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ABSTRACi

The primary objectives of this rc^earch program were to establish basic vapor

transport and crystal growth properties and to determine thermodynamic, ki netic

and structural parameters relevant to chemical vapor transport systems for differ-

ent classes of materials. An important aspect of these studies was the observa-

tion of the effects of gravity-ca wed convection on the mass transport rate and

crystal morphology. These objectives have been accomplished through extensive

vapor transport, thermochemical and structural studies on selected hin-chalcogenides,

II-VI and IV-VI compounds.

This research program established the existence of three different transport

modes which control the mass flux in different pressure regimes of the vapor

transport system. In addition, the negative effects of convective mass transport

on crystal morphology were demonstrated. The thermothemical studies revealed the

importance of a mobile surface layer and of surface defects on the sublimation

mechanism and stability of single crystals. The crystallographic studies on

IV-VI compounds demonstrated the existence of solid phase transformations, of

considerable lattice expansions and rearrangements at temperatures employed in

typical vapor transport reactions. These results are of immediate relevance for

the degree of crystal perfection and for the growth of alloy-type crystals. The

combined ground-based studies led to the definition of experimental conditions

for crystal growth experiments in micro-gravity environment. The results of

vapor transport experiments on IV-VI compounds performed during the Skylab and

Apollo-Soyuz Missions demonstrated unambiguously a considerable improvement in

crystal quality and greater mass transport rates than expected for diffusion

controlled vapor transport. These results are of basic scientific and technologi-

cal significance.

The combined vapor transport, crystal growth, thermochemical and structural

data produced to date under- this program and the information obtained from our

space experiments provide a quantitative basis for O finitive fluid dynamic

studies on these and related systems. These experiments have been initiated

under a separate project. The results of the present program led to the

successf+rl performance of previous space experiments. The results of continued

research on the fluid dynamics of vapor transport systems are of importance for

the design of critical future flight experiments and for space processing appli-

ca'ti ons .

ii
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I.	 I NTRODUCT 1014

The usefulness of chemical vapor deposition and transport reactions is

demonstrated by the application of this technique for the growth of epitaxial

layer and bulk single crystalline materials ranging from insulators via semi-

conductors to metals. One of the major advantages of chemical vapor transport

reactions is the possibility to grow crystals at considerably lower temperatures

than required for melt growth or for sublimation-condensation processes. This

basic fact has several practical consequences including the thermodynamic

stability of the growing crystal, reduced container and contamination problems 	 !

and in general lower dislocation densities. It is for these reasons that a

complete understanding and control of chemical vapor- transport reactions is

of far reaching technological significance..

The basic scientific and technical principles of vapor transport have been

discussed earlier by Schafer [1]. The chemical transport process is based on at

least one reversible heterogeneous reaction and on mass and heat transfer in a 	 i

temperature gradient. In this process, a gaseous transport agent reacts with the

solid source material to form exclusively gaseous products. The gas phase

species migrate from the. source to the condensation zone of the reaction
h

container where the reverse reaction occurs with formation of single crystals.

The necessary concentration gradient is achieved by means of a temperature

gradient. In viow of the above, the transport and crystal growth properties are

dependent upon the thermochemical, structural and fluid dynamic properties of

the system.	 .

From the beginning of this research program, the complex nature: of vapor-

transport reactions was recognized and it determined the scope and experimental

approach of this work. A meaningful interpretation of chemical transport

processes requires a detailed understanding of thermodynamic and kinetic

properties of solid-gas pha s e reactions, of crystallographic properties of the 	 I^

material to be transported and their dependence upon temperature. In addition, 	 y

homogeneity ranges and phase transformations of the solid as well as compositional

variations of the gas phase can affect crystal morphology or mass transport rates.	 I

The above p roperties must be well understood in order to quantitatively characterize

the effects of convection ;rr transport rates and c rystal growth.
y

k
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the primary objectives of this research program were to investigate the

thermodynamic, kinetic and structural properties of materials in relation to

vapor phase crystal growth and to establish the basic chemical transport proper-

ties of selected systems. Th s approach led to the observation of three differ-

ent mass transport rate controlling steps in closed transport systems and to the

elucidation of the sublimation mechanism of layer-type compounds. The combined

studies provided the necessary data base for the reliable obser y -ition of the

effects of gravity-driven convection on mass transport and crystal morphology.

Supported by the rmocherd CdI and structural considerations, the above observations

led to the definition and performance of our Skylab and Apollo-Soyuz experiments.

The results of these space experiments on binary and mixed Gc-chalcogenides

demonstrated distinctly improved crystal quality and greater mass transport

rates in microgravity than expected for a diffusion controlled vapor transport

process. As a result of the ground and space experiments performed to date,

continued research activities in our lahoratory are focused on the investigation

of fluid dynamic properties of chemical vapor transport systems. These studies

have been initiated in recent years under a separate project.

