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INTRODUCTION

Increasing demands on finite natural resources have intensified interest in

the coastal zone. In the past five to ten years, U.S. federal legislation

has been implemented to ensure protection and wise management of this "last

frontier." Understanding the biological and physical interrelat:lonships of

the coastal zone is critical to good management. Vegetation, a primary bio-

logical factor in the wetlands and ar. expression of the environment, should

be monitored as an indicator of the condition and productivity of a coastal area.

Difficult access in the coastal marsh restricts vegetation inventory with

conventional ground survey methods. The Office of Coastal Zone Management,

under. the National Oceanic and Atmospheric Administration, has encouraged

the use of remote sensing, a technique both practical and comprehensive in

coverage, for inventory: "...the process of inventorying and mapping the

nature of a state's zone, and the designation of area of particular concern

almost certainly will benefit from the application of technologies such as

those employing remote sensing" (ref. 1).

Coastal marshes support the growth of many plant species. Diversity is maximum

in the more inland, freshwater marshes. Closer to the coast, the presence of

salt limits the number of species that can successfully compete in the brackish

and saline areas. Widespread surveys indicate that wiregrass, Spartinaap tens,

dominates most of the brackish marshes Plong the Atlantic and Gulf coasts,

occurring in vast marsh meadows (ref. 2 & 3). Black rush, Juncus roemerianus,

can tolerate a higher level of salt and more frequent tidal inundation of the

saline marsh. Likewise, oyster grass, Spartina alterniflora, and salt grass,

Distichlis spicata, thrive in the coastal saline environment. These species

sometimes occur in mixed associations, as well as monospecific stands. Where

brackish grades into saline marsh, the,wiregrass/oystergrass consocies
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commonly occurs. Buckbrush, Baccharis halimifolia, grows along the spoil

banks and marsh levees as a 1.5- to 3-m tall shrub.

A vegetation type characterizes its environment. Thus, a particular marsh

species acts as an indicator for salinity, soil type, tidal frequency and

level. The remote identification of indicator vegetation, Lhen, serves as

a practical method to acquire data pertinent to understanding the marsh

environment.

OBJECTIVES

The objective of the investigation was to determine the optimum time of

year for remotely classifying marsh vegetation from Landsat multispectral

scanner (MSS) data. The species dominating the brackish and saline marshes

of Louisiana represented the subject plant types.

DATA ACQUISITION

The investigation was conducted at the NASA/Earth Resources Laboratory (ERL),

Slidell, Louisiana, which directs the development of remote-sensing technology

applications. The ERL is engaged in testing the usefulness of Landsat MSS

and other satellite data for coastal zone problem-solving. Since summer 1974,

the laboratory has maintained a field record of the vegetation and surface

condition at various marsh locations surrounding Lake Borgne, Louisiana, shown

in figure 1, as a part of on-going experiments. The available field history set

the foundation for the analysis of Landsat MSS data in this investigation.

From a remote-sensing point of view, summer clouds frequently obscure the

Louisiana coastal area. Clouds form almost daily over the Gulf and move in-

]nnd by mid-morning between the months of May and August, making acquisition

2
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of remote-sensing data difficult. In the original design of the investigation,

an aircraft carrying an MSS sensor was scheduled to fly monthly during the

growing period. However, either most of the attempts at data acquisition were •

unsuccessful because of cloud formation or the data were unacceptable because

of the effect of an oblique sun angle and wide scan. Also, the availability

of the aircraft was restricted. A complete set of aircraft MSS data for the

1976 growing period was unobtainable. Thus, the investigation had to be

discontinued or redesigned.

Another investigative approach was pursued. Since field records existed for

the same brackish and saline marsh sites from 1974-1976, the use of satellite

data acquired over the same period of time was considered. Landsat MSS data

recorded on cassettes were screened over the same period for cloud-free pasties.

Screening took place at the Earth Resources Observations System (EROS)

facility at the National Space Technology Laboratory, Bay St. Louis, Mississippi,

which maintains a Landsat cassette library and image display devices.

A cloud-free pass representing each month of the marsh vegetation growing

season from February through October was desired. Landsat data were not

sought for November, December, and January because growth iu the marsh is

minimal during those months. Data from Landsat passes over the study area

were selected for the following dates:

.^ III
.I

February 9, 1977

April 9, 1976

May 15, 1976

June 2, 1976

July 10, 1974

September 18, 1976

October 26, 1974

Landsat frame 2749-15360

to
	 2443-15460

of
	 2479-15450

it	 "	 2497-15443

It
	 1717-15540

to
	

of

it 	 1825-15504
0
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Cloud-free data were unobtainable for the months of March and August from

spring 1974 through winter 1977.

