MODAL PROPAGATION ANGLES IN A CYLINDRICAL DUCT WITH FLOW AND THEIR RELATION TO SOUND RADIATION

(NASA-TM-79030) MODAL PROPAGATION ANGLES IN A CYLINDRICAL DUCT WITH FLOW AND THEIR RELATION TO SOUND RADIATION (NASA) 12 p HC A02/MF A01 CSCI 20A 42880 G3/71 Unclas

Edward J. Rice and Marcus F. Heidmann
Lewis Research Center
Cleveland, Ohio

and

Thomas G. Sofrin
Pratt and Whitney Aircraft
East Hartford, Connecticut

TECHNICAL PAPER to be presented at the Seventeenth Aerospace Sciences Meeting sponsored by the American Institute of Aeronautics and Astronautics
New Orleans, Louisiana, January 15-17, 1979
MODAL PROPAGATION ANGLES IN A CYLINDRICAL DUCT WITH FLOW AND THEIR RELATION TO SOUND RADIATION

Edward J. Rice* and Marcus F. Heldmann**
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Introduction

The angles of propagation of the wave fronts associated with the duct modes are derived for a cylindrical duct with a uniform steady flow. These are the angles which the normal of the local wave front makes with the coordinate axes. The main emphasis is upon the propagation angle with respect to the duct axis and its relation to the far-field acoustic radiation pattern. When the steady flow Mach number is accounted for in the duct, the propagation angle in the duct is shown to be coincident with the angle of the principal lobe of far-field radiation obtained using the Wiener-Hopf technique. Different Mach numbers are allowed within the duct and in the external field. Some interesting results of the analysis have implications regarding static noise tests and external flow convective effects. For static tests with a steady flow in an inlet but with no external Mach number the far-field radiation pattern is shifted considerably toward the inlet axis when compared to zero Mach number radiation theory. As the external Mach number is increased the noise radiation pattern is shifted away from the inlet. The theory is developed using approximations for sound propagation in circular ducts. An exact analysis using Hankel function solutions for the zero Mach number case is given to provide a check of the simpler approximate theory.

Abstract

The angles of propagation will be derived from the convective wave equation and its solutions. Additional convective effects must then be considered both in the duct and in the far-field so that inferences can be made regarding the far-field radiation for both static and external flow conditions. These cases are handled by allowing different Mach numbers in the duct and in the surrounding medium. Approximations will be used to obtain simplified equations for the angles of propagation. Exact solutions for these angles using Hankel function solutions are given in Appendix A and are used to check the approximations made in the main text.

Symbols

\(C_{ml} \) modal pressure coefficient, see eqs. (2), (A-2) and (A-3), N/m²

\(c \) speed of sound, or the magnitude of the wave velocity vector normal to a plane wave front, m/sec

\(c_i \) components of vector \(c, i = x, r, \theta, \phi \), m/sec

\(c_R \) resultant velocity vector, m/sec

\(h_1 \) Hankel function of first kind and order \(m \), see eq. (A-4)

\(h_2 \) Hankel function of second kind and order \(m \), see eq. (A-4)

\(j_1 \) Bessel function of the first kind of order \(m \)

\(k \) magnitude of \(\frac{h_1}{h_2} \)

\(K \) dimensionless local wave number, see eq. (A-18)

\(K' \) local wave number vector, m⁻¹

\(k_w \) wave number, \(\omega/c \), m⁻¹

\(k_r \) radial wave number, m⁻¹

\(k_0 \) combined radial-circumferential wave number \((\omega/c) \), m⁻¹

\(k_y \) axial wave number, m⁻¹

\(k_t \) transverse wave number in rectangular duct, m⁻¹

\(K_0 \) circumferential wave number, m⁻¹

\(M \) Mach number

\(M_0 \) Mach number in duct

\(K_m \) Mach number in surrounding medium

\(m \) spinning mode lobe number

\(P \) acoustic pressure, N/m²

\(P_0 \) far-field pressure for static tests, N/m²

*Head-Acoustics Section, Member AIAA
**Aerospace Engineer, Member AIAA
\†Acoustics Consultant
far-field pressure with external flow, \(N/m^2 \)

\[P_{m} \]

outward traveling pressure wave in a cylindrical duct, see eq. (A-2), \(N/m^2 \)

\[P_m^2 \]

inward traveling pressure wave in a cylindrical duct, see eq. (A-3), \(N/m^2 \)

\[r \]

radial coordinate, \(m \)

\[r_0 \]

duct radius, \(m \)

\[S \]

circumferential arc length, \(m \)

\[t \]

time, sec

\[V_{gx} \]

group velocity, \(m/sec \)

\[V_{ph} \]

phase velocity normal to wave front in cylindrical duct, \(m/sec \)

\[x \]

axial coordinate, \(m \)

\[Y_m \]

