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ABSTRACT

The optical path length from a satellite to the earth's surface

is s t rongly dependent cn the atmospheric pressure along the propa-

gation path. Surface pressure can be measured bV using a :multicolor

laser ranging system to observe the change with wavelength in the

optical path length from the satellite to a ground target. The

equations which relate surface pressure to the differential path

lengths are derived and the accurac y of the pressure :measurement

is evaluated in terms of the ranging system parameters. The results

indicate chat pressure accuracies of a few millibars appear feasible.
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I. INTRODUCTION

Weather forecasting has benefited greatly from the rapid global

coverage provided by meteorological satellites. Cloud cover, temperature

profiles, pressure profiles and atmospheric wind speed are a few of the

important meteorological parameters which can be measured from space.

Cloud cover and temperature are readily observed using passive techniques,

such as photography and radiometry, while wind speed and pressure measure-

ments require active lidar techniques. 1 Pressure is probabl y the most

difficult of these parameters to measure accurately. Recently, Kalshoven

and Korb ` proposed a DIAL technique for the remote sensing of pressure

and temperature. The system observes the pressure and temperature induced

changes in the 7600 ^ oxygen absorption band. In this paper we describe

another approach for measuring atmospheric pressure using a multicolor

laser ranging system. The technique is based on the fact that the difference

between the optical path len;ths from a satellite to a ground target

measured at two wavelengths is proportional to the atmospheric pressure

at the target.

The Spaceborne Geod ynamic Ranging System (SGRS) currentl y under

development at the Goddard Space Plight Center is a single color system

which operates at the 0.53 -jm doubled YAG laser wavelength. 3 The system,

which will use retroflector ground targets, is being designed to provide

range resolution approaching one centimeter. although accurate formulas

have been developed to correct the range measurements for the effects of

atmospheric refraction, an extansive weather station network: is needed to

provide the meteorological data required by the correction foriulas.4-6

1	 y,



To eliminate this problem, a multicolor version of SGRS using the fundamental

(1.06 um), doubled (0.53 um), and tripled (0.333 um) YAG laser wavelengths is

also being developed.	 By proces.3ing the differential path length measure-

ments using the approach described in the following section, this system

could be used to measure surface pressure at the millibar level. In Section II

we present the theory and derive the equations which relate surface pressure

to the differential path length. In Section III the pressure ;measurement

accurac y is examined.

2
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II. TFEORY

The geometry of the satellite and target is illustrated in Figure 1.

The optical path length is defined as the integral of the group refractive

index along the ray path. Because the horizontal refractivity gradients

are small, the one-way optical path length measured by a pulsed laser system

is given by

r1	
n

Ro =	
dr siri 9	

(1)

r0

ng is the group index of refraction and P. is given by Snell's law for a

spherically stratified medium (see Figure 1,

nr cos	 = n 
0 

r 
0 

cos 9 0 	(2)

where n0 is the phase refractive index{ at the target. The atmospheric

correction is the difference >etween the optical range R 0 and the strai;;ht-

	

line path length R
s	

If n  is expressed in terns of the group refractivity

,
g

ng = 1 + 10 6 N	 (3)

then the atmospheric correction can be written in the form

	

-6 
rr1	

N	 IlrI	 dr	 _
AC = RO - Rs	 J= 10	

dr sin 9 + 
II

i 	 sin 9	 R S1	 (4)

	

r 0	 l r0

The first term is the velocity correction while the bracketed term is the

difference between the geometric lengths of the ray and straight-line paths.

The atmospheric correction can also be expressed as

AC = SC + GC
	

(5)
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SATELLITE

Figure 1. Geometr y of the satellite and target.



The spherical correction term SC corresponds to a spherically symmetric

atmosphere while the gradient correction term CC includes the effects of

horizontal ;radients. Marini and Murray 4 have developed an accurate

formula for calculating SC in terms of ti,e surface pressure, temperature

and water vapor pressure at the target during the satellite pass. The

accuracy of their formula has been checked extensively by comparing it

with ray tracing data. The results indicate that the error in Marini and

Murray's formula is less than 5 mm for elevation angles above 20
0
 .