The results obtained under the present contract include the establishment of

basic chemical transport properties and the determination of quantitative thermo-

dynamic, kinetic and crystallographic parameters of selected systems. The

combined data in connection with those of continued ground-based studies are of

practical importance for the definition of future flight experiments.

II. SUMMARY OF RESULTS

Ii. 1. 	Ma terials and Te chn iques

The materials and transport systems investigated under this contract include

Mn .-chalcogenides, selected 11-VI compounds, mixtures of f1n-1I-VI systems and

representative IV-VI compounds. These materials were selected for ground-based

studies because of their interesting structural and electronic properties. In

addition, these compounds cover a wide range of crystallographic structures from

highly symmetric cubic systems to anisotropic layer structures. Their thermody-

namic and kinetic properties are significantly different. Developments in device

oriented applications indicate the potential use of some of these systems as

components in a 1 1 oy- type semi ronduc t.ors .
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In order to reduce the complexity of the transport process and to observe the

effects of natural convection on transport rates and crystal morphology, chemical

vapor transport experiments were performed in evacuated, closed ampoules of fused

silica. For the determination of thermodynamic and kinetic properties, high

temperature mass spectrometric and vacuum microbalance techniques were employed.

For the investigation of structural parameters, room and high temperature X-ray

diffraction methods were used. The above studies were supported by morphological

investigations on single crystals employing various optical and electron micro-

scopic techniques.

In view of the broad scope of this research program, the pertinent results

obtained are summarized below for the different classes of materials.

11. 2. 	 Manganese Ch a 1 coge n i de Systems

In previous phase studies [21 it was shown that MnS and MnSe (both NaCl-type

structure) form a continuous series of solid solutions. Prior to this research

program, these isotropic materials were employed to investigate the effects of

various experimental pararrete rs oil 	 growth. Mass transport rate studies

in the multi-component, multi-reaction system MnS-MnSe-iodine were performed on

atomic mixtures of high 'purity elements in the temperature gradient 945 - ► 850°C

and with iodine pressures ranging from about 0.5 - 7.8 atm (3]. The'results in

terms of flux (mol/cm 2 •sec) as a function of pressure show that the mass transfer

process is predominantly by convection within the applied pressure range. Growth

studies of single crystals of MnS, MnSe and of solid solutions by vapor transport

of the elements with iodine yielded crystals of several mn edge length (octahedra'

and platelets) using iodine concentrations of 1-3 mg/cm 3 tube volume and tempera-

ture gradients AT < 50°C. The as-grown surfaces of the platelets are (111)

planes. Thermoelectric measurements revealed p-type conductivity of the single

crystals. The effects of different iodine concentrations (pressures), tempera-

ture gradients and pretreatment of the transport ampoules on crystal morphology

were observed. It is worthwhile noting that the crystal habit (platelet or

octahedra) was measurably affected by the duration of etching of the transport

ampoule during the cleaning procedure of the ampoules. This revealed the

effects of nucleation sites of the substrate on crystal habit. These studies (3]

showed the necessity to maintain reproducible conditions for systematic transport

and morphology studies.

i
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As a result of the above transport studies on ^Me 131, it was desirable to

determine the actual lattice parameters and thermal expansion of MnSe at elevated

tempc,jtures. Similar data for MnS were available in the literature. For this

purpose, the thermal expansion of MnSe and 1-lnSe 2 (NaCl- and pyrite-type structure,

respectively) were studied above room temperature up to 710 1 and 522°C by X-ray

diffraction techniques using a 190 nun Unicam high temperature camera [4]. The

thermal expansion coefficients, 6, obtained from a linear least-squares analysis

of the data are for t .InSe: 6 = 24.5 - 10-6°C-1 (94 to 450°C) and 0 = 1'1.3
. 10 -60 C -1 (450 to 710"C). The expansion of MnSe 2 is linear up to the temperature

range of decomposition. A least-squares analysis ,; lds a value for 6 of 20.0

• 10 -6°C-1 (73 to 522 0 C). These studies confirmed the composition of mixed 14nS-

MnSe single crystals obtained by chemical transport [31 and showed that MnSe 2 is

not stable under trans p ort conditions.

In connection with phase studies of the M nTe-CdTe system, the formation of

MnTe 2 single crystals was observed [5]. In view of the low stabilities of the

Mn- dichalcogenides relative to the monochalcogenides, this interesting observa-

tion was difficult to understand. In order to explain the growth of MnTe 2 crys-

tals under- annealing conditions, the stability and heat of formation of MnTe2

were determined by quantitative Knudsen effusion studies in the temperature range

551 - 685 K [6]. the ;~2sults demonstrate, that MnTe 2 decomposes according to the

reaction

4nTe 2 (s) = MnTe(s) + 1i To 2(g).