Bessel function of the second kind and order \(m \)

\[y \]

rectangular coordinate, \(m \)

\[a \]

hardwall duct mode eigenvalue

\[\theta \]

circumferential coordinate, radians

\[\xi \]

mode cut-off ratio, see eq. (11)

\[\phi_m \]

phase of \(H_m \), radians

\[c_r \]

wave front propagation angle relative to radial coordinate, angle of incidence on the wall, deg

\[c_s \]

wave front propagation angle relative to circumferential arc direction, same as \(\phi \), deg

\[c_x \]

wave front propagation angle relative to axial coordinate, deg

\[c_y \]

wave front propagation angle measured from \(y \) coordinate, deg

\[c_\theta \]

wave front propagation angle relative to circumferential coordinate, deg

\[x \]

constant phase value, see eq. (A-10), radians

\[v \]

resultant axial propagation angle in duct, deg

\[\varphi \]

angle between duct axis and peak of the principal lobe of radiation in the far-field, deg

\[\omega \]

circular frequency, radians/sec

Subscripts

\[m \]

designates quantity for \(m \)th circumferential and \(m \)th radial mode

Development of the Propagation Angles

The wave equation in a circular duct with a steady flow can be expressed as,

\[(1 - M_0^2) \frac{\partial^2 P}{\partial t^2} - 2 \frac{M_0 \omega}{c} \frac{\partial P}{\partial t} + \frac{\partial^2 P}{\partial r^2} + \frac{1}{r} \frac{\partial P}{\partial r} + \frac{1}{r^2} \frac{\partial^2 P}{\partial \theta^2} = \frac{\partial^2 P}{\partial \tau^2} \]

(1)

where \(x, \ r, \) and \(\theta \) are the usual cylindrical coordinates, \(t \) is \(t - \frac{r}{c} \), \(M_0 \) is Mach number, \(c \) the speed of sound, and \(P \) is the acoustic pressure. The solution to eq. (1) for the pressure is,

\[P_{m} = C_{m} J_{m} \left(\frac{r}{r_{0}} \right) e^{i(m \phi - \omega t - \xi \theta)} \]

(2)

where \(m \) is the number of lobes for the spinning mode (circumferential order), \(m \) the radial order number of the mode, \(k_{x, m} \) is the axial wave number, \(\omega \) is the circular frequency, \(r_0 \) is the outer wall radius, \(C_{m} \) is the mode eigenvalue, and \(J_{m} \) is the Bessel function of the first kind and order \(m \).

For brevity, the \(m \) subscripts will be deleted, and it will be understood that a single (but quite general) mode is being considered. When eq. (2) is inserted into eq. (1) the result is,

\[\left(\frac{\omega}{r_{0}} \right)^2 + k_{x}^2 = k^2 - 2M_0 \omega k_{x} + M_0^2 k_{x}^2 = (k - M_0 k_{x})^2 \]

(3)

The first term in eq. (3) is a combined radial-transverse wave number often denoted by,

\[\frac{\omega}{r_{0}} \]

(4)

This combination of wave numbers is, as will be shown later, the cause of the trouble in defining some of the propagation angles in cylindrical ducts.

The approximation will now be made that the wave fronts behave locally as plane waves propagating skewed to the coordinate angles of the duct. The final approximate equations will be checked by an exact but more cumbersome solution using Hankel functions in appendix A. The approximate solutions are found to be sufficiently accurate near the cylindrical duct wall where the angle of incidence would be used and where most of the acoustic intensity usually exists. The \(i \)th propagation angle can be defined by,

\[\cos \varphi_i = \frac{k_i}{\sqrt{\sum k_i^2}} \]

(5)

which is derived in appendix B, and where \(i = x, \ y, \) or \(\theta \), is the angle between the normal to the wave front and the \(i \)th coordinate axis.

When there is no flow, eqs. (3) and (4) can be shown to yield the usual result,

\[\sqrt{\sum k_i^2} = k, \text{ for } M_0 = 0 \]

(6)

and then eq. (5) becomes the standard direction cosine expression,

\[\cos \varphi_i = \frac{k_i}{k}, \text{ for } M_0 = 0 \]

(7)

For finite Mach number however, from eqs. (3) and (4),

\[\sqrt{\sum k_i^2} = k \left(1 - \frac{M_0}{k} \right) \]

(8)

Axial Propagation Angle

The angle of propagation with respect to the \(x \)-axis can be found without further approximation.
The axial wave number can be found by rearranging eq. (3) to yield

$$k_x = \frac{\frac{k}{1 - M_D}}{-M_D + \sqrt{1 - (1 - M_D)^2 \left(\frac{\alpha}{kr_0}\right)^2}}$$

(9)

where the plus sign has been selected for the radial wave number for the wave traveling in the positive x direction. Eqs. (5), (8) and (9) then yield,

$$\cos \phi_x = \frac{k_x}{k(1 - M_D)} \frac{-M_D + \sqrt{1 - (1 - M_D)^2 \left(\frac{\alpha}{kr_0}\right)^2}}{\sqrt{1 - (1 - M_D)^2 \left(\frac{\alpha}{kr_0}\right)^2}}$$

(10)

where all of the quantities in eq. (10) are known. It is convenient here to introduce the mode cut-off ratio,

$$\xi = \frac{kr_0}{\alpha} \sqrt{1 - M_D}$$

(11)

which is consistent with the derivation of Soffin and McCann, (9) but where cut-off occurs when $\xi = 1$. Eq. (10) then becomes,

$$\cos \phi_x = \frac{-M_D + \sqrt{1 - 1/\xi^2}}{1 - M_D \sqrt{1 - 1/\xi^2}}$$

(12)

Note that when $M_D = 0$

$$\cos \phi_x = \frac{\sqrt{1 - 1/\xi^2}}{1}$$

(13)

or

$$\sin \phi_x = 1/\xi, \text{ for } M_D = 0$$

(14)

which is the same relationship as given for the angle of the peak of the principal lobe of far field radiation as given in refs. 4 and 10. This correspondence between propagation angle with respect to the duct axis and far-field radiation has been noted previously for zero Mach number in refs. 1 to 3. This correspondence will be shown, in the next section, to hold for cylindrical ducts with the same flow in the duct and in the surrounding medium.

