S) 283 65.5 825 165.0

GSE

AIR BEARING SIMULATOR 100.0 1.0 100.0 1.0

TEST PROCEDURE 4.25 4.25

ASE

SPIN BEARING, SLIP-RINGS 851.0 851.0 851.0
SPIN-MOTOR (3 Sets) (3 Sets) (3 Sets)

OTHER

SPIN BALANCE FACILITY 9.0 9.0 9.0
& LABOR'

SPIN BALANCE ADAPTER 18.0 18.0 18.o
SPIN BALANCE PROCEDURE 14.0 14.0 14..o
INERT TANKS (8),& FILL 325.6 325.6 325.6
SPIN TABLE CARGO BAY LT 600 600 boo

CHARGE 1 "x$4o4l7/in-. )

TOTAL 1208.6 6o9.o 1312.85 744.o 11162.06 998.98 7202.47 417.59
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The total launch cost comparison of Table 4-XIII does not in-
clude costs associated with the stage and payload structural and subsystem

integrity necessary to accomodate centripetal loads of a spin stabilized

configuration.	 The stage and each of the payloads would have to be designed;

with heavier structure to accomodate the increase loads. 	 Also not addressed
r

in this trade study are-the user costs associated with additional length

required to accomodate erection of the stage and payload to the spin-up and

launch position iii the cargo bay. 	 The typical additional cargo bay length m

required is 30 inches and is equivalent to a user charge of approximately

$1 1 212,500, for each payload ($112M for 92 payloads). 	 The 3-axis system y

can be deployed from the cargo bay without erecting, therefore, no addi-

tional bay length for launch is required. 	 This, in fact is the primary

cost benefit associated with the 3-axis system, and overshadows previously

}

4

discussed cost advantages.	 The additional costs associated with the struc-

tural integrity and spin balancing will further increase the cost of the

spin stabilized stage compared to the three-axis stabilized stage, thus

making the latter configuration even more attractive.
i

An additional advantage of the three-axis stabilized system

is its ease of adaptability to various payload size and accuracy require-

ments.	 The system checkout, both in-plant and at the launch site, is also

simpler for the three-axis system.	 The spin stabilized system requires

careful gain tailoring to accomodate various payload inertia ratios and

stability verification using an airbearing supported simulator for each

payload:

Based upon the indicated cost benefits together with the

additional intangable benefits resulting from the simpler structural design
requirements and the simpler stage/payload processing, the three-axis`,

stabilized configuration was selected for incorporation in all LES designs.

A survey of available flight--qualified guidance systems that

could satisfy the LES requirements resulted in the selection of a single

system:	 the Teledyne Systems Company system presently being developed to

meet the NASA Scout Phase VIII guidance and control requirements. 	 This

system, utilizing the Teledyne SDG-5 tuned rotor ,gyros, has a three sigma

F'
33
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G & C DEVELOPMENT COSTS

SPIN STABILIZED

($ x 106 )

3-AXIS STABILIZED

($ x 10 6-

11.2 7.2

STAGE UNIT COSTS 118.0 119.5
(92 PAYLOADS)

SHUTTLE USER CHARGE 158.2 106.7
(92 PAYLOADS)

TOTAL 287.4 233.4
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drift rate of only 0.045 degrees/hour. The accumulated drift would be

0.09 degrees/hour maximum after a LES flight time of 1-1/2 to 2 hours which

is considerably less than 0.5 degree guidance error allowable, shown in

Table 4 -VIII.

The LES/Scout Phase VIII guidance unit consists of two, two-

degree-of-freedom gyros, three single axis accelerometers, supporting elec-

tronics, and a stored program general purpose digital computer. This unit

measures vehicle attitudes, accelerations, and performs the necessary compu-

tations, transformations, and signal processing for vehicle control and event 	
i

sequencing. Also contained within the guidance unit is all the signal condi-

tioning and formatting necessary for the telemetry system. The computer con-

tains 10K, 16 bit words of memory and uses fixed point arithmetic. The func-

tional schematic of this system is shown in Figure 4.7.

The development testing required for the selected guidance

system will be minimal since it is an existing, qualified system. The only

development testing that will be necessary is that associated with verifying.

the performance and integrity of the input/output modifications necessary

to adapt the system to the LES application. Nbst of the development effort

will be involved with the modification of existing software and the genera-

tion of new software compatible with the LES system requirements. All in-

put/output hardware modifications and the development testing necessary to

prove these modifications would be conducted by the guidance system manu-

facturer. Included in this vendor development effort will be the software

required to perform the development testing and the system acceptance test-

ing at the vendor's facility. The LES flight software and any LES contractor

in-house test software would be developed by the LES contractor and the de-

velopment testing assumed to be accomplished in the LES contractor's Soft'

ware Development Laboratory.

4.2.5	 Reaction Control System Requirements'

The Reaction Control System (RCS) thrust level and motor loca-

tion was determined to ensure that the proper control authority would be

available for all combinations of payloads and LES modular configurations.

Worse case tolerance build-ups were assumed in the analysis to insure that

the RCS authority would be conservative. In each case it was assumed that 	 `9

35

a



 ' rt

A

GUIDANCE UNIT
i

•
•

SENSORS
SENSOR 28 VOLT D.C. POWER POWER CONTROL

1
ENVIRONMENTAL UNIT ^.

&. CONTROL

• ATTITUDE
• PROGRAMMING
• TIMING & VEHICLE

{ SEQUENCING
• STABILIZATION GAINS

MIXING AND
FILTERING PYROTECHNIC COMMANDS IGNITION CONTROL a• RCS MOTOR VALVE UNIT
DRIVER _ i

a

`r
rn

ON-OFF MOTOR VALVE
• IGNITION RELAY COMMANDS REACTION

DRIVERS CONTROL MOTORS
_'• • TELEMETRY

' TELEMETRY OUTPUT
- TELEMETRYI _

SYSTEM

:

DATA INPUTS

UMBILICAL
STATUS OUTPUTS

FIGURE 4.7 GUIDANCE SYSTEM SCHEMATIC



tolerances Such as main propulsion thrust misalignment or LES center-of-

gravity offset, were additive and that the maximum value of each occurred

at the same time. Both the control forces required and the system d namic°q	 Y	 Y

response were considered in the analysis along with the extremes of pro-
a

pellant weights at the beginning and end of each flight.

Table 4-XIV shows typical control force requirements result-

ing from this analysis. Standard 444 .8N (l00 lbs.) force thrusters were

selected for the bipropellant configuration. These are mounted at a 100

cant angle to the LES centerline for roll control as well as pitch and yaw

control in all bipropellant stages except for the "adaptation" concepts.

For the SSUS-D and SSUS-A "adaptations" the thrusters were oriented per-

pendicular to the thrust axis to prevent the RCS plume from impinging on 	 '.

the booster. Analysis of the SSUS-A "adaptation" showed that the RCS con-

trol force required to overcome the maximum thrust misalignment forces of 	 t,

the SSUS-A motor was 1103.1N (248 lbs.). In all other bipropellant stage
i^

cases, less than 444.8N (1.00 lbs.) was required. Typical stage characteris-

tics used in the bipropellant analysis are as follows;

• Configuration Characteristics: 4 RCS Thrusters located

965 mm (38 in.) from CL, Each thruster canted at 10 0 for

roll control.

• Main propulsion thrust misalignment = 0.50

• Main propulsion installation tolerance 0. 250 r
• Main propulsion thrust = 3870N (870 lbs.) ±3%

• RCS Thruster thrust misalignment 1.00

• RCS Thruster installation tolerance 0.25°	 " µ

• RCS Thruster sizes available are 111.2N (25 lbs.) and

444.8N (100 lbs.)

• CG offset = 0.635 mm (0.25 in.) at burnout

4 .3	 PROPULSION SUBSYSTEM REQUIREMENTS AND COMPONENT SELECTION

This section summarizes the propulsion studies conducted, re-

quirements imposed and derived, and descriptions of resulting component

hardware selections. Included are both the modular bipropellant and modular

mono-propellant propulsion approaches selected in Task 2. The majority of
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CONFIGURATION

PAYLOAD RCS CONFIGURATION RCS FORCE
REQUIRED
N	 (LB)

RCS FORCE
SELECTED
-N	 (LB)N0. WEIGHT KG LB PARALLEL TO CB PERPENDICULAR TO

-Tank Bipropellant 21 3400,(7497) X 193.5(43.5) 444.8(l00)
8-Tank Bipropellant 9 300 ( 661) X 153.5(84-5)1 444.8(100)
4-Tank Bipropellant 43 3110 (6857) X 221	 (49.7) 444.$(100)
4-Tank Bipropellant 1 310 ( 683) X 157	 (35.3) 444.8(100)
4-Tank Bipropellant 5 900 (1984) X 152	 (34.2) 444.$(100)
Vertical Configuration

4-Tank Bipropellant 52 200 ( 441) X 219	 (49.2) 444.8(100)
Vertical Configuration

4-Tank Bipropellant/SSUS-D 48 200 ( 441) X 439	 (98.7) 444.8(100)
4-Tank Bipropellant/SSUS-A 52 200 ( 441) X 1099 (247) 344.4(300)
2-Tank Monopropellant 1 200 ( 441) X N/A 622.7(140)

2-Tank Monopropellant 43 3110 (6857) X N/A 622.7(140)

i

3i
1

i
3

1



the Task 3 propulsion-related conceptual design effort involved system re-

sizing based on refinement of stage weights, packaging studies, thermal

analyses, examination of alternate components, and definition of system

characteristics.

4.3.1	 Requirements

The low-cost objective of this study for a conceptual pro-

pulsion stage was to develop a configuration that would have a short pack-

age length, low development cost, low recurring cost and a low risk factor.

Configurations selected and components baselined in Task 2 met these re-

quirements, therefore they were retained in Task 3 and were refined to 	 j
i

establish the conceptual designs. A summary of requirements and design

objectiveo, are Wiz,, Table 4-XV. Sizing studies conducted for the low energy	 d

regime requirements of Figure 4.1 resulted in the propulsion system charac-

teristics in Table 4-XVI and Table 4-XVII for the bipropellant and mono

propellant systems, respectively. A typical schematic of the bipropellant

system is illustrated in Figure 3.7.(Volume II). Table 4-XVIII provides

the bipropellant system parts lists, quantities and weights consistent

with Table 4-XVI. 	 1

4.3.2	 Main Thrusters

The desired thruster features are: short length, compact

size, moderate thrust level, high impulse thruput, low cost, lightweight, 	 I

flexible duty cycle, low feed pressure, suitability for buried packaging,
i

off-the-shelf proven, Shuttle compatible and low attendant risk Consider-

ing the above features, the Marquardt R-40A Space Shuttle Reaction Control

Thruster was baselined as the LES bipropellant PK/AK thruster and the
—d

Rocket Research Corp. MR-104 Mariner Jupiter/Saturn '77 RCS Thruster was

baselined as the LES monopropellant PK/AK thruster.
r

Thirty-eight R-40A thrusters are used in the reaction control

subsystem and the aft propulsion_ subsystem of the Shuttle Orbiter. The unit

provides the control force for vehicle attitude control and 3--axis trans-

lation. The thruster is designed to provide high reliability, minimum

weight, high performance and minimum maintenance and servicing. Coated

columbii)m C-103 alloy construction is used for the combustion chamber and

nozzles. A dynaflex`insulation system is retained by a. steel mesh enclo-

sure. The individual propellant fluid pressure actuated valves provide
r.
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-TABLE 4-xv

PROPULSION SYSTEM REQUIREMENTS AND DESIGN OBJECTIVES

o SHORT PACKAGE LENGTH

o LOW DEVELOPMENT AND RECURRING COST

o LOW RISK

o 3-AXIS STABILIZED

o MAIN PROPULSION AND REACTION CONTROL SYSTEMS SHARE SAME TANKAGE

o PREPACKAGED PROPELLANT TANKAGE WITH LONG TERM STORAGE POTENTIAL

AND NO SERVICING AT LAUNCH SITE

o AVOID TWO-PHASE FLOW TO THRUSTERS

o PROVEN HARDWARE OR TECHNOLOGIES WITH LITTLE OR NO COMPONENT

DEVELOPMENT OR QUALIFICATION TESTING

o PROPELLANT TEMPERATURE -4 0 To 49°C (25 0 TO 120°F) --BIPROPELLANT

1.4 0 To 49°C (34-5 0 TO 120°F) --MONOPROPELLANT

o MODERATE ACCELERATION/THRUST LEVELS

o EQUAL BIPROPELLANT TANK VOLUMES FOR FUEL AND OXIDIZER

o DESIGN VERIFICATION TESTING AT SYSTEM LEVEL TO DEMONSTRATE NO

DEGRADATION FOR INTEGRATED SYSTEM AND SUITABILITY FOR QUALIFICATION

o QUALIFICATION TESTING AT SYSTEM LEVEL TO PROVE COMPLETE SHUTTLE

SUITABILITY, PERFORMANCE ADEQUACY AND READINESS FOR PRODUCTION

o COMPATIBLE WITH A LARGE RANGE OF VELOCITY CHANGE REQUIREMENTS

(MODULARITY)

40



WEIGHTS Main Propulsion System (excludes reaction control
kg(lbm) thrusters, lines and instrumentation) 2147	 (4733)

• Useable Perigee/Apogee AV Propellant 1597	 (3520)

• Useable RCS AV Propellant 72.5	 (	 160)

• System Inerts and Unuseable 477.5	 (1053)
Propellants and Pres surant

CONFIGURATION • 1 - R-40A Bipropellant Thruster
cm(in.) Isp, - 2746 N-sec/kg (280 lbf-sec /lbm) Steady State

• 8- Conospherical Propellant Tanks
-	 O.D.	 63.5	 (25)
-	 Length 101.6	 (40)

8- Spherical Pressure Tanks

-	 O.D.	 39.4	 (15.5)

• 4- R-4D Bipropellant Reaction Control Thrusters

-	 Share Main Propellant

(t



WEIGHTS_ _ Main Propulsion System (includes reaction control
kg(lbm) system since integral with PK/AK system)	 -	 3289 (7252)

• Useable AV Propellant	 2412	 (5318)

• System'Inerts and Unuseable
Propellants and.Pressurant	 877	 (1934)

CONFIGURATION • 4 - MR-104 Monopropellant AK /PK and Reaction
cm(in.) Control Thrusters

Isp . = 2046 N-sec/kg (208.6 lbf-sec/lbm) Installed
Steady State

• 8 - Conospherical Propellant Tanks
-	 O.D.	 74.9	 (29.5)
-	 Length	 120..1	 (47)

• 8 - Spherical Pressurant Tanks

Yu.

O.D.	 59.7	 (23.5)



CONFIGURATION 8 TANK 4 TANK
COMPONENT DETAILS

SYSTEM ITEM COMPONENT MFGR. DESIGNATION OUANT WT/SYSTEM OUANT WT/SYSTEMWEIGHT I	 PRIOR
NO. PART/NO. APPLICATION PER PER

KG LOMKG LBM SYSTEM SYSTEM

Main Prop, 1 Pressurant PSI 80074 10.57	 233 Lunar Landing 8 84.55 186A 4	 42.28
I

93.2
WBS"0224• Tank Training Veh.

2 Pressurant Squib Quantic 1512-01 .73	 1.6 SCOOP 1 •.73 1.6 1	 .73 1.6
Valve

3 Overboard Vent Quantic 1512-01 .73	 1.6 SCOOP 1 .73 1.6 1	 .73 1.6
Squib Valve

4 Pressurant Fill Purolator 7542808 .23	 .5 SCOOP 1 .23 .5 1	 .23 .5
- & Vent Fitting

5 Thrust Neutralizer New New .82	 1.8 New 1 .82 1.8 1	 .82 1.8
6 Press. Regulator New New 1.59	 3.5 New 1 1.59 3,5 1	 1.59 3.5
7 Check Valve James Pond & Clark 8528 Mod 1.36	 3.0 New 2 2.72 6.0 2	 2.72 6.0
8 Relief Valve Parker Hannifin 5762052 .77	 1.7 Shuttle RCS 2 1.54 3.4 2	 1.54 3.4
9 Tank Squib Vlv, Quantic 1512-01 -73	 1.6 SCOOP 16 11.61 25.6 8	 5.81 12.8

10 Propellant Tank ARDE New 30.03	 66.2 New 8 1240.23 529.6 4	 120.11 264,8
11 Propellant Fill Future Craft 900287 .14	 .3 SCOOP 16 2.18 4.8 8	 149 24

& Drain
12 Filter WINTER' 15241-690-1 .59	 1.3 SCOOP 16 9.43 20.8 8	 4.72 10.4
13' Manual Drain VIv- Future Craft 30485-3 -68	 1.5 SCOOP 2 1.36 3.0 2	 1.36 3.0
14 Thruster Marquardt R-40A 9.75	 21.5 Shuttle RCS 1 9.75 21.5 1	 9.75 21.5
15 Line Set New New Varies New 1 10.34 22.8 1	 5.49 12.1
16 He, Pres. Xducer Teledyne 2403-4000-1 -09	 .2 SCOOP 1 -09 .2 1	 .09 .2
17 Pc Pres- Xducer Teledyne 2403-200-1 .09	 .2 SCOOP 1 .09 .2 : 1	 .09 2
18 Thermister Stock Item - .05	 -1 - 1 .05 .1 1	 .05 .1
19 - Thermocouple Stock Item Iron/Constant. .05	 .1 - 3 .14 .3 3	 .14 .3
20 Thermocouple Stock Item Chromel/Alum. .05	 .1 - 1 .05 .1 1	 .05 .1
21 Cartridges SOS NSI-1' Incl. in SCOOP 36 - - 20	 - -

Sq. VIV.
22 Pressurant - Helium -	 - - 8.62 19.0 4.31 9.5
23 Oxidizer N204 -	 - - 1079.3 2379.4 539.6 1189.7
24 Fuel - MMH -	 - - 674.6 1487-1 337.3 743.5

Reaction 1 Reaction Contr. Marquardt RAD 2.40	 5.3 SPP/Apollo 4 9.62 21.2 4	 9.62 21.2
.Control Thruster
WBS 0225 2 RCS Line Set New New Included in New 1 - 1	 - -

item 15
3 RCS "PC Xducer Teledyne Tabor 2403-200-1 .09 1	 .2 SCOOP 4 .36 .8 4	 ,36 .8
4 RCSThermocouple Stock Item Iron/Constant. .05	 .1 - 4 .18 .4 4	 .18 .4

1

TABLE 4 XVIII TYPICAL PROPULSION AND REACTION CONTROL EQUIPMENT _LISTa	 • BIPROPELLANT



fast and repeatable response, while the unlike doublet injectors provide

rapid and efficient combustion. The unit has demonstrated specific impulse

in excess of 2795 N-sec/kg (285 lbf-sec/lbm). Design requirements of the

thruster are shown in Table 4-XIX. A cross-section of the thruster is

illustrated in Figure 4.8. The R-40A qualification testing is projected

for completion in 1979. No supplemental qualification testing is ex-

pected.

Th.e MR-104 thruster provided pitch and yaw control for the

Mariner Jupiter/Saturn 1977 ( MJS77) mission. The thruster consists of

the thrust chamber, normally-closed solenoid propellant valve, pressure

transducer, heaters on valve and engine, engine thermal shield and sup-

port structure. The thrust chamber is a Tungsten Inert Gas (TIG) welded

assembly of HASTELLOY B and 347 stainless steel. The catalyst bed is of

the radial outflow type consisting of two concentric annular sections with

the inner containing 25 to 30 mesh and the outer 14 to 8 mesh Shell 405
catalyst. The valve is all welded and incorporates a soft poppet and

AFE-411 elastomer seat. This thruster has demonstrated a propellant total

impulse thruput of 578,266 N-sec (130,000 lbf-sec) and is capable of meet-

ing a thruput of 1-779 x 106 N-sec (400,000 lbf-sec). Performance and

environmental requirements are given in Table 4-XX. The thruster is

illustrated in Figure 4.9. Supplier design verification tests to the re-

cluired thruput impulse would be necessary.

4.3.3	 Propellant Tankage

Propellant tankage requirements and desired features are:

conospherical or cylindrical shape, lightweight, low cost, low-cost pack-

aging capability, prepackaging capability with long-term storage, single-

phase propellant transfer capability under varying loads and maneuvers,

center-of-gravity control potential, operating capability under 3-axis

environment, propellant compatibility, and tankage of either off-the-shelf

or of a size range for which proven technology exists. These requirements

resulted in baselining of the ARDE, Incorporated ring-stabilized diaphragm/

cryoformed propellant positive expulsion tankage approach. ARDE experience

with the ring stabilized diaphragm of conospherical shape has ranged from

44



TABLE 4-XIX

R-40A DESIGN REQUIREMENTS AND CHARACTERISTICS

(BIPROPELLANT THRUSTER)

OPERATING LIFE

USEFUL LIFE

OXIDIZER

FUEL

MIXTURE RATIO

THRUST VACUUM

- 50,000 cycles
20,000 secs.

- 10 years

- MON-3 (SE-S-0073) ( N2 04 & NO)

- MW (SE-S-0073)

- 1.6 + .032

- 3879 N @ 1.641 x 106 N/m2)
(872 lb f @ 238 psia)

1.207 x 106 - 1.802 x 106 N /m2
(175 - 264 Asia)

- 40 - 380 C (400 1000F)

21 - 32 VDC

i.o48 x 106 N /m2 (152 psia)
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d

from sizes of 84 to 21 cm (33 to 8.4 inches) in diameter on programs such

as WS-120A/PBPS, AFRPL Storability/Compatibility Test, Atmospheric Ex-

plorer and other missile programs using hydrazine.

The metallic diaphragm is constructed with support control

rings nickel/gold brazed at various positions along its surface. The dia-

phragm is hydro£ormed from 304L stainless steel sheet stock with the rings

of 308L stainless. The propellant tank shell is constructed from 301 and

304L stainless steel sheet stock. The tank shape is achieved by hydro-

forming into female dyes at ambient and cryogenic temperatures. A 304L

girth ring is attached to each shell half and the final weld ,joins both

`	 halves and diaphragm. For mounting/attachment purposes, end supports are 	 N

provided at the tank poles. Cleaning and propellant loading is accompli-

I	 shed through bosses on the shell dome surface. Figure 4.10 illustrates

s	 the propellant tankage configuration. Tankage design verification and

qualification tests would be required. 	 xi

4 .3.4	 Pressurant Tankage

Pressurant tankage requirements and desired features are:

spherical shape, lightweight and low unit cost. For the monopropellant

system these requirements were satisfied by an off-the-shelf-Pressure

Systems, Inc. (PSI) 6 AL-4V spherical tank and a new Psi 6AL-4V spherical

tank. The existing bipropellant tank is identified as PSI part number

80074-1. This tank is spherical, contains 28,530 cm 3 (1741 in3) internal

volume, is 39.4 cm (15.5 inches) outside diameter, weighs 10.57 kg

(23,3 lbm) and has operating, proof and burst pressures of 27.58 x 106,

41.37 x 106 and 55.16 x 106 N/m 2 (4000, 6000, and 8000 psig), respectively.

The tank was originally developed for the Lunar Landing Training Vehicle.

f:
The new monopropellant tank would be fabricated by PSI using an existing

forging die The tank is spherical contains 102 583 cm3 (6260 in3) volume
r	 _ g g	 p 	 ^	 ,

is of 59:7 cm (23.5 inches) outside diameter, weighs 40.0 kg (88.2 lbm) and	 ti

has operating,, proof and burst pressures of 24.82 1 106 , 37.23 x 10 6 , and
49.64 x 106 N/m2 (3600, 5400 and 7200 lb f/in2 ), respectively.	

u
4.3.5	 Reaction Control System

`	 Paragraph 4.2.5 identifies the reaction control system con-

trol force requirements.- The Marquardt R-4D Apollo/LEM thruster was base
lined as the LES bipropellant RCS thruster. For the monopropellant system,

'	
3
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TANK PARAMETER BIPROPELLANT MONOPROPELLANT
VOLUME

•MAXIMUM ~,fn3
3ft3)

0.2016 (7.12) 0.3336 (11.78)
OUSABLE — m	 (ft) 0.1821 (6A3) 0.3013x(10.64)
•VOLUMETRIC -.-.-

EFFICIENCY — % 98 98
•EXPULSION

EFFICIENCY^-% 97 97
•ULLAGE

ALLOWANCE -% 5 5
PRESSURE ^-N/m 2 (psia)

oMAXIMUM 2.07 x 106 (300) 3.45 x 10 6 (500)
•OPERATING 1.79 x 10 6 (^260) 3.17 x 10 6 (~460)
•PROOF 3.10 x 16 6 (450) 5.17 x 106 (750)
OBURST 4.14 x 106 (600) 6.89 x 10 6 (1,000)

WEIGHT — Kg (Ibm) 30.03 (66.2) 48.63 (107.2)

ANT
O â n.)

