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FOREWORD

This document, SPS System Requirements, is Volume II of the
SPS Concept Definition Study (Contract NAS8-32475), Exhibits A
and B, and also incorporates results of NASA/MSFC in-house effort.
Other volumes of the final report that provide additional detail
are listed below.

Volume

I	 Executive Summary

III	 SPS Concept Evolution

IV	 SPS Point Design Definition

V	 `transportation and Operations Analysis

V1	 SPS Technology Requirements and Verification

Vil	 SPS Program Plan. and Economic Analysis
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1.0 SCOPE/GENERAL REQUIREMENT'S

1.1 INTRODUCTION

This volume of Satellite Power Systems (SPS) Concept Definition Study
Final Report summarizes the basic requirements used as a guide to systems
analysis and is a basis for the selection of candidate SPS point design(s).
Initially, these collected data reflected the level of definition resulting
from the evaluation of a broad spectrum of SPS concepts. As the various
concepts matured these requirements were updated to reflect the requirements
identified for the projected satellite system/subsystem point design(s).

The firet half of the study established several candidate concepts which
were presented to the NASA for their review and to provide a basis for the
selection of one or two approaches that would be given a more comprehensive
examination. The two selected concepts were expanded and constitute the
selected system point designs. This volume emphasizes the identified system/
subsystem requirements and provides information on the selected point design
only where it was felt to be necessary to clarify the stated subsystem re-
quirements. A more detailed presentation on the selected point designs is
given in Volume IV of the SPS Final Report.

Figure 1.1-1 establishes the relationship of the satellite system data
presented in this document with other elements of the SPS program. Discus-
sions relative to these associated program elements (rectenna, transportation,
etc.) are provided only, and to the extent necessary, to clarify or define
subsystems forming the satellite system.

SATELLITE
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Figure 1.1-1. SPS Program Element

Relationship

Figure 1.1-2 indicates var ious subsystems and their relationship to the
satellite and to each other. The rectenna system is identified and shown to
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have an indirect (dotted) relationship to the orbiting satellite. Major
assemblies comprising each subsystem are identified. Unique factors such
as elements of one subsystem that are integrated ;rith another (for example,
thermal radiators, subsystem control, etc.) are also identified. This
document will also identify supporting subsystems, including the transporta-
tion system and SPS related ground facilities where these elements have been
identified and evaluated.

1.2 SATELLITE POWER SYSTEM CONCEPTS

1.2.1 CANDIDATE CONCEPTS

Six satellite concepts were identified for consideration at the mid-term
briefing. These concepts are shown in Figure 1.2--1. A single rectenna farm
concept was assumed, applicable to all satellite concepts.

Figure 1.2--1. SPS Conceptual Configuration (Mid-Study)

Solar Photovoltaic (CR-1)

Figure 1.2-2 illustrates the solar photovoltaic (CR-1) satellite power
system concept. The CR-1 system was a planar array and had an overall plan-
form dimension of 2.0x28.58 km. The depth of the satellite was 1.17 km.
This system required 48.99 km 2 of deployed solar cell area and had a total
mass of 37.3x10 0 kg, including a 30.7 percent growth factor. The major
advantages of the CR-1 c^nf iguration were its simplicity of design; it did
not require reflectors; and its relative insensitivity to misorientation
angles of as much as + 3 degrees. The CR-1 configuration would have had the
largest solar cell area and mass in orbit.

1-3
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Figure 1.2-2. Solar Photovoltaic Satellite (CR--1) (Mid-Study)

Solar Photovoltaic (CR-2)

Figure 1.2-3 illustrates the solar photovoltaic (CR-2) satellite power
system concept. The CR-2 system used reflector membranes to concentrate
solar energy on the cells. The satellite had two "Vee 11 troughs per wing.
The overall planform dimensions were 2.75x27.16 km, and the depth was 1.2 km.
This system required 23.76 km 2 of deployed solar cell area and had a total
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Figure 1.2-3. Solar Photovoltaic Satellite (CR--2) (Mid-Study)
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mass of 33.7x10 6 kg, including a 30-percent growth factor. The major advan-
tages of the CR-2 configuration were the reduced requirement for solar cells
and low weight which reduced overall cost. The disadvantages were the plan-
form of the satellite was higher than for CR-1 and the system was sensitive
to misorientation. A + 1 degree misorientation of the solar array required
an additional 7.9 percent of reflector surface area. The reflective membranes
for the GEO environment was not available, and reflectiviti.es of 90 percent
at the beginning of life and 72 percent at the end of life were used in the
design.

Solar Photovoltaic (CR-5)

Figure 1.2-4 illustrates the solar photovoltaic (CR-5) satellite power
system concept. The CR.-5 system had two troughs per wing and used reflector
membranes to concentrate solar energy on the cells. The satellite had the
overall planform dimension of 3.12x32.84 km and the depth was 1.4 km. This
system required 10.4 IM 2 of deployed solar cell area and had a total mass of
37.4x10 6 kg, including a 31.2-percent growth factor. The CR-5 system xequir-
ed the lowest solar cell area. The CR-5 configuration was very sensitive to
misorientation angles of only + 1 degree. At a geometric concentration ratio
of 5, an increase in reflector surface of 43 percent was required to compen-
sate for a misorientation of + 1 degree.

Figure 1.2-4. Solar Photovoltaic Satellite (CR-5) (Mid-Study)

Solar Thermal - Brayton

Figure 1.2-5 shows one Boeing concept for a 10-GW solar thermal SPS. It
used four concentrator modules, each composed of thousands of planar facets
which reflect sunlight into a cavity absorber. Ceramic tubing in the abscrber
heated pressurized helium to 1379°C (2514°F) which was supplied to a Brayton
cycle power mo e-ule comprised of a turbine, regenerator, cooler, compressor,
and electrical generator. Heat rejected from the cycle was dissipated by

1-5
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means of a NaK loop to a heat pipe/f in radiator. Microwave power was trans-
mitted from a single antenna at the end of the satellite.

Solar Thermal - Rankine

Figure 1.2-6 shows a Rockwell concept for a 5-GW solar thermal SPS using
a cesium Rankine cycle. The two concentrators Caere inflatable, using alumi-
nized plastic film with a transparent canopy. Sunlight was concentrated on
an open-disc absorber (cesium boiler) which provides cesium vapor at 1038°C
(1900°F) to cesium turbines. Exhaust from the cesium turbines was condensed
at 400°F in a tube/fin radiators Each of the concentrator modules was hinged
to permit seasonal tracking of the sun without imposing gravity gradient
torques on the satellite. The beam connecting the two modules was offset to
locate the rotary joint at the satellite center of gravity.
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Figure 1.2-6. Solar Thermal -- Rankine (Mid--Study)

Nuclear , - Brayton

Figure 1.2-7 illustrates the nuclear-powered satellite power system
concept. The nuclear Brayton powered SPS consisted of 26 power modules con-
figured in a circular array 2 km in diameter. The antenna was separated by
a distance of 3 km from the power modules. In this manner, reactor shadow
shielding and reactor-close plane separation distance were combined to reduce
nuclear radiation at the antenna to a level acceptable to maintenance person-
nel. Each power module gs.nerated 344 We to provide the required power at
the distribution bus as well as its own housekeeping requirements. Brayton

1-7
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Figure 1.2-7. Nuclear - Brayton

cycle waste heat was rejected by a square radiator measuring 227 meters
(750 feet) on each side (26 required). Each power module was approximately
40 feet in diameter and 144 feet in length, and contained one nuclear reactor
with shadow shield, fuel reprocessing assembly, and two closed Brayton cycle
power conversion units. The power module could be removed from the radiator
for replacement by remotely operated equipment.

Mass Properties

Tables 1.2-1 through 1.2-3 present the summary weights for the six
initial candidate satellite concepts. The solar thermal weight summary
illustrates the known weight elements for both potassium-(K) and cesium-(Ce)
based Rankine thermal cycles.

Elect enna

The ground receiver or rectenna transforms the transmitted radio frequen-
cy energy to do current for distribution into the utility network. The area
covered by a 5-gigawatt (GW) delivered power rectenna rate is shown for a
typical city (Figure 1.2-•3). The rectenna formed an ellipse that is approx-
imately 6x10 km. An additional 4 km in radial length was provided to the
security fence to assure a safe level of radiation outside the fence.

1.2.2 SELECTED SYST ER CONCEPTS

The two concepts selected for further evaluation and definition were a
photovoltaic (CR-2) approach and a variation of the proposed Rockwell Solar
Thermal satellite. A summary description of the two selected point designs
are given in the following two paragraphs. Both these concepts are described
in greater detail. in Volume IV, Point Design, of the SPS Final Report.

In addition the selected rectenna point design which differs slightly
from the previous concept is briefly described below and in more expanded
form in Volume IV.

1-3
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CR =5 CR = 2 CR = 1 GROWTH
CONCENTRATION RATIO 106 KG 106 KG 106 KG %

COLLECTOR ARRAY (NON ROT.) (18.363) (15.465) (38.3)
PRIM./SEC. STRUCT./MECH. 9.306 3.993 2.805 25.0
ATTITUDE CONTROL .300 0.212 .375 30.0
SOLAR CELLS 3.297 5.990 12.343 24.7
REFLECTORS 2.182 2.052 NIA 15.0
POWER CON D IT. .387 .387 .387 50.0
WIRE HARNESS/SLIP RING 2.891 2.891 2.469 97.0

ANTENNA (ROTATING) (9.794) 9.794 9.794 (23.1)
PRIM./SEC. STRUCT./MECH. .268 25.0
COOLING .200 50.0
PWR CONVERTERS 5.690 20.0
WIRING/SLIP RING .096 SAME SAME 94.0
WAVEGUIDES 3.540 20.0

IMS EQMT/CABLING .240 .240 .240 813.0

PROPELLANT/YEAR .100 .100 .100 0

SUBTOTAL SATELLITE SYST. 28.497 25.599 28.513

GROWTH ALLOWANCE 8.882 8.115 8.766 31.2

TOTAL SATELLITE SYST. 37.379 33.714 37.279

COMPARABLE SILICON CR = 1
WEIGHT = 43.589 X 10 6 KG
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Table 1.2-1. Solar Photovoltaic Weight Summary (GaAlAs Solar Cells) (Mid-Study)



BRAYTON

RANK] NE

POTASSIUM CESSIUM GROWTH
CONVERSION CONCEPT (106 KG) (106 KG) (106 KG) %

COLLECTOR ARRAY (NON-NOT) (22.845) (31.178) (22.559)
PRIM./SEC. STRUCT./MECH. 2.217 2.217 2.139 25.0
ATTITUDE CONTROL .200 .200 .200 30.0
SOLAR COLLECTOR .878 1.200 1.109 24.4
SOLAR ABSORBER 2.600 .230 .230 30.0
TURBO;-EQUIP /GEN 4.990 14.100 5.650 30.0
POWER CONDIT 1-839 1.839 1.839 50.0
WIRE HARNESS/SLIP RING 1.262 1.262 1.262 100

RADIATORS 8.860 10.130 10.130 30.0

ANTENNA (ROT) 9.794 9.794 9.794 23.1

EMS EQMT/CABLING .240 .240 .240 75.0

PROPELLANTNEAR .100 .100 .100 0

SUBTOTAL SATELLITE SYST 32.980 41.312 32.693

GROWTH ALLOWANCE 10.131 12.566 10.087 30.8

TOTAL SATELLITE SYST 4;1.162 53.878 42.780
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Table 1.2-2. Solar Thermal Weight Summary (Mid-Study)
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(106 KG) GROWTH %
PRIMARY STRUCTURE 0.361 25.0
SEC. STRUCT. 1.112 25.0
ATTITUDE CONTROL 0.20 30.0 CONCEPT WEIGHT COMPARISONS
SHEILDING 0.54 30.0
REACTORS (26) 2.06 30.0 POWER BASE TOTAL

CONVERSION WEIGHT GROWTH WEIGHTFUEL PROCESSING 1.01	 20.73* 30.0 CONCEPT (106 KG) (%) (106 KG)
TURBO-EOUIPMENT 3.34 30.0
GENERATORS 1.83 30.0 CR = 1 28.513 30.7 37.279
RADIATORS 11.94 30.0 2 25.599 30.0 33.714
POWER CONDIT. 1.839 50.0 5 28.497 31.2 37.379
WIRE HARDNESS 0.60 100 RANKINE 26.386 31.2 34.605ANTENNA 9.88' 23.1 CS/STEAM
IMS EQUIP. 0.061 50•0 NUCLEAR 35.056 29.6 45.465
IMS CABLING ITS 0.179 100

1

PROPELLANT/YEAR 0.10 0
SUBTOTAL 35.052 —

GROWTH ALLOWANCE 10.411 29.6
TOTAL SATELLITE SYST. 45.463

r

V
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Table 1.2--3. Nuclear Reactor Concept Weight Summary
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*GASEOUS CORE REACTOR/MHD COULD POTENTIALLY REDUCE THIS TO
1.99 X 106 KG — REFERENCE: 8TH IECEC PAPER 739018, 1973

RA%ATOR OPTIMIZATION COULD POTENTIALLY REDUCE THIS TO
14.95 X 10 KG - CONDENDING STEAM RADIATOR (LOWER TEMPERATURE)
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Solar Photovoltaic (CR-2)

The GaAlAs photovoltaic point design satellite power system concept is
shown in Figure 1.2-8. The system utilizes aluminized reflector membranes
to concentrate the solar energy on the cells. The satellite solar reflectors
produce a concentration ratio of CR-2. The satellite employes the "Vee
trough" configuration and has three troughs per wing. The system has an over-
all efficiency of 6.08% and delivers 5 GW of electrical energy to the utility
company on the ground. The overall planform dimensions are 3.85x21.3 km, and
the depth is 1.69 km. The satellite has a mass of 36.56x10 6 ki which includes
a 30% growth factor for the mass. The system requires 30.6x10 m 2 of solar
cells and 61.2x10 6m2 of reflector surface. The solar cells for the point
design are GaAIAs cells rated at 20% efficiency at AMO and 28°C. The solar
array blanket mass is 0.2525 kg/m2.
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Figure 1.2-8. Solar Photovoltaic Satellite (CR-2) 5 GW

Solar Thermal - Rankine

Figure 1.2-9 shows the Rockwell point design concept of a 5-GW solar
thermal SPS using a cesium/steam Rankine cycle. The two concentrators are
of an inflatable design, using aluminized plastic film with a transparent
canopy. Sunlight is concentrated on an open--disc absorber (cesium boiler)
which provides cesium vapor at 1260% (2300°F) to cesium turbines. Exhaust
from the cesium turbines is condensed at 593% (1100°F) on the outside of
steam boiler tubes which produce steam at 538 °C (1000°F) and 16.6 kN/mz
(2400 psia) to a bottoming steam turbine. Exhaust from the steam turbines
is condensed at 204°C (400°F) in a tube/heat pipe/fin radiator. 	 t^

a: Bo°g
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a

• CONDENSING STEAM
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• 1.53 KM2 EACH

Figure 1.2-9. Solar Thermal - Rankine (5 GW)

Each of the concentrator modules is hinged to permit seasonal tracking
of the sun without imposing gravity gradient torques on the satellite. The
beam connecting the two modules is offset to locate the rotary joint at the
satellite center of gravity. This permits mounting of thrusters on the rotary
joint and facilitates their orientation during LEO/GEO orbital transfer.

