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SUMMARY

b A N s

Many useful mathematical models for manual control monitoring and
decisime-making tasks in man-machine systems have been designed and 3
successfully applied. However, critical comments have occasionally been
made, mainly by practitioners concerned with the design of complex
man-machine systems. They blame especially models which seem to explain

only data from abstract subtask experiments designed particularly for these
models.

In this paper, an initial approach to bridging the gap between these
two points of view is presented. From the manifold of possible human
tasks, a very popular baseline scenario has been chosen, namely car
ariving, A hierarchy of human activities is derived by analyzing this task

in gereral terms. A structural description leads to a block diagram and a : |
tine-sharing computer analogy.,

S b b I A W TN T

The range of applicability of existing mathematical models is
considered with respect to the hierarchy of human activities in real
complex tasks. Also, other mathematical tools 80 far not often applied to
man-machine systems are discussed. The mathematical descriptions at least 3 |
briefly considered here include utility, estimation, control, queueing, and j
fuzzy set theory as well as artificial intelligence techniques. Some

thoughts are given as to how these methods might be integrated and how
further work might be pursued .
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INTRODUCTION

when designing such systems as automobiles, aircraft, power plants,
and management information systems, it is very important to understand the
human's role in the system and desigzn the man-machine interface
appropriately. The engimeering approach, which leads one to represent the
mchine in terus of differential equations, networks, etc. suggests that
the human can also be represented as a set of mathematical equations for
the purpose of systems analysis and design. Thus, considerable effort has
been devoted to developing mathematical models of human behavior,

Lespite the criticisms of those who find the analogy between humans
and equations unpalatable, many models have been reasonably successful
within the limited domains that they addressed. In fact, if we accept the
premise that human vehavior mainly reflects the external environment [1],
then it is not surprising that man and machine ocan be described in similar
terms. (uite simyly, since the human adapts his behavior to the machine,
his actions become somewhat machine-like. (Of course, from a design point
of view, one tries to avoid requiring the human to adapt to the machine to
any extreme extent.)

On the other hand, the success of models in limited domains has not
haa substantial impact in realistically complex domains. For example,
mnual control models are not everyday tools for the aircraft designer.
rurther, as the reader will see manual control models capture only a small
portion of the total task of driving an automobile. For these reasons,
designers have been Kknown to claim that mathematical models of human
behavior are not particularly useful. While the authors only partially
agree with this opinion, even as it relates to currently available models,
such statements have motivated the work upon which this paper is based.

within this paper, the authors present a realistically complex task
(i.e.) automobile driving) and illustrate the various aspects of the task
by using written protocols of subjects' behavior, & hierarchy of human
activities is derived by analyzing this task in general terms. A
time-sharing computer analogy and block diagram are presented. Numerous
mathematical methodologies appropriate to representing such a model are
discusseds Finally cthe state-of-the-art is summarized and the prospects
are considered.

A REALISTIC TASK

In considering altermative realistic task domains, the authors
discussed a variety of domains including aircraft piloting, industrial
process monitoring, and automobile driving. After substantial discussion,
it became quite oclear that the domain to whioh both the authors and
patential readers could most relate was automobile driving,
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The “experiment” involved a hypothetical trip from the driveway of one
author's house (GJ) to the home of the other author (WR). Two subjects
participated (GJ and WR). Their task was to explain in detail whet they
would be doing throughout .he hypothetical trip. Each subject
independently generated a written protocol of the trip. The two resulting
protocols were merged to produce Figure 1.

The activities in this figure can be categorized into several levels
of behavior:

1. Reaching, twisting, and listening
2. Steering, accelerating, and braking
3. Looking around and estimating

4, Updating and evaluating

5. Planning

6. Reflecting and daydreaming

The authors would like to suggest that a theory of human behavior in
realistic tasks should be able to model levels 1 through 5. In pursuit of
this possibility, this list was somewhat compacted to yield the following
aspects of behavior to be modeled:

7. Sensing and interpreting inputs
2. Planning
3. Implementing plans

To consider these three topics, an overall framework will be discussed in
the next section and then, specific approaches to modeling will be
considered in the subsequent section.