The observed heat of reaction is 20.01.0 kcal/mol at 298 K. This yielded the

standard heat of formation of MnTe 2 (s) to be -26.4 kcal/mol. For the above

calculations, the heat capacity of MnTe2(s),

C O
P
	 17.83 + 1.23x10 -3 T (eu),

was determined in this work [61 between 328 and 573 K.

Based on the above measured decomposition pressures [61 of MnTe 2 (s), the

reproducible growth of MnTe 2 single crystals by chemical vaiivr transport with

iodine in the presence of excess To was accomplished [7]. Through systematic

studies of the mass transport rate as a function of iodine and tellurium

pressure, the transport mode and mechanism could be determined. The results

of this work are of practical importance for the growth of single crystals of

materials which are not stable under conventional transport conditions.

i

i
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II.3.	 Manganese-Cadmium Chalc_ogeenide Systems

In order to provide a basis for subsequent studies of the variation of the

energy gap with composition and of the transport properties of MnSe-CdSe solid

solutions,	 the temperature-composition phase diagram for thc solid region of the !

MnSe-CdSe system was investigated by X-ray diffraction techniques over the 	 tem-

perature range 500	 -	 1100°C	 [8].	 The small	 degree of solid solution oil 	 MnSe-

rich side compared to	 the wide CdSe-rich one-phase region can be explained by the

differences in structural	 and bonding properties of the components. 	 The electronic

structure of manganese per7nitsboth octahedral	 (NaCl-type)	 and tetrahedral	 (wurtzite)

configurations with s-p-d and s-p orbitals,	 respectively.	 For cadmium to form

octahedral	 bonds	 in	 the MnSe-rich	 (NaCI-type)	 solid solutions,	 higher d-orbitals

have	 to be used which	 is energetically unfavorable.	 The	 lattice parameters of
r

compositions in the one-phase regions can be expressed for the MnSe-rich cubic

phase by the equation

1
a o	=	 5.462	 + 0.202•'x,

and for the CdSe-rich hexagonal 	 phase by the equations

ao	=	 4.173	 4-	 0.124-N
;t

and

co = 6.822 + 0.193•N, i

where N	 is	 the mole fraction of CdSe.

The phase boundary of the cubic region changes 	 from about 3 mol 	 u at 500 1 C to

about 20 mol	 %, CdSe at 1100°C. 	 The boundary of the wurtzite	 phase is	 at

approximately 50 mol	 % CdSe a^d practically	 temperature independent	 [8].

Based on the above phase studies,	 the variation of the optical 	 energy gap

with composition in i•inSe-CdSe solid	 solutions was determined by reflectance lI

measurements on microcrystal line 	 powders	 and by transmittance measurements on

single crystal	 platelets	 for the cubic and . hexagonal	 one-phase regions of the

system	 [9].	 For this purpose, a Beckman DU and a Cary model 	 14R spectrophotome-

ter,	 respectively, were used.	 The results show,	 that the energy gap varies

linearly with composition.	 For the CdSe-rich hexagonal	 one-phase region

(50 -	 100 mol	 M CdSe),	 this relationship can be expressed by the equation i

E	 78O = 2.

L
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where 11 is the mol fraction of CdSe and 
I  

is given in eV. Since CdSe has a

direct b, ►nd transition, the linear variation of the band gap suggests that the

solid solutions might also have direct gaps. Thermoelectric measurements on

CdSe siwile crystal platelets revealed n-type conductivity due to the selenium

deficiency of CdSe. hleasurenx^nts on solid solution single crystals with 50 and

60 mol " CdSe, respectively, also indicated n-type conductivity [9].

The single crystal specinx2ns required for the above optical studies [91 were

grown by chemical transport techniques in connection with the investigation of

the crystal growth and transport properties of the mixed system MnSe- CdSe (101.

A temperature gradient of 875	 840^C and elemental iodine were used as a trans-

port agent. Studies of the growth morphology of MnSe and USA crystals revealed

that the MnSe habit changes from platelet to octahedron with increased chemical

etching of the tube walls during the cleaning procedures of the transport

ampule. This is attributed to the geometry of the growth sites on the silica

surface. The morphology of CdSe crystals is affected by the transport mode.

Diffusion controlled transport yields elongated needles, under convection condi-

tions hexagonal platelets are predominant. The growth of mixed crystals of the

MnSe-CdSe system was studied by vapor transport of the elements, of binary com-

pounds, and of solid solutions as a function of composition of the source mate-

rial, and by direct sublimation of solid solutions as a function of composition

and temperature range. Experimental results in terms cf composition and crystal-

line quality of the transport and sublimation products are explained by the

thermodynamic properties (vapor pressures and activities) of the individual

components of the system. These studies [10] demonstrated again the e f fects of

transport mode and of thermochemical properties of the materials or. the morphology

and composition of single crystals.