Rectenna

The rectenna concept selected for further definition is illustrated in
Figure 1.2-10. The receiving antenna forms an eclipse with major and minor
axis of 13 km and 10 km respectively. The major axis is aligned along the
N-S geographic line. Figure 1.2-11 illustrates the general, site concept
recommended by the study to date.

Mass Properties

Table 1.2-4 and 1.2--5 present a summary of the estimated weight for
the two point design concepts.
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SD 78-AP-0023-2



Rockwell International
Space Division

'r

ROOT	 ^

RECTENNA SUPPORT CONCEPT

10KM

RECTENNA FARM

r-.-0.74M-- i
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Figure 1.2-10. Microwave Transmissi on Subsystem - Rectenna
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Figure 1.2-11. Rectenna Site Concept
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Table 1.2-4. Photovoltaic (CR-2) Satellite Mass Statement
Point Design

Subsystem
Weight

(*zillion &g)

Collector array

Structure and mechanisms 3.777

Power source 8.831

Power distribution and control 1.166

Attitude control 0.095

Information management and control 0.050

Total array (dry) (13.919)

Antenna section

Structure and mechanisms 1.685

Thermal control 1.408

Microwave power 7.012

Power distribution and control 3.469

Information management and control 0.630

Total antenna section (dry) (14.204)

Total SPS dry weight 28.123

Growth (30%) 8.437

Total SPS dry weight with growth 36.560

Propellant per year 0.040

Table 1.2-5. Solar Thermal Satellite I1ass Statement
- Point Design

SUBSYSTEM
WEIGHT

(MILLION KG)

COLLECTOR ARRAY

STRUCTURE AND MECHANISMS 1.661

POWER SOURCE 3.120

POWER DISTRIBUTION AND CONTROL 4.304

ATTITUDE CONTROL 0.095

THERMAL CONTROL 8.786

INFORMATION MANAGEMENT AND CONT90L 0.050

TOTAL ARRAY (DRY) (18.016)

ANTENNA SECTION

STRUCTURE AND MECHANISMS 1.6135

THERMAL CONTROL 1.408

MICROWAVE POWER 7.012

POWER DISTRIBUTION ANO CONTROL 3.469
INFORMATION MANAGEMENT AND CONTROL 0.630

TOTAL ANTENNA SECTION (14.204)

TOTAL SPS DRY WEIGHT 32.220

GROWTH (30%) 9.666

TOTAL SPS DRY WEIGHT WITH GROWTH (41.886)

PROPELLANT PER YEAR 0.040

1--15
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1.3 TRANSPORTATION SYSTEM

Figure 1.3-1 illustrates one of several candidate transportation flight
operations designed to deliver cargo to geosynchronous (GEO) orbit for SPS
construction. The system consists of two types of vehicles, the Heavy Lift
Launch Vehicle (HLLV) and the Cargo Orbital Transfer Vehicle (COTV). The
HLLV is an aeromaneuverable boost vehicle employing both airbreathing and
L02/LH2 engines, which takes off and lands in the horizontal position. Its
payload capability of 91,000 kg (30m x 10m x 6m) is sized to carry cargo and
stages of the COTV. For each payload package delivered to GEO orbit, three
HLLV missions are required to low earth orbit (LEO) (300 nmi at zero-degree
inclination), two to transport the COW stages to orbit, and one to boost the
payload package. The two COTV stages and the payload are then mated and boost-
ed to GEO orbit. Each COTV stage returns to LEO orbit and is picked up by a

-.later (empty) HLLV for return to earth, where it and the HLLV are refurbished
for future missions. The transportation concepts selected for further evalua-
tion are described in Final Report, Volume V.

• AIR BREATHING HTOSSTO
EARTH LAUNCH VEHICLE

• PAYLOAD CAPABILITY TO
EQUATORIAL LED 01,000 KG

• CHEMICAL L02/LH
COMMON STAGE OTV

• LEO•TO•GEOORBITAL
BURDEN FACTOR OF 2

SECOND STAGE
& CARGO
TO GEO	 FI RST STAGE BURNOUT

& RETURN TO LEO

SECONDSTAGE
RETURNS TO LEO

FIRST STAGE, SECOND
STAGE & CARGO MATING
IN LEO

Figure 1.3--1. Transportation System (Typical)

1.4 PROGRAM GROUND RULES

Table 1.4-1 shows the program ground rules that affected the development
of requirements. Table 1.4-2 shows the general requirements describing the
overall SPS program.
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Table 1.4-1. Program Ground Rules

OF IOC Date:	 i998

Maximum Program Size: 2005 - 170 GW
2025 - 600 GW

Medium Program Size: 2005 -	 55 GW
2025 - 335 GW

Minimum Program Size: 2005 -	 40 GW
2025 - 140 GW

30 Year System Life

Costs - 1977 Constant Dollars (7.5% Discount Rate)

1985 Technology Base

Systems available in the 1980's:

- Shuttle
- luS

- OTV

Table 1.4-2. General Requirements Describing the Overall SPS Program

Programmatic Technology

ENERGY SOURCE - Solar and/or nuclear OUTPUT POWER - Power level is defined as constant
power level	 (except during solar eclipse) at

CAPACITY - Assume 4 to 5 units per year after utility interface	 (5 (;W)
initial buildup to 600 GW

MAXIMUM RADIATION LEVELS - Maximum radiation level
LIFETIME - 30 years with minimum planned mainten- at roctenna is 23 mw/cm^; maximum radiation level
ance (should be capable of extended life beyond at perimeter fence line is 1 mW/cm2
30 years with replacement)

WEIGHT GROWTH - (TBO)
roc - 1998

TaTAL WEIGHT - All summary weight	 (totals) will
BUILDUP - Provide (TBD) power buildup rate to be in term of kg/kwe
utility interface

EtI RGl' STORAs;E - To support on-board satellite
OPERATIONS - Geosynchronous orbit; O-degree system operations only
inclination, circular	 (35,786••km altitude)

CONSTELLATION - Satellite space,	 3 degrees
RESOURCES - Minimum use of critical resources

FAILURE CRITERIA - No single point fa _lure may
COMMERCIALIZATION - Compatible with United States cause total loss of SPS function 	 if

utility networks
FNFRth' YAYBACE - Less than 3 years x 10 percent

DEVELOPMENT - Evolutionary, with provisions fcr of total generated power
incorporating later technology

COST - Competitive with ground-based power gen-
eration within lifetime of SPS project

Sl'o1w;E' - On g	ojr on-))oord storp. ie without
^•:n^^ly

—ARTUP/SHUTDOWN - (TAD)
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2.0 FUNCTIONAL FLOW BLOCK DIAGRAMS (SATELLITE)

2.1 INTRODUCTION

The functional flora diagrams as presented in this section are intended
to provide two types of information. The first is a simplified block diagram
identifying the basic flow path of the end product, in this case electrical
energy, from the point of origin (power generation) to the interface where
the energy leaves the satellite (microwave antenna). The corresponding
information for the rectenna has not been established at this time. The flow
diagrams also identify the interfaces between the various primary and support
subsystem and the signal flow paths within the various subsystem concepts.
The flows are, at the present time, limited to the active paths necessary for
vehicle operations. Passive elements or subsystems, e.g., the structural
fasteners and fastening concepts, are not addressed in this section of the
requirements document.

The second type of information provided is a summary of the requirements
imposed by, imposed upon, and/or derived within the various subsystem config-
urations.

Examples of the type of information presented (when available) include
operating temperatures, pressures, flow rates, voltage and current, pointing
limits, etc.

The operating relationship) between the various subsystems is illustrated
by the block diagram shown in Figure 2.1-1. Operational control of the satel-
lite is provided by the Information Management and Control Subsystem (IMCS).
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Figure 2.1--1. SPS Satellite Subsystem
Functional Relationships
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The IMCS also provides subsystem processing support for all but the very
special functions. The only specific case of a special function identified
at the present time is the beam programmer element in the microwave antenna
subsystem. The man-machine interface has also been established to be at
computer-generated display/control terminals. The display/control terminals
have not, as yet, been defined -- nor will they be during this contract.

Mechanical interfaces (between structure subsystem and the other sub-
systems) have not been shown to simplify the diagrams.

2.2 SUBSYSTEM IDENTIFICATION

The following paragraphs briefly describe specific details of each of
the two subsystem concepts, defined to date. Important parameters are sum-
marized where appropriate. Most specific details of each subsystem element
will be discussed in greater length in Section 3.0 of this document.

2.2.1 POWER GENERATION

Figures 2.2-1 and 2.2-2 present the basic power generation concepts for
the photovoltaic and solar thermal, respectively. The photovoltaic concept
shown is for a concentration ratio of 2 (CR=2). Switch gear for inter-segment
connections are considered part of the power generation group. The solar
thermal concept shown specifies temperatures and pressures for the Rankine
cycle.

2.2.2 POWER DISTRIBUTION

Figure 2.2-3 presents the functional block diagrams for the satellite
power distribution subsystem. This figure represents the distribution system
for both the photovoltaic and the solar thermal based power satellite systems.
The supplementary power source is required during eclipse periods to power
critical support systems and to sustain temperature-sensitive subsystem
elements such as the MW antenna klystrons.

Preliminary power estimates for supplementary power indicates a need for
a 1-40 MW storage capacity. Although subsystem power conditioning and do-dc
conversion is shown as being combined into a single unit, these functions
are in actuality composed of many do-dc converters (or do-ac converters, if
necessary) located throughout the vehicle and/or MW antenna structure. Dc-
dc bias voltage converters are located at two locations on the antenna
structure and supply the 6 high voltages needed to operate the Klystron.
The maximum number of high voltage dc-dc converters on the antenna is estimat-
ed to be 32.
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2.2.3 ATTITUDE CONTROL AND STATIONKEEPING

Figures 2.2-4 through 2.2-6 present the subsidiary systems that make up
the attitude control and stationkeeping subsystem for the photovoltaic SPS
satellite concepts. These three systems are the attitude reference (platform)
system, the microwave antenna pointing system (ring drive and gimbal drives),
and the tank and engine systems. The pointing system shown is also applicable
to the solar thermal concept.
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Figure 2.2•-4. Attitude Control and Stationkeeping --
Photovoltaic Attitude Reference System
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2.2.4 STRUCTURE

Figure 2.2-7 presents the only active (instrumentation) portion of the
structures subsystem defined to date. The depicted system monitors the
location of corner reflectors so as to establish the degree of distortion
existing in reflectors, mirrors, and other elements of the entire satellite
configuration. Each of the 35 laser transits is assumed capable of scanning
and calculating the location of at least 100 to 200 reflectors distributed
over the surface of the mirror, solar arrays, and primary support structure.
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Configuration Monitor -
Photovoltaic (CR-2)
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Figure 2.2-9. Thermal - Solar Thermal (Rankine) Radiator

2.2.5 MICRO14AVE ANTENNA

Figure 2.2-10 presents the beam generation and control portion of the
microwave antenna subsystem. Most of the paths shown operate at frequencies
of approximately 2.45 GHz and are, therefore, either coaxial cable, strip
lines, or wave guides. The beam programmer is a special-purpose dedicated
processor design to accomplish high-speed RF pointing control via the digital
diode phase shifter. External processing is limited to much slower, large
element antenna pointing and performance monitoring and control.

2.2.7 INFORMATION MANAGEMENT AND CONTROL

This subsystem provides for overall satellite operational control, as
well as performing system status monitoring.

Figure 2.2-11 depicts the overall processor hierarchy appropriate to the
basic photovoltaic (CR-2) configuration. Except for the possibility of unique
requirements (not as yet identified), it is expected that this block diagram
can be considered typical for both concepts selected.

Figure 2.2-12 presents the typical architecture of the microwave antenna
IMCS system.
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3.0 SUBSYSTEM

The following subsections of this document describe the requirements,
the major assemblies, characteristics, and definitions for the seven subsystem
groups which were developed during the initial. SPS evaluation. These sub-
systems (or subsystem groups) are listed below.

a Power Conversion

Photovoltaic
Solar Thermal

e Microwave Transmission

e Power Distribution and Control

e Structure

e Attitude Control and Stationkeeping

a Thermal Control

a Information and Management Control.

3.1 POWER CONVERSION

3.1.1 SOLAR PHOTOVOLTAIC POWER SUBSYSTEM

The solar photovoltaic power subsystem consists of the solar cells,
blankets, attachment devices and, for the concentrator-type system, includes
the reflector membranes and attachment devices. Gallium aluminum arsenide
(GaAlAs) cells have been selected as the reference solar cell.. The cell is
fastened to a thin-film Ka.pton substrate with an FEP adhesive. The photo-
voltaic power conversion subsystem is designed for a geometric concentration
ratio of 2.

