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Abstract

The angles of propagation of the wave fronts
associsted with the duct modes are derived for a
cylindricel duct with & uniform steady flow. These
are the angles which the normal of the local wave
front makes with the coordinate axes. The main em-
phasis is upon the propagation angle with respect to
the duct axis and its relation to the far-{ield
acoustic radiation pattern. When the steady flow
Mach number is accounted for in the duct, the propa-
gation angle in the duct is shown to be coincident
with the angle of the principsl lobe of far-field
radiation obtained using the Wiener-Hopf technique.
Different Mach numbers are allowed within the duct
ard in the external field. Some interesting results
of the analysis have implications regarding static
noise tests and external flow convective effects.
For static tests with & steady flcw in an inlet but
with no external Mach number the far-field radiation
pattern is shifted considerably toward the inlet
axis when compared to zero Mach number radiation
theory. As the external Ma~h number is increased
the noise radiation pattern is shifted away from the
inlet axis. The theory is developed using approxi-
mations for sound propagstion in circular ducts. An
exact analysis using Henkel function solutions for
the zero Mach number case is given to provide a
check of the simpler approximate theory.

Introduction

The angle which the wave front normal vector
makes with the duct axis is significant since this
angle governs the location of the principal lobe of
the far-field rasdiation. This has been shown in
semi-infinite recrtangular ducts with uniform flow by
wright(l and CPFdCl%Z) and in circulzg ducts for
the no-flow case by Homicz and Tordi. ) Steady
flow in the duct will be shown to have en important
effect upon the far-field radistion pattern.

Also of sfignificance is the angle which the
wave front normal mskes with the radia® ~. ordinate
wvhich is the angle £ incidence upon tae wall. This
angle of incidence is f‘niimately related t? t?s mode
cut-off ratio which has been shown by Rice o to
correlate the performance of acoustic suppressors.
The angle of incidence upon the wall is also neceia)
sary for ray tracing techniques as used by Posey(7)
Rey tracing techniques were also used by Jacques
to obtsin spproximate fiight effects upon sound ra-
diating from jet exl st pipes. 1In refs, 6 and 7
the connection betweer the acoustic ray angles and
the duct modes wer- not considered. 1t should be
noted vhen considering srgles of propsgation of the
wave fronts comprising s moc: i{n s soft-wall duct,
that these angles will be modified by the acoustic
liner boundary conditi-a. This effect will be ve-
ported in a separate pape:r.
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The angles of propagation will be derived from
the convective wave equation and its solutions.
Additional convective effects must then be consia-
ered both in the duct and in the far-fieid so that
inferences can be made regarding the far-field radi-
ation for both static and external flow conditioms.
These cases are handled by allowing different Mach
numbers in the duct and in the surrounding medium.
Approximations will pe used to obtain simplified
equations for the angles of propagation. Exact
solutions for these angles using Hankel function
soluti ms are given in appendix A and are used to
check the approximations made in the main text.

Symbols

cnp modal pressure coefficient, see eqs. (2),
(A-2) and (A-3), N/m?

c speed of sound, or the msgnitude of the wave
velocity vector normal to a plane wave
front, m/sec

< components of vector ¢, i * %, r, 8, m/sec

R resultant velocity vector, =u/sec

Hankel function of first kind and order m,
see eq. (A-4)
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Hankel function of second kind and order m,
see eq. (A-4)

magnitude of Hél)

o
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[

Bessel function of the first kind of order m

8

magnitude of i, m.1

dimensionless local wavenumber, see eq. (A-18)

local wave pumber vector, w1

vave number, w/c, ol

radisl wave number, m™}
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combined tafial-circumferential wave number
G;/ro), 'y
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axial wave number, m"!