The MSS of both Landsat 1 and 2 detects reflected energy from the visible through

the near infrared electromagnetic spectrum in four bands: band 4, 0.5-0.6pm;

band 5, 0.6-0.7pm; band 6, 0.7-0.8pm; and band 7, 0.8-1.lpm. Each pass covers

approximately 160 km X 160 km, with a frequency of no less than once every

18 days over the same point on the ground. Weather conditions influence the

quality of the MSS data. The scanner resolves digital elements equivalent to

a ground spot size of 56 m X 79 m.

DATA PROCESSING

All data were processed at ERL using a minicomputer system which includes a 	 ^a

Varian 75 computer with 190 k. (16 bit words) of main core and disk storage

and four tape drives. It is configured with a floating point processor and 	 3

an interactive image display device.

Existing ERL software programs generated the statistics and final classifica-

tions of the Landsat data. The ERL classification technique derives from a

pattern recognition process based on maximum likelihood theory (ref. 4). The

computer first "trains" on known samples. Then it classifies each element of

the data according to the best statistical fit with one of the training classes.

This procedure necessitates ground truth to identify the geographic locations

of vegetation that can be used as training samples.	 .

The eleven marsh locations for which field observations were recorded over

the 2-1/2 year period became the training sample set for this investigation.

The eleven samples basically represented five species: Baccharis halimifolia,

Spartinaap tens, 7uncus roemerianus, Spartina alterniflora, and Disticlis

4	 4^.^



s icata. This same set applied to the independent analysis of each of the

seven Landsat passes.

However, the final intent was to compare the MSS classifications from all

seven passes, having used the same training sample set. In other words, the

classifications for training samples 1-11 generated from the February pass

were compared to the classifications for samples 1-11 generated from the April

pass, as well as from the May, June, July, September, and October passes.

The following steps describe how the data were handled for each pass:

Step 1: Upon receipt of the Landsat computer compatible tapes from EROS, the

data were reformatted to make them compatible with processing software.

Step 2: The data were corrected for a visual striping effect that occurred

every sixth scan line due to a difference in gains for the MSS detectors of

a given band.

Step 3: Each Landsat pass was georeferenced to Universal Transverse

Mercator (UTM) coordinates. This process involves the identification of

control points on U.S.G.S. 711' series (1:24,000) topographic maps and the

transfer of their precise locations onto the Landsat data. Georeferencing

the data ensured spatial consistency for the delineation of the training

samples on the Landsat passes and the eventual comparison of their classifications.

Step 4: Data from bands 5 and 7 were combined for a high contrast display

tape. Viewing the tape with an image display device interactive with the

minicomputer, the locations of the training samples were transferred inter-

actively onto the georeferenced Landsat data. ' Sample size averaged about 25

elements. Transfer of the training sample locations onto the georeferenced

,011

5



D	 '

1

r

5r

data by reading their universal transverse mercator coordinates into the

computer was attempted, but proved too imprecise for project requirements.

St_ ep 5: A spectral signature was developed for each training sample based on

the average reflectivity response and standard deviation derived from all elements

in the sample for each of the four bands of data. The statistics from training

samples of similar vegetative composition were combined to produce spectral signa-

tures for five classes, or dominant marsh species, from the original 11 samples.

Step 6: A scaled Euclidean distance was generated for each class pair. This

value indicated the relative pair-wise distance of each class to all other

classes in conceptual multidimensional space (ref. 4).

Step 7: Based on the multispectral response statistics generated for each

class, the digital elements within the training samples were classified. The

results represented the accuracy of the pattern-recognition technique in

classifying the training samples against their known composition.

CONCEPT

The average percent classification accuracy of the training samples has been a

traditional indicator for the over-all classification success of a data set us-

ing the supervised pattern recognition technique. However, this value considers

only the accuracy of classifying each training sample against the individual

spectral signatures of all other rraining samples. Modifying the derivation of

accuracy so that each training sample is classified against the spectral signa-

tures of all classes may improve the use of that value as an indicator. The

drawback of this second approach is that training sample classification accuracy

represents the success of classification of data points included in only a portion

of the space defined by the class spectral signatures. This is in accordance

with the hyperspace concept of maximum likelihood theory.

