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ABSTRACT

Thresholds for the parameter AD* which decides on the

splitting of a cluster in the ISODATA program are

discussed.	 For the univariate case, 0.84 is estab-

lished as a sound threshold, after testing on some

typical distributions, simple as well as composite,

and evaluating the probability of misclassification.

Extension to the multivariate case leads to the

empirical value of (N-0.16)/x, where N denotes

the dimension of the vector space. A critical

examination of the values of AD, especially for

large N , results in the conclusion that AD is

not a very effective measure for the present

purpose.
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I .	 1 NTRODUCT l ON

The iterative unsupervised clustering ISM IATA program

proposed by Ball and Hall [1,2,3] has been very well received.

Application of such technique for the eventual goal of classi-

fication of multivariate statistical data has resulted in

various levels of success by different organizations in

diversified disciplines such as in remote sensing. One major

difficulty in using ISODATA* is the lack of universally

acknowledged thresholds for various parameters that appear

in the program. A1thotgIh experience can suggest to the

programmer the appropriate values, it is certainly necessary

to establish analytically some sound values for these thresh-

olds.	 It is the intent of this paper- to do exactly this in

regard to the sp]ittinl; of clusters.

Summarizing the idea of ISODATA without going to its

mathematical details, the following gives a verbal account

of the program. The goal of the procedure is to separate

all the statistical data into classes, or clusters, each

having its average point (i'.e., mean) as its representative

point. At each intermediate step, new assignment of points

is conducted b y grouping or splitting the old clusters. The

decisions on the assignment of points to different clusters,

on the splitting and on the combining of clusters depend on

some distance function and parameters derived from these

•	 distance measures. The program is started by arbitrary (or

some preferred) initialization of cluster centers, and ends

by noting the invariance of clusters with respect to addi-

tional iterations.

*'Hie present discussion is primarily on ISOD AT A- POINTS
^ 3 ] .
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A measure of the tigl ► tness of packing of points

(X	
"	 X	 - (X	 ,X	 , •• • ,X	 ) T C R N 	in a cluster Ck } k
.
l'	 k	 k1	 k2	 kN

is the 'average distance' AU defined by

n

	

AU
L
	^ ►̂ 	 d(Xk'U)	 (1) I

k-1

where U = (u 1 2 , ••• W N ) T is the representative point of

C ,	 i.e., the mean	 I

n

U^ 
A 

n E Xk7 r	 (2)

k=1

and d	
N	 N

(• •)	 R	 x H -, R	 is a distance function

N

	

2 (X,Y)	 wi(Xi - Y i ) 2d 	 (3)

i=1	 ^

i

w i C R+	 A commonly* used set of weights ( w i } is

	

wi = 2	 ai	 0 .	 (4)
Q,

•	 where a2 is assumed to he nonzero and denotes the variance
i

of the cluster in the ith coordinate axis

Too m^ ► ny people in various	 ► scip]ines have uscTMis
measure. Thus, no tracing to its original user is possible.

_I
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n

a	 n	
n
	 (Xki - U i ) Z 	(S)

k=1

This (w,
i
 ) is a reasonable choice because of the standardi-

zation or 'sphericalization' of the cluster C .	 Let T be

the hreshold.	 The rule to decide on the splitting; of a

Cluster is:

	

0.	 If AD > T ,	 split the cluster.

	

1.	 Otherwise, no splitting;.

The following further examines this parameter AD. The bound

is established, i.e., AD is proved to be _3q . The values

of AD for univariate normal, triangular, trapezoidal, rec-

tangular and 'hi-spiked' distributions are computed.

Furthermore, different composite univariate distributions,

each made up of two normal distributions with various vari-

ances and a priori: probabilities, are studied. The proba-

bilities of misclassification usinh the Bayes decision rule

for the composite distributions are also computed in the

case when a cluster is decided to be split into two, each

assuming a normal distribution, and that points are to be

reassigned. These considerations lead to the conclusion

that the value 0.84 of All is a sound choice for the threshold

to split a cluster in ISOhATA for the univariate case. While

the value (N-0.16)/.	 of AU is extrapolated as an empirical

threshold for the multivariate case, its effectiveness as a

critical, discriminative parameter is considerably reduced

when it is noticed that Ali approaches its hound . 37 fairly

rapidly with N .	 In fact, for N	 large, the All for any

reasonably smooth distrihution is shown to approach 3. ,

3



which mikes it impossible to decide whether the distribution

is simple or composite, i.e., which makes it impossible to

decide whether to split the cluster or not.