Radial and Circumferential Propagation Angles

As noted earlier, eq. (12) can be obtained without additional approximations. However, the angle of incidence on the wall (ϕ_x) and the angle to the transverse or circumferential direction (ϕ_θ) cannot be obtained exactly using the present method because as shown in eqs. (3) and (4), the radial and transverse wave numbers are combined through the mode eigen value (α). The transverse wave number can be obtained from eq. (2) as follows,

$$m\theta = k_\theta \phi_\theta$$

It is reasonable to assume that

$$k_\phi = \frac{m}{r}$$

(16)

where

$$k_{2T} = k_T^2 + k_\theta^2$$

(17)

which is the result that would be obtained using a rectangular approximation to a thin annulus and is equivalent to the approach suggested by Cumpsty. Thus using eqs. (4), (16) and (17),

$$k_T = \sqrt{\alpha^2 \left(\frac{\alpha}{\tau_D}\right)^2 - \left(\frac{\alpha}{\tau}\right)^2}$$

(18)

and then using eqs. (5) and (8) the other propagation angles can be calculated as

$$\cos \phi_T = \frac{-M_D + \sqrt{1 - 1/\xi^2}}{k(1 - M_D) \sqrt{1 - (1 - M_D)^2 \left(\frac{\alpha}{kr_0}\right)^2}}$$

(19)

and

$$\cos \phi_\theta = \frac{-m}{kr_0(1 - M_D)}$$

(20)

Notice that ϕ_T and ϕ_θ vary with duct radius while ϕ_x does not. Introducing the mode cut-off ratio (eq. (11)) and letting $r = r_0$, the angle of incidence at the wall can be written as,

$$\cos \phi_x = \frac{\sqrt{1 - M_D^2 \sqrt{1 - 1/\xi^2}}}{1 - M_D \sqrt{1 - 1/\xi^2}}$$

(21)

It is now easy to see why the cut-off ratio approximately correlated the optimum wall impedance values for acoustic liners in ref. 4. For a given Mach number and for small m/α the angle of incidence upon the wall is a function only of cut-off ratio. The scatter in the above mentioned correlation occurred mainly for the high circumferential lobe number, low radial order modes where m/α was not small. Eq. (21) shows this ratio to be an additional variable when it is not small. Perhaps a better correlating parameter for optimum impedance would be the angle of incidence upon the wall rather than the cut-off ratio. This has been investigated and will be reported in ref. 8. It should be noted that the soft wall boundary condition will alter the angle of incidence from that given in eq. (21).

Far-Field Radiation Considerations

As mentioned previously the axial angle of propagation has been shown to correspond to the angle of maximum noise propagation in the far-field for zero Mach number. However, for the case of uniform Mach number both in the duct and in the surrounding medium, an expression can be written
from the results of refs. 2, 3, and 12 as,
\[
\cos \psi_p = \sqrt{1 - \frac{1}{M^2}} \left(1 - \frac{1}{\sqrt{1 - \frac{1}{M^2}}} \right)^{1/2}
\]
(22)

where \(\psi_p\) is the approximate angle for the peak of the principal lobe of radiation in the far field. The zero Mach number case of eq. (22) has been shown to be a close approximation for the location of the peak of the principal lobe of the far-field radiation pattern for unflanged ducts in ref. 3. Saul (13) has shown that using the duct eigenvalue to obtain estimates of the principal lobe peak angle can result in a small error for the case of a flanged duct radiation pattern and he provides a method for applying a correction to this angle if it is considered necessary.

The first objective here is to show that the resultant axial angle of propagation in the duct with Mach number coincides precisely with the result given by eq. (22). This will provide confidence that the convective effects upon radiation are being properly modeled. Then the more interesting case of different Mach numbers within and outside the duct will be derived.

Resultant Axial Propagation Angle in the Duct

The geometry of the wave propagation vectors is shown in fig. 1, and the derivation which follows is considered to be done at the outer wall. Since the axial propagation angle \(\tau_x\) does not vary with radius in the present approximate analysis it is not crucial with regard to the radial position used. However, in appendix A, the exact solution using Hankel functions shows \(\tau_x\) to actually be a function of radius so the approximate analysis is truly valid only near the outer wall.

In fig. 1, the vector \(c\) (speed of sound) is normal to the wavefront. The propagation angles \(\phi_c, \Theta_c, \text{ and } \phi_x\) are the angles between the vector \(c\) and the coordinate axes and are calculated as in eqs. (12), (19), and (20). The components of \(c\) are calculated from,
\[
c_z = c \cos \phi_c, \quad c_x = c \cos \Theta_c, \quad c_\theta = c \sin \phi_c \sin \Theta_c
\]
(23)

The resultant direction of propagation will not be normal to the wavefront but will be in the direction of the resultant vector \(c_R\). The steady flow velocity \((c_b)\) must be added to \(c_x\) in a manner similar to that done in refs. 6 and 7. The resultant vector \(c_R\) contains the combined effect, due to duct Mach number, of the change in wavefront direction and the drift velocity.