6
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The analysis of this investigation depended on a dispersion index (DI),

defined as the ratio of separability among class spectral means to variability

within classes, to predict classification success. In other words, to deter-

mine the time of year at which a group of classes best classifies from a

comparison of data sets acquired at different times, the average DI is calcu-

lated for each data set:

DI Class. Se arability = Av Scaled Distance/Class
Variability	 Av Coefficient of Variation/Class

and

DI Av	 = _SDI Class-
n classes

The time of year of the data set associated with the highest DI is optimum

for mapping the classes involved.

Separability among classes relates to the scaled Euclidean distance between

the spectral means in four dimensions (four bands) for each pair of classes.

The following illustrates the measurement for the distance D between Class A

and Class B:

Given:

Class A with spectral means X1 , X2 , X3 , X4

Class B with spectral means Y1 , Y21 Y3 , Y4

Then:

D(A, B ) = /(Xl- YI) +(X2-Y2) +(X3-Y3) +(X4-Y4)

Distance D is then scaled to adjust for a disproportionate increase in D as

the relative values of the spectral means increase, a situation created by

the decompression of the Landsat MSS data when down-linked. Thus, the final

measurement is a scaled Euclidean distance.

7
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Variability within classes denotes the relative "spread" of a class and is a

function of the coefficient of variation, or the ratio of standard deviation

to mean spectral response.

Theoretically, high separability (high scaled distance) and low variability

(low coefficient of variation) create a situation with the least amount of

spatial intersection of classes. The dispersion index simply ratios separa-

bility to variability to provide a relative estimator for overall classifira-

tion success. The index can be used, then, to evaluate the optimum time of

year for classification. For passes occurring at different times, conditions at

the time of the pass with the highest dispersion index should be optimum for

classification.

Finally, the relationship of training sample classification accuracy to separa-

bility and variability can be analyzed. Figure 2 illustrates hypothetical cases

for the average training sample classification accuracy, separability, and varia-

bility within a data set. As illustrated by the "Case 2" diagram, a high training

sample classification accuracy may not relate to optimum classification time. Con-

versely, the "Case 4" diagram shows that a low training sample classification

accuracy may indicate an optimum classification lime. A relatively high disper-

sion index occurs in both cases.

ANALYSIS AND RESULTS

The field record maintained for 2-1/2 years between 1974 and 1976 describes

the composition of eleven training samples observed periodically, shown in

table I of the appendix. The training samples characterized communities of

plant species prevalent in the brackish and saline marshes of Louisiana:

Spartinaap tens, S. alterniflora, Juncus roemericanus, Distichlis spicata,

and Baccharis halimifolia. As evidenced in table 1, most of the training

3	 '
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samples were not 100% monospecific stands, though one species generally domi-

hated. The percent of each species and the amount of water and/or exposed

mud within a training sample fluctuated with time.

Multispectral statistics were derived for five classes from the original eleven

training samples, grouped according to vegatation type. The five classes, or

types, are those mentioned in the previous paragraph. Tables IIa-VIIIa of the

appendix list for each pass the mean spectral response, the standard deviation

and the % coefficient of variation for each class. Reflectivity response means

for the four bands appeared lowest in February, when green vegetation was scarc-

est and sun elevation lowest. Tables IIb-VIIIh of the appendix present for each

pass a scaled distance matrix. The relative values indicate the pairwise scaled

distance. for F ? ,^,ssible class pairs. For the Juncus roemerianus class on the

June Landsat pass, the MSS data were unobtainable because of cloud interference.

The technique to determine the optimum remote classification time relied on 1)

variability within classes and 2) separability among classes. These Lerms

are discussed in the following text.

The variability within classes derived from the % coefficient of variation per

class (from tables IIa-VIIIa). This percent was averaged over all four bands

for each class and listed according to pass, shown in table IX. Theoretically,

high variability within classes could create overlapping multispectral signatures

among all classes. This situation is not conducive to an optimum classification.

In this investigation, the highest average variability within classes occurred

for the months of February and May. Variability (high or low) within classes

alone is not sufficient to predict optimum classifying time because it bears no

relative information about the statistical distance between class means.

9
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Separability among class spectral means resulted from the scaled distance

data (from tables Ilb-VIIIb). For each class, the pairwise scaled distances

were averaged and listed for each pass, given in table X.