ELLANT
5 in.)



th

0

t
e PK/AK thrusters discussed in paragraph 4.3.2 provide RCS control re-

quirements.
	 }

The R--4D engine was qualified for the Apollo Service Module,

Lunar Excursion Module, Lunar Orbiter and the Special Defense Program (Ref-

erence 56) and System Technology Office Confirmation of Optical Phenomen-

ology (SCOOP) (Reference 57).	 The engine design incorporates the follow-

ing features.	 The radiation and film-cooled combustion chamber is fabri-

cated from forged molybdenum and- coated orith :molybdenum disilicide which

provides oxidation protection. 	 The radiation-cooled, ribbed L-605 nozzle

extension minimizes weight.. 	 Propellant flow control is provided by two

normally closed, dual coil, solenoid actuated, coaxial flow, poppet type

valves with integral propellant flow regulation orifices. 	 The fixed orifi-

ces are incorporated into each valve to provide the correct propellant

pressure drops at the design inlet pressure to obtain the required mixture

ratio and thrust level. 	 Attachment of these valves to the injector head

provides a metal-to-metal spherical seat plus double static seals to eli-

minate ,all external leakage paths. 	 Table 4-XXI and Figure 4.11 show the

R-4D characteristics and cross-section, respectively. 	 It is anticipated

that additional R-4D testing would not be required for the LES program

4. 4 	OTHER SUBSYSTEM REQUIRE24ENTS AND COMPONENT SELECTION

The structural, guidance, and propulsion selections are dis-

cussed in paragraphs 4.2 and 4.3	 Other subsystems required for stage de-

sign include telemetry, electrical 	 power, ignition and thermal protection.

4.4.1	 Telemetry n^

'	 Performance monitoring of the subsystems within the LES is

provided by the LES Telemetry (TM) System. 	 The TM system selected con-

sists of a Conic Model CTM-UHF-310E transmitter which has `a power output

of 8 Watts at S-band (2200-2300 Miz), four omni directional TECOM Indus- 	
zr

^ 
tries, Inc., bi-convex blade antennas, or equivalent, and a coax	 switch.	 -:R

The appropriate antenna can be switched to the transmitter output with the

coax switch.	 Since the selected guidance system is capable of computing	
a.

the orientation of the LES relative to the Orbiter, the guidance system

was used to command the coax switch and select the antenna that is pointed 	 ^.

toward the Orbiter. 	 All signal conditioning and data formatting for the
a

51

{

T"i2



TABLE 4-xxi E-4D CHARACTERISTICS

(RCS Thruster for Bipropellant Concept)

THRUST, VACUUM	 - 445 N (100 lbf)

CHAMBER COOLING	 - Radiation

OPERATING TIME, MAX. DEMONSTRATED	 - 31,800; 4790 Seconds During
Qualification and Off
Limits Tests

OPERATING CYCLES, MAX. DEMONSTRATED	 - 103,548; 26,530 Starts During
Qualification and Off
Limits Tests

SPECIFIC IMPULSE, NOMINAL, STEADY STATE - 2834 N-sec/kg (289 lbf-sec/lbm)

CHAMBER PRESSURE $ NOMINAL	 - .669 x 106 N/m2 (97 Asia)

NOZZLE EXPANSION RATIO	 - 40:1

FUEL	 - MMH

OXIDIZER	 - N204

MIXTURE RATIO, NOMINAL	 - 1.60

IGNITION METHOD 	 - Hypergolic

WEIGHT, DRY, NOMINAL 	 - 2.40 kg (5.3 lbm) with 10 cm
(4 in.) electrical lead cab-7L,,1-

52



HEAD AND VA
ASSEMBLY

1. PREIGNITER
2. PREIGNITER CHAMBER ORIFICES
3. INNERMOST RING EIGHT PRIMARY

OXIDIZER ORIFICES
4. MIDDLE RING EIGHT PRIMARY FUEL

ORIFICES
5. OUTERMOST RING - EIGHT CHAN^BER

WALL FUEL COOLING ORIFICES
6. INJECTOR HEAD ASSEMBLY
7. SEAT ASSEMBLY
B. DIRECT COIL
9. OXIDIZER VALVE ASSEMBLY
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FIGURE 4.11 RAD BIPROPELLANT REACTION CONTROL THRUSTER
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TM system was designed to be accomplished within the guidance system. This

system could provide data.transmission directly to any STDN ground station

that is within line-of-sight range of the LES. The TM system could also

provide data transmission directly to the Orbiter from the time of the LES

deployment from the Orbiter cargo bay until sometime after the PK ignition.

Subsequent to PK ignition, at a range of approximately 1.852 KM (1 nm) from

the Orbiter, communication with the Orbiter could be maintained until the

useful transmission range of approximately 92.6 km (50 nm) is exceeded.
The 96.2 km (50 nm) communication range could be extended

it the mission requires it by the addition of a 0.9144 m (3 ft) diameter

parabolic receiving antenna, a low noise t3.1 dbNF) preamplifier, and an

8 dbNF receiver in the LES ASE in the Orbiter cargo bay. This additional 	 j
equipment could extend the TM communication range from 92.6 km (50 nm) to

1896.5 km (io24 nm). for th-, maximum altitude circular orbit case as speci-
fied by the LES payload model. This range estimateis based upon the

Orbiter omni antenna and receiver requirement of an effective isotropic

radiated power (EIRP) of -105 dbm to achieve a BER (Bit Error Rate) of

s

	

	 10-2. The Inter-Range Instrumentation Group 106 document indicates that

an improvement of approximately 6.5 db in SIN ratio is required to get

from a 10-2 to 10-'5 BER. This then equates to a required EIRP at the 'i
Orbiter of -98 .5 dbm to achieve a BER of 10' 5 . An additional gain of 4.9

db could be realized by using a 3.1 db noise figure preamplifier, like

that used by TRS in the Orbiter, resulting in a required EIRP at the

Orbiter of -103.4 dbm.. The required antenna gain at the Orbiter is then'

as follows: The 1896.5_ km (1024 nm) path loss (-165.2 db) plus the LES

$ watt transmitter and antenna gain (39 db), plus Orbiter EIRP (-103.4 dbm)

equals antenna gain required (22.8 db). A typical 0.9144 m-(3 ft) dia-

meter parabolic antenna with Right Hand Circular Polarization (RHCP) has

1	
a gain of 23.2 db and a halfpower beam width of 11.5 degrees at S-band.

`

	

	 Another alternative would be to incorporate an antenna sys-

tem like that shown in Reference 27. This system consists of a 13 db

a - Helix antenna installed in the Orbiter and five (5) "Turnstile-over-Cone"

antennas installed on the stage. Each Turnstile-over-Cone antenna has a_

gain of 5 db and a beam width of 140 degrees between the half power points.
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Again in this application the appropriate antenna would be switched into

the RF system by the guidance system. 	 Based upon the "Telemetry Range

Capability" graph shown in Figure 4.12, a positive margin of 4.3 db would

be provided at a range of 1896.5 km (1024 nm) for a BER = 10-5.
The baseline TM system will accomodate most of the missions

as defined by the LES payload model. 	 Missions such as AMPTE A and AMPTE B

which are highly elliptical having apogees of 20 and 8 earth radii respec-

tively are considered to be special cases. 	 For these missions the payload

transmitter and antenna system-should be used to transmit the LES TM data.

The development testing considered necessary for the Tele-

metry system was primarily that associated with antenna pattern testing.'i
This effort would be accomplished by the LES contractor and would involve

the use of the LES development test (DVT) unit as the test bed.. 	 The an-

tenna pattern measurements would be performed on the contractor's antenna

range using the DVT with the omni directional antennas installed in the

design_ locations.- In the event that 	 the antenna coverage is not adequate, X

i.e.  less than 4 T' steradian, the antenna can be relocated as appropriate `.
and the patterns reverified.

4 .4.2	 Electrical Power

The electrical power system provides electrical energy to all

utilizing equipment on the LES. It also provides the capability for switch-
,e

ing between the external and'LES internal power sources during prelaunch-

checkout.	 Table 4-XXII shows the electrical energy required during a nor-

mal two hour flight, and Figure 4.13 shows a typical electrical load pro-

file for a bipropellant configuration. 	 The energy source selected to pro-.

vide the required energy is an automatically activated_ silver-zinc battery.
?;

The silver-zinc battery is light in weight and has a long history of success-

ful use in space ap.,":ications. 	 A battery employing lithium would be lighter r;,

in weight, but lithium systems are relatively new and are still in the de- ...

velopment stage.	 An automatically activated silver-zinc battery which 4

supplies the energy shown in Table 4-XXII for each configuration with a

fifteen percent margin weighs 15,.9 k g (35 lbs.) and has a volume of 7374

cc (450 cubic inches).

f^
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STAGE CONFIGURATION
B ipropellant Mono ro ellant Ada tations

Equipment_ Volts AmpsHrs. Watt-hrs. I Volts Am sHrs. Watt-hrs. I Volts AmpsHrs. Watt-hrs.

Guidance Sys tem 28 4.3 3 240.8 28 4.3 2 240.8 28	 4.3 2 240.8

Telemetry System 28 3.6 2 201.6 28 3.6 2 201.6 28	 3.6 2 201.6

Propulsion Motor 28 2.6 .53 38.6 28 7.3 .64 130.8 28	 7.3 .17 34.7
Valve(s)

Reaction Control System 28 3.8 .19 20.2 - - - - 28	 7.3 ..03 6.1
Motor Valves

Prop. Motor Heaters 28 .7 1 19.6 28 .5 2 28.0 28	 •. 5 2 28

RCS Motor Heaters 28 2.9 1 81.2 - - - - 28	 .5 2 28

Total Electrical Energy - - 602 - - - 601.2 -	 - - 539.2
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A schematic of the electrical power system is shown in Fig-

ure 4.14. Relay "Kl" is the internal /external power relay. External power

is supplied to the guidance and telemetry subsystems through diodes "CR1"

and "C132". These diodes isolate the open faced umbilical connector from

internal power during flight. Separate lines for guidance and telemetry

external power are provided so that the guidance system may be operated

in the Shuttle bay without radiation from the telemetry transmitter if
desired.	 The ngrmal sequence of operation begins with checking out the

guidance and telemetry systems on external power. 	 Approximately 10 to

15 minutes prior to deployment the vehicle battery is activated by firing j
i

the activation squib.	 After the necessary,soak time the battery maybe

load checked by energizing relay "K2" to supply battery voltage through .
the umbilical.	 Relay "IC2" is necessary to isolate the open faced umbili-

cal connector from the battery voltage during flight. 	 Shortly prior to

deployment relay "Kl" is switched to the internal position, and battery r:{

power is applied to the equipment in parallel with external power. The

external power is turned off and the equipment ope.,rates on internal battery
power only.	 This method of power application is necessary in orderto pre-

vent interruption of power to the guidance system during this switchover

from external_ to internal power. 	 If the mission should be aborted after

activation of the battery, the batteryshould be discharged to prevent

possible- overheating and explosion after its safe wet stand time expires.
Wu

The safe wet stand time for this application was specified to be at least

eight hours.	 Discharge of the battery in this situation may be accompli- M"

shed by energizing relay "K2" and applying an external load. 	 Relays "Kl"

j

--

and 'K2" and diodes "CR1" and "CR2" can be packaged -in .a power control unit

which weighs approximately . 68kg (1. 5 lb.) and is approximately 443 cc

( 27 cubic inches) in size,

A two hour flight time is consistent with the two burn cir-
x^

cular orbit flight requirements of the revised mission model. 	 Highly

elliptic orbits requiring a single perigee burn also fall within the two
hour flight time.	 The model -shows two payloads, less thantwo percent of
the mi s-i nn mnri PT - that have hi rrhl v Pl l i nt.i r nrhi-f-c f.ha.t ranii'i rP a. vel ocit y ° ^
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a	 change burn at apogee. These missions would require more electrical energy

for the longer flight times. This can be 	 yg	 g	 provided b the addition of

batteries of the same size, by a larger battery, or by integration with the

payload electrical energy provisions.

For cost evaluation, the Power Control Unit (PCU) was con-

sidered to be subjected -to the full range of development testing by the LES

contractor. The development testing includes breadboard, prototype, and

qualification testing consistent with the environmental requirements of

the LES.

4.4.3	 Ignition System

The ignition system is configured to provide the electrical 4

power, firing commands, and safe/arm for all pyrotechnic initiators on the

LES. All pyrotechnic initiators are NASA Standard Initiators (NSI), and

the functions to be initiated by these devices are shown in Table 4-XXIII.	 Y

.j

	

	 This table reflects the requirements for the twelve-tank bipropellant con-

figuration which has the greatest number of initiators of all the configura-

tions being considered. The guidance system provides the commands to switch

'	 TABLE 4 XXIII - PYROTECHNIC INITIATED
i

FUNCTIONS 12 TANK BIPROPELLANT CONFIGURATION

r
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power to the pyrotechnic initiators for all events. The general sequence

of operation for the ignition system begins after the LES is a safe dis-

tance from the'Orbiter which occurs approximately thirty minutes after

`	 deployment At this time the system is armed. Then the tank valves are
a^

i	
fired to activate the propulsion and attitude control fuel systems. The

remaining pyrotechnic initiated function is payload separation which occurs

at the end of the LES mission. Redundant ignition systems are provided
i

in order to increase reliability.

Power for firing the initiators can be provided either s^

i	 directly by the main battery or by capacitors which are charged at a low

current by the main battery. If the initiators are fired directly by the

battery a minimum of 60 amperes must be supplied to fire twelve initiators
simultaneously. The normal battery load is 10 to 12 amperes and the addi-

tional 60 ampere load for firing pyrotechnic initiators could momentarily

reduce the line voltage below acceptable limits unless the battery size

is substantially increased to handle this large load. On the other hand,

28 volts, and the weight of the capacitors required to fire twelve initia-

tors simultaneously is 0.96 kg (2.12 lbs.) 	 These capacitors can be re-

charged in ten seconds for firing the next event while drawing a maximum
current of 0.1 ampere from the main battery. The capacitors discharge
method of firing pyrotechnic initiators was selected for this application,

because, it isolates the high current surges associated with firing the 	 ?
initiators from the main bus.

Transistor switches turned on by signals from the guidance

system are used for switching energy from the capacitor banks to the ini-

tiators.  Relays are not used in this application, because contact bounce

could adversely affect the proper flow of energy, to the initiators The

firing signal from the guidance system is to be approximately one second

b	 in duration so that the circuit is turned off to permit recharging the

capacitors in the event of a post firing short circuit in an initiator.

Safety is a prime consideration in the design of the ignition
f	 system. Safe/'arm relays are provided which open the firing circuit and 	 }.

apply a short circuit to the initiator bridgewires prior to arming. It is

I

6r	 2	 e.
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a requirement that three failures must occur in a pyrotechnic system in

order to initiate inadvertently any event which is hazardous to the Orbi-

ter. Even though the basic three failure mode system is identified in

this study for LES, final approval for use of this system and other hazards

affecting the safety of the Orbiter crew and Orbiter must come from JSC'

Safety department prior to implementation and use. For .,his study, the

three failure modes for the pyrotechnic circuitry is provided by three 	 {

independent commands from the guidance system before an initiator can 	 !?P	 g	 y

be fired: the first command energizes magnetic latching relays which arm

the ignition capacitor busses and permits the firing capacitors to charge; i.

the second command arms the magnetic latching safe/arm relays which are s
s4

connected directly to the initiators; the third command is the firing

command which turns on the firing transistors. Figure 4.15 is a simplified

schematic of the ignition system showing these safety provisions. Monitor

circuits not shown on the schematic are provided to indicate that all safe/

f	 arm relays are in the safe position prior to deployment.
The firing capacitors, charging resistors, switching transis-

tors, and safe/arm relays are packaged in an Ignition Control Unit (ICU).

i	 Estimated size and weight of the ICU for each LES configuration is shown

:i

TABLE 4 -XXIV - IGNITION CONTROL UNIT WEIGHT AND SIZE

LES Configuration ICU Weight
kg (lo)	 _ ICU Volume

cc (cu. in.)

2 Tank Monopropellant 2. lZ (4. 7) 1639 (100)

4 Tank Monopropellant or Z. 54 (5. 6) 1999 (IZZ)
B ipropellant

8 Tank Monopropellant or Bipropellant 3.18 (7.0) 2786 (170)

12 Tank Bipropellant 4.3 (9.5) 3835 (Z34)

Adaptation - Solid First Stage plus 2.86 (6.3) 2425 (148)
4 Tank Bipropellant
Second Stage

F-
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in Table 4-XXIV. If several modules are selected to meet mission require-
ments, one ICU configuration will be designed to meet the worst case re-
quirements and_used without modification for other modules.

For cost evaluation the Ignition Control Unit (ICU) was con-

sidered to be subjected to full development testing by the LES contractor.

The development testing includes breadboard, prototype, and qualification

testing consistent with the environmental requirements of LES.

4.4.4	 Thermal

An analysis of the bipropellant configuration is presented

as typical of the thermal considerations for an expendable low energy

stage. Worse case thermal environments were examined to determine the

sensitivity of the various components to hot and cold soak conditions.

Thermal protection was selected based on the worst case approach. Much

of the selected protection could be eliminated under operational condi-

tions that permit the Orbiter to rotate slowly while in orbit and the
stage to rotate slowly while in the coast condition. Future studies
should examine this approach in greater detail.

The Orbiter is presently being designed to stay on station

in orbit for seven days during which time the LES, stowed in the payload

bay, will be exposed to potentially severe thermal environments. No bar-
becue continuous hot and cold conditions were analyzed. Assuming the
LES/payload combination is the last payload discharged from the Shuttle,

the LES would be in the cargo bay approximately 160 hours. This time
was used to determine final soak temperatures in hot and cold environments.

LES electronics will be activated for checkout for approximately 30 minutes
before discharge. The R-40 main thruster was assumed to have two burns,
the first being 565 seconds and the second being 620 seconds. The R-4D

thrusters used for vehicleattitude control was assumed to fire inter-

mittently on a 10% duty cycle.
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	 4.4.4.1	 Propellant Tanks Thermal Analysis - Temperature excursions

of propellant/tank system during the 160 hours stowage require thermal

protection and a multilayer insulation (MLI) blanket was selected to cover
the entire vehicle with the exception of the R -4D thrusters. Figure 4.16

6
.

	

	 shows the temperature change of a fully loaded propellant system from an

initial temperature of 21,1°C (70°F) if all the heat passing through the

MLT blanket affects only the propellant system temperature. The analysis

is conservative since the additional thermal capacitance of vehicle struc-

ture will tend to reduce the magnitude of the temperature excursion from

+

	

	 the initial temperature. All the electronics are dormant during the stow-

age time with the possible exception of the battery which has an internal

.heater to maintain its temperature at acceptable levels.

In the event the mission is aborted and the LES/payload re-

mains in the payload bay during re-entry, Figure 4.17 shows the temperature
rise of the full propellant tanks for an initial temperature of 21.1°C

(70°F)•

T

	

	 4.4.4.2	 Electronics Thermal Analysis- Only two electronic packages

generate sufficient internal heat to create concern; these are the guidance

and control unit (GCU) and the telemetry. (V4 transmitter. The GCU tempera-
ture (operating constantly) will rise at 36°F/hr and therefore the worst

case thermally can be handled by good thermal connections to the LES struc-

ture. The TM has very low thermal mass and a high heat generation which

requires the TM be mounted outside the MLl blanket on a 22 inch square
radiator to reject the excess heat The 22 by 22 inch radiator thermal

characteristics shown in Figure 4.18 will cool the TM below acceptable

temperature limits even in full sun; therefore a TM heater is required

when the TM is off and the radiator can see deep space.

4.4.4.3	 Thrusters Thermal Analysis The LES vehicle concept analyzed

proposes a Marquardt R-40 for the main thruster and four Marquardt R-4D1s

}

	

	 for attitude control. All five thrusters point essentially aft although
the R-4D's are canted 10 0 . Plume backwash in the form of adiabatic heat-
ing rates for both types of thrusters was calculated and is presented in
Figure 4.19. The combined heating rates of the R-40 and the R -4D worst
duty cycle require vehicle protection from the heating and possibleplume

j

}
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v

a	 erosion. A 762 mm (30 in.) radius, 1.02 mm (.04 in.) thick titanium

shield was selected to cover the vehicle around the R-40 nozzle exit. The

interior side of the shield is insulated to reduce thermal soakback as is

the exterior of the R-40 bell nozzle which is located within the vehicle.

Figure 4.20 shows the exterior surface shield temperatures along a line

connecting the thrusters after steady state temperatures are reached.

These high temperature surfaces are insulated Vith a type of glass foam

insulation of the proper thickness to prevent overheating of the internal

'	 components.	 Thermal soakback through the thruster structural mountings was

calculated and causes an insignificant vehicle t.^mperature rise.	 The R-4D

thrusters are designed to be radiation cooled and due to their location on

the vehicle could provide considerable heat input to the vehicle. 	 The

MLI blanket will insulate the vehicle components and structure but must

be overlayed by a high temperature MLI like Kapton in the area of the R-4D's.

If a non-firing R-4D thruster is exposed to deep space (payload bay stowage)

for short periods of time, the thruster temperature will drop below desir-

able values.	 Figure 4.21 shows the results of installing a heater to keep

the thruster above propellant freezing temperatures.

4.4 .4.4	 Plume Contamination/Separation Distance - No fixed contamina-

tion levels have been established for theOrbiter and the requirement for

each mission must be determined on the basis of the specific experiments

carried and their operational status at the time of LES engine burn. 	 Other

studies have attempted to define separation distance based on deposition of

solid motor particle flux on optical surfaces. 	 Contamination flux den-

sities between 10 6 and 10-5 gram/cm2 were used in these studies. 	 The bi-

propellant LES engines emit no solid particle flux; therefore the contamina-

tion from the gaseous portion of the plume is of concern only and then only

for those experiments which employ cryogenic surfaces and are operatin gp	 p	YP 	 g ,>

during the engine burn.	 Engine orientation at the time of firing has a

significant impact on initial separation distances.- Figure 4.22 presents -;

1	 the initial separation distances for an engine burn perpendicular to the

Orbiter and Figure 4. 23 shows the shorter distances permissible for an

engine burn parallel to the Orbiter.
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4.5	 CONCEPTUAL DESIGNS

The conceptual design effort was based on the results from

the Task 2 screening and on Task 3 systems trade studies. A summary of

these results are as follows

o The most cost effective new'LES concepts are the

modular liquid bipropellant and monopropellant

approaches.

o The LES structural configuration design should be

a pure truss as determined by the trade studies

	

-	 described in paragraphs 4.2.7- 4.2.2 and 4.2.3.

o The guidance and control syst , selected should

be a 3-axis type, as described in paragraph 4.2.4.

o Propulsion, subsystems design should incorporate

the features described in paragraph 4.3

o The other LES subsystems design should incorporate

the features in paragraph 4.4,

An assessment of these data, the payload sizes and characteristics of

paragraph 4.1.4 and an initial investigation of the existing airborne

support ^,quipiejnt defined additional design requirements. These design

requirements are applicable to both the bipropellant and monopropellant

approaches and are summarized as follows:
i

o Standardize the payload-to-stage mechanical

interface to utilize the existing, proven and 	 j

accepted separation; plane V-band ring type of

mounting. Further, three sizes were,selected

to provide flexibility in matching payload

sizes .914 m (3.0 ft.), 1.219 m (4.Q ft.) and
h:

1.524 m (5-0 ft.) basic diameters,
s

o Standardize LES amounting trunnions to use

the standard MMS size trunnions and thus the 	
k

	u	 standard MMS[FSS latching mechanisms being 	
F

developed by an existing NASA/GSFC program.
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o	 A maximum design LES space,envelope of

4.o m (13.12 ft.) di& eter by 1.0 m (3,28

ft.) long.

u	 Establish the payload/stage separation by

means of mechanical springs.	 The design

concept.employs four springs spaced 900

apart and located just inside the separa-

tion plane V-band ring with the size of the

springs toto be selected so that a .610 mps fi:

(2.0 fps) nominal design delta velocity

could be achieved. 	 This provides a slant

range separation distance of 5370 m (17,618

ft.) in 45 minutes.	 (Reference 54).

o	 Establish the general location for the pay-

^{	 load/LES electrical umbilical connector, if },

'	 one is required, at the 0° aximuth angle (top)

of the stage with the stage mounted horizon- e

tally in the Orbiter cargo bay and located

just inside the V band separation ring.

o	 Establish the starboard side of the installed

LES for the Y-axis location of the LES/ASE

cradle electrical umbilical. connectors. 	 Addi-

tionally, these connectors would be located

between Orbiter station zo 10160 (400) and Zo t

10515.6 (414) in order to be accessible follow-

ing final installation in the Orbiter cargo bay.