Functional, Requirements and Block Diagrams

The functional requirements for the photovoltaic power subsystems are
listed in Table 3.1-1. The system efficiency block diagram is shown in
Figure 3.1-1. Shown in the figure are power lavels, efficiencies, degradation
factors and solar cell area requirements. A simplified integrated block
diagram for the CR-2 concept is presented in Figure 3.1--2.
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Table 3.1--1. Solar Array Functional Requirements

PROGRAMMATIC

ENERGY SOURCE - Solar
CAPACITY - 5 GW delivered to utility networks
LIFETIME - 30 years with minimum planned maintenance (should be capable of extended life beyond 30

years with replacement)
TOC DATE - 1901
OPLRATIUNS - Gco:ynchronou:; orbit; U-du(grce inclination, circular 	 (35,786 km altitude)

RESOURCES - Minimum use of critical resources
COMICkCIA LIZA TION - Compatible with United States utility networks
DEVELOPMENT - Evolutionary, with provisions for incorporating later technology

TECHNOLOGY

OUTPUT POWER - Power level is defined as constant power level (except during solar eclipse)
WEIGHT GROWTH - 30 percent
'ENERGY STuPMCE - To support on-board satellite system operations only
FAILURE CRITERIA - No single-point failure may cause total loss of SPS function
ENL'Rr:Y PAYâACA - Less than 3 years

COST - Competitive witk ground-bas,t_l puwvr (generation within lifetime of SPS project
S"f'rNtA r :F.	 -	 One year	 or	 FHVard	 `;Fr•r.tc;,• without, 	 r. • yiri ply

r:ri	 t:n•rir^rl

W_C'ONSTRUC•TIOf; 	 SubEystem	 _ None-

INTFRORBIT TRANSFER	 Subs Stem	 None_

UPERATIONS subsystem Steady-state operation
Reflector Sized for end-of-life (£OL)	 power rating
Subsystem Shut down before entoriny eclipse

Standby (zero pow r)
ECLIPSE Turn on after leaving eclipse and arrays reach equilibrium temp-

eratutc
Hatteriec;
Subsystem

Suj)j,ly i,ow.:r:	 for	 r•sserrtial	 functions
P.!dUndarit operation, auto shutdown, manual startup

FAILURE/AfAINTENANCE Power Shut down and isolate failed module; replace solar cell blanket
module* and/or reflector

CHECKOUT Subsystem I	 Fail-safe checks; control response

*Solar cell/blanket/reflector module
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Figure 3.1-2. Simplified Integrated Blorc. Diagram -
Photovoltaic (CR-2)

Malor Assemblies

The major assemblies and components that are required for the photo-
voltaic subsystem are shown in Figure 3.1-3.

SOLAR PHOTOVOLTAIC
POWER CONVERSION

SOLAR CELLS I	 I SOLAR BLANKET I	 I CONCENTRATOR

° GaA5 CELL	 ° KAPTON BLANKET	 KAPTON BLANKET

° GaAlAs !WINDOW	 ' TRANSPARENT THERMAL 	 ' REFLECTIVE BLANKET

COATING

° COVER/SUBSTRATE	 ADHESIVE	 ATTACHMENTS AND

TENSIONING DEVICES

' CURRENT COLLECTORS	 ' INTERCONNECTS	 SENSORS

° AIA COATING	 ' ATTACHMENTS AND

TENSIONING DEVICES

SENSORS

Figure 3.1-3. Assembly Tree

Solar Cells. The solar cell used in the SPS design is a GaAlAs cell
having an efficiency of 20 percent at Air Mass zero (AMO) and 28%. The
cell consists of the GaAlAs junction, GaAlAs window, cover/substrate,
current collectors, and an anti-reflection coating. The basic cell design
is the inverted GaAs/sapphire design having a weight of 0.252 kg/m 2 . The
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various cell designs and the selected design are shown in Figure 3.1-4. The
design cell has a 20 -}1m sapphire substrate upon which is grown a 5-}Im single
crystal GaAs junction. A 500-A GaAIAs window is then deposited on the 5-}gym
junction. The voltage and current characteristics of the cell as a function
of operating temperature are shown in Figure 3.1-5. The cell, build up to
form a submodule for the solar blanket is shown in Figure 3.1--6.
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Figure 3.1-4. Alternate Solar Cell Design
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MID TERM	 3RD QUARTER

CRG - 2.58	 2.0
CR '2.22	 i.72 (E.O.L.)

ENERGY ONTO CELLS 2888 W/M2	 2330 W/M2
CELL OUTPUT AMO, 25C (2036)	 576	 466
ARRAY DESIGN FACTOR (.876)505	 (.89)415
SEASONAL VARIATION (.911460	 (.91) 379
TEMP. LOSS FACTOR (.88( 437	 333
ENVIRON. DEGR. FACTOR (.92)403 W/M2 (.96) 320 W M2

• B.O.L. FACTOR - 1.15 = > 368 W/M2
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DIELECTRIC

SPACER

ITEM

20 pM Al202

INTERCONNECTS
STOP GRID CONTACTS

.03-.05 PM

'.' 1MP TYPE GaAs

5 PM
4-6 pM

N-TYPE GaAs

U.5-1 'UM
OHMIC CONTACT

13 pM FEP

25 PM KAPTON
(BLANKET)

6 PM POLYMER
THERMAL COATING

WEIGHT (MG/CM2)

7.96

3.4

0.03

2.66

4,0

2.7

3.6

0.9

75.25 (,252 KG/M2)

3.1-6. GaAIAs Solar Cell Blanket
Cross Section

Solar Blanket. The solar blanket consists of a 25-pm Kapton membrane
upon which the cells are fastened with a thermosetting FEP adhesive. Also
included in the blanket are the interconnects, transparent thermal coating
as may be required for thermal control, attachments, tensioning devices, and
sensors. The solar cell blankets will be manufactured in blanket form and
the solar cells attached. This assembly will then be rolled up on a drum
type canister. It is postulated that the blankets will he 25 m wide by
approximately 750 m in length. The canisters are then transported to orbit
where the blankets are deployed via a roll-out deployment-type operation.
The solar blanket consists of 1 square meter modules that are hooked together
in series and parallel and the voltage, current, power output and a typical
layout is shown in Figure 3.1-7.

10.54A

2k.lA

P

3.1-7. Solar Panel Power Output -- Watts/m2
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Reflectors. Thin reflector membranes are used on the SPS to reflect the
sun onto the solar cell surfaces and obtain a nominal concentration ratio
of 2. The reflector is made of 12.5 }lm (0.5 mil) aluminized Kapton. Reflec-
tivity of the reflector was taken at 0.9 BOL and 0.72 EOL. The reflector
membrane has a mass of 0.018 kg/m 2 . The reflective membranes are mounted on
the structure using attachments and tensioning devices. Tensioning based on
structural limit of the existing beam design (with safety factor of 1.5)
indicates that tensioning of up to 75 psi can be used.

Design and Performance Characteristics

The design and performance characteristics of the photovoltaic. system
are presented in Tables 3.1-2 and 3.1-3. operational parameters, materials
of construction, deployed and planform areas and weights are presented for
the subsystem.

Table 3.1-2. GaAlAs Solar Cell and Blanket
Preliminary Specification (CR-2)

Item Characteristic

Array intercepted energy 82.20 Gk
Cell 9 at 28°C, MIO 20%
Call 11 at 125°C, M1O 17.6%
Array output to distribution bus EOL 9.76 GW
Array output voltage 45 kV
Cell output voltage at 125°C 0.69 V
Cells in series 65,217
Solar cell subpanel size

Top 24 600x750 m
Bottom 48 550x750 m

`:umber of bays per SPS 72

Array design factors
Assembly and mismatch 97.72
Interconnect and fatigue 97%
Packing factor

Cells 967
Blanket 99"/,

Reflectivity and degradation 0.90 BOL,	 0.72 EOL

Concentration ratio
Geometric 2

BOL 1.9
EOL 1.72

Solar cell construction
Cover 20 ',gym sapphire

Cell 5 um GaA â.As

Interconnect 12.5 Um silver mesh

Substrate
Adhesive 12.5 lim FEP
Film 25 I1m Kapton
Transparent thermal coating 6 1.m polymer

Specific weight 0.2525	 kg/m `	(0.0316	 lb/ft")

Deployed cell and blanket area
planform 61.2 km2

Solar cell area 30.6 km'

Reflector surface area 61.2 km'

Weight (kg)
Solar cells 7.722x106

reflectors 1.108x106

Total weight 8.83x106	 kg

J
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Table 3.1-3. SPS Reflector Preliminary
Specification (CR-2)

Item Characteristic

Material Aluminized Kapton
Kapton thickness 12.5 ..-
Kapton specific gravit:: 1.42 (0.)18 kg /M2)

Aluminized coating thickness 400 anzstrom units
Weight of aluminized coating 96 kg/ _`

Reflector surface protective film
coating Quartz or calcium fluoride

Reflector subpanel size
Top 24 600x750
Bottom 48 550x750 =

Number of reflector panels 144
Reflector reflectivity/degradation 0.90	 50:,,	 0.72	 EOL
Concentration ratio geometric 2.0
Concentration ratio 1.9	 BOL,	 1.72	 EOL
Reflector slant angle from horiz. 60 degrees

Operating temperature
Top reflectors -52°C
Inboard bottom reflectors -46°C
Outboard bottom reflectors -73°C

Total area of reflectors 61.2-10;

 weight of reflectors 1.012x10`	 Pg

Subsystem Definition and Interfaces

The subsystem interfaces are shown in Figure 3.1-3 and Table 3.1-4 for
the photovoltaic conversion subsystem. The major interfaces include the

array orientation, attitude control, IMS and control, energy storage, power
distribution, structure, thermal control, and support operations. The major
component interface parameters are also shown in the figure.

Table 3.1-4. Solar Array Interfaces

Subsystem Interface Inturfac, Requirement Value or Comment

Power distribution
Voltage
Power (EOL)

45 kv
9.76 CW

Thermal
Array Temperature 125°C
Reflector Temperature -46°C to -73°C

Misorientation and nis-
ali.gnment angle 0.1° maximum

Attitude control
Orientation Lang axis perpendicular

to orbital	 plane

Loads Apply forces to ade-
quately tension array
and reflector up to

Structure 75 psi

Deflections Reflector deflections/
misalignment <0.10;
array deflection/mis-
alignment <3°

Control and monitoring
IMS

of power subsystem TBD

3-8

SD 78-AP-0023-2



oltl ^ A C^xj''S' ll
QV POOR

AlkIF Rockwell International
Space Division

3.1.2 SOLAR TH U4AL POWER SUBSYSTEM

A solar thermal system generates power by concentrating sunlight (solar
energy) upon a thermal absorber. The absorber consists of a series of tubular
passages containing pressurized cesium fluid that is heated to an elevated
temperature which, in turn, is used to drive a cesium turbine. Cycle effi-
ciency for this form of power generation is 52 percent. Waste heat from this
turbine is used to produce steam in a boiler which drives a steam turbine.
Waste heat from the steam turbine exhaust is dissipated to space by means of
a radiator subsystem (part of the thermal, subsystem network), after which the
working fluid is returned to absorber pressure by means of a pump/compressor.
Both turbines drive single electrical generators.

Functional requirements for various operating modes are listed in
Table 3.1-5. A simplified block diagram for the cesium/steam Rankine sub-
system is shown in Figure 3.1-8. Included on the block diagram are typical
values of pressure, temperature, and component efficiency. A system effi-
ciency block diagram is shown in Figure 3.1-9.

Table 3.1-5. Solar Thermal Power Conversion Subsystem -
Operating Modes - Brayton or (Rankine)

`lode Assemb1v	 Functions

Constructicr. Subs:stem ';one

Inter-orbit
subsvStem Self-po-,cr for electric propulsion

Transfer

Operations
sibs)'stem Steady-state operation
Concentrator Defocus to match absorher	 input	 e.) load

Subs y stcm Standby	 zero power)
Absorber Rankine fluid drained

Eclipse
Enrrgv Conve y- Turbogenerators motoring at operating
sion Loop temp,	 re.i • Si:ed	 rem,	 low	 fluid	 pres.ur%?

(batter- power	 input
	

0.1'')

Subsystem Redundant	 operation,	 .auto	 Sluitclo•,;r.,
manual startup

Failure/
Concentrator Emergent; dNfocus

Maintenance Absorber Drain 3sa isolate panels

Energy Conver- Shut dean and	 isolate failed turbo
sion Loop generator loops; no major repair

Checkout Sabsystem
Fail-saic check:., 	 leak c!iecks,
control response
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Figure 3.1-10 identifies the major assemblies comprising the solar
thermal subsystem.

So1AR THERMAL
POWER CONVERSION

SUBSYSTEM

.+	 f•
DYNAMIC	 1r5ECONDARY	 HEAT

11	

A

ABSORBER	 ENERGY	
STRUCTURE	 I	 r	 REJECTION !CONVERSION	

(... e RE 
J	 L_ a r J

• TUBING • TURBINES	 • TENSIONING DEVICES
• INSULATION • GENERATORS	 • ATTACHMENTS
• ABSORBER TUBES ► CONTROLS
• PUMP • HEAT EXCHANGER
• HEAT EXCHANGER • PLUMBING
• PLUMBING LINES • PUMPS
• SENSORS • SENSORS

CONCENTRATOR

• CANOPY
• REFLECTOR
• SENSORS

"SEE THERMAL CONTROL
*'SEE STRUCTURAL SUBSYSTEM

Figure 3.1--10. Assembly Tree

Concentrator

Two sofa: concentrators are pro%.'.eG for each solar pI3wer satellite.
These concentrators are inflatable and consist of a parabolic reflector
(aluminized 1/2-mil Kapton, 5.0 km in diameter), and a transparent FEP
canopy joined at the circumference. Special sensors monitor the pointing
and focusing accuracy of each concentrator. The mass of hydrogen pressuriz-
ing gas required is estimated to be approximately 20 kg per concentrator.

Absorber

Each concentrator (see above) focuses light onto a solar absorber con-
taining passages (tubes) in which a working fluid is heated for use in the
power conversion loop. The absorber includes its associated plumbing and
a network of temperature sensors.

Energy Conversion

The energy conversion system consists of 318 independent power loops,
each with turbines, regenerators, condenser, pumps, compressors, associated
sensors (temperature, flow, pressure, rpm, etc.) and necessary controls.
Each power module also includes a 35.5 MW generator interfacing with the
power distribution subsystem.