The angle which is now of interest for comparison with the far-field radiation principal lobe peak (eq. (22)) is the angle \(\psi\) between the resultant vector \(c_R\) and the duct axis \((x)\). This angle can be defined by,
\[
\cos \psi = \frac{c_x + c_b \cos \phi_x}{c_R}
\]
(24)

The vectors \(c_R\) and \(c_b\) are considered constant in the derivation. After some manipulation the numerator of eq. (24) can be shown to be,
\[
c_x + c_b \cos \phi_x = \frac{c(1 - M^2) \sqrt{1 - \frac{1}{M^2}}}{1 - M_b \sqrt{1 - \frac{1}{M^2}}}
\]
(25)

and \(c_R\) is,
\[
c_R = \frac{c \sqrt{(1 - M^2) (1 + M_b \sqrt{1 - \frac{1}{M^2}})}}{\sqrt{1 - M_b \sqrt{1 - \frac{1}{M^2}}}}
\]
(26)

Thus eq. (24) becomes
\[
\cos \psi = \sqrt{1 - \frac{1}{M^2}} \left(1 - \frac{1}{\sqrt{1 - \frac{1}{M^2}}} \right)^{1/2}
\]
(27)

A comparison of eqs. (22) and (27) shows that they are identical. The subscript appears on \(M_p\) in eq. (27) to denote that it is the Mach number in the duct. As the wave front leaves the duct, the angle \(\tau_x\) will not be changed (refraction effects neglected) and if the Mach number outside the duct is the same as in the duct (as assumed for derivation of eq. (22) in ref. 3) then the drift velocity effect is also the same as in the duct. Thus it is now evident that for the case which can be checked by exact radiation analysis that the resultant axial propagation angle in the duct is identical to the angle of the peak of the principal lobe in the far field.

Some other interesting observations can be made from the above relationships. The axial component of the resultant velocity vector \(c_R\), as given by eq. (25), is the axial group velocity which could be derived from eq. (3) by applying
\[
\frac{d\psi}{dx} = \frac{dx}{dk_x}
\]
(28)

Also at mode cut-off \((t = 1)\) the axial group velocity is zero and \(\psi = 90^\circ\). In contrast, from eq. (12), the axial propagation angle \(\phi_x\) at cut-off is,
\[
\cos \phi_x = \frac{-M_b}{t=1}
\]
(29)

As an example for an inlet with \(M_p = 0.4, \psi_p = 66.4^\circ\) while for an exhaust duct with \(M_p = 0.4, \psi_x = 113.6^\circ\). Thus, for an inlet, the wavefront is tilted toward the axis which has important implications upon static test radiation patterns as will become more evident in the next section. For the exhaust case the wave appears to be going in the wrong direction at mode cut-off. It is the angle \(\psi\) and not \(\phi_x\) which governs the sound propagation in the duct. This convective drift velocity effect has been used in refs. 6 and 7, however, it was not related to modal properties.
Effect of External Mach Number on Far-Field Radiation

Previous far-field radiation theories applicable to engine inlets (3, 14) have dealt with the special cases of zero Mach number or uniform Mach number inside and outside the duct. For an exhaust duct, differences in Mach number and external Mach number across a discontinuous slip layer have been handled in an exact analysis by Savkar (9, 16) and in an approximate ray tracing approach by Jacques, (7) However, for an engine inlet there are no sharp discontinuities along cylindrical surfaces out in front of the inlet which would be required for these latter two studies to be valid. The following analysis is proposed to account for changes in the far-field radiation pattern occurring in static tests and in tests with external flow.

In the previous sections the effects of duct Mach number upon the angles of propagation in the duct have been derived and have been shown to be considerable. The propagation angle which has been shown to be controlling for the far-field radiation (when properly corrected for convective drift velocity) is that between the wave front normal and the duct axis. As the wave front passes out of the duct inlet, only diffraction and refraction can change the direction of this wave front. Diffraction scatters the sound and causes the lobed pattern in the far-field, but the bulk of the acoustic power still radiates in the predesignated direction determined by the resultant axial propagation angle. Refraction through velocity or temperature gradients can bend the wave fronts and could possibly be included prior to the application of the following analysis. For the present, however, refraction effects will be neglected.

It is thus assumed that the axial propagation angle θ derived in the duct environment is also valid in the far-field. It is thus only necessary to apply the external drift velocity correction which in general will be different from that of the duct.