The solid-gas phase equilibria and thermodynamic properties of CdSe were

investigated by quantitative Knudsen effusion studies [111. The resu l ts show

that at about 400°C CdSe sublimes initially by losing selenium to form nonstoi-

ciometric CdSe 
1-x' 

where x	 0.002; the resulting compound CdSe 1-xsublimes

congruently. With the heat capacity function of CdSe(s),

Cp = 12.36 + 1.45 . 10-3 T (eu),

measured for the first time in this work, the vapor pressure .measurements were

evaluated in terms of the standard heat of formation, A112
98
 = -35.7 kcal/mol,

t
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f

and the absolute entropy, S' 9a = 19.8 eu, of CdSe( ,.). These data (11] were used

for the interpretation of the above transport studies [10] and for subsequent

activity ceasurements on solid solutions.

The Knudsen effusion technique was employed to derive Lhe activities of CdSe

and of HnSe in MnSe-CdSe solid solutions as a function of composition and temper-

ature (12]. In the CdSe-rich hexagonal p'asF the system shows ?deal behavior.

In the MnSe-rich cubic phase the activities of CdSe show positive deviations and

the activities of MnSe negative deviations from Raoult's law. Partial molar

Gibbs free energies, enthalpies, and entropies were calculated from which the

Gibbs free energy, enthalpy, and entropy of mixing were derived. The experimen-

tally determined entropies are close to the ideal values, suggesting that no

preferential ordering of tin and Cd ions in cation sites occurs.

The combined thermochemical information obtained fro 

'

n the Knudsen measure-

ments [11,121 eras used to explain the compositional variations of solid solution

single crystals f10] grown under different experimental conditions.

ystematic mass transport rate studies on the systensCdS, CdSe and CdTe using

elemental iodine or CdI 2 as initial transport agents confirmed the effects of

pressure on transport mode and crystal morphology [13]. At lower pressures the

transport is diffusion c.ontrollea and at higher total pressures convective trans-

port is predominant. The crystal morphology varies with the change in transport

mode and reveals decreasing quality with increasing convective motion.

II.4.	 Germanium Cha1cogenid ,2 Systems

Because of their interesting structural and bonding properties, the germanium

chalcogenides were selected for systematic crystal growth, thermodynamic, kinetic

and structural investigations.

Vapor transport experiments with iodine were performed on the systems GeSe,

GeSe 2 and GeTe to define optimum growth conditions in terms of crystal size and

surface perfection [14]. Mass transport rate studies on the GeTe-iodiiie system

were carried out in the temperature gradients 560 - 445°C and 420 	 350°C with

iodine pressures rangin g, from 0 to about 2 atm (based on diatomic iodine and

assuming a perfect gas). Evaluation of experimental data in terms of flux

(mol/c;n 2 •sec) as a function of iodine pressure revealed the predominant transport

mode in different pressure ranges. Comparison of experimental results with calcu-

lated material fluxes based on a diffusion model was used to substantiate the pre-

I
I

r'
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dominant transport mechanism given by the reaction

GeTe(s) + Gel 4 (g) = 2 Gel 2 (g) + !? Te2(g).

At low pressures, the transport rate is controlled by the rate of the heterogene-

ous solid-gas phase reaction; at intermediate pressures, diffusion controls the

mass transport; at higher pressures, convective transport is predominant. Diffu-

sion controlled transport yields predominantly octahedral type crystals of GeTe

and convective flow causes mainly platelet type crystals. The as-grown surfaces

of the platelets are (111) planes. Surface imperfections increase with increas-

ing predominance of the convectional contribution to the transport.

The above studies (141 represent the first systematic investigation of the

interrelation of press-are, transport mode and crystal morphology in chemical

vapor transport systems. In addition, the observations demonstrated the negative

effects of gravity-caused cor ► vecti ve inter ference with the transport process on

crystal perfection. In view of the technological importance of these results for

crystal growth on earth and in a M .-ogr p.vi ty environment, these studies were

extended to the GeSe system.

Mass transport rate studies on the system GeSe-Gel 4 were performed (151 in

closed ampules of fused silica in the temperature gradients 520 	 420'C, 420

350°C and 380 -; 300°C with Gel  pressures ranging from 0 to about 2 atm. The

experimental results in terms of material flux versus Gel  pressure reveal the

different transport modes in agreement with the above observations on the GeTe

system [141. Comparison of observed and computed material fluxes [15] based on

a diffusion model confiriix2d the dominant transport reaction

GeSe(s) + Gel 4 (9) = 2 Gel 2 ( g ) + '^ Se2(g)

Diffusion controlled chemical transport yields GeSe single crystal platelets of

high surface and bulk quality. The (001) orientation of the as-grown surfaces

is in accordance with the structural properties of GeSe. With increasing

dominance of the convective transport mode, the crystal habit changes from well

devel,ned platelets to dendrites.

