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INTRODUCTION

Increasing demands on finite natural resources have intensified interest in
the coastal zone, In the past five to ten years, U.S. federal legislation

has been implemented to ensure protection and wise management of this 'last
frontier." Understanding the biological and physicél intefrelationéhips of
the coastal zone 1s eritical to good management; Vegetation, a pfimary bio-
logical factor in the wetlands and arn expression of the environment,.should

be monitored as an indicator of the condition and productivity of a coastal area.

Difficult access in the coastal marsh restricts vegetation inventory with
conventional ground survey methods. The Office of Ccastal Zone Management,
under the National Oceanic and Atmospherilec Administration, has encouraged
the use of remote sensing, a technique both practical and comprehensive in

", ..the process of inventorying and mapping the

coverage, for inventory:
nature of a state's zone, and the designation of area of particular concern
almost certainly will benefit from the application of technologies such as

those employing remote sensing' (ref. 1).

Coastal marshes support the growth of many plant species. Diversity is maximum
in the more inland, freshwater marshes. Closer to the coast, the presence of
salt limits the number of species that can successfully compete in the brackish

and saline ayeas. Widespread surveys indicate that wiregrass, Spartina patens,

dominates most of the brackish marshes along the Atlantic and Gulf coasts,

occurring in vast marsh meadows (ref. 2 & 3). Black rush, Juncus roemerianus,

can tolerate a higher level of salt and more frequent tidal inundation of the

gsaline marsh. Likewise, oyster grass, Spartina alterniflora, and salt grass,

Distichlis spicata, thrive in the coastal saline enviromment. These species

sometimes occur in mixed associations, as well as monospecific stands. Where

brackish grades into saline marsh, the wiregrass/oystergrass consocies
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commonly occurs. Buckbrush, Baccharis halimifolia, grows along the spoil

banks and marsh levees as a 1.5- to 3-m tall shrub.

A vegetation type characterizes its environment. Thus, a particular marsh
species acts as an indicator for salinity, soll type, tidal frequency and
level, The remote identification of indicator vegetation, then, serves as
a practical method to acquire data pertinent to ﬁndérstanding the marsh

environment.
OBJECTIVES

The objective of the investigation wags to determine the optimum time of
vear for remotely classifying marsh vegetation from Landsat multispectral
scanner (MSS) data. The species dominating the brackish and saline marshes

of Loulsiana represented the subject plant types.

DATA ACQUISITION

The investigation was conducted at the NASA/Earth Resources Laboratory (ERL),
Slidell, Louisiana, which directs tﬁe development of remote;sensing technology
applications. The ERL is engapged in testing the usefulness of Landsat MSS

and other satellite data for coastal zone problem-solving. Siﬁce summer 1974,
the laboratory has maintained a fileld record of the vegetation and surface
condition at various marsh locations surrounding Lake Borgne, Louisiana, shown
in figure 1, as a part of on-going experiments. The available field history set

the foundation for the analysis of Landsat MSS data in this investigation.

From a remote-sgensing point of view, summer clouds frequently obscure the
Louisiana coastal area., Clouds form almost daily over the Gulf and move in-

land by mid-morning between the months of May and August, making acquisition




of remote-sensing data difficult. In the original design of the investigation,
an alrcraft carryving an MSS sensor was scheduled to fly monthly during the
growing period., However, either most of the attempts at data acquisition were -
unsuccessful because of cloud formation or the data were unacceptable because

of the effect of an oblique sun angle and wide scan. Also, the avallability

of the afrcraft was restricted. A compiete set of aircraft MSS data for the
1876 growing period was unobtainable. Thus, the investigation had to.be

discontinued or redesigned.

Another investigative approach was pursued. Since field records existed for

the same brackish and saline marsh sites from 1974-1976, the use of satellite
data acquired over the same period of time was considered. ILandsat MSS data
recorded on cassettes were screened over the same period for cloud-free passes.
Screening took place at the Earth Resources Observations System (EROS)

facility at the National Space Technology Laboratory, Bay St. Louis, Mississippi,

which maintains a Laundsat cassette library and image display devices.