STRUCTURAL DESCRIPTION

Looking at the hierarchy of human aotivities discussed above as
information processing activities, a time-sharing computer analogy seems to
be a very appealing approach to understanding the structural
interrelationahips.

Figure 2 shows a sketoh of such a time-sharing computer analogy.
There are several possibilities for the central nervous system (CNS) to
interact with the peripheral input and output devices (i.e., the senaory
and the motor systems including speech generation). The CNS is viewed as
being divided into an operating system snd four classes of Jobs," {.e.,
program/data files (sec, e.g., [2], (3]). Hereby, a multi-processor system
allowing a mixture of parallel and serial information processing is most
likely to be a reasonable assumption for the human operator (4].

The operating system is responsible for scheduling the programs in a
time-shared manner by using a priority interrupt policy. Conflicting
criteria with respect to priority have to also be evaluated by the
operating system. This m:ight be a crucial task, especially in urgent
situations.
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Figure 1: Protocol for Typical City Trip
INSERT KEY 1N IGNITION
PUT ON SEAT EELT
PRESS GAS PEDAL TO FLOOR AND ALMOST TOTALLY RELEASE
TuR KEY
LISTEN FOR ENGINE SOUND
1F SO, THEN GIVE GAS
ELSE, STOP AND GO BACK TG TUMN KEY
AIT FOR CAR 10 WARK UP = DAYDHEAM
LOCK AROUND - SEE IF I CAN BACK UP OKAY - INCLUDES USING MIRRORS
IF SO, THEN PUT CAR IN REVERSE
ELSE, WAIT FOR ALL CLEAR
PUT RIGHT ARM ON SEAT BACK SO AS TO SEE BETTER
STEEK WLTH LEFT ARM, ACCELERATE AND BACK ONTO STREET
DETEHMINE WHEN CLEAR TO GO FORWARD - STOP BACKING UP - PRESS BRAKE
PUT CAR IN DILVE
LOGK AROUND - SEE 1¢ I CAN PROCEED
IF S0, ACCELERATE
ELSE, WAIT FOR ALL CLEAR
LIMIT SPEED SINCE STOP SIGN COMING UP - CONTINUE LOOKING AROUND
STEEX SO AS TO STAY SORT OF' IN LANE
ESTIMATE DISTANCE TO STOF SIGN - CHECK FOR TIME TO DECELERATE
IF S0, hEMOVE FOOT FROM GAS AND OVER TO BRAKE

tLSE, UPDATE ESTIMATE OF DISTANCGE - CONTINUE LOOKING AROUND/STEERING

TUNN ON LeFT DIKECTIONAL
wHEN FAIKLY (LOSE TO STOP SIGN, PUSH BRAKE HARDER AND STOP
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LOOk LEFT AND RIGHT FOR TRAFFIC
1F no&‘e T00 CLOS: (ESTIMATE IF I CAN MAKE IT). ACCI:.LERATE TURV LEFT
ELSE, WALT FOR ALL CLEAR AND CONTINUE UPDATING ESTIMATES
STHALGTEN OUT S0 AS' 10 AEEP "SORT OF" IN LANE
ACCELERATE, 'éuw NOT T00 MUCH BECAUSE STOP SIGN COMING UP
LOUK AROUND AT TRAFFIC - ALSO AT HOUSES AND YARDS - DAYDREAM
_ EXEQUTE STOP SIGN ROUTINE - ONE FoR STOPPING - ONE FOR STARTING

~ USE FOUR-WAY STOP SIGN ROUTINE

LXEQUTE ENROUTE KOUTINE - INCLUDING TALKING SIGHTSEEING, ETC,

:
.

PRy RO

PLAN ROUTE - WHAT STREETS TO TAKE

R TR AR RO T W

. ) E

EXEQUTE STOP SIGN/STOP LIGHT/TURNING/PASSING/LANE CHANGING ROUTINES

LOUK ARGUND FOR APPHOPRIATE PARKING SPACE

IF ONE FOUND, DETERMINE PLAN FOR GETTING INTO IT

ELSE, CONTINUE LOOKING - CONTINUE LOOKING AROUND AND STEERING
LXECQUTE PLAN GPEN-LOOP, WITH FINAL UPDATES AS ERROKS CAN BE ESTIMATED
PUT CAR IN PARK
TURN OFF RADIO HEATER, ETC., IF APPROPRI ATE
TURN OFF Ky

REMOVE KEY
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1he four classes of program/data files relate to a central-nervous
representation of tasks the human operator has to perform., Each of these

and interrelated

program classes is structured into main programs
subroutires .