In the far-field, the normal to the wave front lies essentially in the radial-axial plane and only axial and radial velocity components need to be considered in a cylindrical coordinate system. Fig. 2 shows a sketch of the velocity vectors. All that needs to be done is to apply the external field (flight or static) drift velocity correction to the vector C. Recall that θ is unchanged from its value in the duct and is given by,

$$\cos \psi_x = \frac{c_x}{c} = \frac{k_x}{k(1 - \frac{M_D k}{k})}$$

(30)

The principal lobe of radiation can be expected at an angle where,

$$\cos \psi_p = \frac{c_x + \cos \theta}{\psi_x}$$

(31)

After some manipulations this angle can be expressed by,

$$\cos \psi_p = \left[\frac{M_o - M_D + (1 - M_D \cos \theta) \sqrt{1 - \frac{1}{t^2}}}{\left(1 - \frac{M_D \sqrt{1 - \frac{1}{t^2}1 + M_D \cos \theta - 2M_D} + (2M_D - M_D^2) \sqrt{1 - \frac{1}{t^2}}\right)^{1/2}} \right]$$

(32)

If the external velocity is the same as the duct steady flow velocity, then eq. (32) reduces to the special case of eq. (27). Eq. (32) can be considered as an equation describing the effect of an wind tunnel velocity since in general $M_o \neq M_D$.

Far-Field Angles for Static Tests

An important special case of eq. (32) is that of $M_o = 0$ which is applicable for static engine tests. Eq. (32) then reduces to,

$$\cos \psi_p |_{M_o=0} = \frac{-M_D + \sqrt{1 - \frac{1}{t^2}1 - \frac{1}{t^2}}}{1 - M_D \sqrt{1 - \frac{1}{t^2}}}$$

(33)

which is of course the same as the ψ_x relationship given by eq. (22). Sample calculations using eq. (33) are shown in fig. 3. Of particular interest are the modes near cut-off. If the duct Mach number is zero, the principal lobe of far-field radiation will occur at 90°. This of course is also predicted by previous radiation theories when $M_D = 0$ or when $M_D = M_o$. However, as the inlet duct Mach number increases, the near cut-off modes propagate more toward the axis. For example at a typical inlet Mach number of -0.4, $\psi_p = 66.6^\circ$. At $M_o = -0.8$, $\psi_p = 36.7^\circ$ which must account for at least some of the apparent sideline attenuation of a near sonic inlet static test. For modes above cut-off the same trends are observed with a shift of the sound radiation toward the axis.

The results shown in fig. 3 are qualitatively corroborated by acoustic suppression results for the blade passage frequency as reported in refs. 15 and 16. The maximum suppression occurred at 70° (only 10° intervals measured) from the inlet at full engine speed with a Mach number $M_D = 0.375$. For these static tests the blade passage frequency should be rich in modal content near cut-off. Previous radiation theories would thus predict a peak attenuation near 90° for these most easily attenuated modes near cut-off. The present radiation theory, eq. (33) or fig. 3, would predict that peak attenuation should occur near 68° which is in good agreement with experimental results. Also apparent in the data of refs. 15 and 16, is the fact that as engine operating speed and the Mach number is reduced the peak attenuation moves more toward the sideline which is also in agreement with the present theory.

Far-Field Radiation with External Flow

Fig. 4 shows the far-field radiation peak for near cut-off modes when the surrounding medium is also moving which would simulate a wind tunnel test. Eq. (33) as used with $\psi = 1$ for various duct Mach
numbers (M_w) and external flow Mach number (M_e). When $M_w = 0$ the results are the same as in fig. 3. However, as the tunnel speed increases (M_w presumed to remain nearly constant) the sound radiation moves back toward the sideline. For example, some test values simulating approach and takeoff conditions are shown on fig. 4. For the approach condition ($M_w = -0.4$) a static test would show the near cutoff modes propagating at about 66° while in a wind tunnel this radiation would occur near 78° for $M_e = -0.2$. The difference between static and tunnel test would be 15° (from 53° to 68°).

Since there is a difference between static and wind tunnel far-field radiation patterns even for a specific mode, a correction should be applied to wind tunnel data before it is used in a fly-over calculation. Assuming that an inflow control device has been used in the test data so that the model structure has been simulated, the difference between the static test angles (ϕ_s) and the tunnel test angles (ϕ_t) must be reconciled. An expression can be derived relating these two angles by eliminating the cut-off ratio (ℓ) between eqs. (12) and (32) or more simply by considering the geometric relations shown in fig. 2. The final expression is,

$$\cos \phi_t = \frac{M_e + \cos \phi_s}{\sqrt{1 + M_e^2 + 2M_e \cos \phi_s}}$$

(34)

This is equivalent to the expression of ref. 17 which deals with external convective effects upon noise radiation. This expression shows that those modes which propagate at far-field angle ϕ_s in a static test, will propagate at angle ϕ_t in a wind tunnel test. This correction can be considerable. For example, with a tunnel speed of only $M_w = -0.2$, the static data measured at 50°, 60°, and 70° should be shifted to 60°, 71°, and 81.5° for a wind tunnel test. This will have the effect of shifting the usually higher sound pressure level data of these two angles back more toward the sideline. It was assumed in the above discussion that the principal modes dominate the radiation pattern and that even for a multimodal pattern the shift will thus be properly described by eq. (34).

Technically a correction should also be made for the sound pressure level when the angle shift of eq. (34) is made. By maintaining acoustic power and accounting for the principal lobe width change (solid angle change) which occurs with the angle shift the following expression can be derived,

$$\frac{P_0^2}{P_s^2} \approx \frac{(1 + M_e^2 + 2M_e \cos \phi_s)^{3/2}}{(1 + M_e \cos \phi_s)}$$

(35)

For tunnel Mach numbers between -0.2 and -0.4 the sound pressure level shift for the static test angles between 50° and 90° is less than 1.5 dB. Thus, for the sideline angles of most interest the sound pressure level correction is probably not significant, although the angle shift of eq. (34) should definitely be considered. It should also be noted that refraction effects within the velocity gradients near the inlet for static tests have not been considered here. These effects should not be great, however, for the near sideline angles of most interest.