4.5.1	 Bipropellant`Configurations

The baseline LES used during the stage conceptual design
d

effort was the horizontally mounted eight tank bipropellant flat X con-

figuration using a modular construction approach to,permit -removal of the

four outer tanks, their plumbing and electrical connections, and their

support structure to produce a four tank stage suitable for either hori-

zontalor vertical mounting in the Orbiter cargo bay.	 Figure 4.24 shows
the eight tank baseline LES. 	 Every effort was made in conceptual design

to keep the stage length (that dimension measured in a direction parallel

to the Orbiter cargo bay X-axis) to a minimum. 	 The structural frame width
I,
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a

of 737 mm (29.00 in.) is only slightly larger than the tank girth diameter

of 635 mm (25.00 in.) in order to allow the diagonal braces to pass over

the tank at its maximum girth. The modular features of the structural

frame assembly are depicted in Figure 4.3, which show the capability to

remove the four outer tank mounting structures and to reposition -the end

plates with their mounting trunnions to the vacated structural interface

to provide a four-tank stage. Access to the avionics equipment mounted

near the aft en4 of the stage is obtained by unfastening and laying back

the thermal blanket and then reaching into the open structure around the

main thruster.
a

The four-tank modular bipropellant LES is shown by Figure

4 .25 The overall length from V-band separation plane to ;aft end is the

same as for the eight-tank stage. Equipment items relocated for the four

tank stage are the telemetry transmitter and its antennae.

Figure 4.26 depicts the arrangement of the modular components

to produce a four.-tank vertically mounted LES, This configuration is ob-
tained by removing the end plates from the four-tank version and reposi-

tioning-the upper and lower oxidiz-^,r tanks into the in-line arrangement as 	 ''

shown. An auxiliary structural frame is 'used to reposition the ± X and

Z trunnions in order to open the load reaction points and give better

support to a fully cantilevered payload. Another vertical arrangement

studied during the Task 3 conceptual design is shown in Figure 4.27. This

arrangement shows a twelve tank bipropellant stage configured for vertical

mounting in the Orbiter bay. This stage employs a structural assembly

similar to the previously discussed stages; however, it is unique to this

vertical arrangement. The driving factor for developing a structural con-
I

cept was to construct a low slung structural bridge from Orbiter LH long

eron to RH longeron and of minimum cargo bay length. Each of the two

wings would support six tanks and the capability of off loading the tanks
x
c

in symmetrical pairs to produce an eight-tank or a four-tank version of

the stage. In this arrangement the design objective of mirinium length
was achieved, the length of 1575 mm (62.0 in j being 7.5% shorter than the
1702 mm (67.0 in.) ,length of the four tank verticalmodular configuration 4

shown in Figure 4.26. The cost effectiveness of this arrangement was
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tested during the evaluation in Task 6.	 Although the stage is of a short-

er length, thus effecting a reduced user's charge based on cargo bay

length, the savings was not great enough to offset the DDT&E costs of de-
>

veloping a second basic structural assembly. 	 This arrangement cannot be

used for horizontal mounting in a cost effective manner and the flat-X

four and eight tank versions are still needed to handle the larger payloads.

' Several of the payloads in the LES mission model are small

K in size and mass but require a high velocity increment. 	 These payloads

are prime candidates for launch by means of an "adaptation" to an exist-
5.

ing stage.	 In this concept an existing upper stage is used to produce

the perigee kick of the transfer orbit and then a smaller stage provides

the apogee kick. 	 Figure 4.28 shows an "adaptation" of the four tank ver-

tical. modular LES onto the existing SSUS-D and mounted in the SSUS-D ver-

tical cradle.	 This same "adaptation" may be mounted horizontally in the

Orbiter cargo bay on the SSUS-A horizontal cradle assembly.	 An adapter

section is added between the SSUS-A spin table and the SSUS-D spin table

separation ring.
•a

A larger and more powerful "adaptation" stage is achieved

by substitution of the SSUS-A for the SSUS-U and again using the SSUS-A

horizontal cradle assembly.	 This configuration is shown by Figure 4.29.

Although not shown, it is possible to use the four-tank modular horizontal

stage (Figure 4.25) on top of SSUS-A or SSUS-D as alternative arrangements

to those shown by Figures 4.28 and 4.29.	 These alternatives were also

evaluated in Task 6 because they offered a small weight savings and pro-

vided improved access to the subsystems.

4.5.2	 Nb nopropellant Configurations

Three monopropellant single stages and two "adaptation" two

stage configurations were developed during Task 3. 	 Again, as in the bi-

propellant systems, an eight-tank version arranged in a flat-X constituted

the baseline configuration, see Figure 4.30. 	 The longer stage length(as

compared to the bipropellant eight-tank configuration of Figure 4.24) and Y*

the larger diameter are due to use of larger propellant tanks. 	 The in-
k.

F

creased tank size required the relocation of the pressurization tanks

s='
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(from the center of the stage for four of the tanks and from the corners

further outward for the other four tanks, see Figures 4.24 and 4.30).

The modular structural arrangement concept is harder to

apply in the case of the monopropellant systems due to less advantageous

load paths.	 The lower performance required for the smaller velocity in-

crement payloads coupled with the large individual propellant tank size

permits handling this class of payloads with a two-tank monopropellant LES

mounted horizontally (Figure 4.31).	 The arrangements developed for ver-

tical mounting is shown by Figure 4.32.	 The vertical mounting differs in

that the width has been reduced by relocation of the two pressurization

tanks and the telemetry transmitter to achieve a 635 mm (25.0 in.) cargo

bay length reduction over the case of horizontal mounting of the LES shown

by Figure 4.31.

The configurations for the monopropellant-type "adaptation"

stages are shown by Figure 4.33 for the SSUS-D booster stage and Figure

4.34 for the SSUS-A booster stage. 	 These two-stage units are utilized

in the same manner as the bipropellant adaptations discussed in paragraph

4.5.1.	 A small potential for user's charge length reduction exists in

the case of horizontal mounting in the SSUS-A cradle for either the bi-

propellant or monopropellant "adaptation" stages through the use of pre-

tilting of the SSUS-A cradle spin table to a 10° to 15° tilt-up angle.

Pretilting to a greater angle by rotating the LES delivery stage by 90°

could offer another reduction in payload bay length. 	 Howevor, lock down

during STS transit with the stages pretilted woudd require modification

of the SSUS-A cradle assembly and might not prove to be cost effective.

4.6	 MASS PROPERTIES

The design philosophy for the modular liquid propellant LES

vehicle dictated as much commonality as practical between differing con-

figurations.	 Achieving varied performance levels under this philosophy

was accomplished by using differing quantities of identical or near iden-

tical components.	 This design approach resulted in only minor weight

penalties for the modular concept.

It was desirable from a Shuttle user charge standpoint to

have as small a system as possible, therefore the structure was constrained
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to add no more size than practical to the system. Structural weight is

directly related to -the propellant tank volume required as the propellant

tanks are the largest components oil the vehicle.

The structural weight of the LES vehicle was derived from

parametric data generated from detail structural sizing studies discussed

in 4.2.2. Preliminary structural sizing was very close to the final

structural size in terms of loads and physical characteristics. This en-

hanced the validity of the structural weight calculations. Structural

weight values given in the following weight summaries include support

weight for all vehicle systems. Systems supports repres nt approximately

20% of the structural weight specified in the summaries.

Vehicle unit cost dictated using existing equipment where

ever possible. The mass properties derivation was generated from a dual

level of analysis with approximately 80% of the vehicle empty weight ob-

tained directly from existing sources and the remaining empty weight being

estimated from parametric or detail sizing analysis. A 10% contingency was

was applied to all non-propulsion system items.

Table 4-XXV details those components selected from existing

hardware. Information is also included on physical size and manufacturer.

4.6.1	 Modular Bipropellant Configurations

The most critical payload requirements occurred in the 8-

tank payload group, thus establishing propellant tank volume and hence

physical size of the vehicle. This same tank size was used for the 4-tank

vehicle. Bipropellant vehicles with only 2 propellant tanks were not con-

sidered due to the center of mass variation produced as fuel and oxidizer

of different specific weight are consumed. For this reason 100 percent

and 50 percent propellant load conditions were used for tre Bipropellant

performance and cost comparisons. The prepackaged propellant tanks were

loaded at the propellant loading facility and delivered direct to the

launch site in either 100 or 50 percent loaded condition as required for

the scheduled launch. See paragraph 4.7.1 for performance comparisons.

Table 4-XXVI presents a weight summary of the modular bi-

propellant configuration. All weights are given for full propellant tanks.
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TABLE 4 xxv COMPONENT SUMMARY

W

ITEM SOURCE
WEIGHT

STATUS
SIZE

KG LB CENTIMETERS INCHES

R-40A Bipropellant Engine Marquardt 9.75 21.5 E 26.7 0 x 47.2 L 10.5 0	 x 18.6 L
R-4D Bipropellant Engine Marquardt 2.40 5.3 E 16.5 0 x 34.0 L 6.5 0	 x 13.4 L
MR-104 Monopropellant Engine Rocket Research 2.27 5.0 E 11.9 0 x 39.4 L 4.7 0	 x 15.5 L

Attitude Control System Computer Scout 20.46 45.1 E 39••4 x 28.7 x 19.6 15.5 x 11.3 x 7.7
Telemetry Transmitter Scout 0.91 2.0 E 11.7 x 11.7 x 3.6 4.6 x 4.6 x 1.4
Battery Eagle Picher 14.52 32.0 E 33.0 x 12.7 x 17.8 13.0 x 5.0 x 7.0

Squib Valve Quantic 0.73 1.6 E 8.9 x 8.9 x 8.9 3.5 x 3.5 x 3.5
Check Valve Rocketdyne 0.27 0.6 ]	 E 3.8 0 x 8.9 L 1.5 0 x 3.5 L
Pressure Regulator New 1.59 3.5 M 10.2 x 20.3 x 7.6 4.0 x 8.0 x 3.0
Thrust Neutralizer Vought 0.82 1.8 E 10.2 0 x 12.7 L 4.0 0 x 5.0 L
Relief Valve Parkerh. 0.77 1.7 E 8.9 ¢ x 17.8 L 3.5 0 x 7.0 L
Pressure Transducer Teledyne 0.09 0.2 E ---- ----
Thermocouple Stock Item 0.05 0.1 E ---- ----
Thermistor Stock Item 0.05 0.1 E ---- ----
Fill & Drain Valve - Propellant Futurecraft 0.14 0.3 E 2.0 0 x 2,5 L 0.8 0 x 1.0 L

- Pressurant Purolator 0.23 0.5 E 5.1 ¢ x 7.6 L 2.0 ¢ x 3.0 L
Manual Propellant Drain Valve Futurcraft 0.68 1.5 E 6.4 ¢ x 17.8 L 2.5 0 x 7.0 L
Propellant Filter Winter 0.59 1.3 E 2.5 0 x 15.2 L 1.0 0 x 6.0 L

Pressurant Tank Bipropellant P.S.I. 10.57 23.3 E 39.4 0 15.5 0

Propellant Tank Bipropellant ARDE 30.03 66.2 M 63.5 0 x 101.6 L 25.0 0 x 40.0 L
Monopropellant ARDE 48.63 107.2 M 74.1 0 x 118.6 L 29.2 0 x 46.7

Pressurant Tank Monopropellant --- 40.01 88.2 New 59.4 0 23.4 0

Ignition Control Unit Biprop --- 4.31 9.5 New 15.7 x 15.7 x 15.7 6.2 x 6.2 x 6.2
Monoprop --- 3.18 7.0 New 14.0 x 14.0 x 14.0 5.5 x 5.5 x 5.5

Telemetry Antenna Tecom 0.05 0.1 E 7.6 x 7.6 x 1.5 3.0 x 3.0 x 0.6
Coaxial Switch Transco 0.36 0.8 New 9.7 x 9.1 x 8.1 3.8 x 3.6 x 3.2
Power Control Unit --- 0.68 1.5 New 7.6 x 7.6 x 7.6 3.0 x 3.0 x 3.0

E = Existing, M = Modified Existing, 	 = Diameter, L = Long



TABLE 4 -YXVI L014 ENERGY STAGE BIPROPELLA14T CONFIGURATION WEIGHT SUMMARY

CONFIGURATION

,a

IODULAR MODULAR MODULAR MODULAR MODULAR MODULAR 2dODULAP,
8 TANK 4 TANK 4 TANK 4 TANK 4 TANK 12 TANK 12 TANK

jdBS ELEMENT DELIVERY HORIZONTAL HORIZONTAL VERTICAL ERTICAL VERTICAL VERTICAL VERTICAL FRAME
+ SSUa D + SSUS-A WITH 4 TANKS

KG (LB) KG (LB) KG (LB) KG (LB) KG (LB) KG (LB) KG (LB)

0221 Stage/Payload Sep. 7,7 17 7 7
J.

17 Z7 Z
9b.b 108.0

17 q 7 17
108 . 0

17
23S

7
122:j 274 95.7 2110222 Structure & Supports 85.7 189 150 213 238

0223 Thermal 26.8 59 24.5 54 24.5 54 24 . 5 54 24 . 5 54 27 . 2 60 27.2 60
0224 Propulsion Inerts 384.2 847 201.4 444 201.4 444 201.4 444 201.4 444 566.5 1249 201.4 444
0224 Trapped Propellant 57.2 126 30.8 6$ 30.$ '0$ 30 . 8 68 30 . 8 68 83 . 5 1$4 30.$ 6$
0224 RCS Propellant 7.7 17 7.7 17 7 .7 17 89.4 197 103.0 227 7 . 7 17 7.7 17
0224 Mixture Ratio Tol. 20.0 44 9.5 21 9.5 21 9.5 21 9.5 21 30.8 68 9.5 21
0224 Pressurant 8.6 19 4.5 10 4.5 10 4.5 10 4 . 5 10 33 . 1 29 4.5 10
0225 Reaction Control 11 . 3 25 11.3 25 11.3 25 11.3 25 34.0 75 11 . 3 25 11.3 25
0226 Data !^1ngmnt /Communication 2.7 6 2.7 6 2.7 6 2.7 6 2.7 6 2.7 6 2.7 6
0227 Guidance/Navigation 20.4 45 20 .4 45 20.4 45 20.4 45 20 .4 45 20. 4 45 20.1 45
0227 Ignition Control 4.5 10 4.5 10 4 . 5 10 4.5 10 4 . 5 10 4.5 10 4.5 10
0228 Electrical 26.3 58 23.6 52 23.6 52 23.6 52 23 .6 52 29.5 65 23.6 52

Contingencv 10.6 16.3 1	 36 19.1 1	 42 23.4 45 1	 21." 4 22.2 4 1 43
Stage Inerts 681.7 1503 432.9 955 464.3 102 558.7 1232 595.9 13lµ 949.6 2094 466.5 1029

A V Consumables 1669.2 3630 829.2 1828 829.2 1828 747.5 1648 733 . 9 1618 2569.3 5532 829.2 1828

Stage Ignition 2350.9 5153 1262.1 ^-,"̂ 3 1293.5 2852 =306.2 2880 1329.9 2932 3458.9 7626 1295.7 2857

Booster Adaptation --- --- --- --- --- --- 1754.5 3868 3770.3 $312

^_otal Stage Weight 2	 > 5153 1262.1 2783 1293.5 2552 306C.7 6746 5100.2 11244 3458.9 7626 1295.7 2857

(FT.) I•:. (FT.) 111. (FT 11. f FT.) :d. FT. M. f FT.) ?:. Fi.`
F:oriz .Length Installed ^•--Vey - 2.53,'- 77i- 2.53;- -.	 70 -,5.5 3.52 1I.55J 3.57. '1.71/- -;1.5 -15-1

2.18 7.15
Stage Diameter 1?.99 2.69 8.83 3.28 10.76 3.12 10.24 1.78 5.84 4.07 13.35 07 13.35

Iiumber of Propellant Tanxs 8 4 4 4 4 12 4

Booster Adaptati^ :n - - - SSU3-D SSUS-A - -

a

i
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The weight of the 50 percent loaded configuration can be obtained by sub- 	 L^
tracting 50 percent of the AV consumables listed in the table. The struc-

tural weight for adaptations of the 4-tank bipropellant vehicles to SSUS-D

and,SSUS-A have been increased to account for LES/SSUS interface.

4.6.2	 Modular Monopropellant Configurations

Nb dular monopropellant vehicle sizing was performed similar
	 G

to the bipropellant vehicle. t'b dular monopropellant vehicles selected

were an 8-tank, 2-tank and 2-tank/SSUS adaptations. Again the 8-propellant

tank vehicle determined the propellant tank size. Table 4-XXVII presents

a weight summary of the modular monopropellant configuration. All weights

are for full propellant tanks.

4.6.3	 Inertia Data

Figure 4-35 and Figure 4-36 present inertia and center-of-

mass variation for propellant consumption typical of the 8-tank bipropell-

ant vehicle with .a small and large payload respectively. This data is

typical of data used in determining reaction control system requirements

as described in paragraph 4.2.5.

4.7	 CONCEPT PERFORMANCE

The performance of the LES concepts refined in Task 3 was

determined in order to establish the specific LES mission model capture

of each configuration. The performance of each configuration was computed

based on the ideal velocity equation which assumes that the velocity cap-

ability of the stage is imparted instantaneously and that the specific

impulse is constant. The configuration mass properties and propulsion

characteristics presented and discussed in paragraphs 4.6 and 4.3, re-

spectively, were used as the basis for performance capabilities.

The performance capability (velocity increment) is presented

parametrically as a function of spacecraft mass. A performance curve for
each configuration is overlayed on the LES Mission Model mass/energy re-

quirements of paragraph 4.1.3 so that the relationship of each configura-

tion's performance capability to the Mission Model performance require

rients could be easily assessed.
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TABLE 4-XXVII LOW ENERGY STAGE MONOPROPELLANT CONFIGURATION WEIGHT SUMMARY

CONFIGURATION

rn

WBS ELEMENT DELIVERY MODULAR MODULAR MODULAR MODULAR MODULAR
8 TANK 2 TANK 2 TANK 2 TANK 2 TANK
HORIZONTAL HORIZONTAL VERTICAL VERTICAL VERTICAL

WITH SSUS-D WITH SSUS-A

KG (LB) KG (LB) KG (LB) KG (LB) KG (LB)

0221 Stage/Payload Sep. 7 .7 17 7.7 17 7.7 17 7.7 17 7.7 17
0222 Structure & Supports 107.0 236 71.7 158 71.7 158 83.0 183 83.0 183
0223 Thermal 27.2 60 24.5 54 24.5 54 24.5 54 24.5 •54
0224 Propulsion Inerts 760.2 1676 206.4 455 206.4 455 206.4 455 206.4 455
0224 Trapped Propellant 87.1 192 30.8 68 30.8 68 30.8 68 30.8 68
0224 RCS Propellant 0 0 0 0 0 0 9.1 20 22.7 50
0224 Mixture Ratio Tol. 0 0 0 0 0 0 0 0 0 0
0224 Pressurant 29.9 66 7.7 17 7.7 17 7.7 17 7.7 17
0225 Reaction Control 0 0 0 0 0 0 13.6 30 27.2 6o
0226 Data Mngmnt/Communication 2.7 6 2.7 6 2..7 6 2.7 6 2.7 6
0227 Guidance/Navigation 20.4 45 20.4 45 20.4 45 20.4 45 20.4 45
0227 Ignition Control 4.5 10 4.5 10 4.5 10 4.5 10 4..5 10
0228 Electrical 27.2 60 22.7 ,, 50 22.7 50 22.7 50	 _ 22.7 50

Contingency 19.5 43 15.4 34 15.4 34 17.7 39 19.5 43

Stage Inerts 1093.4 2411 414.5 914 414.5 914 450.8 994 450.8 1054

A V Consumables 2412.2 5318 594.2 1310 594.2 1310 585.1 1290 571.5 1260

Stage Ignition 3505.6 7729 1008.7 2224 1008.7 2224 035.9 2284 1035.9 2314

Booster Adaptation -- -- -- 754.5 3868 3770.3 8312

Total Stage Weight 3505.6 7729 1008.7 2224 1008.7 2224 2790.4	 1 6152 4806.2 10627

M. (FT.) M. (FT.) M. (FT.) M. (FT.) M. (FT.)

Length ~Installed 
Horiz.
Vert.

.88/- 2.89/- .88/ 2.89/- -/1.70 -/5.5 3.56/
2.18

11.68/
7.15

3.61/- 11.84/-

Stage Diameter 4.11 13.48 2.62 8.60 2.79 9.15 2.79 9.75 1.78 5.84

Number of Propellant TankE 8 2 2 2 2

Booster Adaptation - - - SSUS-D SSUS-A
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4.7.1	 Bipropellant Configurations	 ^e

The performance of the liquid bipropellant configurations

is presented in Figure 4.37. The 8-tank horizontal and 12-tank vertical

modules have about the same performance and could 'handle 99% of the missions

in the Low Energy Regime; all except mission #48, the Scout San Marco Dl

mission. The 4-tank horizontal and vertical modular versions and the 50%

off load of these can handle 86% and 85% of the model, respectively. The

50 percent propellant loaded configuration produces performance approxi-

mately that of the 100 percent loaded 2-tank monopropellant and the 100

percent loaded TRS resulting in a sound basis for comparison. Refer to

Figure 4.37 and Volume IV, Figure 7.2 for performance comparison.

4.7.2	 Monopropellant Configurations

The performance of the liquid monopropellant configurations

is presented in Figure 4.38. The 8-tank module captures 96% of the model

while the two tank horizontal and vertical modular versions capture 85%

of the model.

4.7.3	 Adaptations

The performance of adaptations of the existing/planned STS

delivery systems (SSUS"-D and SSUS-A) using various LES bipropellant and 	 A

monopropellant concepts is presented in Figure 4.39• All of these con-
1

figurations produce a sufficient velocity increment to handle all of the

mission model, except mission #49, but were used only for those missions

which require-in excess of 2000 to 3000 m/sec. There is not a significant

difference in adaptation performance between bipropellant and monopropellant

delivery stages. The adaptation performance is influenced primarily by

the use of either SSUS-A or SSUS-D as the booster stage of these configura-

tions.
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4.8	 INTEGRAL PROPULSION SYSTEM

The purpose of this special task was to conduct a brief investi-

gation of the use of an integral propulsion system which depends on the space-

craft -to provide common functions instead of separately providing these

functions as a part of the Low Energy Stage. These functions were guidance

and attitude control commands, power, communications and data handling. This

investigation covered two areas of interest: Cost variances and configuration

evaluations. Three options were selected to scope the potential cost variances.

Two options used the LES 8-tank bipropellant concept and one was based on the

LES components integrated with the spacecraft structure. The configuration

integration investigation considered three options using the MMS and LES 8-

tank bipropellant configuration. The MMS was used because it was the more

mature spacecraft design specified in the payload model (paragraph 4.1).

4.8.1	 Cost Variance

The basis for this investigation was the Low Energy Stage Study

payload model. This data was used to determine the number of propulsion sys-

tem designs and contractors involved for each integral option approach. The

brevity of the available spacecraft descriptions limited the depth of the

investigation. However, the intent of this task was achieved by considering

capability and cost deltas from the bipropellant low energy stage approach.

The following two considerations expressed in the payload model report were

important to this investigation.

(1) The LES Model covers the years 1980-1991. As with

all payload models, data on near-term missions (e.g.,

missions within a current five-year planning cycle)

was much more reliable than data on missions pro-

jected for the later years (1985 and beyond). Mis-

sions defined in the model for the mid-to-late 1980's

should properly be viewed as examples of the kind of

endeavors that might take place at a certain projected

level of future activity. Specific definitions should

not be weighed too heavily or be regarded as totally

inflexible in determining the requirements of support-

ing propulsion systems.
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(2) Just as the 487 Payload Model is geared to reflect

STS requirements, 'the LES Payload Model is geared

to reflect the requirements for a low energy stage.

Both models tend to occasionally modify "the intent

I t

	

	 of the individual mission planner in producing

mission definitions that comply with groundrules

and governing assumptions about future NASA policy.

In the case of the LES Payload Model, there were

instances where a mission was based upon a non-base-

line spacecraft definition. This occurred when

F`

	

	 the baseline, as viewed by the mission planner, in-

cluded an integral propulsion system that would not

be needed if a low energy stage were developed and

used. Thus, although the LES Payload Model includes

updated and sometimes more definitive data than the

487 Payload Model, it also incorporates some assump-

tions that make it peculiar to the low energy stage

study application. Use of the LES mission data for

other applications should be reviewed on a case by

case basis.