Program/
Do?gFiles

Class No.3

Program/
Data Files

Class No. 1

Program/
Data'Files

Class No. 2

Program/
Datc? Files

Class No.4

FP-$140

Figure 2: Sketch of a Time-Sharing Computer
Model of the Human Operator

Class o, 1 comprises input-related brograms, e.g,, human monitoring
tasks and looking around procedures. Class No. 2 is similarly related to
output activites, €-8.) the structural organization of motion patterns
(eeg.), in veaching) and speech. Class No, 3 programs describe strict
input-output relationships as in tracking-type control and choice~reaction
tasks. All three classes contain programs with a high level of autonomy,
perhaps carried out by peripheral processors . The operating system has to
initiate and supervise these autonomous processes . Additionally, the

adaptive control of the sampling process in parallel tasks has to be
accomplished by the operating system .

Class No. U4 represents the long-term memory of the human which
inecludes a Knowledge base of facts, models, and procedures, The programs
of class No. 4 ape concerned with internal processes such as reflecting
and planning which have access to the knowledge base, thereby occasionally
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modifying it+ The operating system is responsible for searching through
the knowledge base (see, e.g., (5], [3]). -

~ The time-sharing computer analogy outlined here is mainly ‘assumed as a
possible framework for future thinking about complex man-gachine systems.
To further illustrate the hierarchical multi-level structure of human
activities within this framework, a block diagram is shown in Figure 3.
Unly the most important information flows between the different levels are
outlined . : .

Reflecting 1 Knowledge
Base

(Facts,

] e Model
Planning Procecsi'ures)

T\

\ 4

v

Extracting Modifying >

Features

A

= Looking AroundI

X .| Controlling [~ Response

Generation |

Reaching >

Figure 3: Hierarchical Multi-Level Structure of Human Activities

Lower level processes (bottom of Figure 3) are normally characterized
by events occurring at a high frequency as compared to higher level
processes (top of Figure 3). 1lhis refers to different time scales for
different 1levels. However, because lower level processes may be
autonomous, the difference in time scales does not mean that these
processes have to be considered by the operating system more frequently.

In Figure 3, planning is denoted as a major activity. With data from
the knowledge base and those from lower-level looking around procedures,
sometimes influenced by higher-level reflecting, planning is the
development of procedures to achieve overall goals and subgoals for
lower-level processes . Modifying the knowledge base as well as
goal-setting for controlling and reaching are shown as examples.
Controlling itself is also best described as a multi-level structure, being
a subset of the overall multi-level structure of Figure 3. Controlling and
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reaching procedures result in output actions of the human operator via
response gereration which refers to the peripheral output devices in Figure
2. Correspondingly, the peripheral input devices of Figure 2 extract
task-relevant features from sensory input information. This process is
very c¢losely linked with looking around procedures which are also indicated
in Figure 3. :

MATHEMATI CAL MODELS
Sensing and Interpreting Inputs
Reconsidering the task analysis of car driving, how does the driver

recognize stop signs, other cars, children, ete? Could one, at least in
theory, develop an algorithm that successfully performs these aspects of

~driving?

To pursue this question, the literature of pattern recognition and
artificial intelligence was considered. Fortunately, the literature in
these areas has recently been summarized in the Systems, Man, and
Cybernetics Review [6], by Sklansky [7], and in books by winston (81, [9]
for pattern recognition and artificial intelligence respectively.

fwo approaches to pattern recognition have received particular
attention: statistical methods and syntactical methods. 1Ihe statistical
@ethods use discriminant functions to classify patterns. This involves
extracting a set of features from the pattern and statistically determining
how close this feature set is to the a priori known features of candidate
classes of patterns. The class whose features most closely match the
rmeasured features is chosen as the match to the pattern of interest, with
of course some consideration given to the a priori probabilities of each
class and the costs of errors.