Design and Performance Characteristics

Design and performance characteristics are shown in Table 3.1-6 for the
cesium/steam rankine point design of Figure 3.1-8. Small, high-speed turbines
and generators (35.5 MW) are used to minimize specific weight of these machines
(Table 3.1-7).
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V00	 Table 3.1-6. Solar Thermal Power System

GENERAL

POWER TO UTILITY	 (GW) 5.0

SATELLITE SIZE	 — LENGTH	 (KM) 13,8

-	 DI PTII	 (KM) ;.7

NOMISI R OF MODULLS 1

CONCENTRATION RATIO	 (ACTUAL) 2250

REFLECTOR, TOTAL PLANE AREA (KM 2 ) 39.26

GENERATOR, TOTAL OUTPUT — NET (GW) 9.78
INTERCEPTED SOLAR ENERGY	 (GW) 51.4

OVERALL SYSTEM EFFICIENCY W 9.73

CYCLE EFFICIENCY	 (X) 52

SYSTEM EFFICIENCY — EXCLUDING POWER CONVERSION 	 (x) 38.9
70TAL SYSTEM WEIGHT (KG) 32.2x10"

TOTAL SYSTEM WEIGHT	 (KG)* 42.Oxi0"

SYSTEM SPECIFIC WEIGHT 	 (KG/GW)* 8.4x106

SATELLITE ORIENTATION PERPENDICULAR TO SUN

LIFETIME	 (YEARS) 30

IOC DATE 1998

ASSEMBLY ORBIT	 (KM) LEO,	 435

ASSEMBLY ORBIT	 INCLINATION	 (DEG) 0

ELECTRICAL —

GENERATOR S12£,	 NOMINAL	 (MW) 35.5

GENERATORS, QTY 318

GENERATOR 'iiPE CONVENTIONAL

NUMBER OF POLES 8

RPM 6800

FREQUENCY	 (Hz) 454 — 3 0

GENERATOR VOLTAGE	 (KV) 40

POWER DISTRIBUTION DL

TRANSMISSION VOLTAGE	 (KV) 40

TYPE OF CONDUCTOR NON—STRUCT,

BUS MATERIAL Al

POWER CONVERSION

WORKING FLUIDS CESIUM/STEAM

CESIUM TURBINE	 INLET TEMPERATURE —	 °C	 (°F) 1260	 (2300)

STEAM TURBINE	 INLET TEMPERATURE	 — °C	 (°F) 538	 (1000)

CESiUM TURBINE	 INLET PRESSURE — KN/M 2	(PSIA) 2830	 (410)

CESIUM TURBINE DISCHARGE PRESSURE — KN/M2	(PSIA) 40	 (5.8)

STEAM TURBINE	 INLET PRESSURE — KN/M 2	(PSIA) 16,600	 (2400)

STEAM TURHINF DISCHARGE PRESSURE — KN/M ?	(PSIA) i/10	 (247)
IURNINI	 RIIIIA'T NON[

TURBINE	 !YI'L AXIP.L

TURBINE BLARING REFRACTOR METAL

CESIUM TURBINE SIZE	 (MW) 25.9

CESIUM	 TURBINE	 EFFICIENCY	 (Y) 92

STEAM TURBINE SIZE	 (MW) 10.4

STEAM TURBINE	 EFFICIENCY	 () 88

TURBINE SPEED	 (RPM) 6800

COMPRESSOR/PUMP, TYPE CENTRIFUGAL

COMPRESSGR/PUMP EFFICIENCY	 (ti) 75/85

REGENERATOR TYPE DIRECT CONTACT

CESIUM CONDENSING TEMPERATURE — °C 	 ( ` F) 593	 (1100)

STEAM CONDENSING TEMPERATURE	 - °C	 ( ` F) 204	 (400)

TURBINE PRESSURE RATIO (CESIUM/STEAM) 70.6/9.7
NUMBER OF TURBINE STAGES	 (CESIUM/STEAM) 3/39

''eWITH WEIGHT ALLOWANCE 	 (APPROX.	 30 PERCENT)
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Table 3.1-6. Solar Thermal Power System (Continued)

POWER CONVERSION (CONT.)

NUMBER OF TURBINE REGEN BLEEDS	 ( CESIUM /STEAM) 2/2
TURBINE EXTERNAL MOISTURE REMOVAL CESIUM ONLY
BOILER PRESSURE RATIO (CESIUM/STEAM) 1.16/1.33

CESIUM TURBINE MASS FLOW -	 INLET	 (KG-SEC/LB-SEC) 142/312

CESIUM TURBINE MASS FLOW - OUTLET 	 (KG-5EC/LB-SEC) 98/215

STEAM TURBINE MASS FLOW -	 INLET	 (KG-SEC/l6-SEC) 22/48.4

STEAM TURBINE MASS FLOW - OUTLET ( KG-SEC/ LB-SEC) 16.6/36.6
CESIUM PUMP POWER (MW,) 0.32

WATER PUMP POWER - MAIN + BOOST We) 0.842

STEAM COMPRESSOR -GEN. COOLING	 (MWe ) 0.25

TURBINE SPEED CONTROL INLET THROTTLE

TURBINE EXIT QUALITY 	 (CESIUM/STEAM) 0.895 /SUPERHEATED

CONCENTRATOR

TYPE CONTINUOUS,	 INFLATED

FOCAL LENGTH	 (APPROX) O.6

CONCENTRATION RATIO (ACTUAL) 2250

COLLECTION	 EFFICIENCY	 (2) 64.9

COLLECTOR DIAMETER - 2 EACH	 (KM) 5.0

REFLECTOR MATERIAL ALUMINIZED KAPTON

FILM STRESS	 (MN/M'	 (PSI) 2.07	 '300)

POINTING ACCURACY	 (DEG) O.1

DEFOCUSING RESPONSE	 (SEC) 10

INFLATION PRESSURE - N/M 2 	(MICRONS]	 (PSF) [2.4)	 ( 1.2x10-")

ABSORBER

TYPE DISC/CPC	 SKIRT

OVERALL DIAMETER (M) B0

BOILER TUBE MATERIAL T2M MOLY

PRESSURE DROP	 (^) 12

ABSORBER EFFICIENCY -	 10% AREA LOSS	 (	 ) 60

TUBE	 I.D.	 -	 CM	 (IN.) 0.76	 (0.3)

TUBE LENGTH - M	 (FT) 1:08	 (3.3)
SKIRT CAPTURE	 HALF-ANGLE	 (DEG) 45

rR ^`RADIATOR	 (REFERENCE ONLY -- PART OF THER+^fA., 5UAFYSTE•I)

TYPE CONRFNSING STEAM

CONSTRUCTION HEATPIP£/FIN

LTEMFER4TURE, EFFECTIVÊ  °G (°F) 1 96	 (385)	
l

-- W —	 J

Table 3.1-7 , Solar Thermal Subsystem Weights (Millions of kg)

STRUCTURES AND MECHANISMS	 ( KG) ;.661x106

CONCENTRATOR/ABSORBER 3.12

POWER CONVERSION ( 3 ,397)
TURBOMACHINES 1.16
PUMPS,	 COMPRESSOR 0.145
PLUMBING,	 INSULATION 0.145
CONDENSER 0.283
POWER LOOP FLUID 0.105

GENERATORS, WITH COOLING 1,3

ELECT.	 POWFR CONDITIONING 0.259

^^LP,IilAIl1H,	 WI IH 1 , 11MI",,	 (Iml } H./H(,1	 ^1
—

, RLFERLNCE ONLY--PARI	 OF THERMAL SUBSYSTEM
0'-
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Subsystem Definition and Interfaces

Subsystem interfaces are shown in Section 2.2 (Figure 2.2-2). Note
that the distribution subsystem requires 35.5 MW (electrical) from each of
318 generators while the thermal radiator subsystem must be capable of
dissipating 33.5 MW (thermal) of excess heat.

3.2 MICROWAVE POWER TRANSMISSION SYSTEM

The microwave power transmission (MPT) system consists of a set of dc-
microwave conversion devices, feeding a microwave array and a ground array
of antenna/rectifier assemblies for microwave-dc conversion (rectenna).

The array is phased by means of a pilot beam formed at the rectenna
which is received by the array and used to form the power converter drive
signals.

3.2.1 FUNCTIONAL REQUIREHENTS AND BLOCK DIAGRAMS

A functional block diagram of the satellite array assembly is shown in
Figure 3.2-1. The requirements for the various operating modes are listed
in Table 3.2-1.	

COMMUNICATION
TO REST OF
SPS SYSTEM

REFE*'3JCE	
CENTRAL

PrIASE
GfRATOR	

COMPUTER
14  

9

tl

r	 N-WAY
I	 POWER

DIYIDP

DATA

REFERENCE	 us

DISTRIlPJTiON

sER^n Figure 3.2-1.
Functional Block Diagram

kMOAD"UlEyl

MONOPLPLSE

REC AND

NAM

PROGRAMNEII

RADIATION

MICROPROCESSOR
AND

MEMORY

MODULE
JONTR0	 SEN503

INPUTS

PERFORMANCE
DATA

MECHANICAL
CONTROL
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Table 3.2--1. Microwave Antenna - Operating Modes

Mode Assembly Function

Construction N/A N/A
Inter-Orbit Transp. N/A N/A
Operations Subsystem Steady-state transmission
Eclipse Subsystem Shutdown/startup
Transition N/A N/A

Failure/Maintenance Subsystem Redundant operation
Auto shutdown
Manual startup

Checkout Subsystem Performance
Phasing tests
Rectenna tests
Environmental checks

Figure 3.2-2 shows how the array is formed of mechanical assemblies
supported by two grids of catenaries anchored to the hexagon frame. These
assemblies consist of nine 10.2 m by 11.64 m subarrays. Each subarray is
formed of a variable number of power converter/radiator modules, depending
on the power density required.

MECHANICAL
MODULE

30.522

SUBARRAY	 10.2	 34,92

y

1.02

POWER MODULE
(10 TYPES)	 ( ^^; `` ` f

o ALUMINUM COMPRESSION FRAME

COMPOSITE TENSION WEB

• 21 KW/M 2 RADIATION AT CENTER
• 50 KW PER KLYSTRUN 4135,000 KLYSFRONS]

Figure 3.2-2. Satellite Antenna Array Assembly
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3.2.2 MAJOR ASSEMBLIES

Figure 3.2-3 illustrates the major assemblies comprising the MPTS.
Figure 3.2-4 shows a high-density module at the array center.

The selected power converters are nominally 50-kW klystrons, mounted
in the center of the resonant cavity radiators (RCR). The klystron collector
radiates downward in the direction of the microwave rectenna, as shown in
Figure 3.2-5. Heat pipes remove heat from the klystron body and transfer it
to the- nCR face. The pipes lie between the radiating slots of the RCR.

Figure 3.2-6 shows an alternate power module using a stripline sigral
distribution panel feeding transistor amplifiers. These amplifiers drive an
array of dipole radiators.
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Figure 3.2-3. Assembly Tree
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Figure 3.2-6. Transistor Power Module
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The transmitted signal is formed from the pilot beam by means of the
retroelectroaics shown previously in Figure 2.2-10; there is one of these
circuits per subarray. Figure 3.2-7 shows a servo system for transferring
the required reference phase from a central point to a mechanical module,
where it is distributed to the nine subarrays.

Figure 3.2-8 illustrates the power supply system required for each 50-kW
klystron. Note that the "mod anode"	 is a low-current electrode. It would

MASE
MASE
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AMP

o s"IbLm^
SIGNAL	Figure 3.2-7.

rnAHSMVSUCwu14 	 Reference Phase Distribution System
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Figure 3.2--8. Klystron Power Requirements (Preliminary)
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be supplied by a separate circuit capable of varying its potential to control
klystron power.

Figure 3.2-9 is a layout and perspective view of the microwave integrated
circuit (MIC) assembly which forms the transistor amplifier used for the alter-
nate power conversion method. Figure 3.2-10 shows a circuit schematic of the
amplifier which consists of a puch-pull emitter follower driving a common base
push-pull final amplifier. All four transistors are formed on a single chap
as shown in Figure 3.2-11.

IWEDANCE TRANSFORMING	 D1POU
TRANSMSSION WNE - ----	 A/^

oc
PWR IN

C	 CAP	 FE£	
C r

H	 H
-o• I	 I

P	 F

THAW

DC
" IN

$r"Lq W

Figure 3.2-9. Transistor MIC Amplifier

Figure 3.2-10. Transistor Power Circuitry
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The rectenna portion of the system is shown. in Figure 3.2-12. It con-
sists of receiving arrays which drive a diode rectifier through a filter
used to suppress harmonic re-radiation. The filter also acts as a tank
circuit which stores energy during the non-conducting half of the dipole
cycle. The rectifier outputs are smoothed by a filter and added. The indi-
vidual module outputs are summed and fed to a central location. There, the
individual power lines add their outputs in a converter assembly. The output
of the converter(s) is delivered to one or more power grids.

Figure 3.2-12. Rectenna System Model

3.2.3 DESIGN AND PERFORMANCE CHARACTERISTICS

The functional requirements for the MPTS system are shown in Table 3.2-2
through 3.2-7. Table 3.2-2 summarizes the system functional requirements;
Table 3.2-3 shows the prime power requirements for the array; Table 3.2-4
shows a phase error budget for the retroelectronics; Table 3.2-5 shows the
array characteristics; Table 3.2- 6 shows the characteristics of the klystron
power module; and Table 3.2-7 shows the characteristics of the alternate
transistor power module.

3.2.4 SUBSYSTEM DEFINITION AND INTERFACES

Subsystem interfaces are shown in Figure 2.2-10. The concept/subsystem
illustrated will be identical regardless of which satellite concept is
selected for further consideration.
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Table 3.2-2. Functional Requirements

Power conversion efficiency (dc-RF) .85
Array radiation efficiency	 .96
Array beam efficiency	 .85y
Atmosphere transmission efficiency 	 .98
Rectenna conversion efficiency	 .88
Total MTS efficiency 	 .543
Harmonic level required, dB TBD
AM noise decrease required, dB/kHz TBD
PM noise decrease required, dB/kHz TO
Maximum power density 	 TBD
Temperature at back of array, deg	 60
Array mass	 TBD

*Includes 3% beam blockage factor

Table 3.2-3. Design and Performance Characteristics

Voltage Regulation
Device	 Freq. (kV) Current A Power (kW) M

Collector 1 40 0.28 11.2 None
Collector 2 32 0.35 11.2 None
Collector 3 24 0.47 11.2 None
Collector 4 16 0.70 11.2 None
Collector 5 8 1.40 11.2 None
Klystron body 40.0 0.08 3.2 10
Mod anode 20.0 10
Cath. heater 20 V 0.1 1

Solenoid 20 0.5 1
Computer	 (1) 20 0.1 1
Retroelect. 20 V 0.1 1

Total 59.2 84.5

(1) Not included in determining klystron efficiency.