Options selected for this investigation were:

(1) One propulsion system design tailored to the mission

requirements of the LES payload model and attached

to the spacecraft structure.

(2) Several propulsion system designs, each tailored to

a specific class of the LES payload model require-

ments and attached to the spacecraft structure.

(3) Propulsion systems provided by a spacecraft contrac-

tor with propulsion and spacecraft components inte-

grated on a common structure.

The cost variance estimates for these options included the impact on the space-

craft as well as the stage. Some stage cost reductions were off-set by in-

creased spacecraft contractor responsibility because the supporting cost

cannot be eliminated from the program. These supporting costs were: integra-

tion, documentation, interface control, integrated test and simulations,

training, management, ground support equipment and operations support cost.
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The cost for these items were esculated because they will not be a common
s

one time expense between the many spacecraft contractors.
Ji

The payload model consists of 103 spacecraft requiring a low

energy stage for transport from the Shuttle orbit to the spacecraft opera-

tional orbit.

With these considerations, the following trend results present

a comparison of the options based on the bipropellant low energy stage

propulsion system and mission scenario.

•	 0 tion	 1

This option consisted of the bipropellant LES design with the
L

battery, telemetry, guidance, antennas, and power control equipment removed

and considered to be a part of the spacecraft. 	 Therefore, the LES bipropellant

propulsion approach remained the same with the spacecraft providing these

functions through interfacing hardware.

Cost variance considerations were:

a)	 LES a

It was assumed one contractor would develop the propul-

sion stage based on a single design for the payload model

spacecraft requirements.

-	 Production recurring cost reduction of the LES

equipment deleted was $718,640 per stage with

the total for the payload model being $74,019,920.

-	 DDT&E cost reduction estimate was $10,000,000.

-	 Shuttle user cost reduction estimate was zero be-

cause there were no configuration changes.

-	 Supporting recurring cost reduction estimate was

$17,894,000.

b)	 Spacecraft

A review of the LES payload model indicated 15 different

classes of spacecraft.	 It was assumed a different con-

tractor would supply each class of spacecraft. 	 Therefore,

the propulsion stage designs for the LES payload model'

would involve 15 different spacecraft contractors.

-	 Production recurring cost increase estimate was

zero because equipment to provide LES functional

capability was basic to spacecraft design.
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- DDT&E cost estimated cost increase was $1,000,000

per spacecraft contractor. This increase results

because of propulsion system software development,

management and interface responsibility that must

be performed by the spacecraft contractor. The

total increase for 15 spacecraft contractors was

$15,000,000.

Shuttle user cost increase estimate was zero be-

cause there were no configuration changes.

- Supporting recurring cost increase estimate was

25% of the $17,894,000 LES reduction. This was an

increase of $4,473,500 for each spacecraft contrac-

tor because the responsibility was considered as

an add-on to an existing spacecraft task. The

total cost increase for the 15 spacecraft contrac-

tors was $67,102,500.

Table 4-XXVIII shows a summary cost comparison between LES and

Option (1). The LES cost reduction of $102M was reduced by an $82M increase

in spacecraft cost. Thus, a total program cost reduction potential of

$20,000,000 exists for Option (1). This potential savings does not consider

that some planned spacecraft may not include, as a basic spacecraft design

requirement, equipment that will provide the LES functional requirements. It

was estimated that to add or make major modification to spacecraft equipment

I

	

	 to provide the necessary LES functions would cost $5,000,000 (DDT&E and equip-

ment) per spacecraft class. If this cost impact was incurred on 4 of the

payload model spacecraft classes, the predicted cost savings of $20,000,000

would not be realized.

Option (1) retains the following attractive features of the

recommended LES concept:

w Stage design provides coverage of the Low Energy

Regime. Therefore, for many of the future space-

craft, performance capability will accommodate

growth without requiring stage modifications and

associated DDT&E cost impact.
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TABLE 4-xxviiI

OPTION (1) COST VARIANCES

•
ELEMENT OF COST

LES COST VARIANCE
FOR THE PAYLOAD

MODEL	 $M

SPACECRAFT COST VARIANCE
FOR THE PAYLOAD

MODEL	 $M

PRODUCTION - 74 0

DDT&E - 10 + 15

SHUTTLE USER CHARGE 0 0

SUPPORTING RECURRING COST - 18 + 67

TOTALS -102 + 82
Cost Reduction Cost Increase
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• The one stage design produced by one prime con-

tractor results in only one DDT&E cost.

• The use of one prime contractor and subcontractor

team results in lower recurring stage costs.

v, '1'lie use of the same stage for many missions re-

sults in a higher reliability achievement over

the mission model life because of design maturity.

• The one common propulsion stage complements the

prediction of achieving a lower space program

cost when using the Shuttle STS for spacecraft

delivery to its operational orbit.

• Stage design can be made modular so that deleted

equipment which may not be a part of a spacecraft

may be added to fulfill a mission requirement.

o Option (2)

The LES bipropellant configuration was selected for this

option because of its short length and associated Shuttle user charge reduc-

tion. The cost impact of propulsion system designs for different classes

of spacecraft were considered because it would permit designs based on more

definitive spacecraft requirements. This results because the mission planning

cycle would be near term (within 3 year cycle). Therefore, several propul-

sion system designs could be made smaller and thus at a lower cost.

A review of the LES mission model considering the spacecraft

weight and velocity requirements indicated a split into four different class

propulsion systems appeared reasonable. The cost variance between LES and

this option were very similar to Option (1). Therefore, these cost guide-

lines are not repeated for this option. The cost value of the changes are

different because four LES designs produced by the same contractor were con-

sidered in lieu of one design as in Option (1).

Cost variance considerations were:

a) LES

- Production recurring cost reduction estimates for

deleted equipment was the same as Option (1) -

$718,640 per stage for a total of $7+,019,920.
The four different designs result in a lower pro-

duction run per design which was estimated to
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increase production cost by 11% for a total of

$2+,185,842. In addition, there will be minor
changes in propulsion system size which was esti-

mated at having no impact on cost. 	 Therefore,

the total reduction for the payload model was

$49,834,078.
-	 DDT&E cost reduction estimate was the same as

Option (1) •- $10,000,000 for the first design.

However, there will be DDT&E cost increases for

other three designs. 	 It was estimated the in-

crease would be $1,000,000 per design based on

the requirement spread.	 Therefore, a DDT&E cost`'

increase of $5,000,000 was incurred. {

-	 Shuttle user charge reduction was estimated for

the payload model at 450 inches at $40,000 per

inch for a cost reduction of $18,000,000.
-	 Supporting recurring cost was estimated to be the

same as Option (1) - $ 17,894,000.
b)	 Spacecraft

It was assumed that with one contractor supplying  four

different propulsion system designs the impact on the

spacecraft contractors cost will remain the same as

Option (1).

-	 Production recurring cost change was zero.

-	 DDT&E cost increased $15,000,000.

-	 Shuttle user cost was not changed.

-	 Supporting recurring cost increased $67,102,500.

Table 4-XXIX shows a summary cost comparison between LES and
Option (2).	 The LES cost reduction of $81M was off-set by an $82M increase
in spacecraft cost.	 No cost improvement was achieved using this option.

Option (2) has the following features:

®	 Stage design point more closely tailored to

better defined spacecraft requirements.

e	 Reliability decrement because of reduced

design maturity on each design.
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ELEMENT OF COST

LES COST VARIANCE
FOR THE PAYLOAD
MODEL	 $M

SPACECRAFT COST VARIANCE
FOR THE PAYLOAD

MODEL	 $M

PRODUCTION - 50 0

DDT&E +	 5 + 15

SHUTTLE USER CHARGE - 18 0

SUPPORTING RECURRING COST - 18 + 67

TOTALS - 81 + 82
Cost Reduction Cost Increase



1

e	 Option (3)

kThis option considers a propulsion system more tailored to

the spacecraft contractor or mission; planner requirement as opposed to a

defined propulsion stage the spacecraft must be tailored to fit.	 Thus, the

propulsion design will be tailored to definitive spacecraft performance and

configuration requirements. 	 A review of the LES payload model was made con-

sidering one spacecraft contractor for each class of spacecraft and the veld- Ly

city and weight requirements. 	 From this review it was concluded that as a

minimum 31 different propulsion system designs would result. , m

E: Without a common stage to force spacecraft design discipline,

the many spacecraft contractors will produce a variety of different propul-

sion systems integrated around the spacecraft structure.	 Each propulsion

system design will necessitate a separate DDT&E with only 1-5 propulsion

systems produced per spacecraft contractor resulting in no production cost a

break because of volume.	 In addition, the integration, documentation, train-

ing, interface control, data management, GSE, management and operations cost

will increase because of the many different contractor/subcontractor teams.

Once the spacecraft becomes the driver for the propulsion system design, the

Shuttle user charge will increase because achieving a short compact design

may appear un-realistic to many different contractors.	 Also, the trend will

be to set more precise propulsion performance requirements which will increase

component price and DDT&E cost because of proliferation of component size,

characteristics and cost.

In view of the above, a total propulsion system comparison

for the payload model was made between the bipropellant LES and Option (3).

It was assumed that Option (3) designs would be a bipropellant type.

Cost variance considerations were:
^s

a)	 LES

The cost data for LES was taken from Table V of

Volume V.

b)	 Spacecraft
-	 Production recurring cost for the 31 different

propulsion designs was estimated to increase by
30% over the LES because of the very short pro-

duction runs (1-5 units). 	 The total cost was

$241,930,000.
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DDT&E for the 31 different designs was estimated

at an average of $12,000,000 each for a total

t	 cost of $372,000,000.
C;

- Shuttle user charge was estimated to be the same

t`	 as LES. It was considered the actual cost will

be greater than LES. It is un-realistic to assume

that 31 different spacecraft contractors will be

so disciplined to propulsion system design that

'j	 they will achieve a short compact design which is
^i

possible for one contractor.

1	 - Supporting recurring cost was estimated at 300%

over LES cost of $68.9M because of the 15 different

contractor/subcontractor teams. The total cost
increase was $206.7M.

Table 4-XXX shows a summary cost comparison between LES and
z

Option (3)• This option resulted in a major program cost increase of

$54o,000,000.

r Based on the above results, the minimum total program cost for

the LES mission model will be achieved by one common propulsion stage design.

The primary reasons for this stems from:

® The design discipline imposed on the many different

spacecraft contractors.

e The elimination of the cost of common propulsion

R,t system tasks being performed by many contractors as

=4	 opposed to one contractor.

4.8.2	 Configuration Evaluation

The LES payload model was reviewed and the MMS was selected as

the spacecraft to be used for the investigation because of its available

design data. The MMS contains three basic subsystems housed in modularized

containers. These three modules can provide the electrical power, attitude

x
control and stabilization, communication, data handling and command func -
tions for the spacecraft and payload. Combining the MMS modules or the MMS

with the LES propulsion modules, structure, and reaction control system,

results in a length and weight efficient configuration.



TABLE 4-XXX

OPTION (3) COST COMPARISON

ELEMENT OF COST

LES COST FOR THE
PAYLOAD MODEL

$M

INTEGRATED SPACECRAFT
PROPULSION COST FOR
THE PAYLOAD MODEL	 $M

PRODUCTION 186 242

DDT&E 26 372

SHUTTLE USER CHARGE 189 189

SUPPORTING RECURRING COST 69 207

TOTALS 470 1,010
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The MMS/LES concept I consists of a combination of either the

LES bipropellant, 4 or 8 tank configuration with the MMS as shown in Figure

4.40. In this concept the MMS Attitude Control System (ACS) module, Communi-

cation and Data Handling (C&DH) module, and Power module together with the

MMS structure are attached to the LES 4 - or 8-tank bipropellant stage.

All redundant subsystems in the LES (battery, telemetry transmitter, anten-

nas, inertial stabilization unit, ignition control unit, and power control

unit) were removed and the result.was a LES weight savings of 54.2 kilograms

(119.5 pounds) and a recurring unit cost savings of $718,640. The overall

length of this resulting configuration was 2.56 meters (8.42 ft.) long and

0.48 meters (1.56 ft.) shorter than the MMS with the PM-II. This concept

requires the minimum change to the MMS and the LES. This conceptual con-

figuration was not compatible with the existing MMS Flight Support System

(FSS); however, it should be compatible with the LES cradle.

Figure 4.41 shows the MMS/LES concept II. Again this arrange-

ment utilizes the MMS modules and structure together with the LES structure

and tankage. However, in this configuration the LES main thruster and the

LES ACS.thrusters were relocated from the LES to the MMS. This concept re-

sults in an overall length of 2.62 meters (8.59 ft.) and was 0.43 meters

(1.42 ft.) shorter than the MMS with the PM-II. The weight savings due to

elimination of the redundant subsystem hardware was 54.2 kilograms (119.5

pounds) and the subsystem recurring unit cost is $718,640. A primary ad-

vantage of this configuration was that it could be made compatible with the

existing MMS/FSS.

The third concept was the MMS Modules/LES concept shown in

Figure 4.42. This was the most efficient of the three concepts in terms

of weight and length. This concept utilizes the MMS, ACS, C&DH, and power

modules on the LES stage in lieu of the equivalent LES subsystems. The re-

sulting configuration was 1.32 meters (4.33 ft.) in length and was 1.727

meters (5.67 ft.) shorter than the MMS with the PM-II. Again this concept

saves 54.2 kilograms (119.5 pounds) of subsystem weight and $718,640 of sub-

system recurring cost. This concept would require modification to the LES

conceptual design to provide MMS module mounting provisions and it will also

require the design of a payload transition adapter. The present MMS/FSS can
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not be used with this conceptual configuration. However, the LES conceptual

design launch cradle could be compatible assuming that the change in the

mass distribution due to the removal of the LES subsystems and the addition

of the MMS modules can be accomodated.

Each of the concepts shown was a low energy stage that can be

used in either of two modes. First it can be used as a stage that performs

all payload delivery functions independent of the payload, and second it can

be used as a propulsion system with all the physical characteristics of the

low energy stage except for those components whose functions were provided

by the payload.

Table 4-$cxxi shows a summary comparison of the Integral
Propulsion System concepts.

4.9	 IMPACT ON PAYLOAD DESIGN TRENDS

Payloads of the past have been sized and shaped by the space

available on expendable launch vehicles (ELV). These ELV launched payloads

traditionally have high length/diameter ratios. They ,fit the available
space in the ELV and the volumetric efficiency is generally 90% or higher.

The advent of the Orbiter with its 18.288 m (60 ft.) long by
4.572 m (15 ft.) diameter cargo bay has relieved the ELV form factor con-
straints on payload designers and presents a completely new set of form

factor criteria. The need for high volumetric efficiency in packaging pay-

loads in the Orbiter cargo bay is made very real by the user charge policy..

How well the space aboard each Orbiter flight is used will determine the

efficiency of the Space Transportation System.

4.9..x.	 Measurement of Orbiter Cargo Bay Packaging Efficiency

The Orbiter cargo bay volume is 300.241 cubic meters (10,603
cubic ft.) and the allowable cargo weight for the standard 28.5° inclina-
tion launch from ETR is 29,484 kg (65,000 lb.) which yields an average den-
sity of 98.20 kg/m3 (6.13 lb/ft 3 ) if the entire cargo bay were uniformly
filled 100% with the allowable payload. A more useful guide for the pay-

load designer is a weight/unit length figure of 1612 kg/m (1083 lb/ft) of
cargo bay length for 28.5° inclination and 1414 kg/m (950 lb/ft) for the
56 0 inclination.

118



TABLE 4-XXXI INTEGRAL PROPULSION SYSTEM SUmARY COMPARISON

NN

IGHT SAVINGS RESULTING MMS FLIP' SUPPORT
LENGTH SAVINGS FROM REMOVAL, OF SYSTEM

CONCEPT LENGTH
OF CONCEPT REDUNDANT SUBSYSTEMS COMPATIBILITY

WEIGHTVS MMS/PMII
METERS INCHES METERS INCHESCONCEPT (KG LB MMS LES

MMS/LES 2.565/101 0.48/19 54.2/119.5 No Yes 
CONCEPT I

.N]MS/LES 2.61/103 0.43/17 54.2/119.5 Yes No 
CONCEPT II

NMS MODULES/LES 1.32/52 1.727/68 54.3/119.5 No Yes
CONCEPT III



For payloads launched from WTR the allowable Orbiter cargo

weight is reduced. to: 16,783 kg (37,000 lb) for 900 inclination orbit opera-

tions and to 14,969 kg (33,000 lb) for 980 inclination orbit operations.

The corresponding weight/unit length figures are 918 kg/m (617 lb/ft) and

819 kg /m (550 lb/ft).
A review of the LES payload/mission model (Table 4-11) reveals

that approximately one-third of LES missions will be launched from ETR and

the remaining two-thirds from WTR. A payload designed for a WTR launch may

be optimized in packaging efficiency if the volume and length relationship

is adjusted until they match or approximate closely the user's charge fac-

tor due to weight. For example, using a packaging density of 160 kg/m3

(10 lb/ft 3 ) average for current spacecraft industry practice, the payload

of 1000 kg (2205 lb) mass destined for a 90 0 WTR launch works out to dimen-

sions of 1.088 m (3.57 ft.) length and 2.704 m (8.87 ft.) diameter and an
L/D ratio of .402. This is a new shape for spacecraft payload designers
and requires a large diameter flat type of stage to keep the L/D ratio near

the optimum and will guide the payload/stage/cradle installations in the

Orbiter into the horizontally mounted direction with vertical ("pop-up")

deployment.. The trend makes spin stabilization by predeployment spinning

in the cargo bay difficult and tends to favor a 3-axis stabilization method
of guidance and control. To better understand the problems associated with

spinning in the bay prior to deployment a.study of the loss of cargo bay .

volume incurred by spinning payloads deployed in a vertical manner was per-

formed.

Figure 4.43 shows the results of the study. The study showed
that the most effective way to use the space of the cargo bay was to provide

for horizontal installation of a payload sized to use the full diameter of

the bay and to reduce the length of the payload/stage combination as much

as possible. Direct mounting of the payload to the Orbiter longerons and

keel with a flat, large diameter delivery stage cantilevered from the pay-

load structure appears to be the best method for achieving high volumetric

efficiency. This method will require deployment from the bay to be in a

direction normal to the longitudinal axis of the cargo bay to avoid increased
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user charge due to additional swing clearance for predeployment erection.

4.9.2	 Effect of LES/ASE Cradle Designs on Payload Design Trends

Installation design s'cudies during the early phases of Tasks

3 and 4 showed that the greatest volumetric efficiency for the payloads to

be carried by the Orbiter could be obtained by the direct mounting method

where the payload fills the bay and the stage is very flat and attached

directly behind the payload. A review of the LES mission model (Table 4-II)

shows that only 8 . missions and 25 payloads (19% of the model) are larger

in diameter than 4 meters (13.12 ft.) and are currently planned for direct

mounting. Another group of large diameter payloads are those of 4 meter

(13.12 ft.) to 3.6 meter (11.81 ft.) diameter). This group makes up 7

missions and 24 payloads (18% of the model). The majority of these large

payloads are scheduled for launch in 1984 or later and appear to have been

able to take advantage of the Orbiter bay Form factor criteria to achieve

good volumetric efficiency.

As the payload diameter becomes lower than about 3.5 meters

(11.48 ft.) it was found structurally inefficient to direct mount the pay-

load to the Orbiter. Some form of intermediate payload support such as an

ASE cradle or a Spacelab type of pallet was required for cost effective

installation. Further studies showed that the optimum limit for direct

mounting of payloads occurred at about 4 meter (13.12 ft.) diameter. At

this payload size limit an effective and lightweight ASE cradle could be

utilized as a base for fillers and adapters to be added for accomodating

smaller diameter payloads, but yet leave the basic cradle available for the

expected larger diameter payloads.. In order to support a multiplicity of

payload lengths with the same basic cradle structure a design concept

evolved that permitted varying the cradle length by using telescoping rod

assemblies that would permit placement of the support frames at the payload

c.g. and the stage c.g. and to use these rods as the reactive base for a

deployment force at 90 0 to the Orbiter X-axis.

4.9.2.1	 Effect on Payloads for Vertical Installation

Vertical payload installations using the LES/ASE vertical

cradle are shown by Figure 5.7. Payloads would be required to furnish

only the V band coupling flange and their own electrical umbilical mounted

s.

i^
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on the starboard side of the payload in line with the payload c.g. plane.
The vertical cradle arrangement is a.cost effective manner of

mounting smaller payloads in the Orbiter cargo bay.	 Orbiter payloads should

be installed vertically if the length of the spacecraft and stage exceeds

the diameter of this combination and if the length of the spacecraft, stage;

ASE cradle combination is less than the cargo bay diameter.

4.9.2.2	 Effect on Payloads for Ho rizontal Installations

The horizontal payload installations developed during the LES <,

study are shown by Figures 5.4, 5.5 and 5.6 for cradle mounted. payloads and
by Figure 5.2 for the direct mounted payloads. All cradle mounted payloads

over 200 kg (441 lb) mass would be required to provide three mounting trun-
nions at their outer diameter at 3, 6 and 9 o'clock locations in the plane
of their center of gravity (c.g.). 	 These payloads would also furnish mat- ,.

ing deployment socket fittings (two fittings for payloads between 200-2000

kg (441-4410 lb) and three fittings for payloads heavier than 2000 kg (4410
lb) at approximately the 5 and 7 o'clock positions at a station plane that f

E	 will pass through the combined 	 payload/stage center of gravity.	 The re-

maining payload furnished interfaces required. consist of the payload half

of the V-band type separation coupling flange and the payload electrical`

umbilical at the 2:30 o'clock location in -Uhe plane of the payload c.g. and
4

mounted at the payload outer diameter.	 Should. the payload require somer,
electrical service from the LES, an electrical umbilical would be provided

by the payload at the 1 o'clock location and just inside the V-band coupling

flange.

l r
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	5.0	 TASK 4: INTERFACE ANALYSIS

The purpose of this task was to develop preliminary conceptual

designs for Airborne Support Equipment (ASE) for the selected propulsion

modes of Task 3 and to provide physical and electrical interface definitions

for these propulsion modes between the spacecraft and the ASE and between

the ASE and the Orbiter. The developed concepts were evaluated to determine

the impact on the elements of total launch cost for individual combinations

of payloads, stages and ASE using the revised low energy payload model

(paragraph 4.1).

	

5.1	 AIRBORNE SUPPORT EQUIPMENT CONCEPTUAL DESIGN

A conceptual design data base was established for ASE from

references 24 through 39. In addition, existing or planned ASE cradle con-

cepts were examined for compatibility and adaptability to conceptual LES.

Data were then collected on ASE weight, size and length required for instal-

lation and payload deployment from the Orbiter cargo bay. Table 5-I sum-

marizes this data and Figure 5.1 shows the general appearance of the more

applicable systems studied.

The larger twelve and eight tank versions of the LES would not

adapt to existing/planned ASE cradles without extensive redesign of either

the stage or the cradle. The smaller four and two tank versions of LES were

adaptable to TRS and NMS cradle concepts, however, additional components would

'be required to provide support of the LES and cantilevered payloads. Table

5-II lists existing/planned ASE cradle assemblies and the percentage of pay-

loads of the LES payload model adaptable to them. Since only approximately

50% of the LES mission model payloads could be captured by any of the exist-

ing/planned cradle systems a modular cradle concept was developed.

The results of this evaluation were used to establish the

following groundrules.

• ASE cradles should not add length or width to the

stage/payload combination in such a manner that

the cargo bay length user's charge increases.