While the radiation theory presented in this paper appears to receive preliminary confirmation from static engine tests, there is not yet any confirmation of the wind tunnel effects since there were no data available. Careful testing would be required to insure that the results were not masked by other factors. For example, the modal structure of a fan source would be expected to be different for static testing than for wind tunnel testing. Inflow control devices (screens) would be required to provide a static test noise source which would have a chance to simulate the model content produced by a turbofan in a wind tunnel. It should be noted that the corrections discussed above must be made for data obtained in a wind tunnel test since it is the directivity pattern described as a function of ϕ_s and not ϕ_t which is projected to the stationary observer in a simulated fly-over calculation.

Concluding Remarks

The angles of propagation for the wave front making up a duct mode have been presented here with Mach number in the duct. Approximate solutions have been derived to provide simple utilitarian expressions. These expressions are valid only near the outer wall which is the most important region since the bulk of the acoustic intensity is located there and this is also where incidence angles would be of interest. Exact solutions using Hankel functions are given in appendix A and these corroborate the approximate solution accuracy near the outer wall. The main emphasis of this paper was to use the axial propagation angle to infer information about the far-field radiation pattern. The resultant axial angle of propagation in the duct was shown to agree exactly with the peak of the principal lobe of far-field radiation obtained from formal radiation calculations when the Mach number is uniform everywhere. The present solution was then extended to cover the case of different Mach numbers inside and outside the duct for which exact calculations have not been available for engine inlet configurations. The new analysis shows that for static engine tests the inlet radiation can be expected to be shifted considerably toward the sideline over that obtained from previous analysis. This static test radiation shift can be shown to have preliminary verification. An external Mach number convective effect is also predicted which would shift the sound radiation back toward the sideline (compared to a static test) as the external flow velocity increases. The refraction of the sound by the flow gradients near the inlet could possibly be included in the analysis, but this effect has not been included here.

Appendix A

Cylindrical Wave Synthesis of a Ducted Spinning Mode

The exterior radiation field of an infinite cylinder sustaining standing circumferential surface oscillations, synchronous in the axial direction, is shown by Morse and Ingard (19) to be described by the Hankel function combination, $\cos(m \theta) H_{-1/2}^{(1)}(kr) \exp(-jkr)$. As a separate matter in the same reference it is demonstrated that the modal components of the pressure field inside a hardwall rectangular duct may be synthesized by complementary pairs of inward and outward plane wave trains.
These concepts may be combined and extended to describe the field of a spinning mode in a cylindrical duct.

Let the (complex) pressure \(P_m = P_m(x, \theta, r, t) \) in the duct be expressed as the sum of a pair of cylindrical waves:

\[
P_m = P^1_m + P^2_m \quad (A-1)
\]

The radially outward wave is given by

\[
P^1_m = \frac{1}{2} C_m \frac{H^{(1)}(x \sqrt{\frac{a}{r_0}})}{x} e^{i(k + \lambda_0 - \omega t)} \quad (A-2)
\]

and the matching inward wave is

\[
P^2_m = \frac{1}{2} C_m \frac{H^{(2)}(x \sqrt{\frac{a}{r_0}})}{x} e^{-i(k + \lambda_0 - \omega t)} \quad (A-3)
\]

The eigenvalue \(\lambda_0 \) as in the main text should contain the subscripts \(m, p \) but these have been dropped for brevity. \(H^{(1)} \) and \(H^{(2)} \) are Hankel functions of the first and second kinds:

\[
\begin{align*}
H^{(1)}_m &= J_m + i Y_m \\
H^{(2)}_m &= J_m + i Y_m
\end{align*} \quad (A-4)
\]

Inward and outward wave designations are applied as a consequence of the far-field nature of \(P^1_m \) and \(P^2_m \), which is disclosed by the asymptotic behavior of the Bessel functions:

\[
P^1_m P^2_m - \frac{1}{2} C_m \sqrt{\frac{2 \pi}{x r_0}} e^{\frac{i(k + \lambda_0 - \omega t)}{2} 2m + 1} \left(\frac{a}{r_0} \right) \quad (A-5)
\]

Two comments may be helpful. First, it is obvious from eqs. (A-2), (A-3), that the sum of \(P^1_m \) and \(P^2_m \) gives the duct mode field of eq. (2). Second, the opposite signs applicable to \(P^2_m \) require the wave to move radially inward in order to conserve phase.