A cloud-free pass representing each month of the marsh vegetation growing
season from February through October was desired. Landsat data were not
sought for November, December, and January because growth iu the marsh is
minimal during those months. Data from Landsat passes over the study area

were selected for the following dates:

February 9, 1977 Landsat frame 2749-15360

April 9, 1976 - " " 2443-15460
May 15, 1976 - " " 2479-15450
June 2, 1976 - " " 2497-15443
July 10, 1974 - " ' 1717-15540
September 18, 1976 - " " 2605-15413
October 26, 1974 - " " 1825-~15504



Cloud-free data were unobtainable for the months of March and August from

spring 1974 through winter 1977.

The MSS of both ﬁandsat 1l and 2 detects reflected energy from the visible through
the near infrared electromagnetic spectrum in four bands: band 4, 0,5~0.6um;
band 5, 0,6-0,7um; band 6, 0.7-0.8um; and band 7, 0.8-1.1lum. Each pass covers
approximately 160 km X 160 km, withh a frequency of no less than once every

18 days over the same point on the ground. Weather conditions influence the
quality of the MS5 data. The scanner resolves digital elements equivalent to

a ground spot size of 56 m X 79 m.

DATA PROCESSING

All data were processed at ERL using a minicomputer system which includes a
Varian 75 computer with 190 k. (16 bit words) of main core and disk storage
and four tape drives. It is configured with a floating point processor and

an interactive image display device.

Existing ERL software programs generated the statistics and final classifica-
tions of the Landsat data. The ERL classification technique derives from a
pattern recognition proces: based on maximum likelihood theory (ref. 4). The
computer first "trains" on known samples. Then it classifies each element of
the data according to the best statistical fit with one of the training classes.
This procedure necessitates ground truth to identify the geographic locations

of vegetation that can be used as training samples.

The eleven marsh locations for which field observations were recorded over
the 2-1/2 year period became the training sample set for this investigation.

The eleven samples basically represented five specles: Badccharis halimifolia,

Spartina patens, Juncus roemerilanus, Spartina alterniflora, and Disticlis

P



spicata. This same set applied to the independent analysis of each of the

seven Landsat passes.

However, the final intent was to compare the MSS classifications from all
seven passes, having used the same training sample set. In other words, the
classifications for training samples 1l-1l generated from the February pass
were compared to the elagsifications for samples 1-11 generated from the April

pass, as well as from the May, June, July, September, and October passes.
The following steps describe how the data were handled for each pass:

Step 1: Upon receipt of the Landsat computer compatible tapeas from EROS, the

data were reformatted to make them compatible with processing software.

Step 2: The data were corrected for a visual striping effect that occurred
every sixth scan line due to a difference in gains for the MSS detectors of

a given band.

Step 3: Each Landsat pass was georeferenced to Universal Transverse
Mercator (UIM) coordinates. This process involves the identification of
control points on U.S5.G.S. 7%' series (1:24,000) topographic maps and the
transfer of their precise locations onto the Landsat data. Georeferencing

the data ensured spatial consistency for the delineation of the training

samples on the Landsat passes and the eventual comparison of thelr classificatiens.

Step 4: Data from bands 5 and 7 were combined for a high contrast display
tape. Viewing the tape with an image display device interactive with the
minicomputer, the locations of the training samples were transferred inter-
actively onto the georeferenced Landsat data. Sample size averaged abﬁut 25

elements., Transfer of the training sample locations onto the georeferenced
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data by reading their universal transverse mercator coordinates into the

computer was attempted, but proved too imprecise for project requirements.

Step 5: A spectral signaturg was developed for esach training sample based on

the average reflectivity response and standard deviation derived from all elements
in the sample for each of the four bands of data. The statistics from training
samples of similar vegetative composition were combined to produce spectral signa~

tures for five classes, or dominant marsh species, from the original 11 samples.

Step 6: A scaled Euclidean distance was generated for each class pair. This
value indicated the relative pair-wise distance of each class to all other

classes in conceptual multidimensional space (ref, 4).

Step 7: Based on the multispectral response statistics generated for each
class, the digital elements within the training samples were classified. The
results represented the accuracy of the pattern-recognition technique in

classifying the training samples against their known composition.