Recently, we developed an expression for GC in terms of the horizontal

pressure and temperature gradients at the target. 5 The accuracy of the

gradient correction formula was also evaluated b y comparinp it with ray

tracing data. 6 Because GC contributes less than 1 cm to the total atmos-

pheric correction above 20° elevation, its effect will be neglected and

we will restrict our attention to elevation angles above 20
0
 .

The atmospheric correction car. be  measured remotely from a satellite

using either single-color or multicolor laser ranging systems. If the relative

positions of the target on the earth's surface and the satellite are known,

then the atmospheric correction can be calculated by subtracting the kncwn

distance between the satellite and tar-et from the optical path length

measured using a single-color ranging system. Because the straigh -line

distance betweenthe satellite and target must be known to within a few

centimeters for this technique to be effective, it is probably not very

practical. As an alternative, multicolor systems can be used to determine

the atmospheric correction by calculating the difference between the optical

path lengths measured at two wavelengths.

5



Although Marini and Murray's formula can be used to accurately estimate

the atmospheric correction at a single wavelength, some of the approximations

made in deriving the formula are not valid for estimating the difference

between the atmospheric correction at two wavelengths. Fortunately, it is

easy to modify Marini and Murray's derivation to eliminate this problem.

The approach is to evaluate the integrals in Equation (4) by solving Equation (2)

for sin 6, substitutin g the result into Equation (4) and expanding the

integrals in inverse powers of sin E. The resulting integrals are then

evaluated by using the perfect gas law, law of partial pressures and the

hydrostatic equation to obtain a suitable refractivity profile. The procedure

is detailed in references 4 and 8. The most significant terms of the expansion

for the round trip atmospheric correction difference are

R12 = AC  - AC,,

f(a 1 ) - f(XI) I :1	 _	 B	 C	 I
2	 F(o,H)	 sin E	

sin 3 E + sin

	

5	 )	
(6)

where

A = 2.357 x 10-3P + 2.24 x 10 4a + 1.084 ; 10 -8PTK	 (7)

B = 1.084 < 10 -8PTK + 4.73 k 10-8 P 3 _,1/K [f(a 1 ) + f(k 2 )J	 (8)

,,	 2
C = 1.5 x 10

-13PT 2 2K 
K	

(9)

F(e,H) = 1 + 0.0026 cos (29) - 0.0003(H)	 (10)

K - 1.163 + 0.00968 cos (29) - 0.00104T + 0.00001435P	 (11)

0.0164	 0.000228

X2
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and

X = laser wavelength (um)

e	 water vapor pressure at target (mb)

P = surface pressure at target (mb)

T = surface temperature at targe. (K)

9	 colatit-.ide of target

H	 altitude of target above sea level (km)

E	 satellite elevation angle.

in deriving, Equation (6), we have neglected all terms contributing a few

millimeters or less above 20 0 elevation to the total atmospheric correc'lon.

The atmos^'eric pressure at the target can be determined by measuring

R12 using a two-color laser ranging system and then solving E q uation (6)

for P. Because R l` is only weakly dependent on water vapor pressure and

temperature, accurate estimates of e and T are not required. This aspect

is discussed in detail in the next section. Although the dominant variation

of R12 with respect to P is linear, the appearance of P 2 in the expression

for B (Equation (8)) will introduce quadratic variations which cannot be

neglected. Since the variation of K with respect to P is negligible,

Equation (6) can be solved for P by using the quadratic formula

P = -b + (b 2 - 4ac)1/`	
13

2a	 (	 )

where

	

-8 f(^	 + f(^,)
a	 4.7;	 10	 —	 (14)