High average separability among class spectral means occurred for the

months of April, May, and June.

Dispersion index values were generated for each class from the ratio of

separability to variability and listed according to pass, as shown in table

XI. The months of June and September exhibited the highest average DI, in-

dicating optimum mapping time for all classes. Considering the classes indivi-

dually, Apri . appeared to be the best month to map Juncus roemerianus, May -

Spartina alterniflora, June - Baccharis halimifolia, and September - Spartina

patens and Distiehlis spieata.

To compare the use of DI vs. training sample classification accuracy, the

latter was generated by an BRL software program. Table XII provides classi-

fication accuracy data for each sample listed by date of pass. The table

shows only the percent of elements within a training sample that actually

classified as that training sample using the signatures derived from the sample

statistics. The average accuracies presented at the bottom of table XII indi-

cate the overall Landsat classification accuracy for the data set of a given

pass month. Data from the months of June and September exhibited the highest

accuracies, though the lack of data for three training samples on the June pass

leads one to question the validity of the June results.

Figure 3 presents a graph comparing average DI and average percent training

sample classification accuracy as a function of time. Values of both indica-

tors were maximum for June and September, though the relationship of DI and

training sample classification accuracy with respect to time was not the same

for the remaining months.

10
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DISCUSSION

This section of the paper discusses the methods and final results of the

investigation. It qualifies some of the assumptions and offers explanations

for the results.

The training sample set signifies a critical element of this investigation.

Table I indicated that descriptions of percent cover, i.e., exposed mud and

water, as well as vegetation in each training sample, vari.d over the three

years of field observations. Thue, the ephemeral presence or absence of sur-

face water due to tide and precipitation played a role in the MSS classifica- 	 .111;1

tion for the same training sample on different pass dates. The spectral quality

of the vegetation, alone, did not comprise the spectral charactcristics of the

trai,.Ling sample. The seasonal sun elevation and atmospheric conditions at. the

time of each Landsat pass also affected the average reflectivity response of each

training sample. This effect is inherent in the results. To extend the findings

of this investigation to the classification of data acquired over a much larger

geographic area of marsh, represented only in part by the training samples, one

must assume that the training samples characterize the natural distribution.

In accepting the investigation procedure, one assumed that the Landsat MSS data,

selected for each month of the marsh growing season, represented the vegetation

at progressive instants within an annual phenological continuum. In other words,

MSS data taken from different years were expected to depict the vegetative

spectral qualities of sequential growth within a single year. However, the MSS

data were selected from various years because of cloud constraints. One had

to assume, for instance, that the April 1976 data exemplified the natural growth

stage, but 60 days later, of the same vegetation on the February 1977 data. One

also assumed that the data acquired instantaneously on a given pass date typified

the spectral characteristics of the vegetation for that entire month. However,

e	 11
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the vegetation grew continuously, probably resulting in changing spectral

characteristics over a month's time.

The objective of this investigation was to determine optimum classification

time within the framework of RhL software. Thus, no major software modifi-

cation occurred. The factors of separability among class spectral means,

variability within classes, and training sample classification accuracy rt-

lated to the computer processing and analysis of the MSS data via the RRL

pattern-recognition programs.

The graph of the average DI and training sample classification accuracy

(figure 3) showed June and September data exhibited the highest peaks for

both variables. The June data probably typified a vegetative "green peak,"

providing more separable spectral characteristics among the species. However,

the lack of some of the June training sample data reduces the validity of

these results. The September data probably typified anthesis for some of the

species, where the flowering and fruiting contributed to spectral separation

among the species. The five marsh species studied do not emerge simultaneously

nor grow at the same rate, however. The results, though they are associated

with particular calendar times, actually identify the growth stage and clima-

tic and environmental conditions optimum for classifying the five species

within the study area. These findings can probably be extended to the classi-

fication of marsh species within the Louisiana, Mississippi, and Alabama Gulf

Coasts, where climatic and environmental conditions are similar.

The results were based on a comparison of relative data. Therefore, the term

"optimum classification time" does not relate to an absolute, maximum classi-

fication accuracy or dispersion index. The determination of these values

would require further investigation and additional measurements. Also, these

12
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results can only be used to predict optimum time for classification of marsh

species with respect to the Landsat MSS. Though the results of this investi-

gation do not relate to an optimum time for producing a composite classification

of different land cover types, the'same technique could be applied for such

a determination.