4



2 . SOME PROPERTIES OI : All

The intimacy oetween the tightness of a cluster ind its

AD has been saggested in the previous section. To further

study this association, some Properties of AD ar ,.! obtained

here.

2.1 Upper Bound of AD

Fact: With the definition of AD through (1)-(5), AD < 3fi .

Proof:

n
2

	AD 1 --2 	 diXkn	 ,u)

k-1

n

<_ 1 
1] 

ci 2 (X " W)	 by lemma (see below)

kal

n	 td	 /

a n E E	 (Xki - ui)2

	

o2 	
Qi	 0

k=1 i=1	 i

	

N	 I I	 n

Q 2 n E (Xki	
ui)2

1=1	 i	 k=1

N
1
2 of

i a l of

= N
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Lemma

r^	 N	
2

xk > 
h
(k-j
, )'I	

Xk E R

k=1 

Proof:	 (By mithematical induction).

it suffices to prove the Lemma for the case when

x  E R+

(a)	 N	 2

L.Fi.S.	 xi + x2

1 (2X 2 + 2x21 	(6)

Since x i + x2?	 12x x2

	

( 6 ) Z	 (xl + x2) + 2x 1x2

I ( X1 + 
X 2 ) 2

	

=	 R.H. S.

6
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(b) Assume the Lemma is true for N - M , check it for M+1:

M+1	 M

2	 2+	 2	 l	 2 + 	2	 (7)
x k	 xk	 xM+1	 Z ^1 ),	 xM +1

k-1	 k-1

M

where y = E x 	
and the Lemma is app)ied for N - M

k=1

(7)	
-	

1	 Y2 +	
1	

Y2 + x2M+ 1	 M M+ 1	 M+1

F-+ -+IIy2 + IF, y2 * Mx M+1]	 +, #	 (^)

AS 
IFII 

y 2 + MxM+ 1] ? 2Y "M + 1

	

1	 r 2	 +	 2 1	 =	 1	 + x	 2
(R)	 M + I (	 + 2Yx M+1 	 xM+1)	 M + 1 (Y	 M+1)

That is,

M+ 1	 r;+ 1	 2

E 

2	 1
 x y — M+ 1	 x ;:

k=1	 k=1

•
Observations

1. The equality in the Lemma holds when 	 Ix i I = Ix  I

	

for all	 i ¢ j .

7



2.	 Thus,	 the upper bound JA is	 attained by AD when

d(X i .u)	 - d(X,,u)	 for all i	 /	 j	 .

2.2 AD For Some Simple (Inivariate bistrihutions

Assumption 1: N is assumed to he 1 in this subsection

through Section 4.	 Extension to the case N # 1	 is rele-

gated to Section 5.

Assumption 2: Enough data points are assumed to be available

such that the histograms of these data points will reproduce

the assumed distribution.

Notations:	 .t. the following,	 p(-) . u, o	 AD will denote
the ;p robability density function, mean, standard deviation

and the average distance (defined through (1)-(5)),

respectiveiy.

(a)	 Ncrmal distribution N((1,v2)

p ( X )	 l e
 x2/2Q2

W = n

A
Q O

8
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AD -	 Q p(x) dx

	

-	 2	 J m x C -x2/2v2 dX

f^2

	

-	
C
-r dr 	 r = X 212a2

3fin 0

2

377

	

-	 0.80 (9)

(b)	 Triangular, trapezoidal, rectangu'.ar and 'hi-spiked'

distributions.

Since the derivation of results for these distributions

are straightforward as in (a), the results are on:y tabulated

in TahIc 1. Refer to Figure 1 for the shapes of these

distributions.

Observation:	 It is obvious that the more widespread the

distribution is, in the sense of its span relative to its

standard deviation, the larger is AID.	 Thus, in the 'bi-spiked'

case where the density has an extreme allocation, AD is unity,

the upper hound given in Section 2.1.

9
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3 . AI) FOR SOME COMPOSITE UN I VARI ATE NORMAL DISTRIBUTIONS

This section addresses to the decision of the splitting

of a cluster by studyin, its AD. Assuming that samples from

two distributions, whether they he close or far apart from

each other, have been initially taken to belong to the same

cluster, i.e. to a composite distribution, the que?tion is:

How will the value of AI) provide the information as to

whether or not it is advisable to split the clustL-r into two?

The following will study a few combinations of two normal

distributions p l (-) and T) 2 (-) with various variances and

a priori probabilities	 n 1 and IT 	 ,	 i.e.,

P(-) = n 1 P 1 (•) + 'T
2 p 2 (•) .	 See Figure 2.