The combined morphological studies on the "An- and Cd-chalcogenide systems

and, in particular, on GeSe and GeTe performed in our laboratory under this

program demonstrated unambiguously the negative effects of gravity-caused

convection on the perfection of crystals grown by chemical transport techniques.
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These results led to the prediction that crystals of improved quality could be

obtained under conditions o f reduced convective interference in a micro-gravity

environment. In order to optimize the conditions of space experiments and to

facilitate their reliible interpretation, additional thermodynamic and structural

studies were performed on the Ge-chalcogenides selected for crystal growth experi-

ments in microgravity.

In order to calculate the contribution of sublimation to the mass flux under

chemical transport conditions, the absolute partial pressure and stability of GeSe

were determined (16]. For this purpose, Knudsen effusion studies of the sublima-

tion of polycrystalline GeSe were performed employing mass spectrometry in a

temperature range of about 530 - 730 K and vacuum microbalance techniques in the

ternper•ature range 601 - 796 K and at pressures ranging from about 10 -6 - 10 -4 atm.

The results are concordant and demonstrate that GeSe vaporizes congruently under

present experimental conditions according to the reaction GeSe(s) = GeSe(g).

The mean values for the third law heat and second law entropy of reaction

based on direct mass-loss data are tM O	= 42.0 fl .5 kcal/mol and AS'	 =42.3±
29,9

1.6 eu. From these data the standard heat of formation and absolute entropy of

GeSe(s) were calculated to be -10.1 kcal/mol and 16.9 eu, respectively [16].

The above equilibrium thermochemical studies [161 provided the necessary

reference data for the detailed investigation of the vaporization mechanism of

this system [17]. The sublimation kinetics of (001) oriented GeSe single crystal

platelets was studied by means of high temperature mass spectroscopy, quantitative

vacuum microbalance techniques and hot stage optical microscopy. Solid GeSe

sublimes under non-equilibrium conditions ac^.ording to the reaction GeSe(s)

GeSe(g).

The activational enthalpy and entropy for the oedn experimental temperature

563 K are AH 563 = 32.3 kcal/mol and GS561 = 19.1 eu. The vaporization coefficient

a is less than unity for the temperature range studied and a decreases with

increasing temperature. The combined experimental data could be correlated

through the application of the reverse Lanymuir-Hinshel •r.,00d mechanism. The

results demonstrate the importance of a mobile surface layer in the sublimation

mechanism of GeSe [17]. These studies also shoaled that sublimation is initiated

at surface defects leading to a complete coverage of the crystal su r face by

intersecting thermal etch pits under steady-state conditions. Because of the

reversibility principle, the result of these investigations are of immediate

iiirportance for the elucidation of the growth mechanism of GeSe single crystals.

.4w
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In connection with the synthesis of GeSe, the formation of trace amounts of

GeSe 2 was sometimes observed. For this reason, the determination of the stability

and decomposition of GeSe 2 was desirable. This was accomplished by Knudsen effu-

sion studies of GeSe 2 employing high temperature mass spectrometric and vacuum

microbalance techniques in the temperature range 610 - 800 K [181. The results

demonstrate that GeSe 2 vaporizes congruently under present experimental conditions

according to the predominant reaction (1) GeSe 2 (s) = GeSe(y) + !; Se 2 (g) and a

minor reaction (2) GeSe 2(s)- GeSe 2 (9). The mean values for the third law heat and

second law entropy of reaction (1) based on direct mass-loss data are efi
298 -

70.4±2 kcal/rnol and AS2 98 = 64.7±2 eu. From these the standard heat of formation

and absolute entropy of GeSe 2 (s) were calculated to be -21.7 kcal/mol and 24.6 cu.

respectively, [181. Based on these results, the relative stabilities of GeSe and

GeSe 2 can be deterr,rined under actual transport and crystal growth conditions.

Because of questionable literature data concerning the high temperature

crystal structure of GeSe, the therm,31 expansion of GeSe was studied between

room temperature and the melting point of 670 ±50C by X-ray diffraction techniques

using a 190 mrr	,	 m high temperature camera [191. The thermal expansion of

the crystalWgraphic axes is 'linear with a distinct change of the expansion

coefficients for all axes above 400^C. The relative changes of the axes

indicate a rearrangement of the structure towards cubic symmetry with increasing

temperature. The transformation of GeSe from the orthorhombic to a normal NaCl-

type structure is observed at 651+5°C. The lattice parameter of the cubic form
0

of CeSe is a  = 5.130+.0.003 A at 656°C. The GeSe lattice remains cubic up to

the melting point. These studies [19] demonstrated that the orthorhombic modifi-.

cation of GeSe is stable within the temperature ranges employed for chemical

vapor transport studies and that the reported transformation to a hexagonal

structure at higher temperatures is incorrect.

Similar thermal expansion studies on GeS were performed between room temper-

ature and the melting point of 658±5°C by high temperature X-ray diffraction

techniques [20]. The thermal expansion of the crystallographic axes is linear

with distinct changes in the rate of expansion at about 250°C, 370°C and 510°C.