transverse wave pumber in rectanguler duct,
m-

circumferentisl wave number, w1

Mach number

Mach number in duct

Mach number in surrounding medium

spinning mode lobe number

scoustic pressure, N/m2

a-u-vaf':é:::cr

far-field pressure for static tests, N/m2

e,



far-field pressure with external flow, N/mz

3
o
P; outward traveling pressure wave in a cylin-
drical duct, see eq. (A-2), N/m
Pi invard traveling pressure wave in 8 cylin-
drical duct, see eq. (A-3), N/w?
Y radial coordinate, m
Y, duct radius, m
circumferential arc length, m
t time, sec
Vgx axial group velocity, m/sec
vph phase veloci.y normal to wave front in cylin-
drical duct, m/sec
x sxial coordinate, m
Yo Bessel function of the second kind and order
m
y rectangular coordinate, m
a hardwall duct mode eigenvalue
e circumferential coordinate, radians i);
£ mode cut-off ratio, see eq. (11) -
o rhase of H(l), radians
m m
Gr wave front propagacion angle relative tc
radial coordinate, angle of incidence on
the wall, deg
Q wave front propagation engle with respect to
s circunferen ial arc direction, same as S
deg
P, wave front propagation angle relative to
axial coordinate, deg
¢y wave front propagaticn angle measured from y
coordinate, deg
@ wave front propagation angle relative to
cir unferential coordinate, deg
x constant phase value, see eq. (A-10), radians
¥ resultant axial propagsation angle in duct,
deg
wP angle between duct axis and peak of the
principal lobe of radiation in the for-
field, deg
w circular frequency, radians/sec
Subscripts
o designates quantity for mth  circunferential

and pt radial mode

Development of the Propapation Angles

The wave equaticn in a circular duct with s
steady flow can be expressed as,

3% M 3% azp 19p
(A-M) == -2 — 7+ + 3=
H% axz ¢ oxdt ar2 r or
2 2
+.l2.§_§.-_1__a.% )
- T:] ? dt

where x, r, and 6 are the usual cylindrical
coordinates, t 1s t'uwc_ p {s Mach number, ¢ the
speed of sound, snd P is the acoustic pressure,
The solution to eq. (.) for the pressure is,

k. 1 (we-k xX-mf )
P w=C_ J (—Bﬂ-f) e Lllas )
W m Cm\r

where m 1s the number of lobes for the spirning
mcde (circumferential order), yu the radial order
nunter of the mode, is the axisl wave number,
Ww s the circular freéuency. To 1is the outer wall
radius, is the mode eigenvalve, snd J, is the
Bessel function of the first kind and order m.

For brevity, the mu subscripts will be de-
leted, snd it will be understood that a single (but
quite general) mode is being considered. When
eq. (2) is inserted into eq. (1) the result is,

a

2
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The first term in eq. (3) is a combined radial-
transverse wave number often denoted by,
. .
‘ 'l)ﬁl Yy . ~- ' ;; - kre (A)

This combination of wave numbers is, as will be
shown later, the cause of the trouble in defining
sowe of the propagation angles in cylindrical ducts.

The approximation will now be made that the
wave fronts behave locally as plane waves propa-
gating skewed to the coordinate angles of the duct,
The final approximate equations will be checked by
an exact but more cumbersome solution using Hankel
functions in appendix A. The approximate solutions
are found to be sufficiently accurate near tue cyl-
indrical duct wall where the angle of incidence
would be used and where most of the acoustic inten-
sity usually exists. The ith propagatioun angle can
be defined by,

ki
cos 34 = (s)
I
which i{s derived in appendix B, and where i = r,

€, or x and ¢. 1is the angle between the normal
to the wave front and the ith coordinate axis.
When there is no flow, egs. (3) and (&) cen be shown
to yield the usual result,

2
‘/f K =k, for M= 0 3
snd then eq. (5) becomec the standard direction
cosine expression,
k
cos g = ==, for M - 0 (7)
For finite Mach number however, from eqs. (3)
and (4),
z kz s kil - :E (8)
T %X

Axial Propagation Angle

The angle of propagation with respect to the
x-axis can be found without further approximation.



The axial wave number can be found by rearranging
eq. (3) to yield

vt e w) ] o

vhere the plus sign has been selected for the radi-
cal to provide the expression for the wéve traveling
in the positive x direction. Eqs. (5), (8) and
(9) then yield,
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where all of the quantities in eq. (10) are known.
It is convenient here to introduce the mode cut-off
ratio,

kr
[o]

O (1)
c 1 - M5

which is consistent with the derivation of Sofrin
and McCann, but where cut-off occurs when ¢ = 1.
Eq. (1C) then becomes,

-MD+'/1 - 1/¢2
ey

Note that when HD =0

cos ¢, = Vl - 1/§2 (13)

€os Jy =

(12)

or

sin ¢, = 1/¢, for My = 0 (14)

which is the same relationship as given for the
angle of the peak of the principal lobe of far field
radiation 2s given in refs. 4 and 10. This corre-
spondence between propagation sngle with respect to
the duct axis and far-field radiation has been noted
previously for zero Mach number in refs. 1 to 3.
This correspondence will be shown, in the next sec-
tion, to hoid for cylindrical ducts with the same
flow in the duct and in the surrounding mediumwm.