The syntactic methods partition each pattern into subpatterns or
pattern primitives. It is assumed that a known set of rules (a grammar) is
used to compose primitives into a pattern. uUne approach to recognizing
primitives is to use the statistical approach noted above .

Another aspect of pattern recognition involves image processing.
nhere, each picture point (pixel) is classified according to gray level.
Then, thresholds are used to segment the picture. More elaborate
approaches use multi-dimensional classification of each pixel and then, use
an appropriate multi-dimensional clustering of similar pixels.

Artificial intelligence researchers have devoted considerable effort
to scene analysis. With emphasis on understanding scenes composed of
somewhat arbitrary collections of blocks, methods have been developed to
pick particular blocks out of scenes, even if the desired block is
partially hidden,

Most of the methods discussed above have worked reascnably well within

iimited domains. when the context within which one is working is
well-understood, it is often possible to successfully sense and interpret
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inpﬁ}ts, although considerable computational power may be needed.

while the advent of inexpensive microelectronics might allow one to
utilize large amounts of computational power in a model of human sensing
and interpretation of data, there are bigger problems to be solved.
Namely, it is difficult to deal with realistic contexts in a static manner,
What a human sees depends on what he is looking for, what he expects to
s€ee, and the costs of not seeing it. These aspects of seeing cannot be
considered out of context and without reference to the specific individual
involved.

Several investigators have considered the issue of how the human
allocates his attention among multiple displays ([10], [11], (12], [13],
L14], however, these models have only been tested in fairly
well-structured situations and thus, are as yet unproven in realistically
complex tasks. Further, it is by no means obvious that these models will
ever be able to handle looking around in the sense it appears in the
driving scenario.

Thus, a general mathematical theory of human sensing and interpreting
of inputs is far from available, especially if one would like to program
tnis theory to drive a car. On the other hand, the disciplines of pattern
recognition and artificial intelligence are beginning to succeed in
specific applied domains such as industrial inspection {151, [16] and
medical diagnosis [17]. Perhaps a concatenation of specific successes will
lead to new insights into the problems of context and individual
differences.

Flanning

Studying the task analysis of ecar driving, it is readily apparent that
much of the subjects' conscious activities were devoted to developing,
initiating, and monitoring plans., This observation agrees with analyses of
verbal protocols in several other task domains (1]. 1In fact, one might
expect this result within any purposeful activity for which there are goals
as yet unfulfilled.

To discuss planning, one first must emphasize the distinetion bet ween
the process of developing plans and the process of executing plans [18].
Within this section only plan development will be considered, while the
following section will discuss plan execution. One way to illustrate the
difference between these two activities is to characterize plan development
as a problem solving activity, while plan execution is looked at as a
program execution activity [1].

One develops a plan in hopes that its execution will achieve some
goals. While one usually accepts the overall goal as given (e.2., land the
aireraft), the process of developing subgoals is often left to the human.
ihe partitioning of goals into subgoals and then subgoals into lesser
subgoals, etc. reflects a hierarchical mode of planning that has received
considerable attention [19], [20),
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The hierarchical approach allows one to develop plans that are broad
and sketchy as opposed to detailed and concises. Thus, low level subgoals
can be temporarily ignored until their immediacy demands attention.
Similarly, future actions which require preconditions that are not as yet
assured can perhaps be temporarily ignored if one feels that the
environment is hospitable to one's goals [20].

On the other hand, low level subgoals must eventually be dealt with,
Then, a concise system dynamies model such as Carbonell's probably provides
a reasonable description of human behavior [21]. This model assumes that
the human is dealing with a system describable by quantitative state
transitions and amenable to quantitative ocontrol actions.

Such low level planning is probably unconscious. From the perspective
of a computer analogy, one might say that high level conscious planning is
like executing an interpreted program. (An interpreted program is one
where the computer consciously has to interpret the meaning of each
statement as it is executed.) On the other hand, low level unconscious
planning is similar to executing a compiled program [1]. 1n fact, it might
be claimed that low level planning cannot really be called planning.
Instead, such activities are only the details of implementation, which are
agiscussed later in this paper.