Case (a)

1T 1 	IT 	 =	 1/2	 111
	

N((1,1)	 1)2	 N(-°,1)

p(X)	 =	
I

p1(X) + 
I 

p2 (X)	 =	 1	 t-x2/2 + e-(x+°)2/2

z^
It is simple to show that

0 - 0

a 2	 (4 + °2)/4

AI) =	
1 1 2	

e - ° 2 /9 + 2 [1 - 2P N (-°/2))	 ( 1 0)

--I

10



•	 where

PN(a) _ r PN(x) dx	 PN	
N(0,1)	

0 1)

_ 00

Values of these Parameters for various A are tabulated in

Table 2(a) together with the shape of the composite

distributions.

Case (h)

nl	 a	 712	 =	 112	 p 	 N(0,2)	 p2	 ^, N(-A,1)

	

P(x)	
1	 1 a -x 2 /4 + e-(x +A)2/2

2^ [.1i:

It can be similarly shown that

u	 -A/2

0 2 =	 (6 + A2)/4

AD= r AD l +	 AD2]/c^L 
where

00

AD l =
 foo 

Ix - vlp l (x) dx

2
=

11[2 1, N (u 	

+ /T—Tr
4  

e -u /4

11



and

•	 AD 	 f m Ix - 111;)2 (x) (lx
m

2

	

(u + A) 12F' ra (1 ' + r) - 11 +	
2	 e -( u +A) /2	 (12)

where 1' N (-) is given by (11). Values of these Parameters

for various A are again tabulated in Table 2(b).

Case c

7T	 2/3	 7T 2	 =	 1/3	 Py	 N(0 2)

A,1)

U =	 -A/3

0 2 	=	 (1S + 2A2)/9
AD -	 I22 AD 1 + I A1) 21 0	 (13)

and AD  are given in (12). Table 2(c) shows the

these Parameters for different A .

12



Case (d)

n l	 =	 3/4	 IT 	 1/4	 P 	 14(0,2)

p 2 ~ N ( - A , 1)

Similarly,

o -	 -A/4

0 2	 (28 + 362)/16

AD =	 AD + I AD	 ^^	 (14)
C	

1
	 2]

where AD  and AD,) are given in (12). Table 2(d) shows the

value of these parameters for different A

Observations

1. Looking at the shape of the composite distribution versus

the accompanying va'ue of AD, it can he concluded that

when AD > 0.84 ,	 the distributions discussed so far

have two distinct "humps". This threshold value 0.84 of

AD suggests, then, to he a sound choice to decide whether

a cluster should he split or not.

2. In case when a cluster is split, the examples above indi-

cate that a good universal choice of the two new cluster

centers is at ±Q from the old cluster center, i.e.	 u .

This is due to the fact that the points u±v are quite

close to the means of p l ( • ) and p 2 (•).	 Indeed, this

conclusion conforms with common practice.

13
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3. The following section discussing errors of misclassifi-
cation will further warrant this value 0.84 of AD.

•

14
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4. PROBABILITY OF MISCLASSIFICATION

This section investigates the following dilemma.	 in

the case when a composite distribution is made up of two

normal distributions with their means at a distance A apart,

one might be faced with the dilemma that even if these two

distributions arc identified (i.e., even if decision is made

to split the cluster) the reassignment of points (from the

old cluster) to their respective distributions (i.e., new

clusters) might not be easy. Or, the assignment might involve

too much error.	 If the probability of error of misclassifi-

cation becomes too high, it might be more justified to con-

sider that only one cluster exists (with a distorted normal

distribution) than to consider the co-existence of two

clusters (each coming from a normal distribution).

The following will calculate the probability of misclassi-

fication P E that arises when the points are reassigned

according to the Bayes decision rule maximizing a posteriori

probability. 'fhis is a familiar technique to the communi-

cation engineers (see ref. (41), and is summarized as follows:

Bayes Rule: Assign a point x to the distribution p 1 ( • ) if

T1
1 p 1 (x) > n2p2(x)	

Otherwise, assign it to the

distribution p2(•).

Referring to Figure 2, the Bayes Rule says that any point x

with x > 6 will be assigned to distribution p 1 (••), and

x <_ 9 assigned to distribution p 2 (-), where 6 is such that

p'1 (-0)	 p2(A - 6)	 (15)

15



Thus, the error of misclassification 1 1 E is

6	 m

p 	 u 
r1 

of. Pi 
(X) dx + r ) f
	

P2 (x) dx	 (16)
e-8

Straightforward calculation will show for the four cases

studied in Section 3:

Case a)

6 = A/2

p E 	p N (- e)	 (17)

where P N (-) is given in (11).