CONCEPT
The average percent classification accuracy of the training samples has been a
traditional indicator for the over—-all classification success of a data set us-
ing the supervised pattern recognition technique. However, tﬁis value considers
only the accuracy of classifying each training sample against the individual

spectral signatures of all other training samples. Modifying the derivation of

accuracy so that each training sample is classified against the spectral signa-
tures‘of all classes may improve the use of that value as an indicateor. The
drawback of this second approach is that training sample classification accuracy
represents the success of classification of data points included in only a portion
of the space defined by the class spectral signatures. This 4s in accordance

with the hyperspace concept of maximum likelihood theory.

4
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The analysis of this investigation depended on a dispersion index (DI),
defined as the ratio of separability among class spectral means to variability
within classes, to predict classification succeés. In other words, to deter-
mine the time of year at which a group of classes best classifies from a
comparison of data sets acquired at different times, the average DI is calcu-

lated for each data set:

DI Class = Sepgrability . Av Scaled Distance/Class
Variability Av Coefficient of Variation/Class

and

DI Av = 4D Class
1t classes

The time of year of the data set associated with the highest DI is optimum

for mapping the classes involved.

Separability among classes relates to the scaled Euclidean distance between

the spectral means in four dimensions (four bands) for each pair of classes,

The following illustrates the measurement for the distance D between Class A
and Class B:
Given:
Class A with spectral means Xl, X5, X3, X&

Class B with spectral means Yis Yy, Yy, Y4

Then:

D(A, B) = /(X3- Y1) Z+(Xy~¥2) Z+(X3-Y3) +(X4-¥4) 2
Dintance D 1is then scalad to adjust for a disproportionate increase in D as
the relaktive values of the spectral means increase, a situation created by
the decompression of the Landsat MSS data when down-linked. Thus, the final

measurement 1s a scaled Euclidean distance.

o et e e e re i m g e



Variability within classes denotes the relative "spread" of a class and is a
function of the coefficlent of variation, or the ratlo of standard deviation

to mean spectral response.

Theoratically, high separability (high scaled distance) and low variabilicy

(low coefficient of variavion) ereate a situation with the least amount of
spatial intersection of classes. The diapersion index simply ratios separa-
bility to variability to provide a relative estimator for overall classifica-
tion success. The index can be used, then, to evaluate the optimum time of

year for classification. For passes occurring at dJdifferent times, conditions at
the time of the pass with the highest dispersion indax should be optimum for

classification.

Finally, the relationship of trailning sample classification accuracy to separa-
bility and variability can be analyzed. Figure 2 illustrates hypothetical cases
for the average tralning sample classification accuracy, separability, and varia-
bility within a data set. As illustrated by the "Case 2' diagram, a high training
sample classification aceuracy may not relate to optimum classification time. Con-
versely, the "Case 4" diagram chows that a low training sample classification
accuracy may indicate an optimum classification time, A relatively high disper-

glon index occurs in both cases.

ANALYSIS AND RESULTS

The field record meintained for 2-1/2 §ears between 1974 and 1976 describes
the composition of eleven training samples observed periodically, shown in
table T of the appendix, The training samples characterized communities of
plant species prevalent in the brackish and saliné marshés of Loulsiana:

Spartina patens, §S. alterniflora, Juncus roemericanus, Distichlig spicata,

and Baccharis halimifolia. As evidenced in table I, most of the training




samples were not 100% monospecific stands, though one species generally domi-
nated. The percent of each specles and the amount of water and/or exposed

mud within a training sample fluctuated with time,

Multispectral statistics were derived for five classes from the original eleven
training samples, grouped according to vegetation type. The five classes, or
types, are those mentioned in the previous paragraph. Tables IIa-VILIa of the
appendix list for each pass the mean spectral response, the standard deviation
and the ¥ coefficient of variation for each class. Reflectivity response means
for the four bands appeared lowest in February, when green vegetation was scarc-
est and sun elevation lowest. Tables IIb-VIIIb of the appendix present for each
pass a scaled distance matrix. The relative values indicate the pairwise scaled

distance for ¢ ! a.-3sible class pairs. For the Juncus roemerianus class on the

June Landsat pass, the MSS data were unobtainable because of cloud interference,

The technique to determine the optimum remote classification time relied on 1)
variability within classes and 2) separability among classes. These terms

are discussed in the following text.