These observations reveal an approach to cubic symmetry with increasing tempera-

ture. However, no first-order structural transformation of GeS was ohserved and

the orthorhombic structure exists up to the melting. The results of thermal

expansion studies on GeTe [201 confirmed the structural transformation of GeTe

}
^R

St

i!
f

from rhombohedral to a normal NaCl-type modification at about 375°C. The trans-
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formation temperature chanyes slightly with composition within the homoseneity

range of GeTe.

In addition to the observed phase transformations, the thermal expansion

studies on GeS, GeSe and GeTe [19,20) provided quantitative expressions for the

computation of actual lattice parameters at the temperatures of crystal growth.

This is of practical importance for the growth of alloy-type single crystals of

these materials. The GeTe phase transformation affects the degree of perfection

of 'ngle crystals as a result of strain induced by the transformation during

cooling of the crystals to room temperature. The observed trends in the thermal

expansion behavior of the germanium monochalcogenide series can be explained by

the degree of distortion from the NaCl-type structure and by the degree and type

of hybridization of their bonding orbitals [20].

The combined information obtained from the above transport, thermodynamic and

structural studies on the germanium chalcogenides provided the basis and reference

data for space experiments performed on these systems during the Skylab and Apollo-

Soyuz Missions. The results of these microgravity experiments are briefly

summarized below.

Six vapor transport experiments on the systems GeSe-Gel 4 and GeTe-GeI 4 were

performed on Skylab [21} to determine the effects of micro-gravity on crystal

growth and transport rates. Based on a direct r_ompa°icon of crystals and trans-

part data obtained on earth and in space, employing X-ray diffraction, microscopic

and etching technique:;, the results demonstrate a considerable improvement of the

space grown crystals in terms of growth morphology and hulk perfection. The

observation of greater mass transport rates than expected in micro-gravity for

diffusion-controlled transport could indicate the existence of other transport

modes in a reactive solid-gas phase system. The coiiibined results show that the

interference of gravity-driven convection with the transport process causes nega-

tive effects on crystal growth as observed on earth for otherwise identical condi-

tions. This points to the unique environment of weightlessness for the observation

of basic transport phenomena.

In order to confirm the partially unexpected Skylab results [21), the micro-

gravity st ,idies were extended to mixed compounds of the above systems, employing

different transport agents, pressures and temperature gradients.

The positive effects of micro-gravity on crystal growth and basic properties

of the vapor transport reaction were established by analyzing the results of

three transpo: _ experirir:nts of multicomponent systems perfurned during the Apollo-
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Soyuz mission [22). The systems employed were GeSP0 99
Te 0 01-GOI41

GeSG_gBSeG 02 -GeC1
49
 and GeS-GeC1 4 -Ar. the crystallographic analysis is based on

a direct comparison of space- and earth-grown (prototype) crystals, employing

X-ray diffraction, microprobe, microscopic, and chemical etching techniques. The

results demonstrate a considerable improvement of the space-grown crysta l s in

terms of chemical and crystalline homogeneity, surface morphology, and bulk

perfection relative to e?r*_h specimens. The confirmation of greater mass trans-

port rates than predicted for diffusion-controlled transport in micro-gravity

suggests the existence of "thermochemically" induced convective motion in chemi-

cal vapor transport systems. The morphological observations indicate, that the

presence of different convective components yields turbulence which adversely

affects crystal quality as observed on earth. The internal consistency and

agreement between our ASTP [221 and Skylab [211 results obtained for several

compounds, transport agents, and temperature gradients strongly support the

validity of these observations.

The combined Skylab [21] and ASTP [22] experir.>ents represent the systematic

investigation of the transport properties of an entire series of IV-VI compounds

in micro-gravity. The results are of basic scientific and technological signif-

icance. They have demonstrated, that present theoretical vapor transport models

are incomplete and that trie vapor transport technique is suitable for future

space processing applications. These space experiments also show, that extensive

ground-based studies are required for the successful performance of micro-gravity

studies. In order to further elucidate the unexpected transport phenomena

observed in space, new fluid dynamic studies on these and related systems are in -

progreSs under a separate project.

II.5.	 T i n Cha l cogen ide Systems

In connection with vapor transport and crystal growth studies in the tin-

sulfide systems, the occurrence of reverse transport was observed. Since this

is a basic phenomenon .0iich may occur in many other chemical transport systems,

systematic investigations were performed on the SnS 2 -SnI 4 -I 2 system to determine

the effects of temperature and pressure on the transport direction. The results

are briefly SLVIViarized below.