CONCLUSIONS

1. A technique was used to determine the optimum time for classifying marsh

vegetation from computer-processed Landsat MSS data. The technique depended

on the analysis of data derived from supervised pattern recognition by maximum

likelihood theory. A dispersion index, created by the ratio of separability

among the class spectral means to variability within the classes, defined the

optimum classification Lime. This technique should probably be applied to

the determination of optimum classification time for a combination of other

land cover classes.

2. Data compared from seven Landsat passes acquired over the same area of

the Louisiana marsh indicated that June and September were optimum marsh

mapping times to collectively classify Baccharis halimifolia, Martinaap tens,

Spartina alterniflora, Juncus roemericanus, and Distichlis spicata.

3. The same technique was used to determine the optimum classification time

for individual species. April appeared to be the best month to map Juncus

roemericanus; May, Spartina alterniflora; June, Baccharis halimifolia; and

September, Spartinaap tens and Distichlis spicata. This information is

important, for instance, when a single species is recognized to indicate a

particular environmental condition.

13
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Training samples

merged
to form classes

'^

A2
A -^

-- low separability among classes

-- high variability within classes

Case 1: high training sample
classification accuracy

-- no sample intersection occurs

-- high separability among classes

-- low variability within classes

-- no class intersection occurs

-- optimum classification condition

Training samples
merged

to form
classes

B1

A 3	Al

A2

B2

Case 2: high training sample

classification accuracy

-- no sample intersection occurs
class intersection occurs

-- note sai,:,nle scatter ir.
multidimensional space

Figure 2. Hypothetical cases of the relationship of training sample classification

accuracy to separability among classes and variability within classes.
Based on a supervised, pattern-recognition technique for the classification
of MSS data. (Three dimensions in space are represented pictorially,

though four dimensions are actually involved.)
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-- low variability within classes

-- Sample intersection occurs
-- no cla.s intersection occurs
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Figure 2. —Concluded
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These abbreviations are used in the following tables:

BH---- Baccharis halimifolia

SP --- Soartinaa^ tens

JR --- Juncus roemerianus

SA --- Soartina alterniflora
	 ,J!

DS --- Distichlis s icata
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TABLE IX.- VARIABILITY WITHIN CLASSES (AVE. % COEFFICIENT OF VARIATION)

CALCULATED FROM LANDSAT MSS DATA.

Time of Pass

Class Feb. Apr. May June July Sept.

BH 9.0 6.1 8.7 6.0 6.1 4.9

SP 27.8 16.0 17.7 17.7 32.0 11.1

JR 12.5 9.7 29.0 -- 6.7 12.3

SA 17.0 12.2 12.2 20.6 14.1 12.5

DS 10.3 5.6 7.5 8.5 7.4 4.3

M
i

IF
i!

Fr

P.'
(i

4
4
4

E
Oct.

8.0

13.8

11.6

15.1

7.2
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F

Class

BH

SP

JR

SA

DS

TABLE X. - SEPARABILITY AMONG CLASS SPECTRAL MEANS
(SCALED DISTANCE) CALCULATED FROM LANDSAT MSS DATA

Time of Paso

Feb. Apr. May June July

6.3 16.3 19.5 17.0 11.3

2.5 9.0 11.8 11.3 5.0

2.5 8.0 15.0 -- 4.5

2.8 7.5 9.5 10.7 4.8

4.0 6.8 8.8 10.3 4.0

Sept. Oct.

10.0 5.5

9.8 6.8

9.5 4.0

8.0 4.8

7.8 4.5
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TABLE XI.	 DISPERSION INDEX CALCULATED FROM

LANDSAT MSS DATA

Time of Pass

Class Feb. Apr. May June July

Btl .70 2.75 2.24 2.83* 1.90

SP .08 .56 .67 .64 .16

JR .20 .82* .52 --- .67

A .16 .61 .78* .52 .34

DS 38 1.21 1.17 1.21 .54

Sept. Oct.

2.04 .69

.88* .49

.77 .34

.64 .32

1.81* .63

. 31;

Ave.	 .31	 1.19	 1.08	 1.30	 .72
	

1.23	 .49

*Indicates optimum classification time for a single species.

>I



July Sept. Oct.