Planning appears to include the following aspects:

1. Generation of alternative plans,
2. Imagining of consequences,

3. Valuing of consequences,

4. Choosing and initiating plan,

5. Monitoring plan execution,

6. Debugging and updating plan,

where the latter three aspects deal with observing plan execution and
subsequent replanning, but not with actual implementation,

How might one model the generation of alternative plans? One can look
at a plan as a linked set of subplans (20]. liowever, at some level,
subplans must be specific. In many tasks, the alternatives are clearly
defined At the outset. On the other hand, there are many interesting tasks
(e.g., engineering design) where the human must create alternatives. In
such cases, humans usually first consider altermatives that have been
successful in previous situations.,

Une might use Newell's pattern-evoked production systems as a model of
how the human accomplishes this search for altematives [1]. A production
is a rule consisting of a situation recognition part that is a list of
things to watch for, and an action part that is a list of things to do.
(The word "production', as it is used here, has absolutely nothing to do
with the manufacturing connotation of the word.)
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As an alternative to produ::tion systems, the idea of scripts might
provide a reasonable model, "A script is a structure that describes
appropriate sequences of events in a particular context (22].

The ideas of production systems and seripts are both related to the
idea of the human having an internal model. However, as the reader will
see, it is very different from the type of model assumed in the system
dynamics domain. wamely, product ions and scripts provide forecasts of
typical consequences rather than models of internal state transitions.

Sometimes a new alternative is nceded and it is very difficult to say
how a totally new idea is generated. Linking the idea of associative
memory 23], (28] with the idea of product ion systems or scripts, one can
con jecture that new ideas are generated when the criterion for matching the
new subgoal with past experiences is relaxed and/or non-standard features

of the situation are emphasized.

Long~term plans that will not be immediately implemented are probably
djeveloped at the highest level in the goal hierarchy with only major goals
considered. oSuch a plan might be a somewhat vague verbal statement or
perhaps a sketch of activities and relationships. It is interestiing to
speculate upon (and perhaps research) what plans look like in the 'mind's
eye-' For example, are plans list-like or are they more spatial, such as
warfield s interpretive structural models [25].

Short-term plans that will require immediate implementation cannot be
quite so sketchy. In this case, the human has to consider specific
actions. One would probably be reasonably successful in modeling this type
of plan using production systems. 1in this case specific teatures of the
environment would automatically evoke particular responses. This type of
behavior falls into the category of class No. 3 programs as defined in the
time-sharing computer analogy introduced earlier, Realistic examples of
application of this idea include aireraft attitude instrument flying [26]
and air traffic control [27].

Given a set of candidate plans, the human must forecast or imagine the
consequences of implementing each plan. Cne might assume that the human
performs some type of mental simulation of the plan. For example, the
human might use his current perception of the system dynamics to
extrapolate the system s state as a function of planned control strategy.
nouse has developed a model that describes this type of behavior.
Succinetly, the model assumes that the human has both a long-term and
short-term model of the system with which he is dealing and, that he uses a
comprounise between the two state preaictions obtained from these models as
a basis for decision making [28].

however, when plans are sketchy, at least in terms of intermediate
preconditions, the human probably does not actually calculate consequences
but instead simply maps plan features to previously experienced
consequences. Then, until evidence forces him to reject the assumption, he
assumes these previously experienced consequences will prevail. This type
of behavior is represented quite nicely by the scripts concept [22].
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Imagined consequences are then compared to goals. For low level
plans, the comparison might be based on a well-defined criterion function.
however, this is probably not the case for high level plans. Since high
level goals and imagined consequences may be verbal and rather vague, it is
likely that the human only tries to satisfice rather than optimize. One
might represent this phenomenon using multi-attribute utility functions
Lz9] that have “road optima. Alternatively, concepts from fuzzy set theory
(30), t31] might be used to consider the membership of a set of
consequences in the fuzzy set of acceptable consequences. The utility
function approach is probably appropriate if one assumes that the human has
a fairly precise knowledge of the possible consequences, and subsequently
values some more than others. On the other hand, the fuzzy set approach
would seem to be applicable to situations where tine human s perception of
the consequences is actually fuzzy.