Radial and Circumferential Propsgation Angles

As noted earlier, eq. (12) can b2 obtained
without additional spproximations. However, the
angle of incidence on the wall (9,) and the angle
to the transverse or circumferential directiom (9g5)
cannot be obtained exactly using the present me:hod
because as shown in eqs. (3) and (4), the radial
and transverse wave numbers are combined through
the mode eigen value (a). The trangverse wave
nunber can be obtained from eq. (2) as follows,

0 = kgro as)

where
o
ke T (16)
It iz ressonable to assume that
k2 ~ kZ + K3 an

which is the result that would be obtained using a
rectangular approximation to a thin annulus and %il
equivalent to the approsch suggested by Cumpsty. )
Thus using eqs. (4), (16) and (17).

o 2 o 2
kr = (r—) - (;) (18)
[}

and then using eqs. (5) and (B8) the other propega-
tion angles can be calculated as

cos G =

a9

and

cos G = 20)

-——*——m i ———
kx
kril - M 1:)

Notice that ¢, #nd Qg vary with duct radius
while Py does not. Introducing the mode cut-off
ratio (eq (11)) and letting r = r,, the angle of
incidence at the wall can be written as,

we) LBV (]

o
It is now easy to see why the cut-off ratio approx-
imately correlated the optimum wall impedance values
for acoustic liners in ref. 4. For & given Mach
number and for swall m/a the angle of incidence
upon the wall is a function only of cut-off ratio.
The scatter in the above mentioned correlation oc-
curred mainly for the high circumferential lobe
number, low radial order modes whers m/c was not
small. 2q. (21) shows this ratio to be an sddition-
al var'able when it is not small. Perhaps a better
correlating parameter for optimum impedance would

be the angle of incidence upon the wall rather than
the cut-off ratio. This has been investigated and
will be reported in ref. 8. It should be noted that
the s~ft wall boundary condition will alter the
angle of incidence from that given in eq. (21).

@
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Fer-Field Rediation Considerations

As mentioned previously the axial angle of
propagation has been shown to correspond to the
angle of waximum noise propagation in the far-field
for zero Mach number. However, for the case of
uniform Mach number both in the duct and in the
surrounding medium, sn expression can be written



f eemraan m

Ch e AT I Py Y A

from the results éf refs, 2, 3, and 12 s,

1/2

(22)

where *y is the approximate angle for the peak of
the principal lobe of radiation in the far field.
The zero Masch number case of eq. (22) has been shown
to be a close spproximation for the location of the
peak of the priuncipal lobe of the far-field radia-
tio? pattern for unflanged ducts in ref. 3. Saule

has shown that using the duct eigenvalue to
obtain estimates of the principal lobe peak angle
can result in a small error for the case of »
flanged duct radiation pattern and he provides a
method for applying & correction to this angle if
it is considered necessary.

The first obj ctive here is to show that the
resultant axisl an le of propagation in the duct
with Mach number coincides precisely with the re-
sult given by eq. (22). This will provide confi-
dence that the convective effects upon radiation
are being properly modeled. Then the more inter-
esting case of diiferent Mach numbers within and
outside the duct will be derived.

Resultant Axial Propagation Angle in the Duct

The geometry of the wave propagation vecters
is shown in fig. 1, and the derivation which follows
is considered to be done at the outer wall. Since
the axial propagation amgle ¢, does not vary with
radius in the present approximste analysis it is
nct crucial with regard to the radiasl position used.
However in appendix A, the exact solution using
Hankel functions show ¢, to actually be a function
of radius so the approximate analysis is truly
valid only near the outer wall.

In fig. 1, the vector ¢ (speed of sound) is
normal to the wavefront. The propagation angles
¢ s $_, and ¢ are the angles between the vector ¢
afd the coord1nnte axes and are calculated as in
eqs. (12), (19), and (20). The components of <«
are calculated from,

¢ =ccos §y, 1 =x, 1, 8 (23)

The resultant direction of propagation will not be
normal to the wave fronmt but will be in the direc-
tion of the resultant vector cp. The steady flow
velocity (c Mp) must be added to ¢, in s manner
similar to that done in refs. 6 and 7. The resul-
tant vector c¢p contsins the combined effect, due
to duct Mach number, of the change in wave fromt
directions and the drift veiocity.