Table 3.2-4. Phase Error Budget

500:1 power divider 60
Ref.	 0 dist.	 lank 60
Zone feeder 60
Retroelectronics 6°
Klystron 0 shifter loop 30
Subarray pointing loop 30

Total RMS phase error = 13°
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Table 3.2--5. Array Characteristics

Operating frequency 2.45 GHz
Operating wavelength 12.2 cm
Mechanical module size 34.92x30.62 m
Subarray size 11.64x1O.2 m
Subarray beamwidth 0.73°
Subarray RMS phase error 50-100
Amplitude weighting 10 dB Gaussian taper
Amplitude quantitization 10, 1-dB steps
Subarray weighting Uniform
Electronic steering limit, 1/8 subarray beamwidth = 0.10	 (RMS)
Mesh, subarray pointing; accuracy 0.070	 (RMS)
Mach. module pointing accuracy 0.070
Total. RMS subarray electronic pointing accuracy 0.111
Polarization Linear
Beam efficiency 0.85
Radiation efficiency (0.2 dB feed + 0.2 dB RCR S2 loss) 0.96
First sidelobe level -25 dB
Electronic subarray steering accuracy,1/30 (0.73°) = .0240

(Pointing Loss	 = -•005 dB)

Table 3.2--6. Kl.ystron Power Module

Output power, kW 50 overall efficiency, % 85
Input power, W 0.5 Collector power dissipated, kW 5.0
Gain, dB 50 Body power dissipated, kW 3.3
Basic tube efficiency, % 85.8 Second harmonic level, dB -40
Prime power, kW 58.3 AM noise, dB/kHz Y-140
Auxiliary power, kW 0.70 PM noise, dB/k11z -130
Total power, kW 59

Table 3.2-7. Transistor

Amp output power, W 120
Gain, dB (two stages) 20
Input power, W 1.2
Collector efficiency .83
Overall efficiency .78
Second harmonic level, dB -40
AM noise, dB/kHz >-140
PM noise, dB/kHz >-130
Number of amplifiers 100
Power module output, kW 12

3-24

SD 78--AP-0023-2



0 lbk
TIV Rockwell International

Space Division

3.3 POWER DISTRIBUTION AND CONTROL

The power distribution and control subsystem (PDS) receives power from
the power generation subsystem, and provides the regulation and switching
required to deliver regulated power from distribution to the antenna system
(Klystrons) and the various subsystems (Attitude Control, IMCS, etc.). Dur-
ing the ecliptic periods, batteries will be utilized to supply the minimum
required power to the various subsystems. The feeders, and power cabling
of all SPS subsystems, are included in the PDS. The grounding, electro-
magnetic interference control, and shielding requirements of the SPS are
also included as part of the PDS. The life expectancy of the PDS is 30 years
with the exception of the energy storage (batteries), which has a life expect-
ancy of 10 years. Resupply of the PDS will be as needed.

3.3.1 FUNCTIONAL REQUIREMENTS AND BLOCK DIAGRAMS

Functional requirements for various operating modes are listed in
Table 3.3-1. A smplified block diagram for the photovoltaic concept is pre-
sented.in Figure 3.3-1. The solar thermal concept replaces the solar arrays
with the power module consisting of concentrators, absorbers, and electro-
mechanical power generation.

Table 3.3-1. Power Distribution and Control Subsystem
- Operating Modes

Mode tlssemhly Function

Construction N/A N/A
Inter-orbit transportation Subsystem Power for^elec. prop. system

confi^,ured for low volta.q^e)
0 eraticn	 _ _Sub:ystotm S teads-sta te operation

Shutdown/startup and minilaurr energyEclipse Subsystem
__ `Suppl ied to su_bsyst,ems

Transition (from con- Subsystem Startup/shutdown thruster power 	 i
struction transport.)-_

Fail ur	 nsaini enance — -	
_

°u5.sysste.. Itcdundanr opf.r-ition,	 auto	 s hutdjxvi;

Cbeckaut	 ^ Subsystem Continuity, insulation resistance

3.3.2 MAJOR ASSEMBLIES

Figure 3.3-2 illustrates the major assemblies comprising the power dis-
tribution and control subsystem (PDS). The assemblies are essentially
similar for both SPS concepts.

Power Distribution

The power distribution subsystem consists of the main feeders, secondary
feeders, summing busses, tie bars, and power interface cabling for the vari-
ous subsystems. The main feeders are generally sized to minimize the com-
bined mass of itself and the solar array mass, considering power requirements,
efficiency, and the variation in resistivity with operating temperature. The
power distribution system utilizes flat aluminum (6001-T6) feeders where
feasible, and round conductors for those subsystems where flat conductors are

u
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Figure 3.3-2. Assembly Tree

not feasible. The flat conductors are not considered part of the main
structure; they will normally be passively cooled by radiation to free
space.

Regulation

The solar array output will be regulated so as to prevent Line surges
when switching the solar array power on to the main feeders. The regulation
function is accomplished by selective control of intra-blanket switching
managed by the information management and control subsystem (IMCS). The
regulators on the solar thermal system are an integral part of each generator
complex.
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Power Converters and Conditionings

The power converter and conditioners convert the existing bus voltages
to the subsystem voltage required for the various subsystem loads. The out-
put tolerances will be based on the using subsystem interface requirements.
The power converters are utilized in the GEO and ecliptic modes of operation.

Switch Gears

Switch gears are used for:

e Isolation of solar array blankets or rotating generator sets
due to systematic element failure

® Isolation of solar array blankets or rotating generator sets
when performing maintenance work

e Prevention of large line transients upon startup and shutdown
and during ecliptic periods

The switch gears will be solid-state to reduce the overall mass of switches.
The voltages and currents being handled by these switches will be monitored
by the IMCS to determine their status and to establish a need for the open-
ing and closing of these switches. The switches are generally held in the
closed state during the steady-state mode of operation. During the startup
and shutdown operations, the switches will be monitored by the IMCS and
when certain voltage levels are reached a command signal will open or close
switches as required.

Energy Storage

Batteries will be utilized during ecliptic periods to provide the mini-
mum energy required by the various subsystems. The batteries will be a
sodium chloride type, having a density of at least 200 Wh/kg.

Rotary Joint

The rotary joint is utilized to transfer energy through slip-rings and
brushes from the SPS fixed member to the SPS rotating member upon which the
microwave antenna is located. The power transferred includes both that
required to operate antenna-mounted equipment, as well as that to be trans-
mitted to the ground.

Control

The PDS control concept is a simple, continuous monitoring system per-
formed by the on-board IMCS computer system. The IMCS monitors the bus as
well as the converter voltages, zurrents and temperatures, and compares
these with preset levels stored in the computer(s). In the event of a
voltage/current level disagreement with the preset conditions, the IMCS
will initiate a command signal to regulate the faulted area by opening up
or closing the associated switch gear(s).
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Secondary Structures

Secondary structures consist of mounting brackets, clamps, and installa-
tion structures as needed. It is assumed that a delta of 10 percent of the
PAS mass would be sufficient for such purposes.

3.3.3 DESIGN AND PERFORMANCE CHARACTERISTICS

The design and performance: characteristics for the pokier distribution
system are listed in Table 3.3-2. The characteristics have been generalized
to show a range of performance requirements encompassing both concepts.

3.3.4 SUBSYSTEM DEFINITION AND INTERFACES

Subsystem interfaces are shown in Figure 2.2-1 for the photovoltaic
concept. A similar interface would be applicable to the solar thermal
concept. The power required from the photovoltaic power source is 9.76 GW,
while the solar thermal power source must supply 9.79 GW to account for
differing distribution/conversion losses.

Table 3.3-2. Design and Performance Characteristics

Major Assembly Requirements Technology Issue

GENERAL
Mass Configuration dependent
MTBF Subsystem dependent
Life 30 years
Efficiency 88-98% (config. dependent)
Resupply and maintenance As needed

POTHER DISTRIBUTION (PD) Mostly flat conductor Further study is
Mass Configuration dependent required to deter-
Material Aluminum	 6001-T6 mine feasibility of
Insulation 1-mm Kapcon superconductivity
Efficiency 819.98% (config. dependent) for reduction of
Subsystem cabling Location and power dependent mass.
Resupply and ma intanance As required
Life 30 years or greater

POWER CONVERTER AND CON'DIT_IONING
Density Approx. 0.3 kg/kW Further analysis is
Voltage Subsystem dependent required to specify
Current Subsystem dependent design requirements
Efficiency 96-98% and type.
Life 30 years
Resupply and maintenancb As required

SWITCH GEAR
Density Approx. 0.00086 kg/kW Study is required to
Type Solid state specify design
Power rating Configuration dependent requirements.
Voltage Config. and location dependent
Efficiency 99-99.9%
Life 30 years
Resupply and maintenance As required

ENERGY STORAGE (6ATTERY)
Density Approx. 200 Wh/kg Further studv to
Type Sodium chloride define charge/dis-
Temperature 200°C charge cycle, size,
Efficiency 80-95% (turnaround) volume, and instal-
Life 10-20 years lation is required.
Resupply and maintenance As required
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Table 3.3-2. Design and Performance Characteristics (Cont.)

Major Assembly Requirements Technology Issue

SECONDARY STRUCTITRE
Hass 10% of PDS weight was considered

to be required for mounting and
installation.

CONTROL
Temperature sensors No. of sensors config. dependent

Current sensors No. of sensors config. dependent

Voltage sensors No. of sensors config. dependent

Switch gear control Configuration dependent

Overcurrent
Overvoltage
Undercurrent
Undervoltage

ROTARY JOINT
Slip rings required For SPS 2 positive and 2 negative
Operating voltage 40,000 V do (nominal)
Amps per ring assembly 108,500
Total weight of four-ring and

brush assemblies 173,392 kg

Life 30 years
Resupply and maintenance As required

SLIP RING
Core of slip ring Aluminum
Cladding on slip ring Coin silver

Core size, cross-section 41.3 cm2
Diameter 1.13 km
Length 3.55 km
Weight 40,300 kg.
Total weight of all slip rings

(4) 161,200 kg

PICKUP SHOE-BRUSH
Number required/each slip ring B

Material 752 MoSz a 252 Mo+ Ta

Shoe size
Dimension/shoe 17.8 x 12.7 cm x 6.1 m
Contact surface area/shoe 1,651 cm2
Weight/shoe 381 kg
Shoe travel velo gity 2.47 in/min
Wear rate per year 0.0156 cm
Current density 7.75 amp/cm2
Operating temperature 90%
Contact pressure 0.705 kg/cmz
Total weight, all 32 shoes

j
12,192 kg
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3.4 STRUCTURES SUBSYSTEM

The primary SPS structure assemblies are made up, basically, of tribeam
girders, tension cables, and ,points. The fabrication and assembly of these
structures are accomplished on orbit by beam machines and supporting auxilia-
ry equipment. These structural elements must individually withstand the
forces, torques, and dynamics imposed by the construction process. Once
built up to an assembly level (e.g., solar array wing, rotary joint, etc.),
the structure must have sufficient strength and stiffness to withstand
forces, torques, and dynamics generated by the environment (gravity-gradient
torques), the attitude control system (forces and frequencies) and the opera-
tional equipment (rotary joint torques, microwave induced thermal environment,
etc.). The level of strength and stiffness are dictated by other subsystem
requirements such as pointing accuracies and ACS bandwidth frequencies.

The secondary structure consists of the passive interface attachment
between the primary structure and the operational subsystems. The structural
mechanisms consist of active structural subassemblies that articulate, rotate,
or otherwise cause or allow motion between Lhe primary structure and other
subsystem elements or between subsystem elements themselves.

3.4.1 FUNCTIONAL REQUIREMENTS AND BLOCK DIAGRAMS

Functional requirements for various operating modes are listed in
Table 3.4-1. Since the structure is primarily a passive system (the excep-
tion ' is the figure monitoring system), no block diagrams exist. A simplified
interface diagram i4 presented in Section 2.2.

Table 3.4--1. Structural. Subsystem - Operating Mode

MODE ASSEMBLY FUNCTIONS

MAINTAIN STRUCTURAL INTEGRITY OF STRUCTURAL
CONSTRUCTION SYSTEM SUBELEMENTS PRIOR TO OVERALL SYSTEM STABIL-

IZATION.

PRE-INTER-ORBIT
WITHSTAND GRAVITY-GRADIENT/ACS TORQUE INTER-

TRANSFER REORIENTATION
SYSTEM ACTION.	 DEVELOP MINIMUM FIRST BENDING MODE

FREQUENCY DICTATED BY ACS.

WITHSTAND G-LOADS ASSOCIATED WITH PROPULSION

INTER-ORBIT TRANSFER SYSTEM
SYSTEM THRUST LEVEL WHILE MAINTAINING ADEQUATE
RIGIDITY WITHIN POINTING TOLERANCES REQUIRED

FOR POWER CONVERSION.

ECLIPSE
WITHSTAND THERMAL STRESS AND DISTORTIONS DUE

TO EXTREME TEMPERATURE CHANGES.

ANTENNA STRUCTURE POINT WITHIN +0.08° OF TARGET

OPERATION
SOLAR ARRAY MAINTAIN WIDTH DISTORTION < +0.30

SOLAR THERMAL
MAINTAIN PARABOLIC MOLDLINE < 0.$°

REFLECTOR STRUCT,

PROVIDE FOR SUBELEMENT SECONDARY LOAD PATHS.
FAILURE/MAINTENANCE SYSTEM WITHSTAND FORCES S TORQUES INTRODUCED BY

MAINTENANCE OPERATIONS.

n

3--31

SD 78-AP-0023-2



AlkWrl Rockwell Infemational

Space Division

3.4.2 MAJOR ASSEMBLIES

Figure 3.4-1 depicts the major structural subsystem assemblies and tabu-
lates the elements that make up each of these major assemblies. An example
of this element breakdown is shown in Figure 3.4-2. The assemblies are
photovoltaic peculiar, solar thermal peculiar, or common to both systems
indicated.