The human chooses the most satisfactory plan and initiates its
execution. If none of the available plans meets an acceptable level of
satisfaction, the human either tries to debug the set of plans under
consideration or perhaps tries to develop new plans. Debugging of
partially failed plans may initially involve local experimentation to
determine the cause of plan failure rather than a global reevaluation and
complete replanning [32]. One approach to modeling debugging or
trouble-shooting of plans is with fuzzy set theory [33].

Assuming that a plan has been initiated, the human monitors its
execution and only becomes involved (in the sense of planning) if the
unanticipated occurs or execution reaches the point that some phase of the
plan must be more concisely defined. Monitoring for the unexpected might
be modeled using product ion systems that trigger when the preconditions are
not satisfied. Other approaches, based on filter theory [34] or pattern
recognition methods [35], are also available but beyond the scope of the
discussion aere.

Once the unexpected has been detected, planning might shift into the
above mentioned debugging mode. - On the other hand, the need to shift from
sketchy to concise planning may involve abandoning, for the moment, the
broad hierarchiical mode and shifting to a detailed partially pre-programmed
mode.

How do all these bits and pieces fit into an overall model of
planning? Wwhile it does seem that the hierarchical approach to planning
combined with the production system and script ideas provide a reasonable
framework, the state-of'-the-art certainly does not allow one to construct a
context-free planning model in the form of an executable computer program.
This may be an inherent limitation if one accepts the premise that much of
human behavior is merely a reflection of the task environment [1). If this
premise is true, then one should be very careful that laboratory
abstractions capture a sufficient portion of the real world environment and
thereby allow results to actually be transferable. Otherwise, one is onlv
developing a theory of human behavior in laboratory games.
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As a final comment on planning, a very important issue concerns the
level at which one's study of planning behavior should be addressed. While
an approach at the neuron level [36] may eventually lead to a successful
model of human planning behavior, such an approach is unlikely to lead to
Success in the near future. Alternatively, one might try to develop models
that explain or predict whether or not a plan will be successful. However,
this type of model' would yield little information about the planning
process. It seems that e must approach studies on the conscious planning
level using either verbal protocols (11, [37], (38] or at least methods
that require plans to be explicitly measurable. Then, the variety of
approaches to modeling discussed in this section can be applied to
describing the planning process.

IMPLEMENTING PLANS

Implementing plans refers to human action, mainly controlling and
reaching in the .aulti-level structure of Figure 3. Two basic approaches
for mathematically describing these actions can be distinguished. The
first approach includes time-line analysis, queueing theory, and simulation
techniques, whereas the second includes the control theoretic approach in a
more gerneral sense.

In time-line analyses, the execution times of all particular task
elements of a certain multi-task situation are assessed as well as the
total task time needed (391, [40), (41]), [u2]. Available time margins or
expected time pressure of the human operator can be calculated in order to
estimate total task system performance and human operator workload. This
me thod has been applied to evaluating rather complex man-machine systems by
taking these apart in very much detail, e.g., to the level of reaching
times for single switches.

A related but more analytical approach is the queueing theoretic one
(111, [12), (43], [44], (45), (461, [47). 1It is suitable not only for
analysis but also for design purposes. The different tasks of a
multi-task situation are considered as customers in a queue waiting to be
serviced. Arrival and service rates as well as the waiting time for the
tasks are characteristic measures. Service with a priority poliecy is
possible. Also several servers (e.g., the human operator and a computer)
may share responsibility for the total task.

Both approaches, time-line analysis and queueing theory, look at the
implementation of actions in terms of time expenditure. If the accuracy of
the actions is also to be taken into account, these methods have to be
combined with others. Simulation techniques seem to be a reasonable
approach where micro-subroutines simulate dynamically such human operator
behaviors as short-term memory recall and movement of hands and feet [48].
This leads back to the time-sharing computer analogy. A goal-oriented
priority interrupt structure for handling all tasks appropriately in a
multi-task situation is most promising. However, this results in a more
artificial-intelligence oriented simulation, using heuristics and data
handling algorithms, rather than an analytical description.
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A different approach for the description of human actions in
man-machine systems applies control theory. Models for continuous manual
control are well established. Numerous summaries in the forms of reports
and books exist (e.g., ([49), [50), ([51]). Most popular are the
quasi-linear and the optimal control models. The quasi-linear models
describe the human control behavior by some task-specific modification of a
generalized transfer function which is best satisfied in the crossover
frequency region for many controlled element dynamics. In addition, an
internal human noise source (the remnant) summarizes the portion of the
human's output which cannot be explained linearly.