86.15 91.67 80.46

100,00 94.00 61.11

80.85 96.30 45.45

72.41 80.00 66.67

73,08 88.00 71.88

40.91 100.00 76.19

51.35 84.85 8.57

62.86 70.00 78.33

43.75 84.62 40.00

82.14 91.30 31.43

63.64 84.21 75.00

68.80 87.70 57.70

..,

°%1

d

ZY

TABLE XII. - PERCENT CLASSIFICATION ACCURACY OF

THE TRAINING SAMPLES

Time of Pass

Sample Feb. Apr. May June

92BH 52.31 100.00 92.00 98„28

111SP 73.81 78.18 77.36 97.92

133SP 39.22 63.79 67.16 80.33

145SP 93.94 86.36 96.77 87.50

151SP 55.56 58.82 77.78 100.00

142JR 17.65 14.29 100.00 --

214JR 60.00 42.86 50.00 --

135SA 51.52 31.25 43.33 100.00

153SA 7.69 57.14 35.29 93.33

213SA 52.17 78.26 84.00 --

141DS 42.86 78.95 54.55 80.95

Ave. 49.7 62.70 70.70 92.30

23
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Appendix

This section includes table I, the ground truth record of the tra i ning samples,

tables IIa - VIIIa, the data from which variability within classes was derived,

and tables IIb - VIIIb, the data from which separability among class spectral

nieans was derived.
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TABLE IIa. CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION
FOR FEBRUARY

Class Band 4 Band 5 Band 6 Band 7

BH-1 Mean 13.60 15.17 20.08 9..17
Std. Dev. .99 1.46 1.99 .83

C. of V. 7.3 9.6 919 9.1

SP-2 Mean 12.56 14.45 15.81 6.64
Std. Dev. 1.49 2.89 5.67 2.87

C. of V. 11.9 20.0 35.9 43.2

JR-3 Mean 12.96 13.63 14.69 6.75
Std. Dev. .88 1.07 2.15 1.39

C. of V. 6.8 7.9 14.6 20.6

SA-4 Mean 13.38 14.45 15.08 6.42
Std. Dev. 1.01 1.73 2.80 1.92
% C. of V. 7.5 12.0 18.6 29.9

DS-5 Mean 13.05 13.48 12.86 5.62
Std. Dev. 1.05 1.01 1.42 .82

C. of V. 8.0 7.5 11.0 14.6

TABLE IIb. CLASS PAIRWISE SCALED DISTANCE MATRIX FOR FEBRUARY

BH SP JR SA

SP 5
JR 6 1
SA 6 1 1
DS 8 3 2 3

,
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TABLE IVa. CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION
FOR MAY

Class Band 4 Band 5 Band 6 Band 7

BH-1 Mean 17.38 14.34 59.32 32.22
Std. Dev. .70 .84 6.95 4.23

C. of V. 4.0 5.9 11.7 13.1

SP-2 Mean 19.55 19.04 41.33 19.94
Std. Dev. 2.08 2.82 8.61 4.86

C. of V. 10.6 14.8 20.8 24.4

JR-3 Mean 21.57 21.83 22.66 8.48
Std. Dev. 3.52 2.84 6.02 5.08
;C	 C. of V. 16.3 13.0 26.6 59.9

SA-4 Mean 18.81 19.14 29.67 13.51°
Std. Dev. 1.36 2.27 3.58 2.37
%C. of V. 7.2 11.9 12.1 17.5

DS-5 Mean 18.95 19.68 30.41 14.50
Std. Dev. 1.16 1.16 2.62 1.37

C. of V. 6.1 5.9 8.6 9.4

TABLE IVb. CLASS PAIR14ISE SCALED DISTANCE MATRIX FOR MAY

BH SP JR SA

SP 14
JR 27 16
SA 20 9 8
DS 17 8 9 1
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FOR JUNE

Class Band 4 Band 5 Band 6 Band 7

BH-1 Mean 20.45 17.62 54.43 28.22
Std. Dev. 1.12 1.13 3.23 1.72
% C. of V. 5.5 6.4 5.9 6.1

SP-2 Mean 22.48 21.90 41.14 18.72
Std. Dev. 3.10 3.58 . 7.46 4.21
% C.	 of V. 13.8 16.3 18.1 22,5

SA-3 Mean 29.98 30.00 36.10 14.37
Std. ,Dev. 8.00 7.91 4.96 2.26;
% C. of V. 26.7 26.4 13.7 15.7