Mass transport rate studies on SnS 2 in the temperature gradient 643 - 723 K

using S
ill  

as initial transport agent revealed the existence of forward (hiyh

low temperature) and reverse (low ► high temperature) transport [23]. The net.
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transport direction was found to be pressure dependent. At higher temperatures,

only forward transport was observed for the SnS 2 - Sill 4 system. When elemental

iodine is employed as initial transport agent in the above gradient, SnS 2 is

transported from low to high temperature for pressures between about 0.3 and

150 kPa. The ►m.0 dynarnic calculations for these systems yielded partial pressures

of the major gaseous species Sill 
41

Sni t , I 2 , I, S 2 , S 3 , S 4 , S 59 S 6 , S 7 , and S8

which led to the formulation of the dominant transport reactions consistent with

the observed net transport direction. The major transport reactions are 	 r

SnS 2 (s) + SnI 4 (g) = 2 SrrI 2 (9) + S2(9),

SnS 2 (s) + 2 I 2 (g) = SnI 4 (g) + S2(g)

and	 ?;

SnS 2 (s) i- 2 1 2 ( g ) = Sill 4 (g) + 2/i Si(g),	 t

where i = 3, 4, 5, 6, 7 and 3. It is important to note that all reactions occur-

simultaneously to some extent. The relative dominance of these reactions, in

particular those involving higher molecular sulfur species, determine the net

transport direction.

[lased on the hypothetical pressure P* of SnS 2 , defined as the "solubility"

of SnS 2 in the gas phase, the quantity AP* is given by the equation

AP* = P*(SnS 2 ) T - P*(SnS2)T '
2	 1

where T2 > T 1 . The solubility of SnS 2 can be expressed in terms of the gaseous

sulfur or- Sn-iodide species, e.g., P* is the sum of the sulfur- partial pressures

in terms of S 2 molecules,

P*(SnS 2 ) = P(S 2 ) + 312 P(S 3 ) +2P(S r} ) + 5/2 P(S 5 ) + 3 P(S6 ) + 712 P(S 7 ) + 4 P(Sd).

The partial pressures are calculated at T 2 and T 1 based on the abc ., indicated

transport reactions. The quantity AP* is calculated for different temperature

gradients as a function of total pressure of the system.

In the absence of kinetic limitations, for positive values of AP* forward trans-

port (T. 0 T 1 ) is dominant. When AP* is negative, net reverse transport will

occur. Tile presence of both fore4ard and reverse transport implies th, existence

of an inversion temperature at which the solubility of the solid is a minimum.

Calculations of AP* as a function of pressure reveal that the inversion pressure

(change it transport direction) occurs at higher total pressures with increasing 	 ,
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temperature. The results of these calculations are consistent with present

i rive %tigations and previous studies on the SnS 2 - Sri I 4 and SnS.-I 2
 

Sys te ►rrs.

For the calculation of partial pressures in this truly multi-component

multi-reaction system SnS 2 - Sill 4 -I 2 [2.3], a program was developed for the simulta-

neous solution of Several chemical equilibr`,a. The program is based on the mini-

mization of the free energy for the entire system as a function of temperature

and pressure. The results of ttre above studies are of general applicability and

are of basic scientific and practical importance. Through the use of the hypo-

thetical pressure (solubility) P* of SnS 2 , a relationship has been given which

allows the unambiguous calculat i on of the riot transport direction. This is of

practical value for the optimization of crystal growth and transport conditions.

Before reliable transport experiments and thermodynamic calculations on the

above systems could be performed, the stability range of SnS 2 had to be estab-

lishes! [24]. Based on mass spectrometric studies, SnS 2 decomposes measurably at

temperatures above about 350°C according to the reaction

2 SnS 2 (s) = Sri S
3 (s)+ !2 

S
2 ( g )

Higher molecular species were bel r the detection limits of the instrument.

Quantitative Knudsen-type mass-loss measurements employing automatic vacuum

microbalance techniques in the temperature range 3501 - 500°C yielded absolute

partial pressures of S 2 for the above reaction to be in the range 10 -7 - 10-4 atm.

Similar mass spectrometric and microbalance mass-loss measurements [24]

established the decomposition and absolute partial pressures for Sn 2 S 3 according

to the reaction

Sn 2 S 3 (s) = 2 SnS(s) + '- 2 S2(g)

In the temperature interval 400°C - 525°C, the partial pressures of S 2 range from

about 5x10 -7 
to 10 -4 at ►n.

The final decomposition product sublimes congruently [24] according to the

reaction

SnS(s) = SnS(g) .

The absolute partial pressures of SnS((j) at temperatures between about 475° and

650°C are in the range 10 -8 to 10 -4 atm.

The above studies [24] demonstrated that SnS 2 decomioses via

!M

42
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Sn 2S
3
 to SnS. The extent of decomposition depends upon tempera tlire

and pressure. These studies also yielded the enthalpies and entropies

of the above decomposition reactions from which the heats of formation and atso-

lute entropies of SnS 2 (s), Sri 2 S 3 (s) and SnS(s) were obtained. These results [24]

were used for tiie thermodynamic calculations of the transport studies [23]. Un-

der the conditions of the chemical vapor transport reactions of SnS 2 [23], the

decomposition of SnS 2 [241 does not occur.