The near-field behavior of the outward wave may be found by representing the Hankel function \(H^{(1)}_m \) in polar form:

\[
H^{(1)} \left(\frac{a x}{r_0} \right) = h \left(\frac{a x}{r_0} \right) e^{i \phi_m \left(\frac{a x}{r_0} \right)} \quad (A-6)
\]

where the amplitude

\[
h \left(\frac{a x}{r_0} \right) = \sqrt{\frac{2}{\pi} \left(\frac{a x}{r_0} \right)} \quad (A-7)
\]

and the phase of \(H^{(1)}_m \), is

\[
\phi_m \left(\frac{a x}{r_0} \right) = \arctan \left(\frac{Y_m \left(\frac{a x}{r_0} \right)}{X_m \left(\frac{a x}{r_0} \right)} \right) \quad (A-8)
\]

With these substitutions, the general outward wave expression, eq. (A-2) becomes

\[
P_m = \frac{1}{2} C_m \frac{H^{(1)}(x \sqrt{\frac{a}{r_0}})}{x} e^{i(k + \lambda_0 - \omega t)} \quad (A-9)
\]

The local wave direction and phase velocity are obtained by examining the exponent

\[
\lambda = k_x x + \lambda_0 + \frac{a x}{r_0} - \omega t \quad (A-10)
\]

A plane that is locally tangent to the wave front will be governed by the requirement that the phase, \(\lambda \) is conserved over a small displacement occurring during a corresponding small time interval. For this phase conservation \(d\lambda = 0 \) or

\[
dx = k_x dx + \frac{a}{r_0} \frac{d}{dr} \left(\frac{a x}{r_0} \right) dr = \omega dt = 0 \quad (A-11)
\]

Writing

\[
\zeta^\prime \left(\frac{a x}{r_0} \right) = - \frac{d}{dr} \left(\frac{a x}{r_0} \right) \quad (A-12)
\]

and introducing the circumferential arc length coordinate

\[
S = r \quad (A-13)
\]

the equation of the local phase plane becomes

\[
k_x dx + \frac{a}{r_0} ds + \frac{\zeta^\prime}{r_0} \frac{a x}{r_0} dr = \omega dt \quad (A-14)
\]

or

\[
k_x dx + k_s ds + k_r dr = \omega dt \quad (A-14a)
\]

The coefficients of the differential coordinates in (A-14) are the axial, tangential, and radial components of the local wave number vector, denoted by \(\mathbf{k} \). On dividing (A-14) by the magnitude of \(\mathbf{k} \), denoted by \(|\mathbf{k}| \) there follows:

\[
\cos \zeta \frac{dx}{k_x} + \cos \varphi \frac{ds}{k_s} + \cos \varphi \frac{dr}{k_r} = \frac{dt}{|\mathbf{k}|} \quad (A-15)
\]

where

\[
\begin{align*}
\cos \zeta &= k_x / |\mathbf{k}| \\
\cos \varphi &= \cos \varphi \left(\frac{a x}{r_0} \right) / |\mathbf{k}| \\
\cos \varphi &= \frac{a}{r_0} \frac{a x}{r_0} / |\mathbf{k}|
\end{align*} \quad (A-16)
\]

\[
|\mathbf{k}| = \sqrt{k_x^2 + \left(\frac{a x}{r_0} \right)^2 + \left(\frac{a x}{r_0} \right)^2} \quad (A-17)
\]
Eq. (A-15) is the normal form of a plane with direction angles τ_x, τ_y, τ_z, traveling at a local phase velocity $v_{ph} = \omega/k$. If K is expressed as:

$$K = kK' = k \left(\frac{k_x}{c} \right)^2 + \left(\frac{k_y}{c} \right)^2 + \left(\frac{k_z}{c} \right)^2 \frac{\gamma^2 - (\gamma'0)^2}{\gamma c}$$

the magnitude of the phase velocity becomes

$$v_{ph} = \frac{\sqrt{\frac{\gamma^2 - (\gamma'0)^2}{\gamma c}}}{K K'} = \frac{c}{K'}$$

(A-19)

Thus the phase velocity differs from the speed of sound by the factor $1/K'$. It can be shown that $K' > 1$ and approaches 1 as $(\gamma r_o/c) \to \infty$, so that the near-field phase velocity is always subsonic. This means that the sum of the squares of the wave numbers k_x, k_y, k_z, adds up to K^2, which is larger than the square of the ordinary wave number, $k = \omega/c$.

Further work requires evaluation of $H_{\pi}^0(\gamma r_o/c)$, the derivative of the phase of the Hankel function $H_{\pi}^0(\gamma r_o/c)$, and evaluating $H_{\pi}^0(\gamma r_o/c)$. It is found that

$$H_{\pi}^0(\gamma r_o/c) = \frac{2 \gamma r_o}{\gamma^2 - (\gamma'0)^2} \left(\frac{\gamma^2 - (\gamma'0)^2}{\gamma c} \right)$$

(A-20)

This expression allows computation of the local wave speed and direction angles for a wave at any radius using eqs. (A-16) to (A-19).

Some calculations were made for the wall radius location $r = r_0$, in the $M_D = 0$ case, for cutoff ratios of 1 and 2. The tabulation in Table A1 presents values of K' and the wall incidence angle τ_x (eq. (A-16)). For comparison, values of τ_x computed from the main text eq. (21), which is based on the approximation $K = k$ or $K' = 1$, are included. These values show that the greatest departures from "conventional" or far-field behavior occur near cutoff for the lowest order m and n modes. The departures, however, are quite minor:

For the "worst" case, the $(0,0)$ mode at cutoff, the phase velocity departs from conic by 6 percent (A-18) and the exact and approximate wall incidence angles differ by about 20. Thus the essential assumption used in deriving the results of the main text, namely that for $M_D = 0$ the squares of the axial, tangential, and radial wave-number components sum to the square of the ordinary wave number, $k = \omega/c$, at the wall radius, is in excellent practical agreement with results of the exact analysis. This assumption implies that the eigenvalues, which are independent of M_D, are related by $k_S = k_T = k_{r_0} = (c/r_0)^2$.