3.4.3 DESIGN AND PERFOWANCE CHARACTERISTICS

The design and performance characteristics for the structures subsystem
are listed in Table 3.4-2.

3.4.4 SUBSYSTEM DEFINITION AND INTERFACES

Subsystem interfaces are shown in Figure 2.2-3. The only active inter-
face identified to date is the laser transit network, established to deter-
mine the satellite figure for the CR-2 photovoltaic satellite. It is
expected that this network would be applicable to any photovoltaic concept.
Equivalent networks would be derived for the other candidate concepts.
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Figure 3.4-2. Structure Breakdown
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SOLAR THERMAL COMMON PHOTOVOLTAIC

CENTRAL CAVITY ABSORB
GIRDER REFLECTOR RADIATOR ANTENNA ROTARY JOINT RECTENNA SOLAR ARRAY

FACTOR STRUCTURE STRUCTURE MAST STRUCT. STRUCTURE STRUCTURE STRUCTURE STRUCTURE

CONSTRUCTION SITE LEO LEO TBD LEO/GEO LEO/GEO EARTH GEO

CONSTRUCTION TECHNIQUE BEAM TBD BEAM BEAM MACH/ BEAM GROUND BEAM

MACHINE MACHINE TBD MACHINE CONSTR. MACHINE

MASS	 (KG) TBD TBD TBD 0.1-0.2x106 T.4x10 6 O.75X109 3.7X10
MATERIAL ALUMINUM ALUMINUM ALUMINUM METALLIC/ ALUMINUM STEEL/ ALUMINUM

AL/KAPTON COMPOSITES CONCRETE

MAX ALLOW OP TEMP (°C) 150 150 150 150/160 150 150 150

OPERATING STRESS LEVEL
Gcc 

vcn TBD
6cc ccn ffcc Cr

TBD T38 6cc 6cn
(UPa) ••

FACTOR OF SAFETY 2.0 2.0 2.0 1.5 1.5 1.7 BASED 2.0
ON FTY

MIN NATURAL FREQ 10.0-LEO
(CYCLES/HOUR) 1-10 1-10 1-10 2.0 TBD N/A 1.0-GEO

ORIENTATION X-POP Z-SUN X-SUN NADIR N/A N/A Y-POP

TOLERANCES	 (OUT OF PLANE) Z-EQUATOR

ABOUT Y AXIS
TBD TBD TBD

+0.80
TBD TBD 0'3'

ABOUT X AXIS 1.00

`Qcc = CRITICAL CRIPPLING STRESS; Gcn = CRITICAL BUCKLING STRESS
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Table 3.4-2. Design and Performance Characteristics
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3.5 ATTITUDE CONTROL AND STATIONKEEPING SUBSYSTEM

The attitude control and stationkeeping subsystem (ACSS) is an integrated
system designed to satisfy the control and stationkeeping requirements for
each of the SPS operational modes. The functional performance requirements

of the ACSS are to provide: vehicle attitude stabilization, solar collector
pointing and figure control (currently passive for the photovoltaic satellite),
and microwave (MW) antenna pointing and figure control, and stationkeeping in

geosynchronous orbit.

3.5.1 FUNCTIONAL REQUIREMENTS AND BLOCK DIAGRAM

Functional requirements for various operating modes are listed in

Table 3.5-1. The functional flow diagram in Figure 3.5-1 illustrates the
major ACSS component subsystems and information flow between the components
to satisfy the control and stationkeeping requirements. The ACSS is integrat-
ed with the IMCS which provides the interconnections for all the ACSS elements
and the computational capacity for the control algorithms. The basic informa-

tion for the implementation of the control laws is provided by the sensors.
The control forces an torques are furnished by the ion bombardment thrusters
of the reaction control system (RCS). The MW antenna pointing is achieved

with the rotary joint and antenna gimbal torques.

Table 3.5-1. Attitude Control and Stationkeeping - Operating Modes

MODE FUNCTIONS

VEHICLE STABILIZATION
CONSTRUCTION DOCKING

STATIONKEEPING

TRANSITION FROM REORIENT FROM CONSTRUCTION TO
CONSTRUCTION OPNS OPERATIONAL ATTITUDE

ATTITUDE CONTROLLED REFERENCE
ORIENTATION

OPERATIONS ANTENNA POINTING
FIGURE CONTROL
STATIONKEEPING

ATTITUDE CONTROLLED TO REFERENCE

ECLIPSE
ORIENTATION

ANTENNA POINTING
(STATiONKEEPING NOT REQUIRED)

FAIL-OPERATIONAL REDUNDANCY ON
FAILURE MAINTENANCE ALL ATTITUDE CONTROL FUNCTIONS

MAINTENANCE	 INTERVAL, >	 I	 YEAR

LEAK CHECKS

CHECKOUT
SOLAR POINTING AND FIGURE CONTROL
STATIONKEEPING

DYNAMIC RESPONSE

3-3b
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SOLAR COLLECTOR
POINTING

MW ANTENNA
POINTING

e SOLAR THERMAL ONLY

Figure 3.5-1. Functional Flow Diagram

Satellite Attitude Control Requirements

The attitude control system shall maintain vehicle stabilization and
orientation accuracy in all three axes. The detailed performance require-

ments are given in Table 3.5-2. The coordinate systems used in the photo-
voltaic and solar thermal concepts are shown in Figure 3.5-2.

Table 3.5-2. Attitude Control Requirements

SPS OPTIONS

PHOTO-
VOLTAIC SOLAR

PARAMETER CR = 2 THERMAL

ASSEMBLY ORBIT GEO LEO
ASSY CONTROL	 (GRAVITY-GRADIENT Z-POP,	 Y-LV Z--POP,	 Y-LV

(STABLE)
CONTROL ACCURACY	 (DEG) ±0.5 *-0.5

OPERATIONAL ATTITUDE CONTROL
REFERENCE ATTITUDE Y-POP,X-IOP Y-POP,X--IOP
CONTROL ACCURACY (DEG) f0.1 ±0.1

CONTROL SYS BANDWIDTH	 (CYCLES/HR) 0.5 3.4
SATELLITE FIRST BENDING MODE FREQ >1.0 >6.8

(CYCLES/HR) u

3-37
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SOLAR THERMAL
(TYPICAL)

PHOTO-
VOLTAIC
(TYPICAL)

Y-POP

yf	 X-I GP

Figure 3.5-2. Satellite Coordinate Systems

Microwave Antenna Pointi.nR Requirements

The MW beam steering is accomplished by a combination of mechanical
antenna pointing and electronic beam steering. The requirements for the MW
antenna gimbal pointing accuracy and the antenna figure c-ntrol are the

same for both SPS configuration options. The mechanical gimbal pointing
accuracy requirement must be > 1 arc--min. The antenna must be stabilized
to < 1 arc-min/sec. The antenna figure control shall be capable of point-
ing each of the 34.9x30.6-m elements to an accuracy better than < 6 arc-min.
The electronic steering of the MW beam to provide the vernier pointing
accuracy is accomplished in the MPTS.

Stationkeeping

The purpose of the stationkeeping system is to maintain a geostationary
equatorial orbit and spacing with respect to the other satellites in the
presence of disturbing perturbations. These perturbation forces include
the effects of earth gravitational anomalies, lunar and solar gravitational
perturbations and the solar pressure force acting on the spacecraft. The
thrusters that provide the forces and torques for attitude control also
provide the necessary thrust for stationkeeping maneuvers.

The equatorial orbit is selected in trade studies to minimize the impact
of orbit inclination on rectenna size (and cost) requirements. This neces-

sitates latitude (north-south) control.
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The satellite longitude station must be selected within several degrees
of its rectenra longitude in order to prevent an increase in rectenna size
(and cost). The solar pressure induced perturbations are cyclical with an
annual frequency and can be as large as + 3.1° if uncorrected. In order to
minimize the SPS space requirement in GEO and to prevent interference with
other satellites which do not experience as large a solar pressure perturba-
tion as the SPS, it is assumed that this perturbation must be corrected.
Because of the large magnitude of this correction, means of alleviating it
should be investigated further in future studies.

To minimize interference with the large number of other satellires expect-
ed to be using this orbit by the 2000 time frame a stationkeeping accuracy of
-F 0.1 degree in longitude and latitude is adopted. The stationkeeping require-
ments are summarized in Table 3.5-3. No stationkeeping thruster firings
should be performed during eclipse periods in order to minimize the thruster
power requirements. Cyclic perturbations with a period less than or equal to
one day need not be corrected.

Table 3.5--3. stationkeeping Requirements

ANNUAL REQUIREMENT'S

AV/YR (-M/SEC) PROP.	 (-KG/YR)PERTURBATION SOURCES

EARTH TRIAXIALITY	 (E-W) 2.1 430
SOLAR/LUNAR PERTURBATIONS	 (N-S) 53.3 11,000
SOLAR PRESSURE	 (E--W) 311 64,200
OTHERS NEGLIGIBLE NEGLIGIBLE

-BASED ON PHOTOVOLTAIC POINT DESIGN WITH MASS OF 2$.65x10 6	 KG
AND	 I SP =	 13,000 SEC.

Collector Figure Control

Collector figure control for the solar collecting options may use passive
techniques (i.e., continuously active servo control devices are not required).
For the photovoltaic option (CR-2), the reflector/blanket dimensions and
orientation tolerances must be maintained within 0.3 degree. The solar thermal
Rankine figure control concept must maintain the collector surface to absorber
alignment within 0.5 degree. The requirements include the effects of all
thermal and dynamic disturbances as well as initial alignment errors.

Reaction Control System

The reaction control system (RCS) provides the necessary forces and
torques for attitude control and stationkeeping. For the photovoltaic option
the RCS consists of eight ion bombardment thruster modules with two modules
mounted at each corner of the vehicle. The argon propellant is stored cryo-
genically. A refrigeration system is necessary to maintain the cryogenic
temperatures. The thruster characteristics are given in Table 3.5--4.
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Table 3.5 -4. Electric Thruster Requirements

CHARACTERISTICS VALUE

THRUST 1.75	 N
SPECIFIC	 IMPULSE 13,000 SEC

PROPELLANT ARGON
APERTURE 100 CM
OPERATING POWER 120	 K14

3.5.2 MAJOR ASSEMBLIES

Figure 3.5-3 illustrates the major assemblies comprising the ACSS. The
description of each assembly, as applicable to the photovoltaic option, is
given in the preceding section.

u

ATTITUDL CONTROL
& STATION KEEPING
SUBSYSTEM

ATTITUDE
DETERMINATION

'"''	 "'	 ' %,'I.FIG. °"COLLECTOR""^ REACTION
CONTROLCONTROL FIG. CONTROL

®SUN SENSORS *FIG. SENSORS ®FIG. SENSORS *THRUSTERS
a STAR SENSORS (3) ® FIG. ACTUATORSo FIG. ACTUATORS(4) * DRIVE
*GYROS (3) (TBD) ELECTRONICS
*AUTO

COLLIMATORS
o ELECTRONICS

PROPELLANT
SUPPLY

• TANKS
• LINES
a HEATERS
* PROPELLANTS
o VALVES

(1) _L. (2)
ECONDARYJi PROCESSIN'GISTRUCTURE 

® INSTALLATION * ATT.
DETERMINATION

* FIG. CONTROL

M. W. ANT
GIMBAL
CONTROL

o TORQUERS
BANGLE SENSORS

(1) SEE STRUCT. SUBSY.
(2) SEE IMCS
(3) ATT. REFERENCE SYS.

(4) SOLAR THERMAL ONLY
Figure 3.5-3. Assembly Tree

3.5.3 DESIGN AND PERFORMANCE CHARACTERISTICS

The point design ACSS is described in Volume IV.
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3.5. 4 SUBSYSTEM INTERFACES

The primary interfaces are the IMCS, the power distribution and control
subsystem, and the structure. The IMC5, which functions as an integral part
of the ACSS, also provides the interface for the ground support system to the
ACSS. Figures 2.2-4 through 2.2-6 show the primary interfaces for the atti-
tude reference system, the MW antenna pointing system, and the tank and
engine system, respectively.

3.6 THERMAL CONTROL

The thermal control subsystem continuously maintains temperature levels
within allowable extremes and provides equipment for heat dissipation, acqui-
sition and temperature regulation where required. Both active and passive
systems may be employed and components utilized include selective coatings,
insulations, heaters, radiator networks, and specialized energy transport
devices such as heat pipes. Thermal control impacts almost all satellite
operations supporting power conversion, power distribution, the microwave
generator and power transmission systems, the rotary joint, information man-
agement, primary and secondary structural design, and the ground receiving
station.

3.6.1 FUNCTIONAL REQUIREMENTS AND BLOCK DIAGRAMS

The thermal control subsystem must satisfy functional requirements dur-
ing a-11 satellite operating phases indicated in Table 3.6-1. A simplified

Table 3.6-1. Thermal Control Subsystem - Operating Modes

if

:sines in aliovablo re-, rracure	 iev,.is

Construction and erad Sects to re>,r.:t scree;era:
5uhs7e-.

deforoaciom/stresses and aratect
asseMb lies.

^	 IN incoln atlovable :er pe r..cuce Ieve a
Inter-Orbit Transfer Subsysce-	 i	 and	 rradlants: power rerufred epera-

j	 rla-	 p;.a sea.

Operations Subsystee Support steady-state _peruion for
all	 asserSlies.

Reject waste heat generated by solar-

PIC , Radiators
thermal s yscee as required.	 Fluid
line reds 'anteto ensure repcaced
—teeroid i.pactS.

Reject klyseron waste heat.	 Maintain
required antenna cc.perart,re profiles,

Klystron ka-liators
Restrict th er	 l stresses which could
iapair aiorovave trans=	 Sion.	 4in-
=izeheat transfer to rotar y Joint,
antenna structure, and elc ^trenics'
Modulus.

Guarantee integrity of all a.ste=
during extended cooling and return co 	 I

Eclipse Subsyat= .ready acate; assure continuous
operation of resuepcion after shucdos
as required.