T sin E	
3 - 1/iC

7



b =	 35i	
10-3 + I 	 x 10-8 '— - 1.5 x 10

- 13 1 2	 K2

^.	 x	
(15)

tan g E	 sin  E	 3	 K 

r(9,H )K 	 sin G
12	

2.24
	

10 x 	 -4 e	
(

16 )c = 2(f(1 1) - f02))  
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III. ERROR ANALYSIS

In a realistic system it will not be possible to determi:e the para-

meters R 12 , E, a and T exactly. 'Therefore, it is importan_ ,.o assess the

effect of errors in these parameters on the accuracy of the recovered

pressure. An approximate expression for the rout-mean-square (rms)

pressure error is
a

aP	 2	 aP	
1
2 	 (aP	 2	 (;;P	 1 -	 (17)

	

=	 I	 I	 lap	 [ [^—R,-2 o R12 , + aE a E	 + tae Je, + ^aT 3TJ J

where o  , aE , C e and aT are the ".s errors in R12 , E, e and T, respectively.
12

The partial derivatives can be calculated by taking the derivatives of

Equation (13) or by applying the chain rule to Equation (6)

-1
rP	 (°R121	 _ 0.212 sin E (mb/mm)

	 (18)

	

aR12	 l aP )	 f(,1 1 ) - f (.^,)

	

p	 aR	 r3R	 -1	
10 

-3
a_ s	 12 I 12 ^ 	P 

(mb/mrad)	 (19)

	

vE	 aE l -OP J	 tan E

-1

aP a IR12 (
,,1

'R j
0.095 (mb/mb)	 (20)

	

ve	 ?e 	 yP J

-L

	

aP	 3R12
1aa12)	

2.55 x 10 -6P + 3.4 x 10-3D2 + 4.2 < 10-11PT
=	 I	 — —	 2	 ,	 ,

	

aT	 'T ^, 7P 	 tan E	 T` sin` E	 sin E

(mb/ 0 C)	 (21)

The magnitude of 3P/;T is plotted versus elevation angle in Figure ?.

Although the pressure sensitivity to temperature error is greatest at the

lower elevation snglo.s, its value above 200 is still quite small. At 200

elevation, a temperature error of 50 0C would contribute less than one

9
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millibar to the aressure Error. Thus, only a crude estimate of the surface

temperature is required. An accurac y of 2000 to 30 0C is easy to obtain and

should be adequate.

The pressure sensitivity to errors in water vapor pressure is constant

with respect to elevation angle (Equation (20)). A 10 mb error in water

vapor pressure would contribute approximately one millibar to the surface

pressure error. Since the water vapor pressure can approach 100 mb when

the surface temperature and relative humidity are high, its effect cannot

be ignored. It should be possible to predict the water vapor pressure to

within 10 to 20 mb using a seasonally adjusted model supplemented with

surface data obtained from existing weather stations.

The elevation angle sensitivity (Equation (19)) is plotted versus E

in Figure 3. The sensitivit y is g reatest at the lower elevation angles.

At 20 0 a 1 mrad error in the elevation angle contributes almost 3 mb to the

pressure error. The ele »ation angle can be determined from the laser

pointing data. Since pointing accuracies of 100 1:rad or less are easily

obtained with current technology,gy,	 the resulting pressure errors should

be less than a few tenths of a millibar.

The major error source for this technique is the differential path

length measurement. The magnitude of the pressure errors caused by errors

in the measurement of R 12 depends on the choice of wavelengths. The

sensitivity 3P/3RI', is plotted versus elevation angle in Figure 4 for the

three possible combinations of the fundamental (1.06 4m), doubled (0.15 3 ,.m)

and tripled (0.353 ;,m) Y yG laser frequencies. The design of a space

qualified multicolor ranging system based on these three wavelengths is

7
currently under study at the Goddard Space Flight Center.
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For the technique to be affective in measuring surface pressure at	
i

the millibar level, the differential path length must be determined with

an accuracy of at least a few millimeters. Streak tube detectors capable

of providing the 7 psec time resolution required to measure path length

differences at the millimeter level have been demonstrated in the

laboratory. 10 However, the path length error is also dependent on the

laser pulse width and shape, target dispersion effects, received signal

strength and detection strategy. For example, if a maximum likelihood

estimator is employed and the received pulse is a raised cosine

T[1 + cos (2Tt)]	 -T .,t < T

P(t) =	 (^2)