Finally, it may be of some interest to note that the situation changes radically as the duct axis is approached more closely. Calculations show the following ($m \neq 0$):

$$K' = \frac{1}{2 \gamma^2}$$

$$v_{ph} = 0$$

$$\tau_x = 90^\circ$$

$$\tau_y = 90^\circ$$

$$\tau_z = 0$$

Thus near the axis the local wave velocity is very small and is essentially circumferential in direction. This contrasts with the wall behavior where the phase velocity is almost sonic and the wave direction is predominantly axial-radial.

<table>
<thead>
<tr>
<th>Mode (m,n)</th>
<th>Cutoff ratio $\xi = 1$</th>
<th>Cutoff ratio $\xi = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K'</td>
<td>τ_x(exact)</td>
<td>τ_x(approx)</td>
</tr>
<tr>
<td></td>
<td>deg</td>
<td>deg</td>
</tr>
<tr>
<td>1,0</td>
<td>1.0633</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>1,1</td>
<td>1.0050</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>1.0019</td>
<td>11.6</td>
</tr>
<tr>
<td>2,0</td>
<td>1.0662</td>
<td>38.8</td>
</tr>
<tr>
<td>2,1</td>
<td>1.0043</td>
<td>17.3</td>
</tr>
<tr>
<td>2,2</td>
<td>1.0019</td>
<td>11.6</td>
</tr>
<tr>
<td>4,0</td>
<td>1.0334</td>
<td>48.7</td>
</tr>
<tr>
<td>4,1</td>
<td>1.0030</td>
<td>25.4</td>
</tr>
<tr>
<td>4,2</td>
<td>1.0012</td>
<td>18.4</td>
</tr>
<tr>
<td>8,0</td>
<td>1.0232</td>
<td>54.1</td>
</tr>
<tr>
<td>8,1</td>
<td>1.0030</td>
<td>34.4</td>
</tr>
<tr>
<td>8,2</td>
<td>1.0010</td>
<td>26.7</td>
</tr>
<tr>
<td>16,0</td>
<td>1.0158</td>
<td>60.7</td>
</tr>
<tr>
<td>16,0</td>
<td>1.0018</td>
<td>43.4</td>
</tr>
<tr>
<td>16,2</td>
<td>1.0010</td>
<td>35.8</td>
</tr>
</tbody>
</table>
Appendix B

Wave-front Propagation Angles with Flow

This appendix is intended to provide a simplified example of obtaining the angles of propagation of the wave fronts in a duct with flow. To serve this purpose a simple two dimensional rectangular geometry will be used. The wave equation solution can be given as,

\[p = e^{i(\omega t - k_x x)} \cos k_y y \]

\[= \frac{1}{2} e^{i(\omega t - k_x x)} \left[e^{-i k_y y} + e^{i k_y y} \right] \]

(B-1)

The second representation in eq. (B-1) breaks the modal cosine function into the two wave fronts representing this mode. The first wave travels in the +y direction while the second wave travels in the -y direction. Concatrating on the +y moving wave the exponential phase quantities are gathered together and set equal to a constant to represent a constant phase line or wave front as,

\[\omega t - k_x x - k_y y = \text{constant} \]

(B-2)

If time \(t \) is also considered as a constant, an instantaneous representation of the slope of the wave front can be obtained by differentiating eq. (B-2) to obtain,

\[\frac{dx}{dt} = -\frac{k_x}{k_y} \]

(B-3)

Now a sketch of the wave front can be constructed as in fig. B. The angles of interest are \(\zeta_x \) and \(\zeta_y \) the angles between the wave front normal and the coordinate axes. By similarity of triangles these angles can also be identified in the triangle drawn to show the wave front slope. It is now obvious that,

\[\cos \zeta_x = \frac{k_x}{\sqrt{k_x^2 + k_y^2}} = \frac{k_x}{\sqrt{k_x^2 + k_y^2}} \]

(B-4)

and

\[\cos \zeta_y = \frac{k_y}{\sqrt{k_x^2 + k_y^2}} = \frac{k_y}{\sqrt{k_x^2 + k_y^2}} \]

(B-5)

Up to this point in the derivation there was no consideration of the duct Mach number \(M_D \). This effect is obtained by inserting the pressure solution into the wave equation to obtain the relationship between the wave numbers as,

\[k_x^2 + k_y^2 = k^2 - 2M_D^2k_x + M_D^2k_y^2 = (k - M_D k_x)^2 \]

(B-6)

which is similar to eq. (3) in the main text. Eq. (B-6) immediately gives

\[\sqrt{k_x^2 + k_y^2} = k - M_D k_x \]

(B-7)

and some rearrangement of eq. (B-6) yields,

\[k_x = \frac{k - M_D k_x}{\sqrt{1 - M_D^2}} \]

(B-8)

The wave number \(k_x \) is not a function of \(M_D \), but since the denominators of eqs. (B-4) and (B-5) are functions of \(M_D \), then both \(\zeta_x \) and \(\zeta_y \) depend upon duct Mach number.

References