The angle which i3 now of interest for compari-
son with the far-field radistion principal lobe
pesk (eq. (22)) is the angle ¥ between the resul-
tant vector c¢p and the duct axis (x). This angle
can be defined by,

cp + My
x

The vectors cp and cy are considered constant
in the derivation. After some msnipulation the

cos ¥ = (24)
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numerator of eq. (24) can be shown to be,

cQ - v.f,)‘/x --15
L @25)
‘/ 1
1- 1- 4
% 2

Cx + cMpy =

and cp 1is,

cp = £2 (20)

Thus eq. (24) becomes

cos ¥ = Y1 -

(27)

A comparison of eqs. (22) and (27) shows that they
are identical. The subscript sppears on Mp in

eq. (27) to denote that it is the Mach number in the
duct. As the wave front leaves the duct, the angle
Ty Wwill not be changed (refraction effects ne-
glected) and if the Mach number outside the duct is
the same as in the duct (as assumed for derivation
of eq. (22) in ref. 3) then the drift velocity ef-
fect {5 also the samwe 8s in the ducc. Thus it is
now evident that for the case which can be checked
by exact radiation analysis that the resultant axial
propagation angle in the duct is identical to the
angle of the peak of the principal lobe in the far
field.

Some other interesting observations can be made
from the above relationships. The axial component
of the resultant velocity vector ¢g. as given by
eq. (25), is the axial group velocity which could be
derived from eq. (3) by applying

Also et mode cut-off (¢ = 1) the axial group veloc-
ity is zero and ¥ = 90°, 1In contrast, trom

eq. (12), the axial propagation angle &, at cut-
off is,

cos @ = - (29)
% ¥,

As 8n example for an inlet with Mp = -0.4, Oy =
66.40 while for an exhaust duct with M, = +0.4,

Py = 113.6. Thus, for an inlet, the wave front is
tilted toward the axis which has important implice-
tions upon static test radistion patterns as will
become more evident in the next section. For the
exhaust case the wave asppears to be going in the
wrong direction at mode cut-off. 1t is the engle ¥
and not %, which governs the sound propagation in
the duct. This convective drift velocity effect has
been used in refs. 6 and 7, however, it wes not re-
lated to modal properties.
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Effect of External Mach Number on
Far-Field Radiation

Previous far field radiation theories applica-
ble to engine inlets (3 have dealt with the
special cases of zero Mach number or uniform Mach
number inside and outside the duct. For en exhaust
duct, differences in duct Mach number and external
Mach number across a discontinuous slip lnyif ?ave
been handled in an exact enalysis by Savkar 4) and
in an ngproximete ray tracing spproach by Jac-
ques.(7 However, for an engine inlet there are no
sharp discontinuities along cylindrical surfaces out
in front of the inlet which would be required for
these lstter two studies to be valid. The following
analysis is proposed to account for changes in the
far-field radiation psttern occurring in static
tests and in tests with external flow.

In the previous sections the effects of duct
Mach number upon the angles of propagation in the
duct have been derived and have been shown to be
considerable, The propagation angle wuich has been
shown to be controlling for the far-ficld radiation
(when properly corrected for convective drift veloc-
ity) is that between the wave front normal and the
duct axis. As the wave front passes out of the duct
inlet, only diffraction and refraction cau change
the direction of this wave front. Diffraction
scatters the sound and causes the lobed pattern in
the far-field, but the bulk of the acoustic power
still radiates in the predesignated direction de-
termined by the resultant axial propagation angle.
Refraction through velocity or temperature gradients
can bend the wave fronts and could possibly be in-
cluded prior to the application of the following
analysis. For the present, however, refraction ef-
fects will be neglected.

It is thus assumed that the axial propagation
angle Sy derived in the duct envirounment is also
valid in the far-field. It is thus only necessary
to apply the external drift velocity correction
which in general will be different from that of the
duct,

In the far-field, the normal to the wave front
lies essentially in the radial-axial plane and only
axial and radial velocity components need to be con-
sidered in a cylindrical coordinate system. Fig. 2
shows a sketch of the velocity vectors. All that
needs to be done is to apply the externsl field
(flight or static) drift velocity cerrection to the
vector ¢. Recall that 7y 1is unchanged from its
value in the duct and is given by,

c k
X

x
cos Gy = == kx (30}
kil - MD %

The principal lobe of radiation can be expected at
an angle where,

" cx + M,
= - K}
cos ¥p ™ a1

After some manipulations this angle can be expressed
by,

[

cosﬂip-[nw-}'ln'r(l-ﬂbm)‘/l-‘z]
3

'}440 1-—%][1+nwmm-znb)
¢

1 1/2
+ (M, - My - MpM?) ‘/1 - ?l (32)

If the external velocity is the same as the duct
steady flow velocity, then eq. (32) reduces to the
special case of eq. (27). Eq. (32) can be consid-
ered a5 an equation describing the effect of a wind
tunnel velocity eince in general M, ¥ M.