DS-4 Mean 30.67 29.24 35.67 14.81
Std. Dev. 1.76 2.57 3.23 1.54

5.7 8.8 9.1 10.4

TABLE Vb. CLASS PAIRWISE SCALED DISTANCE MATRIX FOR JUNE

k

'v:

r

t

BH SP SA

SP 12
SA 20 11
DS 19 .3.1 1

I

r

•P,

TABLE Va. CLASS MEANS, STANDARD DEVIATIONS AND % COEFF,ICIENT.S OF VARIATION

31



TABLE VIa. CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION
FOR JULY

Class Band 4 Band 5 Band 6 Band 7

BH-1 Mean 29.97 20.14 40.35 21.28
Std. Dev. 1.31 1.63 2.47 1.23

C of V. 4.4 8.1 6.1 5.8

SP-2 Mean 29.80 21.50 27.31 12.55
Std. Dev. 1.79 2.80 12.67 7.85

C. of V. 6.0 13.0 46.4 62.5

JR-3 Mean 30.00 23.32 27.20 12.64
Std. Dev. 1.25 1.29 2.16 1.16

C. of V. 4.2 5.5 7.9 9.2

SA-4 Mean 31.32 24.58 30.03 14.33
Std. Dev. 2.79 3.20 4.63 2.71

C. of V. 8.9 13.0 15.4 18.9

DS-5 Mean 29.78 23.15 27.93 13.70
Std. Dev. 1.01 1.24 2.63 1.57

C. of V. 3.4 5.4 9.4 11.5

TABLE VIb. CLASS PAIRWISE SCALED DISTANCE MATRIX FOR JULY

BH SP JR SA

SP 12
JR 12 2
SA 10 4 3
DS 11 2 1 2

32



TABLE VIIa. CLASS MEANS, STANDARD DEVIATIONS AND Z COEFFICIENTS OF VARIATION
FOR SEPTEMBER

Class Band 4 Band 5 Band 6 Band 7

BH-1 Mean 26.86 23.49 44.82 21.54
Std. Dev. 3.16 1.36 1.99 1.10

C. of V. 4.3 5.8 4.4 5.1

SP-2 Mean 27.37 25.95 47.75 21.80
Std. Dev. 2.25 2.16 5.77 3.45

C. of V. 8.2 8.3 12.1 15.8

JR-3 Mean 33.96 31.85 32.85 12.19
Std. Dev. 3.71 4.30 3.68. 1.65
%C.	 of V. 10.9 13.5 11.2 13.5

SA-4 Mean 27.90 25.83 30.32 12.68
Std. Dev. 2.48 2.80 3.57 2.23
% C. of V. 8.9 10.8 11.8 18.4

DS-5 Mean 29.32 27.16 29.84 12.21
Std. Dev. 1.03 .86 1.82 .55

C. of V. 3.5 3.2 6.1 4.5

TABLE VIIb. CLASS PAIRWISE SCALED DISTANCE MATRIX FOR SEPTEMBER

BH SP JR SA

SP 2
JR 14 13
SA 12 12 6
DS 12 12 5 2
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TABLE VIIIa. CLASS MEANS, STANDARD DEVIATIONS AND % COEFFICIENTS OF VARIATION
FOR OCTOBER

Class Band 4 Band 5 Band 6 Band 7

BH-1 Mean 25.60 17.48 26.92 13.28
Std. Dev. 1.23 1.50 1.94 1.51

C. of V. 4.8 8.6 7.2 11.4

SP-2 Mean 23.92 19.11 29.74 14.62
Std. Dev. 1.82 2.42 4.45 2.92

C. of V. 7.6 12.7 15.0 20.00

JR-3 Mean 24.30 18.20 21.77 10.36
Std. Dev. 1.45 1.89 2.94 1.69
% C. of V. 6.0 10.4 13.5 16.3

SA-4 Mean 23.67 17.20 19.96 9.01
Std. Dev. 1.54 1.99 3.58 2.21

C. of V. 6.5 11.6 17.9 24.5

DS-5 Mean 24.42 18.04 20.25 9.50
Std. Dev. 1.04 1.43 1.29 .95

C. of V. 4.3 7.9 6.4 10.00

TABLE VIIIb. CLASS PAIRWISE SCALED DISTANCE MATRIX FOR OCTOBER

BH SP JR SA

SP 3
JR 5 7
SA 7 9 2
DS 7 8 2 1
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