• ASE cradle weight should be minimized consistent

ipporting the mission payload/stage com-

ins

yat:
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TABLE 5-I APPLICABLE EXISTING OR PLANNED ASE CRADLE DESIGNS

PNVl

STAGE/CARRIER

TOTAL ASE
WEIGHT
kg	 (lb)

CRADLE SIZE

LENGTH-m/DIA m
(LENGTH-ft/DIA-ft)

PAYLOAD
WEIGHT LIMIT
kg	 (lb)

PAYLOAD
SIZE.L?MIT

LENGTH m/DIA-m
(LENGTH-ft/DIA-ft)

ORBITER BAY
LENGTH REQUIRED

(1)
m	 (ft)

MMS/PM-II 1905 (4200) 2.130/4.52
(2)

3629 (8000) (3) 5.200/1.957 (4) 3.378 (11.08)
EXPENDABLE Moo/14.83) (17.06/6.42)

TRS. - 2 TANK 1302 (2870) 2.230/4.52 (5) (5) 2.23	 (7.33)
RETRIEVABLE (7.33/34.83)

TRS - 4 TANK 1302 (2870) 2.230/4.52 (5) (5) 2.23	 (7.33)
RETRIEVABLE (7.33/14.83)

SSUS—A 1724 (3800) 2.603/4.52 1996 (4400) 6.261/4.52 2.731 (8.96)
(HORIZONTAL) (8,54/14.83) (20.54/14.83)

SSUS-D 1724 (3800) 2.603/4.52 1087 (2400) 6.261/4.52 2.731 (8.96)
(HORIZONTAL) (8.54/14.83) (20.54/14.83)

SSUS-D 1021 (2250) 2.185/4.52 1087 (2400) 2.567/2.185 2.185 (7.17)
(VERTICAL) (7.17/14.83) (8.42/7.17)

SPACELAB	 (6) 653 (144o) 2.875/4.46 3500 (7716) 2.875/3.63 2.875 (9.43)
PALLET (9.43/14.63) (9.43/11.91)

NOTE: (1) Total of stage + ASE + swing clearance for erection prior to deployment.
(2) Design payload maximum weight for FSS for MMS.
(3) Longest of presently planned MMS payloads minus length of MMS.
(4)Maximum diameter over mounting trunnions for present design of Flight Support System (FSS) for MMS.
(5) TRS/SD ASE cradle makes no provision to carry payload. Payload must provide its own mount for

use in Orbiter.
(6) Data is for one Spacelab pallet. Multiply by 2 for two pallets and by three for three pallets.
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ACCOMODATES
46% OF LES PAYLOADS

MMS/FSS SINGLE HORIZONTAL MMS/FSS SINGLE VERTICAL

18%

0%

TRS	 24%	 17%
2 TANK OR 4 TANK	 SSUS-A OR SSUS-D
CRADLE	 HORIZONTAL

FIGURE 5.1 GENERAL ARRANGEMENT OF SOME ASE CRADLE SYSTEMS
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TABLE 5-II

POTENTIAL OF ADAPTING EXISTING/PLANNED ASE TO NEW LES

EXISTING CRADLE
ASSEMBLIES

CRADLE
ARRANGEMENT

PERCENTAGE OF LES
PAYLOADS ACCOMMODATED

MMS/PM-II VERTICAL 18

MMS/PM-II HORIZONTAL, 46

TRS - 2 OR 4 TANK HORIZONTAL 0

SSUS-A HORIZONTAL 24

SSUS-A 190 PRE-TILTED 24

SSUS--D HORIZONTAL 17

SSUS-D 430 PRE-TILTED 17

SSUS-D VERTICAL 21



• ASE cradle designs should be capable of easy

reconfiguration.

• ASE cradle should be modular so that horizon-

tal and vertical installations can be carried

and launched safely with a single set of ASE

cradle components.

• ASE cradle should be designed to permit pay-

load/stage deployment without increasing

Orbiter cargo bay length requirement.

• Deployment should be at a velocity of 0.3 meter/

sec (1.0 ft/sec) to 0.6 meter/sec (2.0 ft/sec)

with a maximum tip-off angle of approximately

10 plus an allowance of 0.1 0 additional for the

design clearance envelope.

• ASE cradle designs should use as many components

as possible from developed or planned ASE cradles.

Especially desired are cost savings through in-

creased use of the remote controlled latching

mechanisms used on the Orbiter and the MMS/FSS.

5.1.1	 Design Constraints

LES mission model ASE cradle assembly design constraints were

identified and defined using the above groundrules. In addition to these

groundrules the following design constraints were used for ASE conceptual

design:

ASE shall be modular in design and capable of

configuration flexibility by various arrange-

ments of interchangeable parts.

• A 3-axis stabilized guidance system is used

for all stages.

® Stage propulsion systems incorporate prepackaged

sealed storable propellant tanks. Dumping pro-

visions are not required since the tanks will be

design qualified.

3	 ?	 ,

L

}

t
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e Largest stage the ASE cradle must accommodate

horizontally is an eight tank stage of approxi-

mately 1.0 meter (3.28 ft.) length by 4.0 m
(13.12 ft.) diameter arranged in a flat cross.
Largest stage the ASE cradle must accommodate

vertically is a four to twelve tank stage of

approximately 1.5 m (4.92 ft.) length by 4.0 m
(13-12 ft.) width by 2.5 m (8.20 ft.) height

arranged in a fore and aft axis stacked arrange-

ment.

e Deployment from the Orbiter cargo bay shall be

by ASE cradle contained mechanical means with a

deployment velocity of 0.305 mps (1 fps) minimum

and 0.610 mps (2fps) nominal for design. Tipoff

angle at deployment shall be 1.1 0 maximum. De-

ployment envelope shall not increase Orbiter

cargo bay length requirements, however, during

deployment the 0.076 m (3 in.) clearance at

each end may be used as part of the deployment

envelope.

* ASE cradle installation shall have alignment re-

peatability of 0.50 0 (3 sigma) error with each

of the Orbiter's three major axes.

* ASE cradle shall make maximum use of existing/

standard components such as Orbiter type inter-

face trunnions, manual or remote operation

latching mechanisms and remote controlled latch-

ing mechanisms used on the MM/FSS.

a For adaptation stages, use SSUS-A or SSUS-D

horizontal cradles for adaptations of SSUS-A

or SSUS-D as horizontal booster stage and

SSUS-D vertical cradle for adaptations of the

SSUS-D as a vertical booster stage.
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5.1.2	 Modular Cradle Concepts

The design approach selected for an ASE cradle assembly is a

modular concept using the fewest number of components to achieve the required

configurations. This concept provides the capability to handle all but the

largest of the planned LES payloads.

A 4.0 m (13.12 ft.) payload envelope positioned at the top of

the cargo bay leaves adequate space for cradle structure. Payloads larger

than 4.0 m (13.12 ft.) in diameter are considered for direct mounting to the
Orbiter structure through the use of small fittings tied directly to the
payload structure. The stage (in those cases requiring a stage) is mounted

in a cantilevered manner to the aft end structure of the payload through use

of a special adapter, bolted onto the payload structure, which is of minimum

length and weight. Figure 5.2 illustrates this arrangement and is typical

of how the larger than 4.0 m (13.12 ft.) diameter payloads can be handled
for Shuttle transportation to orbit for deployment. Separation from the

Orbiter prior to perigee burn would be by Orbiter maneuver after stage and

payload deployment by the Remote Manipulator System (RMS).

The primary design objectives established for the cradle concepts

are:

• The cradle configurations achieveable with the com-

ponents of a cradle assembly provide handling

capability for all of the LES payloads that are

equal to or less than:

- 9.0 meters (29.53 ft.) in length

- 4.0 meters (13.12 ft.) in diameter

- 4500 kilograms (9,921 pounds) in mass

• The cradle assembly design minimizes length -to

avoid adding to the user's charge.

• The design of the major cradle assembly components

provides two strength levels; one for heavy pay-

load/stage combinations and one for light combina-

tions.. These.two levels tailor cradle configura-

tion mass to better match payload/stage mass; thus,

reducing weight impact for achieving modularity.
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• Maximum use of existing or standard components

such as remotely operated latching mechanisms

from the MMS/FSS and STS Orbiter programs pro-

vides reduction in cost.

• Payload/stage separation from the cradle and de-

ployment from the Orbiter cargo bay is directed

along a path parallel to the Orbiter's +Z axis.

5.1.2.1	 LES ASE Cradle Set Definition - A composite envelope of the

LES mission model payloads which are equal to or less than the design objec-

tives of 9.0 m (29.53 ft.) length, 4.0 m (13.12 ft.) diameter and 4500 kg
(9,921 lb.) mass is shown in Figure 5.3. The larger sizes of this envelope
are installed horizontally in the Orbiter cargo bay. Approximately 24 of
the mission model payloads with dimensions equal to or less than 2.9 m
(9.5 ft.) in length, 1.5 m (4.92 ft.) diameter and 907 kg (2,000 lb.) mass
can be installed vertically in the Orbiter cargo bay.

The LES ASE cradle assembly consists of a set of components which

are arranged in various configurations to provide four cradle assemblies,

individually but not simultaneously, from the parts of the set. Table 5-III
is a list of all modular components which make up a cradle assembly set and

indicates by item number and quantity required how each component is used.

The lighter weight 0.254 m (0.83 ft.) wide cradle I is used for the short
horizontal and vertical cradle configurations to save weight because of the

generally lower mass and size of these payload/stage combinations.

The conceptual arrangement of the modular components required to

handle a small payload carried horizontally is shown in Figure 5.4. In this
configuration cradle assembly #1 provides support of the stage configured

for horizontal carriage and deployment. In addition, support is provided in

a cantilevered manner for a maximum payload size and weight of 1.8 m (5,9 ft.)
long by 1.4 m (4.6 ft.) diameter and a mass of 200 kg (441 lb.) . The base-
line cradle assembly used is for the 8-tank LES. To convert the cradle to

handle a 4 tank LES the add-on accessories identified as item numbers 4, 7,
8 and 19 are utilized to fill the void created between the cradle mounting

points and the smaller sized stage.
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TABLE 5-III LES ASE CRADLE ASSEMBLIES PARTS LIST

r

PART
NO. PART DESCRIPTION

QUANTITY
PER SET

CRADLE ASSY.
#1 SMALL

HORIZONTAL
QUANT/ASSY

CRADLE ASSY.
#2 MEDIUM
HORIZONTAL
UANT ASSY

CRADLE ASSY.
#3 LARGE

HORIZONTAL
QUANT ASSY

CRADLE ASSY.
#4 VERTICAL
QUANTASSY.

1 Cradle I (10" wide) 2 1 2 2

2 Cradle II (14" wide) 2 1 2 2

3 Walking Beam (14" wide) 1 1 1

4 Cradle Filler 1 1 1

5 Cradle Extender - LH 1 1 1 1

6 Cradle Extender - RH 1 1 1 1

7 Filler Adapter - LH 1 1 1

8 Filler Adapter - RH 1 1 1

9 Filler Adapter - Bottom 1 1 1 1

10 Deploy Mechanism Base 2 2

11 Rod Ass	 - Adjustable 60" to 100" 4 4 (4) (4)

12 Rod Ass	 - Fixed 38" 4 (4) 4

13 Rod Coupler - Fixed 20" Length 4 (4)

14 Rod Ass	 - Adjustable 12" to 20" 4 (4)

15 Rod Ass	 - Adjustable 30" to 36" 4 (4)

16 Rod Ass	 - Adjustable 36" to 60" 4 (4) (4)

17 Latch Mech. - Type A (MMS/FSS Type) 8 5 8 6 5

18 Latch Mech. - Type B (Orb Deployable Type) 3 2

19 Latch Spacer 6 5 6

20 Lon eron Trunnion 4 4 4 4 4

21 Keel Trunnion 2 1 2 2 1

22 Deploy Mechanism #1 - Mechanical _Spring Pkg 2 2 2

23 Deploy Mechanism #2 - Multiple Spring Pkg 1 1

24 Deploy Mechanism #3 - Electro/Mech Mechanisu 1 1

25 Deploy Mechanism - Base-Fixed 1 1

26 Deploy Mechanism - Base-Moveable 1 1

27 Walking Beam - Pivot Assembly 1 1 1

28 Latch Shim - Type A 5 3 6 5

29 Latch Shim - Type B 3 2

30 Vertical Launch - Walking Beam - Assy. 2 2

31 Filler Adapter - Side 4 4

32 Filler Adapter - Bottom 1 1

33 Cross Brace Assembi 4 4

TOTALS 86 31 38 42 35

NOTE: ( ) OPTIONAL DEPENDING ON PAYLOAD LENGTH
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Cradle assembly ##2 for a medium size payload in the horizontal

carriage position is shown in Figure 5.5. In this configuration the widest

of the cradles (item number 2) is placed under either the stage or the pay

load, whichever has the greater mass. By assigning a payload maximum weight

limit of 2400 kg (5291 lb.) for this cradle configuration the MMS/FSS latch-

ing mechanism can be used for support of payloads. Again the add-on acces-

sories are used to accommodate the 4 tank LES. The maximum size of payload

this cradle will accommodate is 5.4 m (17.72 ft.) in length and 4.0 m

(13.12 ft.) in diameter. This cradle assembly is the configuration used

most frequently, consequently it uses the greatest number of adjustable rod

assemblies. Rod assembly settings for this cradle vary from 0.304 m (1 ft.)

up to 2.032 m ( 6.67 ft.) .

The larger size payloads are accommodated by cradle assembly #l3,',

shown in Figure 5.6. For this configuration the payload is much heavier

than the stage and uses the widest of the support cradles at its center of

gravity. The longest payload of 9 m (29.5 ft.) requires the use of rod

assemblies with a length setting of approximately 3.48 m (11.42 ft.) which

is beyond the capability of the largest of the four adjustable rod assemblies.

This configuration requires the use of the rod coupler (item number 13) and

fixed rod assembly (item number 12) to extend the rod assembly length. A

moveable base (item number 26) is used to support the deployment mechanism

(item number 24) which is a scissors jack type device used to deploy large

payloads.

The conceptual arrangement of modular components required to

achieve a vertical four tank stage cradle configuration (cradle assembly #4)

is shown in Figure 5.7. Other arrangements of this cradle configuration

will handle other vertical LES configurations. The installation dimensions

and 'weights for these alternate vertical cradle arrangements are noted in

Figure 5.7.

The vertical cradle arrangement is a cost effective manner of.

mounting smaller payloads in the Orbiter cargo bay. Orbiter payloads are

installed vertically if the length of the spacecraft and stage exceeds the

diameter of this combination and if the length of the spacecraft, stage,

ASE cradle combination is less than the cargo bay diameter.
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Deployment of all of the LES cradle mounted payload/stage com-

binations from the Orbiter is provided by mechanical or mechanical/electrical

devices. The smaller payloads of up to 2000 kg (4409 lb.) mass are deployed

by separation springs selected to match the payload/stage mass. The re-

maining large payload/stage combinations are deployed by means of a scissors

Jack type of deploy mechanism driven by two redundant electrical motors

through suitable gear boxes. In both cases the force is directed through

the combined center of gravity of the payload and stage to eject the Orbiter

payload in the +Z axis direction.

	

5.1.2.2	 SSUS Cradle Assemblies Adapted to LES - Figures 5.8 and 5.9
illustrate cradles for adaptations of SSUS and low energy stages for hori-

zontal and vertical arrangements. Both cradle adaptations are the results

of an analysis performed to physically integrate the combined mass of pay-

loads and LES to adapt to the SSUS cradle assemblies. The mass combinations

investigated were less Than the published design capability of the documented

SSUS-A and SSUS-D cradle assemblies as defined in References 33 and 39 res-

pectively.

Typical modifications. required to the SSUS cradles. are: (1) elec-

trically deactivating the spin table functions - deployment would utilize

the existing mode of spring separation and (2) bypassing the spin-up require-

ments through procedural changes.

	

5.1.2.3	 Interface Requirements Definition - The mechanical interface.

requirements for the LES and cradle assembly configurations are as follows:

® Orbiter to Cradle Assembly - The standard inter-

face attachment points and hardware selected for

the cradle assembly mate with the attachment latches

and fittings planned for the STS Orbiter as defined

in Reference 24.

e Cradle Assembly to LES	 The standard interface

attachment selected for use between the ASE cradle

and the low energy stages is the remote control

latching mechanism being developed for the MMS/FSS.

Requirement varies from five for the smaller

Orbiter payloads up to eight for the medium sized
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payloads. The large Orbiter payloads (over 2400 kg

(5291 lb) mass) that use the cradle assembly require

five of the MMS/FSS remotely operated latches and

three Orbiter deployable type latches.

	

5.1.3	 Design Features

The LES cradle assembly design is modular in construction. Four

cradle arrangements that accommodate the LES mission model payloads are

assembled from selected components of the cradle assembly set. Other de-

sign features which offer cost effective solutions to cradle assemblies

are:
• Cradle assembly can be configured for either hori-

zontal or vertical installation depending on the

size of the payload and stage.

• Cradle assembly requires no additional Orbiter

cargo bay length other than that required to
install the payload and the stage.

• Cradle assembly configurations for LES are light

weight and short in length.

• Cradles use standard STS latches and support trun-

nions which are removable and interchangeable

with other components of the cradle assembly set.

Orbiter deployable type latches are used for

cradle support for large payloads. MMS/FSS type

deployable latches are used for LES and for inter -
mediate and smaller payloads.

• Cradle assemblies are designed for compatibility

with the Orbiter timeline allocations and facili-

ties usage.

	

5.1.4	 Structural and Mechanical Interface

Eight liquid propellant low energy stage configurations, as de-

fined in paragraph 4.5, are supported by four modular cradle assembly con-

figurations. Typical arrangements are shown schematically in Figure 5.10.

In the modular cradle approach, separate components of fixed and telescoping
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assembly configurations which will support and deploy the low energy payload/

stage combinations. 	 The basic structural system employs a 5 point suspension
interface with the Orbiter and uses the cradle assembly inherent torsional

flexibility to assure low stresses when subjected to Orbiter flexible motion.

The LES cradle assembly is designed to support the payload groupings as

defined in paragraph 4.1 for 2.0 g handling and shipping loads while outside
the Orbiter cargo bay and for 4.5 gx , 4.5 gz , and 1.5 gy for emergency Orbiter
landing condition while attached inside the Orbiter cargo bay .	 These and

other design criteria are defined in the program definition and requirements

sections of references 24, 37, and 38.	 LES ASE cradle structural factor
of safety for ultimate loads is 2.0 and the ASE will be proof loaded to 1.1;
thus STS user charges based on weight factors are not significantly penalized

by excessive ASE cradle weights.

Four adaptations of SSUS-A and SSUS-D boosted configurations,

shown in Figure 5.8 and Figure 5.9, use existing SSUS-A and SSUS-D ASE cradles.
The SSUS cradle assemblies also employ a 5 point suspension system interface
with the Orbiter. 	 The combined delivery stage and payload weights for the

adaptations axe lower than published SSUS-A/D payload capabilities; therefore,

the SSUS cradle assemblies are considered structurally adequate.

The horizontally mounted payloads shown in Figures 5.5 and 5.6 use
the telescoping modular LES cradle assemblies which have two key features.

These are:	 (1)	 The forward U-frame supports the payload

at the payload center of gravity.

(2)	 A walking beam, designed to longitudinally

slide and pivot about the Orbiter center

of torsional rotation, supports the LES for

Z and Y stabilization loads.

The telescoping feature allows the support points to be positioned for large

payloads so that the LES structural loads do not exceed the LES structural

loads resulting from a design condition wherein LES supports a cantilevered

200 kg (441 lb.) payload as shown in Figure 5.4.

5.2	 AVIONICS EQUIPMENT

Typical control, display and avionic ASE is identified and des

cribed that provides interface of LES/cradle assembly/avioaics to the payload
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accommodations equipment. These equipment requirements for a typical LES,

cradle assembly and avionics consist of the following equipment:

• Control and Monitor Panel

• Cradle Power Control Unit

• Cradle Signal/Data Interface Unit

• Cradle Deployment Mechanism Unit

• High Gain Antenna and Receiver (optional)

• Cable Plant

• Cradle Harnesses

The functional, interfaces include:

• Controls and monitoring to activate, test

and deploy the LES/spacecraft.

• Caution and Warning monitoring for status

of payload and safing controls.

• Cradle functional interfaces for control

and monitoring.

• Telemetry antenna and receiver for recep-

tion through apogee firing (optional).

The controls, displays, avionic ASE and cable harness as integrated with pay-

load accommodations equipment are shown in Figure 5.11. This approach utilizes

the Orbiter payload accommodations equipment where practical with additional

equipment added if required. Provisions for interfacing payload accommodations

equipment on the Orbiter aft flight deck are available for LES avionics ASE

at two distribution panels. These are: (1) Mission Station Distribution

Panel (MSDP) and (2) Payload Station Distribution Pane3. (PSDP). All wiring

on the aft flight deck is Orbiter furnished, including that from the PSDP to

the payload station and from the MSDP and PSDP to the pressure bulkhead at

station Xo 576. The cable harness from the control and monitor panel to the
PSDP cable interface is supplied as part of the low energy stage panel. ASE

avionics cabling harness will interface with aft flight deck equipment at

the pressure bulkhead (Xo 576) as shown in Figure 5.11.

5.2.1	 Control and Monitor Panel

The Control and Monitor Panel provides dedicated switching and

indicators to activate, checkout, control and monitor the LES and the cradle
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avionics ASE. This panel is installed in the payload station and connected

by Orbiter-furnished cabling to the payload station distribution panel.
Table 5-IV lists the functions, circuitry, interface type, and wiring re-

quirements for a typical control and monitor panel.

The power control switches generally operate relay drivers in

the Signal/Data Interface Unit (S/DIU) which drive relays in the cradle

Power Control Unit (PCU) and the LES PCU and Ignition Control Unit (ICU).

ASE power application and removal is made selectable by function in order to

provide flexibility and conserve Orbiter power. From Orbiter launch to pre-

deployment test LES is in the "OFF" mode. Upon ignition of predeployment test

the Orbiter power source is required for external system checkout and deployment.

The cradle select switch applies activation control and monitor power to the
cradle and the deploymert mechanism. Provisions to apply power and separate
the LES are designed into the panels. Upon separation these circuits are turned

off. The telemetry antenna and receivers, if installed, are turned on before

LES separation, left on through apogee firing, and then turned off.

The LES is activated and checked out on external (Orbiter) power

prior to battery activation and transferred to internal power inputs for the

Inertial Stabilization Unit (ISU) and telemetry loads so that either can be
turned on without the other for checkout purposes. LES external/internal

power transfer relay contacts are of the make-before-break type for unin-

terrupted power to the ISU. For safety reasons the LES is separated from

its cradle before enabling the ICU, reaction control valves, and propulsion

valves and before the propellants are pressurized. A typical sequence up

to separation from the Orbiter is:
(1) Apply external power to the ISU and check it.

(2) Apply external power to the telemetry trans-

mitter and verify reception and demodulation.

(3) Activate the battery.
(4) Transfer to internal power.

(5) Turn off external power.

To safe the LES electrical system after battery activation, ex-

ternal power is removed and the battery is discharged through a dummy load

in the cradle PCU. The cradle PCU external power ;^ ,elay is opened to remove
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TABLE 5-IV CONTROL AND MONITOR PANEL FUNCTIONS

FUNCTION
PROVISIONS

SWITCH PANEL INDICATOR WIRING NOTE

ASE CAUTION AND WARNING POWER I-SPST	 1 2 1
..ASE CONTROL AND MONITOR POWER 1-SPST	 1 2 2

ASE HEATER POWER 1-SPDT	 2 3 1
ASE DEPLOYMENT DEVICE POWER 1-SPDT	 2 3 2
ASE TM ANTENNA/RECEIVER POWER 1-SPDT	 2 3
ASE DEPLOY EXTEND/RETRACT/INTERVAL 1-1P	 3POSITION-ILLUNIINATED 5 2

LES EXTERNAL POWER 1 DPST	 2 4 2
LES GUIDANCE EXTERNAL POWER 1-DPST',	 2 3 2
LES TELEMETRY EXTERNAL POWER 1-DPST;	 2 3 2
LES BATTERY ACTFiATE 1-DPST	 - 2 2

LES GUIDANCE TEST/OPERATE 1-DPST	 2
LES GUIDANCE RUN/HOLD 1 DPST	 2 USES
LES TIMER RESET/COUNTING 1 DPST,	 2 SERIAL
LES PROGRAM LOAD/COMPARE/VERIFY 1-1P	 3POSITION-ILLUMINATED INPUT-/ 3
LES TEST SELECT 1-BCD !	

I	
- OUTPUTS

LES TEST INITIATE 1-DPST	 -
LES TEST BUS/GO/NO-GO 1-1P	 3POSITION-ILLUMINATED

CAUTION AND WARNING GO/NO-GO STATUS -
ASE TM ANTENNA/RECEIVER -	 2 2 1
LES/CRADLE -	 2 2 1

SAFING COMMAND ENABLE -
ASE TM ANTENNA/RECEIVER 1-DPST	 2 4
LES/CRADLE 1-DPST	 2 4 1

SAFING COMMAND INITIATE 1-DPST	 1 3
JETTISON COMMAND INITIATE 1 DPST	 1 3

GUIDANCE SERIAL INPUT/OUTPUT TERMINAL -	 - 4 TSP 2,3
ORBITER SERIAL INPUT/OUTPUT TERMINAL -	 - 4 TSP 3

NOTES: 1. FOR MULTIPLE LES/CRADLES, DUPLICATE FOR EACH LES/CRADLE
2. FOR MULTIPLE LEB/CRADLES, BUSS THE WIRING TO ALL LES/CRADLES
3. MICROPROCESSOR PROVIDED AS A COMPONENT PART OF THE PANEL ti
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external power and a battery safing relay in the LES PCU connects the battery

to the dummy load. 	 The battery safing relay is needed to deadface the power

umbilical for normal operations.