The variability within classes derived from the % coefficient of variation per
class (from tables IIa~VIIIa). This percent was averaged over all four bands

for each class and listed according to pass, shown in table IX. Theeretically,
high variability within classes could create overlapping multispectral signatures
among a2ll classes, This situation is not conducive to an optimum classification.
In this investigation, the highest average varlability within classes occurred
for the months of February and May. Variability (high or low) within classes
alone is not sufficient to predict optimum classifying time because it bears no

relative information about the statistical distance between class means.

ol



Separability among class spectral means resulted from the scaled distance
data (from tables Iib—VIIIb). For each class, the pairwise scaled distances

were averaged and listed for each pass, given in table X.

High average separability among class spectral means occurred for the

months of April, May, and June.

Dispergsion iIndex values were generated for each class from the ratio of
separability to variability and listed according to pass, os shown in table

XI. The months of June and September exhibited the highest average DI, in-
dicating optimum mapping time for all classes. Considering the classes indivi-

dually, Apri . appeared to be the best month to map Juncus roemerianus, May -

Spartina alterniflora, June - Baccharis halimifolia, and September - Spartina

patens and Distichlis spicata.

To compare the use of DI vs. tralning sample classification accuracy, the
latter was generated by an LERL software program, Table XII provides classi-
fication accuracy data for each sample listed by date of pass. The table

shows only the percant of elements within a training sample that‘actually
classified as that training sample using the signatures derived from the sample
statistiecs. The average accuracles presented at the bottom of table XIT indi-
cate the overall Landsat claGSification accuracy for the data set of a given
pass month., Data from the months of June and September exhibited the highest
accuracies, though the lack of data for three training samples on the June pass

leads one to question the validity of the June results.

Figure 3 presents a graph comparing average DI and average percent training
sample classification accuracy as a function of time. Values of both indica-
tors were maximum for June and September, though ;he relationship of DI and
training sample classification accuracy with respect to time was not the same
for the remaining months.

10
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DLSCUSSION

This section of the paper discusses the methods and final results of the

investigation. It qualifies some of the assumptions and offers explanations

for the results,

The training sample set signifies a critical element of this investigation.

Table I indicated that descriptions of percent cover, i.e., exposed mud and
water, as well as vegetation in each training sample, varied over the three

years of fiéld observations., Thue, the ephemeral presence or absence of sur-~
face water due to tide and precipitation played a role in the MSS classifica-
tion for the same training sample on different pass dates. The spectral quality
of the vegetation, alone, did not comprise the spectra; gharacttfistics of the
training sample., The seasonal sun elevation and atmospheric conditions at. the
time of each Landsat pass also affected the average reflectivity response of each
training sample. This effect is inherent in the results. To ex;end the findings
of this investigation to the classification of data acquired over a much larger
geographic area of marsh, represented only in part by the training samples, one

must assume that the training samples characterize the natural distribution.

In accepting the investigation procedure, one assumed that the Landsat MSS data,
selected for each mon*h of the marsh growing season, represented the vegetation
at progressive instants within an annual phenological continuum. In other words,
M558 data taken from different years were expected to depict the vegetative
spectral quglities of sequential growth within a single year. However, the MSS
data were selected from various years because of cloud constraints. One had

to assume, for instance, that the April 1976 data exemplified the_natural growth
stage, but 60 days later, of the same vegetation on the February 1977 data. One
also assumed that the data acquired instantaneously on a given pass date typified

the spectral characteristics of the vegetation for that entire month. However,

11
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the vegetation grew continuously, probably resulting in changing spectral

characteristics over a month's time.

The objective of this investigation was to determine optimum c¢lassification

time within the framework of EXL software. Thus, no major software modifi-

cation occurred, The factors of separability among class spectral means,

variability within classes, and training sample classification accuracy re- ‘
lated to the computer processing and analysis of the MSS data via the ERL

pattern-recognition programs.