Far-Field Angles for Static Tests

An important special case of eq. (32) i{s that
of My = 0 which is applicable for static engine
terts. Eq. (32) then reduces to

M +]{1 -4
cos w?) . = & (33)
M= ‘/ 1
1- MD 1 - §2

which {s of course the same as the Gx relationship
given by eq. (1Z). Sample calculations using

eq. (33) are shown in fig. 3. Of particular inter-
est are the modes near cut-off, If the duct Mach
number is zero, the principal lobe of far-field ra-
diation will occur st 90°, fhis of course is also
predicted by previous radiation theories when Mp =
0 or when Mp = M,. However, as the inlet duct
Mach number increases, the near cut-off modes propa-
gate more toward the axis. For example at a typical
inlet Mach number of -0.4, ¥, = 66.4°. At Mp =
-0.8, ¥p = 36.7° which must account [or at least
some of the apparent sideline sttenuation of a near
sonic inlet static test. For modes above cut-off
the same trends are observed with a shift of the
scund radiation toward the axis.

The results shown in fig. 3 are qualitatively
corroborated by acoustic suppression results for
the blade passage frequency as reported in refs. 15
and 16, °The maximum suppression occurred at 70
(oniy 10~ intervals measured) from the inlet at full
engine speed with & dach number Mp = -0.375. Fox
these static tests the blade passage frequency
should be rich in modal content near cut-off. Pre-
vious radistion theories would thus predict a peak
attenuation near $0° for these most easily atten-
uvated modes near cut-cff. The present radiation
theory, eq. (33) or fig. 3, would predict that pesak
attenuation should occur near 68 which is in good
agreement with experimental results. Also apparent
in the data of refs. 15 and 16, is the fact that as
engine operating speed and the Mach number is re-
duced the peak attenuation moves more toward the
sideline which {s also in agreement with the pres-
ent theory.

Far-Field Radiation with External Flow

Fig. 4 shows the far-field radiation peak for
nesr cut-off modes when the surrounding medium is
also moving which would simulate a wind tunnel test.
Eq. (3”° -8s used -rith ¢ = )} for verious duct Mach



numbers (HD) and external flow Mach number (My).
When M, = O the results are the same as in fig. 3.
However, as the tunnel gpeed increases (Mp pre-
sumed to remain nearly constant) the sound radia-
tion moves back toward the sideline. For example,
sawple external velocities rimulating spproach and
takeoff conditions sre shown on fig. 4. For the
approach condition (M « -0.4) a static test would
show the near cutoff modes propagating at about
66° while in a wind tunnel this radistiom would cc-
cur near 78° for M, = <0.2. The difference be-
tween a take-off static and tunnel test would be
15° (from 53° to 689).

Since there is a difference between static and
wind tunnel far-field radiation patterns even for a
specific mode, a correction ghould be applied to
wind tunnel data before it is used in & fly-over
calculation. Assuming that an inflow control de-
vice has been used in the static tests so that
flight modal structure has been simulated, the dif-
ference between the static test angles (3,) and the
tunnel test angles (3@) must be reconcileg. An ex-
pression can be derived relating these two angles
by eliminating the cut-off ratio (§) between egs.
eqs. (12) and (32) or more simply by considering

the geometric relations shown in fig. 2. The final
expression is,
M, + cos Ox)
cos ¥p = (34)

‘/1 + Mi + 2, cos ¢,

This is equivalent to the expression of ref. 17
which deals with external convective effects upon
noise radiation. This expression shows that those
modes which propagate at far-field angle ©, in a
static test, will propagate at angle WP in a wind
tunnel test. This correction can be considerable.
For example, with a tunnel speed of only My * -0.2,
the static data measured at 50°, 60°, and 70° should
be shifted to 60%, 71°, end £1.5° for & wind tunnel
test. This will have the effect of shifting the
usually higher sound pressure level data of these
forward angles back more toward the sideline. It
was assumed in the above discussion that the princi-
pal lobes dominate the radiation pattern and that
even for a multimcdal pattern the shift will thus

be properly described by eq. (34).