For multiple cradles, a caution and warning selector switch can

be added to select monitor signals from the desired cradle for input to the

Multiplexer-Demultiplexer (MDM).	 The switch operates relays in the selected

cradle S/DIU to access the monitor signals and the direct caution and warning

signal is similarly accessed for display on the GO, NO-GO status indicators.

Safing from the control and monitor panel requires that two

momentary push buttons be concurrently depressed - one command enable switch

and one command initiate switch.	 A command enable switch is provided for the 	 ^'Y
LES/cradle and one for the telemetry antenna/receiver. 	 Two command initiate

switches are provided, one for safing and one for jettison.

Control and monitoring 	 f the LES ISU isg	 performed through its

TEST/OPERATE and RUN/HOLD control lines and its GSE Serial Digital Input/

Output (SIO	 which are connected to the control -and monitor -_--_.
	

t	
r_

P	 ) ^	 Panel: - the -.^10
is required to load, compare and verify test programs and flight parameters,

and to service dedicated controls and indicators on the control and monitor

panel.	 The control and monitor couples its six dedicated guidance switches

and ten indicators to the ISU SIG and to a MDM SIO. 	 The MDM SIG is connected

to the Orbiter payload accommodations, via MDM installation PF-1, and thus
to the general purpose computer and associated payload accommodations.

The ISU and the MDM are each designed to control their respective

SIO's, thus any direct interface between them is precluded. 	 Hence, the con-

trol and monitor panel provides each SIG with: (1) an interface it can con-

trol, (2) input and output registers for both SIO's and for the dedicated

switches and indicators on the panel, and (3) a microprocessor to load and

read these registers.

5.2.2	 Cable Plant
Interconnecting cable harnesses are provided to interface elec-

trical and avionics equipment in the Orbiter. Separate routing Qf signal,

power and radio frequency circuits is employed, if possible, to supplement

shielding in the control and elimination of electromagnetic interference.

Shielding of sensitive circuits is provided in all the cables.
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The cable plant requirements for the Orbiter payload equipment

interfaces were shown in Figure 5.11 and are illustrated in Figure 5e:12.

The power and signal cables for the high gain antenna and receiver are sup-

plied as optional equipment. This cable plant arrangement provides all the

electrical interfaces required to integrate Orbiter payload, ASE avionics

and LES to Orbiter payload accommodations equipment. Interface provisions

are provided for Orbiter payload furnished signal and power cable harness.

Two sets of cabling are provided for each operational site. One set for the

cargo integrated test equipment and one set for the Orbiter. Both cabling
sets are considered flight items.

5.2.3	 Cradle Avionics ASE

LES cradle avionics ASE include three packaged units which are

installed and becomes an integral part of the cradle assembly. The three

units ;xe identified a,s: (1) Power Control Unit (PCU), (2) Signal/Data

Interface Unit (S/DIU), and (3) the Deployment Mechanism Unit (DMU). Each

unit is packaged separately to enhance cradle installation and to isolate

signal and power circuits to minimize electromagnetic interference (EMI).

In addition, three sets of cable harnesses are provided for electrically

interfacing the PCU, S/DIU and DMU. First, the PCU power cable provides an

interface for power, control and monitoring to LES via the S/DIU and to the

latch and unlatching mechanism via the DMU. Secondly, a cable harness is

provided between the S/DIU and the DMU for control and monitoring of the

deployment mechanisms. Thirdly, the LES umbilical extension from the S/DIU

provides stage control and monitoring plus the caution and warning circuit
interfaces. The cargo bay cabling plant was discussed in 5.2.2. Provisions

will be available for interfacing spacecraft furnished umbilicals.

5.2.3.1	 Power Control Unit - The cradle Power Control Unit accepts and

transfers Orbiter power to the LES power umbilical, spacecraft umbilical re-

lease, signal/data interface unit and deployment mechanism. Complexity is

twelve latching relays with readback contacts. Power control and monitor

lines are routed to and through the Signal/Data Interface Unit,

5.2.3.2	 Signal/Data Interface Unit - The cradle Signal/Data Interface

Unit (S/DIU) provides the command/response interface required between the LES

4	
,.
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and cradle and from these to the control and monitor panel and to existing

payload accommodations. Relay drivers are provided for the transfer relays

in the ASE and LES power control units. Caution and warning (C&W) sensors

can be provided for excitation and signal conditioning that is compatible with

the Orbiter-furnished C&W electronics. C&W circuits would be separately powered

for continuous operation. Cradle detection is provided to detect the limit

positions and latch release states. Cradle cabling harnesses are provided

to interface the LES umbilical to the S/DIU and cradle interconnects for
avionic ASE.

5.2.3.3	 High Gain Telemetry Antenna/Receiver - The high gain telemetry

antenna/receiver can be added as optional equipment in order to extend the

transmission range to approximately 2050 km (1100 nm) for coverage of the

LES apogee firing. The low gain (7 db) Orbiter payload support antenna,
payload interrogator and omnidirectional LES antenna provide limited range.

5.2.4	 Orbiter Interfaces
Orbiter interfaces for LES and LES ASE are provided that elec-

trically utilize the payload accommodations equipment where practical. LES

systems interfaces via the umbilical to the ASE avionics and payload accom-

modations equipment include the Inertial Stabilization Unit (ISU), Ignition

Control Unit (ICU), Power Control Unit (PCU), and telemetry system. The

ISU provides pret imed commands, flight control outputs, telemetry outputs,

power and support equipment interfaces. The pretimed commands are relay

driver outputs to initiate individual ignition and separation events. The

flight control outputs include analog signals and solenoid driver outputs

for the reaction control valves. Power required to the systems is 28 vdc,

uninterrupted while transferring from external power to internal power. The

ISU accepts the uninterruptible 28 vdc and performs the required activation

sequence.

The ICU provides routing of the electrical power, switches, fir.-
ing commands and provides safe/arm capability for all pyrotechnics initiators

on the LES. The ISU provides the commands to switch power to the pyrotechnic

initiators for all events. This unit is inhibited until after separation

from Orbiter.
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The electrical power system provides electrical energy to all

equipment on LES.	 The PCU provides the capability for switching between
external and LES internal power sources during predeployment checkout.

PCM telemetry interfaces are compatible with the Orbiter Engineer-

ing Data Handling System. 	 The Engineering Data Handling System on the Orbiter

performs S band reception via the Payload Interrogator and provides hardwired

inputs to the Payload Signal Processor (PSP) and the Payload Data Interlea^ver
(PDI).	 For LES predeployment checkout the ISU Serial Digital Input/Output

is serviced, via the umbilical. If telemetry coverage is required through LES

apogee firing, provisions are required for increasing Orbiter receiving range.

The ISU is programmed to a PCM telemetry bit rate of 16 kbps for
s

assured compatibility with the PDI which accepts and interleaves up to five

simultaneous PCM signals from Orbiter payloads with up to 48 kbps of other

signals to form a 128 kbps output. 	 The PDI requires that the payload PCM #
bit rate be 16 kbps or, when full capacity is not allocated, any one signal

could be at a multiple of 16 kbps up to 64 kbps.
To service the Serial Digital Input/Output, the Engineering Data

Handling System provides a General Purpose Computer (GPC) with interfaces to

the Multifunction CRT Display System (MCDS), onboard storage media and two

Multiplexer Demultiplexers (MDM) designated PF-1 and PF-2. 	 The MDM interfaces

the GPC to a Serial Input/Output (SIO), discrete inputs and outputs, and ana-

log inputs and outputs. 	 If the MDM SIO were interfaced to the ISU SIO, the

Orbiter GPC and peripherals could be used to support the LES on-orbit checkout

and deployment.	 However, the MDM and the ISU each need control of their

respective SIO's and any direct interface between the two SIO's is precluded.

Therefore, the control and monitor panel also provides output and input

registers for its own dedicated switches and indicators, and for the two SIO

interfaces, and services these registers with its own microprocessor.	 Panel

design provisions can also be provided for antonomous control of normal check-

out and for use of the MDM link for program load/compare or for data display

and readout in event of a NO-GO in checkout.

The MDM SIO involves a four-signal interface, data (half duplex),

user-generated work discrete, and two MDM-generated discretes, message in

(to MDM), and message out (from MDM). 	 Reference 24	 provides a detailed
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discussion of the MDM SIO.

The Orbiter Caution and Warning (C&W) electronics are interfaced to

the LES/cradle assembly via the C&W umbilical cable harness. Orbiter payload

azcommodations for caution, warning and safing functions are entirely located

on the flight deck. Interfaces to this equipment for cargo bay payloads is

provided at the station Xo 576 pressure bulkhead. 4onnector panel.
Direct wired monitor channels are inputs to the Caution and Warning

Electronics unit (CWE). Direct wired safing commands are from switches on the

forward flight deck. The Mult iplexer-Demultiplexer provides these interfaces

for computer processing and operates a sixth discrete monitor channel of the

CWE. The computer can present the monitor results to the Multifunction CRT

Display System (MCDS). It is expected that the LES will not require C&W inter-

faces due to the systems remaining in the "OFF" mode during launch, ascent and

up to the initiation of predeployment checkout. If C&W interface is required

LES would be limited to one hardwired monitor, one hardwired command, and a

reasonable number of channels through the MDM. The MCDS would be available in

case of anomaly indication to more precisely identify the sensor and to present

quantitative readings.

Table 5-V lists typical caution and warning anomalies with their
sensing and safing methods that could be required. These analog sensors would

TABLE 5-V TYPICAL CAUTION AND WARNING ANOMALIES

ANOMALY I	 SENSOR SAFING

Pressu.rant-Overheat Temp sensor/Tank Pressurant Onboard Vent
-Over Pressure Pressure at Manifold Squib Valve

Battery Overheat Temp Sensor/Battery Transfer LES to external

ICU Power Voltage Monitor power and shut down, then
discharge battery through

Pyrotechnic Busses Voltage Monitor dummy load in ASE PCU

Inadvertent Act of Relay-existing in Guid Remove power from guid
Ignition Time (Deploy SW Action will sys and return P/L
Sequencing be command to relay)

be used so that once an anomaly is detected the Orbiter backup caution and

warning system can extract information for decision making and subsequent anal-

ysis. The sensors would be five thermistors, one potentiometric pressure

transducer and three voltage monitor points, all located on the LES.
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Mission unique ASE circuitry is required to excite the transducers

and to interface all monitor channels to the Orbiter Caution and Warning Elec-

tronics.	 Direct-wired anomaly detection for all monitor channels are amplitude

detected and the logic outputs from the detectors combine on one line by OR

logic such that a warning is generated when one or more detectors are set. 	 Each

monitor signal is interfaced through an unloading amplifier and the contacts of

a payload selector relay located in the cradle Signal/Data Interface Unit.

The payload selector relay is closed from the control and monitor panel.

The three safing functions are: (1) activate pressurant onboard

squib valve, (2) transfer LES from internal power to external power,'and

(3) discharge battery through dummy load. 	 Relay drivers for these functions

are provided at the cradle. 	 They are selectable from either the control and

monitor panel, the C3A5 panel in the forward cabin, or the Multiplexer-

Demultiplexer safing commands.

5.3	 SAFETY

Safety of flight crew and Orbiter was a prime consideration in

the development	 of conceptual design integration, test of ASE avionics, and

LES cradle assembly.	 For example, the pyrotechnic circuits must have three

failures in order to inadvertently initiate a hazardous event.	 The initia-

tors for the ignition and reaction control systems are safed on installation

(short circuit to the initiator bridge wire) and remain so until after

separation from the Orbiter.	 Propellant and oxidizer tanks are preserviced

and sealed.	 They are to be designed and qualified to avoid tank rupture and

to withstand total pressure from the environment.	 Pressure tanks are also to

be designed to withstand total pressure from environment.

5.4	 PROPULSION CONCEPT ASSESSMENT

Developed ASE conceptual designs and interface requirements were

evaluated to identify the degree of complexity and packaging efficiency and

the impact on selected propulsion modes. 	 These impacts are:

e	 ASE cradle avionics require single umbilical

interface to LES from the Signal/Data Inter-

face Unit.

e	 Orbiter power usage is minimized since LES

remains in the "OFF" mode until on-orbit

predeployment checkout.
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• Control and monitor panel has output and in-

put registers and services these registers

with its microprocessor.

• Provisions for spacecraft umbilical interface

can be provided via the S/DIU. Each space-

craft umbilical extension cable will probably

require unique design.

• Simplified interface can be provided between ASE

control and monitor panel to payload station

distribution panel.

• Umbilical located on LES is away From LES plume

to avoid any possible shorting due to contamina-

tion or burn through.

• Separation mechanism for umbilical will be by lan-

yard or electrical release. Pyrotechnics release

was not used since it has pre,judical failure mode.

• Umbilical interface is designed to separate with

LES.

• Spacecraft interfaces are restricted to basic

mechanical and electrical interfaces with each

spacecraft providing its own test and checkout

equipment and procedures.

• Spacecraft to LES interface is minimized through

use of standard adapter - to minimize development

cost.

• Thermal impact onstage Orbiter and spacecraft

is negligible since heat transfer is controlled

by insulation blanket.

• No venting or dumping interfaces to Orbiter are

required.

• Orbiter payload physical and functional inter-

faces are designed to make maximum use of payload

accommodations equipment.

,f
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ASE installed in the aft flight deck or cargo

bay must be compatible with those environments

and materials.

O	 Orbiter bay envelope clearance and attachments
t

meet the requirements of Reference 24.

•	 No additional user charge penalty is incurred

for cradle length since the cradle is designed for

the payload/stage to be mounted and installed with-

in the overall cradle dimensions.

9	 ASE cradle weight is heavier for 4-tank than for

8-tank LES due to the need to fill the space be-

tween the inner cradle contour and the smaller ,f

stage structural pickup points with cradle fillers

and adapter structures.

e	 Monopropellant LES is larger in diameter and length

than the bipropellant LES and is more difficult to

fit into the 4.0 meter (13.12 ft.) space envelope

hestablished for LES ASE cradle assemblies.	 However,

t the additional stage length of 0.114 m (0.375 ft.),
F

which affects user's charge, will not impact cradle

design or costa



6.O	 TASK 5: GROUND AND FLIGHT OPERATIONS

This section identifies and describes support requirements and

equipment associated with ground and flight operations. Ground and flight

operational requirements such as timelines, support equipment, facilities and

personnel are defined for a typical Low Energy Stage and ASE in paragraphs

4.0 and 5.0. The concept of emphasizing buildup, assembly and tests

at the factory was used as the basic approach. Operations at launch site

facilities include receiving, inspection, assembly and interface tests with

the cradle assembly and payload, Orbiter support interface tests, range and

status verifications. The approach discussed provides an efficiently con-

trolled processing and launch preparation capability.

Flight operations include monitoring safe status of LES, ASE,

and payload from Shuttle launch through predeployment tests and payload sepa-

ration. The flight sequence begins at deployment and ends with payload sepa-

ration from LES. Telemetry coverage is to be provided during the entire flight.

The data is used for post-flight reporting and to verify performance of LES.

6.1	 GROUND OPERATIONS

Typical baseline ground operations were established and evaluated

for both the Orbiter Processing Facility (OPF) and the Pad flows as identi-

fied in Reference 24. Operations developed here are consistent with the re-
quirements of References 24, 38, and 40 through 44. For the purposes of this
study the Pad baseline flow is considered primary and is used throughout as

representative of a typical timeline allocation for deriving a ground flow

and defining supporting elements for cost determination.

Major task elements were defined and evaluated in terms of ini-

tial conditions, sequence of functions under consideration and the output

conditions required for the subsequent task element. Once the functions

were defined in terms of satisfying the operational concept, work timeline

allocations were established. From these timelines and the ground flow,

support equipment, personnel and their skills and facilities were established

and defined to a level sufficient to derive costs.

6.1.1	 Task Elements

Task elements were separated into four categories. These are:

(1) Factory Test, (2) Field Test, (3) Transporting and Handling and (4)
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Special Handling. Tests at both the factory and field provide verification

of the following:

• Electrical Installation

• System Operation and Compatibility

• Test Equipment

• Test Procedures

• Design Change Evaluation

• Malfunction Investigation

Major tests that are identified and discussed a;: ,e as follows:

a. Factory

• Acceptance Tests

• Bench Tests

• Assembled LES Tests

• Simulated Flight Tests

b. Field

• Systems Test

• Cargo Integrated Tests

• Preflight Readiness Tests

6.1.1.1	 Factory Test Requirements

a.	 Acceptance Tests

Recommended acceptance tests for the Inertial Stabilization

Unit (ISU) and PCM signal conditioning are summarized below.

(1) Inertial Stabilization Unit - As shown in Figure 6.1,

the ISU acceptance test will be conducted with the package mounted on the

dividing head and interfacing with the Ground Support Equipment only. The

dividing head is used to accurately reposition the ISU about a given axis

while making performance measurements. The following tests are conducted:

• Continuity and Isolation Check

• Input Power and Power Interrupt

• Built-In Test r
• Operating Modes Verification

• Processor Performance Test
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• Gyro Performance Test

Alignment Verification

Drift Check

• Accelerometer Performance Test

• Stage Control Interface (using simulated loads)

• Pyrotechnic Outputs (using simulated loads)

• Telemetry Interface (using test set loads)

• GSE Interface Test

(2) PCM Signal Conditioning - The telemetry acceptance

test configuration is shown in Figure 6.1. The following tests will be re-

quired for the PCM Signal Conditioning:

• Continuity and Isolation Test

• Input Power

* A/D Converter Calibration

• Sensor Power Supply Checks

• Sensor Simulation and Signal Conditioning Verification

® Output Waveform Verification

• Internal/External Slaving Mode Check

• Channel Crosstalk Check

b. Bench Tests

A Bench Level Test is recommended for the ISU even though it

is largely a repeat of the acceptance level tests. The primary difference

between the Bench and Acceptance level tests will be the incorporation and

verification of the mission related software parameters. A bench test for

the PCM Signal Conditioning is not required. The following are bench level

tests for the Inertial Stabilization Unit:

• Input Power and Power Interrupt

• Built-In Test

• Processor Performance

• Operating Modes

• :Gyro Performance

.Uignzent Verification

Drift Check

• Stage Control Interface (using simulated loads)

• Pyrotechnic Outputs (using simulated loads)
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s Telemet ry Interface (using test set loads)

i GSE Interface

'

	

	 Selected functions for this test will be repeated in the field as an ISU veri-

fication test prior to conducting the cargo integrated tests.

C. Assembled LES Tests

An assembled LES test is required to demonstrate LES com-

patibility using actual hardware and to verify LES integrity. For these

tests, the avionics equipment such as the Inertial Stabilization Unit, Igni-

tion Control Unit (ICU), Power Control Unit (PCU), etc. will be installed on
r,
r,	 the stage. The test configuration of Figure 6.2 is required to demonstrateF..

LES compatibility using actual hardware and to verify LES integrity. The

following are tests for the Assembled LES Test:

® GSE Interface

o Input Power and Power Interrupt

e Build-In Test

• Processor Performance

® Operating Modes

• Telemetry in Vehicle End-to-End Calibration

• Gyro Performance

Alignment Verification

Drift Check

o Accelerometer Performance

e Stage Control Interface (using simulated loads)

a Ignition System Tests (using simulated loads)

• Telemetry System Checks

e Guidance Power Switching

® Mission Event Timing Test (using LES Flight Program

and simulator loads)

Ignition system tests are typical of the scope of these tests. Ignition

system functional tests will be conducted by connecting squib simulators to

the initiator connectors and operating the ICU through its flight sequence.

Outputs to the squib simulators will be monitored to demonstrate that firing

signals occur at the proper time. Ignition capacitor bus voltages will be

monitored by oscillograph in order to demonstrate integrity of the capacitor
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banks by observing their recharge characteristics. 	 The ignition system will

not operate on external power; therefore, the stage will be provided power by

a battery simulator which replaces the flight battery for these tests.	 It

may not bel practical to operate the deploy switches which initiate the flight
6

sequence of the guidance system during these tests; therefore, circuitry by-

passing these switches will be provided which enables the initiation of the

flight sequence by the test set.

d.	 Simulated Flight Tests

. The simulated flight test is conducted for final acceptance

of the assembled LES.	 During this test, all systems are operated on inter-

nal power and the umbilicals are physically separated. 	 All avionics equip-

ment will be installed in the LES with the exception of the Flight Bat-

tery which will be remotely located.	 Provisions for de-energizing the systems
j

will be provided on the Battery Simulator.	 The following tests are conducted
in the simulated flight test:

®	 Thrust Motor Circuit Verification (using simulated loads)
R

e	 Ignition Pyrotechnics System Verification (using

simulated loads)

e	 Inertial Stabilization Unit Verification

e	 Telemetry System Verification (hardline and RF)F,

e	 RFI Test

e Simulated Flight Test

6.1.1.2	 Field Test Reguiroments

a.	 Systems Test

During this test all systems will be activated to verify

system performance, individually, and in conjunction with other systems to

verify functional operation of LES systems after mating to cradle assembly.

This test is similar to the factory simulated flight test. The following

tests are conducted for the systems functional verification tests.

e Thrust Motor Circuit Verification (using simulated loads)

® Ignition System Verification (using test loads)

e Inertial Stabilization Unit Verification

e Telemetry System Verification

e Payload System Interface Verification

s Simulated Flight Test
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b.	 Cargo Integrated Tests

This test will be performed after the LES has been inter-

faced with the cargo bay simulator test equipment, and is conducted to verify

the operational capability of the LES avionic equipment using the control

monitor and display panel (ASE) as interfaced to Cargo Integrated Test Equip-

ment (CITE) . This is a dress rehearsal of the actual Preflight Readiness
and Predeployment tests to monitor all selected systems and verify critical
parameters. All avionics equipment and pyrotechnics are installed in the

LES and the pyrotechnics are safed. The pyrotechnic circuits are not activated

during these tests but flight and crew safety functions are monitored via the

caution and warning interface. The following tests are conducted.

• Avionics Systems Checkout

• Telemetry Ambient Readout

• Inertial Stabilization Unit
• Drift Test

• Guidance Parameter Monitoring
• Telemetry Parameter Monitoring

• Power Interface Verification

C.	 Preflight Readiness Test

In a manner similar to the cargo integrated 'tests, the pre-
flight readiness tests will be a repeat of that test except the spacecraft

is now installed and interfaced to Orbiter installed ASE avionics equipment.

The ISU attitude will be monitored, automatic confidence checks will be made,
and continuous performance monitoring, by-Payload Specialist, BITE, and by

hardline telemetry monitoring, will be accomplished. On-orbit predeployment

tests are planned to be a repeat of the preflight readiness tests. It is not

anticipated that these tests will vary except for the elimination of opera -
tional cycle tests of the deployment mechanisms and physical separation of the

payload.

6.1.1.3	 Transporting and Handlinf, - Transportation and handling equip-
ment that center around stage assembly and movement at the factory and field

level are	 Provisions include stage movement at the factory, and be-
tween faci2JL`,:: QS at the field site. The flow provides major task events and se-
quences ^-i W,-jz :Liilg Ecid transporting LES, ASE and Orbiter payload. Preliminary
facilities, c 4zc_-, ^t, integration and support equipment are identified and
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described in the context of handling, movement, clean room and safety

requirements.

6.1.1.4	 Special Handling

a. Prepackaged Propellant Tanks

Special handling and transportation provisions are required

for prepackaged propellants and the gaseous helium pressure system. Since

the safety requirements are essentially the same for bipropellants and

monopropellants both are treated the same for this study. For the pressure

system task element, the safety criteria for high pressure vessels was used.

Prepackaged propellant tanks are not installed at the factory.

Inert tanks will be provided at the factory for mechnical and electrical fit

checks. After simulated flight test these reusable tanks are removed and re-

main at the factory. The prepackaged propellant tanks are to be serviced at

a qualified vendor.

The vendor, after filling the Nitrogen Tetroxide (N204) and

Monomethylhyd.razine (MM) tanks, (either 50 percent or 100 percent loaded),

seals the tanks without installing pyrotechnic valve initiators. These pre-

packaged tanks are monitored for 12 to 24 hours for leakage and pressure build-

up prior to installation in shipping containers and shipment to the field site.

For safety reasons a sniffer leakage check is performed before visual inspec-

tion. After passing both checks the tanks are stored in shipping containers

and monitored daily until Shuttle launch. Upon assignment the tanks are

transported to the assembly area for installation on LES. At all times these

tanks are to be handled in compliance with safety guidelines to be established

in the safety plan and approved by NASA/DoD.

b. Propellant Pressurization System

The pressurization system requires servicing equipment with

accessories. The field site gaseous helium servicing system along with safety

guidelines for high pressure vessels and systems were considered in defining

task elements, equipment, and sequence. A pressure test of this system will

be conducted after assembly in the LES to assure proper regulator lockup

pressure and no leakage. This test will also have been performed at the

factory.
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6.1.2	 Task Flow

Before defining and describing a typical LES field ground opera-

tions flow a preliminary definition of factory requirements were examined.