The graph of the average DI and training sample classification accuracy

(figure 3) showed June and September data exhibited the highest peaks for

both variables. The June data probably typified a vegetative "green peak,"
providing more separable spectfal characteristics among the species. Hoﬁever,
the lack of some of the June training sample data reduces the validity of

these results, The September data probably typified anthesis for some of the
species, where the flowering and fruiting contributed to spectral separation
among the species, The five marsh species studied do not emerge simultaﬁebusly
nor grow at the same rate, however. The results, though they are associated
with particular calendar times, actually identify the growth stage and clima-
tic and environmental conditions optimum for classifying the five species
within the study area. These findings can probably be extended to the classi-
fication of marsh species within the Louilsiana, Mississippi, aﬂd Alab;ma Gulf |

Coasts, where climatic and environmental conditions are similar.

The results were based on a comparison of relative data. Therefore, the term

"optimum classification time" does not relate to an absolute, maximum classi-
fication acecuracy or dispersion index. The determination of these values

would require further investigation and additional measurements. Also, these

12



results can only be used to predict optimum time for classification of marsh
species with respect to the Landsat MSS. Though the tesults of this investi-
gation do not relate to an optimum time for producing a composite classification
of different land cover types, the same technique could be apblied for such

a determination.
CONCLUSIONS

1, A technique was used to determine the optimum time for classifying marsh
vegetation from computer—processed Landsat MSS data. The technique depended
on the analysis of data derived from supervised pattern recognition by maximum
likelihood theory. A dispersion index, created by the ratio of separability
among the class spectral means to variability within the classes, defined the
optimum classification time. This technique should probably be applied to

the determination of optimum classification time for a combination of other

land cover classes.

2, Data compared from seven Landsat passes acquired over the same area of
the Louisiana marsh indicated that June and September were optimum marsh

mapping times to collectively classify Baccharis halimifolia, Spartina patens,

Spartina alterniflora, Juncus roemericanug, and Distichlis splcata.

3, The same technique was used to determine the optimum classification time
for individual species. Aprillappeared to be the best month to map Juncgus

roemericanus; May, Spartina alterniflora; June, Baccharis halimifelia; and

September, Spartina patens and Distichlis spiesta. This information is

important, for instance, when a single species is recognized to indicate a

particular environmental conditien.

13
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Training samples
merged
to form classes

S

Case 1: high training sample ~= high separability among classes
classification accuracy

== low variability within classes
== no sample intersection occurs
== no class intersection occurs

-=- optimum classification condition

Training samples
merged
to form
classes CLASS B
~_
Case 2: high training sample -- low separability among classes

classification accuracy
== high variability within classes
-- no sample intersection occurs
-= class intersection occurs
-- note sawnle scatter ir
multidimensional space

Figure 2, Hypothetical cases of the relationship of training sample classification
accuracy to separability among classes and variability within classes.
Based on a supervised, pattern-recognition technique for the classification
of MSS data. (Three dimensions in space are represented pictorially,
though four dimensions are actually involved.)
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Case 4: low training sample == high separability among classes
classification accuracy

=
N

-- low variability within classes
-- Sample intersection occurs
-=- no class intersection occurs

== optimum conditions

Figure 2. -=Concluded
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These abbreviations are used in the following tables:

BH --- Baccharis halimifolia

SP --- Spartina patens

JR -=- Juncus roemerianus

SA -~-- Spartina alterniflora

DS ~=~ Distichlis spicata

19
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TABLE IX.- VARIABILITY WITHIN CLASSES (AVE. % COEFFICIENT OF VARIATION)

CALCULATED FROM LANDSAT MSS DATA.

Time of Pass

Class Feb. Apr. May June July Sept, Oct.
BH 9.0 6.1 8.7 6.0 6.1 4,9 8.0
SP 27.8 16.0 17.7 17.7 32.0 11.1 13.8
JR 12.5 9.7 29.0 - 6.7 12,3 11.6
SA 17.0 12.2 12.2 20.6 14.1 12.5 15.1
DS 10.3 5.6 7.5 8.5 7.4 4.3 7.2

20



Class
BH
sP
JR
SA

PE]

TABLE X, - SEPARABILITY AMONG CLASS SPECTRAL MEANS
(SCALED DISTANCE) CALCULATED FROM LANDSAT MSS DATA

Feb.
6.3
2.5

2.5 .

2.8

4.0

Apr,
16.Q
9.0
8.0
7.5
6.8

Hay
19.5
11.8

Time of Passg

21

June
17.0
11.3

10.7

10.3

July
11.3
5.0
4.5
4.8

4.0

Cept.