Drain fLuiJ as ncc e...r	 and provide
P/C• Radiators localised heating if required; sr_ooth

restart to steady-state operation.

R1ys , ron Radiators
Recover fro. fluid (heat pipe) freeae-
up.

Redundant capability, where possible;
Failure/Haintenance Subayatem c. g.,heat plpos, PUMPS.	 Provide

rapid a,—.a to dp	 compcacnta.

Leak isolation through apptlnati0n of
valves and hose pipes. 	 Fl uld in Ifines

PIC+ Radiators
can be drained.	 Hinl.ise particle

' tapact 'allures by use of err==or/
bu.percombination. 	 Failure identi-
ficacion by sensors, or poaslbly by
visual eathod.

K]yotrae Rad-tors Redundant heat pipes.

Checkout 5ubeystee
Ground test -here possible; leak check
verify control response.

AFIC - lover Converaior. Suboyit=

-.i JT.^i^ar ^f _l
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functional flow diagram of the thermal subsystem, indicating its relationship
to other operating subsystems is illustrated in Figure 3.6-1. 	 A simplified
block diagram for the solar thermal (Rankine-cesium/steam) radiator system is
shown in Section 2 (Figure 2.2--11).	 The klystron radiator heat pipe assembly
is shown in Figure 3.6-2.

'
WASTE HEAT
DISSIPATION RECTENNA	 TEMP LEVEL

POWER MODULE
LOW TEMP INTEGRITY
EASE START LIP

- THERMAL
STRUCTURAL

CONTROL
ECLIPSETHERMAL KIST

8 TEMP LEVELS
ANTENNA

NORMAL	 PERTURBATIONS
INFO MGT
THERMAL

OPERATION

CONTROL

IN FO MGT
NORMAL
OPERATION	 ECLIPSETHERMAL

CONTROL PERTURBATIONS
RING TEMP ROTARY
LEVELS JOINT ACTIVE WASTE

SHO F/BRUSH
TEMP LEVELS

HEAT REJECTION
CONTROL	 SYSTEM
MIN TEMPS

SOIAR,/THERMAL	 EASE STARTUP	 CON-=0L
SYSTEMS	 MIN TEMPS

STRUCTURAL
THERMAL WST

POWER CONY
THERMAL

EASE
STARTUP

d TEMP LEVELS CONTROL
POWER

!OW HEMP
FHOTOVOLTAIC	 INTEGRIJY	 ECLIPSE

[gNVERSION SYSTEMS	 PERTURBATIONS

CONDUCTOR
TEMP

INFO r.^GT
THERMAL NOFMAt OPERATIONS
CONTROL

Figure 3.6-1.	 Thermal Control Functional Flow Diagram

9

ARTERIAL WICK WATER/COPPER HEAT PIPE
28" LENGTH, 1/2 IN. O.D.
A REQ'D

AXIAL GROOVE WATER/COPPER HEAT PIPE
25114. LENGTH, 3/8 IN, O.D.
28 REQ'D

1 6667

TYPICA L KLYSTRON RA{;IATUR' 	 ;r'-; T^l^	
1^
	

`.ASO ,..

U

Figure 3.6--2. Kl.ystron Radiator Configuration

3.6.2 MAJOR ASSEMBLIES

Figure 3.6-3 illustrates the major assemblies and components comprising
the thermal control subsystem.

3.6.3 DESIGN AND PERFORM.A110E CHARACTERISTICS

Design and performance characteristics are presented in Table 3.6-2 for
the cesium/steam Rankine system. Design and performance data for the klystron
radiators are presented in Table 3.6-3.
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Table 3.6-2. Radiator Characteristic Performance Data

Steam (Rankine)

Waste heat (G14)
Heat transport mechanism
Construction
Temp., eff. (°C)
Total panel area, one side (tun
Heat pipe
Radiator system weight (10 6 kg)

a Fins
e Heat pipe (+ armor)
e Fluid inventory + storage
a Piping (+ bumper and connections)
0 Pumps
w Valves

9.35
Condensing steam
Heat pipe/fin
196
2.37
^e
8.79
1.80
5.07
0.89
0.86
0.15
0.02

Radiator Heat Pipe Specification

Working fluid
Material

Wick
Diameter (I.D.)
Diameter (O.D.)
Evaporator section
Adiabatic section
Condenser section

Qmax
QLmax
Tuba spacing

Water
Titanium liner (.0127 cm)/
alumir_um outer tube (.0381 cm)

Flexible screen
.9525 um (0.375 in)
1.054] cm (0.415 :in)
12.45 cm
3.0 cm
98.5 cm
260 watts
160 w-m (6300 w-inches)
3.53 diameters (based on OD)

Table 3.6-3. Klystron Cavity Radiators (Max. Intensity Region)

Total heat load (kW)	 3.264
Driver cavities (kW) 	 0.206
Output cavity (kW)	 2.308
Electromagnet (kW)	 0.750

Radiator temperature (°C)	 198
Radiator area, mine (m 2 )	 2.36
Fin material	 Aluminum
Fin efficiency (%)	 60
Coating (external)	 Anodize (soft)
Coating (internal)	 Anodize (hard)

Heat Pipes -- Four high-performance, arterial wick copper/water heat pipes
of 28-in. length each 1/2 in. O.D. Twenty-eight axial
groove copper/water heat pipes, 25 inches long, each 3/8 in.
O.D. (Container is actually copper Winer encased in aluminum
tube). Total heat pipe assembly weight = 6.18 kg.
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3.7 FORMATION MANAGEMENT AND CONTROL

The information management and control subsystem (IMCS) provides the
interconnecting elements between and within all the various satellites and
ground-based operational subsystems. The IMCS also provides operational
control of both the satellite and ground systems as well as providing all
subsystem processing support for all but very special functions.

The IMCS consists of the on-board and ground-based processing equipment
[central processing units (CPU) and memories], the inter- and intra-subsystem
data network (data busses), the man-machine interfaces (display/control),
and inter-system communication links, including RF, but excepting those
specifically provided for the control and transfer of primary power, and
all elements provided to accommodate activities related to system security,
safety, or any other operation necessary to the continuing operation of the
SPS.

Because of the early atage of program analysis, only those requirements
imposed upon the IMCS by a limited number of satellite operations have been
identified. The identified requirements generally are limited to those
associated with the immediate operations of an active satellite. Auxiliary
functions such as ground/space communications, display/control, safety,
security, etc., will be added when data become available.

3.7.1 FUNCTIONAL REQUIREMENTS AND BLOCK DIAGRAMS

The functioaal requirements for various operating modes are given iL
Table 3.7-1. The relationship of the DiCS to the other major subsystems is

Table 3.7-1. IMCS - Operating Modes

Mode Assembly Functton

Temperature monitor

Construction Subsystem Attitude monitor and control
Safety monitor

Power conversion and distribution
Monitor and control
Navigation

Inter-Orbit Transportation Subsystem Attitude monitor and control.
Subsystem monitor
Configuration control
M11 pointing, gimbal pointing

control

Operations Subsystem Steady-state monitor and control

Eclipse monitor
Shutdown/startup monitor and

Eclipse Subsystem control
Subsystem standby monitor and

control

Or}entation monitor
'transition Subsystem Subsystem monitor and control

Failure detection/isolation

Redundancy management

Failure/Maintenance Auto shutdown/restart
Override control
Maintenance logging
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depicted in Figure 2.1-1. Figure 2.2-13 illustrates a representative proces-
sor hierarchy as applied to a solar photovoltaic power-generating satellite
concept. Initial anaiysis of the solar thermal power-generation concept has
shown that this basic IMCS concept would also be applicable, although it
would be desirable to alter Lhe specific number, type, and location of the
various hardware elements. The 114CS hierarchy applicable to the microwave
antenna subsystem, attitude control and stationkeeping subsystem, and power
distribution subsystems is presented in Figures 3.7-1 through 3.7-3, respec-
tively. These hierarchies are established to the level at which the IMCS and
the using subsystem interfaces are apparent (e.g., physical/electrical inter-
face) .

Table 3.7-2 summarizes the estiniated number of data interfaces (not
measurements) that must be accommodated by the IMCS. Note specifically that
the microwave antenna subsystem is by far the major contributor to the deter-
mination of the complexity of the DiCS electrical interface. Table 3.7-3
provides a very preliminary estimate of the control interface that must be
accommodated by the IMCS although the estimates for the other subsystems are
not supported by an in-depth analysis. Again, the microwave antenna system
predominates.

3.7.2 MAJOR ASSEMBLIES

Figure 3.7-4 identifies the major assemblies that form the IMCS. Six
major assemblies have been identified at this time: (1) processors, (2) bus
control units (BCU), (3) data bus, (4) remote acquisition ;,nd control units
(RAC), (5) submultiplexers (SM), and (6) microprocesso= r s (pp).

Processors

The satellite Master Control Computer (Figure 3.7-1) will operate with
a 16-32 bit word format and have a 64K-128K word active memory plus a TBD
billion word bulk storage facility. Second- and third-level processors
(supervisory or local) will be 16-bit word assemblies and be limited to 16K-•
32K memories. In special cases, memory capacity may be increased to as much
as 128K words. Assemblies or subassemblies identified as microprocessors
(normally those units incorporated directly within the associated electron-
ics) will incorporate an 8-bit-work format and use active SK-64K word
memories.

Bus Control Unit

The bus control unit (BCU) provides the control necessary for data/
command transfer over the subsystem data bus network. The BCU accepts
instructions and data (or commands) from its associated processor and trans-
lates these data from a processor-compatible format to one compatible with
the data network. It also accepts bus--compatible data and converts these
data to processor formats. In addition, the BCU monitors the data traffic--
performing bit and word checks as well as health/status checks.

In addition to data bus control, the BCU will provide a computer-to--
computer link where appropriate.
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Table 3.7--2. Preliminary Data Interface Summary -
Photovoltaic (CR-2) Configuration

ANALOG DIGITAL EVENT TOTAL

MICROWAVE ANTENNA 6x106 1x106 2.1x106 >9X106

OTHER SUBSYSTEMS
STRUCTURE 35 35 35 >100
ATT. CONTROL € STATIONKEEPING 900 BOO 1000 3000
POWER DISTRIBUTION 1000 100 2000 -3000
INFORMATION MANAGEMENT -19,000 - -19,000
THERMAL 16,000 - - 16,000
LIFE SUPPORT TBD TBD TBD TBD
SAFETY AND SECURITY TBD TBD TBD TBD

Table 3.7-3. Preliminary Control Interface Summary
Photovoltaic (CR--2) Configuration

PROPORTIONAL EVENT TOTAL

MICROWAVE ANTENNA <13.6x104 30X104 <44x104

OTHER SUBSYSTEMS

STRUCTURE --35 -35 <100
ATTITUDE CONTROL S STATIONKEEPING -100 >300 <500
POWER DISTRIBUTION - >300 >300
INFORMATION MANAGEMENT - >3000 >3000
TAERMAL - - -
LIFE SUPPORT TBD TBD TBD

SAFETY AND SECURITY TBD TBD TBD

INFORMATION
MANAGEMENT

8
CONTROL SUBSYSTEM

BUS REMpTE	 SUB	 MICRO

:P1:1,C1111R

CONTROL	 DATA BUS ACQUISITION	 MULTIPLEXOR	 PROCESSOR
UI IVBCU) CONTROL	 (5M)	 (k P)

TRACY

• HARDWARE = nATA BUS -HARDWARE
- CPU -_OUPLER - CPU
- MEMORY • BRIDGE - MEMORY

• SOFTWARR COUPLER •SOFTWARE
• FIBER OPTICS

(2) fYS_

I SECONDARY ICONTROL
I	 STRUCTURE

L- -- -- L - - - - - - J
• INSTALLATION

• FUNCTIONS
• PROCEDURES

{I} SEE STRUCTURAL SUBSYSTEM
(2) SEE APPLICABLE SUBSYSTEMS

Figure 3.7--4. Assembly Tree
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Data Bus

The data bus network accommodates multiplexed, digital data transmitted
between the BCU and all other remotely located data acquisition and central
devices associated with a specific processor/BCU combination. The bus link
may utilize conventional faire techniques for short runs in low EMI areas or
fiber-optic technology for long paths or through high EMI areas. Basic bit
rate within the bus assembly is assumed to be 1.0 A.bps. Included in the data
bus assembly are the data bus coupling devices used to connect the various
remote units (one required per remote) as well as the bridge coupler required
to transfer data across the microwave antenna rotary joints; the latter
element is presently TBD.

Remote Acquisition and Control

The remote acquisition and control (RAC) assembly is the basic interface
between the IMCS and the various operating subsystems. The RAC provides for
data format conversion from the preconditioned analog, digital or event
voltage/impeda: Lce levels, and converts these data into 8--bit digital, serial,
equivalents. The RAC also accepts digital data words and outputs commands in
a format compatible with the receiving subsystems.

Basic conversion (input/output) is assumed to be +1% (e.g., 7-bit and
sign). Voltage ranges and impedances are TBD.

Submultiplexers

The submultiplexer (SM) provides a means of expanding the capability of
the RAC. The SM thus contains all of the capabilities of an RAC, but can
only communicate with a single RAC rather than a given data bus. The number
of SM's that can communicate with an RAC is presently TBD.

Microprocessor

The microprocessor (lip) elements provide local, front-end processing of
data obtained from the various using systems. These prccessors will handle
the bulk of the system's monitoring and control task, sending raw data up
through the computer hierarchy only when the task-levels exceed preestablish-
ed limits, or when detected out-of--tolerance conditions exceed local control
boundaries. These devices are solid state and could normally be integrated
within the user electronics. When necessary, the 1sp can be located within
the RAC's or SM's to provide local performance monitoring and control.

3.7.3 SUBSYSTEM DEFINITION AND INTERFACE

The subsystem interfaces for the three major subsystems are indicated
in Figure 2.1-1 through 2.1-12. Table 3.7-4 summarizes the number of IMCS
elements required for a typical photovoltaic configuration. Table 3.7-5
summarizes the physical (weight, power, volume) requirements for this system.
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	 Table 3.7-4. hardware Summary

FUNCTION

REMOTE
MASTER DISPLAY SUPER- BUS ACQUIS.