Case h)

A = 2A - 2A 2 + 4^	 m	 kn .^

p E

	

	 1	 p (-6/ ►^'^) +	 [1 - P N (A - 6)J	 (18)
217 N

Case c

I,	 6	 2A -	 2A 2 - 4m	 =	 2n vIr

{.

	 pE =	
3/72

2 	 P N (-6/ ►^) + 1 [1 - p N (A - 6) ]	 (19)
3

16



Case d

6	 2A - 42A 2 - Zp	 9  (3/ 37)

P E 	__L PN (-e/ 3'f) + ^- (1 - P N (A - e) J	 (20)

4

Value. of 6 and PE for different A are tabulate] in

Table : (a) - ( !) .

Observations

1. First, it is noticed (S] that in the classification of,

say, agricultural data, by remote sensing techniques,

a 90% correct classification is considered to he good

under the existing state-of-the-art. 	 In other words, an

error of up to loo is permissanle.

2. Examination of Table 2 reveals that if a composite dis-

tribution with AD >_ 0.84 is split into two normal

distributions, the error of misclassification P E	 in

the process of reassigning the points of the old cluster

to the two new clusters will he less than 10%. This

means that splitting of the cluster is justified.

Otherwise, if AD < 0.84 ,	 it is more advisable to

retain.the old cluster and assume that it originates

from a distorted normal distribution.

3. The threshold 0.84 of AD is thus further justified.

17



p 	 -	 1 N

(2n)N/2 Ti o f
i=1

N

2 .1 C 2
exp -	 xi /poi

i=1
(21)

S.	 EXTENSION TO M111.T1VARIATI: CASE:

It is readily seen that extension of the results

•	 obtained in the previous sections to the multivariate case

is nontrivial if not impossible. However, the evaluation

of AD for the simplest multivariate normal distribution is

still possible when mutual uncorrelation (and hence inde-

pendence) is assumed of the components of the N-vector. The

value of AD obtained for this distribution will certainly

serve as a guideline for the values of AD for other simple

or composite di.itributions.	 Furthermore, it is recalled

that the bound on AD has been shown to be 31( . Thus, an

empirical threshold for AD can be extrapolated.

S.1 AD For Multivariate Normal Distribution

Assume the following probability density:

N = 1:	 As shown in Section 2.2,

Go

	

AD =	
2 r a- 

r d r
3'^ J0

	

=	 0.80 (22)

18



N - 2:

",

	 2	 2	 z	 2
AI ► 	 x	 x

1_o	 x 2 	 no a exl '	 2 dx d 
1	 a2	 1 2	 2o1	 2o2	 1	 Id

l	 _r2	 2	 112
re	 /2 (2rr) dr	 r -	 x2/a2

i-1

J	

2

r2C-r 12 dr
0

=	 1.25	
(23)

r

N	 3:	 Similarly,

AD --	

1co

(2n) ^^2 0

2
re -r /2 (4Trr 2 ) dr r3

	 1/2

r	 L.^ xi/oi
i=1

o	 J 00 r 

3 
e x212 dr

n
0

1.60

s

i

(24)

19



(25)

N - 4:	 Similarly,

2
AD	 1

	 fo	
re -r/2 (27r 2 r 3 ) dr

(2n) 2

4	 1/2

r	 x2 /o 2r

X61

1 f r o e -r 212 dr

1.88

Curve (a) in Figure 3 shows how AD/./K varies with N for

this normal distribution.

5.2 Empirical Threshold

Since 0.84 has heen shown to be a sound threshold for

the univariate case y s 1 , an empirical value of AD can

be extrapolated for the multivariate case. The empirical

formula

Threshold -	 (N - 0.16)//K
	

(26)

appears to be a reasonable rule as plotted in Figure 3,

curve (b). Typically then, the threshold for AD when N - 3

is	 (3 - 0.16)/ 37 = 1.64 .

20
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5.3 Critical Observation

From Figure 3, it is observed that the value of AID for

a simple multivariate distribution (as given by (21))

approaches its limit 3R reasonably fast with N .	 In fact,

examining the forms of (22)-(2S), the factor 	 r 	 in the

integral is readily recognized to he that factor which drives

the value of AD for any reasonably smooth distribution (which

possesses the first absolute moment) to its bound 3T1	 This

is by virtue of the fact that, for N 	 large, the integral

2
2 f r N r r 12 dr	 (27)

0

m	 2 	
A	 ..

equals 2f r(r N
 - l e - r 12) 

clr =f ^x^p(x) dx	 when p(s)
0	 00

will approximate the 'bi-spiked' distribution as shown in

Figure 1(e), with e - 1	 Consequently, (27) and thus AD

approaches its bound.