Technically a correction should also be made
for the sound pressure level when the angle shift of
eq. (34) is made. By maintaining acoustic power
and accounting for the principal lobe width change
(solid angle change) which occurs with the angle
shift the following expression can be derived,

Pi (1+ Mi + 2M_ cos mx)B/Z
== (35)
Po (1 + M cos wx)

For tunnel Mach numbers between -0.2 and -0.4 the
scund pressure level shift for the static test
angles between 50° and 90° is less than 1.5 dB.
Thus for the si.eline angles of most interest the
sound pressure level correction is probebly not
siynificant, although the angle shift of eq. (34)
riould definitely be considered. It should agsain
be noted that refraction effects within the velocity
gradients near the inlet for static .ests have not
been considered here. These effects should not be
grest, however, for the near sideline angles of
wmost interest,
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While the radiation theory presented in this
paper appears to receive preliminary confirmation
from stetic engine tests, there is not yet any con-
firmstion of the wind tunnel effects since there
were no data svailsble. Careful testing would be
required to insure that the results were not masked
by other factors. For example, the modal structure
of a fan source would be expected to be different
for static testing than fer wind tunnel testing.(18>
Inflow control devices (screens) would be required
to provide a static test noise source which would
have a chance to eimulate the modal content produced
by a turbofan in & wind tunnel,

It should be noted that the corrections dis-
cussed above must be made for data obtained in a
wind tunnel test since it {s the directivity pattern
described as & function of ©®, and not ¥, which
18 projected to the stationary observer in a simu-
lasted fly-over calculation.

Concluding Remarks

The angles of propapation for the wave front
making up & duct mode have been presented here with
Mach number in the duct. Approximate equations have
been derived to provide simple utilitarian expres-
sions. These expressions are valid only near the
outer wall which is the most important region since
the bulk of the acoustic intensity is located there
and this is also where incidence angles would be of
interest. Exact solutioas using Hankel functions
are given in appendix A and these corroborate the
approximate solution accuracy near the outer wall.
The main emphasis of this papar was to use the axisl
propagation angle to infer information sbout the
far-field radistion pattern, The resultant axial
angle of propagation in the duct was shown to agree
exsctly with the peak of the principal lobe of far-
field radiation obtained from formal radiation
calculations when the Mach number is uniform everv-
where. The present solution was then extended to
cover the case of different Mach numbers inside and
cutside the duct for which exact calculations have
not been available for engine inlet configurations.
The new analysis shows that for static engine tests
the inlet radiation can be expected to be shifted
considerably toward the inlet axis over thst obtain-
ed from previous analysis. This static test radia-
tion shift can be shown to have preliminary verifi-
cation. An external Mach number convective efrect
is also predicted whichk would shift the sound radia-
tion back toward the sideline (compared to a static
test) as the external flow velocity incresses. The
refraction of the sound by the flow gradients near
the inlet could possibly be included in the analy-
sis, but this effect has not been included here.

Appendix A

Gvlindrical Wave Synthesis of a
Ducted Spinning Mode

The exterior radiation field of an infinite
cylinder susteining standing circumferentisl surface
oscillations, synchronous in fsg axial direction,
is shown by Morse and Ing-rd( to be described by
the Hankel functfon combinstion, cos(m 6) Hél)(kf)
exp (~iwt). As o sepasrste matter in the seme ref-
ference it {3 demonstrated that the modal compo-
nents of the pressure field inside a hardwall rect-
angular duct may be synthesized by complementary
pairs of inward and outward plane wave trains.
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These concepts may be combined and extended to
describe the field of & spinning mode in & cylin-
drical duct,

let the (complex) pressure Py = Py(x,8,r,t)
in the duct be expressed as the sum of a pair of
cylindrical waves:

= 1 2 -
P Pm + P (A-1)
The radially outward wave is given by
. 1 (k_x+mA-wit)
plalg H(1)<£> e X (A-2)
mo2 W@ \T,
and the matching inward wave is
; 1 (k_x+mI-wt)
pPalc H“’(“—') e ¥ (A-3)
m 2 oo T,

The eigenvalue o as in the main text should con-
tain the subscripts m,u but these have been
dropped for brevity. Hél) and Héz) are Hankel
functions of the first and second kinds:

H(l) =J +1i¥Y
o m m
(a-4)

=J +1iY
m m

Inward and outward wave designations are apflied as
a consequence of the far-field nature of P’ and
P2 which is disclosed by the asymptotic beﬁavior

m
i[kxmii—r-wﬁ@lr—ll ,]
[+)

of the Bessel functions;

1 2ro
- 5 Cuu ;E; e

(A-5)

Two comments may be helpful. First, it is ob-
vious from eqs. (A-2), (A~3), thst the sum of Pé
and P; gives the duct mode field of eq. (2).
Second, the opposite signs applicable to Pé te-
quire the wave to move radislly inward in order to
conserve phase.