The optimal control model [52] includes two noise sources and also has
a time delay and a neuromuscular lag term with a time constant similar to
that of the quasi-linear model. A Kalman filter estimates the states of
the controlled element, whereas a predictor compensates for the time delay.
The optimal gains are calculated with respect to a criterion function which
is a weighted sum of mean squared values of state and control variables.

The control theory models have been applied in several domains
including aircraft piloting, automobile driving, ship piloting, and
anti-aircraft artillery. Further, several display design methodologies
have been developed. A recent special issue of Humap Factors reviews many
applications of control theory models [53].

With both the crossover model and the optimal control model, a
stochastic reference input, either forcing function or disturbance, has
been assumed. Therefore, these models are mostly applicable to the inner
loops of manual vehicle guidance and control tasks. In the case of the
optimal control model, key elements of this have also been applied to
monitoring and decision-making tasks.

Many realistic tasks exist, however, in which deterministiec inputs are
domirant. Taking the bazeline car driving scenarioc as an example, a more
complicated deterministic input exists, i.e., the course of the street.
For this task, a two-level model has been proposed which has a closed-loop
stabilization controller and an anticipatory open-loop guidance controller
working in parallel (541, [55]. The perceptual aspects of the anticipation
of changes in the course of the street have been explained. However, it
has been assumed that the driver tries to eliminate all deviations from the
middle line of the strecet.

To overcome this simplification, the street might be viewed as a
target tube in which the driver is allowed to move his car. Interestingly
enough, many other human control tasks in vehicle guidance and industrial
process control also require controlling the state of the system within a
target tube rather than along a single reference line, Such a criterion
makes thesc tasks much more relaxed than one often assumes in man-machine
systems experiments.

Reviewing the control theory literature, some applicable methods for
controlling within a target tube were found. They have never been used
with man-machine systems problems. One approach assumes a ocriterion
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function which puts less weight on small errors by taking the fourth power
of the error instead of the second power as in the optimal control model
[56]. The other approach is called unknown-bu t-bounded control (571, (583,
(59). Figure 4 illustrates how the controller tries to keep the state (x)
of the system always in an effective target tube to assure that it will
never cross the boundaries of the outer target tube under all expected
disturbances. :

Te_v_qof tube

Moditied
torget tube

Ettective
target tude

%
i
b

P

— -
——

—
— ——

Figure 4: Schematic Presentation of the State of the System (X)
as Affected by the Action of the
Controller (C) to Counteract Disturbances (N) for
Reachability of a Target Tube
(from (57))

e

The unknown-but-bounded control approach combines state variable with d
set theoretic descriptions. Due to the higher mathematical effort, this .
approach has infrequently been applied in automatic control situations.
However, 1% seems worthwhile to consider this approach in modeling :
biological or sociological systems. Human behavior in general is
goal-oriented and the goal is very often defined as bringing or keeping
some state variables within a certain target set or target tube.

In the baseline scenario, the target tube of Figure 4 would be the
width of the street or one of its lanes. The effective target tube is
planned by the driver as an area inside of which no control actions are
necessary (see linear-plus-dead-band control laws in Glover and Schweppe
(58]). Planning the effective target tube might also include some
fuzziness. Whether the unknown=but-bounded control approach can be
combined with fuzzy set theory which has recently been applied in
industrial process control [60] has not as yet been investigated.

Another interesting issue is the notion of the internal model vwhich
has been considered to some extent in the discussion of the planning
process, In modeling how the human chooses among alternative courses of
action, an important issue concerns whether the human possesses a correct
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internal model of his environment or, whether the model is incorrect as in
leaming situations or, very approximative as in large-scale systems (see,
e.8., (61]). The process of building up an internal model during learning
and how to uve it by changing control laws or choosing among different
kinds of control 1laws in time-varying systems, should be further
investigated. The 1literature on adaptive manual control shows, for
example, that the models assume a set of predetermined control laws matcned
with a set of different system dynamics (see e.g., [62]).