Chemical vapor transport and crystal growth studies on the Sn-monosul fide

and Sn-selenide systems are in progress. Emphasis in these studies is on the

elucidation of the crystal growth mechanism of SnS and SnSe and on the reverse

transport phenomena of SnSe and SnSe 2' The compounds SnS and SnSe have the

orthorhombic structure. For crystal growth studies on these materials it is

desirable to establish their crystallographic identity and possible phase trans-

formations at elevated temperatures. The results of these studies are briefly

summarized below.

The thermal expansion of SnS and SnSe was studied above room temperature up

to the melting point of 1163 ± 5 K and 1135 ± 5 K, respectively, by X-ray dif-

fraction techniques using a 190 mm llnicam high temperature camera [25]. The

changes of the lattice parameters indicate that the atomic positions in the

(010) plane approach a square planar arrangement with increasing temperature.

The transformation of SnS and SnSe from orthorhombic to a pseudo-tetragonal

orthorhombic modification wi*.h a = c < b is observed at 878 i 5 K and 807 ; 5 K,

respectively. The lattice pa. ameters of the high temperature modifications are

00for SnS a,c = 4.162 ± 0.006 A, b = 11.517 ± 0.015 A at 932 K and for SnSe a,c =
^	 o

4.313 � 0.006 A, b - 11.703 � 0.015 A at 820 K. Both compounds maintain this

structure type up to the melting points.

The results of these studies [251 reveal that SnS and SnSe undergo consider-

able changes in lattice parameters with increasing temperature. This is of prac-

tical importance with respect to the de,ree of perfection of single crystals of

these materials which could be measurably affected by the rate of cooling the

crystals from growth to room teriperature. This is of particular concern for Sn

containing alloy-type single crystals where the rates of thermal expansion (con-

traction) are different for the individual components. The effects of c000ling

rate on crystal morphology will be considered in these on-going studies.

Ik
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III. SUMMARY AND DIRECTION of FUTURE RESEARCH

The primary objectives of this research prograrrr were to establish the basic

vapor transport and crystal growth properties and to determine the thermodynamic,

kinetic and structural properties of different classes of materiels relevant to

the conditions of chemical vapor transport reactions. An important aspect of

this program was to observe and to measure the effects of transport parameters,

in particular of gravity-driven convection, on the mass transport rate and crys-

tal morphology. These goals have been accomplished through extensive studies on

selected Mn-chalcogenides, II-VI and IV-VI compounds. Three different transport

modes have been identified which control the mass trans port rate in different

pressure regimes of the transport system. The negative effects of convective

mass transport on crystal morphology have been demonstrated. The thermodynamic

and kinetic studies on IV-VI compounds revealed the importance of surface defects

and of a mobile surface layer for the sublimation mechanism of single crystals.

This is of immediate relevance for the condensation and growth mechanism of crys-

tals. The structural studies on IV-VI compounds demoostrated the existence of

solid phase transformations at elevated temperatures associated with considerable

lattice expansions and rearrangements of lattice sites. These resuits have prac-

tical consequences for the degree of perfection of crystals and for the growth of

alloy-type crystals of these and related materials.

The combined info-mation obtained from these ground-teased studies was used

to define the systems and experimental conditions for crystal growth studies in

micro-gravity environment which were performed during the Skylab and Apollo-Soyuz

Missions. The results of these space experiments demonstrated unambiguously a

considerable improvement in crystal quality for the space grown specimens rela-

tive to corresponding prototype samples obtained on earth. The second major

result of the Skylab and Apollo-Soyuz experiments is the observation of greater

mass transport rates than expected for a diffusion controlled vapor transport.

The results obtained for different compounds, pressures and temperature gradients

in micro-gravity are of basic scientific and technological significance.

The vapor transport and crystal growth data produced to date under this pro-

gram on earth and in space dete nrnine the direction of continued research efforts

in this area. These can be summarized as follows:
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1)	 The application of rigorous thermodynamic calculations 	 to chemical	 vapor trans-

port systems	 to quantitatively characterize 	 the vapor phase. 	 This will	 lead to a

priori	 determinations of the net transport direction, of the inversion 	 temperature

and of optinrimum growth conditions of a system.	 2)	 Continued investigations	 of

fluid dynamic properties of vapor transport systems,	 including measurements of

temperature fluctuations	 inside closed ampoules and of the effects of ampoule

orientation and geometry on 	 transport rates and crystal morphology.	 3)	 Detailed

gro,rth rate studies of individual 	 single crystals	 to differentiate between 	 the

effects of gas motion	 (convection) and growth mechanism on growth velocity and

morphology of crystals.

The above indicated future studies have been initiated under a separate

project.	 The results will	 be of practical	 importance	 for the design of 	 future

flight experiments and for the space processing of single crystals 	 of preselected

orientation and growth velocity.

i
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