6.1.2.1	 Factory Flow - A typical factory flow is shown in Figure 6.3,

and represents all the major tasks performed from completion of LES fabrica-

tion, through assembly tests, simulated flight to final inspection, packaging/

crating and shipping.

Manufacturing and fabrication of the LES parts and components and

the installation of these iito. stage structure axe accomplished in accordance
with engineering drawings and manufacturing procedures. Vendor components are

accepted in-plant to receiving and inspection acceptance test specifications

prior to installation. After installation of the parts and components into

the stage, the LES is checked out and tested to standardized processing pro-

cedures. These procedures are used for both factory and field processing.

In plant, the procedures include bench testing, LES buildup, assembled LES and

systems tests, and preparation for shipment. These same procedures, where appli-

cable, are repeated at the field sites, and include system integration tests,

preflight readiness tests and predeployment tests. In addition, these standard

operating procedures include field unique requirements that cover testing and

maintenance of the Ground Support Equipment (GSE) and Aerospace Ground Equip-

ment (AGE) used to handle, transport and checkout the LES.
After completion of the acceptance and bench level tests, the

LES and stage harness are electrically connected in the checkout area. The

LES is then assembled with inert fuel tanks, plumbing connected and a func-
tional test of LES wiring and systems performed. The purposes of the

functional tests are: (1) to insure that an unsafe condition does not exist

in the LES plumbing and wiring and (2) to prevent rework of the LES after it

is received at the field site. This factory test checks and verifies all

subsystems, power and insures that all subsystems and wiring are functionally

correct prior to delivery to the field site.

Engineering data such as drawings, standard, operating procedures
(SOP's) and acceptance test specifications are controlled through a Configura-

tion Management System which must approve any changes or revisions. The

SOP's are to be segregated into individual procedures and tasks which cover
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buildup, assembly or checkout of each system independently. Procedures are

provided and functionally verified at the factory and field sites during the

demonstration tests.

6.1.2.2	 Field Flow - The typical ground operations flow for LES at the

field site shown in Figure 6.4, represents the major activities that are per-

formed from completion of receiving, uncrating and inspection of the LES

preserviced fuel tanks and ordnance devices to preparation for and installa-

tion in the Orbiter cargo bay. This flow is used to derive timeline alloca-

tions for each task and to define support requirements such as personnel,

equipment aid facilities. A typical timeline for :LES critical path require-
ments processed via the PCR to Orbiter is shown in Figure 6.5. The payload

is the responsibility of the payload manufacturer. However, the mating of
the payload to the LES will be assisted by the LES ;;ield team. Checkout.,
handling and transportation ground support equipment consist generally of

those items listed in paragraph 6.1.3. These equipment are used for opera-

tional assembly work as well as for maintenance requirements. It is tenta-

tively planned that the Spacecraft Assembly Encapsulating Facility will be

available for most of the processing effort prior to transferring the payload

to the Vertical Processing Facility (VPF) and subsequent installation in the

Payload Changeout Room (PCR).

After inspection LES is mounted on the turn table device located

on the Mobile Flat Bed Assembly (MFBA) transporter. This arrangement provides

flexibility and ease of installation of the preserviced fuel tanks. The pre-

serviced .fuel tanks are installed on the LES using a chain hoist, a hydroset

and sling assembly. Each tank is hoisted one at a time and mounted on the LES

and secured. After all tanks are installed, the plumbing is connected and

secured in preparation for surveillance leak check. Upon successful com-

pletion of the surveillance leak check, the Gaseous Helium (GHe) pressure

system is pressurized to low pressure prior to installation on the cradle.

A turn-over sling attached to the bridge crane provides the ,capability to

rotate LES to a position for installation on the cradle assembly and the
insulating blanket is installed. The LES umbilical and simulators are

connected to the test sets in preparation for systems checkout. Test sets

are energized and the LES systems are verified operational. This includes

170



FIGURc 6.4 GROUND OPERATIONS FLOW DIAGRAM

L'

N

•
35.0—^	 36.0 37.0

INSTLCRADLE	 VERIFIL'ATION VERIFICATION
10	 ON FIXTURE	 OF CRADLE OF TEST SETS

LES ASSY	 ASSYLES UNCRATE
AND INSPECT

LF
LES ON•	 .S0 O	 .0 8.0

CHECKOUT.RE ASSY	 INSTL PRE— SURVEILLANCE  LES 	 ;N5TL !DUCLaTIfiM1 
EOLPRESERVCED

20
TURNTABLE	 SERVICED TANKS LEAK CHECK E	 BLANKET SYSTEMS

TANKS E PRESERVICEDTANKS
UNCRATE INSPECT

34.I
0	 VERIFICATION OF

PORTABLE GHE
SERVICING EQUIP

p 10.o	 p l.0l	 120
PAYLOAD P/L UNCRATE	 A	 9A

CHECKOUT CF INSTL EEDS	 PREPARE& 6
^.	 &INSP	 MATE P/L P/L SYSTEMS FLTBATTEflY	 TPANSPORT TO VPF

(VERIFY SAFE)
O	 32.0	 !

INSP&TEST
"

,	 3	
EEDS 

PRYOTECHNICS PYRO R&1 AND	 ANDSTORAGE	 33.0	

•EXPLOSIVE SAFE
SHIP. 	 BATTERYENTS 	 AREA (ESA)IESAI 

•J26.0 27.0	 28.0
INSTL. ASE	 VERIFY OPERATIONAL SPACECRAFT ASSEMBLY

COCABLES
 AVIONICS IN CITE	 INTERFACE ENCAPSULATING FACILITY ISAEFI

B

JG

13.0	 .14.0	
15.0 16.0 17.0	 18.0 19.0

VERTERECTTO • TRANSFER P/L-	 CONNECT P/L PRESSURIZE VERIFYFLICHT	 FINAL I%SP LOAD IN . ANISTER

PROCEVERTICAL TO VPHD	 CABLESTOASE/ GHE SYSTEM READINESS OF Pt S	 &CLOSEOUT AND TRANSPORT

FACIPOSITION CITE
(VP

^ ^°_T°v—s.°°—.°°ee
PAYLOA

OUT ROOM
22 O°(PCR)

20.0	 21.(+	 ! INTERFACE& I •' HAZARD OPERATION
TRANSFER PIUS	 TRANSFER P/L'S Ptr1FORM PRE—

PRIMARY FROM CANISTER	 FROM PCR TO( FLIGHT READINESS  9 S;C RESPONSIBILITY
TO PCR	 CARGO BAY CHECKOUT PAYLOAD READY

COR. I--°°-^°^° °°° °°°°°°° —^^ FOR SHUTTLE

23.0' 24.0 i	 LIFT—OFF

OPTIONAL TRANSFER P/L'S INTERFACE&
F;iOM CANISTER PERFORM PRE— ..

TO PCR	 25'0	 29'0
e	 INSTLASE	 VERIFY	 I

FLIGHT READINESS
CHECKOUT 1

t	 ORBITER PROCESSING	 AVIONICS IN	 OPERATIONAL 1
6	 FACILITY	 ORBITER	 INTERFACE	 (	 ORBITER CARGO BAY`	 (OPF)



N
N

LANDING PLUS HOURS

ZU4U	 vv	 ou	 I UU	 I.LU	 14+U	 l uu. ---

I	 L^ ^+ `SATE & INSP
PRESc WICED TANKS UNCPATE ?fit INSP

C	 INSTL LES ON FIXTURE ASSY TURNTABLE
INSTL PRESERVICED TANKS

= SURVEILLANCE LEAK CHECK
MOUNT LES ON CRADLE

INSTL INSULATING BLANKET
CHECKOUT SYSTEMS

MATE PAYLOAD
CHECKOUT OF PAYLOAD SYSTEMS

INSTL EEDs, FLT BATT (VERIFY SAFE)
® PREPARE AND XPORT TO VPF

® ERECT TO VERT POSITION
[:3 TRANSFER P/L TO VPHD

® CONNECT P/L CABLESTO ASE/CITE
=PRESSURIZE GHe SYSTEM

® VERIFY FLIGHT READINESS OF P/L
C FINAL INSP & CLOSEOUT

LOAD IN CANISTER
TRANSFER P/Ls TO PCR

TRANSFER P/Ls TO CARGO BAY & INTERFACE
PERFORM PREFLIGHT READINESS C/O

SHUTTLE LIFT OFF e

FIGURE 6.5 LES PROCESSING TIMELINE WHEN INSTALLATION OCCURS AT PAD



's

guidance and control, ignition, pyrotechnic circuits, power control unit,

and telemetry using appropriate simulators and test loads where required.

The systems and test sets are then de-energized and all support equipment

disconnected in preparation for mating -the payload.

Mating of the payload will be supported by the LES field team.

Upon completion of this activity, the payload team verifies that the payload

systems are operational. The payload systems are de-energized and the GSE dis-

connected in preparation for installation of LES pyrotechnics and flight battery.

Door openings in the insulation blanket provide access to these areas. After

installation and conned{.__'_- of the electroexplosive devices (EED's), they are

verified safe. The payload is secured for transporting to the VPF on the MFBA.

The MFBA is a commercial flat-bed trailer modified for LES handling, check-

out and transporting. At the VPF the payload is erected to the vertical

position using the erector hydraulic actuation system. The hoist sling is

then attached to the payload and the bridge crane. The bridge crane is

operated to hoist and mate the payload to the Vertical Payload Handling

Device (VPHD). The payload cabling interfaces are completed to the Cargo

Integrated Test Equipment (CITE) in preparation for the flight readiness

tests. Prior to these tests, the portable servicing equipment is connected

to the VPF GHe pressure system and LES. The LES pressure system is then

pressurized to 3600 psi. The CITE checkout (essentially the same as pre-

deployment tests) of the payload systems are performed to verify the inter-

face and functional operation of payloads as they will be integrated in the

cargo bay and aft flight deck prior to canister loading. The ASE avionics

provided for these tests are identical to the flight ASE installed in the

flight deck and cargo bay. The abbreviated systems checkout in the Orbiter

cargo bay are identical to those performed in the CITE.

After completion of the CITE tests, preparations are made for

transferring the complete flight cargo to the canister. For this activity,

the canister is vertical on its transporter. The payload cargo is transferred

to the canister and secured for transporting to the pad. Upon arrival at the

pad the canister is positioned in front of the PCR and preparations are made

for transferring the payload cargo to the PCR using the Payload Ground Handling

Mechanism (PGHM). The payload cargo is transferred to the PCR and the canister



returned to storage.	 In accordance with the scheduled timeline allocation
vA2

the complete payload cargo is transferred to the Orbiter cargo bay using the

PGHM.	 The necessary interfaces are completed in the Orbiter cargo bay in

preparation for in-Orbiter checkout of the payload systems.	 Upon successful

completion of preflight readiness checkout, the systems are de-energized.

The LES will remain in this mode until ready for on-orbit predeployment tests.

If required, the safe status of selected functions will be monitored via the

Cautioti and Warning (C&W) electronics from completion of Task 22 (Figure 6.4)

V to deployment.	 Controls will be provided as required in case of an emergency.
P

The LES processing flow via the OPF is essentially the same up to

loading in the canister except for facilities usage. 	 For the OPF flow the pay-

load cargo is transferred directly to the canister in the horizontal position

(normally bypassing the VPF) and from the canister to the Orbiter cargo bay

laying down.	 The GSB for performing these activities are provided as part

of the YMSE.	 The checkout of the systems remains the same.

6.1.2.3	 Adaptations	 -	 LES/SSUS-D adaptations of new low energy stages

with a spinning solid upper stage (either SSUS-D or SSUS-A) were examined

for operational interfaces and adaptability -to a combined proce,ving flow of

the two stages.	 Preliminary evaluations indicate that both processing cycles

can be initiated separately and proceed to the first interface task.	 For

LES this task would be at completion of Task 8.0 of Figure 6.4.	 LES is pre-

pared and transported to SSUS-D buildup and assembly facility for mating to

SSUS-D which has been mated to its cradle assembly located on SSUS -D trans-

porter.

Typical groundrules assumed for LES/SSUS-D adaptations are:

SSUS-D transporting equipment would be used for

transporting the combined SSUS-D cradle, PKM, LES,

and spacecraft.

Existing support equipment from both programs will

be used.	 No additional requirements are antici-

pated.

9	 Ordnance installation and checkout will be a com-

bined team effort.
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• The team concept (both LES and SSUS-D) applies

during each stage buildup assembly, checkout,

integration and verification in the Orbiter.

• The two processing flows would parallel each

other so that scheduled interfaces are met.

Preliminary examinations indicate that certain activities are

not required for adaptations. These are:

• Dynamic balance of SSUS-D not required.

s Modification kit consisting of a signal data
interface and power control unit are to be

provided by LES program for installation on

SSUS-D cradle.

e Existing control and monitoring ASE will be

used from both programs. However where spin

activities show in procedures, these action

items are deleted.

Upon completion of the integration of SSUS-D and LES preparations are made

for mating the spacecraft. The spacecraft is transported to the SSUS-D

facility, mated to LES, securest, and checked out. Ordnance installation and

checkout is initiated and completed in preparation for transporting to and

installing the payload in the Vertical Payload Handling Device (VPHD). The

adaptation is 'interfaced to Cargo Integrated Test Equipment (CITE) for cargo

integrated test. This test is the pre-Orbiter checkout of the total flight

cargo. The interfaces for LES are typical for LES and only minor modifica-
tions are required to adapt SSUS-D and LES combined. Assumptions and ground

rules identified as applicable to LES/SSUS-D are considered applicable to

SSUS-A/LES combination.

A review of expected ground operation requirements for the pro-

pulsion module of the MMS and for the TRS identified no significant differences

from those identified for the LES.

6.1.2.4	 Task Functional Identification - Preliminary timelines for

significant major task elements were developed to a level to identify total

support. requirements. A typical example is presented in Figure 6.6. The
timeline of Figure 6.6 is for Tasks 26.0 , 25.0, and 29.0 as identified in
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TASK DESCRIPTION	 HRS 1	 2	 3	 4	 5 1 6 1 7 1 8 1 9	 10

Inspection & C/O
— Harness (C&M)
— Umbilical (C&W)
— Power Cable ESTIMATED TIME IN ORBITER
— LES &ASE Simulator FOR INSTALLATION, CHECKOUT AND
— Cont & Mon Panel CLOSEOUT IS 4.5 HOURS

Transport to OPF
Instl of ASE/Avionics
— Harness (C&M)
— Umbilical (C&W)
— Power Cable
— Cont & Mon Panel

Connect ASE/
Avionics Simulator

Verification of
Instl ASE Using
Simulator

Disconnect & Remove
Simulator—Cap All
Open Connectors

CARGO BAY

UMBILICAL
SIMULATOR

(GSE)

f 
(ASE)

POWER

FLIGHT DECK
C&W

CAUTION AND STATUS (ASE)
WARNING

!
1

I
j	 (ASE)

CONTROL AND
MONITOR PANEL

(ASE) CMD &
RESPONSE

XO 576

s

FIGURE 6.6 ASE/AVIONICS CHECKOUT, ORBITER INSTALLATION AND VERIFICATION
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Figure 6.4. Included is a simplified block diagram which shows the Orbiter
interface checkout arrangement. It is assumed that the payload specialist

participates in this checkout as a test conductor. He will provide opera-

tional control using the equipment installed in the flight deck. The LES

field support consists of equipment, technician, inspector, engineering and

other services as required to perform functional verification of flight ASE/

avionics in the Orbiter. The same activities and timelines are required for
the cargo integrated test equipment flow (Tasks 27.0 and 28.0 of Figure 6.4).

As a result of this timeline evaluation preliminary requirements

for equipment, facilities, personnel/skills, test, handling and transporting

were identified. Typical examples are:

• General test equipment required for bench

acceptance of cable and control and monitor

panel.

o Containers required for transporting and

storage of equipment.

e Local automobiles required for transport-

ing personnel and equipment from work

facility to Orbiter Processing Facility

(OPF).

e Facilities space and work benches identi-

fied.

• Test equipment selected requires periodic

calibration and a controlled environment

for storage.

e Procedures for control and standarizing

checkout.

The umbilical simulator is used to verify electrical control of

LES/ASE 'launch functions. It simulates electrical loads, caution and warning

functions, verifies receipt of commands and provides simulated response. This

simulator is portable and may be carried aboard the Orbiter. The umbilical

simulator is provided with matching interfaces to all applicable Orbiter bay

connectors. Cable harness and logic must allow for checkout with or without

LES cradle installation. The conceptual design includes a small microprocessor



to control logical sequence tests and voltage load limits. This simulator may

also be used to accept the LES/ASE control and monitor panel.

6.1.3	 Support Equipment

An analysis of the Ground Operational Flow (Figure 6.4) and a

typical LES Processing Timeline when installation occurs at the pad (Figure

6.5) was performed to identify support equipment requirements. These require-

ments were identified and are listed in Table 6-I under three categories.

They are:

• Checkout

• Handling, Transporting and Assembly
• Miscellaneous

The list of equipment was then evaluated for any additional requirements

when the timeline allocations for installation at the OPF are used. The re-

sults indicate that the list is also typical of the requirements for Ibis

flow. Therefore, these equipment are considered representative of require-

ments to cover both processing flows.

The checkout equipment will provide the capability to functionally

verify that LES is operational as it moves through the ground integration and

test sequence. Simulators are provided to verify that test sets are opera-

tional and to verify interfaces as required during the flow sequence.

The handling, transporting and assembly equipment will provide

the capability to move, buildup, assemble and integrate LES and LES components.

This equipment also provides the capability, in conjunction with a mobile

crane and rental truck, to off-load the cradle assembly at a contingency

landing site and return to the launch site. Miscellaneous equipment consists

of special tools, test and safety equipment that are unique to LES. This

equipment will be provided and available to each task of the processing cycle,

both at the factory and field. Provisions for proof loading of handling

slings and other load bearing equipment are assumed to be available as GFE.

For the purpose of this study all spacecraft support equipment is

assumed to be provided by the spacecraft agency.

r^
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TABLE 6-I SUPPORT EQUIPMENT

N

ITEM DESCRIPTION
FACTORY
REQMT

FIELD

REQMT REF. FIG. 6.4 TASK NUMBER
CHECKOUT

1 Guidance and Control Test Set X X 8.0
2 TDY-43 Computer Test Set X X 8.0
3 Telemetry Test Set X X 8.0
4 Test Battery Simulator X X 8.0
5 Pyrotechnic Test Load Simulator X X 8.0
6 Thruster Test Load Simulator X X 8.0
7 Portable GHe Servicing Cart (with accessories) X X 34.0;	 5.0; 16.0
8 Audio GHe Spectrometer X X 34.0;	 5.0
9 ASE/Avionics Simulator X X 36.0; 28.0; 29.0

10 Umbilical Simulator X X 37.0
11 Cables and Cable Plant X X 8.0; 15.0; 17.0
12 Elect rical/Electronic Test Equipment X X 11.0; 26.0
13 Control and Monitor Panel X 26.0; 17.0; 22
14 Electro Explosive Devices Test Equipment (GFE) X 32.0; 11.0

HANDLING TRANSPORTING AND ASSEMBLY

15 Shipping Containers X X 1.0; 2.0
16 Mobile Flat Bed Assembly X 35.0; 12.0; 13.0
17 Hoist Sling for Tanks X X 4.0
18 Turn Over Hoist Sling for LES X X 3.0;	 6.0
19 Hoist Sling for Vertical Lift of Payload at the VPF X 14.0
20 Fork Lift (GFE) X 1.0;	 2.0
21 Truck (GFE) X 12.0
22 Cradle Assembly X 35.0
23 Multi-Mission Support Equipment (GFE) X 14.0; 19.0; 20.0; 21.0
24 Hoist Sling for LES X X 1.0
25 LES Handling/Assembly Dolly X
26 Hydroset X X 4.0

MISCELLANEOUS

27 Hand Tools X X All as Required
28 Safety Equipment X X As Required

X - ONE EACH REQUIRED OR AS NOTED



6.1.3.1	 Guidance/Telemetry Checkout Capability - An investigation was

made to determine the hardware capability needed to support the guidance and

telemetry test requirements summarized in paragraph 6.1.1. The guidance

system and telemetry system have associated "standard" items of GSE that are

either generally available as commercial equipment or fabricated on a standard

baseline equipment configuration which will support the LES application. The

following discussion relates the capabilities of these proposed equipments

and identifies the areas where additional capabilities are required.

The Scout Teledyne TDY-43 computer test set has the features to
test the input and output (I/0) of the ISU as well as the functioning of the

TDY-43 computer. The system includes a printer so that the test results may
be obtained as hard copy for record. This TDY-43 computer test set contains
the following items:

• Computer, PDP 11/05-AL with 8K of core memory.

® Cassett Tape Drive, Canberra single drive unit.

• CRT Display, TEC display with 50 characters per

line and 20 lines of display.

Keyboard Control Assembly, TEC terminal key-

board plus 28 function keys for mode control.

• Logic Assembly, Teledyne fabricated circuit

board that provides the testing interface to

the TDY-43 computer and its I/O circuits.
• Power Supply Assembly, Teledyne fabricated

power control and power supply chassis that

supplies power to the test set and controls

the power from an external source to the

unit under test

• Wl Cable Assembly, TDY-43 test connector cable
with buffer and test point box.

• W2 Cable Assembly, Contains cabling from TDY-

43 I/O connectors.

• W3 Cable Assembly, Contains the TDY-43 power

cable.

18o

9



With these components, the test set will be able to generally support the

following tests:

o Factory System bring-up, initial test of the

assembled guidance system in the factory.

o Acceptance Testing, support acceptance test

procedures for the guidance system components

and the system acceptance test procedure.

o Fault Isolation, trouble-shooting of the TDY-

43 computer and other components of the
Inertial Stabilization Unit.

o Bench Calibration, collection of data for

calibration of the inertial sensors of the

guidance system.

e System Bench Testing, provides vehicle simu-

lation sufficient to test the system compo-

nents supplied by Teledyne.

The TDY-43 test set is not suitable for software generation and modification;
however, this capability will be available in a Vought Software Development

Center which will consist of the following:

• A CRT Terminal

o A Dual.-Diskette Data Storage unit

® A Printer

• A Telephone Modem for processing

the data center CDC6600 computer

The Precision Measurement Equipment laboratory at ETR and WTR is

equipped to perform calibration of test instruments required for LES program.

Therefore local facilities will be used for calibration of test instruments

required for LES.

6.1.3.2	 Handling, Transporting, and Assembly Equipment - The capability

to integrate, assemble and checkout LES must be maintained at both ETR and

WTR. To accomplish this, maximum use of existing and proposed facilities

are made. Typical requirements and recommendations are made which provide

the capabilities of accomplishing these activities. Typical handling and

transporting equipment shown in Figures 6.7 through 6.11 are used individually
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MAX LOAD = 3629 Kg
(8000 lb)
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(17.08 ft MAX)
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-14- -
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(23.67 ft)

FIGURE 6.11 VERTICAL LIFT HOIST SLING
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	 and in conjunction with Multimission Support Equipment (MMSE) to provide the

capability of performing functions such as receiving inspection, assembly,

transporting and mating LES, LES/cradle assembly and LES/cradle assembly/

spacecraft. Figure 6.7 shows the Mobile Flat Bed Assembly (MFBA). This
assembly provides a mobile buildup and integration transporter for the Orbiter

payload. Figure 6.8 shows the hoist sling concept for removing, handling and
mounting the prepackaged propellant tanks. Figure 6.9 shows the hoist sling
for removing LES from its reusable shipping container and placement on the

MFBA turn table. Figure 6.10 shows the turn over hoist sling for lifting a
complete assembled LES from the turn table on the MFBA, then rotating the

stage assembly from the horizontal position to the vertical position and

transferring it to the cradle assembly. Figure 6.11 shows the vertical hoist

sling used for lifting the Orbiter payload and Orbiter structural simulator

stand from the MFBA to the vertical payload handling device. After transfer

of Orbiter payload the sling is used to lower the structural simulator back

to the MFBA. These figures are typical of concepts defined for cost in Table

7-V of Volume IV.
The configuration of LES and cradle assembly is interfaced with

the Systems Test Sets and simulators for systems tests. After system tests

the spacecraft is mated using a spacecraft provided sling. Upon successful

mating and securing of the spacecraft systems, tests are completed. The next

handling activity occurs when all tests and ordnance installations are com-

pleted. After securing Payload and MFBA, a GFE truck is attached to the MFBA

for transporting the payload to the VPF. The payload is elevated to the ver-

tical position with the self-contained erector actuation system. A hoist

sling attached to the overhead crane provides the lifting capability for in-

terfacing the payload with the VPHD. Upon completion of this activity, the

remaining handling and transporting task uses MMSE such as the canister, Canis-

ter flat bed, Payload Change Out Room, and Payload Ground Handling Mechanism.