The near-field behavior of the outward wave
ma¥ be found by representing the Hankel function
) in polar form:

o)y

B (A-6)
0 [}
wvhere the amplitude
1/2
ar 2 far 2 fax
W) EE )T e
)
and ¢ , the phase of Hl, is
o m
Cz:
o ro (A"B)

tafEd) = orc can &

AGE TS
CAY

e
ay

With these substitutions, the general ocutward wave
expression, eq. (A-2) becomes

1 r
1 T 1[}x}+m8+¢m(;">'w%
c h(“)e e
o mir

1
Pm =3
[

(a-9)

The local wave direction and phase velocity are
obtained by exsmining the exponent

jo 8
X =k x4+ 00+ @m(r:) -t (-10)

A plane that is locally tengent to the wave
front will be governed by the requirement that the
phase, X 1is conserved over a small displacement
occurring during & corresponding small time inter-

val. For this phase conservation dX = 0 or
dX-kdx+md8+io<a—r)dr-wdt-0
x dr 'm t,
(A-11)
Writing
(A-12)

and introducing the circumferential arc length coor-
dinate

S = re (A-13)
the equation of the local phase plane becomes
kdx+9ds+—a—c'(9{)dr-wdt (A-14)
x T T, BT
or
k dx + k ds + k_dr » adt (A-1La)
b3 s r

The coefficients of the differential coordinates
in (A-14) are the axial, tangential, and radial
components_of the local wave number vector, de-
noted by K. On dividing (A-14) by the magnitude
of K, denoted by K there follows:

D " - &
cos 4 dx + cos % ds + cos Y dr X dt
(A-15)
where
cos wx = kx/K

cos wa = cos Qg = %/K > (A-16)

a
cos wr -"_—Om(%f)/l(
o ©
o’
-2 (7, o g 9-5'21/2 (A-17)
X r ro m(fo)
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Eq. (A-15) is the normal form of a plane with
direction angles %4, 35, ¥y, traveling at s local
phase velocity Vph = /K., If K 1is expressed as:

2 2 2| 172
X m a ar
K= kk' = kd|—=] + {—] + |]=—= ¢, {7
TR = .
(A-ls)!
the magnitude of the phase velocity becomes
S .S -
Veh "X "k T B (a-19)

Thus the phase velocity differs from the speed
of sound by the factor 1/K'. It can be shown that
K' > 1 and approacnes 1 as (ar/r,) - =, 8o that the
near-field phase velocity is slways subsonic. This
means that the sum of the squares of the wave num-
bers ky, k;, kr, add up to K2, which is larger
than the square of the ordinary wave number, k =
wic.

Further work requires evaluation of O&(ur/ro),
the derivative of the phase of the Henkel function
1) (@r/re). It is found that

21,

°'<E_r-> )
B\ 2(ar\ , y2(zr
o war[lm<ro) + Ym(,;o

This expression allows computation of the local
wave speed and direction angles for & wave at any
radius usine eqs. (A-16) to (A~19).

(A-20)

some calculstions were made for the wal! radius
location r =~ ry, in the Mp = O case, for cutoff
ratios of 1 and 2. The tabulation in table Al pre-
sents values of K' and the wall incidence angle
¢r (eq. (A-16)). For comparison, values of ¢,

TABLE Al. - VALWUES OF K' AXND e

computed from the main text eq. (21), which is
bssed on the approximation K = k or XK' = 1, are
included. These values show that the greatest de-
partures from "corventional" or far-field behsvior
occur nesr cutoff for the lowest order m and 4
modes, The departures, however, are quite minor:
For the "worst' csse, the (1,0) mode st cutoff, the
phase velocity departs from sonic by only 6 percent
snd the exact an. spproximate wall incidence sngles
differ by about 2°, Thus the essential sssumption
used in deriving the results of the main text,
namely that for Mp = 0 the squares of the axial,
tangential, and radisl wave-number components sum
to the square of the ordinary wave number, k = w/c,
at the wall redius, is in excellent prectical agree-
ment with results of the exact analysis. This as-
sumption implies that the eigenvalues, which are
independent of M, are related by ué + k%o »

kg = (a/T5)%.