10.0
9.8
9.5
8.0
7.8

Oct.
5.5
6.8
4.0
4.8
4,5

* an eFT



Class
BH
sp
JR
A

DS

Ave,

*Indicates optimum classification time

i SRS - DI PPN ———

.31

TABLE XI.

Apr.

2.75
.56
.B82%
.61

1.21

1.19

™

DISPERSION INDEX CALCULATED FROM

LANDSAT MSS DATA

Time of Pass

May

2.24
.67
52
. 78%

1.17

1,08

June July Sept.
2.83% 1.90 2.04
.64 .16 .88%
—— .67 .77
.52 34 64
1.21 .54 1.81%
1.30 72 1,23

for a single species,

22

Oct.
.69
49
.34
.32

.63

.49

pr e




Sample
92BH
111sP
1335P
145SP
151sP
142JR
214JR
13584
15354
21384

141Ds8

Ave,

Feb,
52,31
73.81
39.22
93.94
55.56
17.65
60.00
51.52

7.69
52.17
42,86

49.7

TABLE XII.

Apr,
100.00
78.18
63.79
86.36
58.82
14,29
42,86
31.25
57.14
78.26

78.95

62.70

-~ PERCENT CLASSIFICATION ACCURACY OF

THE TRAINING SAMPLES

Time of Pass

May
92.00
77.36
67.16
96.77
77.78

100.00
50.00
43.33
35.29
84,00

54.55

70.70

June
98,28
97.92
80.33
87.50

100.00

———

100.00

93.33

80.95

92,30

23

July
86.15
100,00
80.85
72.41
73.08
40,91
51.35
62.86
43.75
82.14
63.064

68.80

e o, o e AR S T R

Sept.
91.67
94.00
96.30
80.00
88.00

100.00
84.85
70.00
84.62
91,30

84.21

87.70

AT o AR 122 5 e Sy P BT R TR SR B S v

Oct.,
80,46
61.11
45.45
66.67
71.88
76.19

8.57
78.33
40.00
31.43
75.00

57.70

P
an



Appendix

This section includes table I, the ground truth record of the training samples,
tables IIa - VIIla, the data from which variability within classes was derived,

and tables 1Ib - VIIIb, the data from which separability among class spectral
neans was derived.
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TABLE Ila.

Class

Bil-1

SP-2

JR-3

SA-4

D8~5

TABLE

Mean
Stdl
_% C-

Mean
S5td.
% C.

Mean
std.
% L]

Mean
Std.
%z C.

Mean
s5td.
%z C.

IIb.

sP
JR
SA
DS

Dev.
of V.

Dev.
of V.

Dev.
of V.

Dev.
of V,

Dev.
of V.

Ban
13
7
12

1
11

12.

(=3

~1 =

13,

1

8.

d 4

. 60
.99
l3

.56
.49
.9

96
.88
.8

.38
.01
5

05
.05
0

Band 5

Band 6

Band 7

9.17
.83
9.1

CLASS PAIRWISE SCALED DISTANCE MATRIX FOR FEBRUARY

oo Ch i

28

SP

W

JR

N =

SA

CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION
FOR FEBRUARY

[0



TABLE IVa.

Class

BH-1

SP-2

JR~3

SA-4

DS-5

TABLE IVb. CLASS PAIRWISE SCALED DISTANCE MATRIX FOR MAY

Mean
Std. Dev,
% C. of V.

Mean
Std. Dev.
A C, of V,

Mean
Std. Dev,
% C. of V.

Mean
Std., Dev.
#C. of V.

Mean
Std. Dav.
% C., of V.

SP
JR
SA
DS

Band 4

- 17.38

.70
4.0

BH

14
27
20
17

Band 5
14' 34

.84
5.9

5P

Band 6

JR

o o

Band 7

SA

CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION
FOR MAY

i1 e rea——

i A B b o A b s it s 4 = o



TABLE Va.

Class

Sk o e A B e B e - <

BH-1

sr-2

SA-3

DS-4

TABLE

Mean
Std.
%2 C..

Mean
S5td.
% C.

Mean
Std'
z Cl

Mean
std.

sp
SA
DS

Dev.
of V.

Dev.
of V,

JDev,

of V.