This leads to the idea of a memory for motor patterns. Instead of
having an input-output transfer behavior, the human operator initializes
predetermined motor patterns in many situations. These patterns are
slightly corrected during their actual execution (see,e.g., [63]). Good
examples are walking, bicycle riding, and piano playine, Also, the
coordination and timing of a series of discrete manual control actions,
€.8., in trouble-shooting tasks or in checking procedures of aircraft
piluts or process operators, can be explained by predetermined motor
pattemns.

DISCUSSION AND CONCLUSIONS

In considering various approaches to tying all of the discussions in
this paper together, the authors found the diagram in Figure 5 to be most
useful. This diagram is a variation of a diagram discussed by Johannsen
(64] for vehicle control tasks and Sheridan [1976] for human control of
vehicles, chemical plants, and industrial robots.

Novigation Guidance Y e -

Figure 5: Hierarchy of Human Behavior
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This diagram can be used to represent well-defined man-machine systems
tasks such as those discussed by Johannsen [64] and Sheridan (65] as well
as less well-structured tasks. For eéxample, goals could mean success in
life, plans could mean a career outline, subplans could mean a scheme to
Succeed in a specific job, and actions ocould mean one's daily activities.
Thus, the diagram has broad applicability.

RS

Py TS

How can one analytically deal with such a general description? If one
looks at control theor: with a very general perspective that includes ;
control with respect to continuous events as well as discrete events, then A
one can subsume most analytical methods (e.g., linear systems theory and
queueing theory) within the category of ocontrol theory. This
generalization, and willingness to expand the set of tools one utilizes, :
enables quantitative analysis of a larger portion of the hierarchy of i
behavior, i -

However, there are limits to context-free analytical modeling. First, 4
there is the very important idea that human behavior mainly reflects the 3
task environment. Thus, searching for a specific analytical model of
general human behavior may only be fruitful to the extent that all task
environments are common. Perhaps then, one should first search for :
commonality among environments rather than intrinsic human characteristics. ‘
In other wcrds, a good model of the demands of the environment may allow a
reasonable initial prediction of human performance. Thus, it is reasonable
to initially assume that the human will adapt to the demands of the task
and perform accordingly.
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A second limitation to analytical modeling is due to the human's lack
of analytical thinking, especially at upper levels of the hierarchy. First
of all, the human is more of a satisficer than an optimizer. Thus, ideas
such as a target tube within control tasks, fuzzy set theory, and some
ooncepts from utility theory deserve more study and application within
man-machine systems. What this means is that one should 1look at
optimization with respect to broad oriteria that allow multiple
satisfactory solutions. An altemative approach to this issue is to
discard optimization, but this would leave the modeler stripped of one of
his most important tools and without a viable alternative.

Beyond the idea of satisficing, another important limitation to
amalytical modeling is that humans simply do not worry about details until
it becomes necessary to do so. Thus, planning can be sketchy, perhaps in
the form of soripts. Such sketchy planning can mean a drastioc reduction in
mental workload and also, that the human has the resources left to deal
with more tasks as well as the flexibility to resct to unforeseen events.
These characteristios are precisely the reasons why humans are often
included in systems.

2
I'd
=
h

=
i
5

However, the soripts idea presents a problem. While everyone might
agree that humans use scripts to expedite performance of many tasks,
knowledge of their existence is not sufficient to prediot performance. One
must know what the soript specifically is., Thus, in complex tasks, one
must measure not only performance (e.g., RMS error) but also the saript,
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This suggests that verbal protocols (perhaps analyzed by a computer that
urderstands natural language) may be increasingly important research tools.

To conclude, this paper has nresented a fairly general, but mainly
verbal, model of human behavior in complex tasks. The ideas discussed have
been based on analysis of a specific complex task (car driving) as well as
a thorough review .of the literature. Three very specific ideas have
energed. First, control should be looked at in a broad sense,
incorporating a wide range of analytical methodologies. Second, the human
satisfices rather than optimizes and criteria should reflect this, Third,
higher-level activities such as planning require approaches that allow
incompleteness, and approaches that capture the process of thes: activities
and not just the resilts,
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