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CALCIJLATION OF THE PLANAR SUPERCRITICAL FLOW

OVL'R A NASA SUPERCRITICAJ. PROFILE

By H. Yoshihara and R. Magnus

Convair. Division of General Dynamics

San Diego, Calif.

SUMMARY

An unsteady finite difference procedure is used to calculate the steady

inviscid flow over a 1.1% thickness ratio NASA supercritical profile of
LWP 505 at M = 0.80 and a - 0. An attempt is made to include the viscous

effects using a modified form of Head's entrainment method to calculate the

turbulent boundary layer. The results of the inviscid calculations compared

to the experimental results of Whitcomb indicate a significant influence of

viscosity, though the comparison is partially obscured by t.h-_ unknown wind

tunnel wall interference effects. The effects of viscosity were manifested

in three ways. Firstly, the experiments clearly indicated the presence of

shock-induced separation at the base of the shock. The resultant flow dis-

placement effect produced a significant upstream movement of the shock.

Secondly, the displacement effect of the boundary layer, primarily on the aft

upper surface, reduced the effective aft camber which in turn resulted in

changes of the "plateau" pressures on both the upper and lower surfaces charac-

teristic of a decreased flap effect. Thirdly, the severe adverse gradients

on the aft portion of the lower surface resulted in a significant thickening

or a local separation of the boundary layer that led to decreased over-

pressures.

The attempt to predict the viscous effects using the compressible form

of Head's integral method with a modified auxiliary equation P the form

factors was unsatisfactory. Though a reasonable separation buc..jle was es-

tablished on the lower surface, a grossly exaggerated displacement effect

resulted downstream of the shock on the upper surface. Here in these explora-

tory calculations the experimental pressure distribution was simply used to

check the boundary layer equations. There clearly is substantial further

effort required to evolve a satisfactory boundary layer procedure, which must

then be coupled in a still unproven manner with the inviscid procedure.
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INTRODUCTION

The calculation of the planar supercritical flow over airfoils is uni-

versally recognized as a horrendous task. Sources of the difficulties are

manifold. At the high Reynolds numbers of pertinence the resulting boundary

layer is turbulent, and is sufficiently thin that the classical boundary

layer concept would be applicable were it not for the presence of the termi-

nating shock wave. The presence of the shock wave can so drastically alter

the "effective" shape of the profile through the displacement effects of the

boundary layer that the inviscid solution no longer serves directly as a

viable basis to obtain the pressure distribution. In short the inviscid arid

boundary layer flows are strongly coupled. Despite the strong coupling with

proper ingenuity it would not be a hopeless task to compute the coupled flow

if methods were available to calculate both the inviscid f'le ,,r over a given

shape, and the turbulent boundary layer flow, possibly separated, in the

presence of a prescribed pressure distribution.

In the present study the objective will be to carry out the inviscid

calculations for a prescribed airfoil, namely the 11% thickness ratio NASA

supercritical profile of LWP 505, at a	
0

= 0 and M = 0.80, and attempt to

extend the results to include the viscous effects.

THE INVISCID CALCULATIONS

To compute the inviscid flow the u:.stead.y finite difference procedure

as described '-n Ref. 1 will be used. Isere the coexistence of ;subsonic and

supersonic flows with their highly differing mathematical characters in the

steady state makes the unsteady approach more tractable than the steady from

a calculational point of view, since in the latter representation the character

of the equations remains hyperbolic in both the subsonic and supersonic flow

regimes.

In Figure 1 is shown the resulting Mach wave pattern for the supercritical

profile at M = 0.80 and a = 00 , whereas in Figure 2 the resulting chordwise

distribution Hof the pressure is shown. Also shown in Fig. 2 are some experi-

mental results as obtained by Whitcomb (Ref. 2) for several geometric value:.

of a. The pressure distributions for the several values of a are shown

here since the precise value of the angle of attack is not known because of

the disturbing influence of the wind tunnel walls. If tests had been carried

out additionally for geometric a of a	 o	 'y	 g	 approximately 2 , the plateau values

F	 `t

M!
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of the pressure on both the upper and lower surfaces would agree closely with

the calculated result. The immediate conclusion might then be that there is

a minus 20 correction in (Y due to wall effects for this case. That this

may not be a completely correct conclusion may be suggested by the lowness

of the trailing edge pressure, and the fact the shock pressure rise falls

significantly short of that for the normal shock. The latter clearly indicates

the presence of a separation ')ubble immediately downstream of the shock which

then leads to a significant boundary layer displacement effect in the vicinity

of the upper surface trailing edge as manifested by the depressed trailing

edge pressure. The added displacement effect of the boundary layer here gives

rise to a lessening of the effective trailing edge angle; that is, a lessening

of the aft camber. This in turn leads to increased plateau pressures on the

upper side and decreased plateau pressures on the lower side as would result

from a decreased flap effect. In short, the modifications of the pressure

distribution due to viscous effects on the airfoil surface are of the f^eme

general character as that due to wall interference effects.

Aside from the viscous effects just described a more serious consequence

of the separation bubble is that the shock wave at the surface is now oblique

instead of normal as in the unseparated case, and the resultant shock pressure

rise will then be significantly less than the normal shock pressure rise. As

a result the shock wave will move upstream to a position sufficiently far up-

stream to allow a sufficient "run" of su b sonic recompression to attain, the

required trailing edge pressure. suite apart from the above effect there is

a countering influence on the shock movement by the depression of the trailing

edge pressure. Thus, for a depressed trailing edge pressure there would be

less subsonic recompression required, and as a result the shock wave would not

have to migrate as far upstream as for a higher trailing edge pressure.