Finally, it may be of some interest to note
that the situation changes radically as the duct
axis is apprcached more closely. Calculations show
the following (m ¥ 0):

) A\\_fx"

K' - @
vPh -0 ) Y\ L\\J ‘
- 900 \‘\,‘\\'L\J :1 -
¥x OF ?U\)?“ Q
¢, = 0
Qr « 90°

Thus near the axis the local wave velocity is very

small and is essentislly circumierential in direc-

tion, This contrasts with the wall behavior where

the phase velocity is almost sonic and the wave di-
rection is predominently axial-radisl.

FOR MD =0, r= T

Mode Cutoff ratio ¢ =1 Cutoff ratio § = 2
(m,u)
X' :r(exact) wr(approx) K' :r(exact) Ir(approx)
deg deg

1,0 1.0633 30.7 32.9 1.0162 63.3 65.2
1,1 1.0050 10.8 10.8 1.0013 60.5 60.6
1,2 1.0018 6.7 6.7 1.0005 69.2 60.2
2,0 1.0462 38.8 40.9 1.0117 66.2 67.8
2,1 1.0043 17.3 17.4 1.0011 61.4 61.5
2,2 1.0019 11.6 11.€ 1.0005 60.6 60.7
4,0 1.033 46.7 48.8 1.0084 69.4 7C.8
b4yl 1.0030 25.4 25.8 1.0008 63.1 63.2
4,2 1.0012 18.4 18.4 1.0003 61.6 61.7
8,0 1.0232 54.1 56.0 1.0059 72.7 73.8
8,1 1.0030 34.4 34.5 1.0002 65.6 65.7
8,2 1.0010 26.7 26.7 1.0002 63.5 63.5
16,0 1.0158 60.7 62.4 1.0040 75.7 76.6
16,0 1.0018 43,4 43.5 1.0004 68.7 68.7
16,2 1.0010 35.8 35.8 1.6002 66.1 66.1

AU



4 Appendix B

Wave-front Propagetion Angles with Flow

This appendix is intended to provide s simpli-
fied example of obtaining the angles of propagstion
of the wave fronts in a duct with flow. To serve
this purpose a simple two dimensional rectangular
geometry will be used, The wave equation solucion
can be given as, '

10»t-kxx)
p~e cos kyY

ft-k X) [ -1k Y  +ik
e x [e Y e 7Y (B-1)

The second representation in eq. (B-1) breaks
the modal cosine function into the two wave frouts
representing this mode., The first wave travels in
the +y direction while the second wave travels in
the -y direction. Concentrating on the +y,
moving wave the exponential phase quantities are
gathered together and set equal to a constant to
represent a constant phase line or wave front as,

]
LY

at - k.x - kyy = constant (B~-2)
If time t 1is also considered as a constant,

an instantaneous representation of the slope of the

wave front can be obtained by differentisting

eq. (B-2) to obtain,

k

X

k
y

5

(B-3)

Now a sketch of the wave front can be con-
structed as in fig. B.. The angles of interest are
¢y, @nd (. the angles between the wave front nor-
msl and thé coordinnte axes, By similarity of tri-
angles these angles can also be identified in the

triangle dravm to show the weve front slope. 1t is
now obvious that,
kx kx
cos ¢ = = (B-4)
2 2 e
va+ky :ki
and
kv
cos § (B-5)

k
= y -
Yy >
|/ 2 2 ’- 2
kx"'ky .'i.ki

Lp to this point in the derivation there was no
consideration of the duct Mach number Mp. This ef-
fect is obtained by inserting the pressure solution
into the wave equation to obtain the relationship
betweer the wave numbers as,

2
K2+ k2 = i - 2 Mprice + MBI = (k- Mpky) =6)

which is similar to eq. (3) in the main text.
Eq. (B-6) immediately gives

dki+b§-k-uokx

(-7)

ARIGINAL PAGE IS
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snd some rearrangement of eq. (B-6) yields,

The wave number ky

”*

r_MD + ‘/11-.11% - M) (L:XJ -8)

is not a function of 1fp, but

since the denominators of eqs. (B-4) and (B-5) are
functions of Mp, then both ¢, and Ty depend
upon duct Mach number.
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Figure 1. - Sketch of the propagation angles in the duct.
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