Dev,

Band 4

29.98
26.7
30.67

1.76
5.7

Band 5

Band 6

Band 7

28,22
1.72
6.1

18.72
4,21
225

CLASS PATRWISE SCALED DISTANCE MATRIX FOR JUNE -

BH

12
20
19

5P

11
11

SA

SN S Tt T YT W SR T IO

e bbb s R e T

CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION-
FOR JUNE .



TABLE VIa. CLASS MEANS, STANDARD DEVIATTONS AND % COEFFICIENTS OF VARTATION

Class

BH-1

Sp-2

JR-3

SA~4

D§-5

TABLE VIb.

FOR JULY

Mean
Std. Dev,
% C of V.

Mean
Std. Dev.
% C. of V.

Mean
Std. Dev.
% C. of V¥,

Mean
Std. Dev.
% C. of Vc

Mean
Std. Dev.
4 C. of V,

SP
JR
SA
D5

Band 4

29.97
1.31
4ot

29.80
1.79
6!0

BH

12
12
10
11

Band 5 Band 6 Band 7
20.14 40.35 21,28
1.63 2,47 1.23
8.1 6.1 5.8
21.50 27.31 12.55
2,80 12.67 7.85
13.0 46,4 62.5
23.32 27.20 12.64
1.29 2.16 1.26
5.5 7.9 9.2
24,58 30.03 14.33
3.20 4.63 2.71
13.0 15.4 18.9
23,15 27,93 13.70
1.24 2,63 1.57
5.4 9.4 11.5

CLASS PAIRWISE SCALED DISTANCE MATRIX FOR JULY

SP JR SA
2

4 3

2 1 2

32
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TABLE VIIz. CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION
FOR SEPTEMBER

Class Band 4 Band 5 Band 6 Band 7

BH-1 Mean 26.86 23.49 44.82 21.54
std. Dev. 1.16 1.36 1.99 1.10
% C. of V. 4.3 5.8 " 5.1
SP-2 Mean 27.37 25.95 47.75 21,80
std. Dev. 2.25 2,16 5.77 3.45
% C. of V. 8.2 8.3 12.1 15.8
JR=3 Mean 33.96 31.85 32,85 12.19
Std. Dev. 3.71 4.30 3.68 . 1.65
%C., of V. 10.9 13.5 11.2 13,5
SA-4 Mean 27.90 25.83 30.32 12,68
Std. Dev. %.48 2,80 3.57 2.23
% C. of V. 8.9 10.8 11.8 18.4
DS-5 Mean 29,32 27.16 29,84 12.21
std. Dev. 1.03 .86 1.82 35
% C. of V. 3.5 3.2 6.1 4.5

TABLE VIIb, CLASQ PAIRWISE SCALED DISTANCE MATRIX FOR SEPTEMBER

BH sP JR SA
SP YA
JR 14 13
SA 12 12 6
DS 12 12 5 2
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TABLE VIIIa, CLASS MEANS, STANDARD DEVIATIONS AND 7% COEFFICIENTS OF VARIATION
FOR QCTOBER

Class Band 4 Band 5 Band 6 Band 7
BH~1 Mean 25.60 17.48 26.92 13.28
5td. Dav. 1.23 1.50 1.94 1,51

# C. of V. 4.8 8.6 7.2 11.4

SP~2 Mean 23,92 19,11 29.74 14.62
Std. Dev. 1.82 2.42 4.45 2,92
% C. of V, 7.6 12,7 15.0 20,00

JR-3 Mean 24.30 18.20 21.77 10,36
Std. Dev. 1.45 1.89 2.94 1.69

% C. of V. 6.0 10.4 13.5 16.3

SA~4 Mean 23.67 17.20 19.96 9.01
Std. Dev,. 1.54 1.99 3.58 2.21

%z C. of V. 6.5 11.6 17.9 24,5
DS-5 Mean 26.42 18.04 20.25 9,50
Std, Dev, 1.04 1.43 1.29 .95
#Z C. of V., 4.3 7.9 6.4 10.00

TABLE VIITb. CLASS PAIRWISE SCALED DISTANCE MATRIX FOR OCTOBER

BH Sp JR SA
Sp 3
JR 5 7
SA 7 9 2
DS 7 8 2 1
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