Finally in Fig. 2 it is seen that there is a significant depression of

the overpressure: on the lower aft surface caused by a separation or a thicken-

ing of the boundary layer resulting from the severe adverse suberitical pressure

gradient caused by the aft camber.

The above results clearly indicate that inviscid results must be supple-

mented by the addition of the viscous effects.

VISCOUS CALCULATIONS

There presently does not exist a :suitable procedure to calculate a

turbulent boundary layer in the presence of a prescribed external pressure

URLASSiFIED 	 3
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distribution containing adverse pressure gradients sufficient to lead to

separation. An attempt will be made however to extend an existing method for

this purpose. Of' the many procedures one of the more promising methods is

due to Head (Ref. 3) and Green (Ref. 4), and this procedure will be adopted

for our further considerati , in. Another widely used procedure is due to Nash

and Macdonald (Ref. 5). The latter method is an extremely simple procedure

and is based upon the use of the classical streamwise momentum integral

equation which results in the following ordinary differential equation for

the momentum thickness e:

dtnu

dx
-- (H+2-Me2 ) e ^ 

e
+2C

f	
(1)

Here If is the usual form factor If	 M and u are the Mach number

and velocity in the external inviscid flow, and C is the wall skin friction

coefficient. In the Nash-Macdonald method Eq. (1) issupplemented by two

additional equations in order to obtain a fully determined system, assuming

for the time being that u e (x) and Me (x) are prescribed. First of the
required equations expresses C as a function of the Reynolds number based

upon e, and one or more of the other dependent variables appearing in (1).

A suitable form is that given in Ref. 5, or the well known Ludwieg-Tillmann

formula in one of its many variant forms. The second auxiliary relation

suggested by Nash and Macdonald is based upon the assumption that the flow

is locally an "equilibrium boundary layer;" that is one that fulfills the

condition

G(TT) = 6.1 (Tr + 1.81) 1/2 - 1.7	 (2)

where

	

H	
d d,n 

u 
and

	

J` f,/ 2	 dx

112(H - ^.)
G = ( C^2 )	 `\ H

with

H � 	 H + 1	 - 1
1 + 0.178 M 2

e
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.,br a given u (x) and M (x) the differential equation (1) for 8 can

be integrated usinge (2) and the eskin friction law, and one can obtain quite
simply the chordwise distribution of e(x), C f(x), as well as 8 (x). For

an unseparated boundary layer use of the above procedure has been found to

yield a satisfactory distribution for A(x), but is inadequate to yield an

acceptable distribution for 8 * (x) (Ref. 5). (The general experience among
most integral methods has been that all procedures appear to yield a reasonable

distribution for e, but the determination of 6 * is a much more delicate
undertaking.) For the separated case it can be expected that the Nash-

Macdonald procedure would simply be grossly inadequate to predict 8*(x).

(Note that the authors of Ref. 5 do not claim the applicability of their

procedure to the .3eparated case).

A more sophisticated approach is the use of the compressible form of

Head's procedure (Ref. 3) given by Green (Ref. 4). The basic equations in

this procedure in addit-on to Eq. (1) include the integral form of the conti-

nuity equation, namely,

dL	
dtnu

dX - F
e + ( Mew - 1) A	

dx 

e

Here	 b

0 = 8 - b ,
	

f p u dy , and
o e e

(3)	 ^

v Fe = - u +	 (Entrainment function)
dx

e

where p is the density, b the boundary layer thickness, v the transverse

velocity, and the subscript e denotes the local inviscid value at y = b.

In the Head-Green method the basic differential equations (1) and (3)
must be supplemented by three additional equations. These are first a skin

friction law, for which we use the Felsch modification of the Ludwieg-Tillmann

law. (Ref. l). The second is an expression; for the entrainment function F

and the third is a relation of the form H = H(H l ) where H = A/6. It is e

in the last relation that an attempt was made to derive an expression valid

for the separated case using available experimental data. For this purpose

the experiments of Green (Ref. 4) and Seddon (Ref. 6) were used to derive the

UNCLASSIFIED	 5
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relation H = H(Hl
) despite the fact that in the latter experiments it can

be clearly shown that there is serious departure from the planar condition

due to the influence of the sidewall boundary layer displacement effects

(see Ref. 1).

To test the resulting set of equations calculations were carried out where

an existing experimental pressure distribution from LWP 505 was used. The

results showed a reasonable a * upstream of the abrupt adverse gradients

on both the upper and lower surfaces as would be expected. On the lower

surface the abrupt recompression led to a local separation bubble that appeared

to be reasonable, but downstream of the shock on the upper surface the resulting

distribution of 8 grew excessively towards the trailing edge.

This unreasonable growth of a* as the trailing edge was approached

could be directly traced to the inadequacy of the auxiliary relation H = H(H1)

used which yielded near-singular values of H for the values of 
}fl 

that

were being predicted.

Despite this shortcoming the resulting a * , with the nreasonable values

arbitrarily modified, was used to obtain a modified airfoil shape, and the 	
1

inviscid flow was recalculated in order to obtain a qualitative effect of

the boundary layer displacement. The results indicated the change of the

pressure distribution described earlier for the decreased aft camber.

These highly tentative attempts to incorporate tha viscous effects clearly

point out areas of future effort required to improve the procedure. With a

reasonable amount of additional effort it is not excessively optimistic to

expect that a viable boundary layer procedure can be eventually evolved to

handle the specialized case of shock-induced separations on supercritical

airfoil flows.

Convair Division of General Dynamics

San Diego, California, leg September 1970
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