CRITICISM: With the above observation, it i! asserted that

the parameter AD will lose its effectiveness as a discrimi-

native parameter to decide on the splitting of a cluster when

N is larF,e. This is because the AD of any (reasonable)

distribution approaches /17 and makes it impossible to

detect the structure of tine distribution from the value of

AD.

1
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. . h. CONCLUSION

The parameter AD as used in the ISODATA program is

critically examined. Thresholds of AD to decide on the

splitting of clusters are obtained.	 for the univariale

case, 0.84 is established as a sound choice, after examining

several simple as well as composite dibt r ibutions and also

after investigating the probability of misclassification when

Points have to he reassigned to the newly identified clusters.

For the multivariate case. the empirical threshold (N-0.16)/ 39

is extrapolated. A final criticism on AD is that Aft would

lose its effectiveness as a discriminative measure for the

present purl• ose when N is large.
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TABLE CAPTIONS

1. Tabulation of the probability density, mean, standard

deviation and AD for the various distributions of

Figure 1.

2. Tabulation with respect to A of the mean, standard

deviation, AD, A and P E of the composite distribution

P ( • )	 rr1P1(.) + n 2 p 2 ( • )	 with

(a) ir l = n 2 = 112	
1'1	

N(0,1) ,	 P 2	N(-A,I)

(b) rr l = n 2 = 1/2 ,	 p l	N(0,2)	 P2 ~ N(-A,I)

(c) TI  = 2/3 ,	 n 2 = 1/3 ,	 P 1	 N ( 0 ,2) ,	 P 2	N(_A,1)

and (d)	 n l = 3/4 ,	 17 2 = 1/4 ,	 P1 — N ( 0 , 2 ) ,	 P 2 ^' N(-A,1)

FIGURE: CAPTIONS

1. Some simple distributions:	 (a) Normal N(0,a2),

(b) Triangular with spread 2A, (c) Trapezoidal with spread

4A, (d) Rectangular with spread 2A and (e) 'Bi-spiked'

with equal weights spread 2A apart.

2. A composite distribution p(•) made up of two normal dis-

tributions p l (•) and p 2 (-) with a priori probabilities

n l	and ,r2

3. Variation of AD/V—N with N for (a) Normal distribution,

(b) The suggested threshold: AD = (N - 0.16)/v/'N—
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(x	 AD	 11
E

03

Section 3	 Section 4

	

2	 03

-1	 1.41	 0.82	 -1	 0.16

03

2 1
4`	 -1	 1.51	 0.83	 -1 

8	
0.1 3

2 1

	

° 3	 -1 ^	 1.60 	 ^i . 84	 - 1 ^	 0 . 1 1

03

	

3	 /  	 -1 ^	 1.80	 0.87	 -1 1 	 0.07

III
03

	

4	 -2	 2.24	 0.90	 -2	 0.02

-2

	

6	 -3	 3.16	 0.95	 -3	 0.00-3

able 2(a)
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p(x) u o A1) -9
p 

0.3

Section	 3 Section	 4

03

12

-^	 o

-1 1.S8 0.81 -0.94 0.162

03

3 -1	
1

1.94 0.84 1.66 -).087/

-it	 o

03

4
-2	 0

-2 2.34 n,88 2.22 0.039

s
Tahle 2(b)

t
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o n ( X ) o o nt ► -0 ► 'E

03

-e	 e	 o

Section	 3 Section	 4

2

03

3 1.6n 0.82 -1.43 0.169

_	 o

03

3 -1 1.91 0.84 1.97 0.086

-^	 0

03

4 -1	
1 l. lS ► 0.84 -2.46 0.04

i

Table 2(c)
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uA	 p(X)

0.3

-e -e	 o

0.3

_o

o	 AD

Section 3	 1 Section 4

1.58 1 o.8 3 1 -1.701 0.1591

03

3	 - 
3	 1.85	 0.83	 2.1^	 0.0 83

F

- 4 0

4	 ^^^
	 -1	 2.18	 (1.88	 -2.62	 0.038

-+ 0

I

Table 2(d)

M
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D(x)
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(a)

(b)

( c )

(d)

FIGURE 1
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P(X)

FIGURE 2
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FIGURE 3
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