6.1.4	 Hazard Operations

Preliminary analysis indicates that certain tasks during ground

processing and in-Orbiter flight operations will be classified as harzardous.

Table 6-II identifies these potential hazards with comments.
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TABLE 6-II GROUND AND FLIGHT OPERATIONS HAZARDS

HELIUM PRESSURE TANKS

• Designed to withstand total pressure from environment
• Provided with squib valve on board venting

BATTERY

. Design to withstand maximum pressure expended with safety margins

FUEL TANKS

. Tanks not under pressure until activation of RCS after separation at T + 40
minutes

FUEL LEAKAGE TO PAYLOAD ORBITER/THRUSTERS

Use preserviced fuel tanks
Use brazed or welded fittings

. Isolate fuel with squib valve to maintain metal-to-metal seal

. Fire squib valves after deployment
Avoid tank rupture by design. margins

FUEL TANKS

Provide insulation to control tank environment
Provide proper ullage

HELIUM PRESSURE TANKS

. See Overpressure

THRUSTERS AND LINES

. Charge lines and thrusters after deployment

BATTERY

. For battery overheat transfer to external or deploy payload - flight only

ELECTROEXPLOSIVE DEVICES TYPE NSI-1

• Fail safe design - requires three failures to fire
• Ignition system not armed until after separation at T + 30 minutes

OVERPRESSURE

CONTAMINATION

H
co
OD

OVERHEAT

PREMATURE SO,UIB/
IGNITION FIRING

a
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6.1.5	 Integrated Interfaces

A series of factory and field validation tests are proposed on

the flight LES hardware, GSE, ASE, ETR and Orbiter interfaces equipment.

These activities will be performed in a logic sequence from hardware fabri-

cation through a field compatibility demonstration test. The end result will

be to certify the interfaces and readiness of the GSE, ASE, Procedures, and

Facilities for operational missions.

6.1.5.1	 Factory - Typical major factory activities consist of qualify-

ing new hardware designs and procedures and performing an integrated LES

system test. Some of these activities are as follows:

Stage Structure - A structural load test is to be performed

on the stage structure to demonstrate its capability to withstand the expected

launching loads. The assembled stage structure with mass simulated components

installed will be mounted in a structural test jig. The critical points on

the stage structure will be instrumented to measure strains and deflections

and the loads applied by hydraulic jacks. A combination of axial shear and

bending loads for the critical design will be applied in increasing increments

until the design ultimate load is achieved. At each increment, measurements

of strain and deflection will be recorded and this data will be examined to

verify structural design analysis. The stage structure will be tested to

failure. It will not be available for compatibility demonstration, however,

another structure used for environmental testing will be available for dem-

onstration.

Payload Adapter - A structural load and stiffness test,

vibration and mechanical shock test and a separation test is to be conducted

on the payload adapter. The structural load test will demonstrate the capacity

of the adapter to withstand the expected transporting, handling and flight

loads, and will provide data to determine the stiffness of the adapter for

use during environmental testing. This test will be similar to the one con-

ducted on the stage structure. The section will be instrumented with strain

gages and deflectometers and will be subjected to a combination of axial shear

and bending loads applied via hydraulic jacks from zero to the expected trans-

porting, handling and flight loads. Instrumentation data will be recorded at

each load step and subsequently analyzed to verify the structural design

analysis and the expected stiffness of the adapter.
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An environmental test of the adapter will be conducted by

exposing it to vibration and mechanical shock. The base of the separation

system will be attached to the vibration exciter system with a simulated pay-

load attached at the forward end. This simulated payload will havA iaass

characteristics similar to an actual flight payload. A resonance survey will

be conducted to determine the resonances of the structure and response asso-

ciated with each. Vibration testing follows with inputs to induce the ex-

pected dynamic flight loads. Functional monitoring requirements will include

accelerometers to obtain transmissibility data, strain gage output measure-

ment, and electrical continuity measurements of the interface connectors during

environmental exposure.

A separation test will be conducted on the payload adapter.

This test will simulate separation of the payload from the adapter section by

allowing a mass simulated payload to eject and free-fall from a constrained

adapter section. Two tests will be conducted using the flight explosive

separation system while the third test will be conducted with one of the

redundant systems disabled.

A structural proof load test will be performed on all new

mechanical load bearing GSE. This test will be conducted at twice the design

operating loads and will verify overall structural integrity prior to final

use.

6.1.5.2 Field - The major field activities at ETR consist of contractor

equipment interface tests, proof loading handling/transporting equipment, and

a demonstration/validation ground test.

Site Integration - As part of the initial site activation

and prior to mating the LES with the Orbiter, the Orbiter mock-up simulator

will be used to functionally verify the LES ASE avionics and cradle assembly

equipment interfaces. Simulators will also be used to functionally test the

system test equipment located in the SAEF-2 or other facility as determined

by availability of facilities. Prior to first use, and periodically there-

after, all mechanical load bearing equipment will be proof loaded to twice

its design load.

Validation Test - A demonstration/validation test is pro-

posed for LES as the final step to certify flight readiness for operational
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missions. The LES will be a fully operational configured system except inert

tanks will be installed. The LES will be the same one that was used for in-

tegrated system factory test consisting of equipment required for flight

sequencing and control, telemetry and those systems necessary to validate

functional. mechanics of the operational LES. The LES system and cradle assem-

bly are to be configured with additional instrumentation to measure handling

and transporting environmental compatibility. This integrated demonstration

could be a stand-alone test, depending on the LES configuration and facilities

availability, and primarily would be used for demonstration and validation

in the following ways:

e Verify physical interfaces of the 'LES/ASE and

Prototype Spacecraft or dummy Mass P/L with

the ETR receiving, handling, assembly, trans-

porting, VPF, canister loading and PCR.

• Verify processing timelines -LES, ASE, P/L and

integrated payload.

• Verify processing operational procedure

documentation.
3

• Verify range facilities, hardware and support

service and interfaces; Telemetry, Communica-

tions.

• Verify LES operational interfaces with Checkout

Equipment, Cargo Integrated Test Equipment,

facilities, and safety.

e Verify timeline allocations.

i Verify environment compatibility.

• Verify range instrumentation interfaces.

• Verify post flight operations - refurbishment

and post flight data interfaces.

a	 Operational LES - All efforts, including LES, ASE and GSE

t

	

	 design, analyses and fabrication, ground tests and checkout, system integra-

tion, and demonstration tests are directed toward achieving successful opera-

tional flight tests.
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6.1.6	 Support Requirements

All prospective users of National Range Services or facilities

must submit their requirements via the Universal Documentation System (UDS) .

The UDS is a standardized documentation system that is accepted and used at

all National Ranges and certain Service Ranges. It provides a formal, common

method of language and format for stating requirements and preparing support

responses. This system is the means by which the ranges formally accept such

requirements and prepare official plans for support of users! program.

For the purpose of this study certain range services such as

°telemetry, communications, facilities and the like were estimated using past

programs as a guide. These cost are identifiable in Table 7-VI of Volume IV.
Site activation will include administrative activities, coordina-

tion of facilities and services, receipt and checkout of support equipment

and implementation of the off-site spares program. Integration of the LES

program to an off-site base will probably consist of two major efforts.

These are:

• Integration of users administrative activities.

This involves establishing personnel procedures,

orientation of new personnel to range require-
ments and regulations and establishing lines of

communication with range support elements.

• Integration of system operational activities..

This involves development of safety procedures

consistent with range requirements, scheduling

of assembly and test operations requiring range

support to meet the availability of the support-

ing elements and performing compatibility checks

(both mechanical and electrical) to ensure system

interface.

Spares and repair requirements are divided into two categories:

• Those f,-aictions occuring in-plant for an opera-

tional program.

• Those functions required for off-site support.

For the purposes of this study, past programs were used to identify percen-

tage spares/repair requirements on a per unit operational cost.
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Preliminary requirements for a training program were estimated.

These included task and skills analysis to define the various LES related

tasks to be accomplished and the skills required to perform those tasks of

preparation, integration, installation and checkout. It also included main-

tenance related tasks as required. The payload specialist was included as

part o this training program. However, a detailed study will be required

to determine and define the various related payload tasks and training

equipment requirements and development of training literature to conduct a

new training program.

Each task of Figure 6.4, along with the timelines of Figure 6.5
were evaluated for manpower and skill loading at the field site base. ,A

typical field team manned with the proper cadre of personnel/skills is esti-

mated to be 18. These personnel will have the capability to provide the

necessary services and expertise to assemble, checkout and prepare the LES/

cradle assembly/GSE and ASE and to assist in the total integration of payload

in the Orbiter cargo bay for deployment and its intended mission. This

cadre of personnel includes administrative, engineering, technicians and

inspectors. The mixture of skills shown in Table 6-III provides the proper
number and skills to perform scheduled prelaunch efforts and to maintain the

site equipment in an operational condition.

TABLE 6-III PRELIMINARY PERSONNEL REQUIREMENTS

SKILL NUMBER

SUPERVISOR 1

ADMINISTRATOR 1

ENGINEER 2

OPERATIONS ENGINEER 2

TECHNICIAN 8

INSPECTION 2

QUALITY 1

LOGISTICS 1

TOTAL 18

a

j

193



The field team will also provide services as required to define mission

integrated requirements for field prelaunch and launch functions that meet

operational objectives within the constraints imposed. Additional launch

support from the home plant is estimated at 30 man days per launch to pro-

vide technical and monitoring services.

6.1.7	 Support Facilities

The facilities for processing LES, LES ASE and spacecraft are

shown in Figure 6.12. It is assumed that ground safety approval for use of

these facilities will be provided or similar facilities suggested as alter-

nates.

The hub of payload activities is planned for the Spacecraft

Assembly Encapsulating Facility (SAEF). If this facility is not available,

an alternate facility such as a hanger with suitable space for LES Test Sets,

Mobile Flat Bed Assembly and other GSE/ASE will suffice. In either case the

facility assigned for this program is to be designated as an Ordnance Payload

Assembly Facility (OPAF). With this designation ground safety approval for

handling the preserviced fuel tanks and performing ordnance installation is

possible. Certain facility modifications may be required to adapt the

facility for LES program support equipment and to accommodate the spacecraft.

These could include facility modifications to provide work space, enclosed

area for test sets, storage for equipment, clean room requirements, and spares

or repair parts.

The Explosive Safe Area (ESA) provides storage and a testing area

for Electro-Explosive Devices (EED's). It is planned that all EED's assigned

to LES will be bench tested in this facility with ground safety approval

using government supplied test equipment. In addition, the squib activated

batteries are stores in either the ESA or in the spares storage area until

ready for use.

The Hypergolic Maintenance Facility (HMF) ,aay be required to re-

ceive, inspect and store preserviced fuel tanks. As a normal flow, the

preserviced fuel. tanks, with ground safety approval, could go direct to the

LES assigned OPAF for uncrating, inspection and installation. If flight

schedules are such that more than one set of tanks are required on site, then 	
k

the HMF is assumed as the receiving and storage area for these tanks until	
1 i

ready for use.
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The Vertical Processing Facility (VPF) is common to all payloads

integrated into the Orbiter cargo bay standing up. This facility is assumed

to be capable of accepting LES Mobile Flat Bed Assembly for transfer of pay-

load to the Vertical Payload Handling Device (VPDH) . Work platforms to the

55 foot level are provided for interface work and preparations for Integrated

Test using the Cargo Integrated Test Equipment (CITE). The CITE , when pro-

vided with installed payload ASE/Avionics equipment, provides the capability

of performing a preflight readiness checkout of each payload as a totally

integrated cargo prior to installation and interface with Orbiter payload

accommodation equipment. The flight payload cargo is transferred to the

canister and secured for transporting to the Payload Changeout Room (PCR).

The PCR accepts the flight cargo from the canister in a vertical

position (standing-up). The transfer of the cargo from the canister to the

PCR is made using the Payload Ground Handling Mechanism (PGHM). When the

PGHM is in the retracted position work platform space is provided for payload

related equipment. When the payloads are transferred and installed in the

Orbiter cargo bay personnel and equipment access platforms are available as

required to perform payload interfaces, adjustments, and servicing. There

is no planned checkout activity for LES while in the PCR.

When a payload is installed via the optional route (laying down)

the Orbiter Processing Facility (OPF) enters into the payload flow and the

VPF and PCR are bypassed. However, the CITE verification will remain as a

required interface test in the flow. After this test the flight payload

cargo installed in the canister is -transported to the OPF. The flight cargo

is transferred from the canister to the Orbiter cargo 'bay laying-down using

the MMSE St rongb ack .

Operations and Control Facility (0&CF) or other suitable space is

required for administrative, engineering, logistics, etc. personnel. Also a

controlled space with environmental control will be required to stock minimum

spares and repair parts for the LES program.

6.2	 FLIGHT OPERATIONS

During the Orbiter launch flight phase to on-orbit operations the

LES is off and safe. Selected caution and warning candidates are monitored with
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provisions provided to recover from an unsafe condition, should it occur.

On-orbit operations consist of preparations for and performing

predeployment checkout and deploying the Orbiter payload for its mission.

After deployment, at separation the mission flight sequence be-

gins. Telemetry coverage of the flight is provided by the Orbiter within

its range capability. Additional coverage beyond that of the Orbiter will

be by ground tracking stations to obtain flight performance data to space-

craft separation and insertion into orbit.

Upon completion of mission assignment the Orbiter prepares for

re-entry and landing. After landing the Orbiter is towed to the OPF for

recovery operations.

6.2.1	 Flight Decision Sequence

On-orbit operations are controlled and monitored from the flight

deck by the Payload Specialist. He monitors the "safe" status of the payload

from launch to separation. Provisions for recovery from an unsafe condition

will be documented in flight procedures. The Payload Specialist will control

and monitor predeployment tests and deployment of the LES and Orbiter payload.

He will also enter and verify flight trajectory data, enter time of launch

and initiate the final deployment sequence which results in separation from

the cradle assembly and Orbiter. If an anomaly occurs during predeployment

tests, a decision sequence will be followed similar to that shown by Figure

6.13. Even though it will be possible to fault isolate LES to the replace-

ment box level, it will not be possible nor practical to replace the box

for two reasons. These are:

• No spaxes are carried on the flight, and

• Orbiter payload would probably have to be

deployed by the RMS and the black box re-

placed using EVA, if a spare were available.

Neither approach is acceptable nor is it considered safe. Therefore, fault

isolation will only provide self test within the capability of the Built-in-

Test to verify that the LES does not pose a threat to the safety of the

Orbiter or crew and a logical decision can be made to either return or dump

the LES and/or spacecraft. However, if the anomaly should be isolated to the

payload accommodations equipment, specific instructions will be available in
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documented procedures that allow an orderly recovery by switching to backup

systems or subsystems.

6.2.2	 On-Orbit Operation

With the Orbiter payload integrated in the cargo bay and electri-

cally interfaced to the ASE avionics and payload accommodations equipment,

the pre-launch predeployment checks are performed. These checks include the

Inertial Stabilization Unit (ISU), telemetry and selected power switching

functions. The flight battery, Ignition Control Unit (ICU), squib and motor

'	 circuits are not included as part of these tests. The squib and motor cir-

cuits remain in the "safe" condition because the ICU is inhibited and electri-

cal power is kept off the ICU power bus until ,just after separation from the

Orbiter. After Shuttle orbit has been established, pre-launch activities are

initiated. A simplified block diagram of these activities is shown in Figure

6.14. The 3-axis stabilization is accomplished by the digital computer and

guidance platform of the ISU. The guidance platform provides 3-axis attitude

and directional reference data for flight trajectory control and position

data for control event sequencing. Self test (BITE) of the system is con-

:	 tinuous after power application. Safe status monitoring via the caution and

i	 warning electronics is continuous from the preflight readiness checkout up

to umbilical disconnect.

Once the Orbiter payload predeployment checkout is complete and

the status is verified to be in a GO condition and the Orbiter is ready, the

decision will be made to deploy the LES/spacecraft. Upon separation the

deploy switches actuation enables the ICU so that event sequencing can oortur

for squib firings at predetermined times.

6.2.3	 Mission Sequence

After T = 0 the LES entire active flight is conducted under the

 ICU computer control. After ignition arm, which occurs at T + 30 min, the

squib firing sequence is initiated. A typical mission sequence of events is

shown in Table 6-IV. Following a time delay of approximately 4 0 minutes, to

allow the LES and spacecraft to travel -to a safe distance away from the Orbiter,

the Reaction Control System (RCS) is activated. The LES and spacecraft are

then oriented to the attitude for perigee burn by the computer. A typical
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	 TABLE 6-IV SEQUENCE OF EVENTS - TYPICAL MISSION

6:,

TIME	 MIN EVENT

-15 Warm-up Guidance System and Insert Flight Software

0 Deploy at AV = 1-2 fps - Guidance On - RCS Off

30 Arm Ignition System

30.5 Fire Pressure Tank Valves

31.0 Fire lst Set of Fuel and Oxidizer Outlet Tank Valves

31.5 Fire 2nd Set of Fuel and Oxidizer Outlet Tank Valves

32.0 Fire lst Set of Fuel and Oxidizer Tank Inlet Pressure Valves

32.5 Fire 2nd Set of Fuel and Oxidizer Tank Inlet Pressure Valves

40 Activate RCS and Orient Attitude for Perigee Burn

45 Start Perigee Burn

60 Complete Perigee Burn (RCS Off)

100 RCS On - Reorient Attitude for Apogee Burn

105 Apogee Burn

119 Complete Apogee Burn

120 Spacecraft Separation

separation velocity of 1-2 fps will allow sufficient separation distance in

45 minutes to avoid possible contamination to the Orbiter, Orbiter cargo and

bay areas. At T + 45 minutes perigee burn occurs and lasts approximately 15

minutes. The computer then reorients attitude for apogee burn at T + 105

minutes. Apogee burn is completed at T + 119 minutes at which time the

spacecraft is separated by firing the separation explosive bolts. Separation

clearance is provided by spring energy of the spacecraft "V" clamp adapter.

6.2.4	 Abort and Recovery

6.2.4.1	 Abort - Abort considerations during the ground processing cycle

are considered to be few, if any, since the occu.rence of problems at this
level are considered to be those that are recoverable with no significant

impact on Shuttle processing timelines. Each problem that occurs will be

evaluated and corrective action taken, on an overtime basis if necessary.
The overtime scheduled provides time to correct minor malfunctions and allows
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transition back to normal scheduled Shuttle timeline commitments. Fault

isolation to component (block box) replacement provides this flexibility.

Once the LES and spacecraft are installed in the Orbiter and interfaced with

ASE avionics and Orbiter equipment, replacement of components is not practi-

cal due to accessibility and the fact that ordnance devices are installed.

Therefore, abort considerations will probably involve on-the-spot decisions

based on an evaluation of the problem, its impact on the Orbiter, Orbiter

cargo, the criticality of the launch window, etc. If the problem involves

the safety of crew and/or Orbiter, abort procedures will apply. Upon com-

pletion of LES preflight readiness checkout, LES is de-energized and placed

in a safe mode. The safe status, if required, will be monitored on the Ca,,ztion

and Warning Electronics (CWE). CWE can provide continuous monitoring of candi-

date LES C&W functions up to separation from the Orbiter. If an abort is indi-

cated by an unsafe condition as noted on the CWE, and the condition cannot be

safed, the Shuttle abort procedures are used. Typical abort considerations dur-

ing on-orbit operations will be system failure, inadvertent actuation of ICU

and/or initiators, battery fails to activate, deployment mechanisms fail to

operate, no power transfer, umbilical disconnect fails, and separation fails

to occur. Each abort consideration will be defined in procedures so that

immediate action may be taken to protect and avoid any possibility of creat-

ing a catastrophic hazard to crew and Orbiter.

6.2.4.2	 Recovery - Provisions for personnel and support equipment are

provided for recovery operations. The two modes of recovery include: (1) the

return of the Orbiter payload or (2) the return of only the ASE avionics and

cradle assembly. If the on-orbit operations are unsatisfactory, for what-

ever the reason, and the decision is made to safe and return the payload,

the ground crew is notified and preparations are made for recovery. The

schedule of recovery operations shown in Figure 6.15 begins with the towing
of the Orbiter to the OPF and safing and deservicing of the Orbiter. At the

completion of this task, access is provided for the LES and spacecraft teams

to move in with support equipment and prepare for removing the payload. The

spacecraft team removes the spacecraft after safing operations are complete.

With the spacecraft clear of the Orbiter and removed from the OPF, the LES/

cradle assembly/ASE avionics previously verified safe are removed. The
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LES/cradle assembly is placed on the mobile flat bed assembly using LES-

furnished slings, secured and transported to LES processing facility for

refurbishment.

When normal recovery is made, only the ASE avionics and cradle

assembly are returned. The removal flow is the same as that for removing the

LES/cradle combination except no safin g is required. The cradle assembly and

ASE avionics are removed and transported to the processing facility for re-

furbishment and stored for the next flight.

6.2.5	 Safety

A safety analysis was conducted on the LES to identify hazards

during test, handling and transporting. Typical results are as follows:

• Electro-Explosive Devices (EED's)_ - The hazards asso-

ciated with EED's are a result of possible inadvertent actuation. Prevention

of an inadvertent actuation is assured by applying proven safety principles

in design as well as procedures. Protechnic devices are designed in accor-

dance with applicable standards. The NASA type NSI-1 initiator meets these

standards. Initiator leads are shorted and grounded during handling and up

to final bench test. After installation they are shorted via the Ignition

Control Unit and remain shorted during the CITE, preflight readiness, and

predeployment test. The RCS and motor firing circuits are inhibited and

shorted. In addition to shorting the initiator firing leads, the Ignition

Control Unit (ICU) controls the actuation using the principles of independent

arming and firing switches. Means are provided to test the ICU for proper

operation prior to installing and connecting the EED's.

• Pressure System - The possibility of an inadvertent re-

lease of gas under pressure creates the potential hazard in the gaseous

helium fuel pressurization system. Design principles and safe operating

methods are applied to prevent the likelihood of this occurring. Design mar-

gins for proof pressure and burst pressure are used to insure adequacy of

the pressurization system. An inert gas is used to eliminate chemical reac-

tion with the propellants. Furthermore, the system is designed using a relief

valve which will prevent leakage from overpressurizing the plubming. Standard

safety practices are followed during servicing of the pressurization system

to assure protection against overpressurization and potential personnel

hazards. Also, warnings are to be incorporated in the procedures and test
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plans to advise operators of the potential hazards.

• Electrical - The LES electrical system presents the

potential hazard of electrical shock and the chemical hazard of the battery

electrolyte. Protection from release of corrosive or toxic fluid from the

battery is provided by sealing the battery. Electrical shock is avoided by

using safe operating principles and by insulating or protecting the hazardous

areas. The ICES utilizes single point ground to minimize ground-loop hazards.

s Handling/Trui sport ing - Potential hazards during handl-

ing and transporting are a result of LES mass and momentum. The hazards are

minimized by using only equipment that is rated for the LES and LES payload

weight by using approved safety procedures, and by periodically proof loading

the LES and LES payload handling and transporting equipment.

• Environmental_ - Proposed materials for the LES have

been examined for toxicity and unusual off-gasing and combustion products.

The information will be provided to personnel and in a test plan concerning

these materials.

• Radiation - Potential radiation hazards at levels that

cause injury do not exist.

• Prepackaged Propellants - The recommended safety instruc-

tions for hydrazine and monomethylhydrazi.ne from AFM 161-30 will be followed.

• Battery - The safe wet stand time for the battery is

estimated to be eight hours. If the mission should be aborted after battery

activation discharging provisions are provided to prevent overheating and

the possibility of explosion. The electrical interfaces to perform this

discharge function are provided via the umbilical and ASE.

6.3	 PROPULSION CONCEPT ASSESSMENT

During the conceptual design certain features were identified

that provide a more efficient and reliable operations processing concept.

These features include:

e Access from rear of the LES for installing system

components and initiators.

Modularized LES structure to simplify installation

of preserviced propellant tanks.

r
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• Provisions for quick disconnect to plumbing for 	
1

pressurizing and leak surveillance check.

• Provisions for single umbilical interface.

• Provisions for mounting the LES flat (laying

down) on the M.obile Flat Bed Assembly turntable
to facilitate installation of preserviced pro-

pellant tanks.

• Provisions for a positive ground system on the

insulating blanket and a common single point

ground to LES.

• Provide a dummy load for discharging battery.

• No problems anticipated due to the electro-

magnetic environment at this study level.

• Control operating temperatures by providing

insulation on components and/or stage. Speci-

fically, the auto destruct temperature of
initiators.
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