HARDWARE CONTROL AND VtSORY REMOTE MICRO- CONTROL AND
ELEMENT COMPUTER CONTROL COMPUTER COMPUTER PROC. UNIT CONTROL SUB-MUX

SATELLITE 2 1
CONTROL

_ _ _ 2

THERMAL _
2 5 - 7 85 1,352

CONTROL

STRUCT.
ALIGN.

_ - _ 3 - 3 -

ATTITUDE _ _ I t0 11 28 148
CONTROL

POWER
2 5 - 7 85 -

015TRIB.

MICROWAVE
ANTENNA - ; 14 777 792 787 29,500
CONTROL

EH^. 2 1 b - 37I	 - 777 821 985 31,000

Table 3.7-5. Weight/Power/Volume Summary - IMCS

0A MI .A nTATIMr

HARDWARE ELEMENT QUANTITY

UNIT
MASS
(Kg)

TOTAL
MASS

fti

UNIT
POWER

IKW)

TOTAL
POWER

(KW)

UNIT
VOLUME

(A

TOTAL
VOLUME

(A

MASTER CONTROL COMPUTER 2 521 1,000 2 4 0.4 0.8
DISPLAY & CONTROL SET 1 200 200 0.9 09 0.72 0 72
SUPERVISORY COMPUTER 5 14 70 0.07 0.35 0.01 0,05
REMOTE COMPUTER 23 14 321 0.07 L61 0-01 0.23
MICR04'R0CESSOR - 5

-
002 - 0.003 -

BUS CONTROL UNIT 30 5 150 0,02 0.6 0.005 0.15
REMOTE ACQUISITION & CONTROL 198 5 990 0,07 396 0 . 005 0.99
SUB MULTIPLFXOR 1	 1,500 1	 3 4,500 001 15 P 0 003 45

SUBTCTAL 7,231 26 42 144

An TATtNr

MASTER CONTROL COMPUTER -	 500 - 2 - 04 -

DISPLAY&CONTROLSET -	 I00 - 09 - 0.72 -
SUPERVISORY COMPUTER 1	 14 14 007 0.07 001 001
REMOTE COMPUTER 14	 14 196 007 0.98 001 014
MICROPROCESSOR 777	 5 3.805 0.02 15.54 0003 2331
BUS CONTROL UNIT 792	 S 3,960 002 1584 0.005 396
REMOTE ACQUISITION & CONTROL 787	 5 3135 0,02 115.74 0.005 3935
SU8MULTIPLEXOR 29,500	 3 1	 86.500 I	 0.01 195.0 0.003 885

SUBTOTAL EQO,490 343 17 98 876
TOTAL 108,000 369 6 106 3

reaie

NON ROTATING-WIRE I22GA1 1,100 KM 12.0lKM 14100 7110 51K
FIBER OPTICS 90 KM 0.141KM F2 WO GIKM

048ROTAIING-WIRE 13,000 KM 279,000
FIBER OPTICS 359 KM 50

TOTAL 293 000

_

048
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M.WEMNr. pAGE BLANK NOT FWil

4.0 SUPPORT SYSTEMS

4.1 GEO OPERATIONAL BASE

(TBD )

4.2 MAINTENANCE AND REFURBISHMENT FACILITY

(TBD)

4.3 SPS TRANSPORTATION SYSTEM REQUIREMENTS (PRELIMINARY)

The primary driver in establishing transportation system requirements
is the high: density SPS mass flow requirements to LEO and GEO. The expected
number of earth launches required to support SPS construction ranges from
1500/year to 5000/year dependent upon satellite configuration and launch
vehicle payload capability. The requirements contained herein are for a
Heavy Lift Launch Vehicle (HLLV) capable of delivering a payload from the
selected launch site(s) to LEO; a high thrust Orbital Transfer Vehicle (OTV)
and a low thrust OTV, both of which are required to deliver a payload from
LEO to GEO; and an on-orbit shuttle craft. The requirements as stated are
based'upon a mature program and may or may not be satisfied by a single
transportation system configuration (i.e., a separate and distinct trans-
portation system may be employed to satisfy personnel transfer requirements).
Because the transportation system operations costs represent a significant
percentage of overall SPS program costs, a primary objective is total system
recovery/reusability with minimum maintenance, assembly and checkout require-
ments„ consistent with the need for a high probability of mission completion
and minimum risk of vehicle loss.

4.3.1 CONFIGURATION AND MISSION REQUIREMENTS

Although the selected satellite configuration may affect transportation
system fleet size and launch rate requirements, it is not anticipated that
the selection of an alternate SPS would l ead to any significant changes in
the overall approach to satisfying transportation system requirements (i.e.,
the total mass flow requirement is of sufficient magnitude that significant
increases in mass flow would not be expected to change transportation system
concepts).

Satellite Configuration

The reference SPS is a Solar Photovoltaic configuration with a CR of 2,
a BOL power at the grid of 5 GW and an expected life of 30 years. The satel-
lite mass is assumed to be 35x10 6 kg (GEO Assembly) or 37x10 6 kg (Partial LEO
Assembly). The satellites are to be constructed at the rate of four per year
(matu-re program) with a total requirement of 120 satellites. The satellite
is to be constructed and/or assembled on-orbit. In addition to the satellite
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mass, the transportation system must also provide for the transfer of person-
nel and supplies to LEO and GEO. This requirement will lead to an additional
mass flow of approximately 300 wen and 125,000 kg/month.

Satellite Orbital Re^,uL irements

The ultimate operational destination of the SPS is a Geosynchronous
Orbit (ti 35,800 km equatorial). The LEO staging and/or construction orbit
shall be selected to maximize operational flexibility (e.g., minimum radia-
tion hazard and atmospheric drag with maximum opportunity for rendezvous by
the HLLV and maximum opportunity of departure from LEO to GEO.

Flight Requirements

A primary transportation system objective is minimum earth and on-orbit
operational requirements. Preferably methods of HLLV/OTV/payload handling
would not require special orbital staging manpower/facilities. All elements
of the transportation system should be sufficiently autonomous to require a
minimum communication/data link between vehicle(s) and earth/orbital staging
areas. For the purpose of analysis, it is assumed that at least 10 percent
of the mass delivered to the satellite construction site will be structural
mass required for satellite payload packaging and structural support; there-
fore, the transportation system shall provide a down-payload capability of
at least 10 percent of the up-payload. Launch and reentry/recovery corridors
shall be established to minimize restrictions and provide a maximum degree of
flexibility in launch/recovery operations. All orbital elements of the trans-
portation system shall be designed for a minimum orbital stay time commensur-
ate with nominal turnaround requirements. All orbital elements of the trans-
portation system shall have the capability of on-orbit propellant transfer to
effect recovery in the event that the orbital stay-time exceeds the maximum
allowed by system design.

Environmental. Requirements

Specific environmental requirements are TBD. However, the overall impact
on earth resources by transportation system materials and propellant selec-
tions must be considered. In addition, the overall levels of acoustic and
toxic/noxious emissions must conform to generally accepted levels. The potea-
tial hazards of storing large quantities of propellants at the selected launch
and orbital staging areas must also be addressed.

4.3.2 HEAVY LAUNCH LIFT VEHICLE(S) REQUIREMENTS

The HLLV must be capable of meeting the mass flow requirements of the
Satellite Configuration section. In addition, the HLLV must transport the
OTV and/or OTV propellants to LEO. Since HLLV operations are the major con-
tributor to SPS transportation costs, specific attention must be given toward
minimizing handling, checkout and assembly equipment requirements; facility
and manpower requirements; replacement and/or refurbishment hardware; and any

	 k-

other factors which affe_t overall turnaround time requirements. As in the
case of the Space Shuttle Transportation System, a "spaceline" (airline) con-
cept is indicated.
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Payload and Interfaces

Since the efficient delivery of payloads to LEO is the primary objective
of the HLLV, then payload mass, configuration and interface requirements may
strongly influence ELV design.

Payload Interface. For the purpose of HLLV synthesis, it may be assumed
that all payloads will be prepackaged and self-contained. All payloads shall
conform to a common HLLV mechanical interface and require minimum handling
and installation equipment/operaticns. Those payloads requiring servicing
(i.e., OTV propellant) shall be capable of servicing-deservicing after HLLV
installation. The HLLV shall provide suitable launch and flight environ-
mental protection for all payloads. The HLLV shall be capable of remote
deployment of payloads in LEO and retrieval of empty payload modules and/or
crew/OTV modules from LEO for return to Earth Base. All other HLLV/payload
-interfaces shall be avoided except where such interfaces will enhance mission
accomplishment or are shown to be most cost-effective.

Payload Configuration. Specific payload weight and envelope requirements
are dependent upon HLLV and OTV concept selection and potential environmental
considerations. Because of the high mass flow requirement to support satellite
construction, a minimum mix and manageable size of payload elements is desir-
able in order to reduce on-orbit operational requirements. The HLLV delivery
concept and payload volume capability shall be such that a minimum payload
density is required to meet maximum HLLV payload weight capability.

On-Orbit Docking Requirements. Except for the requirements specified in
Payload Interface, above, HLLV on-orbit docking requirements are TBD.

Launch Site(s) Requirements

The predominant launch site requirement is in meeting the high launch/
retrieval rates and mass flow requirements through the launch facility. Be-
cause of the high mass flow requirement, the launch site must be readily
accessible by at least three of the four common means of earth transport
(i.e., truck, rail, air and sea). In order to meet the high launch/retrieval
rate requirement, launch site activities should be restricted to payload/HLLV
mating, routine checkout/servicing and HLLV preparation for launch. The
proximity of payload and transportation system maintenance and overhaul stag-
ing areas to the launch site are TBD. Because of the high demand for propel-
lants, it may be assumed that a propellant processing facility will be at or
in close proximity to the launch site. A candidate launch site is the
Kennedy Spaceflight Centex. Owing to the high probability of suspension
of launch/retrieval operations for periods of up tc two weeks due to incle-
ment weather (especially if sea recovery of the HLLV is planned), an alter-
nate, geographically isolated launch/retrieval site is indicated. A possible
alternate to another launch site would be to increase the launch rate
capability to provide for a two--week inventory of satellite construction
elements on-orbit. However, the emergency return of orbital crew members
would be precluded.
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HLLV/Launch Site Interface Requirements. Except for the potential
requirement for specialized checkout/maintenance equipment which might be
employed in the HLLV staging area, physical launch site interfaces shall be
restricted to consumables servicing and ground power requirements. Communi-
cation and data interface requirements are TBD.

Launch Site/Recovery Site Interface. The recovery site shall be in as
close proximity to the launch site as practicable. Launch and recovery site
operations shall be autonomous and require a minimum of communication/data
links between one another. Launch and recovery operations shall be capable
of being conducted simultaneouBly on a non-interference basis. Should
alternate launch/landing sites be employed, the HLLV shall be readily capable
of transport from one launch/recovery site to the other. Recovery site and
method of recovery shall be selected to assure intact recovery of the HLLV
with minimum turnaround maintenance/checkout requirements.

HLLV Performance Requirements

The HLLV shall provide the delta--V required to deliver the desired pay-
load to the selected LEO staging area. The HLLV shall have the capability
of performing all necessary orbital maneuvers to effect rendezvous with the
LEO staging base and/or with down-payload modules and all necessary deorbit/
reentry/landing maneuvers. The HLLV shall have sufficient performance
reserves to satisfy TBD error analyses.

Abort Requirements

Abort requirements are TBD.

Desizn Life Requirements

As a design goal, the HLLV shall have the capability of accomplishing
300 missions. Life-limited components and/or components requiring periodic
overhaul shall meet TBD line replaceable unit (LRU) requirements. Each LRU
shall be capable of removal/replacement without materially affecting vehicle
fleet size or turnaround requirements.

4.3.3 ORBITAL TRANSFER VEHICLE (HIGH THRUST)

The high-thrust OTV shall employ LOX/LH2 propellant. The OTV must be
capable of meeting the satellite mass flow requirements of the Satellite
Configuration section. The OTV shall be capable of meeting the orbital
transfer requirements defined in the Satellite Orbital Requirements section
and the Flight Requirements section. In addition, the OTV shall have the
capability of self-test and monitoring in order to evaluate status and
readiness for operation.

Payload and Interfaces

In addition to satellite construction/operation mass requirements, the
OTV shall be capable of orbital transfer of crew and supply nodules.

it
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Payload Interface. All payloads shall be prepackaged and self-contained,
and conform to a common OTV mechanical interface. All other OTV/payload
interfaces shall be avoided except where such interfaces may be shown to en-
hance mission accomplishment or to be more cost-effective.

Payload Conf figuration. Except for the interface requirement of Payload
Interface, above, there are no payload configuration restrictions.

On--Orbit Docking Requirements. On-orbit docking requirements are TBD.

OTV/HLLV Interface Requirements. The OTV shall conform to t.ie inter-
face requirements of the Payload Interface and Payload Configuration sections.

OTV/Orbital Base Interface Requirements. OTV/Orbital vase interface
requirements are TBD.

OTV/Launch Site Interfaces. The OTV shall meet the interface require-
ments of the HLLV/Launch Site Interface Requirements section.

OTV Performance Requirements

The OTV shall provide the required delta-V capability to deliver the
desired payload from the selected LEO staging base to the SPS GEO location
and effect a return to the LEO staging base. The OTV shall provide a down-
payload capability for crew/supply and empty satellite payload containers.
The OTV shall have the capability of performing all necessary LEO/GEO
rendezvous maneuvers and posses sufficient performance reserves to satisfy
TBD error analysis.

Abort Requirements

Abort requirements are TBD.

Design Life Requirements

The OTV shall meet the Design Life Requirements section.

4.3.4 ORBITAL TRANSFER VEHICLE (LOW THRUST)

Low-thrust OTV requirements are TBD.

4.3.5 ON-ORBIT TRANSFER VEHICLE

The high traffic density and multiple rendezvous requirements indicate
the possible need for an OOTV. OOTV requirements are TBD.

4.4 LEO OPERATIONAL BASE
(TBD)

4.5 CARGO AND PERSONNEL LAUNCH AND RECOVERY FACILITIES

(TBD)
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4.6 BASE SUPPORT FACILITIES

(TBD)

4.7 LOGISTIC FACILITIES

(TBD)

4.8 SPS GROUND RECTENNA FACILITIES

(TBD)
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