0	 otherwise

then the rns range error has the form

'j R = CT/(27 3V)	 (23)

where C is the velocity of light, T is the full width of the optical pulse

and N' is the average number of photoelectrons per pulse. 
11,12 

Thus, it

should be possible to measure the path length difference at the millimeter

level if at lea t 100 photoelectrons are detected f)r each pulse and the

received pulse widths are on the order of a few centimeters or less.

The sensitivity to path length errors increases with increasing elevation

angle while the sensitivit;; to elevation angle and temperature errors

decreases with increasine elevation angle. The optimt;m elevation angle for

minimizing the total pressure error can be calculated by substituting

Equations (l g ) - (21) into Equation (17), and solving for the --ero of

joP /lE. If the small temperature error effects are neglected, the optimum

^'7



^levation angle is

I
E opt = sin-1 X 4.71 x 10-3 (f(1 1) - f(a2)) 

a E

	
(24)

R12 _^

3eeause ; will probably be on the order of 100-rad or less while a	 will
12

be on the order of millimeters, the optim= elevation angle will normally

be below 10 °. The total pressure error for the 1.06 um and 0.353 ; gy m wave-

length pair is plotted versus elevation angle in Figure 5 for several. values

of .Z
X12

The elevation angle, water vapor pressure and temperature errors

were conservatively chosen to be 100 ,.rad,20 mb and 200C, respectively.

Similar curves for the 0.53 um and 0.353 um wavelength pairs are plotted in

Figure 5. Based upon the results plotted in these figures, pressure accuracies

of a few ;millibars appear feasible if tha path length can be measured with

an accuracy of a few -nilli„.ters or Less.

15
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IV. DISCUSSION

Surface pressure can be measured from a satellite by observing the

change with frequency in the optical path length from the satellite to a

ground target. 3ecause the recovered pressure is relatively insensitive

to surface temperature and water vapor pressure., only rough estimates of

these parameters are required. The major error source appears to be the

differential path length meazurement. To obtain pressure accuracies

approaching a few millibars using the doubled and tripled Y:1C laser

frequencies, the differential path length error :rust be no larger than one

or two millimeters. Millimeter level accuracies appear feasible with

current technology provided the received pulse widths are on the order of

i few centimeters or less. If low dispersion retroreflector targets and

centimeter laser pulses are employed, it should he possible to keen the

received pulse widths within acceptable limits. Adequate retroreflector

targets could probably be manufactured and installed for less than one

thousand dollars a piece, but the approach is only practical for measurements

.>ver land masses. The major benefit of this pressure measurement technique

will be realized it it can be adapted for use over the ocean,. although the

sea surface is rough, at nadir it acts more like a mirror t:ian a Lambertian

reflector. 13 The local surface height of the ocean varies over a range of a

tew meters so that the diffuse components of the scattered pulses will be

broadened to a few -peter= in Length. Because of the large wavelength separation,

the time—resolved speckle patterns in these diffuse pulses ;gill be uncorrelated.

However, there may be specular reflections which do not broaden the pulses

and are highly correlated at the two wavelengths. if so. these signal

18
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components could be used to determine the path length difference. There

has been some work published on the reflection of CW and relatively long

pulse (tens of centimeters and longer pulse widths) laser radiation from the

ocean surface, ; but to our knowledge, very little work has been done with

centimeter pulses. This problem needs to be investigated further before

the utility of measuring surface pressure over the ocean using multicolor

laser ranging systems can be adequately assessed.

19
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